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Maxwell's equations are a set of four partial 
g.ifferential equations that relate the electric and 
magnetic fields to tneir sources, charge density 
and ~_ent densIty. Ihese equations can be 
combined to show that light is an 
electromagnetic wave. Individually, the equations 
are kriown as Gauss's law, Gauss's law for 
magnetism, Faraday's law of induction, and 
Ampere's law with Maxwell's correction. The set 
of equations is named after James Clerk Maxwell. 

These four equations, together with the ~z 
force law are the complete set of laws of classical 
electromagnetism. The Lorentz force law itself 
was actually derived by Maxwell under the name 
of Equation for Electromotive Force and was one 
of an earlier set 0 elg T 8iIUati:ens by Maxwell. 
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0rsted 

This section will conceptually describe each of the four Maxwell's equations, and also 
how they link together to explain the origin of electromagnetic radiation such as light. 
The exact equations are set out in later sections of this article. 

• Gauss' law describes how an electric field is generated by electric charges: The 
electric field tends to point away from positive charges and towards negative 
charges. More technically, it relates the electric @:;through any hypothetical 
closed "Gaussian surface" to the electric charge within the surface . 

• Gauss' law for magnetism states that there are no "magnetic charges" (also called 
magnetic monopoles), analogous to electric charges.[1] Instead the magnetic field 
is generated by a configuration called a d,lIl.Q}e, which has no magnetic charge but 
resembles a positive and negative charge inseparably bound together. Equivalent 
technical statements are that the total magnetic ffii:XffirougIi any GaUssian surface 
is zero, or that the magnetic field is a solenoidal vector field. 
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r; oThr /,./0- 1 diU .' d 
• Faraday's law describes how a changing magnetic r=:,.,.----,--------., 

field can create ("induce") an electric field .rl"]-This 
aspect of electroma gnefic induction is the operating 
principle behind many electric generators: A bar 
magnet is rotated to create a changing magnetic 
field, which in turn generates an electric field in a 
nearby wire. (Note: The "Faraday's law" that occurs 
in Maxwell's equations is a bit different than the 
version originally written by Michael Faraday. Both 
versions are equally true laws of physics, but they 
have different scope, for example whether "motional 
EMF" is included. See Faraday's law of induction for 
details.) 

• Ampere's law with Maxwell's correction states that 

An Wang's magnetic core 
memory (1954) is an 

application of Ampere's 
law. Each core stores one 

bit of data . 

magnetic fields can be generated in two ways : by electrical current (this was the 
original "Ampere's law") and by changing electQ£,fields...(.this was "Maxwell's 
correction"). GOln;d~ prob/-f.,.,.., 

Maxwell's correction to Ampere's law is particularly important: It means that a 
changing magnetic field creates an electric field, and a changing electric field creates 
a magnetic field. [1][2] Therefore, these equations allow self-sustaining "electromagnetic 
waves" to travel through empty space (see electromagnetic wave equation) . 

The speed calculated for electromagnetic waves, which could be predicted from 
experiments on charges and currents, [note 1] exactly matches the speed of light; indeed, 
light is one form of electromagnetic radiation (as are X-rays, radio waves, and others). 
Maxwell understood the connection between electromagnetic waves and light in 1864, 
thereby unifying the previously-separate fields of electromagnetism and optics. 

General fonnulation 

The equations in this section are given in SI units. Unlike the equations of mechanics 
(for example), Maxwell's equations are not unchanged in other unit systems. Though 
the general form remains the same, various definitions get changed and different 
constants appear at different places. Other than SI (used in engineering), the units 
commonly used are Gaussian uni'ts (b-ased on the cgs system and considered to have 
some theoretical advantages over SI[3]), Lorentz-Heaviside units (used mainly in 
particle physics) and Planck units (used in theoretical physics). See below for 
CGS-Gaussian units. 

Two equivalent, general formulations of Maxwell's equations follow. The first separates 
bound charge and bound current (which arise in the context of dielectric and/or 
magnetized materials) from free charge and free current (the more conventional type of 
charge and current). This separation is useful for calculations involving dielectric or 
magnetized materials. The second formulation treats all charge equally, combining free 
and bound charge into total charge (and likewise with current) . This is the more 
fundamental or microscoPlCPoint of view, and is particularly useful when no dielectric 
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or magnetic material is present. More details, and a proof that these two formulations 
are mathematically equivalent, are given in section 4. 

Symbols in bold represent vector quantities, and symbols in italics represent scalar 
quantities. The definitions of terms used in the two tables of equations are given in 
another table immediately following . 

Formu lation in terms of free charge and current 

I Name I Differential form I Integral form 

I Gauss's law 1\7· D = Pf I flo}) . dA = Qf(V) 

Gauss's law for magnetism 1\7·B=O lfi~ ·dA= 0 

Maxwell-Faraday equation I \7 x E = _ aB In E· dl = -
0<1> B s , 

(Faraday's law of induction) iJS at at 
Ampere's circuital law I \7 x H=J f + ~~ i O<Il D S 

H· dl = If,S + a' (with Maxwell's correction) as t 

Formulation in terms of total charge and current[note 2] 

Name Differential form Integral form 

Gauss's law 
P \7·E=-
ca 

Gauss's law for magnetism \7(JB = 0 I 

. dA = Q(V) 

·dA = 0 
IQfCjP J'f(~ I~/{e . 

Maxwell-Faradayequation \7 rl E= _ oB -(C~l ,{IC.. 1 E. dl = _ 0<1> B ,S 
(Faraday's law of mductlOn) e3 at !as at 
Ampere 's circuital law _ aE 1 B . II = I aVE,S 
(with Maxwell's correction) \7 x B - J.LaJ + J.LaCa at !as C J.La S + J.LaCa at 
The following table provides the meaning of each symbol and the SI unit of measure: 

1\.( r ( n 'l'e J', (Fp{FiI/'( v ~ OJ oS" vrl 1 " 
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E 

B 

D 

H 

\). 

\)X 

a 
at 

Symbol 

dA (eally 
LIft d Jl{6btd 

dl d (t( t 5 
co - ~~ I, T 

k ~ rldq 
/10 Jo ¥r,v 
Pi 

P 

J 

Definitions and units 
Meaning (first term is the most 

common) 

electric field 

magnetic field 
also called the magnetic induction 
also called the magnetic field density 
also called the magnetic flux density 

electric displacement field 
also called the electric induction 
also called the electric flux density 
magnetizing field 
also called auxiliary magnetic field 
also called magnetic field intensity 
also called magnetic field 

thec®TBrgenCEDoperator 5 rJJ"y 
the~perator J ~ f fpf'(lll.( e 

partial derivative with respect to time 
""== ::.. 

differential vector element of surface area 
A, with infinitesimally small magnitude 
and direction normal to surface 5 
differential vector element of path length 
tangential to the path/curve 

SI Unit of Measure 

volt per meter or, 
equivalently, 
newton per coulomb 
tesla, or equivalently, 
weber per square 
meter, 
volt-second per square 
meter 
coulombs per square 
meter or equivalently, 
newton per volt-meter 

ampere per meter 

per meter (factor 
contributed by applying 
either operator) 
per second (factor 
contributed by applying 
the operator) 

square meters 

meters 

permittivity of free space, also called the farads per meter 
electric constant, a universal constant 

permeability of free space, also called the 
magnetic constant, a universal constant 

free charge density (not including bound 
charge) 
total charge density (including both free 
and bound charge) 

henries per meter, or 
newtons per ampere 
squared 
coulombs per cubic 
meter 
coulombs per cubic 
meter 

free current density (not including bound amperes per square 
current) meter 
total current density (including both free amperes per square 
and bound current) meter 
net free electric charge wi thin the three-
dimensional volume V (not including coulombs 
hnl,,.,rJ ro'h::::.r,..,.o) 
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Q(V) 
net electric charge within the three
dimensional volume V (including both 
free and bound charge) 
line integral of the electric field along the 

coulombs 

1 E.dl 
!as boundary as of a surface S (as is always a joules per coulomb 

closed curve). 

1 B ·dl 
Jas 

1-[ E ·dA 
]fav 

1-[ B . dA nw 

line integral of the magnetic field over 
the closed boundary as of the surface S 

the electric flux (surface integral of the 
electric field) through the (closed) 
surface av (the boundary of the volume 
V) 

the magnetic flux (surface integral of the 
magnetic B-field) through the (closed) 
surface av (the boundary of the volume 
V) 

lis 
magnetic flux through any surface S, not 

B . dA = cP B,S necessarily closed 
S 

11 
electric flux through any surface S, not 

E . dA = cP E ,S necessarily closed 
S 

tesla-meters 

joule-meter per coulomb 

tesla meters-squared or 
webers 

webers or equivalently, 
volt-seconds 

joule-meters per 
coulomb 

D dA - I . cou 0 s lis flux of electric displacement field through I mb 
S . - () D ,S any surface S, not necessanly closed 

( eC{11 r re(O 9~2e 

) v5 ~5 I/~ C 
V~ S?s 11 

net free electrical current passing 
J f . dA = ft. s through the surface S (not including 

S bound current) 
net electrical current passing through 
the surface S (including both free and 
bound current) 

amperes 

amperes () f \1 

f({e-
Maxwell's equations are generally applied to macroscopic averages of the fields, which \tvt" l1 
vary wildly on a microscopic scale in the vicinity of individual atoms (where they ~ 
undergo quantum mechanical effects as well). It is only in this averaged sense that one 
can define quantities such as the permittivity and permeability of a material. At . 
microscopic level, Maxwell's equations, ignoring quantum effects, describe fields , Gh9 rtcu/.s 
charges and currents in free space-but at this level of detail one must include all \- " 
charges, even those at an atomic level, generally an intractable problem. 0 , \.. 

History 

Although James Clerk Maxwell is said by some not to be the originator of these 
equations, he nevertheless derived them independe tl~ in cQnjunction with his 
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molecular vortex model of Faraday's "lines of force". In doing so, he made an important 
addition to Ampere's circuital law. ------
All four of what are now described as Maxwell's equations can be found in recognizable 
form (albeit without any trace ofa vector notation, let alone V) in his 1861 paper On 
Physical Lines of Force, in his 1865 paper A Dynamical Theory of the Electromagnetic 
Field, and also in vol. 2 of Maxwell's "A Treatise on Electricity & Magnetism", 
published in 1873, in Chapter IX, entitled "General Equations of the Electromagnetic 
Field". This book by Maxwell pre-dates publications by Heaviside, Hertz and others. 

The tenn Maxwell's equations 

The term Maxwell's equations originally applied to a set of~quations published by 
Maxwell in 1865, but nowadays applies to modified versions of four of these equations 
that were grouped together in 1884 by Oliver Heaviside, [5] concurrently with similar 
work by Willard Gibbs and Heinrich Hertz. [6] These equat'rnns were also known 
variously as the Hertz-Heaviside equations and the Maxw~llwertz equations, [5] an~ are 
sometimes still known as the Maxwell-Heaviside equations. [7 --"''''--.. {worvp y""tI l{,~ 

Maxwell's contribution to science in producing these equations lies in the correction he 
made to Ampere's circuital law in his 1861 paper On Physical Lines of Force. He added 
the displacement current term to Ampere's circuital law and this enabled him to derive 
the electromagnetic wave equation in his later 1865 paper A Dynamical Theory of the 
Electromagnetic Field and demonstrate the fact that light is an electromagnetic wave. 
This fact was then later confirmed experimentally by Heinrich Hertz in 1887. 

The concept of~ was introduced by, among others, Faraday. Albert Einstein wrote: 

The precise fonnulation of the time-space laws was the work of Maxwell. Imagine his 
feelings when the differential equations he had fonnulated proved to him that 
electromagnetic fields spread in the fonn of polarised waves, and at the speed of 
light! To few men in the world has such an experience been vouchsafed .. it took 
physicists some decades to grasp the full significance of Maxwell's discovery, so bold 
was the leap that his genius forced upon the conceptions of his fellow-workers 

-(Science, May 24, 1940) 

The equations were called by some the Hertz-Heaviside equations, but later Einstein 
referred to them as the Maxwell-Hertz equations[5] However, in 1940 Einstein referred 
to the equations as Maxwell's equations in "The Fundamentals of Theoretical Physics" 
published in the Washington periodical Science, May 24, 1940. 

Heaviside worked to eliminate the potentials (electrostatic potential and vector 
potential) that Maxwell had used as the central concepts in his equations/5] this effort 
was somewhat controversial, [8] though it was understood by 1884 that the potentials 
must propagate at the speed of light like the fields, unlike the concept of instantaneous 
action-at-a-distance like the then conception of gravitational potential. [6] Modern 
analysis of, for example, radio antennas, makes full use of Maxwell's vector and scalar 
potentials to separate the variables, a common technique used in formulating the 
solutions of differential equations. However the potentials can be introduced by 
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algebraic manipulation of the four fundamental equations. 

The net result of Heaviside's work was the symmetrical duplex set of four equations, [5J 
all of which originated in Maxwell's previous publications, in particular Maxwell's 1861 
paper On Physical Lines of Force, the 1865 paper A Dynamical Theory of the 
Electromagnetic Field and the Treatise. The fourth was a partial time derivative version 
of Faraday's law of induction that doesn't include motionally induced EMF; this version 
is often termed the Maxwell-Faraday equation or Faraday's law in differential form to 
keep clear the distinction from Faraday's law of induction, though it expresses the same 
law. [9][10J 

Maxwell's On Physical Lines of Force (1861) 

The four modern day Maxwell's equations appeared throughout Maxwell's 1861 paper 
On Physical Lines of Force: 

1. Equation (56) in Maxwell's 1861 paper is \7 . B = o. 
ii. Equation (112) is Ampere's circuital law with Maxwell's displacement current 

added. It is the addition of displacement current that is the most significant aspect 
of Maxwell's work in electromagnetism, as it enabled him to later derive the 
electromagnetic wave equation in his 1865 paper A Dynamical Theory of the 
Electromagnetic Field, and hence show that light is an electromagnetic wave. It is 
therefore this aspect of Maxwell's work which gives the equations their full 
significance. (Interestingly, Kirchhoff derived the telegrapher's equations in 1857 
without using displacement current. But he did use Poisson's equation and the 
equation of continuity which are the mathematical ingredients of the displacement 
current. Nevertheless, Kirchhoff believed his equations to be applicable only 
inside an electric wire and so he is not credited with having discovered that light 
is an electromagnetic wave). 

iii. Equation (115) is Gauss's law. 
iv. Equation (54) is an equation that Oliver Heaviside referred to as 'Faraday's law'. 

This equation caters for the time varying aspect of electromagnetic induction, but 
not for the motionally induced aspect, whereas Faraday's original flux law caters 
for both aspects. Maxwell deals with the motion ally dependent aspect of 
electromagnetic induction, v x B, at equation (77). Equation (77) which is the 
same as equation (D) in the original eight Maxwell's equations listed below, 
corresponds to all intents and purposes to the modern day force law F = q ( E + v 
x B ) which sits adjacent to Maxwell's equations and bears the name Lorentz 
force, even though Maxwell derived it when Lorentz was still a young boy. 

The difference between the B and the H vectors can be traced back to Maxwell's 1855 
paper entitled On Faraday's Lines of Force which was read to the Cambridge 
Philosophical Society. The paper presented a simplified model of Faraday's work, and 
how the two phenomena were related. He reduced all of the current knowledge into a 
linked set of differential equations. 
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It is later clarified in his concept of a sea of 
molecular vortices that appears in his 1861 
paper On Physical Lines of Force - 1861 
(http://upload.wikimedia.org/wikipedia 
/commons 
/b/b8/0n]hysical_Lines_otForce.pdf) . Within 
that context, H represented pure vorticity 
(spin), whereas B was a weighted vorticity that 
was weighted for the density of the vortex sea. 
Maxwell considered magnetic permeability j.l to 
be a measure of the density of the vortex sea. 
Hence the relationship, 

(1) Magnetic induction current causes a 
magnetic current density 

B = !LH 

was essentially a rotational analogy to the 
linear electric current relationship, 

(2) Electric convection current 

J =pv 

where p is electric charge density. B was seen 
as a kind of magnetic current of vortices 
aligned in their axial planes, with H being the 
circumferential velocity of the vortices. With j.l 

r-=========================~ 

I' 

Figure of Maxwell's molecular vortex 
model. For a uniform magnetic field, 
the field lines point outward from the 

ctisplay screen, as can be observed 
from the black dots in the middle of 

the hexagons. The vortex of each 
hexagonal molecule rotates counter

clockwise. The small green circles are 
clockwise rotating particles 

sandwiching between the molecular 
vortices. 

--

representing vortex density, it follows that the product of j.l with vorticity H leads to 
the magnetic field denoted as B. 

The electric current equation can be viewed as a convective current of electric charge 
that involves linear motion . By analogy, the magnetic equation is an inductive current 
involving spin. There is no linear motion in the inductive current along the direction of 
the B vector. The magnetic inductive current represents lines of force. In particular, it 
represents lines of inverse square law force. 

The extension of the above considerations confirms that where B is to H, and where J 
is to p, then it necessarily follows from Gauss's law and from the equation of continuity 
of charge that E is to D. i.e. B parallels with E, whereas H parallels with D. 

Maxwell's A Dynamical Theory of the Electromagnetic Field (1864) 

Main article: A Dynamical Theory of the Electromagnetic Field 

In 1864 Maxwell published A Dynamical Theory of the Electromagnetic Field in 
which he showed that light was an electromagnetic phenomenon. Confusion over the 
term "Maxwell's equations" is exacerbated because it is also sometimes used for a set of 
eight equations that appeared in Part III of Maxwell's 1864 paper A Dynamical Theory 
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of the Electromagnetic Field, entitled "General Equations of the Electromagnetic 
Field, ,,[11] a confusion compounded by the writing of six of those eight equations as 
three separate equations (one for each of the Cartesian axes), resulting in twenty 
equations and twenty unknowns. (As noted above, this terminology is not common: 
Modern references to the term "Maxwell's equations" refer to the Heaviside 
restatements.) 

The eight original Maxwell's equations can be written in modern vector notation as 
follows: 

(A) The law of total currents 

aD 
Jt.ot=J+ at 

(B) The equation of magnetic force 

pH = \1 x A 

(C) Ampere's circuital law 

(D) Electromotive force created by convection, induction, and by static electricity. 
(This is in effect the Lorentz force) 

aA 
E=pv x H---\1¢ at 

(E) The electric elasticity equation 

1 
E= -D 

E 

(F) Ohm's law 

1 
E =-J 

u 

(G) Gauss's law 

\1·D=p 

(H) Equation of continuity 

or 

10 of 37 

\1 . J = _ ap 
at 
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I~eface 
& 

Here are my online notes for my Calculus III course that I teach here at Lamar University. 
Despite the fact that these are my "class notes", they should be accessible to anyone wanting to 
learn Calculus III or needing a refTesher in some of the topics from the class. 

These notes do assume that the reader has a good working knowledge of Calcu lus I topics 
including limits, derivatives and integration. It also assumes that the reader has a good 
knowledge of several Calculus" topics including some integration techniques, parametric 
equations, vectors, and knowledge of three dimensional space. 

Here are a couple of warnings to my students who may be here to get a copy of what happened on 
a day that you missed. 

I. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn 
calculus I have included some material that I do not usually have time to cover in class 
and because this changes from semester to semester it is not noted here. You will need to 
find one of your fellow class mates to see if there is something in these notes that wasn't 
covered in class. 

2. In genera l I try to work problems in class that are different from my notes. However, 
with Calculus III many of the problems are difficu lt to make up on the spur of the 
moment and so in this class my c lass work will follow these notes fairly close as far as 
worked problems go. With that being said I wi ll , on occasion, work problems off the top 
of my head when I can to provide more examples than just those in my notes. Also, I 
often don ' t have t ime in class to work all of the problems in the notes and so you will 
find that some sections contain problems that weren't worked in class due to time 
restrictions. 

3. Sometimes questions in class will lead down paths that are not covered here. I try to 
anticipate as many of the questions as possible in writing these up, but the reality is that I 
can't anticipate a ll the questions. Sometimes a very good question gets asked in class 
that leads to insights that I've not included here. You should always talk to someone who 
was in class on the day you missed and compare these notes to their notes and see what 
the differences are. 

4. This is somewhat related to the previous three items, but is important enough to merit its 
own item. THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!! 
Using these notes as a substitute for class is liable to get you in trouble. As already noted 
not everything in these notes is covered in class and often material or insights not in these 
notes is covered in class. 
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I[ Line Integrals 

Introduction 

In this section we are going to start looking at Ca lculus with vector fi elds (which we'll define in 
the first section). In particular we will be looking at a new type of integral, the line integra l and 
some of the interpretations of the line integra l. We will also take a look at one of the more 
important theorems involving line integrals, Green's Theorem. 

I-Iere is a listing of the topics covered in this chapter. 

Vector Fields - In this section we introduce the concept of a vector fi eld. 

Line Integrals Part I - Here we will start looking at line integra ls. In particular we will look 
at line integra ls with respect to arc length. 

Line Integrals Pa rt II We will continue looking at line integra ls in this section. Here we will 
be looking at line integra ls with respect to x, y , and/or z. 

L ine Integrals of Vector Fields - Here we will look at a third type of line integrals, line integra ls 
of vector fi elds. 

Funda mental Theorem for Line Integrals - In this section we will look at a version of the 
fundamental theorem of ca lculus for line integrals of vector fi elds. 

Conservative Vector Fields Here we will take a somewhat deta iled look at conservative vector 
fi elds and how to find potential functions. 

G reen 's Theorem - We will give Green' s Theorem in this section as well as an interesting 
application of Green's Theorem. 

Cllrl and Divergence - In this section we will introduce the concepts of the curl and the 
divergence ofa vector fi eld . We will a lso give two vector forms of Green' s T heorem. 
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Vector Fields 

We need to start this chapter off with the definition ofa vector field as they will be a major 
component of both this chapter and the next. Let's start off with the formal definition of a vector 
field. 

Definition 

A vector field on two (or three) dimensional space is a function F that assigns to each point 

(x ,y) (or (x,y ,z)) a two (or three dimensional) vector given by F(x,y) (or F(x,y,z)). 

That may not make a lot of sense, but most people do know what a vector field is, or at least 
they've seen a sketch ofa vector field. !fyou've seen a current sketch giving the direction and 
magnitude ofa flow ofa fluid or the direction and magnitude of the winds then you've seen a 
sketch of a vector field. 

The standard notation for the function F is, 

F(x,y) = P(x,y)T + Q(x,y)] 

F(x,y,z) = P(x,y,z)T + Q(x,y,z)] + R(x,y,z)k 
depending on whether or not we're in two or three dimensions. The function ~R (if it is 

present) are sometimes called scalar functions. ; 0t ~J' f 
Let's take a quick look at a couple of examples. 7 
Example 1 Sketch each of the following direction fields. 

(a) F(x,y)=-yl +x] [Solution] 

(b) F(x,y,z)=2xl -2y]-2xk [Solution] 

SO/lIlioll 

(a) F(x,y)=-yl +x] 

Okay, to graph the vector field we need to get some "values" of the function. This means 
plugging in some points into the function. Here are a couple of evaluations. 

F-:(l 1)_ 1 7 1 ~ I ' {(V/fftt cRt (]d&~ 
"2 '"2 --"2/ +"2) cI ( ~ ~:,,1 

FG,-±)=-(-±)t+~]=±I+~] . 

-(31) 1- 3-
F "2'"4 =-"4 i +"2i I 

T 1Ie, pl"9 11 

So,just what do these evaluations tell us? Well the first one tells us that at the point (t,t) we 

will plot the vector -t 1 + t ]. Likewise, the third evaluation tell s us that at the point (+ , +) we 

will plot the vector -+1 +t]. 
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We can continue in this fashion plotting vectors for several points and we'll get the following 
sketch of the vector field. 

y 

2 

~ 
/ .-- 1 

q-€,r 1n ;, 
\ 

/ "-
/ 

-2 -1 
/ 1 

2 x (e~fI1bU( ~~{f¢'rA 

\ "-
-1 .-- / CL~ e.QCft1 fOil 1 

-2 
IS flt i.f t fa ,) ~ \ . 

C Jet/oJed 6frf/ 
If we want significantly more points plotted then it is usually best to use a computer aided r +11;", h 
graphing system such as Maple or Mathematica. Here is a sketch with many more vectors 
included that was generated with Mathematica. 

y 

/// /...---- -,,',," 
/////-- ---"",
////" --- ""\ 
I I / -' / - - , " \ \ \ 
I I I I , , , , \ \ \ 

1,11" \\\\\ 
I I , ~ \ , , \ , 

-+-.-.-.~ __ ~-+~ __ ~LL-L-L~ x 
-1 1 I ~ 

\ \ \ \ 1 j I 

III' 1 I11 

\ \ \ \'':1 ' , I I I 
\ \ , , , , _ , / / / J 
\""- --- //// 
'''''' -- -//// // 
" " ....... _-J -_..- //// 

(b) F(x,y,z )=2xi -2y]-2xk 

[Return to Problems] 

In the case of three dimensional vector fields it is a lmost always better to use Map le, 
Mathematica, or some other such tool. Despite that let' s go ahead and do a coup le of eva luations 
anyway. 

F(~ -~2)=2i+6]-2k 

F(O,5,3)=-IO] 

Notice that z on ly affect the placement of the vector in this case and does not affect the direction 
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or the magnitude of the vector. Sometimes this wi ll happen so don' t get exc ited about it when it 
does. 

Here is a couple of sketches generated by Mathemat ica. T he sketch on the left is fro m the "front" 
and the sketch on the right is from "above" . 

x 

4 2 

4 

y 
o - 2 -4 

x 0 ~~ ....... +--..-... . . ... , ..-...... ,..j.--I 

- 2 \. \,) i t>-tr ~? J~t/I't//, 
~ ' \t l l{J I J '" (r 

-4 ~ , J I ,.( 

ct OV~ '_-.Y 
[Return to Problems] 

Now that we've seen a couple of vector fie lds let's not ice that w 've already seen a vector fie ld 
function. In the second chapter we looked at the ra len vector Reca ll that given a function 

f (x,y,z ) the gradient vector is defined by, 

'If = (fx,fy,r ) 
This is a vector fie ld and is often ca lled a gradient vector field . 

In these cases the funct ion f (x,y,z) is often call ed a sca lar function to di fferent iate it from the 

vector field. 

Example 2 Find the gradient vector fie ld of the fo llowing fu nctions. 

(a) f (x,y) = x2 sin(Sy) 

(b) f (x,y,z) = ze-" Y 

SO/lIliOIl 

(a) f (x,y) = x2 sin(Sy) 

+ctlrt Jeriv' 01- p.~h (J6/ J r 

bv+ ~~ j oes ; t- (()/~ I; ~ ~ ~ 

Note that we only gave the grad ient vector defi ni t ion for a three dimens iona l function, but don' t 
forget that there is a lso a two dimension defi nit ion. All that we need to drop off the th ird 
component of the vector. 

Here is the gradient vector fi e ld for this function. 

'If = (2xsin (Sy ), Sx' cos ( Sy )) 
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(b) f(x,y,z)=ze-x)' 

There isn't much to do here other than take the gradient. 

'If = (-yze-XY, -xze-.'J' ,e-·'Y) 

Let's do another example that will illustrate the relationship between the gradient vector field of a 
function and its contours. 

Example 3 Sketch the gradient vector field for f (x, y) = x' + y' as well as several contours 

for this function. 
SOll/lioll 
Recall that the contours for a function are nothing more than curves defined by, 

f(x ,y)=k 
for various values of k. So, for our function the contours are defined by the equation, 

x' + y' = k 

and so they are circles centered at the origin with radius .Jk . 

Here is the gradient vector field for this function. 

Vf(x ,y)=2xT +2y] 
Here is a sketch of several of the contours as well as the gradient vector field. 

y 

w~ Ql (s 

~(<I r ;e(J r B/'{d;~1~ 
0'qp~cdllr 

-JQf:,; l\-€ (s~t.~ 

Notice that the vectors of the vector field are all perpendicular (or olthogonal) to the contours. 
This will always be the case when we are dealing witlnhe contours ofafuncfron as welras its 
gradient vector field. 

The k's we used for the graph above were 1.5,3,4.5, 6,7.5, 9, 10.5, 12, and 13.5. Now notice 
that as we increased k by 1.5 the contour curves get closer together and that as the contour curves 
get closer together the larger vectors become. In other words, the closer the contour curves are 
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<as k is increased by a fi xed amount) the faster the Function is changing at that point. Also reca ll 
that the direct ion of fastest change for a fu nction is given by the gradient vector at that point. 
T herefore, it should make sense that the two ideas should match up as they do here. 

T he fi na l topic of this section is that of conservative vector fi elds. A vector fie ld F is called a 

conservative vector field if there ex ists a function f such that r~-vzJ If F is a conservative 

vector fie ld then the function,£; is ca lled a potent ial funcli!!.,n for . L ~ f i1 }.s Gt !v'~ 't'~ 'l 
All this definiti on is saying is that a vector fi eld is conservative if it is a lso a gradient vector fi eld e r.? d ;rt'1 f 
for some function. 

For instance the vector fi eld F = y T + x J 
of f (x,y ) =xy because Vf= (y,x ) . 

is a conservative vector fi eld with a potentia l function -( OnS)'JilI /) 

d.oe ~ (\/1/ 

On the other hand, F = - y T + x J is not a conservative vector fi eld s ince there is no function! G ~O"cO{i 
such that F = Vf. If you' re not sure that you be lieve th is at this point be patient, we will be able vi WkJ}
to prove this in a couple of sections. In that section we will also show how to fi nd the potent ial 
function for a conservative vector fie ld. 

....l 

( 9 f,{Jr'l. b0r F (~ ~ ~/a~I()~t {l ( 

-.l 

f 
, , I 
LS> Ot ~LI'(), 

~C" {, rIlS boclj \>-dd- '1 ~ ~{1lI"'J 

l JI Dh vet I 
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Line Integrals - Part I 

In this section we are now going to introduce a new kind of integral. However, before we do that 
it is important to note that you will need to remember how to parameterize equations, or put 
another way, you will need to be able to write down a set of parametric equations for a given 
curve. You should have seen some of this in your Ca lcu lus II course. If you need some review 
you shou ld go back and review some of the basics of parametric equations and curves. 

Here are some of the more basic curves that we'll need to know how to do as well as limits on the 
parameter if they are required. 

Curve 

x' l 
- + - =1 
a' b' 

(Ellipse) 

, , , 
x + y = r-

(Circle) 

y=/(x) 

x=g(y) 

Line Segment From 

(xo,yo,zo ) to (x"y"z,) 

PO(cR 11'\00t/: ~e \ 
Parametric Equations 

Counter-Clockwise 

X = acos(l) 

y = bsin(t) 

o ,.; I ,.; 2n 

Counter-Clockwise 

x = rCOS(I) 

y = rsin(l) 

o ,.; I ,.; 2n 

x =(I -I )Xo +1 x, 

y = (1-I) Yo + 1 y, 

z = (I-I) Zo + I z, 

Clockwise 

x=acos(l) 

y = - bsin(t) 

o ,.; I ,.; 2n 

Clockwise 

x = r COS (I) 

y=-rsin( l) 
o ,.; I ,.; 2n 

x =1 

y=/(I) 

x = g(l) 
y=1 

or 

0";1,.;1 

With the fina l one we gave both the vector form of the equation as well as the parametric form 
and if we need the two-dimensiona l version then we just drop thez components. In fact, we will 
be using the two-dimens ional version of this in th is section. 

For the ellipse and the circle we've given two parameterizations, one tracing out the curve 
clockwise and the other counter-clockwise. As we ' ll eventually see the direction that the curve is 
traced out can, on occasion, change the answer. Also, both of these "stmt" on the positive x-axis 
at 1=0. 
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Now let's move on to line integrals. In Calculus I we integrated / (x) , a function of a single 

variable, over an interval [a, b]. In this case we were thinking of x as taking all the values in this 

interval starting at a and ending at b. With line integrals we will start with integrating the 

function / (x, y) , a function of two variables, and the values of x and y that we' re going to use 

will be the points, (x , y), that lie on a curve C. Note that this is different from the double 

integrals that we were working with in the previous chapter where the points came out of some 
~ns.ional region. 

Let's start with the curve C that the points come from . We will assume that the curve is smooth 
(defined shortly) and is given by the parametric equations, 

x=h(l) y=g (l) a75,l75,b 
We will often want to write the parameterization of the curve as a vector function. 
the curve is given by, 

r(I)=h(l)I +g(I)J I a 75,1 75,b 
(C (~"Irl rIC 

The curve is called smooth if i" (I) is continuous and r' (I) * 0 for aliI. 

In this case 

[N'( l) ~o ptdl'u~ 
h,~ IdiQI" (Of 
Ildu-tl pfaik( 

,-------------------------------------------------~ 

The line integral of / (x, y) along C is denoted by, 

f /(x,y)ds 
c 

We use a ds here to acknowledge the fact that we are mavin alan the curve, C, instead ofthex
axis (denoted by dx) or they-axis (denoted by dy). Because of the ds liS IS sometimes called the 
line integral of/with respect to arc length. 

We've seen the notation ds before. If you recall from Calculus II when we looked at the arc 
length of a curve given by parametric equations we found it to be, ,Il"" 

I/ Nv'ef 

(d)' (d)' where ds = d~ + ; dl 

It is no coincidence that we use ds for both of these problems. The ds is the same for both the arc 
length integral and the notation for the line integral. 

So, to compute a line integral we will convert everything over to the parametric equations. The 
line integral is then, 

Don't forget to plug the parametric equations into the function as well. 

If we use the vector form orthe parameterization we can simplify the notation up somewhat by 
noticing that, 
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where III" (t )11 

f /(x,y)ds = f: /(h(t),g(t)) II r'(t)lldt 
c 

Note that as long as the parameterization of the curve C is traced out exactly once as t increases 
from a to b the value of the line integra l will be independent of the parameterization of the curve, 

Let's take a look at an example of a line integral. 

Example 1 Evaluate f xl" ds where C is the right half of the circle, x' + y' = 16 rotated in the 
c 

counter clockwise direction, 

SO/Illioll 
We first need a parameterization of the circle. This is given by, 

x = 4cost y = 4sint 

We now need a range of I's that will give the right half of the circle. The following range of ,'s 
will do this. 

-rr -rr 
- - 5,t 5, -

j 

2 2 

Now, we need the derivatives of the parametric equations and let's compute ds. 

rf! · IdYl 

re""~1 JOI~~ I ~r),' 

~ -4smt t:i/.5 4cosl 

ds = .J16sin'l + 16cos'l dl = 4dl 

-d ~d {)(J(,~ fod ;'p pPrf-'r 
(), I'tJ f'II v/ / Ipl; e 

The line integral is then, 

f 4 f rr/' ( )") xy ds= 4cosl 4sint (4 dl 
- .T/2 

c 

f rr/' = 4096 cos 1 si n" 1 dl 
- If/2 

rr 

4096 . 'I' =--sm 1 
5 _"-, 

8192 
= --

5 

Next we need to talk about line integrals over piecewise smooth curves. A piecewise smooth 

curve is any curve that can be written as the union ofa finite number of smooth curves, c1 , ... ,e" 
~ 
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where the end point of C; is the starting point of C;+I. Below is an illustration of a piecewise 

smooth curve. 

y 

C, 

--------~---------------x 

Evaluation of line integrals over piecewise smooth curves is a relatively simple thing to do. All 
we do is evaluate the line integral over each of the pieces and then add them lip. The line integra l 
for some function over the above piecewise curve would be, 

f j(x,y)ds = f j(x,y)ds+ f j (x ,y)ds+ f j(x,y)ds+ f j (x,y)ds 
c ~ ~ ~ ~ 

Let's see an example of this. 

Example 2 Eva luate f 4X' ds where C is the curve shown below. 
c 

-2 -1 
C1 : y ~-1 

• • 
Solutioll 

• 

y 

2 

1 f-

/C: 
1-l----/ 

So, first we need to parameterize each of the curves. 

Y ~ x3 -1 

, 
2 

x 
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C, : x=l , y= -I , -2<;'1 <;,0 

C
2

: x=l,y=I J_I , 0<;'1<;,1 

CJ : x= l, y=l, 

Now let ' s do the line integral over each of these curves. 

J 4xJds= C4I J ~(1)2 +(0)2 dl= C4IJdl =t't = - 16 
c, 

f' 2 2 
J4xJds= 41J (I) +(312) dl 
C, 0 

Finally, the line integral that we were asked to compute is, 

J 4xJ ds = J 4xJ ds + J 4xJ ds + J 4xJ ds 
C C. C2 c) 

=-16+ 2.268+8 

= -5 .732 

Notice that we put direction arrows on the curve in the above exa mple. The direction of motion 
along a curve //lay change the value of the line integra l as we will see in the next section. Also 

note that the curve can be thought of a curve that takes us from the point (-2, -I) to the point 

(1 , 2). Let 's first see what happens to the line integra l if we change the path between these two 

points. 

Example 3 Eva luate J 4xJ ds were C is the line segment from (-2, -I) to (1,2) . 
c 

SO/I/Iiol/ 
From the parameterization formulas at the start of this section we know that the line segment start 

at (-2,-1) and ending at (1 , 2) is given by, 

;: (I) = (1-1)( -2,- 1) + 1(1,2) 

=(-2+31,- 1 + 31) 

for 0 <;, 1<;' I . This means that the individual parametric equations are, 
x=-2+31 y=-1+31 
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Us ing this path the line integral is, 

f4 X3ds = f~ 4(-2+ 3IrJ9+ 9dl 
c 

= 12'-"2 Ci)( - 2 + 31 )4 1~ 

= 12'-"2 (-~) 
= -15'-"2 = -21.213 

When doing these integra ls don' t forget s imple a le I substitutions to avoid hav ing to do things 
like cubin g out a term. C ubing it out is not that difficult, ut it is more work than a s imple 
substitution. ~Jr' {)~,.\ 1 til, sJrfF 
So, the previous two examples seem to suggest that if we change the path between two po ints 
then the valu e of the line integra l (with respect to arc length) will change. While this w ill happen 
fairl y regularly we can' t assume that it w ill always happen. In a later section we will investigate 
this idea in more detail 

Next, let's see what happens if we change the direction of a path, 

Example 4 Eva luate f 4x 3 ds were C is the line segment from (1 ,2) to (-2, -I). 
c 

SOllllioll 
This one isn' t much different, work wise, from the prev ious example, Here is the 
parameterization of the curve. 

r (l ) =(1-1)(1,2)+1(-2,-1) 

= (1- 31,2 - 31) 
for 0 S; 1 s; I, Remember that we are switch the direction of the curve and this will also change 
the parameterization so we can make sure that we startJend at the proper point. 

Here is the line integral. 

f 4x3ds= f~ 4(1-31)3 .J9+9dl 
c 

= 12'-"2 (-1;-) (1 -31)' [ 

= I 2'-"2 ( - !) 
= - 15'-"2 = -21.213 

So, it looks li ke when we switch the directi on of the curve the line integra l (with respect to arc 
length) will not change. T his will always be true for these kinds of line integra ls, However, there 
are other kinds of line integra ls in which this won't be the case. We w ill see more examples of 
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this in the next couple of sections so don' t get it into your head that changing the d ircction will 
never change the valu e of the line integral. 

Before working another example let's formalize this idea up somewhat. Let's suppose that the 

curve C has the parameterization X = h(I) , Y = g(I). Let's a lso suppose that the initia l po int 

on the curve is A and the fi nal poi nt on the curve is B. The parameterization x = h ( I ) , Y = g ( I) 

w ill then determine an orientati:.;'ror the curve where the pos it ive d irecti?n is the d irection that 
IS traced out as t mcreas s. I liS;: let - C be the curve with the same pomts as C, however til 
this case the curve has B as the init ial po int and A as the final point, aga in 1 is increas ing as we 
traverse this curve. In other words, given a curve C, the curve - C is the same curve as C except 
the direction has been reversed. 

We then have the fo llowing fact about line integra ls with respect to arc length. 

Fact 
>~f\.k. 

f f (x, y )ds = f f (x,y )/s 
C -CL / 

So, for a line integra l with respect to arc length we can · hange the direction of the curve and not 
change the va lue of the integral. This is a useful fact to, remember as some line integra ls will be 
easier in one direction than the other. () IJ (Q(Q lie ~ 
Now, let ' s work another example 

Example 5 Eva luate f x ds fo r each of the fo llow ing curves. 
C 

(a) C, : y = x' , -1 $ x $ 1 [Solution] 

(b) C,: The line segment fro m ( -1, 1) to (1 , 1). [Solut ion] 

(c) C3 : T he line segment from (1, 1) to (-1 , 1) . [Solution] 

SollltiO/l 
Before working any of these line integra ls let's notice that all of these curves are paths that 

connect the points ( - 1, 1) and (1 , 1). Also not ice that C3 = - C, and so by the fact above these 

two should g ive the same answer. 

Here is a sketch of the three curves and note that the curves illustrating C, and C3 have been 

sepa rated a litt le to show that they are separate curves in some way even thought they are the 
same line. 
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y 
C"J 

C3 

0.8 

0.6 

~ 
0.4 C 1 

0.2 

/ x 
-1. - 05 0 0.5 1. 

(a) C, : y = x' , -1 $ x $ 1 

Here is a parameterization for this cu rve. 

C, :x=l, Y= I', -1 $1 $ 1 

Here is the line integral. 

J ' 

f x ds = L ,,/1 + 41 ' dl = 1 ~ ( 1 + 41 ' )' = 0 
~ - \ 

[Return to Problems] 

(b) C, : The line segmcnt from (-1 ,1) to (1 ,1). 

There are two parameterizati ons that we could use here for this curve. The first is to use the 
formula we used in the previous couple of examples. That parameterization is, 

C, :r(I)=(I-I)(-I ,I)+I(I,I) 
=(21- 1,1) 

for 0 $1 $ 1 . 

Sometimes we have no choice but to use this parameterization. However, in this case there is a 
second (probably) easier parameterization. The second one uses the fact that we are really just 
graphing a portion of the line Y = 1. Us ing this the parameterization is, 

C, : x = I, Y = 1, -1 $1 $ 1 

Th is will be a much easier parameterization to use so we will use this. Here is the line integra l 
for this curve. 

1 I' f xds= r,'~dl='/ =0 
~ -, 

Note that this time, unlike the line inte ral we worked with in Exam les 2, 3, and 4 we ot the 
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same value for the integra l despite t re-fi!«! that the path is different. This will happen on 
occas ion. We should also not expect thiS1Q.tegra l to be the same for all paths between these two 
points. At this point all we know is that fortilese two paths the line integral wi ll have the same 
value. It is completely possible that there is a~~ther path between these two points that will give 
a different value for the line integral. \ Con 7j)/v'a" \ve. 

F; t l ~ [Rcturn to Problems] 

(c) C] : The line segment from (1,1) to (-1,1). 

Now, according to our fact above we really don' t need to do anyth ing here s ince we know that 

C] = - C,. The fact tells us that this line integral should be the same as the second pmt (i.e. 

zero). However, let's verify that, plus there is a point we need to make here about the 
parameterization. 

Here is the parameterization for this curve. 

C] :1'(1)=(1-1)(1,1)+1(-1,1) 
=(1-21, 1) 

forO $/$ I. 

Note that this time we can't use the second parameterization that we used in part (b) s ince we 
need to move from right to left as the parameter increases and the second parameterization used 
in the previous part will move in the opposite direction. 

Here is the line integra l for this curve. 

f x ds = f; (1- 21 ) "'4 + 0 dl = 2 (I - I' )1: = 0 
c , 

Sure enough we got the same answer as the second part. 
[Return to Problems] 

To th is point in this section we've only looked at line integra ls over a two-dimensional curve. 
However, there is no reason to restrict ourselves like that. We ca n do line integrals over three
dimensional curves as well. 

Let's suppose that the three-dimensional curve C is given by the parameterization, 

X=X(I) , y=y(l) Z=Z(I) a$l$b 
then the line integra l is given bv, 

Note that often when dealing with three-dimensiona l space the parameterization will be given as a 
vector function. 

I' (I) = (X(I) , y(I) , Z (I)) 
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Notice that we changed up the notation for the parameterization a little. Since we rarely use the 

flll1ction names we simply kept the x, y, and z and added on the (I) part to denote that they may 

be functions of the parameter. 

A lso notice that, as with two-di mens ional curves, we have, 

and the line integral can aga in be written as, 

f f (x, y, Z )ds = f: f (x(1 ),Y(/) , Z(/)) III" (I )ll dl 
c 

So, outside of the addition of a third parametric equation line integra ls in three-d imens ional space 
work the sa me as those in two-dimens ional space. Let's work a quick exa mple. 

Example 6 Eva luate f xyz ds where C is the helix g iven by, F (I) = ( cos (I ), s in (1) ,3/) , 
c 

o ~ 1 ~ 4n . 

So/ulioll 
Note that we first saw the vector equat ion for 
is a quick sketch of the helix. 

- 1 

x 

Here is the line inte ra !. 
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f xyz ds = f:n 

31 cos(t )sin(1 ).Jsin' I + cos' 1+9 dl 
c 

f 4n (1 ) = 0 31 "2 sin (21) .Jl+9 dl 

3M f4 n 
=-2- 0 Isin(2t)dl 

3M (1 . I ) 4n 
=-- -sm(21)--Cos(21) 

2 4 2 0 

= -3M IT 

arts. 

'" So, as we can see there really isn ' t too mllch difference/between two- and three-dimensional line 
integrals. r \ 

LthIS rYj'i 6Ai (?I\d Jf 

h ~'l'" "'7 \\eeefl) f(~bl ei'1 
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Line Integrals - Part II 

In the prev ious section we looked at line integra ls with respect to arc length. In th is section we 
want to look at line integra ls with respect to x and/or y . I '~ ( /' 

. . . . .. \rI~{ - M 011 a.x't 5 
As wIth the last sectIOn we will start wIth a two-dllnens lOna l curve C wIth parameteriZatIon, 

X=X( I) y = Y (I) a5. l 5.b 

The line integral of/with respect to x is, 

f J (x,y ) dx= f: J (x (I) ,y (l)) x'(t)dl 
c 

T he line integral of/with respect to y is, 

f J (x,y ) dy = f: J (x (I) ,y (t ))Y' (t)dl 
c 

Note that the only notational di fference between these two and the line integra l with respect to arc 
length (from the previous section) is the differential. These have a dx or dy while the line integra l 
with respect to arc length has a ds. So when eva luati ng line integrals be careful to first note 
which di fferential you've got so you don' t work the wrong kind of line integra l. 

These two integra l oft en appea r together and so we have the following shorthand notation for 
these cases. 

f Pdx+Qdy= f P (x,y ) dx+ f Q (x,y) dy 
c c c 

Let's take a quick look at an example of this kind ofline integral. 

Example 1 Eva luate f s in (rr y) dy+ yx' dx where C is the line segment fro m (0,2) to (1 ,4) . 
c 

Sollllio" 
Here is the parameterization of the curve. 

1' (1) = (1-1) (0,2)+/ (1,4) = (1,2 + 21) 05. / 5. 1 

The line integra l is, 

f sin(rry) dy+ yx' dx = f s in (7ry )dy + f yx' dx 
c c c 

=-~cos(27r +27r1)11 +( : I J +2.1 4) 1 
7r 0 ~ 2 0 

7 
= 

6 
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In the previous section we saw that changing the direction of the curve for a line integra l with 
respect to arc length doesn' t change the va lu e of the integral. Let's see what happens with line 
integrals with respect to x and/or y. 

Example 2 Evaluate f s in ( rr y) dy+ yx' dx where C is the line segment from (1 , 4) to (0,2) . 
c 

SO/Iltioll 
So, we simply changed the direction of the curve. Here is the new parameterization. 

1'(1)=(1-1)(1, 4)+1(0,2)=(1-1,4 -21) O ~ I~I 

The line integral in this case is, 

f sin ( rr y) dy + yx' dx = f s in ( rr y ) dy + f yx' dx 
c c c 

= f>n(rr(4-21))(-2)dl+ f~(4-21)( I -I)'(- I) dl 

I
' ( ) ' 1 1 48 3 2 

= -cos (4rr-2rrl) - --I + -1 - 51 +41 
rr 0 2 3 0 

7 
= 

6 

So, switching the direction of the curve got us a different value or at least the opposite sign of the 
va lue from the first examp le. In fact this wi ll always happen with these kinds of line integra ls. 

Fact 
If C is any curve then, 

f f(x,y)dx =-f f(x,y)dx and f f(x,y)dy= -f f(x,y)dy 
-c c -c c 

With the combined form of these two integrals we get, 

f Pdx +Qdy=-f Pdx+Qdy 
-c c 

We can also do these integra ls over three-dimensional curves as we ll. In this case we will pick up 
a third integral (with respect to z) and the three integra ls wi ll be. 

f f (x,y,z)dx= f> (X(/) ,y(/) ,Z (I))x'(I)dl 
c 

f f (x,y,z)dy= f: f(x(I) ,y(I),z(t))y'(I)dt 
c 

f f (x,y, z )dz = s: f( x(t) , y(I) , z(t) )z' (I )dl 
c 

where the curve C is parameterized by 

X=X(/) y =y(/) z=z(/) a~t~b 

© 2007 Paul Dawkins 2 1 http://tutorial.math .lam ar. edu/tenn s.aspx 



Calcu lus III 
I 

" ~s ;·Hhoel fv~d , o~ 5~r-e 

ev'rI 1v'ftr€ /J 
/7J I J 

Line Integrals of Vector Fields iNk r~ f1 a ~ f 0- (, rar,~ 
In the previous two sections we looked at line integra ls of functions. t lis sect ion we are going 
to eva luate line integrals of vector fields. We' ll start with the ector fi eld, 

i(x,y,z) = p(x,y,z)7 +Q(x,y,z)] + R(x,y,z)k 
and the three-d imens ional, smooth curve given by 

r(I)=X(I)7 +Y(I)]+z(l)k a5.l5.b 

The line integral of F along C is 

f FBI' = r: i(r(I)).r'(I)dl 
c 

Note the notation in the left side. T hat really is a dot product of the vector field and the 

differential and the differential rea lly is a vector. Also, i (I' (I)) is a shorthand for, - "' 
i (I' (I)) = i( X(I) ,y(I) , z (I)) 

We can a lso write line integra ls of vector fields as a line integral with respect to arc length as 
follows, 

F ·dr = F·tds 
c c 

where t (I) is the unit tangent vector and is given by, 

- 1" (I) 
r(l) = 111"(1)11 

Ifwe use our knowledge on how to compute line integra ls with respect to arc length we can see 
that this second for m is equ iva lent to the first form given above. 

f i .dr= f i ·tds 
c c 

fb - 1"(1) 
= a F(r(I))l'(I)llllr'(I)lldl 

= f: t(r(I)).r'( l) dl 

In general we use the first form to compute these line integra l as it is usually much easier to use. 
Let's take a look at a coup le of examp les. 
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As with the two-dimensional version these three will often occur together so the shorthand we' ll 
be using here is, 

f Pdx+Qdy+Rdz = f P(x,y,z)dx+ f Q(x,y,z)dy+ f R(x,y,z)dz 
c c c c 

Let's work an example. 

Example 3 Eva luate f ydx + x dy + Z dz where C is given by x = cosl , Y = si n I , z = I ' , 
c 

o ~ I ~ 2n . 
SO/lIlioll 
So, we a lready have the curve parameterized so there really isn't much to do other than eva luate 
the integral. 

f y dx + x dy + z dz = f y dx + f x dy + f z dz 
c c c c 

= f:" sinl(-sinl)dl+ f:" cos l(cosl)dl+ I:" 1' (21)dl 

f 2n, f 2n, f '" 3 = - 0 s in - I dl + 0 cos- I cli + 0 21 cli 

1 f '" ( () 1 f 'rr ( ) f '" 3 = - 2 0 1- cos 21) cli + 2. 0 1 +cos (21) cli + 0 21 dl 

= ( -HI-~ S il1 (21)) +HI + ~sin (21)) +~t4 ) :" 

= 8n' 
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Example 1 Evaluate f fr.d r where fr( x,y, z) = 8x' y z T + 5z j - 4x y £ and C is the curve 
c 

given by r (I) = I T + I' ] + 13 £ , o:s: I :s: 1 . 

So/ulioll 
Okay, we first need the vector field evaluated along the curve. 

fr(r (I)) = 81 ' (I ' W)T + 51 3
] - 41 (I ' )k = 81 ' T + 51 3

] - 41 3 £ 

Next we need the derivative of the parameterization. 

1"(1)=1 +21 ]+31' £ 

Finally, let's get the dot product taken care of. 

fr(r(I)).?(I)=8I' +101 ' _121 ' 

The line integral is then, 

f fr·dr = f~81 ' +10('-12I' dl 
c 

= (18 + 21 ' _ 21 6 )I ~ 
=1 

JO'l produ;/ few/-! 
r()~ veJrr 

Example 2 Evaluate f fr.d r where fr (x,y, z) = x z 1 - y z k and C is the line segment from 
c 

(-1 ,2,0) and (3 ,0,1). 

SO/lIlioll 
We' ll first need the parameterization of the line segment. We saw how to get the 
parameterization of line segments in the first section on line integrals. We' ve been us ing the two 
dimensional version of this over the last couple of sections. Here is the parameterization for the 
line. 

1'(/) = (1-1)( -1 ,2,0)+1 (3 , 0, 1) 

= (41-1, 2- 2/,/), 

So, let's get the vector field evaluated along the curve. 

fr(r(/))=(4/-1)(I)T -(2-21)(1)£ 

= ( 4/ ' -I )T - ( 21 - 21' )k 

Now we need the derivative of the parameterization. 

1"(1)=(4,-2,1) 

The dot product is then, 
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F (I' (I) ).1" (I) = 4( 41 ' -I) - (21 - 21') = 181 ' - 61 

The line integral becomes, 

f - f I , F·d l' = 0 18r - 61 dl 
c 

=(61 3 _31')1: 

=3 

Let's close this section out by doing one of these in general to get a nice relationsh ip between line 
integra ls of vector fields and line integra ls with respect tox, y, and z. 

Given the vector field F (x, y, z) = P T + Q] + R k and the curve C parameterized by 

l' (I) = X(I)T + Y( I) ] + Z(I) k , a $ 1 $ b the line integral is, 

So, we see that, 

f F.d1' = t~(PT +Q] +Rk).(x'T + y'] +z' k)dl 
c 

= f b Px' + Qy' + Rz' dl 
a 

f
b f b f b = a Px'dl + a Qy'dl + a Rz'dl 

= f Pdx+ f Qdy+ f Rdz 
c c c 

= fP dx+Qdy+Rdz 
c 

f F ·d1' = f Pdx+Qdy+Rdz 
c c 

Note that this gives us another method for eva luating line integrals of vector fields. 

This also allows us to say the follow ing about reversing the direction of the path with line 
integrals of vector fields. 

Fact 

f F .dr= -f F•dr 
-c c 

This should make some sense given that we know that this is true for line integra ls with respect to 
x, y, and/or z and that line integra ls of vector fields can be defined in terms of line integrals with 
respect to x, y, and z. ~ 
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Fundamental Theorem/or Line Integrals 

In Calculus I we had the Fundamenta l Theorem of Ca lculus that told us how to evaluate definite 

integrals. This told us, b lN~.b !'el/O( f:)CXJ[ (}. l~ 0&1- I 
L F'(x)dx = F(b) - F(a) 

It turns out that there is a version of this for line integrals over certain kinds of vector fields. Here 
it is. 

Theorem 

Suppose that C is a smooth curve given by r (I), a ~ I ~ b. Also suppose thatfis a function 

whose gradient vector,~is continuous on C. Then, 

IV/.dr = /(r(b))- /(r(a)) 
c 

Note that r (a) represents the initial point on C while r (b) represents the final point on C. 

Also, we did not specify the number of variables for the function s ince it is really immaterial to 
the theorem. The theorem will hold regardless of the num er ofva'iAables in the function . 

Or L / -or .()r~~Il!~t fIe P 
P~f ~ 
This is a fairly straight forward proof. 

For the purposes of the proof we'll assume that we're working in three dimensions, but it can be 
done in any dimension. 

Let's start by just computing the line integraL 

IV/.elr = I>r(r(I)).r'(I)ell 
c 

= fb(O/ dx + 0/ dy + 0/ dZ)ell 
ox dl oy dl OZ ell 

a 

Now, at this point we can use the Chain Rule to simplify the integrand as follows, 

IV/.elr = f b(O/ elx + 0/ dy + 0/ elZ)ell 
C a ax ell oy ell OZ ell 

f
b d 

= -[/(r(I))Jdl 
a ell 

To finish this off we just need to use the Fundamental Theorem of Ca lculus for single integrals. 

I V/ .eI r = /(r(b ))-/(r (a)) 
c 

• 
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Let's take a quick look at an example of us ing this theorem. 

Example1 Evaluate fVfodi' where f(x,y,z)=cos(nx)+sin(ny)-xyz and C is any 
c 

path that starts at (1 ,+ , 2) and ends at (2, I, -I) . 

SO/lItiOI/ 
First let ' s notice that we didn' t specify the path for getting from the first point to the second point. 
The reason for this is simple. The theorem above tells us that all we need are the initial and final 
points on the curve in order to evaluate this kind of line integral. 

So, let I' (I), a ~ 1 ~ b be any path that starts at (1,+ , 2) and ends at (2, 1, -1). Then, 

i'(a)=\1+2) i'(b)=(2, 1, -I) 

The integral is then, 

[Vfodi' = f(2,1,-I)- f(I,~ , 2) 

= cos(2n )+ sinn - 2(1)( -I) -( cosn +sin (~ )-IG }2)) 
=4 

Notice that we also didn't need the gradient vector to actually do this line integral. However, for 
the practice of finding gradient vectors here it is, 

Vf = (-n sin (nx) - yz, n cos( n y) - xz, -xy) 

The most important idea to get from this example is not how to do the integral as that's pretty 
simple, all we do is plug the final oint and initial point into the function and subtract the two 
results. The important idea from this examp e ltl1leiiCea50ut the hllldall1efttal IlieOiem-<lf 
Ca lculus) is that, for these kinds of line integrals, we didn' t really need to know the path to get 
the answer. In other words, we could use any path we want and we ' ll always get the same results. 

In the first section on line integrals (even though we weren't looking at vector fields) we saw that 
often when we change the path we will change the value of the line integral. We now have a type 
of line integral for which we know that changing the path will NOT change the value of the line 
integral. 

Let's formalize this idea up a little. Here are some definitions. The first one we' ve already seen 
before, but it' s been a while and it's important in this section so we' ll give it again. The 
remaining definitions are new. 

Definitions 

First suppose that F is a continuous vector field in some domain D. 
- -

1. F is a cQJlseryati".c vector field if there is a function/such that F = Vf. The function 

f is called a potential function for the vector field. We first saw this definition in the 
first section of this cha ter. 
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2. f Fod/' is independent of path if f Fod/'= f Fod/' for any two paths C1 and C, in 

~ with the same initial and final POi~S . Ft,; (0 ~!J( q J ;"(1 f~ id:J '7 J:-~lA IV'
J

G1.«<. 
'- l-)v-'- ~Ol 

3. A path C is called closed if its initial and final points are the same point. For example a Vlan 
circle is a closed path. 

4. A path C is simple if it doesn't cross itself. A circle is a simple curve while a figure 8 
type curve is not s imple. 

S. A region D is open if it doesn' t contain any of its boundary points. 

6. A region D is connected if we can connect any two points in the region with a path that 
lies completely in D. 

7. A region D is simply-connected if it is connected and it contains no holes. We won ' t 
need this one until the next section, but it fits in with all the other definitions given here 
so this was a natural place to put the definition. 

With these definitions we can now give some nice facts. 

Facts , ,-- QS (). ( i\dlud Oe lct 
1. f EZJo d /' is indepVendent of path. 

e 

) 

This is easy enough to prove s ince a ll we need to do is look at the theorem above. The 
theorem tells us that in order to evaluate this integra l all we need are the initia l and final 
points of the curve. This in turn tells us that the line integral must be independent of path. 

2. If F is a conservative vector fi eld then f F 0 d /' is independent of path. 
e 

This fact is also easy enough to prove. If F is conservative then it has a potential function,/, 

and so the line integral becomes f F 0 d /' = f 'Vf 0 d/'. Then using the first fact we know that 
c c ! 

this line integral must be independent of path. 

3. If F is a continuous vector field on an open connected region D and iff Fod /' is 
e 

independent of path (for any path in D) then F is a conservative vector field on D. 

4. If pod/' 
e 

is independent of path then f F 0 d /' = 0 
c 
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5. [ f fF·dr =0 
c 

Calcu lus III 

for every closed path Cthen J F.d r 
c 

is independent of path. 

These are some nice facts to remember as we work with line integrals over vector fields. Also 
notice that 2 & 3 and 4 & 5 are converses of each other. 
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Conservative Vector Fields 

In the previous section we saw that if we knew that the vector field F was conservative then 

f F.d r was independent of path. This in turn means that we can easily evaluate this line 
c 

integral provided we can find a potential function for F . 

In this section we want to look at two questions. First, given a vector field F is there any way of 

determining if it is a conservative vector field? Secondly, if we know that F is a conservative 
vector field how do we go about finding a potential function for the vector field? 

The first question is easy to answer at this point if we have a two-dimensional vector field. For 
higher dimensional vector fields we' ll need to wait until the final section in this chapter to answer 
this question. With that being said let's see how we do it for two-dimensional vector fields. 

Theorem 

Let F = pi + Q J be a vector field on an open and simply-connected region D. Then if P and Q 
have continuous first order partial derivatives in D and 

8P 8Q 
- -ay ax 

the vector field F is conservative. 

----------Let's take a look at a couple of examples. 

Example 1 Determine if the following vector fields are conservative or not. 

(a) F(x,y)=(x'-yxF +(y'-xy)J [Solution] 

(b) F(x,y)=(2xe '.l' +x' yc·'.l' )i + (x1e'J' +2y)J [Solution] 

Solutioll 
Okay, there really isn ' t too much to these. All we do is identity P and Q then take a couple of 
derivatives and compare the resu Its. 

(a) F(x,y)=(x' - yxF +(y' -xy)J 

In this case here is P and Q and the appropriate partial derivatives. 

P=x'-yx 8P =-x ) 

Q = y' - xy ~ - y J 
So, since the two partial derivatives are not the same this 8_:e:~eld s NOT conservative. 

[Return to Problems] 
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Here is P and Q as well as the appropriate derivatives. 

P = 2xcxy + x' ycxy ap = 2x' c'J' + x' c·'Y + X l ycXJ' = 3x' c'Y + X l ycxy 

ay 

Q = xlc·'y + 2y ao -= = 3x'c·'Y + X l yc·'Y 
ax 

The two partial derivatives are equa l and so this is a conservative vector fi e ld . 
[Return to Problemsl 

Now that we know how to identi fy if a two-d imensiona l vector fi eld is conservative we need to 
address how to find a potentia unction for the vector fie ld. This is actua lly a fairly simple 
process. First, let' s assume that the vector Ie IS conservative and so we know that a potentia l 

fu nction, 1 (x, y) ex ists. We can then say that, 

F- 817 81-, 7 -, -
- '11 = -1 +- J = PI +QJ = F ax ay 

Or by setting components equa l we have, 

and 81 =0 ay -

By integrating each of these with respect to the appropriate variable we can arrive at the 
fo llowing two equations. 

I (x,y ) = f P(x,y)dx or I (x, y ) = f Q(x,y )dy 

We saw this kind of integral briefl y at the end of the section on iterated integra ls in the prev ious 
chapter. 

It is usua lly best to see how we use these two facts to find a potential functi on in an example or 
two. 
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Example 2 Determine if the following vector fields are conservative and find a potential 
function for the vector field if it is conservative. 

- ( 3 4 )- ( 4 3 )-(a) F = 2x y +x i + 2x y + y j [Solution] 

(b) F(x,y)=(2xc''Y +X2YC·'J' )T + (X3C''J' +2y)J [Solut ion] 

SOllllioll 

- ( 3' )- ( I 3 ) -(a) F = 2x y + X i + 2x' y + y j 

Let's first identify P and Q and then check that the vector field is conservativc .. 
ap 

P = 2x3/ + x _ = 8x3 y 3 
Oy 

Q= 2x'/ + y 
ao 
-== 8X3y 3 
ax 

So, the vector field is conservative. Now let's find the potential function. From the first fact 
above we know that, 

From these we can see that 

al = 2x3y' +x 
ax 

al =2x'/+y 
ay 

I (x,y ) = f 2x3/ +xdx or I(x,y )= f 2x'/+ydy 

We can usc either of these to get the process stalted . Recall that we are goi ng to have to be 
carefu l with the "constant of integration" which ever integral we choose to use. For this example 
let 's work with the first integral and so that means that we are aski ng what funct ion did we 
differentiate with respect to x to get the integrand. This means that the "constant of integration" 
is going to have to be a function of y since any fu nction consisting only of y and/or constants will 
differentiate to zero when taking the partial derivative with respect to x. 

Here is the first integral. 

I(x , y)= f 2x3/ +xdx 

\ 4' \ ' () = - x y +- x- +h y 

where h(y) is the "constant of integration'~ 2 ~ oh n ret/eM! 
rw ~..J \-n f ( fA I'r(1 

We now need to determine h(y). T his is easier that it might at first appear to be. To get to this 

point we' ve used the fact that we knew P, but we wi ll a lso need to use the fact that we know Q to 
complete the problem. Recall that Q is really the derivative ofjwith respect to y. So, if we 
differentiate our function with respect to y we know what it shou ld be. 

So, let 's differentiatej(including the h(y) wit h respect toy and set it equal to Q since that is 

what the derivative is su osed to be. 
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From this we can see that, 

h'(y ) =y 

Notice that s ince h' (y) is a function only of y so if there are any x's in the equation at this point 

we will know that we've made a mistake. At this point finding h( y ) is s imple. 

h(y ) = fh' (Y )dy= f YdY= ±Y' +C 

So, putt ing this all together we ca n see that a potential fu nction for the vector field is, 

1 1 1 
f (x,y) = - x'y' +-x' +- y' +c 

2 2 2 

Note that we can a lways check our work by veri fy ing that \If = F . Also note that because the C 

can be anything there are an in fi nite num ber of poss ible potential fun ctions, although they will 
only vary by an additive constant. 

[Return to Problems] 

(b) F (x,y ) =(2 xcXY +x'yeXY)T + (x1e"Y +2y )7 

Okay, this one will go a lot faster s ince we don' t need to go through as much explanation. We've 
a lready verified that th is vector fi eld is conservative in the first set of examples so we won' t 
bother redoing that. 

Let' s start with the fo llowing, 

af = 2xexy + x' ye'')' 
ax 

This means that we can do either of the follow ing integrals, 

f (x,y ) = f 2xe"Y +x' ye·')' dx or f (x,y ) =f x1eXY +2ydy 

While we can do either of these the first integral would be somewhat unpleasant as we would 
need to do integration by parts on each portion. On the other hand the second integra l is fa irly 
simple since the second term only invo lves y's and the fi rs t term can be done with the substitution 
u = xy. So, from the second integra l we get, 

f (x,y ) = x'e-'Y + y' +h (x ) 

Notice that this time the "constant of integration" will be a fu nction ofx. If we different iate this 
with respect to x and set equa l to P we get, 

af = 2x eX'J' + x' yexy + h' ( x ) = 2xc"Y + x' yexy = P 
ax 

So, in this case it looks like, 
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h'(x)=O => h(x) = c 

So, in this case the "constant of integration" rea lly was a constant. Sometimes this will happen 
and sometimes it won 't. 

Here is the potential function for this vector field. 

f (x,y) = xV>' + y ' + c 
rReturn to Problems 1 

Now, as noted above we don ' t have a way (yet) of determining if a three-dimens ional vector field 
is conservative or not. However, if we are g iven that a three-dimens iona l vector field is 
conservat ive finding a potential fu nction is similar to the above process, a lthough the work wi ll 
be a little more involved. 

In th is case we will use the fact that, 

of - Of - of - - - - -
Vf= - i +- j+ - k = Pi +OJ+Rk =F 

OxOy oz -

Let' s take a quick look at an exa mple. 

Example 3 Find a potential function for the vector fie ld, 

f. = 2xy3z4 T +3x' y'z" ] + 4x' y' Z 3 k 

SO/lIlioll 
Okay, we'll start off w ith the fo llowing equalities. 

or 34 or "4 
-~- = 2xy z -~- = 3x-y-z 
Ox oy 

To get started we can integrate the first one with respect to x, the second one w ith respect to y, or 
the third one with respect to z. Let's integrate the first one with respect to x. 

f (x,y,z )= f 2xy'Z4 dx=x'y' z' +g(y,z) 

Note that this time the "constant of integration" w ill be a function of both y and z s ince 
differentiating anything of that form with respect to x wi ll di fferentiate to zero. 

Now, we can differentiate this w ith respect to y and set it equa l to Q. Doing this gives, 

: =3x'y2Z 4+ gy(y , z) =3x'y'z4 = Q 

Of course we' ll need to take the partia l derivative of the constant of integration since it is a 
function of two variables. It looks li ke we've now got the following, 

gy(y, z)=O => g (y,z )=h( z ) 

Since differentiating g(y,z) with respect toy gives zero then g (y,z ) cou ld at most be a 

functi on of z. This means that we now know the potentia l fu nction must be in the fo llowing form . 
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f(x , y , z) =x' y'z' +h(z) 

To finish this out all we need to do is differentiate with respect to z and set the result equal to R. 

So, 

of = 4x' y'Zl + h'(z) = 4X' y'Zl = R 
oz 

h'(z) = 0 h(z)=c 

The potential function for this vector field is then, 

f( ) ' 1 ., x,y , z =x-y z +c 

Note that to keep the work to a minimum we used a fairly simple potential function for this 
example. It might have been possible to guess what the potential function was based simply on 
the vector field. However, we should be careful to remember that this usually won't be the case 
and often this process is required. 

Also, there were several other paths that we could have taken to find the potential function. Each 
would have gotten us the same result. ( ~ I C I' 

t ~ (Y'a l" l !/I'L tQ') 

Let' s work one more slightly (and only slightly) more complicated example. 
......wht '" ;fcalltd 

pg.j.flli' ./ rtlf'(hp~ Example 4 Find a potential function for the vector field , 

F = (2xcos(y) -2z1)T + (3+ 2ye' -x' sin (y))J +(/c' - 6xz' )k 

So/utioJl 
Here are the equalities for this vector field. 

of =2xcos(Y)-2z1 Of =3+2ye' -x' sin(y) 
Ox oy 

or , - 6 ' -~-=y-e-- xz-
oz 

For this example let ' s integrate the third one with respect to z. 

( ) f ' - , , - l ( ) .f x,y,z = y-c--6xz dz=ye--2xz +g x,y 

The "constant of integration" for this integration will be a function of both x and y. 

Now, we can differentiate this with respect to x and set it equal to P. Doing this gives, 

! = _2Z1 + g, (x, y) = 2xcos(y) - 2Z1 = P 

So, it looks like we' ve now got the following, 

g , (x,y) = 2xcos(y) =:> g(x,y) = x' cos(y) +h(y) 

The potential function for this problem is then, 

f ( x,y, z) = y'e' - 2XZ' + x' cos(y) + h(y) 
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To finish this out all we need to do is differentiate with respect to y and set the result equal to Q. 

~ =2yc= -x' sin(y)+h'(y)=3+2Yc= -x' sin(y)=Q 

So, 

h'(y)=3 h(y)=3y+c 

The potential funct ion for this vector field is then, 

I(x,y, z) = y' c= - 2xzJ +x' cos(y)+3y + c 

So, a litt le more comp licated than the others and there are again many different paths that we 
cou ld have taken to get the answer. 

We need to work one final example in this section. 

Example 5 Evaluate f t od r where t = (2xJ y' + x)i + (2X4 y J + y)] and C is given by 
c 

r (, ) = (, cos (7!" , ) -I)T + sin ( 7!"2' )], 0 $ , $ 1 . 

Solulioll 
Now, we cou ld use the techniques we discussed when we first looked at line integrals of vector 
field s however that wou ld be particularly unpleasant solution. 

Instead, let 's take advantage of the fact that we know from Example 2a above this vector field is 
conservative and that a potential function for the vector field is, 

( )
14 4 1 , 1 , 

1 x ,y =2 x y +2 x-+2Y +c 

Using this we know that integral must be independent of path and so all we need to do is use the 
theorem from the previous sect ion to do the eva luation. 

fFod r = f V'/od i' = 1(i'( I)) - I(r (0)) 
c c 

where, 

i'(I) =(-2,1) i'(0)=(-1,0) 

So, the integra l is, 

f t odi'=/(-2,1)- 1 (-1 ,0) 
c 

=10 
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Greera Theorem 

In this section we are going to investigate the relationship between certain kinds of line integrals 
(on closed paths) and double integrals. < 

Let 's start off with a simple (recall that this means that it doesn' t cross itself) closed curve C and 
let D be the region enclosed by the curve. Here is a sketch of such a curve and region. 

D 

First, notice that because the curve is simple and closed there ar ~o hoi~in the region D. Also 
notice that a direction has been put on the curve. We~.e..ths;,. CUTI ention here that the curve 
C has a positive orientation if it is traced out in a counter-c1oclo.lise direction. Another way to 
think of a pos itive orientation (that will cover much more general curves as well see later) i~ 
as we traverse the path following the positive orientation the region D must always be on th~ 

Given curvesiregions such as this we have the following theorem. 

Green's Theorem 
Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region 
enclosed by the curve. If P and Q have continuous first order partial derivatives on D then, 

I Pdx+Qdy= ff(; -:)dA 
o 

Before working some examples there are some alternate notations that we need to acknowledge. 
When working with a line integral in which the path satisfies the condition of Green's Theorem 
we will often denote the line integral as, 

PPdx+Qdy 
c 

or tPdx+Qdy 
c 

Both of these notations do assume that C satisfies the conditions of Green 's Theorem so be 
careful in using them. 

Also, sometimes the curve C is not thought of as a separate curve but instead as the boundary of 
some region D and in these cases you may see C denoted as aD. 

Let's work a couple of examples. 
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Example 1 Use Green ' s Theorem to evaluate ~xydX+X2y' dy where C is the triangle with 
c 

vertices (0,0) , (1,0) , (1,2) with positive orientation. 

SO/lIlioll 
Let's first sketch C and D for this case to make sure that the conditions of Green's Theorem are 
met for C and will need the sketch of D to evaluate the double integral. 

y 

2 

O~-----L __ ~~~ ____ ~ __ ~ __ ~ ____ ~L-__ X 

O. 0.2 0.4 0.6 0.8 l. 

So, the curve does satisfy the conditions of Green ' s Theorem and we can see that the following 
inequalities will define the region enclosed. 

0$ x $1 0$y$2x 

We can identify P and Q from the line integral. Here they are. 

P=xy Q=x' y' 

So, using Green's Theorem the line integral becomes, 

~xydx + x' y' dy = If 2xy' -xdA 

f C ill I' J) 

( eX ) f7,'Ca (/lal,.~ J'f 'x , 
J = 2xy -xdydx 

/
-t l i- 0 0 
-"(~I Jo [6--;) I 2x 

r;ghi r, = fJ~ xy4 -xY) o dx 

\ , 
© 2007 Paul Dawkins bn ~-
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I 
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2 
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3 
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Example 2 Eva luate ~ y l dx - Xl dy where C is the posit ively oriented c ircle of radius 2 
c 

centered at the origin. 

SO/lIlioll 
Okay, a circle will satisfy the conditions of Green 's Theorem s ince it is closed and simple and so 
there really isn' t a reason to sketch it. 

Let' s first identify P and Q from the line integra l. 

P= / Q =_x l 

Be careful with the minus sign on Q! 

Now, us ing Green 's theorem on the line integral gives, 

~/ dx-x' dy = JJ - 3x' -3y' dA 
C D 

where D is a disk of radius 2 centered at the origin. 

Since D is a disk it seems like the best way to do this integra l is to use polar coordinates . Here is 
the evaluation of the integral. 

~ / dx-x' dy = - 3 JJ (x' + Y' )dA 
C D 

f 
'rr , 

=-3 f Or' drd() o 0 ___ 

f ,. I' I 4 =-3 -r d() 
o 4 0 

=-3f:rr 
4d() 

=-24n 

So, Green 's theorem, as stated, wi ll not work on regions that have holes in them. However, many 
regions do have holes in them. So, let 's see how we ca n dea l with those kinds of regions. 

Let 's start with the following region. Even though this region doesn' t have any holes in it the 
arguments that we' re going to go through wi ll be similar to those that we'd need for regions with 
holes in them, except it will be a li ttle easier to deal with and write down. 

r 
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The region D wi ll be D, U D, and recall that the symbol u is called the uni on and means that 

we' ll D consists of both D/ and D}. The boundary of D/ is C, uC3 while the boundary of D} is 

C, u ( C3 ) and no!"relnl a oth of these boundaries are pos itively oriented. As we traverse 

each boundary the corresponding region is always on the left. Finally, a lso note that we can think 
of the whole boundary, C, as, 

C = (C, uC3 )u (C, u( -CJ))= C, uC, 
since both C3 and - CJ will "cancel" each other out. 

Now, let's start with the following double integral and use a basic property of doub le integrals to 
break it up. 

Sf( Q, -Py )dA= Sf (Q, -p,,)dA= Sf(Qx-Py)dA+ JJ( Q, -pJdA I I ~olv \( 
f) D.uDl 0. D2 

Next, use Green' s theorem on each of these and again use the fact that we can break up line 
integrals into separate line integra ls for each portion of the boundary. 

Sf (Qx - py)dA = Sf (Qx - P" )clA + If (Qx - P" )dA 
f) D. /)2 

= ~ Pdx+Qdy + ~ Pdx+Qdy 
c.I.. .. ,C\ CJu(-C1 ) 

=~Pdx+Qdy +~ Pdx+Qdy+~Pdx+Qdy + ~ Pdx + Qdy 
~ ~ C2 -~ 

Next, we' ll use the fact that, 

~ Pdx+QdY=-~Pdx+Qdy 
-c} c) 

Recall that changing the orientat ion of a curve with line integra ls with respect to x and/or y will 
simply change the sign on the integral. Us ing this fact we get, 
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H(Q, -Py )dA = ~Pdx+Qdy+~Pdx+QdY+~Pdx+Qdy-~Pdx+Qdy 
IJ C] CJ C2 C1 

= ~ Pdx + Qdy + ~ Pdx + Qdy 
(.'1 C1 

Finally, put the line integrals back together and we get, 

H(Q, -p,. )dA = ~Pdx+Qdy+~Pdx+Qdy 
f) C1 C2 

= ~ PdHQdy 
Cl VC2 

=~Pdx+Qdy 
c 

So, what did we learn from this? If you think about it this was just a lot of work and a ll we got 
out of it was the result from Green's Theorem which we already knew to be true. What this 
exercise has shown us is that if we break a region up as we did above then the portion of the line 
integral on the pieces of the curve that are in the middle of the region (each of which are in the 
opposite direction) wi ll cancel out. This idea will help us in dealing with regions that have holes 
in them. 

To see this let's look at a ring. 

D 

Notice that both of the curves are oriented positively since the region D is on the left side as we 
traverse the curve in the indicated direction. Note as well that the curve C, seems to vio late the 
original definition of positive orientation. We originally said that a curve had a positive 
orientation if it was traversed in a counter-clockwise direction. However, this was on ly for 
regions that do not have holes. For the boundary of the hole this definition won't work and we 
need to resort to the second definition that we gave above. 
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Now, since this region has a hole in it we will apparently not be able to use Green's Theorem on 

any line integral with the curve C = C, u C, . However, if we cut the disk in half and rename all 

the various portions of the curves we get the following sketch. 

c, 

c, 

The boundary of the upper portion (D/)ofthe disk is C, uC, uC, uC6 and the boundary on the 

lower portion (D,)ofthe disk is C) u C4 U (-C,) u (-C6 ). Also notice that we can use Green 's 

Theorem on each of these new regions s ince they don ' t have any holes in them. T his means that 
we can do the following, 

If (Q, -P" )dA = If (Q, - P" )dA + ff(Qx -P" )dA 
f) 0.. Dl 

= P P~+Q~+ P P~+Q~ 
C, UC2UC,vC{; C1VC4V(-C,)u (-C6) 

Now, we can break up the line integrals into line integra ls on each piece of the boundary. Also 
recall from the work above that boundaries that have the same curve, but opposite direction will 
cancel. Doing this gives, 

If (Q, - Py )dA = If (Qx - Py )dA + If (Q, - P" )dA 
D 0.. /J2 

=pP~+Q~+pP~+Q~+pP~+Q~+pP~+Q~ 
~ ~ ~ ~ 

But at this point we can add the line integrals back up as follows, 

If(Q, -Py)dA = p Pdx+Qdy 
J) c, vCl ve) VC4 

=pPdx+Qdy 
c 
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The end result of all of this is that we could have just used Green's Theorem on the disk from the 
start even though there is a hole in it. This wi ll be true in general for regions that have holes in 
them. 

Let's take a look at an example. 

Example 3 Eva luate ~ i dx - Xl dy where C are the two circles of radius 2 and rad ius I 
c 

centered at the origin with pos itive orientation. 

SOllllioll 
Notice that this is the same line integra l as we looked at in the second example and only the curve 
has changed. In this case the reg ion D will now be the region between these two circles and that 
will only change the limits in the double integral so we' ll not put in some of the details here. 

Here is the work for this integral. 

~ i dx-xl dy = -3 If (X2 + y2)dA 
C 0 

f 
2rr 2 

=-3
0 

J,r l drde 

=_3 f 2rr .!..r"12 de 
0 4 , 

f 2rr 15 
=-3 -de 

o 4 

45rr 
= 

2 

We will close out this section with an interesting application of Green 's Theorem. Recall that we 
can determine the area of a region D with the follow ing double integra l. 

A= If dA 
D 

Let's think of this doubl e integra l as the result of using Green's Theorem. In other words, let's 
assume that 

Qx - 1'" = 1 
and see if we can get some functions P and Q that will satisfY this. 

There are many functions that will satisfY this. Here are some of the more common functions. 

P=O 
Q=x 

P=-y 
Q=O 

p =-y 
2 

X 
0 =
- 2 

Then, if we use Green' s Theorem in reverse we see that the area of the region D can also be 
computed by eva luating any of the fo llowing line integrals. 
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A =pxdy= -Pydx =.!.P Xdy - ydx 
c c 2 c 

where C is the boundary of the region D. 

Let's take a quick look at an example of this. 

Example 4 Use Green's Theorem to find the area of a disk of radiu s a. 

So/utioll 
We can use either of the integra ls above, but the third one is probably the easiest. So, 

A= .!.pxdy-ydx 
2 c 

where C is the circle of radius a. So, to do this we' ll need a parameterization ofe. T his is, 

The area is then, 

© 2007 Paul Dawkins 

x = acosl y = asinl 0 $ 1 $ 2n 

A =.!.pxdy- ydx 
2 c 

1 (J & J'. ) ="2 0 acos l(a cos l)dl- 0 asint (-a sint)dl 

1 J In: 2 2 ? ., = - a cos I + a- sin- ' dl 
2 0 

='!'J '" a' dl 
2 0 

=na' 
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Curl and Divergence 

In this section we are going to introduce a couple of new concepts, the curl and the diverge!!Ee of 
a vector. -

Let ' s start with the curl. Given the vector fie ld F = P T + Q J + R k the curl is defined to be, 

curlF = (Ry - Q,)T +(p' - R,)J +(Qx -Py)k 

There is another (p'ltentially) easier definition orthe curl ofa vector field. We usc it we will first 
need to define the 'il opera/or. This is defined to be, 

dol a - a - a-\/ 'il=-i+-j+ - k 
ax By az 

We use this as if it 's a function in the following manner. 

'il'f af.., af --: af k-
= -/ +-)+

ax By az 
So, whatever function is listed after the 'il is substituted into the partial derivatives. Note as well 
that when we look at it in this light we simp ly get the gradient vector. 

Using the 'il we can define the curl as the following cross product, 

i j k 
C(/~ - - a a a ~ S~O(!-

curl F = 'il x F = - -
ax ay az 

P Q R 

We have a couple of nice facts that use the curl of a vector field. 

Facts 

1. If f(x,y,z) has CO~IS second order partial derivatives then curl ('ilf) = 6. This is 

easy enough to check by plugging into the definition of the derivative so we' ll leave it to you 
to check. 

- - -
2. IfF is a conservative vector field then curl F = o. This is a direct resu It of what it means 

to be a conservative vector field and the previous fact. 

3. If F is defined on all of ~3 whose components have continuous first order partial derivative 
- - -

and curl F = 0 then F is a conservative vector field. This is not so easy to verify and so we 
won' t try. 

/ 
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Example 1 Determine if F = x' y T + xyz ] - x' y' k is a conservative vector field. 

SO/lIlioll 
So all that we need to do is compute the curl and see if we get the zero vector or not. 

i j k 

curl F = 
0 0 0 

- -
Ox Oy oz 
, , , 

x-y xyz -x-y 

= - 2x' yT + yz k -( -2xy' ])-xy T - x' k 

=-(2x'y+xy)T +2xy' ]+(yz-x' )k 

",0 

So, the curl isn't the zero vector and so this vector field is not conservative. 

Next we should talk about a physical interpretation of the curl. Suppose that F is the velocity 

field of a flowing fluid. Then curl F represents the tendency of particles at the point (x , y, z) to 

rotate about the axis that points in the direction of curl F. If curl F = 0 then the fluid is called r 

irrotational. - ~ ["/9' ~ - Qr C /&(( If ( /file{ye I~(~n 
Let's now talk about the second new concept in this section. Given the vector field 

F = P T + Q] + R k the divergence is defined to be, 

There is a lso a definition of the divergence in terms of the \l operator. The divergence can be 
defined in terms of the following dot product. 

- -
div F = \l·F 

Example 2 Compute div F for F = x' Y i + xyz ] - x' y ' k 

SO/Iltioll 
There really isn't much to do here other than compute the divergence. 

. - 0 ( ' ) 0 ( ) 0 ( " ) dlvF=- x-y +- xyz +- - x-y =2xy+xz 
Ox oy oz 

We a lso have the fo llowing fact about the relationship between the curl and the divergence. 

div ( curl F) = 0 
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- 2 - - -
Example 3 VerifY the above fact for the vector field F = yz i + xy j + yz k . 

Solutioll 
Let's first compute the curl. 

i j k 

curl F = a a a 
-

ax By az 
yz' xy yz 

=zT +2yzJ+ yk-z'k 

=zT +2yzJ+(y-z' )k 

Now compute the divergence of this . 

div( curl F) = ~(z) +~(2Yz)+~(y -z') = 2z - 2z = 0 
ax By az 

We also have a physical interpretation of the divergence. If we again think of F as the velocity 

field ofa flowing fluid then div F represents the net rate ofch~lge of the mass of the fluid 

flowing from the point (x , y, z) per unit volume. This can also be thought of as the tendency of 

a fluid to diverge from a point. If div F = 0 then the F is called incompressible. f\ ({ t FlJx: . f 
---- 'ref f!O{, 

The next topic that we want to briefly mention is the Laplace operator. Let's first take a look at, _ r 
div(V/) = '17·'171 = I" + f" y + f-, ((J(I:-l tAI, 

The Laplace operator is then defined as, 

v' = '17.'17 
The Laplace operator arises naturally in many fields including heat transfer and fluid flow. 

The final topic in this section is to give two vector forms of Green ' s Theorem. The first form 
uses the curl of the vector field and is, 

~ F·d I' = If ( curl F ).LIA 
C /J 

where k is the standard unit vector in the positive z direction. 

The second form uses the divergence. In this case we also need the outward unit normal to the 
curve C. If the curve is parameterized by 

1'(1) =x(I)T + Y(I)J 
then the outward unit normal is given by, 

Y'(I)"7 X'(I)-, 
n Ili"(I)f Ili"(I)f 

Here is a sketch illustrating the outward unit normal for some curve C at various points. 
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The vector form of Green's Theorem that uses the divergence is g iven by, 

~F.nds= ffdivF dA 
C D 
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analysis 
A set of on-line reacfu 
NOIl-Matil ML veJ); ioll introduction topics 

The idea of divergence and 
curl 

Vector fields 

We can think of a vector-valued function F : R ' --. R ' as 

representing fluid flow in two dimens ions, so that F(x,y) 

gives the velocity of a fluid at the point (x,),). In this case, 

we may call F(x, ),) the velocity field of the fluid. More 

generally, we refer to a function like F(x,),) as a 

two-dimensional vector field . You can read more about 

how we can visualize the fluid flow by plotting the 

velocity F(x,y) as vector positioned at the point (x,y). 

We can do the same thing for a three-dimensional fluid 

flow with velocity represented by a function F : R ' --. R '. 

In this case, F(x, )"z) is the velocity of tile fluid at tile point 

(x,)"z), and we can visualize it as the vector F(x,y,z) 

positioned a the point (x,y,z). We refer to F(x,y,z) as a 

three-dimensional vector field. 

Divergenoe 

The divergence of a vector field is relatively easy to 

understand intuitively. Imagine that the vector fi eld F 

below gives the velocity of some fluid flow. It appears 

tilat the fluid is exploding outward from the origin. 

( 
51) 
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Now, imagine that one placed a sphere S centered at tile origin. It is clear that the fluid is flowing out of the 

sphere. 

~ /I t {(v ~ ctJi(Jd froYl1 

~ I r/ I 

( 111 a.O(f\V\( ( ( lgh1 
j 

~ 

I 
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Later, when we introduce the divergence theorem, we will show that the divergence of a vector field and tile 
= -

flow out of spheres are closely related. For now, it' s enough to see that if a fluid is expanding (i.e., the flow has 

positive divergence everywheri inside the sphere) , the net flow out of a sphere will be positive. 

Since the above vector field has\poSitive divergence everywhere, tile flow out of the sphere will be positive even 

if we move the sphere away fraT the origin. Can you see why flow out is still positive even when you move tile 

sphere around using the sliders? 

\ (' 

'---' I 
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( 
I 

(Notice lhatlhe arrows continue to get longer as one moves away from lhe origin . Moreover, since the arrows 

are radiating outward, the fluid is always entering the sphere over less lhan half its surface and is ex iting the 

sphere over greater lhan halfi ts surface. Hence, the flow out of the sphere is always greater than-Ore flow into 

lhe sphere.) 

One las t observation about lhe divergence: lhe divergence is @V. At a given point, lhe divergence of a vector 

field is just a single number lhat represents how much lhe flow is expanding atlhat point. 

Care to read about some subtleties about the divemence or an example of calculating the divergence? 

(!Qli 
Thecw'] Or 

The curl of a vector field is slightly more complicated Olan lhe divergence. It captures the idea of how a fluid 

may rotate. Imagine lhat lhe below vector field F represents fluid flo w. It appears Olat fluid is circulating around 

a bit. From lhe figure's original perspective (i. e., before you rotate lhe graph wilh your mouse), lhe fluid appears 

to circulate in a counter clockwise fashion. (If you rotate Ole graph, you might see dots floating along Ole ax is of 

rotation. These dots are representations of vectors of zero lengOl, as lhe velocity is zero lhere.) 

1<'t1 
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This macroscopic circulation of fluid around circles (i.e., the rotation you can easily view in the above graph) 

isn ' t exactly what curl measures. But, it turns out that this vector field also has curl, which we might think of as 

"microscopic circulation." To test for curl, imagine til at you immerse a small sphere into the fluid flow, and you 
- I 

fix the center of the sphere at some point so that the sphere cannot follow the fluid around. Iylthough you fix the 

center of the sphere, you allow the sphere t~ any direction around its center point. The rotation of such a 

sphere is illustrated below. To see the rotation of the sphere, you must hold your mouse curJor over the figure. 

(If you double-click, the animation will stop; double-click again to restart tile animation .) The\~otation of the 

sphere measures tile curl of tile vector field F at the point in the center of tile sphere. (The sPh~re should actually 

be really really small, because, remember, the curl is microscopic circulation.) ---- r 
I;, 

\ I 

f\ 0 I- 11 (e II) 1''' 

-J 
J11'1(/ 

CI ' 
( f'n/"t- /' 

<"7 
( 
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The vector field F determines both in what direction the sphere rotates, and the speed at w hich it rotates . We 

define the curl of F, denoted curl F, by a vector that poin ts alon the ax is of th£. rotation and whose lengtil 

corresponds to the speed of the rotation. As thelrUiTfs a vector, 't is very di fferent from the divergence, which is 

a scalar. 

We can draw the vector corres pond ing to curl F as follows. As mentioned above, the length o f the vector curl F 

is determined by how fas t the sphere is rotating. The direction of curl F points along the ax is of rotation, but we 

need to specify in which direction along this ax is the vector should point. We w ill (arbitrarily?) set the direction 

of the curl vector by using th~hand n iIe>as follows. To see where curl F should point, curl the fingers of 

your right hand in the direction the sphere is rotating; your thumb will point in the direction of curl F. For our 

exanlple, curl F is shown by the green arrow. (You can rotate the graph to see the green arrow better. ) 

I r.eve( 1~IlQ~ 

000J expl,l' (I,,/tt'1 

C v() 

10 
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For this particular veclor field, it turns out thal curl F doesn' t change with pos ition (this, of course, is not true in 

general) . For example, if we move the sphere to another location, il will still spin in the sanle direction with the '1"'1. Coo yO" '00 why . "ph," ,pI." ."_"'Y wh," . "ph," I., I." ."o,"ho" ' how" b,lowl 

lrv ~cA.* J<'f.5 -h ~ f'rt{} r 

fie IJ 
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(Notice that the arrows continue to get longer as one moves away fro m the axis around which the flu id is 

rotating. For this reason, the fluid flow pushes the sphere more strongly on the side away from this axis, 

causing the sphere to spin in the same direction and speed as before. The general rotation of the flow also 

contributes to the sphere's spinning, as it causes the fluid to push against the sphere fo r a greater distance on the 

side away from the fluid 's axis of rotation.) 

You can read more about how one can determ ine the components of the vector curl F. You can also see an 

example of calculating the divergence and curl of a vector field . As usual, pictures can be deceiving; so if you 

want to make sure you really unders tand curl, check out some subLleties about the curl. 

bv( I'.~ (l v 

cL orQfOi 
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analysis 
A set of on-line reacfu 

introduction 

Divergence and curl 
example 

topics 

For F : R' --> R', the formulas for the divergence and curl 

are 

of of? of div F = __ 1 + __ - + __ 3 

fh 8y 8z 

curl F = ( 8P3 _ 8F2 . 8F] _ OP3. 8F2 _ OFI). 
8y 8z 8z o.r ox oy 

(The formula for curl was somewhat motivated in an 

earlier reading.) 

Given these formulas , there isn' t a w hole lotto 

computing the divergence and curl. Just "plug and chug," 

as they say. 

Example 

Calculate the divergence and curl of F = (-y,-,y,z). 

Solution: Since 

8FI =0, 8J-2 = x, 8F3 = I 

8'-1: 8y 8z 
we calculate that 

div(F ) = 0 + x + I = x + I. 

Since 

of 8F _ -_I = -1 ,------.2 = y, 

oy 8~' 
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analysis 
A set of on-line readiJ 

introduction topics 

Divergence and curl notation 

For F : R' ..... R', the formulas for the divergence and curl 

are 

aF aF a[-
d· F = ' .1 + 2 + J 

IV -- -- --aJ.· ay az 
curlF =( aFJ _ aF~ . aF, _ aFJ. aF2 _ aFI) 

ay az . az ax . ax ay 

TIlese formulas are easy to memorize using a tool called 

the "del" operator, denoted by 'i/. Think of 'i/ as a "fake" 

vector composed of all the partial derivatives that we use 

just to help us remember the formulas: 

( a a a ) 
'i/ = ax' ay' az . 

Although it may not seem to make sense to jus t have the 

partial derivatives without them acting on a function, we 

won' t worry about thaI. This is just notation. 

Now, let's take the dot product of the 'i/ vector WiOl F = 

(F,F,F): 
I 2 3 

'i/. F = - - - . (F,F,F) ( a a a ) 
ax' ay : a z '" 

a a a = F+::.J+ F - I , - , a.t· ay' az 
If we Olink of each "multiplication" in the dot product as 

instead being the derivative of the corresponding F, then 

we have the formula for the divergence. So, if you can 

remember the del operator 'i/ and how to take a dot 
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product, you can eas ily remember the formula for the divergence 

div F = 'i/' F = of] + oF2 + oF3 . 
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ll1is is exactly the formula we gave above. So if you can use the rule that "multiplication" by .!l... is the same as 
Vx 

taking the partial derivative with respect to x (and s imilar for the other derivatives ), then you can remember the 

curl formula by 

curl F = 'i/x F. 
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More details about the 
components of the curl 

topics 

Once you've learned about line integrals , you may be able 

make sense of the following description about the origin 

of the formula for the curl. 

In the previous reading, we denoted the components of 

the curl by 

We visualized the component of the curl in the x direction 

as the rotation of a ball on a rod parallel to the x-axis. 
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The component of the curl in the x direction is VI = V . i = curl F . i. We could derive an expression for this 

component of the curl just like we derived an express ion for the "microscopic circulation" used in Green's 

theorem. To see this, rotate the above animation so that the x-axis is coming straight out of tlle screen and the yz 

-plane is parallel to the screen. You can see that the rotation of the sphere is affected only by the components of 

F that are parallel to the yz-plane (and perpendicular to tlle x-axis), i.e., F2 and F 3 . We have reduced the 

situation to a two-dimensional case of rotation parallel to the yz-plane. We simply need to find the "microscopic 

circulation" of (F2 , F3)' 

To estimate tllis "microscopic circulation," we can construct a curve C (shown in red below) centered at the 

sphere' s location, and parallel to the yz-plane. The circulation of F around C is just the line integral J cF . d s. 
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The "microscopic circulation" or "circulation per unit area," is just tile circulation around C, divided by the the 

area of the region inside C, in the limit where C shrinks down to a point (drag the red point on the slider to the 

left). If we repeat the calculation used for Green's theorem, we could conclude that this microscopic circulation 

is 

aF3 aF2 
vI = curl F . i = -- - --

ay az 

One can perform similar calculations to determine the formulas for the other components of the curl, as given in 

tile previous reading .. 
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Subtleties about divergence 

Picture of divergenoe as expansion 

We have shown in a prev ious readin !! aboullhe 

divergence that the divergence measures expansion or 

compress ion of a vector field . We ended that section with 

the example where we immersed a sphere into a vector 

field that had positive divergence everyone. No matter 

where one moves the sphere (with the sliders), more fluid 

flows out of tile sphere than into the sphere, indicating the 

fluid is expanding. 
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The vector field pictured was 

F(x, y, Z) = (x, y, Z). (1) 

Its divergence is 

a a a 
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div F(x, y, z) = -x + -y + -z = 1 + 1 + 1 = 3, 
ax ay az 

which is a positive constant independent of the point (x, y, z). The picture of the vector field looks like fluid 

exploding outward, so it makes sense that the fluid is expanding. 

Can a picture be misleading? 

As one becomes more sophisticated in mathematical thinking, one discovers that pictures can sometimes be 

misleading. (One reason mathematicians demand mathematical proof is to ensure uley aren't footing themselves 

into jumping to conclusions based on incomplete information, such as the information gained solely by 

exploring pictures.) WiUl regard to divergence, one might wonder if an outward flow, such as pictured above, 
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always means that the divergence of the vector field is positive? 

Here's a picture of a different vector field showing fluid flowing outward from the origin. However, it differs 

from the above vector field in that the arrows get shorter the further they are from the origin. Is the divergence of 

this vector field positive? In other words, is the fluid expanding as it may look like from the picture? 

To answer this question, we have to compute the divergence. This vector field is 

(x, y, z) 
F(x, y, z) = 312' (2) 

(x 2 + y2 + Z2) 

for (x, y, z) '" (0, 0, 0). (It is not defined at the origin.) This new vector field is the same as the vector field 

in equation W except that we have divided it by its magnitude raised to the third power. (We could write this 

vector field as F(x) = II x 3' where x = (x, y, Z) .) In this way, the vector field gets smaller as one moves 
IIxII 

away from the origin. 

We calculate the divergence of F: 
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a x a y a z 
div F(x, y, z) = + - + - ----- ----::= 

ax (x 2 + y2 + z2)3/2 By (x2 + y 2 + Z2)3/2 az (x2 + y2 + Z2)3/2 

(X2+y2+Z2)_3x2 (x2+y2+Z2)_3y2 (X 2+ y2+Z2)_3z2 

= -'------'---::-:::-- + + -'------'---::-:::--
(x2 + y 2 + Z2)5!2 (x2 + y2 + Z2)5/2 (x2 + y 2 + Z2)5/2 

3(x2 + y2 + Z2) _ 3(X2 + y2 + Z2) 
= ----'-- ----'----'------::--:------'- = ° 

(x2 + y2 +Z2)5/2 

Hence, as long as we are not at the origin, the divergence is zero and the flow is neither expanding nor 

contracting. 

How can we reconcile this with Ule picture? If the sphere is at the origin, clearly the flow is out of the sphere. 

But the divergence is not defined at the origin, so we have to ignore that point. If you move the sphere away 

from the origin, it is not clear if there is more fluid flowing into the sphere or more fluid flowing out. On one 

hand, the flow out of the sphere is slower than the flow into the sphere, as the arrows are getting shorter. On the 

other hand, because the flow is radiating outward, the fluid is flowing out of the sphere across more than half of 

its surface. For this particular vector field, I balanced those two effects (by carefully choosing how quickly the 

vector field shrinks as one moves away from the origin) so ulat the net flow into the sphere is exacuy equal to 

the net flow out of Ule sphere. Hence, if we s tay away from the origin, the fluid is neither expanding nor 

compressing and the divergence is zero. 

Dependence on dimension 

Here's one more subtlety just for fun. To make the divergence zero in the above example, I balanced ule 

outward flow of the vector field by shrinking the vector field as one moves away from the origin. Hence, the 

flow out of the sphere was equal to the flow into the sphere and there was no expansion or compression. 

What happens if I take the two-dimensional version of the vector field from equation (Z)? The 20 vector field is 

(x, y) 
F(x, y) = 3/2' 

(x2 + y 2) 

for (x, y) ;c (0, 0). (It is not defined at the origin.) This vector field is shown below along with a circle that 

you can move by dragging its top red point with your mouse. Move the circle so that it is away from the origin . 

In this case, is the divergence positive, negative, or zero? 
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Subtleties about divergence 

We calculate the divergence of F: 

div F(x, y) 

http://www.math.umn.edu/-nykamp/m2374/reading ... 

a x a y 
= +-----...,...." 

ax (x 2 + y2)3/2 ay (x2 + y2)3/2 

(X2 + y2) _ 3x2 (X2 + y2) _ 3y2 
= + 

(x2 + y2)5/2 (x 2 + y2)5/2 

2(x2 + y2) _ 3(X2 + y2) 

(x2 + y2)5/2 

In this case, away from the origin, the divergence is negative. The fluid is compressing even though it is flowing 
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Subtleties about divergence http://www.math.umn.edul-nykamp/m2374/reading ... 

6 of 6 

outward. 

Why did the dimension make a difference? One can see the difference from the calculations, but what is the 

difference in the geometric picture? As in the three-dimensional case, the fluid flows into the circle faster than it 

flows out of Ule circle, as the arrows are getting shorter. And, as in the tllree-dimensional case, because the flow 

is radiating outward , the fluid is flowing out of the circle over more than half the boundary of Ule circle. But, 

because we are only in two dimensions, the effect from the boundary is smaller. I chose the vector field to 

balance the two effects and make the divergence zero in three dimensions. But, this makes the divergence of the 

two-dimensional analogue be negative. 

You can check that the divergence of the vector field 

(x, y) 
F(x, y) = 2 2 

X + Y 

is zero but that the divergence of the three-dimensional analogue 

(x, y, z) 
F(x, y, z) = 2 2 2 

X +y +Z 

is positive. In general, for a number p, the divergence of ule vector field 

x 
F (X)=jj;p 

is div F(x) = (3 - p)/ II x II P in three dimensions and is div F(x) = (2 - p)/ II x II P in two 

dimensions. So you need p = 3 to have zero divergence in three dimensions and p = 2 to have zero 

divergence in two dimensions . 

05/12/201011:46 PM 
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The integrals 

To help you organize the integral calculus portion of the course, I'm outlining the integrals 
you've learned, methods you can use to solve them, and their relationship to the fundamental 
theorems. 

Path integral of scalar-valued function 

The path integral over path C of a scalar-valued function f(x) is written as 

J cfds 
If, for example, f were the density of a wire, the integral would be the mass. 

The only way we've encountered to evaluate this integral is the direct method. We must 
parametrize C by some function c(t), for a ~ t ~ b. Then, 

J cfds = J • bf( c(t»llc'(t)lIdt 

Note that ds became Ilc'(t)lIdt. This measures how c(t) stretches or shrinks the interval [a,b) as it 
maps it onto C. 

L ine integral of a vector field 

The line integral over path C of a vector field F(x) is written as 

J cF· ds 
If, for example, F were a force acting on a particle moving along C, then the integral would be 
the total work performed by the force on the particle. 

This integral is one of the most important for this course. We have four alternatives to evaluate 
the integral, although most of the alternatives work only in special cases. 

I . We can compute the integral directly. We parametrize C by some function c(t), for a ~ t ~ 
b. Then 

J cF· ds = J .bF(C(t»· c'(t)dt 

2. This method always applies . Sometimes, though, the integral will be difficult or we won't 
even be able to evaluate it. Our lives can be made easier by using one of the fundamental 
theorems to convert the line integral into something else. 

3. Since this integral is really a path integral of the scalar-valued function f = F· Twhere T 
is the unit tangent vector 



c'(t) 

T= IIC'(t)ll, 

4. the formula for the direct method is the same as the formula for the scalar-valued path 
integral. 

5. If the vector field F happens to be path-independent, then we could use the gradient 
theorem for line integrals. We reduce the problem from an integral over the curve C to 
something just depending on the "boundary" of C, i.e., its endpoints. We need to find a 
potential function fso that V'f= F. Then, 

J cF . ds = f(q) - f(P) , 

6. where p and q are the endpoints of C. 
7. Note, ifC also happens to be a closed curve, then the integral ofF will be zero. Note also, 

that if you know F is path-independent, another thing you can do is just change the curve 
C to another curve that has the same endpoints as C. In this case, the line integral of F 
over C is the same as the line integral ofF over any other curve with the same endpoints. 

8. If the vector field F and the curve C happen to be in two dimensions and if C happens to 
be a closed curve, then we can use Green 's theorem. Green's theorem converts the line 
integral over C to a double integral over the interior of C, which we call D, 

9. Note that F must be defined everywhere in D for this to work. Sometimes we write C = 
aD to denote that C is the boundary of D. C must be oriented in a counterclockwise 
fashion, otherwise, we'll be offby a minus sign. 

IO.lfthe vector field F and the curve C happen to be in three dimensions and ifC happens to 
be a closed curve, then we can use Stokes' theorem. Stokes' theorem converts the line 
integral over C to a surface integral over any surface S for which C is a boundary, 

J cF . ds = IJs curl F· dS 

11. Sometimes we write C = as to denote that C is the boundary of S. C must be a positively 
(consistently) oriented boundary ofS, otherwise, we'll be off by a minus sign. 

Surface integral of a scalar-valued function 

The surface integral over surface S of a scalar-valued function f(x) is written as 



If, for example, f were the density of a sheet, the integral would be the mass. 

The only way we've encountered to evalute this integral is the direct method. We must 
parametrize S by some function <[>(u,v), for (u,v) ED. Then, 

: : f. , ~E! (.. .J! : H +" ')A'. i l 
Note that dS became II au x Dv I. udv. This measures how <I)(u,v) stretches or shrinks the 
region D as it maps it onto S. 

Surface integral of a vector field 

The surface integral over surface S of a vector field F(x) is written as 

If, for example, F were the flow of fluid , then the integral would be the flux of the fluid through 
S. For this reason, we often refer to the integral as a "flux integral." 

Like the line integral of a vector field, thi s integral plays a big role in this course. We have three 
alternatives to evaluate the integra l, although most of the alternatives work only in special cases. 

I . We can compute the integral directly. We parametrize S by some function <I)(u,v), for 
(u,v) ED. Then, 

. . c ·.,. . ('Y , \ 
. -, - ('11.. '/J 1 x --;::- (tl. ·U J 

( ')A'. ')"") j JsF. dS = jjDF(<l>(U,V)).\ <711. . . , (JIJ '" dudv 

2. This method always applies. Sometimes, though, the integral will be difficult or we won't 
even be able to evaluate it. Our lives can be made easier by using one of the fundamental 
theorems to convert the surface integral into something else. 

3. Since this integral is really a surface integral of the scalar-va lued function f = F · n where 
n is the unit normal vector 

n= 

D-t> D-t> 
- x -
<.'In C)IJ 

a-I) a·f, 
-. - x -('''I' (')., '.J t, "L' 



4. the fonnula for the direct method is the same as the fonnula for the scalar-valued surface 
integral. 

5. If the vector field F happens to be the curl of another vector field G, i.e., F = curl G, then 
we can apply Stokes' theorem to convert the surface integral of curl G into the line 
integral of G around the positively (consistently) oriented boundary of S, which we 
denote oS, 

/JsF . dS = JJs curl G . dS = f cG . ds 

6. We don't have any methods to find G from F. We can use Stokes' theorem to convert a 
surface integral into a line integral only if we are told outright that F = curl G and are 

given what G is. But, if given the surface integral that looks like Iis curl G . dS, we can 
immediately recognize that Stokes ' theorem is an option. 

7. Note that Stokes' theorem allows us to do one more thing to the integral JJs curl G·dS. 
We can switch the surface S to any other surface S' as long as the boundaries of Sand S· 
are the same, i.e., oS = as' (assuming both boundaries are positively (consistently) 
oriented). If S is a complicated surface, we could feasibly save ourselves some work by 
integrating over another surface S· if that surface is simpler than S. 

8. If the surface S happens to be a closed surface so that it is the boundary of some solid W, 
i.e., S = oW, then we can use the divergence theorem to convert the surface integral into 
the triple integral of div F over W, 

DSF. dS = JJlvdiv FdV, 

9. where we orient S so that it has an outward pointing normal vector. This works, of 
course, only ifF is defined everywhere in the so lid W. 

Double integrals 

The double integral of a (scalar-valued) function f(x) over a two-dimensional region D is written 
as 

DDfdA. 
If, for example, fwere the density of the region, the integral would be its mass. 

We have encountered three alternatives to evaluate the integral. 

1. We can compute the integral directly in terms of the original variables x and y. In this 
case, dA = dxdy. 



2. We can compute the integral by changing to the variables u and v by finding a function 
(x,y) = T(u,v). Then the integral is 

IJ ofdA = JL*f(T(U,V» !ttet DT(1.I., 11) ~udv, 
3. where D is parametrized by (x,y) = T(u,v) for (u,v) in D'. We often write the determinant 

'" 1 (ll~'D ~ Y ... 

of the matrix of partial derivatives ofT(u,v) as det DT(u,v) = NeiL '1.1 ). 
DFj 

4. Iff happens to be equal to - Oy for some vector field F, then we could use Green's 
theorem to convert the double integral into the integral ofF around the boundary ofD, 
which we denote aD, 

. r.. __ ~,~ _ c_rl r /
. (. ,)}:, ') c ) 

J } ofdA = , J 0 d", tJy . dA = J aoF . ds. 

5. To orient the boundary properly, outside boundaries must be counterclockwise and inner 
boundaries must be clockwise. 

6. We usually think of Green's theorem going the other way, i.e., converting a line integral 
into a double integral. One reason for this is that we don ' t have any methods to find F 
from f. We can use Green's theorem to convert a double integral into a line integral only 

DF'1 aFj 

if we are told outright that f = ch - r)y and are given what F is. But, if given the double 
0 ') [.2 aFi · . 

integral that looks like IJ JO:r ..... i~1j ) dA, we can immediately recognize that 

Green's theorem is an option. As a special case, if we are given an integral JIDdA (i .e., 
(iP, aFt 

finding the area), we can let F(x,y) = (-y,xy:2 so that fh.~ - dy = I and JJodA = J aoF· 
ds. 

Triple integrals 

The triple integral of a (scalar-valued) function f(x) over a three-dimensional solid W is written 
as 

If, for example, fwere the density of the solid, the integral would be its mass. 

We have encountered three alternatives to evaluate the integral. 



1. We can compute the integral directly in terms of the original variables x, y, and z. In this 
case, dV = dxdydz. 

2. We can compute the integral by changing to the variables u, v, and w by finding a 
function (x ,y,z) = T(u,v,w). Then the integral is 

If) w fdV = /./L.*f(T(U,V,w» ldet DT(lI, V , w) HUdvdw, 

3. where W is parametrized by (x,y,z) = T(u,v,w) for (u ,v,w) in W'. We often write the 
determinant of the matrix of partial derivatives ofT(u,v,w) as det DT(u,v,w) = 
/')(.1:.1/, ;y.) 
8{,tl .'1 ~ "'1) ') 

\ .~ I .- ~ \ I . 

4. Iff happens to be equal to div F for some vector field F, then we could use the divergence 
theorem to convert the triple integral into the surface integral of F around the boundary of 
W, which we denote aw, 

/1 II. " 
"" J}wfdV = J .J J wd1V FdV = IJawF. dS. 

5. We usually think of the divergence theorem going the other way, i.e., converting a 
surface integral into a triple integral. One reason for this is that we don ' t have any 
methods to find F from f. We can use the divergence theorem to convert a triple integral 
into a surface integral only if we are told outright that f = div F and are given what F is. 

But, if given the niple integral that looks like JJJw div FdV , we can immediately 
recognize that the divergence theorem is an option. 

The fundamental theorems 

To help you organize the integral calculus portion of the course, I'm outlining the fundamental 
theorems you 've learned and their relationship to the various integrals. 

The gradient theorem ror line integrals 

The gradient theorem for line integrals relates a line integral to the values of a function at the 
"boundary" of the path i.e., its endpoints. It says that 

J cl]f . ds = f(q) - f(p), 

where p and q are the endpoints of C. In words, this means the line integral of the gradient of some 

function is just the function evaluated at the endpoints of the curve. In particular, this means that the 

integral of I]f does not depend on the curve itself; the integral is path-independent. 



We usually use this theorem when trying to integrate f cF·ds. We can use it only when F is path
independent, i.e., only when there exists a potential function f so that 17f= F. Then, 

J cF· ds = f(q) - f(p), 

where p and q are the endpoints of C. 

Even if you can't find f, but still know that F is path-independent, you could use the gradient 
theorem for line integrals to change the line integral ofF over C to the line integral ofF over any 
other curve with the same endpoints. Moreover, the integral of any path-independent F over a 
closed curve is zero. 

Green's theorem 

Green 's theorem relates a double integral over a region to a line integral over the boundary of the 
region. If a path C is the boundary of some region D, i.e., C = aD, then Green's theorem says that 

The integrand of the double integral can be thought of as the "microscopic circulation" of F. Green's 

theorem then says that the total "microscopic circulation" in D is equal to the circulation J cF . ds around 

the boundary C = aD. Thinking of Green's theorem in terms of circulation will help prevent you from 

erroneously attempting to use it when C is an open curve. 

In order for Green's theorem to work, the curve C has to be oriented properly. Outer boundaries 
must be counterclockwise and inner boundaries must be clockwise. 

Stokes' theorem 

Stokes' theorem relates a line integra l over a closed curve to a surface integra l. Ifa path C is the 
boundary of some surface S, i.e., C = as, then Stokes' theorem says that 

j f J cF . ds = ., s curl F . dS. 

The integrand of the surface integral can be thought of as the "microscopic circulation" of F. Stokes' 

theorem then says that the total "microscopic circulation" in S is equal to the circulation J cF . ds around 

the boundary C = as. Thinking of Stokes' theorem in terms of circulation will help prevent you from 

erroneously attempting to use it when C is an open curve. 

In order for Stokes ' theorem to work, the curve C has to be oriented properly compared to the 
surface S. To check for proper orientation, use the right hand rule. 



Since the line integral f cF . ds depends only on the boundary of S (remember C = aS), the 
surface integral on the right hand side of Stokes' theorem must also depend only on the boundary 
ofS. Therefore, Stokes' theorem says you can change the surface to another surface S', as long as 
as' = as. This works, of course, only when integrating curl F. 

The divergence theorem 

The divergence theorem relates a surface integral to a triple integral. If a surface S is the 
boundary of some solid W, i.e., S = oW, then the divergence theorem says that 

flsF . dS = / JJ w div FdV, 

where we orient 5 so that it has an outward pointing normal vector. 

The integrand of the triple integral can be thought of as the expansion of some fluid. The 
divergence theorem then says that the total expansion of the fluid in W is equal to the total flux 
of the fluid out of the boundary S = oW. 

Length, area, and volume factors 

Along with the multitude of integrals came a bunch of factors for length, area, and volume. In 
many cases, these factors adjusted for the expansion or compression by functions that transform 
between different integrals. I hope you will see the similarity among these factors. 

Length in the ordinary one-variable integral 

Ifwe integrate a function f(x) from x = a to x = b, the length measurement is the familiar dx: 

J : f(x)dx. 

Length when change variables in one-variable integrals 

The following is attempt to tie one-variable change of variab les to multivariable change of 
variables. If it is too confusing, just skip it and move on. 

When you perform a "u-substitution" in one-vatiable calculus, you are changing variables. To 
help you link one-variable u-substitution to multivariable change of variables, we can write a u
substitution in the same language as multivariable calculus. 

You are given some integral f ,bf(x)dx. Let x = T(u) be our invertible "change of variables" 
function. Then the u-substitution is u = rl(x), where r\x) is the inverse ofT(u). To perform the 
u-substitution, you replace x with T(u), integrate from r (a) to rl(b), and replace dx with 
T(u)du: 



.'f -I{b) 

J ,bf(X)dx = '£'-"(<1) f(T(u))T'(u)du . 

We could go a little further and make this formula even closer to what we write in multivariable 
calculus. We could write the interval [a,b] as L The integral is over the interval I = [a,b] , so we 
could write the integral as 

J ,f(x)dx. 

Ifx = T(u) is our change of variables, then T maps an interval I' in "u-space" to the interval 1 in 
"x-space." Ifr'(b) is greater than riCa), then I' is the interval [T'(a),T'(b)]. Otherwise, ( is the 
interval [T'(b),T'(a)]. Our change of variables formula is then 

J ,f(x)dx = l . f(f(U)) 1T'(u) I duo 

Note that in this case, the change of variables " length expansion factor" is 1T'(u)l. We need the 
absolute value because of how we defined ( in the case where r'(b) > r'(a). (Technical detail: 
ifT'(u) < 0 then r'(b) < r'(a) and we would have flipped the order in our definition of]' = [r 
'(b),r'(a)]. This flipping changes the sign of the integraL Adding the absolute value 1T'(u)1 
changes the sign back to the correct sign.) 

The factor 1T'(u)1 indicates how much T expands or contracts ( when it maps I' onto L 

Length in path integrals 

In path integrals, a path C is parametrized by a function c(t). In this case, the length measure on 
the path is ds = Ilc'(t)lIdt. The factor Ilc'(t)1I accounts for expansion or contraction by c when it 
maps some interval 1 = [a,b] onto C. Hence, the integral ofa scalar-valued function f(x) is 

J cfds = J ,bf(C(t)) Ilc'(t) II dt. 

For line integral of vector fi elds, we integrate f = F . T, where T is the unit tangent vector of the 
curve: 

lit) C t , 
'I I ' f' ; I T= ; C l')i . 

In this case, the denominator cancels the II c'( t) II factor, 



I cF . ds = I cF . Tds = I ,bF(c(t)) . c'(t)dt, 

but the expansion or contraction of cIt) is still included in the c'(t) factor. 

Area in double integrals 

If we integrate a function f(x,y) over a region D, the area measurement dA in the double integral 
is simply dxdy 

l r J i ofdA =. jof(X,Y)dXdY. 

Area when change variables in double integrals 

To change variab les in a double integral, we find a function (x,y) = T(u,v) that maps some new 
region D' in (u,v)-space to the original region Din (x,y)-space. We then need a facto r that 
accounts for the expansion or contraction ofT as it maps D' onto D. That factor is the absolute 
value of the determinant of the matrix of pari tal derivatives ofT: 

We often write this is 

' 1 ' T)'I"" ' b ", ",t " ("( ",' 1 : ' '\,.. )._ , l"' ~ L } 

-:) f·· t • ,~, ') ! C l, .• t. . .. Li.! 
: . ,. : i 

;3f t , '1' 1 i 
.' \ ~;. ' " 1. 

In the end, the formula for changing variables in double integrals is 

Area in surface integrals 

In sttrface integrals, a surface S is parametrized by a function <I)(u,v).ln this case, the area 
measure on the surface is 

(,lif> fJif> Ii 
- ,- X -- ! 
;)v ('), . II dS = •. ,.. . . • , idudv. 



DID oW l 
The factor (ju. X Du ccounts for expansion or contraction by <D when it maps some region D onto 

S. Hence, the integral of a scalar-valued fun ction fi x) is 

"'-" "! , ) C. ,,, , ., ! j' , j RiT) 'j,T)! l 
!i-.-( tr..u · X - .-In.u)! 

) sfdS =. Jof(<D(u,v)) l Un . .. du " : udv 

For surface integrals of vector fields, we integrate f= F . n, where n is the unit normal vector of 
the surface: 

')'" (. 'if 

,,'" , . .., " 
O'J::.t (i'J! !: 

·· ... h, x ~ l! 
In this case, the denominator cancels the. (.. ..• a" ,!factor, 

, / .')") 'M'» 
~ ~l < ' .. ()~L i 

-.. - ltl. ~ ";'.,;) 1'<. - •• -l "U~ .'1}) 
JJSF . dS = j J oF(<D(U,V)) .l du ' /)U ' . / dudv 

( Dil' j).p·) 

but the expansion or contraction of <D(u, v) is still included in th e ~ !-)n X Dl.' . factor. 

Volume in triple integrals 

lf we integrate a function f(x ,y,z) over a solid W, the vo lume measurement dV in the triple 
integral is simply dxdydz 

ffJw fdV = ji} w f(x,y,z)dxdydz, 

Volume when change variables in triple integrals 

To change variables in a triple integral , we find a funct ion (x,y,z) = T(u,v,w) that maps some 
new solid W· in (u,v,w)-space to the original solid W in (x,y,z)-space. We then need a factor that 
accounts for the expansion or contraction ofT as it maps W· onto W. That factor is the abso lute 
value of the determinant of the matrix of partial derivatives ofT: 



We often write this is 

8 (:?:, 11, z) 

kid D'1'(u. u. '1£') 1 (J"'<'u, , v ., 'lI.!)' 
: \ < : ! ~ 

In the end, the formula for changing variables in triple integrals is 



18.02 - Practice F inal A - Spring 2006 

--+ --+ 
Problem 1. Let P = (0, 1, 0) , Q = (2, J , 3), n = (J, -J , 2) . Compute PQ x P R and find 
the equat ion of t he plane through P, Q, and n, in the form ax + InJ + cz = d. 

Problem 2. Find the point of intersection of the line through PI = (-1,2, - 1) and P2 = 
(1, 4, 0) with t he plane 3x - 2y + Z = 1. 
Is P2 on the same side of the plane as the origin (0, 0, 0) or not? 

Problem 3. Let A = [-i ! ~ ] . 
a) Find al l values of c for which A is not invertible. 

b) Let c = 1, and find t he two entries marked * in A- I = [ : . : ] . 

Problem 4. Consider the plane curve given by x(t) = e' cos t, y(t) = e' sin t. 

a) Find the velocity vector, and show t hat the speed is equal to V2e'. 
b) Find t he angle between the velocity vector and the position vector, and show that it is 

the same for every t. 

Problem 5 . Let I(x, y) = x3 + xy2 - 2y. 

a) Find the gradient of I at (1, 2) and lise an approximation formula to estimate the value 
of 1(1.1 , 1.9). 

b) Use t he chain rule to find the rate of change of I , dl / dt , a long t he parametric curve 
x(t) = tJ , y(t) = 2t2, at the time t = 1. 

P roblem 6. In the contour plot below: mark a point where I = 1, Ix < 0 and I y = 0, and 
draw the direction of t he gradient vector at the point P. 

y 

Problem 7. Let I(x , y) = x3 - xy + 4y2. 

a) Find all t he critical points of I. 

x 



,. 

b) Determine the type of the critical point at the origin. 

c) What are the maximum and the minimum of f in the region x 2: 07 (Justify your 
answer. ) 

Problem 8. a) Find the equat ion of the tangent plane to t he sur face x 3 + vz = 1 at 
(-1 ,2, 1). 

b) Assume t hat x, V, z are constrained by the relation x 3 +vz = 1, and let f be a function 

(Of) of x,V,z whose gradient at (-1 ,2, 1) is (a, b,c). Find the value of OV z at (-1 ,2, 1). 

Express your answer in terms of a, b, c. 

Problem 9. Evaluate the integral l11Vx 2xV dV dx by changing t he order of integra-
o 0 I_V' 

tion. . 

Problem 10. Evaluate t he work done by the vector field F = -V3 'i + x3 j around the circle 
of radius a centered at the origin , oriented counterc1ockwise in two ways: directly, or by 
using Green's theorem. 

Problem 11. Find the fl ux of x i out of each side of the sq uare of sidelength 2, -1 :::: x :::: 1, 
-1 ::; V ::; 1. Explain why the total fl ux out of any square of sidelength 2 is the same 
regardless of its center and orientation. 

Problem 12. Let F = (x' - xV)i + 2VJ, and let C be t he ellipse (2x - V)' + (5x + V) ' = 3, 
oriented counterclockwise. 
Use the normal form of Green's theorem to express the fl ux of F t hrough C as a double 
integral. 
(Give the integrand and region of integrat ion, but do not provide li mits for an iterated integral. ) 
Use a change of variables to evaluate the double integral you found. 

Problem 13. Express t he volume of the cylinder 0 ::; z ::; a, x' + V' ::; 1 first as a triple 
integral in cylindrical coordinates and then as the sum of two t riple integrals in spherical 
coordinates. 

Problem 14. Let F = z' i + (zs in v )J + (2 z + axz + bcosV)k . 

a) Find values of a and b such t hat F is conservative. 

b) For these values of a and b, fi nd a potent ial function for F using a systematic method . 

c) Still using the same values of a and b you found in part (a), calculate Ie F· dr where 
C is t he port ion of t he curve x = t3 , V = 1 - t', z = t for - 1 ::; t ::; 1. 

Problem 15. Calcul ate the fl ux of F = x i + vj + (1- 2z)k out of the solid bounded by the 
xv-plane and the paraboloid z = 4 - x' - V' in two ways : di rect ly, or using the divergence 
theorem. 

Problem 16. Let F = (- 6V' + BV )i + (x' - 3z')j - x' k. 
Calculate curl F and use Stokes' theorem to show that the work done by F along any simple 

L closed curve contained in the plane x + 2V + z = 1 is equal to zero. 
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N. Non-independe~t Variables/,", 

:e. uep{]rifieA- I 

1. Partial differentiation with non-independent variables. 

Up to now in calculating partial derivatives of functions like w = lex, y) or w = lex, y, Z), 
we have assumed the variables x,y (or x,y,z) were independent. However in real-world 
applications this is frequently not so . Computing partial derivatives then becomes confusing, 
but it is better to face these complications now while you are still in a calculus course, 
than wait to be hit with them at the same tune that you are struggling to cope with the 
thermodynamics or economics or whatever else is involved. 

For example, in thermodynamics, three variables that are associated with a contained 
gas are its 

p = pressure, v:;::: volume, T:;::: temperature, 

and you can express other thermodynamic variables like the internal energy U and entropy 
S in terms of p, v, and T. 

However, p, v, and T are not independent variables. If the gas is a so-called "ideal gasH 1 
• I 

they are related by the equatlOn CO'1b+t'<I~1 () 

(1) ~ =Piiii) (n,R constants). 1 PI V 
To see what complications this produces, let 's consider first a purely mathematical example. 

ow 
Example 1. Let w = x 2 + y2 + z2, where z = x2 + y2 Calculate ox . 

Discussion. 

(a) If we think of x and y as the independent variables , then we can calculate ~: by 

two different methods: 

(i) using z = x 2 + y2 to get rid of z, we get 

w = x2 + y2 + (x2 + y2)2 

ow 
ox 

= x 2 + y2 + X4 + 2x2y2 + y\ 

= 2x + 4x3 +4xy2 

(ii) or by using the chain rule, remembering z is a function of x and y, 

w = x2 +y2 :;7 Y M·l ~Ll/l t:~;e 

~ = 2X+2ZW ]= 2x+2z·2x 

= 2x + 2(x + y2) ·2x, 

so the two methods agree. (e.pltU~ IfeAp:!f1( 

(b) On the other hand, if we think of x and z as the independent variables, using say 
method (i) above, we get rid of y by using the relation y2 = Z - x 2, and get 

w x 2 + y2 + Z2 = x 2 + (z _ x 2) + Z2 

Z +z2; 

Ow 
ox 

o. 

o 



N. NON-INDEPENDEN1: VARIABLES 1 

These answers are genuinely different - we cannot convert one into the other hy using 
the relation z = x2 + y2 Will the right 8w/1Tx please stand up? 

The answer is, that there is no one right answer, because the problem was not well-stated.=- ~/vtd 
When the variables are not independent, an expression like 8w/8x does not have a definite iJ ' J J l J 

mearung. 1'1 -reK"J OO"ftJ 

To see why this is so, we interpret the above example geometrically. Saying that x, y, z 
satisfy the relation z = x2 + y2 means that the point (x, y, z) lies on the paraboloid surface 
formed by rotating z = y2 about the z-axis. The function 

A B 

qlwq } v6(o 

V c.t I ~J. €)(V!PI5 

0 (' huJl€.-
measures the square of the distance from the origin. To be defi
nite, let's suppose we are at the starting point P = Po : (1,0,1) 
indicated, and we want to calculate 8w/8x at this point. x 

~--...!y 0\ ,hl~ I, 
V(Slble 

Case (a) If we take x and y to be the independent variables, then to find 
8w/8x, we hold y fixed and let x vary. So P moves in the xz-plane towards A, 
along the path shown. 

As P moves along this path, evidently w, the square of its distance from the 
8w 

origin, is steadily increasing: 8x > ° and in fact the calculations for (a) on 

the previous page show that ~: = 6. 

Case (b) If we take x and z to be the independent variables, then to find 
8w/8x, we hold z fixed and let x Va7'1J. Now P moves in the plane z = 1, along 
the circular path towards B. 

As P moves on this path, the square of its distance from the origin is not 

changing, and therefore ~: = 0, as we calculated in (b) before. 

To sum up, the value of 8w/8x depends on which variables we take to be independent, 
because we are actually measuring different rates of change, as P moves along different 
paths. 

There is only one way out of our difficulty. When we ask for 8w / 8x, we must at the same 
time specify which variables are to be taken as the independent ones. This is done by using 
the following notation: 

Case (a): x, y are the independent variables: (8W) 
868 ;'1~ u,;-"cI A 

Case (b): x,z are the independent variables: (8W) 
8x z 

These are read, "the partial of w with respect to x, with y (resp. z) held constant" . 

Note how in each case the two lower letters give you the two independent variables. If we 
had more variables, we would use a similar notation. For instance if 

(2) w = J(x, y, z, t), where xy = zt, 

then only three of the variables x, y, z, t can be independent; the fourth is then determined 

X OIiPr 
\ f- I l • 



2 18.02 NOTES 

by the equation on the right of (2). Thus we would write expressions like 

Upartial of w with respect to Xj y and t held constant"; 

"partial of w with respect to Yi x and z held constanV' j 

in the first , x, y, t are the independent variables; in the second, x, y, z are independent. r 

2. Differentials vs. Chain Rule e XC{,yj f Ie. I 

An alternative way of calculating partial derivatives uses t~tials. We illustrate 
with an example, doing it first with the chain rule, then repeating it using differentials. By 
definition, the differential of a function of several variables, such as W = f(x,y,z) is 

(3) 

where the three partial derivatives Ix) jYl fz are the Jo~artial derivatives, i.e., the 
derivatives calculated as if x, y, z were independent. r r< 

I I 

Example 2. Find (aa
W

) , where W = x 3 y - z 2t and xy = zt. 
Y x,t 

Solution 1. Using the chain rule and the two equations in the problem, we have 

( aw) = x3 _ 2zt (az) = x3 _ 2zt::' = x 3 _ 2zx. 
ay %,t ay %,t t 

Solution 2. We take the differentials of both sides of the two equations in the problem: 

(4) dw = 3x2 ydx + x3 dy - 2ztdz - z2dt, ydx + xdy = zdt +tdz. 

Since the problem indicates that x, y, t are the independent variables, we eliminate dz from 
the equations in (4) by multiplying the second equation by 2z, adding it to the first, then 
grouping the terms, which gives 

dw = (3x2 y - 2zy) dx + (x3 
- 2zx) dy + z 2 dt 

Comparing this with (3) - after replacing z by t in (3) - we see that 

(~:) y,t = 3x
2
y - 2zy, (

aw) 3 a = x - 2zx, 
Y :t,t 

Z2 • 

(The actual partial derivatives are the same as the formal partial derivatives w" wy , Wt 

because x, y, t are independent variables.) 

Notice that the differential method here takes a bit more calculation, but gives us three 
derivatives, not just one; this is fine if you want all three, but a little wasteful if you don't. 
The main thing to keep in mind for the method is that differentials are treated like vectors, 
with the dx, dy, dz, ... playing the role of i, j, k, .. .. That is: 
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01. Differentials can be added, subtracted, and multiplied by scalar functions; 

02. If the variables x, y, .. . are independent, two differentials are equal if and only if 
their corresponding coefficients are equal: 

(5) Adx+Bdy+ ... = Al dx+BI dy + ... 

03. One differential can be substituted into another. 

Remarks. 

1. In Example 2, Solution 2, we used the operations in 01 to do the calculations. We 
used 02 in the last step, taking advantage of the fact that the x, y, t were independent. 

We could have done the calculations using 03 inst.ead, by solving the second equation in 
(4) for dz and substituting it into the first equation. 03 is a consequence of the chain rule. 
Illustrat.ions of its use will be given in t.he next section. 

2. The main advant.age of calculating with differentials is that one need not take into 
account whether the variables are dependent or not, or which variables depend on which 
others; the method does this automatically for you. Examples will illustrate. 

3. If t.he variables are not independent, 02 is emphatically not true; the second equation 
in (4) gives a counterexample. 

Note also that in 01 , there is no attempt to include a "multiplication" or "divisionn of 
differentials to the list of operations . If u and v are functions of several variables, then 
their "product" dudv makes no sense as a differential, nor does their "quotient" du/dv, 
which despite appearances is not in general related to any derivative, or function, or even 
defined. (There is no elementary analogue of the dot and cross product of vectors, though in 
advanced differential geometry courses a certain type of product for differentials is defined 
and used for multiple integration.) 

Example 3. Let w = x2 - yz + t2, where x,y, z, t satisfy the two equations 
z2 = X + y2 and xy = zt. 

Using these equations, we can express first z and then t in terms of x and y; this means 
that w can also be expressed in terms of x and y. Without actually calculating w(x, y) 
explicitly, find its gradient vector V'w(x,y). 

Solution. Since we need both partial derivatives (aw/ax)v and (aw/ay)" it makes 
sense to use the differential method. Taking the differential of wand of the two equations 
connecting the variables gives us 

(6) dw = 2xdx - zdy - ydz + 2tdt, xdy + ydx = zdt + tdz, 2zdz = dx + 2ydy. 

We want x and y to be the independent variables; using the operations in 01 , first eliminate 
dt by solving for it in the second equation, and substituting for it into the first equation; then 
eliminate dz by solving for it in the last equation and substituting into the first equation; 
the result is 

(7) ( 
Y 2ty t2 ) ( . y2 2xt 2t2y) dw= 2x--+--- dx+ -z--+---- dy. 
2z Z z2 Z Z z2 

Since x and y are independent, comparing the two expressions for dw in (7) and (3) (using 
x and y), and then using 02, shows that the two coefficients in (7) are respectively the two 
partial derivatives w, and wv, i.e., the two components of the gradient V'w. 
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Example 4. Suppose the variables x,y,z satisfy an equation g(x,y,z) = O. Assume 
the point P: (1,1,1) lies on tbesurface g=O and that (Vg)p = (-1,1,2) . 

Let f(x,y,z) be anotber function, and assume that (V!)p = (1,2,1). 
Find tbe gradient of the function w = f(x, y, z(x, y)) of the two independent variables x 

and y, at the point x = 1, Y = 1. 

Solution. Using differentials, we have, by (3) and our hypotheses, 

(dw)p = dx + 2dy + dz; (dg)p = -dx + dy + 2dz = 0, since dg = 0 for all x, y, z; 

eliminating dz by solving the second equation for it and substituting into the first, or by 
dividing the second equation by 2 and substracting it from the first, we get 

(dw)p = ~dx+ ~dy; 

3. Abstract partial differentiation; rules relating partial derivatives 

Often in applications, the function w is not given explicitly, nor are the equations con
necting the variables. Thus you need to be able to work with funct ions and equations just 
given abstractly. The previous ideas work perfectly well , as we will illustrate. However, we 
will need (as in section 2) to distinguish between 

formal partial derivatives, written here fx> fy, ... (calculated as if all the variables were 
independent), and 

actual partial derivatives, written a f / ax, ... I which take account of any relations between 
the variables . 

Example 5 . If f(x,y,z) = xy'z<, where z = 2x + 3y, then the three formal 
derivatives are 

fy = 2xyz<, 

while three of the many possible actual partial derivatives are (we use the chain rule) 

(~~) y = fd fz (;;) y = y'z' + 8xy'z3; 

(~~) z = fy + fz (~:) z = 2xyz4 + 12xy'z3; 

(~nz =fY(~~)z +fz=~xyz'+4xY'Z3. 

Rules connecting partial derivatives. These rules are widely used in the applications, 
especially in thermodynamics. Here we will use them as an excuse for further practice with 
the chain rule and differentials. 

With an eye to thermodynamics, we assume a set of variables t, u, v, w, x, y, z, ... con
nected by several equations in such a way that 

• any two are independentj 
• any three are connected by an equation. 

Thus, one can choose any two of t hem to be the independent variables, and then each of 
the other variables can be expressed in terms of these two. 
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We give each rule in two forms-the second form is the one ordinarily used, while the 
first is easier to remember. (The first two rules are fairly simple in either form.) 

(8a,b) (~~) z (;~) z (ax) I 
reciprocal rule = I = ay z {ay/ax)z 

(9a,b) (;~)z(~~)z (~~) z (~~) z = 
(ax/at): 

chain rule (ay /at): ' 
{ax/az)y 

(lOa,b) (~~): (~~) z (~~) > = -I (~~) : = (ay/az)z' cyclic rule 

Note how the successive factors in the cyclic rule are formed: the variables are used in the 
successive orders X, y, Zj y,z,Xj z,x,Yi one says they are permuted cyclically, and this 
explains the name. 

Proof of the rules. The first two ruIes are simple: since z is being held fixed throughout, 
each variable becomes a function of just one other variable, and (9) is just the one-variable 
chain rule. Then (8) is just the special case of (9) where x = t. 

The cyclic rule is less obvious - on the right side it looks almost like the chain rule, but 
different variables are being held constant in each of the differentiations, and this changes it 
entirely. To prove it, we suppose I{x, y, z) = 0 is the equation satisfied by x, y, z; taking y 
and z as the independent variables and differentiating I {x, y, z) = 0 with respect to y gives: 

(11) therefore ( ~~ ) z = - ~: . 

Permuting the variables in (11) and multiplying the resulting three equations gives (IDa) : 

_1 •. _1>. _1: = -l. 
I> Iz 1. 

Example 6. Suppose w = w{x,r), with r = r{x, O). Give an expression for (~;). in 

·terms of formal partial derivatives of wand r. 

Solution. Evidently t he independent variables are to be r and 0, since these are the 
ones that occur in the lower part of the partial derivative, with x dependent on them. Since 
o is viewed as a constant, the chain rule gives 

+ Wr ; 

I 
(ar/ax)o' 

by the reciprocal rule (8). and therefore finally, 

(aw) w. -a = - +w,. 
r 0 T:t 
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4. Changing the independent variables. * For those of you who will study 
thermodynamics, a major use of the rules of the preceding section is to change physical 
laws expressed in terms of one pair of independent variables to another pair which is better 
adapted to the particular problem at hand. 

In thermodynamics, some of the variables associated with a confined gas are p (pressure), 
V (volume), T (temperature), U (internal energy), 5 (entropy), and H (enthalpy). Any 
two are independent, and their values then determine al l the others. 

To avoid confusion, it is better to state our general problem in terms of a neutral list 
of variables - we will use u, v, w, x, y. Then we can state t he problem t his way: a partial 

derivat ive (aA) is given, where the A, B, C are three of these variables, and we want to 
aB c 

use x and y as the new independent variables; i.e. , we want to express (~~) c in terms 

of partial derivatives that look like ( :;) y and (:;).' where * stands for any of the 

variables. 

It looks like there will be many cases, but outside of the t rivial ones, the most commonly 
occurring ones are all handled by the rules of the previous section . 

The trivial cases are when two of A, B, C are equal: 

(12) 
{ 

1, 

= 0, 
undefined, 

A=B; 
A = C; 
B=C. 

Two more "triviaP' cases are when B and C are x and y, in either order, since then the 
partial derivative is already in the desired form. 

The rest of the cases are non-trivial, but are covered by the rules. Remembering that x 
and yare to be the new variables, the commonly occurring cases are these two: 

(13) (
aA) (aA/By). 
aB • = (aB/ay).' (chain rule (9)) 

(14) (
ax) (ax/au)y (au/ay). 
ay " = (ay/au). = (au/ax)y' by (lOb) and (9b) 

In the above, x and y can be interchanged; A, B, C stand for any variables; u, v , w are any 
variables other than x or y. The reciprocal rule can be used as a preliminary step to put a 
given partial derivative into one of the above forms. 

Example 7. One of the laws of thermodynamics is expressed by the equation 

What is the equation for this law when V and T are the independent variables? 
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Solution. Looking at each derivative in turn, the first has the form (13) and needs the 
chain rule; the second has the form (14) and needs the cyclic rule; the last needs only the 
reciprocal rule, Using these, the equation is transformed into 

8U/8V 8p/8T p 
8p/BV - T 8p/8V + 8p/8V = 0, 

The subscripts are unnecessary, if it is known that T and V are the independent variables; 
however there is no harm in including them and removing the common denominator, which 
gives finally 

(~n T - T (!;) v + p = 0 

as the form the law takes when referred to the variables V and T , 

5. Additional rules. * For the sake of completeness, we add two more rules which will 
enable you to make even uncommon selections of independent variables, 

To state these last two rules, we need a determinant called the Jacobian, We give the 
notation and definition for two functions ,,(x, y) and v(x, y): 

(15) 8(", v) _1"% "yl 
8(x,y) - v% Vy 

(the Jacobian); 

for three functions of three variables, etc. the definition would be analogous, 

(16a,b) 

(17) 

(8,,) (8V) 8(", v) 
8x u 8y % = 8(x,y); 

(
8,,) 8(", w)/8(x, y) 
8v w = 8(v,w)/8(x,y) 

Jacobian rule 

two-Jacobian rule 

We leave the proof of the Jacobian rule (16b) as a good exercise in the use of differentials; 
the form (16a) follows from it by applying the chain rule (9b) and the definition (15), 

The two-Jacobian rule can be proved directly either with differentials or the standard 
chain rule for functions of several variables, It is the mother of all rules: the other four can 
be derived from it by making some of the variables equal to each other. 

As in section 4, these new rules allow the remaining choices of independent variable: 

(18) 

(19) 
8(",w)/8(x,y) 
8(v, w)/8(x,y)' 

Exercises: Section 2J 

by (16b) 

by (17) 
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18.02 - Solutions of Practice Final A - Spring 2006 

-» ------;. ------;. ----t '1. 

Problem 1. PQ = (2,0, 3); PR = (1, -2, 2); PQ x PR = 2 
j k 
0 3 = 6'1 - j - 41. 

1 -2 2 
Equation of the plane: 6x - y - 4z = d. Plane passing through P: 6· 0 - 1 - 4 . 0 = d. 
Equation of the plane: 6x - y - 4z = -l. 

----> 
Problem 2. Parametric equation fo r the li ne: P1 + tP\P2 = (-1, 2, - 1) + t(2, 2, 1) = 
= (-1 + 2t , 2 + 2t , - 1 + t), that is 3;(t) = - 1 + 2t, y(t) = 2 + 2t , z(t) = - 1 + t. 
Intersect ion: 3x(t) - 2y(t) + z(t) = 1 =} -3 + 6t - 4 - 4t - 1 + t = 1 =} -S + 3t = 1, 
that is t = 3, which corresponds to the point (5, S, 2) . 
The function 3x - 2y + z - 1 takes value - 1 at the origin and -6 at P2 , which are both 
negative. So P2 and the origin are in the same half-space. 

Problem 3. a) A is not invert ible if and only if det(A) = O. 

det(A) = 11 ~ ~ 1_21-;,1 ~ 1+ 1-;,1 ~ 1=(S-C2)-2(-2-3C)+(-C- 12) = -c2 +5c= 

= c(5 - c), hence A is not invertible if and only if c = 0 or c = 5. 
b) For c = 1, det(A ) = 4. 

( 
... ) 11 1 11 1 1 1 12 1 3 

If A- 1 = .. a , then a = -4" - 1 1 = - 2 and b = 4" -1 4 = 2' 
. . b 

Problem 4 . a) iJ(t) = ef'(cost-sint ,sin t+cost) and liJ(tW = e2t(cos2t+sin2t - 2sin tcost+ 
+sin2 t+cos2 t+2sintcost) = 2e2t , so the speed is liJ(t)1 = V2et . 

I ) 
'0 _ r · v _ e2t(cost,sint)· (cost - sint,sint + cost) _ V2 0 __ / 

) cos - 1_11_1 - In - ,so -±II 4. 
T v v2e2f. 2 

Problem 5. a) \1 f = (3x2 + y2 , 2xy - 2) and \1 f( l , 2) = (7,2). 
f(1.1 , l.9) "" f( l , 2) + (0. 1, -0.1) . \1 f( l , 2) = 1 + 0.7 - 0.2 = l.5. 
b) The velocity is v(t) = (3t2,4t) and v (l ) = (3, 4). 
t = 1 corresponds to the point (1, 2) , so 
elf af dx 8f ely 
-(1) = -(1,2)-(1) + -(1,2)-(1) = 7·3 + 2·4 = 29. 
dt ax elt ay elt 



Problem 6. 
y 

p. 

1 

o 

Problem 7. a) \1 f = (3x2 - y , - x + V) . 

{
y = 3x2 

Critical points: \1 f = 0 = 
x = y . 

o 

The critical poin ts are (0,0) and (l/3 , 1/ 3). 

x 

b) f xx = 6x, j~y = - 1, j~y = 1, so [:,. = 6x - 1. At the origin [:,, (0 , 0) = - 1 < 0, so it is a 
saddle point. 
c) On the boundary x = 0 and f(O , y) = y2/2 , so the minimum at the boundary is 0 attained 
at (0,0). The maximum value is +00. ' 

x2 1 
f(x, y) = x3 

- - + -(V - x? , so f(x, y) --> +00 for x --> +00 and/ or y --> ±oo. Hence the 
2 2 

minimum can be either at (0, 0) or at (1/3, 1/ 3). Because f( 1/3 , 1/3) = - 1/54, this is the 
minimum value. 

Problem 8. a) Let g(x, y, z) = x3 + yz - 1. Then \1g = (3X2, z, y) and 
\1g( -1,2,1) = (3, 1, 2), hence the equation of the tangent plane is 3x + y + 2z = d. 
It must pass through (-1, 2, 1), so 3( - 1) + 2 + 2(1) = d ===} d = 1. 
Equation of the tangent plane: 3x + y + 2z = 1. 
b) Constraint ===} 3dx + dy + 2dz = 0 at (-1,2, 1). I<eeping z fixed , we get dx = -dy /3 . 
Because df = adx + bdy + cdz at (-1, 2, 1), we obtain df = (- a/3 + b)dy, that is 

(~:) z (-1,2,1) = b -~ . 

Problem 9. t r.jX 2xy 4 dy dx = t jl 2xy 4 dx dy = t y 4 [X2] x=1 dy = 
io io 1 - y io y2 1 - y io 1 - y x=y' 

= 11 ydy = 1/2. 

Problem 10. Direct method. The eircle is parametrized by x(e) = aeose, y(e) = asine, 

for 0 ::; e ::; 21l'. The work is [ F . di = [ -y3dx + x3dy = 

= 12rr 

_a3 sin3 e( -a sin () de) + a3 cos3 ()(a cos () d()) = a" 12rr 

(sin4 e + cos4 e)de = 



= Sa" sin4 OdO = (using the table) = - " a4 1
,,,/2 3-

o 2 

Using Gr'een's theorem . l F . di' = J li (Nx - M ,JdA , where R is the disc of radius a, 
3 3 ? ? ? M = -y and N = x , so that Nx - My = 3x- + 3y- = 31'-. 

I-Ience t he work is 31.2 . '/' dT dB = dB - = ~a4. 12" 1a 12
" [31'<' ] a 3 

o 0 0 4 0 2 

Problem 11. Call F = xi and recall tha t (Flux) = Jc F . n ds. 
-t 

Side x = - 1: n = -i , F . n = 1, so the flux is 2. 
-t 

Side x = 1: n = i , F . n = 1, so the flux is 2. 
-t 

Side y = - 1: n = - ] , F . n = 0, so the flux is O. 
-t 

Side y = 1: ii = ] , F . n = 0, so the flux is O. 
T he total Am[ out of any square S of sidelength 2 is always 4, because Green 's theorem in 

normal form says it is equal to J 1 (M. + N.) dA = Ji 1· dA = Al'ea(S) = 22 = 4. 

Problem 12. Green's theorem in normal form: l. F . 11 ds = Jl®(F)dJ1 where R is 
C R ("';1, , 

the region enclosed by C'. Y 

div(F ) = 2x - y + 2, so the filL, is given by j''( (2x - y + 2) dx dy. 
{ J (2x- Y)2 +(5x-y)2 < 3 

Change of variables: u = 2x - y, v = 5xTY' so 1 

tntShl!e I ~ e~r 6itp 

1
8(u,v) I-' I (2 -1) - 1 ""';1 

dxdy = 8(x , y) dud'u = det 5 - 1 dudv~ '3 dudv . 

- 6e'l dQ/1t ;\ 

11 u+2 
The integral becomes ~ dudv. Using the symmetry (u, v) t-> (-u , v) , we have 

........ u2 ~2<3 3 o~ill'e(; () ( 
that the integral ]1 - u dv = 0, so that the filL, is given by t 

j' r ~ =Ui:V(2~:2 = 27r. ~9 th IS ~ro1j 
{uy£S 3 

Problem 13. In cylindrical coordinates the volume is 1a 12

" 11 I' dT dB dz . 

r 2-rr r ao'ctan(l /a) r alcos", 

In spherical coordinates }o }o }o l sin cp dp dcp dO+ 

+ r2
" 1"12 (' I s ;n '" l sin cp dp dcp dB. 

Jo arctan{l / a) io 
--+ --+ --+ --+ 

Problem 14_ a) F is conservat ive if and only if \1 x F = 0 (because F is continuous and 
differentiable everywhere). 



j 
= (-bsin y - sin y)i - (az - 2z) j , so we must 

-> -> 
V x F = ax ay 

z2 z sin y 2z + axz + b cos y 
have a = 2 and b = -l. 
b) Let F = Vf. We must have f z = 2z+ 2xz-cosy , so f(x , y ,z) = Z2+XZ2- zcosy+g(x ,y). 
Moreover , z sin y + gy (x, y) = f y = z sin y ==> g(x , y) = h(x) . Finally, Z2 + h' (x) = Z2 

-> 
==> h(x) = constant . Hence, fix, y, z) = Z2 + Xz2 - Z cosy is a potential for F. 
c) The curve goes from (-1, 0, - 1) to (1, 0, 1). Fundamental theorem of calculus for line 

integrals: L F . df = f(l , 0, 1) - f( - 1, 0, - 1) = 1 - 1 = 0. 

, -> 
Problem 15. Di1'ect rnethod. On the xv-plane, Ii = - k , F . Ii = -1 , so the flux is 

r.(2)2 = -4r.. On the portion S of paraboloid , we compute lis F . d S by integrating over 

the shadow of S in the xy-plane. 
--t --t --t ') ? 

d S = (2x,2y , 1) dxdy , so F ·dS =(2x-+2y-+1 -2z)dxdy= 
= [2X2 + 2y2 + 1 - 2(4 - x2 - y2)] dx dy = (41.2 - 7)T dn/B . 

(~ {'" [ 7 "]2 The flux is J
o 
- J

o 
-(41'3 - 7T) dT de = 2r. 1.'1 - ;- 0 = 2r.(16 - 1'1) = 4r. . 

T he total fllL'~ is 4r. - 4r. = 0. 

Using dive1'gence theo1'ern. T he flux is given by I jiD (<$ . F)dV , where D is the solid region 
-> -> 

enclosed. In our case V . F = 1 + 1 - 2 = 0, hence the total flux is 0. 

-> -> 
Problem 16. V x F = = 6z i + 2xj + (2x + 12y - 6) k. 

2 J k 
ax ay az 

_ 6y2 + 6y x2 - 3z2 _x2 

Call R the region of the plane x + 2y + z = 1 enclosed by a simple closed curve C lying 

entirely on that plane. Stokes' theorem: L F . df = lin (<$ x F . 11) dS. 

O R I 
' (1,2, 1) d"i"i ->F ' 6z + 2(2x) + (2x + 12y - 6) 

n . we lave 11 = V6 an v x . 11 = V6 = 

= V6(x + 2y + z - 1) = 0, because R belongs to the plane x + 2y + z = l. 

We conclude that L F . cif = lin (<$ x F . 11) dS = 0 because <$ x F . Ii = O. 
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. . ' lib) 
Problem L(20) . Thre~ poirits iri xyz-space are P : (-1,1,2), Q: (1,2,1), and 0: (O~ 

a) (5) Find angle POQ, 
-1 ..' 

Po =-{-I,I,Z? 

dO -=-!.l /t:;i 'l 

(-I . I ) t ( ,- '-) 1 (Z., ) 
-I 

P'Q ; (1 0 ~ ) PQ 110o} (o.s (1 

J (-1)'- r ,-'2 f 2'- =- ;--r:-

s 



Problem 2. (20) { s: 
Let A = (; ~ ~ ) . Its matrix of cofactors is (irt part) C = ( _~ ~; ~1) . 

. 1 0 2 . . 4. -2 b 
(0 a) (15) Confirm (mentally) the entry -4 in the first column of C, then fill in the last column of C and 

from this find A -1. . ~ Il f. . 

0--- t~ ~ [0 -2) ~ t 'L ' 

() , 'i) ~ -3 

I (2 -0) - 2 (y -2) 1- 0 
2-f1- LI 

-2 
v--- . b ~ \ ~~I~ 

-- -- ------ -

+- + 
- t -
-\- - f-

------~ 

~ 11t1 o.l{fOdr J(~ 'd 

eY dov--Q. -h.vt~ .~ f rip ~-! ~(9 )'1.j . , 
- " (Iv!--e., '(ll St~ 'I (0 fete (.or) ,. ' . 

S b) (5) Use the matriCes of part (a) to solve the following system (no credit for solving the system by 
elimination) : 

(!J~I~J ~d . 
10.>\ fYI'.1I t, 

x+2y=l, 2x+y+2z=0, x+2z=0 . 

Ax ~ J 
A A-I x::-d fl -! 

x~ J A-I. 

I - ./ 

1 1 \- 7.., OtO,O 
L·J fl' 0+2'6 

-I a l j o? OJ l .0 

-, ~\ -
L 

j -

-1 I i 
2 l 

- ( 

2 :: 

1- Lj' 
-

4 
2 ?.- 2 

-) 
• 

1- - ; 
I . . 

- ) 
- - I ~ 

J. 
L 

.L . 1..- '. 

I 
Q 

0 



Problem 3. (5) Find the value(s) of c for which the system of homogeneous equations 

ex + 2y+ z = 0, 2x -y + z = 0, x +3y - 2z = 0 ' 

has a solution other' than x = y' = z = o. (No credit for solving hy elimination.) 

\;V~(e Jd -:0 
C L ) 
2 - I ) 

') -Z 
( ( 2 - 3) -2 Fl/ -j) + 1 ( ( - -\ ) ::-6 
2 c - 3c t-~ .). L t-' I- I =-0 
~ c == ~ 17 

C = 11 

Probler'n 4 (15) Scotch@ tape is being unwound from a stationary circul~r ' spool having radius a. 
The end P : (x, y) of the tape is initially at the point A : (a,O) on the x-axis; Q is the point on the 
circumference where the tape is leaving the spool. During the proCess, the unwound length of tape Q P 
is held taut, and held so that it makes a constant negative angle - a , 0 < a < 1T / 2 with the radial vector 
OQ (as measured clockwise from OQ to QP). 

Use vector methods to derive parametric equat!ons for x and y in terms of the central angle,B and the 
constants a and a, for 0 ::; B ::; 21T. Show work, .indicating reasoning. , 

(If stuck, for 5 points less/you can take a = 1T /2, so that the unwound tape is always eld tangent at 
Q, in the direction where its sticky side faces the spool.) , , 

~ ~ --
o p '" 0 0 1- 0 P + 5oYr~1ij"3 v-/ J. 

\.v~1\ ri t ~ 

rA {CO S 0- I 51/( G "/ f 6. ~ ~ + LOS "- )-

." orc/f'akl e - C( u 
....'" 

(' - (j (CO ~ e T ~ C 'J S rJ. / 
~Q"-' (~) '" [fI\~ ;I' O -oJ) s " <A. 

\ 1\ (Q5 e i 0. (9 (0.> ) 

X .::- r (05 6 ) .::; 0. c~s ~ i 0: e cos ~ 
y -~ r 5//10) =- (J\ 5>;" 6 - C\. e ~d... 

I). h. S 'l'\ (-DI) ) -::- - ~;" A 
[J)S (-~) ::: (OJ ri 



, " . r't' . 

Problem 5. (15) The path of a point P is a circular helix in space having position vector 

OP = r(t) = (2cost, 2sint, t). 

Find in order the following, in terms of t, giving enough calculation or reasoning to show you are not 
guessing or writing down answers from memory: 

d S;I' ,(p) (3) a) the velocity vector v 

dQrlvll/e· d (c ~ :- -5111 

(4) b) the speed Iv land the length of one complete turn of the helix, i.e., the length between two 
successive points lying over the same point in the xy-plane. 

I Vi ::-)(-2)?-£11)2j l- 12 (05 j- ~--r-
.J \,[ ~((12) i qco~'1 A 1-} 

J 1-/ (5i"i~ I ws lJf:/ 
J "-I i I -

l? 
(8) c) the unit tangent vector T, the unit normal vector N, and the curvature K. (k in the book), at 

time t. 

T: *, ' 
dl~ Jf)dr---d~/rfl 

C -1 roifl } I ZcfJ5)- I } '/ 

J§ 



" , 

Problem 6. (5) 

Find the length of the exponential spiral cur~e r = e20 in the plan~, between the point on the curve 
where r = 1, () == 0, and the next point on the curve where it crosses the :t axis as () increases. 

. ~1fI 

5=-S sh ii i =- e '1 {j 
o L~ ~e ~ ~ 

If;,,- ( L e V 

J2 )i B e- 2 ~L -f ') 

~ . 0 /l '''\ 

If ~ Z Vr rr e Vt> 

~ = )~ 
(~ Sf) ~ 

(\ 

5:-1a11PJU~ I t u: J} 

r =- e is 
~:~ + Iv ",rT 

. Set 41\, qfie ~ V ~= _ !~~:.!2r)'"7-1 1J1 
J~ )2. 101 71' :: 

Problem 7 . (10) The velocity vector of a moving point in the polar-coordinate U r - Uo system I 

given in general by v = r'u r + r()luo . 

( =- ( 05jt( 

r r( 1) >(0)(1)+ r; ::c / . 

( -- C IJ~ 1 0J >( t L \ f ~ - ".I r) ~ I ~ 

r 6 .:: ~ I A 2 j ------:-~-Ifl-;l-Cl-/ -J; )-,,~ (0) a S;A h ~ S;/l:C cosb 
, 

S /1\ '2 .A-
(OS.I r I 

.J C. 

l' o=- -(o~2 j 
5'0,* t) 

- - (,,~ 0 
-J e 



G, 

t o. \;( e e-:-} 

r [r) :: r(e) ~ e'U 

(eve (vi 



(~,O2... EXaW\ \ ( 
Sv\ V1 s 

f\l 0., to S(p~Q.) ::OP-. 6Q ". ~ =.L 
-~!\ lop I 1001 a 2-

4J . PDQ =: T17, Of 60° , 
\,7 p&;:. (2, 1,-1) 
(,,1,.1). <~"J-I/ =- 1-.::;~ . « ~;. 

C)oPJl~ "\:Ljl~I=<-3131-7) 
. I ], \ \ '" N +0 p{a~e 

fl<t~ tt., w-...,\o (0,0/0): <IV' 

-X+L.{-C-"O (XW'~te.:(:)) 
Of G\ "'vl+"~/e 

J)i\o1'l<~l =: ~l<-I)II-I>I~t{) 

l' 1, 0 l 1.12 .::_~ 
I o:z.. 

err =-

Sr V) '0$ '2-0 I 0 

\ 5'\ y=>(~) ~ (2c.os-t, ZSI'vit-) -t-> 

0.) V= <-2S\''11:- ; 2.c.ost) ,> . 
hi l.vl:: ~= V4(S(v,'t+'wN'yr I 

1.'11' ~ Vi 
s:: 1 ~. &,t- =- ',L{?-rr 

D · . 

c) "T", ;if! :: J-. <-2Slht/oost, I) 
I-i? I 'f? 

N= O-U\(:g):: <-Co$t,sl'vIt,o> 
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:!:~ 1 NI Q 
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18.02 Exrun 2 Thurs. Apr.1, 2010 11:05-11:55 

Directions: 
1. There are 3 sheets, printed on both sides: nine problems in all. . 
2. Do all the work on these sheets; tise the blank part below if truly necessarY. ' Write down enough to 
show you ar~ not. gues.sing. 

_ .. ___ 3_No books, notes, calcuiators, use of cell-phones, etc. ~_.___ "," '_ ... _ .. _. _.' .. _. ... , __ . __ . .. _ ... _ 
4. Please don't start until the signal is given; stop at the end when aBked to; don't talk until your paper 
is handed in. . 
5. When the exam starts, read through the exam and start with what you are surest of. 
6. Fill out the information below now . 

. I ( . I 
Name t'l l C M€ e-mail@mit.edu the P'vz, 

Recitation teacher -,d"".,-,I ~,-,,';-,e,-. _(_~ _ _ ____ ~ ____ ~ Rec. hour ~I_:,,-_ 

.fkci tei rb'1 
11 ~~1 1\ G 9 . 
fYh/{k 7~ 

pg.1 

pg.2 

pg.3 

/Cf 
\ )..

R 
pg.4---,--I1,"-

Iq pg.5 

Total.~ 



Problem 1. (10) For the function W = x2y - xy3 ,. find its directioriai derivative dd
W 

/ . at the point 
. s Pc. 

P: (1,1) in the directio~ fr of the vector i + j . / J (I ~J t (-Z 0,*) , 
-::: V I,J • V 

4i Vt- eL I. y _ yJ 
- .--t:l --'-'-~' ' -2 - --- '3--- 1: 

-I >\ - 'f. '! 
~I v~ p t !> '/_ 

Idx ~ '2 C I ) ( () - ~ P=- I 
V Y -= 11. ~ (I) 03(1)'-

) "'t
~-~ 

- ~-.:~ --~t:-L, ~,-
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y .: t 

:-1 
1/ -1 ) 

----------..V' 
~ 'm? 

:- ./1-
d ~ \ 
d: f.u - ~ I -1/ Q ) 

L I J I I 
-Vl_ > 

Problem 2 (10: Y,b) Some level cUrves for W = f(x,y) are shown; u is a unit distB<ilCe. 
a) At P, estimate the value of wy• 

b) At Q, draw the. vector (\7 f)q . . 

. \,j'I~ %~ = .-L do" 
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, Q c (vq~ dc& 8\O,.~:n; 

- -\-0'1"1( b fl UeO,) . 5ro~ ( 

.:1. IL";+ 1\ L · • 
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r 1, ;1 ........ ,' 

~L~· ~ ,/. 
0'( ~I~ 

-I \ ~ \ ': -- - \ .) 
'. -.l.-- ~ 

2- / 1 

{, 1/ - 2 7 
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Problem 3, (20: 3, 12, 5) Find the point P on the surface x2 + yz + 3z - 8 = 0 which is closest to the 
origin; by following the steps below, c!~ ;":2",1' 1)_ 

(a) It suffices to find the point P which minimizes the square of the distanc'e to the origin. Show this 
leads to finding the point which minimizes w(y, z ) = y2 + Z2-::Yz - 3z + 8. . 

. , . 
( Q",r;\·t (00 • 1(" " I 

d ::- fx.) f '/ -: 7. 7.:-- o 
(b) Find the point (Yci ,zo) which minimizes w(y, z), and use it to find P. 
(You don't have to prove it is ~imum point.) 

"L y to -L - 0 +0 
.:- ~. i 27, 

2y- 2 <0 
. .("'1[1 ph 

(y I L) (1, L J 
( -1,-2) 

'1'(7 et1c(, ~ 

- 3 +- 0 
o 

() ~ 22-y-J 

'3~2,--y 

(I/~ ; I 

(-1) -2) 

I 'L +- (zF ) , L '5 ' L i ¥ :::: r; 
(-i)\{-l)'-- (-1){-2) _j{-2) ~ :-~IS-

, '. ? 1 ~ (' 

, , 

( 0 

(c) If this problem is solved by Lagrange multipliers instead, give one of the equations involving the 
multiplier A, and use it to determine the value of A corresponding to the point P. 

L'I. i 0 ~ 0 -0 "" ~ 
~ t "l. t 0 ~ O :"'J-
0 f I (/ 3 -6 -J-

1x- -=-

~ -'" J--
Yf-3 . .:}.- . 

1'{- - L= 'y~J 
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Problem 4 (10) Let w = f(x, V), where in turn x = 2u - v2 and y = uv. 

If in xv-coordinates \l f = (2,3) at the point P : (4,0), 0 find the value of 0 ow 
uv-cMtdirtates cbrtespdriding to po. rc::,o t ov 

rlv'~ ~. 0 Q X + . r; l{ :- 7 V ~ ,/.. ')c.q, /2 volA,,") 

)v - '0 'X )1/ .. 6 - u V 

,,2 D 0 - t V ~~ 
:: 1 '-7. V _. ll: L (i ) .. ( 0 1 

-= ? -2 (0) 
~ 0 

at the point in 



, Probl~n'l 6 (fO: 3,7) Set up a ·double iterated integral in polar coordinates which gives the volume of 
the solid lying unde.r the graph of z ·= 16 - x2 - y2 and above the xy-plane, as follows. 

a) SholY the ,egion of integration. is the i~eJiiOr Qf the circle x 2 + y2 = 16. . . 
b) Then set up the integral. Do not evali.ate the integral. . 

. .. h {(e~ ~ . 

5
't1il (/., 

J (l, -'l - '/ J [dr J d 
o \\ ~./ 

~ ( . 
. '\ .... 

Problem 7 (10) By changing the order of integration, evaluate 11 /1 COS(y3) dy dx . . 
o ft , I Fi- \ l . 

50 So ,(o ~ (}}J)( J 7 
'! >'. V}3 . 

{6 'I t .~ ~ ( >' ')) d \ ~\\\ 
. . / " 
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)~ 

(o~ (i3J )c (0 . 
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yL CoS (y3J cl f 

~. 
?:, • l( 

11 co:,i !j 
11 

o ' '2 -1 -

. ~n, I Cl,t'91' 

y=lfY 
'/ 'J :- X 

~ , (OJ '/ 

clv,,£;1\ ,/3 '- j y "< 
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Problem 8 (1O) A unifor~ metal plate has the form of an isos~eles right triangle having its two legs 
both of length 1; find its moment of inertia about one of its legs L , taking the density 5 = l. 
(Place the triangle in . the fiJit ,q\ladr~nt scf tlle right angle i,s at the origin, and L lies along the y-aXis.) 

o{ 
r . , 

(tOd I ';> : 

y 

: oreo. 0 Je~'/11 
to I·) p I 

dX 
, , :1'1. £ I I\'l.. - X. '3 d r 

/ ~ (i!-L)II 
'3 u " 

"t J'i --U 
. 2 (ru.L Ii) 

'UI 
Problem 9. (10) Consider the double integral J 1 sin(x .:.. y) cos(x + y) . x, 

where Ris the square xy-region having its vertices at t~e. follr, P?ints ±~. ,on the ~- and 11:: a:xe~l 

.. 

Change it to a double iterated integral in uv-coordinates, where u = x - y and v = x + y. 

\ 
(Give the n,e,?>, limits, integrand, and area element dA, but do ,not evaluate.) 
1. 

~--l-.~p!::.l- -t.:1 \J; t - I X-- tj I Y y = X-V 

~ '-- 1( ::: X 4 '( X:-- V _ '! Y : I{ - X . 

-z . I--;J" Y '" . Itm; ,, 'f (/ ._. -11 

I{ v 

. .rL, 
X 0 V t '1 - v-y 
X ~ ,,'-10 / 
. 'X ?/~ 
)(- U t x- v 

G'{{\ (U) CQ{vJ Xu Xu 

x" Y. 
1 ' 
I 

(-'--Vi -0 ;1 
Vx V, 
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Definite integra! formulas: 

fO f sinn X dx = fo ~ cosn X cb; = (n :!!1)!! An; An = { 1,/ n odd integer ~ 3; n!! = n(n-2)(n-4) . .. 
1n 10 1T 2, n even integer ~ 2; . 

Problem 1. (30: 5 each) The cube shown has edges of unit length.@,\c. 

a) Find the i j k-components of the vectors AB and OC, and use 
them to find cos(8), where (J = the acute angle hetween AB and OC. 

b) If 0= (0,0,0), A = (1,2, -1) , B = (-1,1,1) are the vertices of a space triangle, find OAxOB 
and the area of the triangle. 

c) If A, B, and C are vectors in 3-space, circle those expressions which make sense, put a ruagonal 
line through those which do not (for each: +1 if right, -1 if wrong, a if unmarked). ' 

(A · B)C A· (B· C) (A x B):C (A x B) xC A x (B. C) 

d) Let A = ( ; ~ -~). In the matrix A-I, what is the entry in the lower left corner? 
-1 1 2 

e) For which value of the constant a is the 'line given parame'trically by 
X = 1 + t, V = 1 - t z = 2 + at parallel .to the plane 2x +. 3V + z = 2 ? 

f) For which value of c is there a non-zero vector (x, V, z) perpenrucular to each .of the vectors 
(1,3,-1), (2,c,I),,. (1,1,2)? . '. , .' 

Problem 2. (20) OP = r = .(4cost,-3cost,5s;;'t) is the po~ition vector for a point P moving in 
3-space. (In each of the questions, show work or· indicate reasoning.) . ,.,' 

" ' I I , .. d 
I» (10: .4,3;3) Find its velocity vector v, its spe~ d: ' ,and its unit tangent .vectpr T '. 

. . IdTI b) (5) Fllld Its curvature", = Iii " 
c) (5) Show that P moves in a vertical plane cont~g the origin .. .... 

Problem 3. '(20: 8,2,5,5) For the function w = y(1 + x) + sin(xy), 
a) Write an approximate formula showing how Ll.w ·depends on Ll.x and Ll.V, at the point (0,1) . 
b) At the point (0,1) , is w more sensitive to x or y? (give reason) 

~'I . . c) Find the rurectional derivative d; u at the point (0,1) in the direction of the vector 3i - 4j. 

d) Starting at the point (0,1), what is the minimal distance 'You coul~->riGi:eaSe t~ue of 
w by .27 (show work or indicate reasoning) u 

Problem 4. (15) Some level curves for a function w = f(x, V) are 
shown, with a unit rustance u in the xv-plane. 

a) At the point P, draw in the gradient .vector (gradf)p 
(Use u to estimate its length.) 

b) Estimate the value of (:) at Q. 

Bw 
c) Mark a point R where f(R) = 3 and BV = O. 



Problem 5. (25: 5, 10, 5, 5) A wooden rectangular drawer with a capacity of one cubic foot is to be 
constructed. The wood costs $1/sq.ft . for the bottom and the back, $2/sq.ft. for the two sides, and 
$3/sq.ft. for the front; there is no top. Let x be the end width, y the side width, and z the height, and 
C the total cost. What values for x, y, z minimize the total cost? 

a) Show this leads to minimizing C = xy + ~ + ~ . 
x y 

b) Find the minimizing val.ues for x, y, z . 
c) Use the second derivative test to show it is actually a minimum. 
d) Give one of the equations for the Lagrange multiplier method, and use it to determine the value of 

the multiplier), corresponding to the minimum. 

Problem 6. (10) Where does the tangent plane to the surface x2+2y2+3z2 = 12 at the point (1,2, -1) 
intersect the y-axis? 

Problem 7. (15: 7,8) Let w = w(x, V), and let r, e be the usual polar coordinates. 

a) Express : and ~ in terms of w., wy , rand e. 
b) If the gradient '\lw at the point (x, y) = (I, 1) has the value 2 i + 3j, find the value of : and ~ 

at this poiiit. 

Problem 8. (15) Let w = xy + xz + yz, where the variables x, y, z are not independent, but constrained 
by a relation y = I{x; z). . 

Express (~) % in terms of x,y,z and the formal part1al derivatives Ix and 1%. You can use either 

method: the chain rule or dlfferentials. 

Problem 9. (10) Find the volume of the region in space lying under the graph· of z = x2 + y2 and over 
the triangle in the xv-plane having vertices at (0,0), (1,0), (0,1). · 

• I , ~ , . 

Problem 10_ (15·: 5,5,5) Let R be the upper half oHhe circular disc of radius a centered at the origin. 
Express the average distance of a point in R from the x-axis by an iterated integral in 

(a) rectangclar coordinates; and (h) polar coordinates; 
(c) eval\late the integral in either (a) or (b). 

1) 1) d dx 
Problem 11. (1O) Evaluate ~ 

o x 1 + y2 
by i:hilJiging the order of integration. 

Problem 12. (15: 7,8) . U.sing polar coordinates JQr both parts, 
a) set up an iterated integral giving the moment of. inertia about the y-axis 

of the pictured shaded semicircular region R of radius a. Assume the density 
.8 = 1. Do not evaluate. . 

h) Calculate the moment of inertia about the y-axis of the entire circular disc 
(8 = 1). 
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(Po.ytl7- Zhoulf) - Spv'~ '2D(0 

Problem 1. 

a) In the xy-plane, let F = Pi + Q j . Give in terms of P and Q the line integral 
representing the flux of F across a simple closed curve G

1 
with outward-pointing normal. 

b) Let F = ax i + by j . How should the constants a and b be related if the flux of F over 
any simple closed curve C is equal to the area inside C? 

Problem 2. 
A solid hemisphere of radius 1 has its lower fia~ base on the xy-plane and center at the 

origin. Its density function i~ 0 = z. Find the force of gravitational attraction it exerts on 
a unit point mass at the origin. 

Problem 3. 

Evaluate fa (y - x)d:x + (y - z)dz over the line segment C from P : (1, I, 1) to Q : (2,4,8) . 

Problem 4. 
Consider a solid sphere of radius a with center at the origin; let H be its solid upper 

hemisphere (Le" the part above the X1J-plane). Set up a triple integral in spherical coordi
nates which gives the average distance of a point in H from the xy-plane. 

(Give integrand, limits, and the constant factor in front, but do not evaluate.) 

Problem 5. 
Let d be ' a solid right circular cone having base radius 1 and vertex angle 60°. Set up 

an integral in cylindrical coordinates which represents the moment of inertia of G about its 
central axisj assume the density 0 = 1. 

(Place the cone so its axis is the z-axis and its vertex is at the origin; supply integrand 
and limits, but do not evaluate.) 

Problem 6. 
a) Let F = ay2 i + 2y(x + z)j + (by2 + Z2) k. For what values of t.he constants a and b 

will F be conservative? Show work. 
b) Using these values, find a function I(x, V, z) such that F = '<J I. 

c) Using these values, give the equation of a surface S having the property: rQ 
F· dr = 0 . }p 

for any two points P and Q on the surface S. 

Problem 7. 
Let S be the surface formed by the part of the graph of the paraboloid z = x2 + y2 lying 

below the plane z = 1, and let F = xi + yj + (1 - 2z) k . 
Calculate the flux of F across S, taking the outward direction (Le., the one pointing away 

from the z-axis) as the one for which the flux is positive. Do this two ways: 

a) by a method which calculates J is F . dS directly; 

b) by using the divergence t.heorem. 

Problem 8. 
Let 5 be the infinite circular cylindrical surface given by the equation x 2 -I- y2 = 1 having 

the whole z-axis as its central axis, and let F = (zx - y) i + zy j + z Ie . 

a) Calculate '<J x F (i.e., curl F) . 

b) Deduce that J J, '<J x F . n dS = 0 for any finite portion R of the surface S. 

c) Let C be any clos~d curve on S going once around S (and oriented as in the picture). 

Show by using the result of part (b) and Stokes ' theorem that t F . dr always has a 

constant value independent of C, and dete.rminc this value. 



Problem 9. 
Let ¢(x . y, z) be a function with continuous second partial qerivatives. 
Prove that '\l X '\l t/J = 0 

Problem 10. 
An xz-cylinder in 3-space is a surface given by an equation J(x. z) = 0 in x and z alone; 

its section by any plane y = c perpendicular to the y-axis is always the same xz-curve. 

Show that if F = :t'i + y' j +:tz k, then iF, dr = 0 for any simple closed curve C lying 

on an xz-cylinder. (Use Stokes' theorem.) 
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