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Maxwell's equations are a set of four partial | Electromagnetlsm
differential equations that relate the electric and | { = ..
magnetic fields to their sources, charge density | et +
and current density. These equations can be : . * =5 if‘.-".r-;}_.;r. .
combined to show that light is an j Vst ®®®®®®® o
electromagnetic wave. Individually, the equations | I |

are known as Gauss's law, Gauss's law for ; Electricity - Magnetism

magnetism, Faraday's law of induction, and
Ampere's law with Maxwell's correction. The set
of equations is named after James Clerk Maxwell.

Electrostatics

Electric charge - Coulomb's law -
Electric field - Electric flux -

These four equations, together with the Lorentz |  Gauss's law - Electric potential -
force law are the complete set of laws of classical | Electrostatic induction -
electromagnetism. The Lorentz force law itself ; Electric dipole moment -
was actually derived by Maxwell under the name | Polarization density

of Equation for Electromotive Force and was one |

of an earlier set of eight equations by Maxwell. ; Magnelostatics

Ampeére’s law + Electric current -
Magnetic field - Magnetization -
| Magnetic flux - Biot-Savart law -
| Magnetic dipole moment -
' Gauss's law for magnetism
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Conceptual description

This section will conceptually describe each of the four Maxwell's equations, and also
how they link together to explain the origin of electromagnetic radiation such as light.
The exact equations are set out in later sections of this article.

= Gauss' law describes how an electric field is generated by electric charges: The
electric field tends to point away from positive charges and towards negative
charges. More technically, it relates the electric flux-through any hypothetical
closed "Gaussian surface" to the electric charge within the surface.

= Gauss' law for magnetism states that there are no "magnetic charges" (also called

magnetic monopoles), analogous to electric charges.m Instead the magnetic field
is generated by a configuration called a dipole, which has no magnetic charge but
resembles a positive and negative charge inseparably bound together. Equivalent
technical statements are that the total magnetic flux through any Gaussian surface
is zero, or that the magnetic field is a solenoidal vector field.
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' UII Lray d/7
» Faraday's law describes how a changing magnetlc
field can create ("induce") an electric field. (1] This
aspect of electromagnetic induction is the operating
principle behind many electric generators: A bar
magnet is rotated to create a changing magnetic
field, which in turn generates an electric field in a
nearby wire. (Note: The "Faraday's law" that occurs
in Maxwell's equations is a bit different than the
version originally written by Michael Faraday. Both

versions are equally true laws of physics, but they An Wang's magnetic core

have different scope, for example whether "motional memory (1954) is an

EMF" is included. See Faraday's law of induction for application of Ampere's

details.) law. Each core stores one
bit of data.

= Ampere's law with Maxwell's correction states that
magnetic fields can be generated in two ways: by electrical current (this was the
original "Ampere's law") and by changlng electrlc ﬁelds (this was "Maxwell's
correction"). S o I{,, J I (008 s

Maxwell's correction to Ampere's law is particularly important: It means that a

changing magnetic field creates an electric field, and a changing electric field creates

a magnetic field. [ 112] Therefore, these equations allow self-sustaining "electromagnetic
waves" to travel through empty space (see electromagnetic wave equation).

The speed calculated for electromagnetic waves, which could be predicted from

experiments on charges and currents,!™* 1 exactly matches the speed of light; indeed,
light is one form of electromagnetic radiation (as are X-rays, radio waves, and others).
Maxwell understood the connection between electromagnetic waves and light in 1864,
thereby unifying the previously-separate fields of electromagnetism and optics.

General formulation

The equations in this section are given in SI units. Unlike the equations of mechanics
(for example), Maxwell's equations are not unchanged in other unit systems. Though
the general form remains the same, various definitions get changed and different
constants appear at different places. Other than SI (used in engineering), the units
commonly used are Gaussian units (based on the cgs system and considered to have
some theoretical advantages over s1t3 ]), Lorentz-Heaviside units (used mainly in

particle physics) and Planck units (used in theoretical physics). See below for
CGS-Gaussian units.

Two equivalent, general formulations of Maxwell's equations follow. The first separates
bound charge and bound current (which arise in the context of dielectric and/or
magnetized materials) from free charge and free current (the more conventional type of
charge and current). This separation is useful for calculations involving dielectric or
magnetized materials. The second formulation treats all charge equally, combining free
and bound charge into total charge (and likewise with current). This is the more
fundamental or microscopic point of view, and is particularly useful when no dielectric
}'{2_ ink E .’4 ndw/ )/ ) Il '/' ) h ] - :3‘ i -3 ?Pf-
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or magnetic material is present. More details, and a proof that these two formulations
are mathematically equivalent, are given in section 4.

Symbols in bold represent vector quantities, and symbols in italics represent scalar
quantities. The definitions of terms used in the two tables of equations are given in
another table immediately following.

Formulation in terms of free charge and current

Name Differential form Integral form
Gauss's law V-D=ps #D -dA = Qf(V)
L Lt (‘Jl.
Gauss's law for magnetism |V -B =0 #B -dA =0
R - c)(I)
Maxwell 'Faraday equation | o o B E.dl = B.,S
(Faraday's law of induction) ot Jas ot
Ampére's circuital law dD gy dPp s
(with Maxwell's correction) | ¥ X H=Jr+ 5 ot |. aSH dl=1Izs+ ot
Formulation in terms of total charge and current!™°® 2}
Name Differential form Integral form iy O [
P Q(V !
Gauss's law V:EB=— ?gf E -dA = ( ) Gy
<0 = vy !
Gauss's law for magnetism VDB } # B -dA =0
! J av
; ﬂ p o ¢

Maxwell-Faraday equation v {i{ E '
(Faraday's law of induction)

jé E.d = _2%8s
as ot

OE dP
V x B = pod + P-ofoa—ff_jSB -dl = pols + poco =
J [#

ot

Ampere's circuital law
(with Maxwell's correction)

The following table provides the meaning of each symbol and the SI unit of measure:

of ¢ Hen di(E7m

t\;‘ /f < V.'t' (Hign
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Definitions and units

Meaning (first term is the most

Syanhol common)

SI Unit of Measure

volt per meter or,
E electric field equivalently,

newton per coulomb

tesla, or equivalently,

magnetic field
weber per square

B also called the magnetic induction

also called the magnetic field density meter,
also called the magnetic flux density vollSec0d. PE sgiiEne
meter
electric displacement field coulombs per square
D also called the electric induction meter or equivalently,
also called the electric flux density newton per volt-meter
magnetizing field
H also called auxiliary magnetic field AMpEre Per meter

also called magnetic field intensity
also called magnetic field

V- the(divefgzgg@operator 5 f Ml y per meter (factor _
« - 5 b | { Cofa /o Cpntrlbuted by applying
X g curl pperator of (T L, either operator)
) per second (factor
— partial derivative with respect to time contributed by applying
ot the operator)
i differential vector element of surface area
dA / cqily A, with infinitesimally small magnitude  square meters

and direction normal to surface S

differential vector element of path length
tangential to the path/curve

s I permittivity of free space, also called the
) o electric constant, a universal constant

Pl permeability of free space, also called the Henries Par 2eter; OF

meters

farads per meter

o , A g magnetic constant, a universal constant BEVWIRIS et Smpors
(- Wis squared
5 free charge density (not including bound coulombs per cubic
! charge) meter
p total charge density (including both free coulombs per cubic
and bound charge) meter
J free current density (not including bound amperes per square
f current) meter
J total current density (including both free amperes per square
and bound current) meter
net free electric charge within the three-
Qs(V) dimensional volume V (not including coulombs

hniimAd ~rharcoo)
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net electric charge within the three-

Q(V) dimensional volume V (including both coulombs
free and bound charge)
line integral of the electric field along the
}{ E-dl boundary aS of a surface S (dS is always a joules per coulomb
as closed curve).

) line integral of the magnetic field over )
ﬁSB i the closed boundary aS of the surface S teap-aiclars
the electric flux (surface integral of the
E -dA electric field) through the (closed) X }
#ﬂ surface JV (the boundary of the volume Joule-mster per coulomb
V)
the magnetic flux (surface integral of the
B .dA magnetic B-field) through the (closed) tesla meters-squared or
Jav surface 9V (the boundary of the volume webers
V)
maghetic flux through any surface S, not webers or equivalently,
/ / B -dA = ®p s necessarily closed volt-seconds
electric flux through any surface S, not  joule-meters per
// E -dA = ®g s necessarily closed coulomb
flux of electric displacement field through /()C{” o (0o gl
coulombs ( J

/ D-dA = ‘I’D,s any surface S, not necessarily closed
Js

; : 5 vs (S vi )
net free electrical current passing b/
// J;-dA = I, through the surface S (not including amperes Ve 7

S bound current)

net electrical current passing through

the surface S (including both free and amperes AR nhy VH d9
bound current) O

S )

[} "’ o 1i
Maxwell's equations are generally apphed to macroscopic averages of the fields, which I
vary wildly on a microscopic scale in the vicinity of individual atoms (where they

undergo quantum mechanical effects as well). It is only in this averaged sense that one
can define quantities such as the permittivity and permeability of a material. At -
microscopic level, Maxwell's equations, ignoring quantum effects, describe fields, “ro¢ (¥~
charges and currents in free space—but at this level of detail one must include all \
charges, even those at an atomic level, generally an intractable problem. o

-'.r.%[
———

History

Although James Clerk Maxwell is said by some not to be the originator of these
equations, he nevertheless derived them independently in conjunction with his
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molecular vortex model of Faraday's "lines of force". In doing so, he made an important

addition to Ampere's circuital law.
————

All four of what are now described as Maxwell's equations can be found in recognizable
form (albeit without any trace of a vector notation, let alone V) in his 1861 paper On
Physical Lines of Force, in his 1865 paper A Dynamical Theory of the Electromagnetic
Field, and also in vol. 2 of Maxwell's "A Treatise on Electricity & Magnetism",
published in 1873, in Chapter IX, entitled "General Equations of the Electromagnetic
Field". This book by Maxwell pre-dates publications by Heaviside, Hertz and others.

The term Maxwell's equations

The term Maxwell's equations originally applied to a set oﬂ@qua’cions published by
Maxwell in 1865, but nowadays applies to modified versions of four of these equations

that were grouped together in 1884 by Oliver Heaviside,[il concurrently with similar

work by Willard Gibbs and Heinrich Hertz.!®! These equatiQns were also known
variously as the Hertz-Heaviside equations and the Maxwell-Hertz equations,[S] and are
sometimes still known as the Maxwell-Heaviside equations.m\"“ ~( &0 (-_\, M fhe C

Maxwell's contribution to science in producing these equations lies in the correction he
made to Ampere's circuital law in his 1861 paper On Physical Lines of Force. He added
the displacement current term to Ampere's circuital law and this enabled him to derive
the electromagnetic wave equation in his later 1865 paper A Dynamical Theory of the
Electromagnetic Field and demonstrate the fact that light is an electromagnetic wave.
This fact was then later confirmed experimentally by Heinrich Hertz in 1887.

The concept of fields was introduced by, among others, Faraday. Albert Einstein wrote:

The precise formulation of the time-space laws was the work of Maxwell. Imagine his

feelings when the differential equations he had formulated proved to him that

electromagnetic fields spread in the form of polarised waves, and at the speed of

light! To few men in the world has such an experience been vouchsafed . . it took

physicists some decades to grasp the full significance of Maxwell's discovery, so bold

was the leap that his genius forced upon the conceptions of his fellow-workers
—(Science, May 24, 1940)

The equations were called by some the Hertz-Heaviside equations, but later Einstein

referred to them as the Maxwell-Hertz equations.[sl However, in 1940 Einstein referred
to the equations as Maxwell's equations in "The Fundamentals of Theoretical Physics"
published in the Washington periodical Science, May 24, 1940.

Heaviside worked to eliminate the potentials (electrostatic potential and vector
potential) that Maxwell had used as the central concepts in his equations;[s] this effort

was somewhat controversial,[s] though it was understood by 1884 that the potentials
must propagate at the speed of light like the fields, unlike the concept of instantaneous
action-at-a-distance like the then conception of gravitational potential.[6] Modern
analysis of, for example, radio antennas, makes full use of Maxwell's vector and scalar
potentials to separate the variables, a common technique used in formulating the
solutions of differential equations. However the potentials can be introduced by
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algebraic manipulation of the four fundamental equations.

The net result of Heaviside's work was the symmetrical duplex set of four equations,[5]
all of which originated in Maxwell's previous publications, in particular Maxwell's 1861
paper On Physical Lines of Force, the 1865 paper A Dynamical Theory of the
Electromagnetic Field and the Treatise. The fourth was a partial time derivative version
of Faraday's law of induction that doesn't include motionally induced EMF; this version
is often termed the Maxwell-Faraday equation or Faraday's law in differential form to
keep clear the distinction from Faraday's law of induction, though it expresses the same
law [91[10]

Maxwell's On Physical Lines of Force (1861)

The four modern day Maxwell's equations appeared throughout Maxwell's 1861 paper
On Physical Lines of Force:

i. Equation (56) in Maxwell's 1861 paperis V- B = 0.

ii. Equation (112) is Ampeére's circuital law with Maxwell's displacement current
added. It is the addition of displacement current that is the most significant aspect
of Maxwell's work in electromagnetism, as it enabled him to later derive the
electromagnetic wave equation in his 1865 paper A Dynamical Theory of the
Electromagnetic Field, and hence show that light is an electromagnetic wave. It is
therefore this aspect of Maxwell's work which gives the equations their full
significance. (Interestingly, Kirchhoff derived the telegrapher's equations in 1857
without using displacement current. But he did use Poisson's equation and the
equation of continuity which are the mathematical ingredients of the displacement
current. Nevertheless, Kirchhoff believed his equations to be applicable only
inside an electric wire and so he is not credited with having discovered that light
is an electromagnetic wave).

ili. Equation (115) is Gauss's law.

iv. Equation (54) is an equation that Oliver Heaviside referred to as 'Faraday's law'.
This equation caters for the time varying aspect of electromagnetic induction, but
not for the motionally induced aspect, whereas Faraday's original flux law caters
for both aspects. Maxwell deals with the motionally dependent aspect of
electromagnetic induction, v X B, at equation (77). Equation (77) which is the
same as equation (D) in the original eight Maxwell's equations listed below,
corresponds to all intents and purposes to the modern day forcelawF =q(E + v
X B ) which sits adjacent to Maxwell's equations and bears the name Lorentz
force, even though Maxwell derived it when Lorentz was still a young boy.

The difference between the B and the H vectors can be traced back to Maxwell's 1855
paper entitled On Faraday's Lines of Force which was read to the Cambridge
Philosophical Society. The paper presented a simplified model of Faraday's work, and
how the two phenomena were related. He reduced all of the current knowledge into a
linked set of differential equations.
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It is later clarified in his concept of a sea of
molecular vortices that appears in his 1861
paper On Physical Lines of Force - 1861
(http://upload.wikimedia.org/wikipedia
/commons
/b/b8/On_Physical Lines of Force.pdf) . Within
that context, H represented pure vorticity
(spin), whereas B was a weighted vorticity that
was weighted for the density of the vortex sea.
Maxwell considered magnetic permeability p to
be a measure of the density of the vortex sea.
Hence the relationship,

(1) Magnetic induction current causes a
magnetic current density

B=uH
Figure of Maxwell's molecular vortex
was essentially a rotational analogy to the model. For a uniform magnetic field,
linear electric current relationship, the field lines point outward from the
display screen, as can be observed
(2) Electric convection current from the black dots in the middle of
the hexagons. The vortex of each
& = v hexagonal molecule rotates counter-
clockwise. The small green circles are
where P is electric charge density. B was seen clockwise rotating particles

sandwiching between the molecular

as a kind of magnetic current of vortices ,
vortices.

aligned in their axial planes, with H being the
circumferential velocity of the vortices. With n
representing vortex density, it follows that the product of p with vorticity H leads to
the magnetic field denoted as B.

The electric current equation can be viewed as a convective current of electric charge
that involves linear motion. By analogy, the magnetic equation is an inductive current
involving spin. There is no linear motion in the inductive current along the direction of
the B vector. The magnetic inductive current represents lines of force. In particular, it
represents lines of inverse square law force.

The extension of the above considerations confirms that where B is to H, and where J
is to p, then it necessarily follows from Gauss's law and from the equation of continuity
of charge that E is to ID. i.e. B parallels with E, whereas H parallels with D).

Maxwell's A Dynamical Theory of the Electromagnetic Field (1864)

Main article: A Dynamical Theory of the Electromagnetic Field

In 1864 Maxwell published A Dynamical Theory of the Electromagnetic Field in
which he showed that light was an electromagnetic phenomenon. Confusion over the
term "Maxwell's equations" is exacerbated because it is also sometimes used for a set of
eight equations that appeared in Part III of Maxwell's 1864 paper A Dynamical Theory
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of the Electromagnetic Field, entitled "General Equations of the Electromagnetic

Field,"!'" a confusion compounded by the writing of six of those eight equations as
three separate equations (one for each of the Cartesian axes), resulting in twenty
equations and twenty unknowns. (As noted above, this terminology is not common:
Modern references to the term "Maxwell's equations" refer to the Heaviside
restatements.)

The eight original Maxwell's equations can be written in modern vector notation as
follows:

(A) The law of total currents

JdD
J ot — J SR
tot + o
(B) The equation of magnetic force
tH=V x A

(C) Ampeére's circuital law
V X H — Jfot

(D) Electromotive force created by convection, induction, and by static electricity.
(This is in effect the Lorentz force)

E=uvxH- %:L — V¢
(E) The electric elasticity equation
E= %D
(F) Ohm's law
E=21]
o
(G) Gauss's law
V-D=p
(H) Equation of continuity
dp
vI=—5
or
V- Jlot =0
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Calculus III

Here are my online notes for my Calculus III course that I teach here at Lamar University.
Despite the fact that these are my “class notes”, they should be accessible to anyone wanting to
learn Calculus III or needing a refresher in some of the topics from the class.

These notes do assume that the reader has a good working knowledge of Calculus I topics
including limits, derivatives and integration. It also assumes that the reader has a good
knowledge of several Calculus II topics including some integration techniques, parametric
equations, vectors, and knowledge of three dimensional space.

Here are a couple of warnings to my students who may be here to get a copy of what happened on
a day that you missed.

1. Because | wanted to make this a fairly complete set of notes for anyone wanting to learn
calculus I have included some material that I do not usually have time to cover in class
and because this changes from semester to semester it is not noted here. You will need to
find one of your fellow class mates to see if there is something in these notes that wasn’t
covered in class.

2. In general I try to work problems in class that are different from my notes. However,
with Calculus 111 many of the problems are difficult to make up on the spur of the
moment and so in this class my class work will follow these notes fairly close as far as
worked problems go. With that being said I will, on occasion, work problems off the top
of my head when I can to provide more examples than just those in my notes. Also, |
often don’t have time in class to work all of the problems in the notes and so you will
find that some sections contain problems that weren’t worked in class due to time
restrictions.

3. Sometimes questions in class will lead down paths that are not covered here. 1try to
anticipate as many of the questions as possible in writing these up, but the reality is that I
can’t anticipate all the questions. Sometimes a very good question gets asked in class
that leads to insights that I've not included here. You should always talk to someone who
was in class on the day you missed and compare these notes to their notes and see what
the differences are.

4. This is somewhat related to the previous three items, but is important enough to merit its
own item. THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!!
Using these notes as a substitute for class is liable to get you in trouble. As already noted
not everything in these notes is covered in class and often material or insights not in these
notes is covered in class.
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Line Integrals

Introduction

In this section we are going to start looking at Calculus with vector fields (which we’ll define in
the first section). In particular we will be looking at a new type of integral, the line integral and
some of the interpretations of the line integral. We will also take a look at one of the more
important theorems involving line integrals, Green’s Theorem.

Here is a listing of the topics covered in this chapter.
Vector Fields — In this section we introduce the concept of a vector field.

Line Integrals — Part I — Here we will start looking at line integrals. In particular we will look
at line integrals with respect to arc length.

Line Integrals — Part II — We will continue looking at line integrals in this section. Here we will
be looking at line integrals with respect to x, y, and/or =.

Line Integrals of Vector Fields — Here we will look at a third type of line integrals, line integrals
of vector fields.

Fundamental Theorem for Line Integrals — In this section we will look at a version of the
fundamental theorem of calculus for line integrals of vector fields.

Conservative Vector Fields — Here we will take a somewhat detailed look at conservative vector
fields and how to find potential functions.

Green’s Theorem — We will give Green’s Theorem in this section as well as an interesting
application of Green’s Theorem.

Curl and Divergence — In this section we will introduce the concepts of the curl and the
divergence of a vector field. We will also give two vector forms of Green’s Theorem.
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Vector Fields

We need to start this chapter off with the definition of a vector field as they will be a major

component of both this chapter and the next. Let’s start off with the formal definition of a vector
field.

Definition

A vector field on two (or three) dimensional space is a function F that assigns to each point
(x,y) (or (x,y,z)) a two (or three dimensional) vector given by F (_;c,y) (or F(x,y, z) ).

That may not make a lot of sense, but most people do know what a vector field is, or at least
they’ve seen a sketch of a vector field. If you’ve seen a current sketch giving the direction and
magnitude of a flow of a fluid or the direction and magnitude of the winds then you’ve seen a
sketch of a vector field.

The standard notation for the function F is,
F(x,y)=P(x,»)i +0(x,») ]

F(x,y,2)=P(x,9,2)i +O(x,y,2) ] + R(x,y,z )!2
depending on whether or not we’re in two or three dimensions. The function 2, Q. R (if it is
present) are sometimes called scalar functions. , e o
MG
Let’s take a quick look at a couple of examples.

Example 1 Sketch each of the following direction fields.
(a) ﬁ(x,y) = —yf' +x} Solution]
(b) F (x,y, z) =2xi -2y - 2xk Solution]
Solution
@) F(x,p)=-yi+x]

Okay, to graph the vector field we need to get some “values” of the function. This means
plugging in some points into the function. Here are a couple of evaluations.

L1l

will plot the vector —31 +T_] Likewise, the third evaluation tells us that at the poin (%,

will plot the vector —%174——;-] :
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We can continue in this fashion plotting vectors for several points and we’ll get the following
sketch of the vector field.

¥

7k

e \
// - ir \
w .

If we want significantly more points plotted then it is usually best to use a computer aided 1

graphing system such as Maple or Mathematica. Here is a sketch with many more vectors
included that was generated with Mathematica.

¥

/////,,,,g__.__‘.\\\\\
//,//‘,__,,_._‘._-..\.\\\\
:////‘,t....‘-.\.\\\\\
////I,_,l_._-.\\\\\\
//',,,,, PR -\\\\\\
R O T T T

R A ST T
< 'lr 4 PRTT Y Y O x
=7 < D PR
t\\\ N 8w e o ¢/ .‘!l
\\\\\\:1:..1//’!'1’
\\\\,\.___.._.-.’/z'//}‘
\\\‘\\.‘__...--’/////
\\\\\_‘_.g_..,/////

[Return to Problems]

(b) f’(x,y,z)=2x?—2y}—2x/€

In the case of three dimensional vector fields it is almost always better to use Maple,

Mathematica, or some other such tool. Despite that let’s go ahead and do a couple of evaluations
anyway.

F(1,-3,2)=2i +6] -2k
F(0,5,3)=-10]

Notice that z only affect the placement of the vector in this case and does not affect the direction

© 2007 Paul Dawkins http://tutorial.math.lamar.edu/terms.aspx
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or the magnitude of the vector. Sometimes this will happen so don’t get excited about it when it
does.

Here is a couple of sketches generated by Mathematica. The sketch on the left is from the “front”
and the sketch on the right is from “above”.

[Return to Problems]

Now that we’ve seen a couple of vector fields let’s notice that we’ve already seen a vector field
function. In the second chapter we looked at the jgradieni{ vector]| Recall that given a function

i (x, ¥, z) the gradient vector is defined by,

Vf =(fis Sy 1)

This is a vector field and is often called a gradient vector field.

In these cases the function /' (x, y,z) is often called a scalar function to differentiate it from the
vector field.

Example 2 Find the gradient vector field of the following functions.
(a) f x,y =x2- sin Sy ' . | ; 35
(x.7) _r(r ) *{dé:‘ :\lgi)/('./ 0t Cgan f)j

®) f(x,y,z)=ze™" Vi

lg‘,‘Jr )('\O.U.J does i (m’.. |4

Solution

(@) f(x,y)=x"sin(5y)

Note that we only gave the gradient vector definition for a three dimensional function, but don’t
forget that there is also a two dimension definition. All that we need to drop off the third
component of the vector.

Here is the gradient vector field for this function.
Vf = (2x sin(5y),5x" cos(Sy))
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® f(x,y,z)=2ze"

There isn’t much to do here other than take the gradient.
Vf = (— yze ¥, —xze ™, c"“')

Let’s do another example that will illustrate the relationship between the gradient vector field of a
function and its contours.

Example 3 Sketch the gradient vector field for [ (x, y) =x* + y* as well as several contours

for this function.
Solution
Recall that the contours for a function are nothing more than curves defined by,

f(xy)=k
for various values of k. So, for our function the contours are defined by the equation,
2 2
x+y' =k

and so they are circles centered at the origin with radius \/E ;

Here is the gradient vector field for this function.
Vf(x,y) =2xi+2yj
Here is a sketch of several of the contours as well as the gradient vector field.
¥

SRNYNNANYEAG S L LSS y ’Jf{F
NNKAANTN N T rprrrs L,

L L \_2,,_:4_;;////. Lg/‘/ !‘@‘{,-' -'6/(
~r WINANA A e A e (y,lig_?‘;.fsiff.ﬁ
N EAAA VLI T p A ke \ - ["F
ba: i o] B R B B [PRRETE. PR e Gh (5 WX, oo = ‘.1*’5‘¢‘-‘.;5f"\«ﬂ L 2N
e AERINE RS

=31 1 L2 —1‘ , . *1 " .»‘2;:‘ ‘3"

R A I Nt RPN

e\ #L NN AN vovw A A M

AN AL TV LA AN

ARG USSR

s 27T LT A UL AN

Notice that the vectors of the vector field are all perpendicular (or orthogonal) to the contours.
This will always be the case when we are déali

gradient vector field.

ith the contouis of a function as well as its

The &’s we used for the graph above were 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, and 13.5. Now notice
that as we increased & by 1.5 the contour curves get closer together and that as the contour curves
get closer together the larger vectors become. In other words, the closer the contour curves are
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(as k is increased by a fixed amount) the faster the function is changing at that point. Also recall
that the direction of fastest change for a function is given by the gradient vector at that point.
Therefore, it should make sense that the two ideas should match up as they do here.

The final topic of this section is that of conservative vector fields. A vector field F s called a
conservative vector field if there exists a function f such that | =V .\If F' is a conservative

vector field then the function, f, is called a potential function for o L\' ( l' w Aivdee a
= e ——— >, L 4 A ¥\

All this definition is saying is that a vector field is conservative if it is also a gradient vector field U A T
for some function.

For instance the vector field F' = yi +X ] is a conservative vector field with a potential function —(onShunhip
of f(x,y)=2xy because Vf =(y,x).

= 3 3 s s 2 2 > ( L (1450
On the other hand, F =—yi + x j is not a conservative vector field since there is no functionf V' V7~

such that F = Vf . If you’re not sure that you believe this at this point be patient, we will be able \*/ What

to prove this in a couple of sections. In that section we will also show how to find the potential "

function for a conservative vector field. [ J

-

<

.
B ) Noadiwd—
(% tben fon( \V (5 1L: AAV(unt ¢ [
7

™

~
=~
-

=
<
©
5
q\-
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Line Integrals - Part I

In this section we are now going to introduce a new kind of integral. However, before we do that
it is important to note that you will need to remember how to parameterize equations, or put
another way, you will need to be able to write down a set of parametric equations for a given
curve. You should have seen some of this in your Calculus II course. If you need some review
you should go back and review some of the basics of parametric equations and curves.

Here are some of the more basic curves that we’ll need to know how to do as well as limits on the ‘\
arameter if they are required. [ T B
p y arereq e how +0o Pofamotrizg |

Curve Parametric Equations
Counter-Clockwise Clockwise
x_2+y_2_1 x=acos(r) x=acos(1)
a b y=bsin(r) y=-bsin(r)
(Ellipse)
0<r<2n 0<t<2n
Counter-Clockwise Clockwise
Xyt =p? x=rcos(t) x=rcos(1)
(Circle) y=rsin (t) L y=-r sin(t)
0<t<2n 0<t<2m
y= }r‘(x) x=t{
y=r(1)
x=g(y) x=g(1)
y=d

F(I)=(1—r)(xo,yo,zo)ﬂ(xl,yl,zl) ,0<1<1
Line Segment From ar
(xuvynazo) to (xla.VIsZ:) x=(1-—t)xo+txl
y=(1-y,+ty, , 0<r<1
z=(1-1)zy+1z
With the final one we gave both the vector form of the equation as well as the parametric form

and if we need the two-dimensional version then we just drop the z components. In fact, we will
be using the two-dimensional version of this in this section.

For the ellipse and the circle we’ve given two parameterizations, one tracing out the curve
clockwise and the other counter-clockwise. As we’ll eventually see the direction that the curve is
traced out can, on occasion, change the answer. Also, both of these “start” on the positive x-axis
at f=0.
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Now let’s move on to line integrals. In Calculus I we integrated f(x) , a function of a single

variable, over an interval [a,b] . In this case we were thinking of x as taking all the values in this
interval starting at @ and ending at 5. With line integrals we will start with integrating the
function f (x, y), a function of two variables, and the values of x and y that we’re going to use

will be the points, (x,y), that lie on a curve C. Note that this is different from the double

integrals that we were working with in the previous chapter where the points came out of some
‘two-dimensi region.
Let’s start with the curve C that the points come from. We will assume that the curve is smooth
(defined shortly) and is given by the parametric equations,

x=h({) y=g(t) a<t<h

We will often want to write the parameterization of the curve as a vector function. In this case
the curve is given by, .

_. - N il o
F(6)=h(1)T +g (1) asr<b il o pretied
Ttewrtte hedls lafor (o
The curve is called smooth if 7 (I) is continuous and F'(t) # 0 for all 1. 1T p o

The line integral of f (x, y) along C is denoted by,
If (x,p)ds
(%)

We use a ds here to acknowledge the fact that we are moving along the curve, C, instead of the x-
axis (denoted by dlx) or the y-axis (denoted by dy). Because of the ns 1s sometimes called the
line integral of /' with respect to arc length.

We’ve seen the notation ds before. If you recall from Calculus 11 when we looked at the arc
length of a curve given by parametric equations we found it to be,

2 2
L= Ibds . where ds = (E) +(2J dt
a dt dt

It is no coincidence that we use ds for both of these problems. The ds is the same for both the arc
length integral and the notation for the line integral.

e ]/\:; b;' FL’:‘/["/'j

v nver 50

So, to compute a line integral we will convert everything over to the parametric equations. The

line integral is then,
: Y (dy)
jf(x,y)ds:J f(h(t),g(t))J(EJ 1{?‘:} it

c a

Don’t forget to plug the parametric equations into the function as well.

If we use the vector form of the parameterization we can simplify the notation up somewhat by
noticing that,
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[ET-ETva "

. . f
where "F’ (z )” is the magnitude or norm of 7' (( ) Using this notat'@ﬁle line integral becomes,

‘ : l A
f) ;,;r)]-t{;‘-.’r} | (04

| "
“,- AA

f )
J 1y
}f {Lis,

ly /
(5 WS

jf(x y ds—_f £ (h().g(0)) |7 (2)| e

Note that as long as the parameterization of the curve C is traced out exactly once as f increases
from a to b the value of the line integral will be independent of the parameterization of the curve.

Let’s take a look at an example of a line integral.

Example 1 Evaluate J.xy'l ds where C is the right half of the circle, x* + y* =16 rotated in the
2
counter clockwise direction.

Solution
We first need a parameterization of the circle. This is given by, ;
x =4cost y =4sint Y
We now need a range of £’s that will give the right half of the circle. The following range of ¢’s

will do this.

/

<i<X
2

SN}

Now, we need the derivatives of ,t\he parametric equations and let’s compute ds.

— =—4sint dy=\4cos!

@y o

ds =/16sin’ 1 +16cos>  df = 4dr ( /
N l‘j/‘ {H

/-‘ \ 1'
The line integral is then,

_|‘xy4 ds = j:;élcosf(flsin t)‘l (4)dt

c Ord - myllPhe

= 4096J._rricost sin'r dt

ff

_ 4096

sin’ t

T

2

8192
5

—

Next we need to talk about line integrals over piecewise smooth curves. A piecewise smooth
curve is any curve that can be written as the union of a finite number of smooth curves, C, C

| ERRER) n
—
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where the end point of C; is the starting point of C,,,. Below is an illustration of a piecewise
smooth curve.

o

Evaluation of line integrals over piecewise smooth curves is a relatively simple thing to do. All
we do is evaluate the line integral over each of the pieces and then add them up. The line integral
for some function over the above piecewise curve would be,

If(:c,y)ds= ij(x,y)ds+jf(x,y)ds+If(x,y)ds+If(x,y)ds

Let’s see an example of this.

Example 2 Evaluate I4x3 ds where C is the curve shown below.
A

¥

-

1 Ciix=1

! | ! -
"'2 _1 ’jl 2
/'l 3
C,oy=x"—1
& ypei=] ( 27
P SR — —

Solution
So, first we need to parameterize each of the curves.
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C : x=t, y=-1, -2<t<0
C,3 =t p=r'-1, 0=l
C,: x=1 y=t, 0<r<2

Now let’s do the line integral over each of these curves.

[axtds=[" ar (1) +(0) dr=[" 4 ar=r' =-16
G } - -
[ 4x* as =Il4r’,/(l)2 +(3) ar
(1 0
=.[Ol4r‘~./1+9:‘ d
L2 g0y
—9(3](1+9r ) |
[axtds=[ 41y (0) +(1) de = 4dr =8
c

Finally, the line integral that we were asked to compute is,

J4x3ds= I4x3ds+_[4x3ds+.f4x3ds
C G G c,

2 2
= —[102 — IJ =2.268
27

=-16+2.268+8
=-5.732

Notice that we put direction arrows on the curve in the above example. The direction of motion
along a curve may change the value of the line integral as we will see in the next section. Also

note that the curve can be thought of a curve that takes us from the point (—2,—1) to the point

(1, 2) . Let’s first see what happens to the line integral if we change the path between these two
points.

Example 3 Evaluate I4x3 ds were C is the line segment from (—2,—1) to (1,2).
c

Solution
From the parameterization formulas at the start of this section we know that the line segment start

at (-—2,—1) and ending at (1,2) is given by,
F(r)=(1-1)(=2,-1)+1(1,2)
=(-2+31,—1+31)

for 0 <7 <1. This means that the individual parametric equations are,
x=-2+3t y=-1+3t
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Using this path the line integral is,

j4x ds—j 4(-2+3t)' o+ 9 dr
=12\/§(ﬁ)(—2+3r)w;
=12\/§(—§J

=-152 =-21.213

When doing these integrals don’t forget simple Cglc_lilp_stitutions to avoid having to do things
like cubing out a term. Cubing it out is not that difficult, but 1t is more work than a simple
substitution. hove M ropbmdr  Tha .

So, the previous two examples seem to suggest that if we change the path between two points
then the value of the line integral (with respect to arc length) will change. While this will happen
fairly regularly we can’t assume that it will always happen. In a later section we will investigate
this idea in more detail

Next, let’s see what happens if we change the direction of a path.

Example 4 Evaluate I4x3 ds were C is the line segment from (1,2) to (—2, —1).

Solution
This one isn’t much different, work wise, from the previous example. Here is the

parameterization of the curve.
F(r)=(1-1)(1,2) +1(-2,-1) ® oy
=(1-31,2-3t) "

for 0 <t <1. Remember that we are switch the direction of the curve and this will also change
the parameterization so we can make sure that we start/end at the proper point.

Here is the line integral.

[axids=[ 4(1-31) Jo+9ar
=122(~% (1—31)4;

5

=12\/§[—2)

= =153 = 21213

So, it looks like when we switch the direction of the curve the line integral (with respect to arc
length) will not change. This will always be true for these kinds of line integrals. However, there
are other kinds of line integrals in which this won’t be the case. We will see more examples of
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this in the next couple of sections so don’t get it into your head that changing the direction will
never change the value of the line integral.

Before working another example let’s formalize this idea up somewhat. Let’s suppose that the
curve C has the parameterization x =/h(f), y =g(t). Let’s also suppose that the initial point

on the curve is 4 and the final point on the curve is B. The parameterization x=/h (1), y = g(t)

will then determine an orientation for the curve where the positive direction is the direction that
is traced out as ¢ increa%ef?ﬁ‘fﬁl' y, let —C be the curve with the same points as C, however in
this case the curve has B as the initial point and 4 as the final point, again ¢ is increasing as we
traverse this curve. In other words, given a curve C, the curve —C is the same curve as C except
the direction has been reversed.

We then have the following fact about line integrals with respect to arc length.

) /)
AL

Fact

E.:f(x,y)ds= If(x,iz}ds

Seh vt

f

So, for a line integral with respect to arc length we can change the direction of the curve and not
change the value of the integral. This is a useful fact to;remember as some line integrals will be

easier in one direction than the other. ] ,

e

Now, let’s work another example

Example 5 Evaluate I xds for each of the following curves.
c

(@ C:y= x*, =1<x<1 [Solution
(b) C,: The line segment from (—l,l) to (1,1). [Solution]
(¢) C,: The line segment from (1,1) to (—1,1). [Solution]

Solution
Before working any of these line integrals let’s notice that all of these curves are paths that

connect the points (—1,1) and (1, 1) . Also notice that C; =—C, and so by the fact above these
two should give the same answer.

Here is a sketch of the three curves and note that the curves illustrating C, and C, have been

separated a little to show that they are separate curves in some way even thought they are the
same line.
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(a) C,:yzxz, -1<x<1

Here is a parameterization for this curve.
Cix=t, y=£#, =15t <1

Here is the line integral.

=0

[xds=[" 1+ar a =%(1+412)

3
2
G I,

1
[Return to Problems]

(b) C,: The line segment from (-1,1) to (1,1).

There are two parameterizations that we could use here for this curve. The first is to use the
formula we used in the previous couple of examples. That parameterization is,

C, 7 (1) =(1-1)(-1,1)+£(1,1)
=(2r-1,1)
for 0<r<1.

Sometimes we have no choice but to use this parameterization. However, in this case there is a
second (probably) easier parameterization. The second one uses the fact that we are really just
graphing a portion of the line y =1. Using this the parameterization is,

C,ix=t,y=1, -1<¢<1

This will be a much easier parameterization to use so we will use this. Here is the line integral

for this curve.

1
=0

Jds =[N0 =2

&)

Note that this time, unlike the line integral we worked with in Examples 2, 3, and 4 we got the
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L7

same value for the integral despite the-fact that the path is different. This will happen on
occasion. We should also not expect this'integral to be the same for all paths between these two
points. At this point all we know is that for these two paths the line integral will have the same
value. It is completely possible that there is another path between these two points that will give
a different value for the line integral. \ [ 0N L0s04, 1 : /0

£ogld

[Return to Problems]

(c) C,: The line segment from (1,1) to (—l,l) .

Now, according to our fact above we really don’t need to do anything here since we know that
C, =—=C,. The fact tells us that this line integral should be the same as the second part (i.e.

zero). However, let’s verify that, plus there is a point we need to make here about the
parameterization.

Here is the parameterization for this curve.
Cy 7 (1) =(1=1){L,1)+1(-11)
=(1-21,1)
for 0<r<1.
Note that this time we can’t use the second parameterization that we used in part (b) since we

need to move from right to left as the parameter increases and the second parameterization used
in the previous part will move in the opposite direction.

Here is the line integral for this curve.

[xds=[ (1-20)Va+0dr=2(r-1*)

G

=0

1
0

Sure enough we got the same answer as the second part.
[Return to Problems]

To this point in this section we’ve only looked at line integrals over a two-dimensional curve.
However, there is no reason to restrict ourselves like that. We can do line integrals over three-
dimensional curves as well.

Let’s suppose that the three-dimensional curve C is given by the parameterization,
x=x(r), y=y(1) z=2(t) a<t<h
then the line integral is given by,

!f(x,y,z)ds= :f(x(t),y(I),z(r)) (ET{QJZ[ET -

dt dr dt

Note that often when dealing with three-dimensional space the parameterization will be given as a

vector function.
F) = (x(0).3(1).2(0)
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Notice that we changed up the notation for the parameterization a little. Since we rarely use the
function names we simply kept the x, y, and z and added on the (I) part to denote that they may
be functions of the parameter.

Also notice that, as with two-dimensional curves, we have,

5] o

and the line integral can again be written as,

lf(x,y,Z)dS=I:f(x('),y(f),2(f)) [ ()] e

So, outside of the addition of a third parametric equation line integrals in three-dimensional space
work the same as those in two-dimensional space. Let’s work a quick example.

Example 6 Evaluate Ixyz ds where C is the helix given by, F(r) = (cos(l),sin (t),3r) :
C
0<t1<4rm.

Solution e
Note that we first saw the vector equation for h—el@back in the Vector Functions section. Here
is a quick sketch of the helix.

{/ o

\\‘-\-\_

Here is the line integral.
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jxyz ds = _[:n 3t c:os(l)sin(z‘)\,/sin2 t+cos’ 1 +9dt

=J4x BI(-;—sin(Z)JMdr

0

1 BM drx
2

\ tsin(2t)dt

_3\/5( 4
2

sin(2) —écos(2t))
=-3\107

You were able to do that integral right? It required integration by parts.

0

So, as we can see there really isn’t too much difference/between two- and three-dimensional line
integrals.

!

’ﬂ|./ (f‘yd.’[]') {de l/‘{u‘

] \ <« ) \ A »' "\
I DDy
N EAR o L AE! D
I v ﬁ'; \B.'j)v' |
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Line Integrals - Part II

In the previous section we looked at line integrals with respect to arc Iength In this section we
want to look at line integrals with respect to x and/or y.
—_——

vhy =P an ax
As with the last section we will start with a two-dimensional curve C with parametenzatlon
x=x(t) =y (1) a<t<bh

The line integral of f with respect to x is,

(J:f(x,y)dx= J‘:f(x(t),y(t))x'(t)dl

The line integral of f with respect to y is,

J 1)@= [2((0)r ()5 (e) e

Note that the only notational difference between these two and the line integral with respect to arc
length (from the previous section) is the differential. These have a dx or dy while the line integral
with respect to arc Iength has a ds. So when ¢ cvaluatmg line integrals be careful to first note
which differential you’ve got so you don’t work the wrong kind of line integral.

These two integral often appear together and so we have the following shorthand notation for
these cases.

dex+Qa’y=jP(x,y)dx+IQ(x,y)dy

Let’s take a quick look at an example of this kind of line integral.

Example 1 Evaluate jsin (my)dy+ yx* dx where C is the line segment from (0,2) to (1, 4) :
&

Solution
Here is the parameterization of the curve.

F(£)=(1-1)(0,2)+1(1,4) = (1,2 +21) 0<r<1

The line integral is,
Isin(ny)dy+yx3 dx = Isin(ny)dy +j.yx2 dx
C C c
= [ sin (7 (2+20))(2)de+ [ (2+20) (¢)’ (1)
1 1
+(313 +lt4)
g '3

1
= —— 2n+2nt
JTrcos( m+2mt)

0

L
6

© 2007 Paul Dawkins 20 http://tutorial.math.lamar.edu/terms.aspx



Calculus I11

In the previous section we saw that changing the direction of the curve for a line integral with
respect to arc length doesn’t change the value of the integral. Let’s see what happens with line
integrals with respect to x and/or y.

Example 2 Evaluate _[sin(rr y)dy+ yx* dx where C is the line segment from (1,4) to (0,2).
C

Solution
So, we simply changed the direction of the curve. Here is the new parameterization.

F(1)=(1-1)(1,4)+1(0,2)=(1-1,4-21)  0<r<I

The line integral in this case is,

Ism my)dy+yx® dr—J‘sm (my)dy +jy1 dx

C

J;sm (4 2!) d1+I (4- 2;)(]_,)( 1)t

1 |
=-1-cos(47t —27t) —(—ll" +3p s +4t]
1T T3

T

0

So, switching the direction of the curve got us a different value or at least the opposite sign of the
value from the first example. In fact this will always happen with these kinds of line integrals.

Fact

If C is any curve then,
[ £(oy)dc==[f(x.p)dx and [ f(xy)dy=-[f(xy)dy
e C -C (5

With the-combined form of these two integrals we get,
[ Pdx+Qdy =~ Pdx+Qdy
C

We can also do these integrals over three-dimensional curves as well. In this case we will pick up
a third integral (with respect to z) and the three integrals will be.

[ (5:2)ds = [ (0,20 2 O)x (e
[/ (ona)dy= [ 1(x(0,0(0),2(0)) v (1)
if(x,y,z)dz =I:f(x(f),y(t),z(t))z’(t)df

where the curve C is parameterized by

x=x(t) y=y(1) z=2z(1) a<t<b
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Line Integrals of Vector Fields Wea oy cor C !Mf-"}r
In the previous two sections we looked at line integrals of functions. In this section we are going _—
to evaluate line integrals of vector fields. We’ll start with the @xie@ /] S
F(x,y,z)=P(x,y,z)f+Q(x,y,z)j+R(x,y,z)k ’ ; =y
and the three-dimensional, smooth curve given by WL [ Ul ) O
F(t)=x(6)T +y(t)j+z(t)k as<t<b 210y pt

The line integral of F along C is

IF@' = [ R ()7 (1) a

Note the notation in the left side. That really is a dot product of the vector field and the
differential and the differential really is a vector. Also, F' (F (I)) is a shorthand for,
e —

F(F(6)=F(x(1).x(0)2()

We can also write line integrals of vector fields as a line integral with respect to arc length as
follows,

If we use our knowledge on how to compute line integrals with respect to arc length we can see
that this second form is equivalent to the first form given above.

jF-dF =ji«*-fds
) )

-| 7 n FoT ok
—_[ F (7 (6))e" () dt

In general we use the first form to compute these line integral as it is usually much easier to use.
Let’s take a look at a couple of examples.
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As with the two-dimensional version these three will often occur together so the shorthand we’ll
be using here is,

[Pdx+Qdy+Rdz = [ P(x,y,2)dx+ [0 (x,y.2) dy+ [ R(x,,2) dz
C (¢ (65 G

Let’s work an example.

Example 3 Evaluate jydx +xdy+zdz where C is given by x =cost, y=sint, z=1>,
{34
0<t<L2m.
Solution
So, we already have the curve parameterized so there really isn’t much to do other than evaluate
the integral.

Iydx+xdy+zdz = _[ydx+jxdy+szz
C {24 [y (o
= J;H sint(—sint)dt + LG cost(cost)dr + J':" 1*(2t)dr
= —I:n sin® ¢ dr + J'OZJr cos’ tdt + J.Uh 20 di
= _%Jf" (1 - cos(2!)) dt +%I;x (1 +cos(21))d1 + J-:" 207 di

2n
= [—%[I —%si11(2t)}+%(! +%sin(21)) +%I4J

=8’

0
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Example 1 Evaluate I FedF where ﬁ(x, o z) =8x’yzi+5zj—4xy k and C is the curve
C

given by F(I)=ff+t2;t:+t3k, 0<tr<l.

Solution
Okay, we first need the vector field evaluated along the curve.

F(7(1))=82()(F)i+50 j—4e(r Ve =80T +50 j—ar'k

Next we need the derivative of the parameterization.
F(1)=i+2tj+37 k
Finally, let’s get the dot product taken care of.

F(7 (1))7 (1) =80 +10¢ —12¢° L]U) (})mm lecl)

The line integral is then, not Ly
5 1 ’ ol
[FedF = 87 +10' =126 —
C

1
0

(£ +2r'-2°)
1

Il

Example 2 Evaluate J-F'-d F where F(x,y, z) =xzi—-yz k and C is the line segment from
C

(~1,2,0) and (3,0,1).

Solution

We'll first need the parameterization of the line segment. We saw how to get the
parameterization of line segments in the first section on line integrals. We’ve been using the two
dimensional version of this over the last couple of sections. Here is the parameterization for the
line.

F(r)=(1-1)(-1,2,0)+7(3,0,1)
=(4r-1,2-21,1), 0<r<1

So, let’s get the vector field evaluated along the curve.
F(F(1))=(4-1)(0)i -(2-20) (1) k

= (47 —1)i —(20-21* )k

Now we need the derivative of the parameterization.

F'(l)=<45_2,1> \f‘f"’)‘-l‘ | ity .

The dot product is then,
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F(F (1)) (1) =4(41 —1) (2 - 20 ) =18 ~ 61

The line integral becomes,

812 —61dt

Il

| Fed

C

5 1
(6r3 —3r-)l0
3

Il

Let’s close this section out by doing one of these in general to get a nice relationship between line
integrals of vector fields and line integrals with respect to x, y, and z.

Given the vector field ﬁ'(x, y,z) = P?+Q}+Ri€ and the curve C parameterized by
F(t)=x(f)?+y(r)]+z(l)g, a <t <b the line integral is,
[Frar=[(Pi+Qf+ REMxT+y]+2F)dr
C
=ja” Px'+Qy' + R di
b b b
=L Px'd:+ja Qy’dt-z—_[a RZ' dt
= [Pdx+[Qdy+[Raz
¢ (4 C

= [Pdv+Qdy+Rdz
e

So, we see that,

jﬁ- =[Pax+Qdy+Rdz

C G

Note that this gives us another method for evaluating line integrals of vector fields.

This also allows us to say the following about reversing the direction of the path with line
integrals of vector fields.

Fact

jﬁ-d?‘=—jﬁ‘-d?
-C c

This should make some sense given that we know that this is true for line integrals with respect to
x, y, and/or z and that line integrals of vector fields can be defined in terms of line integrals with
respect to x, y, and z.
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Fundamental Theorem for Line Integrals

In Calculus I we had the Fundamental Theorem of Calculus that told us how to evaluate definite
integrals. This told us, Was  poyor &)‘_(, i o 1

["F'(x)dy=F(b)-F(a)

It turns out that there is a version of this for line integrals over certain kinds of vector fields. Here
it is.

Theorem

Suppose that C is a smooth curve given by 7 (1), a<t <b. Also suppose that f'is a function

whose gradient vector, \Vf \ is continuous on C. Then,
i S

v ar={r () =rinla)

Note that 7 (a) represents the initial point on C while 7 (b) represents the final point on C.

Also, we did not specify the number of variables for the function since it is really immaterial to
the theorem. The theorem will hold regardless of the number of variables in the function.

1. P (i i
| \ . | Vidat f 1
\ " i ¥, Yk ~ 1)
O‘-r ¥, A W | FDEEY

Proof W

This is a fairly straight forward proof.

For the purposes of the proof we’ll assume that we’re working in three dimensions, but it can be
done in any dimension.

Let’s start by just computing the line integral.

[vrdr=] Op (7 () (1) d

b :
|2, By G
Ox dt Oydt 0z dt

a

Now, at this point we can use the Chain Rule to simplify the integrand as follows,

b
J'Vf.d;: e [_‘aifli+9f_ﬁ+gﬁ)d,
2 oxdt Oydt 0z dt

=[ b%[ 7(7(0))]a

To finish this off we just need to use the Fundamental Theorem of Calculus for single integrals.

_([Vf-dF = /(7 (b))~ f (7 (a))
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Let’s take a quick look at an example of using this theorem.

Example 1 Evaluate _[Vf- dF where f(x,y,z)=cos(nx)+sin(7y)—xyz and C is any
C
path that starts at (1,%,2) and ends at (2,1,—1).

Solution

First let’s notice that we didn’t specify the path for getting from the first point to the second point.
The reason for this is simple. The theorem above tells us that all we need are the initial and final
points on the curve in order to evaluate this kind of line integral.

So, let 7*(t), a<t <b beany path that starts at (1,%,2) and ends at (2,1,—1). Then,

(a)= <1,%,2> F(b)=(2,1,-1)
The integral is then,

7 A L
lVf-dr—f(2,1, 1) f[],z,zj

=cos(27r)+sin7r—2(])(—1)—((:05%+sin(%}—1(%}(2)}
=4

Notice that we also didn’t need the gradient vector to actually do this line integral. However, for
the practice of finding gradient vectors here it is,

Vf = (-—-ﬂf sin(7x)—yz,7 cos(my)— xz,—xy)

The most important idea to get from this example is not how to do the integral as that’s pretty
simple, all we do is plug the final point and initial point into the function and subtract the two
results. The important id‘m—imw(mrd’ hience about the Fundanental Theorem-of
Calculus) is that, for these kinds of line integrals, we didn’t really need to know the path to get
the answer. In other words, we could use any path we want and we’ll always get the same results.

In the first section on line integrals (even though we weren’t looking at vector fields) we saw that
often when we change the path we will change the value of the line integral. We now have a type
of line integral for which we know that changing the path will NOT change the value of the line
integral.

Let’s formalize this idea up a little. Here are some definitions. The first one we’ve already seen
before, but it’s been a while and it’s important in this section so we’ll give it again. The

remaining definitions are new.

Definitions

First suppose that F’ is a continuous vector field in some domain D.

1. F isa conservative vector field if there is a function Fsuch that F = Vf . The function

fis called a potential function for the vector field. We first saw this definition in the
first section of this chapter.
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25 IF-dF is independent of path if '[F"-df = I F«dF¥ for any two paths C, and C, in
C (e Gy ‘ :
D with the same initial and final points. 1[ or (¢ Aiup 0 K

3. A path C is called closed if its initial and final points are the same point. For example a
circle is a closed path.

4. A path C is simple if it doesn’t cross itself. A circle is a simple curve while a figure 8
type curve is not simple.

5. Arregion D is open if it doesn’t contain any of its boundary points.

6. A region D is connected if we can connect any two points in the region with a path that
lies completely in D.

7. Aregion D is simply-connected if it is connected and it contains no holes. We won’t
need this one until the next section, but it fits in with all the other definitions given here

so this was a natural place to put the definition. /

Wy ™

Facts, — (05 ragual (leld —

With these definitions we can now give some nice facts. ——/

v
1% I@- d ¥ is independent of path.
2

This is easy enough to prove since all we need to do is look at the theorem above. The
theorem tells us that in order to evaluate this integral all we need are the initial and final
points of the curve. This in turn tells us that the line integral must be independent of path.

If F is a conservative vector field then I FedF is independent of path.
(..

This fact is also easy enough to prove. If F is conservative then it has a potential function, £,
and so the line integral becomes IF- dr = _[Vf-d ¥ . Then using the first fact we know that
G (21 ;

this line integral must be independent of path.

If F is a continuous vector field on an open connected region D and if_[ FedF is
C

independent of path (for any path in D) then F is a conservative vector field on D.

4, If Jﬁ-dr_" is independent of path then J'F-d r =0 for every closed path C.
C o
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SHEIE IF «dF =0 for every closed path C then Iﬁ' «d 7 is independent of path.
c C

These are some nice facts to remember as we work with line integrals over vector fields. Also
notice that 2 & 3 and 4 & 5 are converses of each other.

© 2007 Paul Dawkins 29 http://tutorial.math.lamar.edu/terms.aspx




Calculus III

Conservative Vector Fields

In the previous section we saw that if we knew that the vector field F' was conservative then

_[F «d ¥ was independent of path. This in turn means that we can easily evaluate this line
c ol

o~
§

integral provided we can find a potential function for F. () A e, ] { TR *

In this section we want to look at two questions. First, given a vector field F is there any way of

determining if it is a conservative vector field? Secondly, if we know that F' is a conservative
vector field how do we go about finding a potential function for the vector field?

The first question is easy to answer at this point if we have a two-dimensional vector field. For
higher dimensional vector fields we’ll need to wait until the final section in this chapter to answer
this question. With that being said let’s see how we do it for two-dimensional vector fields.

Theorem

Let F=Pi+ O] be a vector field on an open and simply-connected region D. Then if P and Q
have continuous first order partial derivatives in D and

P _ 00

gy iox

the vector field &' is conservative.

_‘\a—-__\_ ‘ ‘_ l‘ 7 :’, . ] y .,
Let’s take a look at a couple of examples. ik

Example 1 Determine if the following vector fields are conservative or not.
(a) ﬁ'(x,y) = (x2 — yx)? +(y2 —xy)f [Solution]
(b) F (x.)= (erxy + xzye*”)zT + (x3e“" + 2y)} Solution]
Solution

Okay, there really isn’t too much to these. All we do is identify P and Q then take a couple of
derivatives and compare the results.

(a) F(:c,y):(x2 —yx)z?+(y2 —xy)j

In this case here is P and Q and the appropriate partial derivatives.

P=x>—yx {8P=—x
o
o) .‘
O=y"-xy (7 |

So, since the two partial derivatives are not the same this“vector-ﬁel‘d"is NOT conservative.
[Return to Problems]
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(b) F(x,y)= (2xe"" +x*ye? )? + (xae"j' + Zy)j

Here is P and Q as well as the appropriate derivatives.

oP

P =2xe” +x’ye? — =2x¢? + x’¢? + X’ye? =3x%” + x’ye?
y
' o0 ; ;
O=x%"+2y —a“ =3x%e™ +x’ye?
X

The two partial derivatives are equal and so this is a conservative vector field.

[Return to Problems] |

Now that we know how to identify if a two-dimensional vector field is conservative we need to
address how to find a potential function for the vector field. This is actually a fairly simple
process. First, let’s assume that the vector field is conservative and so we know that a potential

function, f (x, y) exists. We can then say that,

A \ ; o
B = il m B oo 1 &,{u(n I{ I~ )190“‘
—=Vf=—i+—j=Pi+Qj=F » 1\ U
== ox Oy J J}) | Y 4 ‘f/ﬂ, jj
Or by setting components equal we have, ij{'L
1___ and i: 0
ox &y

By integrating each of these with respect to the appropriate variable we can arrive at the
following two equations.

f(x,y)=J'P(x,y)dx - or f(x,y)=J.Q(x,y)dy

We saw this kind of integral briefly at the end of the section on iterated integrals in the previous
chapter.

It is usually best to see how we use these two facts to find a potential function in an example or
two.

j

{/\/ ( Vg \;') o t niG e .e Oy 15 ! !’;‘: wili6f
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Example 2 Determine if the following vector fields are conservative and find a potential
function for the vector field if it is conservative.

(a) F = (2x3y'1 +x)?+(2x"y3 +y)j [Solution]

(b) F(x,y)= (2xe""' + xzye'r-")zT + (x’e"" + Zy)} [Solution]
Solution
(a) F :(2x3y4 +x)f+(2x“y3 +y);f

Let’s first identify P and O and then check that the vector field is conservative..

P=2xy"+x %=8x3y3
oy
o0
0=2x'y*+ %L gy
& i P Xy

So, the vector field is conservative. Now let’s find the potential function. From the first fact
above we know that,

of 3,4 of 43
—=2x"y" +x —=2x"y +
Py Yy 5 Yoy
From these we can see that
f(x,y)=_[2x3y4+xdx or f(x,y)=j2x4y3+ydy

We can use either of these to get the process started. Recall that we are going to have to be
careful with the “constant of integration” which ever integral we choose to use. For this example
let’s work with the first integral and so that means that we are asking what function did we
differentiate with respect to x to get the integrand. This means that the “constant of integration”
is going to have to be a function of y since any function consisting only of y and/or constants will
differentiate to zero when taking the partial derivative with respect to x.

Here is the first integral.

f(x,)2)=12x3y“ +xdx

1 4_4 1 2

=sx Y +ox +h(y)

2 2 . e VL
E—OL h (f-':,.-pf;‘;e, | hing

I i B
A\np » PO A
yill ¥ u \:(,‘ i\ { 7

{
We now need to determine h( y) . This is easier that it might at first appear to be. To get to thi

where A(y) is the “constant of integration”.

point we’ve used the fact that we knew P, but we will also need to use the fact that we know Q to
complete the problem. Recall that Q is really the derivative of f with respect to y. So, if we
differentiate our function with respect to y we know what it should be.

So, let’s differentiate / (including the h(y) ) with respect to y and set it equal to Q since that is
what the derivative is supposed to be.
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%:2x4)13+h'(y):2x“y3 +y=0

From this we can see that,
W(y)=y
Notice that since /' (y) is a function only of y so if there are any x’s in the equation at this point

we will know that we’ve made a mistake. At this point finding h(y) is simple.
" 1
h(y)z_[h (v)dy =jydy=5y2 +c

So, putting this all together we can see that a potential function for the vector field is,

L s 1, 1,
X, P)==xy'+=x*+—y*+c¢c
f(x,y) SEY ST

Note that we can always check our work by verifying that Vf = F . Also note that because the ¢

can be anything there are an infinite number of possible potential functions, although they will
only vary by an additive constant.
[Return to Problems]

(b) F(x,y) = (2xc":" +xtye? )?' +(xlex-“ + 2y)j

Okay, this one will go a lot faster since we don’t need to go through as much explanation. We’ve
already verified that this vector field is conservative in the first set of examples so we won’t
bother redoing that.

Let’s start with the following,

0 k| 2 o
—£=2xe"} +x"ye? —?i:x”e” +2y
This means that we can do either of the following integrals,
Fizy)= Ier-‘y +xye® dx or f(xy)= J'x-’c-*}’ +2pdy

While we can do either of these the first integral would be somewhat unpleasant as we would
need to do integration by parts on each portion. On the other hand the second integral is fairly
simple since the second term only involves y’s and the first term can be done with the substitution
u=xy. So, from the second integral we get,

f(x,y)=x%" +y* +h(x)

Notice that this time the “constant of integration™ will be a function of x. If we differentiate this
with respect to x and set equal to P we get,

of

Y =2xe” +x”ye” + 1 (x)=2xe” + x“ye™ = P

So, in this case it looks like,
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K (x)=0 = h(x)=c

So, in this case the “constant of integration” really was a constant. Sometimes this will happen
and sometimes it won’t.

Here is the potential function for this vector field.
f(x,y)=x"+y*+c
[Return to Problems]

Now, as noted above we don’t have a way (yet) of determining if a three-dimensional vector field
is conservative or not. However, if we are given that a three-dimensional vector field is
conservative finding a potential function is similar to the above process, although the work will
be a little more involved.

In this case we will use the fact that,

Vf =

gf+1f+1§:P7+Qf+RI€=F
& & O

Let’s take a quick look at an example.

Example 3 Find a potential function for the vector field,
F=2xy’z"T +3x%y%2" j+4x*y*2 k

Solution

Okay, we’ll start off with the following equalities.
g =2xy'z" g =Jxtyty i =4x*y’z’
ox ay 0z

To get started we can integrate the first one with respect to x, the second one with respect to y, or
the third one with respect to z. Let’s integrate the first one with respect to x.

f(x,y,z) = J.nyg'z4 de=x*y'z" + g(y,z)

Note that this time the “constant of integration™ will be a function of both y and z since
differentiating anything of that form with respect to x will differentiate to zero.

Now, we can differentiate this with respect to y and set it equal to Q. Doing this gives,

a 2 2

L4 3x*y'z' +g,(y,2)=3x*y’z" =0
y
Of course we’ll need to take the partial derivative of the constant of integration since it is a
function of two variables. It looks like we’ve now got the following,

8,(».2)=0 = g(r:2)=h(z)

Since differentiating g ( ¥, z) with respect to y gives zero then g ( y,z) could at most be a

function of z. This means that we now know the potential function must be in the following form.
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f(x,3,2)= x}yzt + h(z)
To finish this out all we need to do is differentiate with respect to z and set the result equal to R.

6—{34x2y323+h‘(2)=4x2y323 :R

So
h'(z)=0 = /7(2)=c

The potential function for this vector field is then,
f(xy,2)= x*y'zt+e

Note that to keep the work to a minimum we used a fairly simple potential function for this
example. It might have been possible to guess what the potential function was based simply on
the vector field. However, we should be careful to remember that this usually won’t be the case
and often this process is required.

Also, there were several other paths that we could have taken to find the potential function. Each
would have gotten us the same result. ( ' ( /6
= MU A1 (G
AL 7L

Let’s work one more slightly (and only slightly) more complicated example.

| L =

Wi 15 T (Calida

Example 4 Find a potential function for the vector field, oL 11l (
F:(2'\-008(}’)_2‘23);"'(34'2)/5:—xzsil’l(y))j+(yzc:—6xzz)]; i YI¥r Vo

Solution

Here are the equalities for this vector field.
of 3 of & L Hs of g 2
— =2Xxcos -2z —=3+2ye” —x"sin —=y‘e  —6xz"
ox (v)-22 oy . () 5 2

For this example let’s integrate the third one with respect to z.

fleme)= Iyze: —6xz’dz=y’e” —2xz" + g(x,y)
The “constant of integration™ for this integration will be a function of both x and y.

Now, we can differentiate this with respect to x and set it equal to P. Doing this gives,

Z_f=—223 +g_r(x,y) =2xcos(y)—223 =P
X

So, it looks like we’ve now got the following,
g, (x,¥)=2xcos(y) =% g(x,y)=x"cos(y)+h(y)

The potential function for this problem is then,
f(x.p.2)= Vet — 252" 4 7 cos(y)+ h(y)
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To finish this out all we need to do is differentiate with respect to y and set the result equal to Q.

-@:-:Zye:—xlsin(y)+h'(y):3+2yc‘_—szin(y)=Q

oy
So,

H(y)=3 = h(y)=3y+c

The potential function for this vector field is then,
f(x,y,2)= yle® —2xz° +x° cos(y)+3y+c

So, a little more complicated than the others and there are again many different paths that we
could have taken to get the answer.

We need to work one final example in this section.

Example 5 Evaluate Iﬁ-df" where F = (2):3’_)/‘I +x)f.+(2x4y3 +y)} and C is given by
.

F(t)=(lcos(nt)~l)?+sin[%’]f, 0<i<l.

Solution
Now, we could use the techniques we discussed when we first looked at line integrals of vector
fields however that would be particularly unpleasant solution.

Instead, let’s take advantage of the fact that we know from Example 2a above this vector field is
conservative and that a potential function for the vector field is,

f(x.y) =%x4y4 4—%:&2 +%y2 +e

Using this we know that integral must be independent of path and so all we need to do is use the
theorem from the previous section to do the evaluation.

lﬁ-df- = E{Vf-d?- = f(7(1))- 7 (7(0))
where,

F)=(21)  F(0)=(-L0)

So, the integral is,
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Green’s Theorem

In this section we are going to investigate the relationship between certain kinds of line integrals
(on closed paths) and double integrals.

Let’s start off with a simple (recall that this means that it doesn’t cross itself) closed curve C and
let D be the region enclosed by the curve. Here is a sketch of such a curve and region.

S

First, notice that because the curve is simple and closed there are(no holes)in the region D. Also
notice that a direction has been put on the curve. We will use the convention here that the curve
C has a positive orientation if it is traced out in a_counter-clockwise direction. Another way to

think of a positive orientation (that will cover mucl?ﬁﬁr’é@éﬁeral curves as well see later) is-tha
as we traverse the path following the positive orientation the region D must always be on th =W

Given curves/regions such as this we have the following theorem.

Green’s Theorem

Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region
enclosed by the curve. If P and O have continuous first order partial derivatives on D then,

[ Pax+Qdy =H(%}Q"Z)_P]d'4

Before working some examples there are some alternate notations that we need to acknowledge.
When working with a line integral in which the path satisfies the condition of Green’s Theorem
we will often denote the line integral as,

¢ Pekx +Qdy or s Pdx + Ody
C C

Both of these notations do assume that C satisfies the conditions of Green’s Theorem so be
careful in using them.

Also, sometimes the curve C is not thought of as a separate curve but instead as the boundary of
some region D and in these cases you may see C denoted as 0D .

Let’s work a couple of examples.
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Example 1 Use Green’s Theorem to evaluate éxy dx+x*y* dy where C is the triangle with
s
vertices (0,0), (1,0), (1,2) with positive orientation.

Selution
Let’s first sketch C and D for this case to make sure that the conditions of Green’s Theorem are
met for C and will need the sketch of D to evaluate the double integral.

¥y
2 -
A
y=2x
1+
I A
0 | S 1 - 1 x
0. 0.2 0.4 0.6 0.8 1.

So, the curve does satisfy the conditions of Green’s Theorem and we can see that the following
inequalities will define the region enclosed.

Lxx1] 0<y<2x

We can identify P and O from the line integral. Here they are.
P=xy Q=x"y’

So, using Green’s Theorem the line integral becomes,
(ﬁxydx+x2y dy =”2xy3 —xdA
; ) D

€ - N
((’/{ }fj? p ’{r v C A ] 7 _ J‘ I J~02x 2xy3 —x dy dx
- ) 0

i |
H\. g
Ll T I Ly ~—)

4 [ ¥ - 1

s
( t"':" | 0 2)" 14

= I; 8x® —2x% dx

2x

dx

0

| i
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Example 2 Evaluate (J{) ¥ dx—x* dy where C is the positively oriented circle of radius 2
c
centered at the origin.

Solution
Okay, a circle will satisfy the conditions of Green’s Theorem since it is closed and simple and so
there really isn’t a reason to sketch it.

Let’s first identify P and Q from the line integral.
P= y3 = -x

Be careful with the minus sign on Q!

Now, using Green’s theorem on the line integral gives,
qSya dx-x'dy = ”—3.\:2 —3y*dA
c D

where D is a disk of radius 2 centered at the origin.

Since D is a disk it seems like the best way to do this integral is to use polar coordinates. Here is
the evaluation of the integral.

Cﬁy dx—x dy—-—B_U 243 )dA

=_3f" _[U;ide f} of (wof ds

= —3J lr4
. 4

=-3("4d0
0

do

=-24r

So, Green'’s theorem, as stated, will not work on regions that have holes in them. However, many
regions do have holes in them. So, let’s see how we can deal with those kinds of regions.

Let’s start with the following region. Even though this region doesn’t have any holes in it the

arguments that we’re going to go through will be similar to those that we’d need for regions with
holes in them, except it will be a little easier to deal with and write down.
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G

The region D will be D, U D, and recall that the symbol U is called the union and means that

TTTTe—

we’ll D consists of both D; and D,. The boundary of D, is C, U C, while the boundary of D, is
C.\g (-—-C3) and notice that both of these boundaries are positively oriented. As we traverse

each boundary the corresponding region is always on the left. Finally, also note that we can think
of the whole boundary, C, as,

C=(C,uG)u(Cu(-G))=C uC,

since both C; and —C; will “cancel” each other out.

Now, let’s start with the following double integral and use a basic property of double integrals to
break it up.

[o.-p)at= [[ (.-7)at=[[(e.-p)ans[[(o.~B)aa " 5,

Db, D,

Next, use Green’s theorem on each of these and again use the fact that we can break up line
integrals into separate line integrals for each portion of the boundary.

IJ(0.-£)aa=[[(0.~F)da+[[(0.~P,)as

D, D,
= § Pdx+Qdy+ § Pdx+Qdy
GGy Cu-Gy)
= Pax+Qdy +  Pdx + Qdy + § Pdx + Qdy +  Pdx+Qdy
¢ (i o -G
Next, we’ll use the fact that,
§ Pex+Qdy =~§ Pdx+Qdy

Gy ¢,

Recall that changing the orientation of a curve with line integrals with respect to x and/or y will
simply change the sign on the integral. Using this fact we get,
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[[(0.-P,)as =gSde+Qdy+<j>de+Qdy+<ﬁde+Qdy—<ﬁmx—+Qdy
G 27

=X
D G Gy

= Pdx +Qdy+ Pdsx + Ody
o (3

2

Finally, put the line integrals back together and we get,

[[(0.-P,)dd = Pdx +Qdy +§ Pdx + Qdy
D q c,

= ¢ Pdx+Qdy

G,

= Pdx -+ Qdy
C

So, what did we learn from this? If you think about it this was just a lot of work and all we got
out of it was the result from Green’s Theorem which we already knew to be true. What this
exercise has shown us is that if we break a region up as we did above then the portion of the line
integral on the pieces of the curve that are in the middle of the region (each of which are in the
opposite direction) will cancel out. This idea will help us in dealing with regions that have holes
in them.

To see this let’s look at a ring.

Notice that both of the curves are oriented positively since the region D is on the left side as we
traverse the curve in the indicated direction. Note as well that the curve C; seems to violate the
original definition of positive orientation. We originally said that a curve had a positive
orientation if it was traversed in a counter-clockwise direction. However, this was only for
regions that do not have holes. For the boundary of the hole this definition won’t work and we
need to resort to the second definition that we gave above.
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Now, since this region has a hole in it we will apparently not be able to use Green’s Theorem on
any line integral with the curve C = C, U C,. However, if we cut the disk in half and rename all
the various portions of the curves we get the following sketch.

Yigw  nOLES

The boundary of the upper portion (D;)of the disk is C, w C, U, U, and the boundary on the
lower portion (D;)of the disk is C; W C, U (_Cs ) (—C;,). Also notice that we can use Green’s

Theorem on each of these new regions since they don’t have any holes in them. This means that
we can do the following,

[[(0.-p)aa=[[(0.-P,)da+[f(0, - B, )

D, D,

= ¢ Pdv+Qdy+ ¢ Pdx +Qdy

CIUCHNC G, CyUC(=Cs ) (-C)

Now, we can break up the line integrals into line integrals on each piece of the boundary. Also
recall from the work above that boundaries that have the same curve, but opposite direction will
cancel. Doing this gives,

J[(@.-)aa=[[(0.~)ad+[(0.~ P, )

D D,

= Pdx+ Qdy + Pdx + Ody +§ Pdx + Qdy + § Pdx + Odly
C C, G >

Gy

But at this point we can add the line integrals back up as follows,
[[(o.-p)da= ¢  Pdx+Qdy
D

CuC,uG iy

= Pax +Qdy
T4
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The end result of all of this is that we could have just used Green’s Theorem on the disk from the
start even though there is a hole in it. This will be true in general for regions that have holes in
them.

Let’s take a look at an example.

Example 3 Evaluate (ﬁ y* dx—x* dy where C are the two circles of radius 2 and radius 1
2
centered at the origin with positive orientation.

Solution

Notice that this is the same line integral as we looked at in the second example and only the curve
has changed. In this case the region D will now be the region between these two circles and that
will only change the limits in the double integral so we’ll not put in some of the details here.

Here is the work for this integral.

(f)y3 dx—x* dy =—3H(x2 +y2)dA
24

D
2_3f [ *13 dr dO
i

n
=—3J lr"
s 4

We will close out this section with an interesting application of Green’s Theorem. Recall that we
can determine the area of a region D with the following double integral.

A:J;jdA

Let’s think of this double integral as the result of using Green’s Theorem. In other words, let’s
assume that

0,-P, =1

and see if we can get some functions P and Q that will satisfy this.

There are many functions that will satisfy this. Here are some of the more common functions.

s
P=l | P==p " T 9
O=x| 0=0 inzc_

Then, if we use Green’s Theorem in reverse we see that the area of the region D can also be
computed by evaluating any of the following line integrals.
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A =@xdy=—<i)ydx=%(£xdy—ydx

G

where C is the boundary of the region D.

Let’s take a quick look at an example of this.

Example 4 Use Green’s Theorem to find the area of a disk of radius a.

Solution
We can use either of the integrals above, but the third one is probably the easiest. So,
1
A= —(ﬁ xdy—ydx
25
where C is the circle of radius a. So, to do this we’ll need a parameterization of C. This is,
X =acos! y=asint 0<t<2n

The area is then,

A=-1— xdy-ydx
24

:%(J':ﬂacost(a cosr)dt—qunasint(—asinl)dl)

l 2n J
=—j a’ cos’ t+a’ sin’ t dt
240

] 2r 2
=EJ.° a“dt
= 7TC12
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Curl and Divergence

In this section we are going to introduce a couple of new concepts, the curl and the divergence of
\-____________,.-—'*
a vector.

Let’s start with the curl. Given the vector field ¥ =Pi +Q j+R k the curl is defined to be,

curl =(R, -0, )7 +(P.—R,)j+(Q,-P, )k

There is another (potentially) easier definition of the curl of a vector field. We use it we will first
need to define the V operator. This is defined to be,

200
0z

‘?+_

de | Vi o
ox

We use this as if it’s a function in the following manner.

o - o - o >

Ox oy 0z
So, whatever function is listed after the V is substituted into the partial derivatives. Note as well
that when we look at it in this light we simply get the gradient vector.

Using the V we can define the curl as the following cross product,

’y 6}10!’% (V E

O Q| ~u
= E,JIQJ =

We have a couple of nice facts that use the curl of a vector field.

Facts

] LT (x, ¥, z) has continuous second order partial derivatives then curl(Vf ) =0. This is

easy enough to check by plugging into the definition of the derivative so we’ll leave it to you
to check.

2. If F is a conservative vector field then curl ' =0. This is a direct result of what it means
to be a conservative vector field and the previous fact.

3. If F is defined on all of R® whose components have continuous first order partial derivative

and curl =0 then F' is a conservative vector field. This is not so easy to verify and so we
won'’t try.

\‘vl o Cix
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Example I Determine if F =x*yi +xyz j —x*y*k is a conservative vector field.

Solution
So all that we need to do is compute the curl and see if we get the zero vector or not.
i J  k
0 0 3,
culF=|— — —
ox oy 0z
2

X’y xyz —x'y’

=2x%yi +yzk —(—2xy2 f)—Ajﬂf—xZE
=—(2x2y+xy)f+2xy2 f+())z—x2)E

=0

So, the curl isn’t the zero vector and so this vector field is not conservative.

Next we should talk about a physical interpretation of the curl. Suppose that F is the velocity
field of a flowing fluid. Then curl F represents the tendency of particles at the point (x, Ps z) to

rotate about the axis that points in the direction of curl F . If curl F =0 then the fluid is called
irrotational. - ( |

WOy - Qf Clar &y 970
Let’s now talk about the second new concept in this section. Given the vector field
F=Pi+0 J+ Rk the divergence is defined to be,

divﬁza—P+a—Q+% ‘mJ /

oy Oz

There is also a definition of the divergence in terms of the V operator. The divergence can be
defined in terms of the following dot product.

divF =V.F

Example 2 Compute divF for F =x*yi +xyz j—x*y*k

Solution
There really isn’t much to do here other than compute the divergence.

divF = %(xzy)-k%(xyz)-k—aa—z(—xzyz) =2xy+xz

We also have the following fact about the relationship between the curl and the divergence.

div(curlﬁ) =0
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Example 3 Verify the above fact for the vector field F= vyl i +xyJ + yzl; .

Solution
Let’s first compute the curl.
¥ 7k
curl F = g2 5
ox oy o0z
yz2 xy  yz

=z?+2yzf+y£—zziz

=zf+2yzf+(y—zz)k
Now compute the divergence of this.

div(curlﬁ)=ai(z)+i(2yz)+ai(y—zz):22—22 =0

X oy 4

We also have a physical interpretation of the divergence. If we again think of F as the velocity
field of a flowing fluid then div F represents the net rate of change of the mass of the fluid
flowing from the point (x, ¥, z) per unit volume. This can also be thought of as the tendency of

a uid to diverge from a point. If div F = 0 then the F* s called incompressible. /171 €1
dive B (//i {

The next topic that we want to briefly mention is the Laplace operator. Let’s first take a look at, Zaal i
div(V/)=VeVf = £+ [, + [, Ll
The Laplace operator is then defined as,
V?=V.V
The Laplace operator arises naturally in many fields including heat transfer and fluid flow.

The final topic in this section is to give two vector forms of Green’s Theorem. The first form
uses the curl of the vector field and is,

c(}?ﬁ-d 7= jnj (curl F)+k da

where £ is the standard unit vector in the positive z direction.

The second form uses the divergence. In this case we also need the outward unit normal to the
curve C. Ifthe curve is parameterized by

F(1)=x()i+y(2)Jj

then the outward unit normal is given by,
7= Y (I) 1-“_ x(l‘)
"ol

O 7l

Here is a sketch illustrating the outward unit normal for some curve C at various points.

J

© 2007 Paul Dawkins 47 http://tutorial.math.lamar.edu/terms.aspx



Calculus II1

BTl
]
BTl

B

ol

=5l

i

The vector form of Green’s Theorem that uses the divergence is given by,

gl')ﬁ'-ﬁds:ﬂdivﬁd,q
G D
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A set of on-line readii

Non-Math ML version introduction

The 1dea of divergence and
curl

Vector fields

We can think of a vector-valued function F : R* = R’ as
representing fluid flow in two dimensions, so that F(x,y)
gives the velocity of a fluid at the point (x,y). In this case,
we may call F(x,y) the velocity field of the fluid. More
generally, we refer to a function like F(x,y) as a
two-dimensional vector field. Y ou can read more about
how we can visualize the fluid flow by plotting the
velocity F(x,y) as vector positioned at the point (x,y).

We can do the same thing for a three-dimensional fluid
flow with velocity represented by a function F : R'— R’
In this case, F(x,y,z) is the velocity of the fluid at the point
(x,y,2), and we can visualize it as the vector F(x,y,z)
positioned a the point (x,y,z). We refer to F(x,y,z) as a
three-dimensional vector field.

Divergence

The divergence of a vector field is relatively easy to
understand intuitively. Imagine that the vector field F
below gives the velocity of some fluid flow. It appears
that the fluid is exploding outward from the origin.

— —
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The divergence is defined for both two-dimensional vector fields F(x,y) and three-dimensional vector fields
F(x,y,z). A three-dimensional vector field F showing expansion of fluid flow is shown in the below CVT.
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Now, imagine that one placed a sphere § centered at the origin. It is clear that the fluid is flowing out of the
sphere.

& {0 added Erom
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Later, when we introduce the divergence theorem, we will show that the divergence of a vector field and the

flow out of spheres are closely related. For now, it’s enough to see that if a fluid is expanding (i.e., the flow has
positive divergence ewarywhere;| inside the sphere), the net flow out of a sphere will be positive.
\

Since the above vector field has positive divergence everywhere, the flow out of the sphere will be positive even

if we move the sphere away from the origin. Can you see why flow out is still positive even when you move the
sphere around using the sliders?
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(Notice that the arrows continue to get longer as one moves away from the origin. Moreover, since the arrows
are radiating outward, the fluid is always entering the sphere over less than half its surface and is exiting the

sphere over greater than half its surface. Hence, the flow out of the sphere is always greater than the flow into
the sphere.)

———

One last observation about the divergence: the divergence is @lar At a given point, the divergence of a vector
field is just a single number that represents how much the flow is expanding at that point.

Care to read about some subtleties about the divergence or an example of calculating the divergence?

nirt @ > "j:_a‘f- d .f‘) Or (Vi }, /e j — O

The curl of a vector field is slightly more complicated than the divergence. It captures the idea of how a fluid

The curl

may rotate. Imagine that the below vector field F represents fluid flow. It appears that fluid is circulating around

a bit. From the figure’s original perspective (i.e., before you rotate the graph with your mouse), the fluid appears

to circulate in a counter clockwise fashion. (If you rotate the graph, you might see dots floating along the axis of
rotation. These dots are representations of vectors of zero length, as the velocity is zero there.)
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This macroscopic circulation of fluid around circles (i.e., the rotation you can easily view in the above graph)
isn’t exactly what curl measures. But, it turns out that this vector field also has curl, which we might think of as
“microscopic circulation.” To test for curl, imagine that you immerse a small sphere into the fluid flow, and you
ﬁmhew at some point so that the sphere cannot follow the fluid around. A{Lhough you fix the
center of the sphere, you allow the sphere t@ any direction around its center point. T e rotation of such a
sphere is illustrated below. To see the rotation of the sphere, you must hold your mouse cursor over the figure.
(If you double-click, the animation will stop; double-click again to restart the animation.) The\rotation of the
sphere measures the curl of the vector field F at the point in the center of the sphere. (The sphere should actually

be really really small, because, remember, the curl is microscopic circulation.)
LT

o - CPal,
Vohat & st < oo ot 9
i
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The vector field F determines both in what direction the sphere rotates, and the speed at which it rotates. We
define the curl of F, denoted curl F, by a vector that points along the axis of the rotation and whose length

corresponds to the speed of the rotation. As thecurl is a vector, it is very different from the divergence, which is
1 speen e N
a scalar.

We can draw the vector corresponding to curl F as follows. As mentioned above, the length of the vector curl F
is determined by how fast the sphere is rotating. The direction of curl F points along the axis of rotation, but we
need to specify in whimi axis the vector should point. We will (arbitrarily?) set the direction
of the curl vector by using m@n_d_g@as follows. To see where curl F should point, curl the fingers of
your right hand in the direction the sphere is rotating; your thumb will point in the direction of curl F. For our
example, curl F is shown by the green arrow. (You can rotate the graph to see the green arrow better.)

1 V\'&’p‘ 1 Mo /| W dnl *” (s !
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;0

For this particular vector field, it turns out that curl F doesn’t change with Eositjon (this, of course, is not true in
general). For example, if we move the sphere to another location, it will still spin in the same direction with the
same speed. Can you see why the sphere spins the same way when the sphere is in the location shown below?
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(Notice that the arrows continue to get longer as one moves away from the axis around which the fluid is
rotating. For this reason, the fluid flow pushes the sphere more strongly on the side away from this axis,
causing the sphere to spin in the same direction and speed as before. The general rotation of the flow also
contributes to the sphere’s spinning, as it causes the fluid to push against the sphere for a greater distance on the
side away from the fluid’s axis of rotation.)

You can read more about how one can determine the components of the vector curl F. You can also see an

example of calculating the divergence and curl of a vector field. As usual, pictures can be deceiving; so if you
want to make sure you really understand curl, check out some subtleties about the curl.
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A set of on-line readii

Non-Math ML version introduction topics by lecture complete list

Divergence and curl Canishiz by Wpic
1. Geometry in higher

example dimensions

For F : R’ = R’, the formulas for the divergence and curl 2. Differential Calculus

are 3. Integral calculus

. % 5 a{F._, a ﬂ"i 4. Vector calculus

dr Oy 0z 4a. Vector field basics
I =(6)F3 _ BF._,. aF; B E)Fg. adF, B i)]-‘,} & Vestor ficlds
Ay 9z 0Oz dr Ox Ay e The idea of divergence and

(The formula for curl was somewhat motivated in an curl

earlier reading.) e The components of the curl
e More details on the

Given these formulas, there isn’t a whole lot to components of the curl

computing the divergence and curl. Just “plug and chug,” e Divergence and curl notation

as they say. e Divergence and curl example
e Subtleties about divergence

Example e Subtleties about curl

4b. Parametrized curves

4c. Parametrized surfaces
Solution: Since 4d. Path integrals and line integrals
4e. Surface integrals

Calculate the divergence and curl of F = (-y,xy,2).

BFI =0 BF‘E =y OFy =1
or Ay Oz 5. The fundamental theorems
we calculate that of vector calculus

diviF)=0+x+1=x+ 1.

6. Review material
Since

OF\ _ | OF,
E)y Ar

= )?'
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OF) _0F, _0F; _9Fs _
dz Oz dr ay Open MathML version of reading. You
can read more about the beta MathM L

we calculate that . -
VErsion Of [hlS site.

curl(F) = (0-0,0-0,y+ 1)= (0, 0,y + 1).

© Copyright 2004-2009 Duane Q.

Good things we can do this with math. If you can figure out the divergencﬁéﬁ%l'ﬁ&ﬁ??ﬁé‘fjmﬁ?@ 8F the vector
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field (below), you doing better than I can.
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Disclaimer. Design by
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generated from LaTeX using TeX4ht,
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Non-Math ML version introduction topics

Divergence and curl notation

For F: R* = R’, the formulas for the divergence and curl
are

EH’TI+%+0F:’s

dr Oy Oz
(&)1"3 aFs oF, aFy; 9F, é)]-“l>
curl F =

divF =

dy 0z ' Oz dr = Ox Ay

These formulas are easy to memorize using a tool called
the “del” operator, denoted by V. Think of V as a “fake”
vector composed of all the partial derivatives that we use
just to help us remember the formulas:

v=( 9 9 0
dr dy Oz

Although it may not seem to make sense to just have the
partial derivatives without them acting on a function, we
won’t worry about that. This is just notation.

Now, let’s take the dot product of the V vector with F =
(F l,FZ,FB):

g ad o
& =l — . '(F'F.,'F)
i (81‘ dy é):) e
d

=9F+9F+9F
or ' Ay’ o9z’
If we think of each “multiplication” in the dot product as
instead being the derivative of the corresponding F, then
we have the formula for the divergence. So, if you can
remember the del operator V and how to take a dot

http://www.math.umn.edu/ ~nykamp/m2374/reading...

by lecture complete list

Contents by topic
1. Geometry in higher
dimensions

2. Differential Calculus

3. Integral calculus

4. Vector calculus
4a. Vector field basics

e Vector fields
e The idea of divergence and

curl

e The components of the curl
e More details on the

components of the curl
Divergence and curl notation
Divergence and curl example
Subtleties about divergence
Subtleties about curl

4b. Parametrized curves

4c. Parametrized surfaces

4d. Path integrals and line integrals
4e. Surface integrals

5. The fundamental theorems
of vector calculus

6. Review material
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product, you can easily remember the formula for the divergence

divF=Y-F= ()Fl 4942 C)F’ 0F3 Open MathML version of reading. You
éh' ("}y iz can read more about the beta MathML

version of this site.

This notation is also helpful because you will always know that V- F is a sgaka, (singe g Sou5ss.yewknow that

the dot product is a scalar product). Nvkamp. I welcome comments or
suggestions viac-mail. This work is

The curl, on the other hand, is a vector. We know one product that gives a bwmﬂ mécéy_,xﬁwm%d yes, it
turns out that curl F is equal to Vx F. To see this, let’s take the cross prod ! ¢ plyloDerivs

3 0 LlLLI'IﬁL Though not required, I'm
always interested in hearing from

Ux F = C_) i i e (F F ]") people who want to use this work. [ ask
dr C)y dz that you obtain permission before
i 3 k making a derivative work as this

1 B ) o material is typically undergoing

E 8y 8= revision.

Fy F. 3
5 Dncl‘umu? Design by
= I(——}" _ _}“ ) (_}*3 = _] eThirtvThredDesign. XHTML
Or dz C) L cenenucﬂ}ﬂom TeX using TeX4ht.

oF; c)h . [ OF, 01 aF; oF, aF,
- : 2 )4 = V. lgHTML ~
( oy oz ) ( 9:  ox ( e Wa Y
This is exactly the formula we gave above. So if you can use the rule that “multiplication” by 1s the same as

taking the partial derivative with respect to x (and similar for the other derivatives), then you can remember the
curl formula by

curl F=VxF.
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More details about the Contents by topic
components of the curl LA L

dimensions
Once you’ve learned about line integrals, you may be able 2. Differential Calculus
make sense of the following description about the origin 3. Integral calculus
of the formula for the curl.
4. Vector calculus

In the previous reading, we denoted the components of A Vedtor field basies
the curl by

e Vector fields

e The idea of divergence and
curl

® The components of the curl

® More details on the
components of the curl

e Divergence and curl notation

e Divergence and curl example
e Subtleties about divergence

e Subtleties about curl

curl F =v = vji + vyj + v3k.

We visualized the component of the curl in the X direction
as the rotation of a ball on a rod parallel to the x-axis.

4b. Parametrized curves

4c. Parametrized surfaces

4d. Path integrals and line integrals
4e. Surface integrals

5. The fundamental theorems
of vector calculus

6. Review material
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The component of the curl in the X direction is vi = v i = curl F - i. We could derive an expression for this
component of the curl just like we derived an expression for the “microscopic circulation” used in Green’s

theorem. To see this, rotate the above animation so that the X-axis is coming straight out of the screen and the yz
-plane is parallel to the screen. You can see that the rotation of the sphere is affected only by the components of
F that are parallel to the yz-plane (and perpendicular to the x-axis), i.e., F' and F'3. We have reduced the
situation to a two-dimensional case of rotation parallel to the yz-plane. We simply need to find the “microscopic
circulation” of (Fy, F3).

To estimate this “microscopic circulation,” we can construct a curve C (shown in red below) centered at the
sphere’s location, and parallel to the yz-plane. The circulation of F around C is just the line integral [-F -d s.
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The “microscopic circulation” or “circulation per unit area,” is just the circulation around C, divided by the the
area of the region inside C, in the limit where C shrinks down to a point (drag the red point on the slider to the

left). If we repeat the calculation used for Green's theorem, we could conclude that this microscopic circulation
is

oF3; oF
vi=curl Fri=———,
y oz

One can perform similar calculations to determine the formulas for the other components of the curl, as given in
the previous reading.
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Subtleties about divergence Contents by topic

1. Geometry in higher
Picture of divergence as expansion dimensions
2. Differential Calculus

We have shown in a previous reading about the

divergence that the divergence measures expansion or 3. Integral calculus
compression of a vector field. We ended that section with 4. Vector calculus

the example where we immersed a sphere into a vector

field that had positive divergence everyone. No matter 4a. Vector field basics

where one moves the sphere (with the sliders), more fluid . V—‘JCLQU%

flows out of the sphere than into the sphere, indicating the © The idea of divergence and
curl

fluid is expanding.
e The components of the curl

e More details on the

components of the curl
e Divergence and curl notation

e Divergence and curl example
e Subtleties about divergence
e Subtleties about curl

4b, Parametrized curves

4c. Parametrized surfaces

4d. Path integrals and line integrals
de. Surface integrals

5. The fundamental theorems
of vector calculus

6. Review material
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The vector field pictured was

F(x, y,2) =(x, y, 2). (1)

Its divergence is

d d d
divF(x, y,z) = —x+—y+—2z=1+1+1=3,
x ay 0z

which is a positive constant independent of the point (x, y, 2). The picture of the vector field looks like fluid
exploding outward, so it makes sense that the fluid is expanding.

Can a picture be misleading?

As one becomes more sophisticated in mathematical thinking, one discovers that pictures can sometimes be
misleading. (One reason mathematicians demand mathematical proof is to ensure they aren’t fooling themselves
into jumping to conclusions based on incomplete information, such as the information gained solely by
exploring pictures.) With regard to divergence, one might wonder if an outward flow, such as pictured above,
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always means that the divergence of the vector field is positive?

Here’s a picture of a different vector field showing fluid flowing outward from the origin. However, it differs
from the above vector field in that the arrows get shorter the further they are from the origin. Is the divergence of
this vector field positive? In other words, is the fluid expanding as it may look like from the picture?

To answer this question, we have to compute the divergence. This vector field is

(x: ¥ 2)

FX, ¥, 2) = (2)

(x? +y? + 22)%?

for (x, y, ) # (0, 0, 0). (Itis not defined at the origin.) This new vector field is the same as the vector field
in equation (1) except that we have divided it by its magnitude raised to the third power. (We could write this

vector field as F(x) = ﬁg, where X = (X, y, Z).) In this way, the vector field gets smaller as one moves
X

away from the origin.

We calculate the divergence of F:
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X d y d Z
3/2 iz T

d
divF(x, y,2z) =—

X (x? + y? + 2?) Y (x? + y? +2%) 9z (x2 + y2 + 22)*?

(x2 +y2 +22) - 3x2 (x2 +y2 +22) - By2 (x2 +y2 +22) = 3z*

5/2 512 5/2
) ) %)

(x? + y? + 22 (x2 + y? + 22 x2+y%+2z
3(x2 + y2 + 22) - 3()(2 + y2 + z?‘)
= =)
(x2 + y2 +22)%2

Hence, as long as we are not at the origin, the divergence is zero and the flow is neither expanding nor
contracting.

How can we reconcile this with the picture? If the sphere is at the origin, clearly the flow is out of the sphere.
But the divergence is not defined at the origin, so we have to ignore that point. If you move the sphere away
from the origin, it is not clear if there is more fluid flowing into the sphere or more fluid flowing out. On one
hand, the flow out of the sphere is slower than the flow into the sphere, as the arrows are getting shorter. On the
other hand, because the flow is radiating outward, the fluid is flowing out of the sphere across more than half of
its surface. For this particular vector field, I balanced those two effects (by carefully choosing how quickly the
vector field shrinks as one moves away from the origin) so that the net flow into the sphere is exactly equal to
the net flow out of the sphere. Hence, if we stay away from the origin, the fluid is neither expanding nor
compressing and the divergence is zero.

Dependence on dimension

Here’s one more subtlety just for fun. To make the divergence zero in the above example, I balanced the
outward flow of the vector field by shrinking the vector field as one moves away from the origin. Hence, the
flow out of the sphere was equal to the flow into the sphere and there was no expansion or compression.

What happens if I take the two-dimensional version of the vector field from equation (2)? The 2D vector field is

(x, y)

372’

F(x’ y) - MESR S il
(x% +y?)

for (x, y) # (0, 0). (Itis not defined at the origin.) This vector field is shown below along with a circle that
you can move by dragging its top red point with your mouse. Move the circle so that it is away from the origin.
In this case, is the divergence positive, negative, or zero?
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We calculate the divergence of F:

_ d X 0 \Y
divF(x,y) =— =
ax (x2 + yz)

3y (x2 + y2)¥?

(x2 + y?‘) - 3x° (x2 + yz) - 3y2

5/2 5/2

(x2 + y?) (x2 + y?)

2(x2+y2)—3(x2+y2) i

<
5/2 0

3/2

(X2 + y?) C (x%+y2)

In this case, away from the origin, the divergence is negative. The fluid is compressing even though it is flowing
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outward.

Why did the dimension make a difference? One can see the difference from the calculations, but what is the
difference in the geometric picture? As in the three-dimensional case, the fluid flows into the circle faster than it
flows out of the circle, as the arrows are getting shorter. And, as in the three-dimensional case, because the flow
is radiating outward, the fluid is flowing out of the circle over more than half the boundary of the circle. But,
because we are only in two dimensions, the effect from the boundary is smaller. I chose the vector field to
balance the two effects and make the divergence zero in three dimensions. But, this makes the divergence of the
two-dimensional analogue be negative.

You can check that the divergence of the vector field

(x, y)
B YY) = ——
x2 + y?

is zero but that the divergence of the three-dimensional analogue

(x, y, 2)

B .28 —w—7F—
x? + y? + 22
is positive. In general, for a number p, the divergence of the vector field

X

I || P

is div F(x) = (3 — p)/ || x || P in three dimensions and is div F(x) = (2 = p)/ | x || P in two
dimensions. So you need p = 3 to have zero divergence in three dimensions and p = 2 to have zero
divergence in two dimensions.
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The integrals

To help you organize the integral calculus portion of the course, I’'m outlining the integrals
you’ve learned, methods you can use to solve them, and their relationship to the fundamental
theorems.

Path integral of scalar-valued function

The path integral over path C of a scalar-valued function f(x) is written as

I Cde
If, for example, f were the density of a wire, the integral would be the mass.

The only way we’ve encountered to evaluate this integral is the direct method. We must
parametrize C by some function c(t), for a <t <b. Then,

J cfds = [ "fe(t)]lc'(t)|dt

Note that ds became ||c'(t)||dt. This measures how c(t) stretches or shrinks the interval [a,b] as it
maps it onto C.

Line integral of a vector field

The line integral over path C of a vector field F(x) is written as

I CF - ds
If, for example, F were a force acting on a particle moving along C, then the integral would be
the total work performed by the force on the particle.

This integral is one of the most important for this course. We have four alternatives to evaluate
the integral, although most of the alternatives work only in special cases.

1. We can compute the integral directly. We parametrize C by some function c(t), fora <t <
b. Then

[ cF - ds = PF(c(t)) - c'(t)dt

2. This method always applies. Sometimes, though, the integral will be difficult or we won’t
even be able to evaluate it. Our lives can be made easier by using one of the fundamental
theorems to convert the line integral into something else.

3. Since this integral is really a path integral of the scalar-valued function f=F - T where T
is the unit tangent vector




<'{t)
=i,

4. the formula for the direct method is the same as the formula for the scalar-valued path
integral.

5. If the vector field F happens to be path-independent, then we could use the gradient
theorem for line integrals. We reduce the problem from an integral over the curve C to
something just depending on the “boundary” of C, i.e., its endpoints. We need to find a
potential function f so that Vf=F. Then,

[ cF - ds=1f(q) - f(p),

o

where p and q are the endpoints of C.

7. Note, if C also happens to be a closed curve, then the integral of F will be zero. Note also,
that if you know F is path-independent, another thing you can do is just change the curve
C to another curve that has the same endpoints as C. In this case, the line integral of F
over C is the same as the line integral of F over any other curve with the same endpoints.

8. If the vector field F and the curve C happen to be in two dimensions and if C happens to

be a closed curve, then we can use Green’s theorem. Green’s theorem converts the line

integral over C to a double integral over the interior of C, which we call D,

/ [ OF, f:-.-}.F‘._)
JcF-ds=. / DK dr Oy J4a.

9. Note that F must be defined everywhere in D for this to work. Sometimes we write C =
dD to denote that C is the boundary of D. C must be oriented in a counterclockwise
fashion, otherwise, we’ll be off by a minus sign.

10. If the vector field F and the curve C happen to be in three dimensions and if C happens to
be a closed curve, then we can use Stokes’ theorem. Stokes’ theorem converts the line
integral over C to a surface integral over any surface S for which C is a boundary,

ICF-ds=V/jscurlF-dS

11. Sometimes we write C = @S to denote that C is the boundary of S. C must be a positively
(consistently) oriented boundary of S, otherwise, we’ll be off by a minus sign.

Surface integral of a scalar-valued function

The surface integral over surface S of a scalar-valued function f(x) is written as

/) e



If, for example, f were the density of a sheet, the integral would be the mass.

The only way we’ve encountered to evalute this integral is the direct method. We must
parametrize S by some function ®(u,v), for (u,v) £D. Then,

el el : a
[j f : —f ) X —{e. -'.'.-'.)gL
sfdS = Df((D(u v)) tidudv
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Note that dS became i} ©
region D as it maps it onto S.

e Ludv This measures how ®(u,v) stretches or shrinks the

Surface integral of a vector field

The surface integral over surface S of a vector field F(x) is written as

He.s

If, for example, F were the flow of fluid, then the integral would be the flux of the fluid through
S. For this reason, we often refer to the integral as a “flux integral.”

Like the lin¢ integral of a vector ficld, this integral plays a big role in this course. We have three
alternatives to evaluate the integral, although most of the alternatives work only in special cases.

1. We can compute the integral directly. We parametrize S by some function ®(u,v), for
(u,v) &D. Then,

: : b b
// // '/i—f.*; "wx'(—[u a‘i)
oF - dS = 7 J oF(@(,v)) - \ o chs sy

2. This method always applies. Sometimes, though, the integral will be difficult or we won’t
even be able to evaluate it. Our lives can be made easier by using one of the fundamental
theorems to convert the surface integral into something else.

3. Since this integral is really a surface intcgral of the scalar-valued function f=F - n where
n is the unit normal vector
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. the formula for the direct method is the same as the formula for the scalar-valued surface

integral.

. If the vector field F happens to be the curl of another vector field G, i.e., F = curl G, then
we can apply Stokes’ theorem to convert the surface integral of curl G into the line
integral of G around the positively (consistently) oriented boundary of S, which we
denote S,

/jsF-dS=/jscurlG-dS=JcG-ds

. We don’t have any methods to find G from F. We can use Stokes’ theorem to convert a
surface integral into a line integral only if we are told outright that F = curl G and are

given what G is. But, if given the surface integral that looks like ff s curl G - dS, we can
immediately recognize that Stokes’ theorem is an option.

. Note that Stokes’ theorem allows us to do one more thing to the integral H s curl G-dS.
We can switch the surface S to any other surface S' as long as the boundaries of S and S'
are the same, i.e., 0S = 0S' (assuming both boundaries are positively (consistently)
oriented). If S is a complicated surface, we could feasibly save ourselves some work by
integrating over another surface S'if that surface is simpler than S.

. If the surface S happens to be a closed surface so that it is the boundary of some solid W,
i.e., S = 0W, then we can use the divergence theorem to convert the surface integral into
the triple integral of div F over W,

/st - dS =/\/‘/Wdiv FdV,

. where we orient S so that it has an outward pointing normal vector. This works, of
course, only if F is defined everywhere in the solid W.

Double integrals

The double integral of a (scalar-valued) function f(x) over a two-dimensional region D is written

If, for example, f were the density of the region, the integral would be its mass.

We have encountered three alternatives to evaluate the integral.

. We can compute the integral directly in terms of the original variables x and y. In this
case, dA = dxdy.



2. We can compute the integral by changing to the variables u and v by finding a function
(x,y) = T(u,v). Then the integral is

./ j pfdA = / ,[;_ﬁf(]-(u,v))}iet DF(ev) Idu o

3. where D is parametrized by (x,y) = T(u,v) for (u,v) in D". We often write the determinant

ala, yl
of the matrix of partial derivatives of T(u,v) as det DT(u,v) = ZUNRD)
('.’j.tl’j]
4, If f happens to be equal to - & for some vector field F, then we could use Green’s

theorem to convert the double integral into the integral of F around the boundary of D,
which we denote dD,

/ . / (‘E}}i{, aF, }
W j]jfdA = j[) ';"}:‘.': (}é” dA = I aDF - ds.

5. To orient the boundary properly, outside boundaries must be counterclockwise and inner
boundaries must be clockwise.

6. We usually think of Green’s theorem going the other way, i.e., converting a line integral
into a double integral. One reason for this is that we don’t have any methods to find F
from f. We can use Green’s theorem to convert a double integral into a line integral only

8F, 881
if we are told outright that f= E;.‘I: - "”};f.fuand are given what F is. But, if given the double
dF, Ak’

integral that looks like // D( & y ) dA, we can immediately recognize that

Green’s theorem is an option. As a special case, if we are given an integral f .j pdA (i.e.,
afy 0F)

finding the area), we can let F(x,y) = (-y,x)2 so that & - 3y =1and f f pdA =[ 5pF -
ds.

Triple integrals

The triple integral of a (scalar-valued) function f(x) over a three-dimensional solid W is written
as

/-

If, for example, f were the density of the solid, the integral would be its mass.

We have encountered three alternatives to evaluate the integral.



We can compute the integral directly in terms of the original variables x, y, and z. In this
case, dV = dxdydz.

We can compute the integral by changing to the variables u, v, and w by finding a
function (x,y,z) = T(u,v,w). Then the integral is

// / widV = / / /n ST (uyv,wy)ldet DEGe v e qudvdw,

. where W is parametrized by (x,y,z) = T(u,v,w) for (u,v,w) in W". We often write the
determinar}t of the matrix of partial derivatives of T(u,v,w) as det DT(u,v,w) =

RT3

A{u, e, 10)

If f happens to be equal to div F for some vector field F, then we could use the divergence

theorem to convert the triple integral into the surface integral of F around the boundary of
W, which we denote W,

// / wfdV = ;'!;/ ,/ wdiv FdV = //" awF - dS.

We usually think of the divergence theorem going the other way, i.e., converting a
surface integral into a triple integral. One reason for this is that we don’t have any
methods to find F from f. We can use the divergence theorem to convert a triple integral
into a surface integral only if we are told outright that f = div F and are given what F is.

But, if given the triple integral that looks like ; H wdiv FdV , we can immediately
recognize that the divergence theorem is an option.

The fundamental theorems

To help you organize the integral calculus portion of the course, I’m outlining the fundamental
theorems you’ve learned and their relationship to the various integrals.

The gradient theorem for line integrals

The gradient theorem for line integrals relates a line integral to the values of a function at the
“boundary” of the path i.e., its endpoints. It says that

J cVf-ds=1(q) - f(p),

where p and q are the endpoints of C. In words, this means the line integral of the gradient of some
function is just the function evaluated at the endpoints of the curve. In particular, this means that the

integral of Vf does not depend on the curve itself; the integral is path-independent.



We usually use this theorem when trying to integrate | cF-ds. We can use it only when F is path-
independent, i.e., only when there exists a potential function f so that Vf= F. Then,

J cF - ds =f(q) - f(p),

where p and q are the endpoints of C.

Even if you can’t find f, but still know that F is path-independent, you could use the gradient
theorem for line integrals to change the line integral of F over C to the line integral of F over any
other curve with the same endpoints. Moreover, the integral of any path-independent F over a
closed curve is zero.

Green’s theorem

Green’s theorem relates a double integral over a region to a line integral over the boundary of the
region. If a path C is the boundary of some region D, i.e., C = @D, then Green’s theorem says that

/ ( aF, ar )

\

The integrand of the double integral can be thought of as the “microscopic circulation” of F. Green’s
theorem then says that the total “microscopic circulation” in D is equal to the circulation [ ¢F - ds around
the boundary C = dD. Thinking of Green'’s thearem in terms of circulation will help prevent you from
erroneously attempting to use it when C is an open curve.

In order for Green’s theorem to work, the curve C has to be oriented properly. Outer boundaries
must be counterclockwise and inner boundaries must be clockwise.

Stokes’ theorem

Stokes’ theorem relates a ling integral over a closed curve to a surface integral. If a path C is the
boundary of some surface S, i.e., C = 0S, then Stokes’ theorem says that

IcF‘d5=v/~/5CUI'|F‘dS.

The integrand of the surface integral can be thought of as the "microscopic circulation” of F. Stokes’
theorem then says that the total “microscopic circulation” in S is equal to the circulation [ ¢F - ds around
the boundary C = dS. Thinking of Stokes’ theorem in terms of circulation will help prevent you from
erroneously attempting to use it when Cis an open curve.

In order for Stokes’ theorem to work, the curve C has to be oriented properly compared to the
surface S. To check for proper orientation, use the right hand rule.



Since the line integral [ oF - ds depends only on the boundary of S (remember C = 8S), the
surface integral on the right hand side of Stokes’ theorem must also depend only on the boundary
of S. Therefore, Stokes’ theorem says you can change the surface to another surface S', as long as
0S' = 0S. This works, of course, only when integrating curl F.

The divergence theorem

The divergence theorem relates a surface integral to a triple integral. If a surface S is the
boundary of some solid W, i.e., S = W, then the divergence theorem says that

[/SF -dS= 1/u/:/w div FdV,

where we orient S so that it has an outward pointing normal vector.

The integrand of the triple integral can be thought of as the expansion of some fluid. The
divergence theorem then says that the total expansion of the fluid in W is equal to the total flux
of the fluid out of the boundary S = oW.

Length, area, and volume factors

Along with the multitude of integrals came a bunch of factors for length, area, and volume. In
many cases, these factors adjusted for the expansion or compression by functions that transform
between different integrals. I hope you will see the similarity among these factors.

Length in the ordinary one-variable integral

If we integrate a function f(x) from x = a to x = b, the length measurement is the familiar dx:

I Pf(x)dx.

Length when change variables in one-variable integrals

The following is attempt to tie one-variable change of variables to multivariable change of
variables. If it is too confusing, just skip it and move on.

When you perform a “u-substitution” in one-variable calculus, you are changing variables. To
help you link one-variable u-substitution to multivariable change of variables, we can write a u-
substitution in the same language as multivariable calculus.

You are given some integral [ abf(x)dx. Let x = T(u) be our invertible “change of variables”
function. Then the u-substitution is u = T™(x), where T"(x) is the inverse of T(u). To perform the
u-substitution, you replace x with T(u), integrate from T(a) to T"(b), and replace dx with
T'(u)du:



A

/' o)
[ 2f(x)dx = ¢ T el f(T(u))T'(u)du.

We could go a little further and make this formula even closer to what we write in multivariable
calculus. We could write the interval [a,b] as 1. The integral is over the interval I = [a,b], so we
could write the integral as

[ f(x)dx.

If x = T(u) is our change of variables, then T maps an interval I’ in “u-space” to the interva.l Iin
“x-space.” If T"(b) is greater than T (a), then I is the interval [T (a),T"'(b)]. Otherwise, I" is the
interval [T™(b),T"(a)]. Our change of variables formula is then

[ f(x)dx = ‘[I*f(f(u)) | T'(u) | du.

Note that in this case, the change of variables “length expansion factor” is [T'(u)|. We need the
absolute value because of how we defined I" in the case where T (b) > T (a). (Technical detail:
if T'(u) < 0 then T'(b) < T"(a) and we would have flipped the order in our definition of I" = [T
'(b), T (a)]. This flipping changes the sign of the integral. Adding the absolute value [T'(u)|
changes the sign back to the correct sign.)

The factor [T'(u)| indicates how much T expands or contracts 1" when it maps 1" onto 1.

Length in path integrals

In path integrals, a path C is parametrized by a function c(t). In this case, the length measure on
the path is ds = ||c'(t)||dt. The factor ||c'(t)|| accounts for expansion or contraction by ¢ when it
maps some interval I =[a,b] onto C. Hence, the integral of a scalar-valued function f(x) is

[ cfds = [ ,°f(c(t) | | '(t)| | dt.

For line integral of vector fields, we integrate f = F - T, where T is the unit tangent vector of the
curve:

In this case, the denominator cancels the | |c'(t)| | factor,



JcF-ds=[cF-Tds =], Fc(t) - c'(t)dt,
but the expansion or contraction of c(t) is still included in the c'(t) factor.

Area in double integrals

If we integrate a function f(x,y) over a region D, the area measurement dA in the double integral
1s simply dxdy

v/ j ofdA = v// of (x,y)dxdy.

Area when change variables in double integrals

To change variables in a double integral, we find a function (x,y) = T(u,v) that maps some new
region D in (u,v)-space to the original region D in (x,y)-space. We then need a factor that
accounts for the expansion or contraction of T as it maps D" onto D. That factor is the absolute
value of the determinant of the matrix of parital derivatives of T:

et D (w, v}l
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In the end, the formula for changing variables in double integrals is

u[jnfdA = ‘/,'Lﬁﬂ-r(u’v))gfk‘t FTEI\U’ ‘1‘.-‘;! 1dudv.

Area in surface integrals

In surface integrals, a surface S is parametrized by a function ®(u,v). In this case, the area
measure on the surface is

ab b ||

<3 x 3 !
ds= it @ gy,
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The factor | B v | Lccounts for expansion or contraction by ® when it maps some region D onto

S. Hence, the integral of a scalar-valued function f(x) is

' 1o® 6%, |
/j // (2, ) X (e, J;L
fds = J f(ouv) | T8 du dudv

For surface integrals of vector fields, we integrate f = F - n, where n is the unit normal vector of
the surface:
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Volume in triple integrals

If we integrate a function f(x,y,z) over a solid W, the volume measurement dV in the triple
integral is simply dxdydz

[[l’lw fdv = //jw f(x,y,z)dxdydz.

Volume when change variables in triple integrals

To change variables in a triple integral, we find a function (x,y,z) = T(u,v,w) that maps some
new solid W' in (u,v,w)-space to the original solid W in (x,y,z) -space. We then need a factor that
accounts for the expansion or contraction of T as it maps W' onto W. That factor is the absolute
value of the determinant of the matrix of partial derivatives of T:



et D'E(u, v, w)f

We often write this is

idet D, v, w)

In the end, the formula for changing variables in triple integrals is
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18.02 - Practice Final A - Spring 2006

Problem 1. Let P = (0,1,0), Q = (2,1,3), R = (1,—1,2). Compute PQ x PR and find
the equation of the plane through P, ), and R, in the form az + by + cz = d.
Problem 2. Find the point of intersection of the line through P, = (-1,2,—1) and P, =
(1,4,0) with the plane 3z — 2y + z = 1.
Is P, on the same side of the plane as the origin (0,0, 0) or not?

12 1

Problem 3. et A= | -1 4 ¢
3 e 2

a) Find all values of ¢ for which A is not invertible.

b) Let ¢ =1, and find the two entries marked * in A~! =

* ¥

Problem 4. Consider the plane curve given by z(t) = e* cost, y(t) = e'sint.
a) Find the velocity vector, and show that the speed is equal to v/2e’.

b) Find the angle between the velocity vector and the position vector, and show that it is
the same for every .

Problem 5. Let f(z,y) = 2® 4+ zy® — 2.

a) Find the gradient of f at (1,2) and use an approximation formula to estimate the value
of f(1.1,1.9).

b) Use the chain rule to find the rate of change of f, df/dt, along the parametric curve
z(t) = 13, y(t) = 2t at the time ¢ = 1.

Problem 6. In the contour plot below: mark a point where f =1, f; < 0 and f, = 0, and
draw the direction of the gradient vector at the point P.

Problem 7. Let f(z,y) = 2® — zy + 1y
a) Find all the critical points of f.



b) Determine the type of the critical point at the origin.

¢) What are the maximum and the minimum of f in the region = > 0? (Justify your
answer. )

Problem 8. a) Find the equation of the tangent plane to the surface z® + yz = 1 at
(-1,2,1).

b) Assume that z,y, z are constrained by the relation 2® +yz = 1, and let f be a function

of z,y,z whose gradient at (—1,2,1) is (a,b,c). Find the value of (?) at (—1,2,1).
e — Y/

Express your answer in terms of a, b, c.

1 N 9
Problem 9. Evaluate the integral / / 1 & s dydz by changing the order of integra-
0 Jo -y
tion.
Problem 10. Evaluate the work done by the vector field F = —4%i + 2 j around the circle
of radius a centered at the origin, oriented counterclockwise in two ways: directly, or by
using Green’s theorem.

Problem 11. Find the flux of % out of each side of the square of sidelength 2, -1 <z < 1,
-1 < y < 1. Explain why the total flux out of any square of sidelength 2 is the same
regardless of its center and orientation.

Problem 12. Let F = (2 — zy)% + 2yj, and let C be the ellipse (2z — y)? + (5z +y)? = 3,
oriented counterclockwise.

Use the normal form of Green’s theorem to express the flux of F through C as a double
integral.

(Give the integrand and region of integration, but do not provide limits for an iterated integral.)
Use a change of variables to evaluate the double integral you found.

Problem 13. Express the volume of the cylinder 0 < z < a, % + y* < 1 first as a triple
integral in cylindrical coordinates and then as the sum of two triple integrals in spherical
coordinates.

Problem 14. Let F = 2% + (zsiny)j + (22 + azz + beosy)k.
a) Find values of a and b such that F is conservative.
b) For these values of a and b, find a potential function for F using a systematic method.
¢) Still using the same values of @ and b you found in part (a), calculate ICF - dr where
C is the portion of thecurve z = t?, y=1—t%, z =t for -1 <t < 1.

Problem 15. Calculate the flux of F = z2 +yj+ (1 — 22)]?4: out of the solid bounded by the
zy-plane and the paraboloid z = 4 — 2? — 32 in two ways: directly, or using the divergence
theorem.

Problem 16. Let F = (—6y? + 6y)& + (z* — 32%)j — 2%k.

Calculate curl F and use Stokes’ theorem to show that the work done by F along any simple
closed curve contained in the plane z + 2y + z =1 is equal to zero.
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N. Non-independent Variables -
A4 Qﬂ’"/ deat

1. Partial differentiation with non-independent variables.

Up to now in calculating partial derivatives of functions like w = f(z,y) or w = f(z,v, 2),
we have assumed the variables z,y (or z,y,z) were independent. However in real-world
applications this is frequently not so. Computing partial derivatives then becomes confusing,
but it is better to face these complications now while you are still in a calculus course,
than wait to be hit with them at the samie time that you are struggling to cope with the
thermodynamics or economics or whatever else is involved.

For example, in thermodynamics, three variables that are associated with a contained

gas are its
P = pressure, v = volume, T = temperature,

and you can express other thermodynamic variables like the internal energy U and entropy
S in terms of p,v, and T'.

However, p, v, and T are not independent variables. If the gas is a so-called “ideal gas”,
they are related by the equation - (on gHeint
(1) M—) (n,R constants). F(L ( P / v )

To see what complications this produces, let’s consider first a purely mathematical example.
Example 1. Let w = 22 +y? + 2%, where z = 22 + y%.  Calculate gf—u- :
T

Discussion. 5
(a) If we think of z and y as the independent variables, then we can calculate 8—w by
T

two different methods:

(i) using z = 22 + y? to get rid of z, we get ‘j 0 lg F‘vf"( { -‘ 0q
w = 22+ y2 = (552 + y2)2 P Lé]
= 2% +y? +2* + 20%% + ¢ -
Rl '
ow
3o = 2tda® oy’ Cuppl e

(ii) or by using the chain rule, remembering z is a function of z and y,
wm e iy \ \ 7 ¥ .
w=at+y?+22 7 A, sl 2

B_w 2x+2z@= 2z + 222z

) 02

2z + 2(z* + ¢?) - 2z,

so the two methods agree. ( {\‘()\g_{.’-j. T os pang
(b) On the other hand, if we think of z and z as the independent variables, using say
method (i) above, we get rid of y by using the relation y® = z — 22, and get
w =22 +y*+2% = 22 4+ (2 —2?) + 2°
= z+ 22;
ow



N. NON-INDEPENDENT VARIABLES 1

These answers a.re genuinely different — we cannot convert one into the other by using
the relation z = z2 + y%. Will the right dw/dz please stand up? B

/
The answer is, that there is no one right answer, because the problem was not well-stated.<~ -/’_L
When the variables are not independent, an expression like 8w/dz does not have a deﬁmte T
meaning. L ‘hgf ﬂ)df 1
To see why this is so, we interpret the above example geometrically. Saying that z,y,z { . .
satisfy the relation z = z? 4 y? means that the point (z,y, z) lies on the paraboloid surface q WA g5 Vot
% . . B 1'1 =
formed by rotating z = y* about the z-axis. The function \ / a bl @anm p‘ﬁ

oc hove

w = 72 492 +2°

measures the square of the distance from the origin. To be defi-
nite, let’s suppose we are at the starting point P = P : (1,0,1) /
indicated, and we want to calculate dw/8z at this point. ¥

Case (a) If we take z and y to be the independent variables, then to find

Ow/0z, we hold y fized and let = vary. So P moves in the zz-plane towards A, OV
along the path shown. v '
As P moves along this path, evidently w, the square of its distance from the L
origin, is steadily increasing: :9% > 0 and in fact the calculations for (a) on

the previous page show that a—:g = 6.

Case (b) If we take z and z to be the independent variables, then to find
Ow/0z, we hold z fized and let x vary. Now P moves in the pla.ne z = 1, along
the circular path towards B.

As P moves on this path, the square of its distance from the origin is not

changing, and therefore g—l; =0, as we calculated in (b) before.

To sum up, the value of dw/8z depends on which variables we take to be independent,
because we are actually measuring different rates of change, as P moves along different
paths.

There is only one way out of our difficulty. When we ask for w/0z, we must at the same
time specify which variables are to be taken as the independent ones. This is done by using
the following notation: HORET P> s 7

Case (a): z,y are the independent variables: (.a_w_)L) ’ .
v ;‘-L:_:l 2’7'.' ' -“‘ d

i

Case (b): z,z are the independent variables: (-g—l:)

These are read, “the partial of w with respect to z, with y (resp. z) held constant”.

Note how in each case the two lower letters give you the two independent variables. If we
had more variables, we would use a similar notation. For instance if

(2) w = f(z,y,2,t), where zy = 2t,

then only three of the variables z,v, z,t can be inde.pendent; the fourth is then determined
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by the equation on the right of (2). Thus we would write expressions like

H
u,t

(%u‘)‘) “partial of w with respect to y; z and z held constant”;
Y/ 2z

in the first, z,y,t are the independent variables; in the second, z,y, z are independent.

0 Xd ﬂ(P

2. Differentials vs. Chain Rule

An alternative way of calculating partial derivatives uses t&tilj’iﬁermtials. We illustrate
with an example, doing it first with the chain rule, then repeating it using differentials. By
definition, the differential of a function of several variables, such as w = f(z,y, z) is

(3) dw = fzdz + fydy + f.dz,

where the three partial derivatives fz, fy, f. are the j’lormdl‘\partia.l derivatives, i.e., the

derivatives calculated as if ,y, z were independent. (-! /;

Example 2. Find (g_w) , wherew =23 — 2%t and a2y = =zt.
Y z,t

Solution 1. Using the chain rule and the two equations in the problem, we have

(B_w) = 3922t (E{) = 3:3—:2:etE = z3—2zz.
6y .t ay z,t ¢

Solution 2. We take the differentials of both sides of the two equations in the problem:
(4) dw = 32%y dz + 2®dy — 22t dz — 2%dt, ydr+zdy = zdt + tdz.

Since the problem indicates that z,y,t are the independent variables, we eliminate dz from
the equations in (4) by multiplying the second equation by 2z, adding it to the first, then
grouping the terms, which gives

dw = (32%y — 2zy) dz + (z® — 2zz) dy + 2%dt

Comparing this with (3) — after replacing z by ¢ in (3) — we see that

(B_w) = 3x2y~2zy, (QEU—) = :1:3—22$, (B_w) =,
Oz it Oy z,t ot z,y

(The actual partial derivatives are the same as the formal partial derivatives Wz, Wy, W
because z,y,t are independent variables.)

Notice that the differential method here takes a bit more calculation, but gives us three
derivatives, not just one; this is fine if you want all three, but a little wasteful if you don’t.
The main thing to keep in mind for the method is that differentials are treated like vectors,
with the dz, dy, dz,... playing the role of i, j, k,.... That is:

= )
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D1. Differentials can be added, subtracted, and multiplied by scalar functions;

D2. If the variables z,y,... are independent, two differentials are equal if and only if
their corresponding coefficients are equal:

(5) Adz+Bdy+...=Adz+Bidy+... & A=A, B=58,...;

D3. One differential can be substituted into another.

Remarks.

1. In Example 2, Solution 2, we used the operations in D1 to do the calculations. We
used D2 in the last step, taking advantage of the fact that the z,y, ¢t were independent.

We could have done the calculations using D3 instead, by solving the second equation in
(4) for dz and substituting it into the first equation. D3 is a consequence of the chain rule.
Illustrations of its use will be given in the next section.

2. The main advantage of calculating with differentials is that one need not take into
account whether the variables are dependent or not, or which variables depend on which
others; the method does this automatically for you. Examples will illustrate.

3. If the variables are not independent, D2 is emphatically not true; the second equation
in (4) gives a counterexample.

Note also that in D1, there is no attempt to include a “multiplication” or “division” of
differentials to the list of operations. If w and v are functions of several variables, then
their “product” dudv makes no sense as a differential, nor does their “quotient” du/dv,
which despite appearances is not in general related to any derivative, or function, or even
defined. (There is no elementary analogue of the dot and cross product of vectors, though in
advanced differential geometry courses a certain type of product for differentials is defined
and used for multiple integration.) :

Example 3. Let w = 2® — yz + t%, where z,y,2,t satisfy the two equations
22=gz+y? and zy==zt
Using these equations, we can express first z and then ¢ in terms of z and y; this means
that w can also be expressed in terms of z and y.  Without actually calculating w(z,y)
explicitly, find its gradient vector Vw(z,y).

Solution. Since we need both partial derivatives (dw/dz), and (Gw/8y)., it makes
sense to use the differential method. Taking the differential of w and of the two equations
connecting the variables gives us

(6) dw = 2zdzx — zdy — ydz + 2tdt, zdy + ydz = zdt + tdz, 2zdz = dz + 2ydy.

We want z and y to be the independent variables; using the operations in D1, first eliminate
dt by solving for it in the second equation, and substituting for it into the first equation; then
eliminate dz by solving for it in the last equation and substituting into the first equation;
the result is

_ y 2y ¥ 2t 2%y
(7) dw-(?a: 2z+ = z2)dm+( B + e dy.

Since z and y are independent, comparing the two expressions for dw in (7) and (3) (using
z and y), and then using D2, shows that the two coefficients in (7) are respectively the two
partial derivatives w, and wy, i.e., the two components of the gradient Vw.
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Example 4. Suppose the variables z,y, z satisfy an equation g(z,y,z) = 0. Assume
the point P : (1,1,1) lies on the surface g =0 and that (Vg)p = (-1,1,2).

Let f(z,y,z) be another function, and assume that (Vf)p = (1,2,1).

Find the gradient of the function w = f(z,y,z(z,y)) of the two independent variables z
and y, at the point z =1, y = 1.

Solution. Using diﬂ'érentials, we have, by (3) and our hypotheses,
(dw)p = dz + 2dy + dz; (dg)p = —dz + dy + 2dz =0, since dg = 0 for all z,y, z;

eliminating dz by solving the second equation for it and substituting into the first, or by
dividing the second equation by 2 and substracting it from the first, we get

(dw)p = %d:r:-!— 3dy; (Vw)p = %i + %j.

3. Abstract partial differentiation; rules relating partial derivatives

Often in applications, the function w is not given explicitly, nor are the equations con-
necting the variables. Thus you need to be able to work with functions and equations just
given abstractly. The previous ideas work perfectly well, as we will illustrate. However, we
will need (as in section 2) to distinguish between

formal partial derivatives, written here f;, fy,... (calculated as if all the variables were
independent), and

actual partial derivatives, written df/8z, ..., which take account of any relations between
the variables.

Example 5. If f(z,y,2) = zy®2*, where z = 2z + 3y, then the three formal
derivatives are

fa= y224> .fy = 2231141 f:= 4$y223,

while three of the many possible actual partial derivatives are (we use the chain rule)

of . _5_2 .24 2.3,

(53—:) —'f:"‘fz(am) =y“z" + 8zy“2";
Y y

af _ Oz _ 4 2.3,

(By)z X fy+fz(3y)z i i T

OFN _ (% 2,04 2,3
(Bz)m—fy(az)z+f,—3xyz + dzy“z°.

Rules connecting partial derivatives. These rules are widely used in the applications,
especially in thermodynamics. Here we will use them as an excuse for further practice with
the chain rule and differentials.

With an eye to thermodynamics, we assume a set of variables ¢, u,v,w,z,y,2,... con-
nected by several equations in such a way that
e any two are independent;
e any three are connected by an equation.
Thus, one can choose any two of them to be the independent variables, and then each of
the other variables can be expressed in terms of these two.
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We give each rule in two forms—the second form is the one ordinarily used, while the
first is easier to remember. (The first two rules are fairly simple in either form.)

(8a,b) (g—;)z(g%)z = 1 (%;E)z — m reciprocal rule

Note how the successive factors in the cyclic rule are formed: the variables are used in the
successive orders z,y,2; ¥,2z,%; 2z,%,y; one says they are permuted cyclically, and this
explains the name.

Proof of the rules. The first two rules are simple: since z is being held fixed throughout,
each variable becomes a function of just one other variable, and (9) is just the one-variable
chain rule. Then (8) is just the special case of (9) where z =t.

The cyclic rule is less obvious — on the right side it looks almost like the chain rule, but
different variables are being held constant in each of the differentiations, and this changes it
entirely. To prove it, we suppose f(z,y,z) = 0 is the equation satisfied by z,y, z; taking y
and z as the independent variables and differentiating f(z,y, z) = 0 with respect to y gives:

oz ] @ B _f_
(11) fz (-B—y)z+fy—0, therefore (ay)z — f: :

Permuting the variables in (11) and multiplying the resulting three equations gives (10a):
(8_3:) (i’i) (?ﬁ) eedes By B 4
3y z 62 T ax v fy fz fz

Example 6. Suppose w = w(z,r), with r = r(z, ). Give an expression for (36_1:) in
0

‘terms of formal partial derivatives of w and r.

Solution. Evidently the independent variables are to be r and 6, since these are the
ones that occur in the lower part of the partial derivative, with =z dependent on them. Since
0 is viewed as a constant, the chain rule gives

(), ~(8),
(3_”) St \AD
o/, (0r/0z)e’

by the reciprocal rule (8). and therefore finally,

w W
(E)a gt
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4. Changing the independent variables.* For those of you who will study
thermodynamics, a major use of the rules of the preceding section is to change physical
laws expressed in terms of one pair of independent variables to another pair which is better
adapted to the particular problem at hand.

In thermodynamics, some of the variables associated with a confined gas are p (pressure),

V (volume), T (temperature), U (internal energy), S (entropy), and H (enthalpy). Any
two are independent, and their values then determine all the others.

To avoid confusion, it is better to state our general problem in terms of a neutral list
of variables — we will use u,v,w,z,y. Then we can state the problem this way: a partial

derivative (%) is given, where the A, B, C are three of these variables, and we want to
c

. : . 0A .
use z and y as the new independent variables; i.e., we want to express (55) in terms
c
a*

of partial derivatives that look like (%) and (g—;) , Where * stands for any of the
Y z

variables.

It looks like there will be many cases, but outside of the trivial ones, the most commonly
occurring ones are all handled by the rules of the previous section.

The trivial cases are when two of A, B, C are equal:

- " A=B

(12) (—) =< 0 A =C;
OB )

undefined, B =C

Two more “trivial” cases are when B and C are z and y, in either order, since then the
partial derivative is already in the desired form.

The rest of the cases are non-trivial, but are covered by the rules. Remembering that z
and y are to be the new variables, the commonly occurring cases are these two:

(13) (g—g) = E_gg"//%:’ (chain rule (9))
Oz /0,
e (55) - Egjfgﬁ))i . gguﬁ;y, by (10b) and (9b)

In the above, z and y can be interchanged; A, B, C stand for any variables; u,v,w are any
variables other than z or y. The reciprocal rule can be used as a preliminary step to put a
given partial derivative into one of the above forms.

Example 7. One of the laws of thermodynamics is expressed by the equation

oU oV BV)
=] +2l==1" Y pls) =8
(&), (&), (%),

What is the equation for this law when V and 7" are the independent variables?
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Solution. Looking at each derivative in turn, the first has the form (13) and needs the
chain rule; the second has the form (14) and needs the cyclic rule; the last needs only the
reciprocal rule. Using these, the equation is transformed into

oU/oV . 8p/dT P

%p/oV ~ L opjav t wpjav

The subscripts are unnecessary, if it is known that 7" and V' are the independent variables;
however there is no harm in including them and removing the common denominator, which

gives finally
ou dp
(7).~ 7 (), + 7 = ¢

as the form the law takes when referred to the variables V and T'.

5. Additional rules.* For the sake of completeness, we add two more rules which will
enable you to make even uncommon selections of independent variables.

To state these last two rules, we need a determinant called the Jacobian. We give the
notation and definition for two functions u(z,y) and v(z, y):

o(u,v)

_ e uy
d(z,y)

Uz Uy

(15) (the Jacobian);

for three functions of three variables, etc. the definition would be analogous.

(16a,b) (2—;‘)”(3—;)1 = 2523 (g_:)‘, - (g_:)y_ (%)z(g_:)y

Jacobian rule

two-Jacobian rule

(17) (au)w _ 9(u,w)/8(z,y)

/),  0v,w)/o(z,y)

We leave the proof of the Jacobian rule (16b) as a good exercise in the use of differentials;
the form (16a) follows from it by applying the chain rule (9b) and the definition (15).

The two-Jacobian rule can be proved directly either with differentials or the standard
chain rule for functions of several variables. It is the mother of all rules: the other four can
be derived from it by making some of the variables equal to each other.

As in section 4, these new rules allow the remaining choices of independent variable:

du\ _ (Ou (Ou/0y)s (Ov
(18) (a_) i (a_)‘ (v /By). (%) b (1t
ou\ _ 0(u,u)/0(z,y)
o (&), = sy w0

Exercises: Section 2J
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18.02 - Solutions of Practice Final A - Spring 2006

O

—_ N ¥ —_— ST % %
Problem 1. PQ = (2,0,3); PR = (1,-2,2); PQ x PR=| 2 =61 —j—4k

—
o Qo

-2
Equation of the plane: 62 — y — 4z = d. Plane passing through P: 6-0—1—-4-0=d.
Equation of the plane: 6z —y — 4z = —1.

Problem 2. Parametric equation for the line: Py +tP Py = (—1,2,—1) + (2,2,1) =
= (—1+2¢t,242t,—-1+41), that is x(t) = =1+ 2¢, y(t) = 2 + 2t, 4( ) =—1+t.
Intersection: 3x(t) — 2y(t) +z2(f) =1 = —-3+6t—4d—4dt—14+t=1 = -8+ 3t =1,
that is ¢ = 3, which corresponds to the point (5,8, 2).
The function 3z — 2y + z — 1 takes value —1 at the origin and —6 at P, which are both
negative. So P, and the origin are in the same half-space.
Problem 3. a) A is not invertible if and only if det(A) = 0.

=1 € -1 4
det(A) =1 ’ @ g 3 ; -i—‘ 3 ¢ ‘ =(8—c*)—2(-2-3¢)+(—c—12) = —c*+5c =

= ¢(b — ¢), hence A is not invertible if and only if ¢ = 0 or ¢ = 5.
b) For ¢ =1, det(A) = 4.

I i1 1 1 L1 2
-1 _ G i e e e § -
A= . . a |,thena= . { l - and b = 1 ‘ 1 4

_3
b 41 =1 1 2

4

Problem 4. a) §(t) = e'(cost—sint, sint+cost) and |5(t)|* = e*(cos? t+sin® t—2 sin ¢ cos t+
+sin?t + cos®t + 2sint cost) = 2e*, so the speed is |5(t)]| = v/2e.

o o : : :
. - st,sint) - (cost —sint, sint + cost 7]
b) cosf = Tt =E {cost,sind) - { L )=£,509::t7r/4.

7] 1] V2e2 2
Problem 5. a) Vf = (32% + y?, 22y — 2) and Vf(1,2) = (7,2).
£(1.1,1.9) & £(1,2) + (0.1, -0.1) - V£(1,2) = 1 + 0.7 — 0.2 = 1.5.
b) The velocity is F(t) = (3t%,4t) and §(1) = (3,4).
t =1 corresponds to the point (1, 9) S0

To-ZLaaZo+LaaPo-rsr2.4-2




Problem 6.

B2

Problem 7. a) Vf = (32% — y, —z + y).
3

Critical points: Vf =0 +<— y =3z

By
The critical points are (0,0) and (1/3,1/3).
b) fez = 62, foy = =1, fyy = 1, so A = 6z — 1, At the origin A{0,0) = -1<0,s0itisa
saddle point.
¢) On the boundary z = 0 and f(0,y) = y*/2, so the minimum at the boundary is 0 attained

at (0,0). The maximum value is +00.
2

7 1
flz,y) =2 - 32- + g(y — )%, s0 f(z,y) — +oo for £ — oo and/or y — Fco. Hence the
minimum can be either at (0,0) or at (1/3,1/3). Because f(1/3,1/3) = —1/54, this is the
minimum value.
Problem 8. a) Let g(z,y,2) = 2* + yz — 1. Then Vg = (322, z,y) and
Vg(—1,2,1) = (3,1,2), hence the equation of the tangent plane is 3z + y + 2z = d.
It must pass through (-1,2,1),s0 3(-1)+2+2(1)=d = d=1.
Equation of the tangent plane: 3z +y + 22 = 1.
b) Constraint = 3dz + dy + 2dz = 0 at (—1,2,1). Keeping z fixed, we get dz = —dy/3.
Because df = adz + bdy + cdz at (—1,2,1), we obtain df = (—a/3 + b)dy, that is

af a
— ) (-1,2,1)=b——.
(E)y)z( 21 3
1 \/’E 2 1 1 1 p=1
Problem 9. // lyd dyd::;:f/ Qxyddrcdy:/ 4 4[ng dy =
; o Jo l1—v 0 Jypp1—y g 2= z=y?

=f ydy =1/2.
0

Problem 10. Direct method. The circle is parametrized by z(0) = acosf, y(0) = asiné,

for 0 < @ < 27. The work is / T . dff = / —yidx + 23dy =
c c

27 27
= / —a®sin® (—asin 0 df) + a* cos® 8(a cos 0 df) = a* / (sin® @ + cos" 0)dO =
0 Jo




i e 4 : 3T 4
= 8a’ sin” @ df = (using the table) = 7y —a".

Using Green’s theorem. / T = / / (Ny — M, )dA, where R is the disc of radius a,

M = —y3and N = 23, so tha,{ N, — M, = 31 + 3y* = 3r%
; I 3w,
Hence the work is 3? srdrdf = d() = —a’.
0 0 0 1 0 2

Problem 11. Call F = zi and recall that (Flux) = / F -fids.
c

[—
, F -n=1, so the flux is 2.

-1 =1, so the flux is 2.

Side z = —1: n
Sidex=1: n

4 ~ g A .

Sidey=—1: A =—3, F -n =0, so the flux is 0.

Sidey=1: =3, F-n=0,so the flux is 0.

The total flux out of any square S of sidelength 2 is always 4, because Green’s theorem in

normal form says it is equal to / / (M; + N,)dA = / f 1-dA = Area(S) = 22 = 4.
/8

|
ol
l’-.:) thl,g-))

Problem 12. Green’s theorem in normal form: / F -nds = / / éh)) dfl where R is

\

the region enclosed by C.

" -

div(F) = 22 — y + 2, so the flux is given by // 2z —y+ 2) dz dy.
(2z—y)?+(5x—y)? <3

Change of variables: u =2z —y, v =5z 4y, so :

Iru,u? ¢ (A CROCgi0

=

A(u,v)| ™" 5 1N 1
. dz dy = ‘8(3:,11) dudv = |det 5 1 i 7_,([.“- dy= 3 du dv.
e A = Seq done
The integral becomes / / . 2’du dv. Usmg the symmetry (u,v) — (—u,v), we have
2 u2<3 (5[1/, 0%(
that the integral lf - du dv = (), so that the flux is glven by

u2+vg<3 ‘. 1 e

Zdudv = Zr(V3)2 =21 2 | 0E5 el

V/‘ug-i-u%:g Hew BW(\/_) J

27
Problem 13. In cylindrical coordinates the volume is f / / rdrdfdz.

27 parctan(l/a) pa/cose
In spherical coordinates / [ / p* sin @ dp dy df+

2 1/singp
/ / / p*sindpdpdo.
arctan(1/a)

Problem 14. a) F is conservative if and only if VxF =0 (because F is continuous and
differentiable everywhere).



— —3 ? j k s :

VxF=|0 0, a, = (=bsiny — siny)? — (az — 2z)3, so we must
z? zsiny 2z +axz + beosy

have a = 2 and b —1.

b) Let F = V f. We must have f. = 2z4+2zz—cosy, so f(z,y, z) = 2° +1z~—z cosy+g(z,y).
Moreover, zsiny + g,(z,y) = f, = zsiny = g(-v y) = h(x). Finally, 2* + I/ ( ) = 2P

—> h(x) = constant. Hence, f(z,y,z) = 2> + x2*> — zcosy is a potential for F.

¢) The curve goes from (—1,0,—1) to (1,0,1). Fundamental theorem of calculus for line

integrals: / F . dFf = f(1,0,1) - f(-1,0,-1)=1-1=0.
c

w
Problem 15. Direct method. On the wy-plane, n = -k, F -n —1, so the flux is

ﬁ
7(2)? = —4m. On the portion S of paraboloid, we compute // F
S

w| |

by integrating over

the shadow of S in the zy-plane.
dS = (2z, ‘7J, )(ILdg, S0 F d8 = (22 -}—9y +1—2z)dedy =
=[22° + 2% +1-2(4 — )] dx dy = (47 — T)r dr db.

29 922
The flux is / / ) drdf = 27 [ - 777} = 27(16 — 14) = 4x.
0

¢ 1o
The total flux is 47 — 47 [

Using divergence theorem. The flux is given by / / / (6 . F)dV , where D is the solid region
J L dp

enclosed. In our case 6} B =1 + 1 — 2 =0, hence the total flux is 0.
= 2 J k ;
Problem 16. V x F = O Ay 9. | =621+ 2z7+ (22 + 12y — 6)k.

—6y? + 6y 2% —32%2 —z?
Call R the region of the plane = + 2y + z = 1 enclosed by a simplc closed curve C lying

entirely on that plane. Stokes’ theorem: ] F -dr = / V xF. 11 d,S

2 5 9
Oanehaveﬁ=(1’ 1) and Vx F -fi= 62+ 2(2z) + (2z + 12y — 6) _
vE VG

= \/6('5 + 2y + z — 1) = 0, because R belongs to the plane z + 2y + z = 1.
We conclude that / F . dif = // (6 xF - ﬁ) dS = 0 because V x F -fi = 0.
] _ R




18.02 Exam 1  Tues. Feb. 23, 2010 11:05-11:55 -

Directions:

1. There are 3 sheets, prmted on both sides: seven problems in all.

2. Do all the work on these sheets; use the blank part below if truly necessary.  Write down enough to
show you are not guessing.

3. No books, notes, calculators, use of cell—phones ete.

4. Please don’t start until the signal is given; stop at the end when asked to don’t talk until your paper
is handed in.

5. When the exam starts, read through the exam and start with what you are surest of.

6. Fill out the information below now.
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Problem 1'._'(20). Three points in :z:yz-spa'ce are P :(—=1,1,2), @:(1,2,1); and O: (0 ())
a) (5) Flnd angle POQ.

f L1027 P0 ¢ G =g /Ga (050 o~
@ =1,y JOrroE -
@1+pw (2:1) IFTF7”—sz
'1+?_*~2' 1 e gj_f(ps@ |

3 ?- G cos 6 ” ' ,
% < 050 Q b O(D ' .
b) (5) Fmd the scalar scalar component ofi+j+kin the direction of the vector PQ.

7a - L2, 7 ede™ P
Z.T +j‘- p

68] < ST )t s ST
¢ - mprud  of E o die f_;

‘ “{ x = W toa | o
) x5 : e C '{’J:}’Uf‘! W} [n
Ol b Ll [hs Ae B0l b Y

c¢) Find thg equation of the plane through O, P, and Q.
” 5 ecL of a Pl
Neema ) Yeclor Yo

~Cross pdbiply

Mty

fl ﬂ’lag/}(’]b IQ

o

\

i1

IEREE T
OQ\:,\Z ) ;1 7
| \f b ‘
)Jtﬁ (%@T (nUT%z/ /
| ?, | "3 -} 3 j\ =
d) Find the area of the space trlangle OPQ. —— i

VUl

% ._—2 )—; ifil




~ Problem 2. (20) { g

/12 0\ | o 2 -3 -1
Let A=|2 1 2 |. Its matrix of cofactorsis (inpart) C=| -4 2 o |.
: 1 0 2 g 4. -2 L

/ ¢ a) (15) Confirm (mentally) the entry —4 in the first column of C, then fill in the last column of C' and
from this find A1, ded /

IP*U)—Q(%{UJ-Q

Lﬁ "J"“{j’ d\{h‘ﬁJ;’ d(& H
_ \/ G gns

3 \ A ’M(r{'.'\ \',f‘Jf 5{&? Co fC'L'C f{'(/‘fk )

o Eoa] ey T

G ZOJ
~1 L -3} "1 s B

-

b) (5) Use the matrices of part (a) to solve the following system (no credit for solving the system by
elimination):
' z+2y=1, 2z+y+22=0, 2+22=0.

Ax=d x| o 2 4 .
Apt x=d Al ¥l 2L [0S 5 Bl
X “df 2 27 |
X=d A £ e e R
L 1v2:040.0 Ty - -4 )
| , -~ 1
\Qzlxtu _ . > . -~
]M] M 1 l l f O?O1 2 '0 / -( 1
: 7



Problem 3. (5) Find the value(s) of ¢ for which the system of homogeneous equations
c:n+2y+z=0, 2z—-y+2=0, z+3y—22=0"

has a solution other than & = y=2z=0. (No credit for solving by elimination.)

,MQ/@ JH < O

E L4 . o i@

2~y ((y;)i(fq»})+.A)(5*_” -

| 0T 2e-3¢ +2 1246 ¢ -0 B
-C =-17 - |

(= I /

Problem 4 (15) Scotch@ tape is being unwound from a stationary circular spool having radius a.
The end P : (z,y) of the tape is initially at the point A : (a,0) on the z-axis; @ is the point on the
circumference where the tape is leaving the spool. During the process, the unwound length of tape QP
is held taut, and held so that it makes a constant negative angle —a, 0 < o < 7/2 with the radial vector
OQ (as measured clockwise from OQ to QP).

Use vector methods to derive parametric equations for 2 and y in terms of the central angle § and the
constants a and «, for 0 < @ < 2. Show work, indicating reasoning.

(If stuck, for 5 points less;you can take a = 7/2, so that the unwound tape is always\
@, in the direction where its stlcky side faces the spool.)

O O O{* Cond n” / 0(

Wkt ol }f_

eld tangent at

U\Z(o;@- @/7/&@ <+cou¢i/

7“/(](,,”,!4 "C"“ \)\

" e v ‘ O
/(/ 10 Q(C"d\ / . eat
" ( 6) = (O (456 Y a 6 cii 01\ 0/7/\ 0w
T .} e LD s 1
4 f @ = N .,z"fé ~ a4 @ Gin oA ' th
Aot PSP (e \ o sy T d——“(ﬁ}hi
X w1 g O | \’) Sin I\



P'robleni 5. (15) The path of a point P is a circular helix in space having position vector
OP = r(t) = (2cost, 2sint, t) .

P 'Find in order the following, in terms of ¢, giving enough calculation or reasoning to show you are not
guessing or writing down answers from memory:

d éll'/‘ g

(3) a) the velocity vector v
d (05 =514

deriive

V= Lsin d, 2 sd, 17 2 ﬁ/

(4) b) the speed |v| and the length of one complete turn of the helix, i.e., the length between two

successive points lying over the same point in the zy-plane. n
' 2
P : T —— |
R o — = de
) = JUF 6™ v jog # 1 7 G s ) »

r—"\____,—.\“__\ . ;{,’
L( (5“"11 Feog L H 7‘»). é 1 Xi) 902 (onslud
¢ Sy @f . - JT4 )0
Jz K. 5= sz -
(8) c) the unit tangent vector T, the unit normal vector N, and the curvature (k in the book), a
time . :
T:_\é_ - _[‘261% } :/(‘Jl]?

l Jg
T TAE ity (i)
| Ae/o( i 7z -2k, 2 b1y fo - Lo 2]
\ O 3

ok 8
=

/
_ b
=3 2 : \j?
5-5-.} LG n } U >} J




Problem 6. (5)

Find the length of the exponentlal splral curve r = e in the plane, between the point on the curve
where r = 1, § = 0, and the next point on the curve where it crosses the z axis as @ increases.

5

_ —Ces 1ﬁ ) S
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S J1E v 2M T (2""
Problem 7. (10) The velomty vector of a moving point in the polar-coordlna.te u, — up system 1
gwen in general by v = r'u, + r8'u,.
A point P moves with velocity vector v = —sintu, + sin2f up:
HBitisstr=1, 8=0attime t =1, what are the parametric equatlons r =r(t), 8 = 6(t) that
descrlbe its motlon’P 5 W lae , Orlin e ((f !th -
! fa »
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™ 18.02 Exam 2  Thurs. Apr.1, 2010 11:05-11:55

Directions:
1. There are 3 sheets, printed on both sides: nine problenis in all.
2. Do all the work on these sheets; use the blank part below if truly necessary Write down enough to
show you are not. guessing, . ;

........ 3. No books, notes, calculators, use of cell-phones, ete.” .
4. Please don't start until the signal is given; stop at the end when asked to don t talk untll your paper
is handed in. ‘ _
5. When the exam starts, read through the exam and start with what you are surest of.
6. Fill out the information below now.
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Problem 1. (10) For the function w = z%y — z3°, find its directional derivative Zi: - at the point |
. Pa

A e ‘f'-”‘f t ’20_‘7"?\1
! O (1-3) ¢ J
4\, <)y g/\,-yj |

WTAT Ry

W pts N

P:(1,1) in the direction @ of the vector i + j

Problem 2 (10: 4,6) Some level curves for w = f(z,y) are shown, u is a unit dl&tance
a) At P, estimate the value of wy.
b) At @, draw the vector (Vf)q.
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Problem 3. (20: 3, 12, 5) Find the point P on the surface 22 +yz+3z—8 =0 which is closest to the
origin' by following the steps below. ‘

‘ [J() I d} ‘ Fa
(a) It suffices to find the point P which minimizes the square of the distance to the origin. Show this
leads to finding the point which minimizes w(y, 2) =y + 2% — yz = 3z + 8.

N - (R Pt Gpnoknict
, b e
“) N o= J Xy / F2 %

{ 9

o

-(b) .F‘irnd the point (yo,20) which minimizes w(y,2), and use it to find P.
(You don’t have to prove it is a minimum point.)
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%0 - (06D 30U TE e e g,

~ (c) If this problem is solved by Lagrange multipliers instead, give one of the equations involving the
multiplier A, and use it to determine the value of A corresponding to the point P
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5 Problem 4 (10) Let w = f(z,y), where in turn ¢ = 2u — v? and y = uv.
If in zy-coordinates Vf = (2,3) at the point P : (4,0), find the value of i at the point in

wv-coordinates corresponding to P. } oint % .
Y~ QW bx —+ 7 =2y vt Veg ;2 valkws |
Ky B X \OV . J=uVv:
_— e ., | o : : j\v\'\/ -
- . o B ? . .‘_',2 i e z /rl
- LV
| e e
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7 £ friter n,_.‘._' (ra 2l )
. j ¢ . !
: Problem 5 (10: 5,5)) & H/Q:f 0 le Lode f”’d(ﬂ“ L\atft om /”6’}56 e
@ a) Suppose Fa;2) = % Derive a formula for (a in terms of the formal partlal derivatives
2 fzs fys [z, i.e., the derivatives 1'l',alcen as if x,y, z were mdependén’\\use-t@am ru}e o; dlfferentllals
. -
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Problem 6 (10: 3,7) Set up a double 1terated mtegral in polar coordinates which gives the volume of
the solid lying under the graph of 2 =16 — :c —12% and above the :cy—plane, as follows.

a) Show the region of integration is the interior of the circle z? +y* = 16..

b) Then set up the integral. Do not eval;‘ate the integral.
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Problem 7 (10) By changing the order of integration, evaluate f f cos(ya) dydz . |
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Problem 8 (10) A uniform metal plate has the form of an isosceles right triangle having its two legs
both of length 1; find its moment of inertia about one of its legs L, taking the density § = 1. _
(Place the triangle in the first quadrant so the right angle is at the origin, and L lies along the y-axis.)
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Problem 9. (10) Consider the double integral sin(z — y) cos(z + y) dydz,

- - - . . R - ) -
where R is the square zy-region having its vertices at the four points &2 on the z- and y- axes;

Change it to a double iterated integral in wv-coordinates, where u =z —y and v=z+y.
(Give the new limits, integrand, and area element dA, but do not evaluate.)
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Definite integral formulas:

T 3 (n—1)1 1 n odd integer > 3;
sm“:cd:n:/ cos"zdr = ~———A4,; A ={ ' s ! = n(n-2)(n—4). ..
,/; A nplt Tmoom 7/2, neveninteger>2 n{n-2)(n—1)
A

Problem 1. (30: 5 each) The cube shown has edges of unit length. c
Vg

a) Find the i j k-components of the vectors AB and OC, and use
them to find cos(@), where @ = the acute angle between AB and OC. ]

b) 0 =(0,0,0), A=(1,2,-1), B=(-1,1,1) are the vertices of a space triangle, find OAx OB
and the area of the triangle.

¢) If A, B, and C are vectors in 3-space, circle those expressions which make sense, put a diagonal
line through those which do not (for each: +1 if right, -1 if wrong, 0 if unmarked).

(A-B)C A-(B-C) (AxB)-C (AxB)xC A x(B-QC)
1 0 -1 __
d) Let A= 2 1 1 |. Inthe matrix A~?, what is the entry in the lower left corner?
-1 1 2 '

e) For which value of the constant a is the line given parametrically by
x=1+4+t y=1-t z=2+al parallel to the plane 2z +3y+2=27

f) For which value of ¢ is there a non-zero vector (z,y, z) perpendicular to each of the vectors
(1131_1>| (2 C,l), (1 1 2) ?

Problem 2. (20) OP = r = (4cost,—3cost, 5sin t) is the pos1t10n vector for a point P moving in
3-space. (In each of the questions, show work or indicate reasoning.)

a) (10: .4,3,3)_ Find its velocity vector v, its speed %t-
d_T.‘
ds |

¢) (5) Show that P moves in a vertical plane containing the origin.

, and its unit tangent vector T -

b) (5) Find its curvature k =

Problem 3. '(20: 8,2,5,5) For the function w = y(1 + z) + sin(zy),
a) Write an approximate formula showing how Aw -depends on Az and Ay, at the point (0,1) .
b) At the point (0,1), is w more sensitive to = or y? (give reason)
c) Find the directional derivative _ci_t:l at the point (0,1) in the direction of the vector 3i —4j.

d) Starting at the point (O 1), what is the minimal distance’ you could travel_tow
w by .27 (show work or indicate reasoning) = -

Problem 4. (15) Some level curves for a function w = f(z,y) are
shown, with a unit distance u in the zy-plane.

a) At the point P, draw in the gradient vector (gradf)p
(Use u to estimate its length.)

b) Estimate the value of (%) at @.

7}
c¢) Mark a point R where f(R)=3 and 8_;) = 1



Problem 5. (25: 5, 10, 5, 5) A wooden rectangular drawer with a capacity of one cubic foot is to be
constructed. The wood costs $1/sq.ft. for the bottom and the back, $2/sq.ft. for the two sides, and
$3/sq.ft. for the front; there is no top. Let = be the end width, y the side width, and z the height, and
C the total cost. What values for z, %, z minimize the total cost?

a) Show this leads to minimizing C = 2y + e + *

b) Find the minimizing values for z,y,2 .

¢) Use the second derivative test to show it is actuelly 2 minimum.

d) Give one of the equations for the Lagrange multiplier method, and use it to determine the value of
the multiplier ) corresponding to the minimum.

Problem 6. (10) Where does the tangent plane to the surface £+ 2y*+32z% = 12 at the point (1,2, -1)
intersect the y-axis?

Problem 7. (15: 7,8) Let w = w(z,y), and let , 8 be the usual polar coordinates.

a) Express B and 0 in terms of wz,w,,r and 6.

b) If the gradient Vw at the point (z,y) = (1,1) has the value 2i +3j, find the value of %:’- and %%u
at this point. ’

Problem 8. (15) Let w = zy -+ zz + ¥z, where the variables z,y, 2 are not independent, but constrained
by a relation y = f(z, 2).

Express % in terms of z,y,z and the formal partial derivatives fz and f.. You can use either
method: the chain rule or differentials.

Problem 9. (10) Find the volume of the region in space lying under the graph of z = z2 -+ and over
the triangle in the zy-plane having vertices at (0,0), (1,0), (0,1). -

Problem 10. (15 5,5,5) Let R be the upper half of the circular disc of radius a centered at the origin.
Express the average distance of a point in R from the z-axis by an iterated integral in

(a) rmtmgﬂm coordinates; and (b) polar coordinates;
(c) evaluate the integral in either (a) or (b).

1 1 dydm
Problem 11. (10) Evzaluate f / —=—— by changing the order of integration.
(10) o ) Vi y changing g

Problem 12. (15: 7,8) Using polar coordinates for both parts,
a) set up an iterated integral giving the moment of inertia about the y-axis
of the pictured shaded semicircular region R of radius a. Assume the density

.0 =1. Do not evaluate. \a ::

b) Calculate the moment of inertia about the y-axis of the entire circular disc
(6=1).
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Problem 1.
a) In the zy-plane, let F = Pi + Qj. Give in terms of P and Q@ the line integral
representing the flux of F across a simple closed curve C, with outward-pointing normal.

b) Let F = azi + byj. How should the constants a and b be related if the Aux of F over
any simple closed curve C is equal to the area inside C7

Problem 2.
A solid hemisphere of radius 1 has its lower Hat base on the zy-plane and center at the

origin. Its density function is § = z. Find the force of gravitational attraction it exerts on
a unit point mass at the origin.

Problem 3.
Evaluate ] (y —=z)dz + (y — z)dz over the line segment C from P : (1,1,1) to Q : (2,4, 8).
c

Problem 4.
Consider a solid sphere of radius a with center at the origin; let H be its solid upper

hemisphere (i.e., the part above the zy-plane). Set up a triple integral in spherical coordi-
nates which gives the average distance of a point in H from the zy-plane.
(Give integrand, limits, and the constant factor in front, but do not evaluate.)

Problem 5.

Let C be a solid right circular cone having base radius 1 and vertex angle 60°. Set up
an integral in cylindrical coordinates which represents the moment of inertia of C about its
central axis; assume the density § = 1.

(Place the cone so its axis is the z-axis and its vertex is at the origin; supply integrand
and limits, but do not evaluate.)

Problem 6.

a) Let F = ay?i + 2y(z + 2)j + (by® + z?) k. For what values of the constants a and b
will F be conservative? Show work.

b) Using these values, find a function f(z,y, z) such that F = V f.

Q
c) Using these values, give the equation of a surface S having the property: f F.-dr=0
: P
for any two points P and @ on the surface S.

Problem 7. _ R
Let S be the surface formed by the part of the graph of the paraboloid z = z°+y* lying
below the plane z =1, and let F=zi +yj +(1-2z)k. .
Calculate the flux of F across S, taking the outward direction (i.e., the one pointing away
from the z-axis) as the one for which the fux is positive. Do this two ways:

2) by a method which calculates j f F-dS directly;
s
b) by using the divergence theorem.

Problem 8. - - '
Let S be the infinite circular cylindrical surfece given by the equation z*+y“ =1 having

the whole z-axis as its central axis, and let F = (zz - y)i +zyj +zk .

a) Calculate Vx F (ie., curl F).

b) Deduce that f f ¥V xF.ndS = 0 for any finite portion R of the surface S.

c) Let C be any closgd curve on S going once around S (and oriented as in the picture).
Show by using the result of part (b) and Stokes’ theorem that jg F .dr always has a

c
constant value independent of C, and determine this value.



Problem 9.

Let ¢(z,y, z) be a function with continuous second partial derivatives.
Prove that Vx V¢ =0

Problem 10.
An zz-cylinder in 3-space is a surface given by an equation f(z,z) = 0 in z and z alone;
its section by any plane y = ¢ perpendicular to the y-axis is always the same zz-curve.

Show that if F = i +3?j +zz k, then f ¥ dr = 0 for any simple closed curve C lying
c

on an zz-cylinder. (Use Stokes’ theorem.)

l
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