18.02 Practice Exam 1 (50 mins.)

1. (20) Consider the points in zyz-space P:(1.2,-2), @ :(-2,1,2), and the origin O: (0,0,0).
a) (6) Find the cosine of angle POQ.
b) (6) Find a vector perpendicular to both OF and OQ.
¢) (5) Find the xyz-equation of a plane parallel to the one through O, P and @, but intersecting the
z-axis at z = 2.
d) (3) Where does the plane you found in (c) intersect the z-axis?

1 3 2 31 -2
2. (20) Let A=[0 2 1 ]. Itsmatrix of cofactorsis (in part) C=[ -4 0 2
1 1 2

a) (15) Confirm (mentally) the entry —4 in C, then fill in the bottom row of C' and from this find A~
b) (5) Use the result of part (a) to solve the system

x4+ 3y+2z2=1, 2y 2 =2 z+y+2z=-1.

3. (8) Find all values of the constant ¢ for which the system of homogeneous equations
cr+y+4z=0, —z+y+z=0, y+cz=20

has a non-trivial solution (i.e., a solution other than x =y = 2 = 0)

4. (12: 10,2) Scotch tape is being peeled off a stationary roll, modeled as a circle of radius a, and center
at the origin. The end P : (z,y) of the tape is initially at the point A : (a,0) on the z-axis. During the
process, the pulled-off length of tape is always tangent to the rest of the roll — call the point of tangency
() on the circle, and of the two possible directions for the pulled-off tape, it’s the one where the sticky
side faces away from the roll (not towards it).

a) Use vector methods to derive parametric equations for x and y in terms of the central angle
AOQ =0, for 0 < 6 < 27. Show work, indicating reasoning.

b) Show on a separate sketch where P is when 6 = 7, and verify that your equations give the correct
position of P when 6 = 7.

5. (20) A point P moves in space so that its position vector is given by

OP =r = (cost)i + (V2sint)j + (cost) k .

S
, and its unit tangent vector T .

a) (10: 5,3,2) Find its velocity vector v, its speed T

dT
ds ’ | Wakd,
¢) (5) At what point(s) in the zz-plane does P pass through this plane? 4 (/ (Jp(-’a‘* [

b) (5) Find its curvature s =

6. (10) At what point P on the line given by the position vector r(t) = (1+¢, 3 —¢, 14 2t) will the
origin vector OP be perpendicular to the line?

7. (10) A point P moves in the polar coordinate (r,#)-plane so that its velocity vector at time ¢ is given
in the u,, uy system by v =2u, + 2uy.

At time t = 0, the point P has coodinates r =1 and 8 = 0.

Answer the following, showing work or brief indication of reason.

a) How long is the path that P travels from ¢t = 0 to t = 37

b) How far is P from the origin when ¢t = 37

) What angle does the path of P make with its position vector, when ¢ = 37
)

e
d) Where is the point P at time 7
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18.02 Practice Problems for Exam 2 (75 mins; Exam 2 is 50 mins.)

1. (20) For the function w = y(1 + ) + sin(zy),
a) Write an approximate formula showing how Aw depends on Az and Ay, at the point (0,1) .
b) At the point (0,1), is w more sensitive to = or y? (give reason)

. dw . : . : :

¢) Find the directional derivative d_‘ at the point (0,1) in the direction of the vector 31 —4j.

S
u

d) Starting at the point (0, 1), what is the minimal distance you could travel to increase the value of

w by .27 (show work or indicate reasoning)
2. (15) Level curves for w = f(z,y) are shown; u is a unit distance.

a) At P, draw in the vector (Vf)p. b) At @, estimate (%)

¢) Mark a point R where f(R)=3 and w, = 0.

3. (25) A wooden rectangular drawer with a capacity of one cubic foot is to be constructed. The wood
costs §1/sq.ft. for the bottom and the back, $2/sq.ft. for the two sides, and $3/sq.ft. for the front; there
is no top. Let x be the end width, y the side width, and z the height, and C the total cost. What values
for x,y, z minimize the total cost?

a) Show this leads to minimizing C =2y +2/z+4/y .

b) Find the minimizing values for x,y, z .

¢) Use the second derivative test to show it is actually a minimum.

d) Give one of the equations for the Lagrange multiplier method, and use it to determine the value of
the multiplier A corresponding to the minimum.

4. (10) Where does the tangent plane to 2%+ 2y* +32% = 12 at the point (1,2, —1) intersect the y-axis?
5. (15) Let w = w(z,y), and let r, @ be the usual polar coordinates.
w w
a) Express — and — in terms of w,,w,,r and .
R Y

i nd gl t thi int
o a 50 a s point.

6. (15) Let w = ay + zz + yz, where the variables z,y, z are not independent, but constrained by a

b) Vw = 21 +3]j at (1,1); evaluate

. dw . -
relation y = f(z,z). Express a—) in terms of x,y, z and the formal partial derivatives f, and f..
Y

You can use either method: the chain rule or differentials.

7. (10) Find the volume of the region in space lying under the graph of z = 2% +4? and over the triangle
in the zy-plane having vertices at (0,0), (1,0), (0,1).

8. (20) Let R be the upper half of the circular disc of radius a centered at the origin. Express the
average distance of a point in R from the z-axis by an iterated integral in
(a) rectangular coordinates (b) polar coordinates (¢) evaluate the two integrals

1,1
9. (10) Evaluate f / . by changing the order of integration.
0 Jx 1+ ?;'2
10. (15) Using polar coordinates and taking density § = 1,
a) set up an iterated integral giving the moment of inertia about the y-axis
of the pictured shaded semicircular region R of radius a. Don’t evaluate it.
b) Calculate the moment of inertia about the y-axis of the entire circular disc.

Definite integral formulas:

¥, n— 1N 1, n odd integer > 3:
/ sin"zdx = / cos" xdr = (———Lx‘in i An = .o T 7 all=n(n-2)(n—-4)---.
0 0 n!! 7/2, n even integer > 2;

[SE]
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