6.004-Fall 2011

Synthesis of Combinational Logic

Lab 1 is due Thursday 9/22
Quiz 1 is Friday 9/23 (in section)
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Functional Specifications

There are many ways of specifying the
function of a combinational device, for

—
example: Argh... I m tired of word games
A
| IfCis 1 then Y
B Pkt al—— Truth Table
— otherwise copy —
C AtoY c B Aly
00 o0fo0
00 1|1
Wa/dj o1 o0fo
Conclse alternatives: 01 1|1
truth tables are a concise description of the combinational 1 0 0j0
system’ s function. 1o 110
Boolean expressions form an algebra in whose operations are : : ? :

Ultiplication), OR (addition), and inversion

(overbar). Y=CBA+CBA+CBA+CBA

(an Sty 1
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Any combinational (Boolean) function can be specified as a truth
table or an equivalent sum-of-products Boolean expression!
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f {a)l proal(
Here' s a Design Approach W& 1, by}
Vokgn eypresian

1) Write out our functional spec as a

Truth Table e rb bl
—

C B A|Y -+ 2)WritedownaBoolean expression

0 0 0]0 ) withtermscovering each ‘1" inthe

0 0 1|1 output:_v  __ . |

o il al Y =CBA+CBA+CBA+CBA{ ||

B [ 1 S " 7 A

1 0 0fo - b | aF (o

1 0 1f0 LB

I : /

101 11— _3)W_':r-e up the gates, caII_E_a!ga% and
declaresuccess!

-it' s systematicl

< ppinn? . This approach will always give us

-it'
) -are we done yet777
~
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Boolean expressions in a particular
form: SUM-OF-PRODUCTS

S—
9720111
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Straightforward Synthesis .
J ’(Gx)lf hot \/\6«/ 1(31 ,‘nfkwt[-

We can implement
SUM-0F-PRODUCTS

A
with just three levels of EED—
A
logic. B v
A
B
INVERTERS/AND/OR A
—B—
Propagation delay -- e (o thems w} = ovt/

No more than 3 gate delays
(assuming gates with an arbitrary number of inputs)

\wo gt Cae for aa,\l boljlw;\ exprgbeﬂm
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Basic Gate Repertoire
There are only so many gates

Are we sure we have all the gates we need? these gates

canbe

——————
Just how many two-input gates are there? There are only 16 possible 2-input gates rplenensed
P y 1op 4 uSg3 STe
Wit ... some we know already, others are just silly i
Ko Ny AND  OR  NAND  NO : ?
L Bly aABly aBly A4B|Y . B
Pz XNl [N [N
C\,o‘:l”\ 00,0000, .00L .. 00,14 uUlE 4 a B X NE olBlalo
ot|o o01|1 oO01|1 O01]0 TR N> > oo OiT«=T¢=NN
10lo 10|11 10|11 10]o0 ABlo/D B A A B RR RIBIB[AlAIDE
00|00 0 0 0 O 0 O 1111111
1j1 111 Elko 11) 0 01{0j0 0 0 1 1 1 1 olojo|t]1]1]1
10(0j0 1 1 00 1 1 of1/1|ojo |11 {
CheAPL 1 _o} 1 01010 100/1lo1lo)1lo1 le‘teé

Hmmmm... all of these have 2-inputs (no surprise)

. - . . 9 2
- each with 4 combinations, giving 2% output cases CMOS gates are inverting; we can always respond positively to positive

2
2 2= 24-16 Gt {[m transitions by cascaded gates. But suppose our logic yielded cheap

How many ways are there of assigning 4 outputs? o l positiye functions, while inverters were expensive...
Ryh Colvtn )@ ' l d=l
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wo Vplve v oy a5 1) D)
% ot Yunifos 00 l¢ dppese F mpf
Logic Geek Party Games Fortunately, we can get by with a Wes. ..
You have plenty of ANDs and ORs, but only 2 inverters. Canyouinvert
more than 2 indeTp?rldént inputs? AND, OR, and NOT are sufficient... (cf Boolean Expressions):
y 2y 7| | B>A XOR
EERy ‘ >
1SS wwddt || RB X
c —C = 57 >

CHALLENGE: Come up with a combinational circuit using ANDs, ORs, and
at most 2 inverters thatinverts A, B,and C!

hofe mutters

That is just —— —
Such a circuit exists. What does that mean? t},mg“m,’ AB=A+B iy ol
- If we caninvert 3 signals using 2 inverters, can we use 2 of the pseudo- :33— — j}‘ e
inverters to invert 3 more signals? _. bw'
- Doweneed only 2 inverters to make ANY combinational circuit?No = e
Hint: there' s a subtle difference between our 3-inv device and three A+B=AB
combinational inverters! = =
e ey "
Is our 3-inv device LENIENT? Ny How many different gates do we really need?
6004 -Fall 2011 9r2011
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One will do!
e mp](%.wc M'fh"ﬂj
\/5. j\JV‘} M

futing b R
0 o D = = D
D@:D:%ﬂ}

D= D= DD

Ahl, but what if we want more than 2-inputs?

NANDs and NORs are universal:
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Stupid Gate Tricks

Suppose we have some 2-input XOR gates:
told

s> )

And we want an N-input XOR:
—— )

C an (g, l{
8 * b output = 1
5 DED‘\I)I >— - D iff number of 15
A1:) input is obD
t,4=0(_N ) -- WORST CASE. (“ODD PARITY")
——

Can we compute N-input XOR faster?
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| think that | shall never see

J]'(Q( ) acircuit lovely as.. d’(/
22 }:) m(rea}e prh} /
U b
’ IugzN fl’ {A(‘fb

N-input TREE has O( logN )levels...

Signal propagation takes O( __ 98N ) gate delays.

Question: Can EVERY N-Input Boolean function be implemented as a
tree of 2-input gates? MJ.\ MA
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5] ? You asking
(er S‘L’dhﬂw,r Are Trees Always Best? a0
Alternate Plan: Large Fan-in gates p {
* N pulldowns with complementary pullups
* Output HIGH if any input is HIGH = “OR”

¢ Propagation delay: O(N) since each
additional MOSFET adds C

Don’ t be mislead by the “big 0" stuff...
the constants in this case can be much
smaller... so for small Nthis plan might
" “bethebest. BT

—

0(logN)
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how G p 00N

R
i
Practical SOP Implementation c)’\p?’ ,
4 ""*\Mll help at
NAND-NAND A_B=K+B- Pushing Bubbles TW :/
¢ 3> 4 au‘;gn f)(ou
Al o Al
Y re— Y
Bl -_— \
Ao Wt (Gt
i iy AC+AB+BC
NOR-NOR BE=AR ]
it i
N T
AC +AB+BC

Youmight think all these extra /
Inverters would make this structure
less attractive. However, quits the
oppositels true.

ead

b

—

Logic Simplification

e know ule

Can we implement the same function with fewer gates? A )
Before trying we' Il add a few more tricks in our bag.

BOOLEAN ALGEBRA:
ORrules: a+1=1,a+0=a, a+a=a
ANDrules: a1=a, a0=0, aa=a
Commutative: a+b=b+a, ab=ba

Associative: (a+b)+c=a+(b+c), (ab)ec=a(bc)
Distributive: a(b+c) = ab + ac, a+ bc = (a+b)(a+c)
Complements: a+a=1, aa=0
Absorption: atab=a, at+ab=a+b

a(a+b)=a, a(@a+b)=ab
Reduction: (a+b)@+b)=b

DeMorgan’ s Law: a+b=ab, ab=a+b
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s \%5 NTAN
Simple,) gt pabe gk
lmpPl
Boolean Minimization: Pty G/ : el & st P'{‘f \
. ‘ A Case for Non-Minimal SOP N Lusle gy
An Algebraic Approach — oty )l M i
Can’ t he come up gﬁ'}m ‘,QP‘M hr
L ( . I) . H:y with a new example??? C B Y b 3 P (A, 'W)
s (again!) simpli — —
0o0o0|o BT
Y =CBA+CBA+CBA+CBA T _—)_' teo=1n5 g "
\4__ Y=CA+CB_ tewp=2n5 ___—'w;p::['l':
Using the identity 01 0l0 CA 2 & vl
z ; NOTE: The steady state bghavior of
ad+ad=a '( vl Lﬁl‘lﬁs 0“7 , g LY thesecit:;tsals{dentical.hhs; . Pf%a#w’\ JQ {
, , 1) i 100]|o0 aiffeiurhentranoen o ) ™ f "
Forany expression Ol and variable \: 3 0 C “'!’J # F 9«1(61
l bﬂ't" I Hey, | could write | N
Y:CBA+CBZ:+CBA +CBA (on Lg.whw APMQT;:!:!WGIO 1 110 T c _—i},o—w{ A l
i it L1119 ; s
Y=CBA+(/?1/3’;CBA 2 \.
\ S & =
Y =CA+CB BA s_:j:}f_ Nowt' o
{ﬁ‘ { ou\gpﬁ'w Y =CA+CB+AB . “i’;?afcl
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what f Jadwre Fixed /

Truth Tables with “Don’ t Cares”

We’ ve been designing a “mux”

. 3\"b‘/,gm- an N-ing::::uncgf

Is this practical for BIG truth tables?

euh Ca

» What does

[
One way to reveal the opportunities for a more compact implementation is Trithidiable Coﬂ'ﬂk((lkd
to rewrite the truth table using “don’ t cares” (--) to indicate when the : 5.0 Dy D, WIJ
valueofaparbicularinputisirrelevantIndeterminingthevalueofthe[ l— 00 1|1 ‘_5 teg
output. o1 ofo e
"t cealy s B FR S
P C B A|Y
00 o0|o [ e b 0 ar il
Co‘ 1 Ll
00 1|1 -> 0 - 0|0 6
— c o
- |:> o - 1 —CA Ohu MUXes can be generalized to 2% data ... and implemented as a
o1 1|1 [e 10 -|0 inputs and k select inputs ... tree of smaller MUXes:
1 0 0|0 M
11 ~|(1
10 1|0 —CB Poo 0 Doo
- 0 0|0 .' Dm Dg1so e B v
11 0|1 Llﬂf/ o Orhw Dy +
1 1 111 -1 1117 —BA ’fre é i {
So
(/51 %ﬁ P{,ﬁt:
/P/; So 54
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Systematic Implementations General Table Lookup Synthesis
of Combinational Logic e e T
Consider implementation of some arbitrary Boolean 1oy vy A Y i
function, F(A,B,C) ... using a MULTIPLEXER AB|Fn(A,B) l l ol s = =0 :
as the only circuit element: ll‘l/‘b Full-Adder 00 0 i ¢
{ Cmc Carry Out Logic 01 1 MUX A .
\let n \ 0] 1—— Logic [ Fn(AB) g?‘Y= = 2 (S ¢
0—10 11| o— :
A B Ci|Con 0 - i hadpop
0 0 O 0/ — | m(N
B A Y FWJJ
0 0 10 2 Generalizing: il ?“Y= B /”ﬂ@
01 o0lo 3 Intheory, we can build any 1-output combinational 2 ;
01 111 g logic block with multiplexers. InFatars tochnologles
1 00jO0 weneeda_ 2" input mux. mixesmlghwefhe
1 0 1 1 6 —=__np natural af.i.“
1 1 01 7
1 24

n T
6004 -Fall 2011
b0 Thad i

How about 10-input function? 20-input?

why we (onl

Y E/mrmdoz
A
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Nt wese of mu“}\pk’ﬁef

el ¥ e
Gouot sase WL M1

. . . G i
A New Combinational Device -t looks i |1 / Read-only memories (ROMs)
S e I AT - -
Full Adder @ — Each column s large fan-in “OR” as described
4 ‘—A_B_h_' onslide #12. Note location of pulldowns
D1 DECODER: / ; S . Je.(m,.“} ;a . cnrrenpondfna “1" output in the truth table!
—‘. D, k SELECT inputs, ° : U\k“ Pb“a_-jr = T ‘7:”: 7::5“:" 5y5f8~14}tl(
: N = 2% DATA OUTPUT rertions QL =5 204 o (T ! b4y o
' = S Imcmsu " ‘Shared i - : n
=, [ Selected D HIGH; for 1" and A B S5 G ‘| decoder | fr—rA ForK inputs, decoder
all others LOW. LO¥methe 0 o o|0 o0 ' Tt produces 2* signals,
k A | s ‘0" o o 1|1 o0 : : only 1 of which is
ON (ﬂL h‘tﬂl &f‘l&r\. LHH’) /A o 1 0l1 o g asserted at a time --
[} o 74 le‘ |8 g5y ot [ think of it as one signal
NOW, we are well on our way to building a general L iol|  foreachpossible
purpose table-lookup device. ol g oL 7 productterm.
1 0 1|0 1 = ﬁ Ahp R
We can build a 2-dimensional ARRAY of decoders and LR 2 7z ¥ ¥
selectors as follows ... LY " g "N\ One column for
our each output
g %\; nfel i
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OQ Ean hfﬁh !&fﬁ I Y
Capayat
Read-only memories (ROMs) Logic According to ROMs
—
Full Adder 8. — | ONG LINES slow d
AB e ROMs ignore the structure of combinational functions ...
The best way to improve this is to build s Size, layout, and design are independent of function
c, g square arrays, using some inputs to drive L * Any Truth table can be “programmed” by
' S s & 5‘0'}?1 "5 minor reconfiguration:
5 better
PN e - Metal layer (masked ROMs) "
— ol - oﬂ - Fuses (Field-programmable PROMs) O z’;"d:;:ch |
} » generate “glitchy” |
R il O C:;crge onfloating gates (EFROMs) outputs. WH :
o ol T .. ete. i A f ],
Nol ljtat
ol ek Model: LOOK UP value of function in truth table... ‘
180T 5 $ ung 05 Inputs: “ADDRESS” of a T.T. entry
N L = ROM SIZE = # TT entries... i
11 ofo 1 ?{‘Mab 5|5d ... for an N-input boolean function, size = Gl
11 1|1 1 | i ; ‘
2D Addressing: Standard for ROMs, RAMs, legic arrays... 6 I'.K CIO&C DPQ
8004 - Fall 2011 912011 LO4 - Logic Synth, 13 6004 -Fal 3011 fo P Z’:f[’ {0 ‘ﬁ GJP‘.}S 04 - Logic Sy
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Summary

+ Sum of products

+ Any function that can be specified by a truth table or, equivalently,
in terms of AND/OR/NOT (Boolean expression)

- “B-level” implementation of any logic function
+ Limitations on number of inputs (fan-in) increases depth
S0P implementation methods
+ NAND-NAND, NOR-NOR
Muxes used to build table-lookup implementations
+ Easyto change implemented function -- just change constants
* ROMs
Decoder logic generates all possible product terms
Selector logic determines which p’ terms are or’ ed together

6004 -Fall 2011 9520111 LO4 - Logic Synthesis 25




S%vmw(/‘ Cleits
Sequential Logic:
adding a little state

O, O
IS

ol
o W g, OQ el
5 4

o~

‘ .
Lab #1 is due TODAY Oﬁbl‘t@é
\
(checkoff meeting by next Thursday). Mlﬂ\/\

dn‘q

QUIZ #1 Friday!
(covers thru L3/R3)

fomaroy | 7

Bofwe: no state Otpt 0l deppadedt o1 /jzﬂ//'

PHYSICS: Continuous
variables, Memory, Noise,

F(RC)=1 - e+

6.004: Progress so far...

o

COMBINATIONAL: Discrete,

memoryless, noise-free,
lookup table functions

What other
building
blocks do we
need in order
to compute?

LOS - Sequential Logic 2

\ 1
6004 - Fal 2011 | . modted /19411 141 LOS - Sequential Logic 1 6004 - Fal 2011
Nevg Sesdm 1190100 7714
: ’ : Digital State
Somethmg We Can’t Build (Yet) ﬁﬂk m:{q One model of what we'd like to build \/(’ t\q
- ( 1 W
What if you were given the following design specification: " ‘lma’ New d
: — o 47 Meuwory
i W“;;‘:f,‘,‘;,:;:%‘;gﬁ‘#“* : e’ l[ ‘ V'} ‘De_il_ge Csu;;r;t Combinational
Z)T“'“W""k"‘" ) light R(J}ﬂ‘{ 0 ‘ﬂp —> LOAD Loai
e itlpmt&-“ gic
Sl 1

What makes this circuit so different
from those we've discussed before?

1. “State” - i.e. the circuit has memory

2. The output was changed by a input
“event” (pushing a button) rather
than an input “value”

6004 -Fal 2011 922 LO5 - SequentialLogc 3

Plan: Build a Sequential Circuit with stored digital STATE -

* Memory stores CURRENT state, produced at output

+ Combinational Logic computes

* NEXT state (from input, current state)

* OUTPUT bit (from input, current state)

+ State changes on LOAD control input

6004 -Fal 2011

ar22

LOS - Sequential Loge 4




Needed: Storage

Combinational logic is stateless:
valid outputs always reflect current inputs.

To build devices with state, we need components which store
information (e.g., state) for subsequent access.

ROMs (and other combinational logic) store information “wired in” to their
truth table

Read/Write memory elements are required to build devices capable of

changing their contents. \/59 PL,Q,“"

How can we store - and subsequently access -- a bit?
Mechanics: holes in cardsltapes
[940s

+ Optics: Film,CDs, DVDs, .
ks of el

* Magnetic materials
ar22

On 0N 11[0
6110& btb
&

LO5 - Sequential Logic 5

+ Delay lines; moonbounce
+ Stored charge

6.004 -Fall 2011

Storage: Using Capacltors

J) yvl goariﬁ

We've chosen to encode information using voltages and we know
from 6.002 that we can Wharge ona

capacitor:
5‘{__0___’(?/ i I — Pros:
- = + compact - low cost/bit
GFP lf - (on BIG memories)
0 or Uﬂﬂ line Cons:
L N-channel fet serves T Nov thﬂoadf complex interface fe‘.C! a-r’
Qd(i as access switch ¢ stable? (noise, ...) [ewﬂl, ¢

¢ it leaks! = refresh&

Moveateqly clow

e, £
)U} P'+ To write:
f' I Drive bit ling, turn on access fet, Suppose we refresh
it v force storage cap to new voltage gy - CoNTRUOUSLY?
To read: [y

fase {a

precharge bit line, turn on access fet,
detect (small) change in bit line voltage
9522

6004 -Fal 2011 LOS5 - Sequential Logic &

o e am uprém[ M\NH‘{/

O

arge Shynage

4[\:7\0{6’” ’ILGCIO
Storage: Using Feedback bishible —7

s>

IDEA: use positive feedback to maintain storage indefinitely. 5"71‘?"6 15{‘14’;
Our logic gates are built to restore marginal signal levels, so 0 O {l
noise shouldn’t be a problem!

Result: a bistable

DO—DO_— storage element
VOUT

vIN
h Not affected
_‘(I.Ciﬂf : Feedback ct:nsl:ralnté‘,e tmf] by noise
inverter pair Vie=Vour {{
Vour \,,f--m 3 Three solutions: \ M l‘lﬁh&blﬂ

7

{

* two end-points are stable
* middle point is unstable
Hosa e

Stafe ™
/ \/\
We' Il get back to this!

[ eafire (et

LO5 - Sequentia Logc 7

T2l
hhe l4f‘¢r L
3 9(0'{'/&5
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peti=gaed

Settable Storage Element
b gl bistuble boluy,,

It's easy to build a settable storage element (called @ latch)
using a lenient MUX:

Here's a feedback path,
soit's nolongera

“state” signal

8004 - Fall 2011 LOS - Sequential Loge &

ﬁ:amb'n:ﬁnnalcircuif“ (( i’pp}::ta;:::::pt:t
a o} G DA | Q
] " 5
&G’ D=2 6{-¢|€ 8 . ? ? \IJ’ Qstable} 5*’5/(’.,5 C
’Q?eu;'\% G I { (;:" 1 (1) : ? } Q follows D
f
(\‘hmF"q ( {(a,ble ')'(’,m\‘-\dl) ?:f 455

=

7D ~ Lat



\Hmw Cin e QU 1 o of 12 the {on]
i g oud ~but ¢/l
. i b i
New Device: D Latch A Plea for Lenience... W /ital hee
4 @i pon bl
o— f
G="1: G=0: o D aﬂz Cﬂmb‘ of qu
Q follows D Q holds . X v X va 1’
Q : dn 1T o hekd
’ — Q G ‘t
a o IO Ay, 0 : able fip,
—q hafte, f ° @ XX Xz
D TR N \ what G 0 ! - s d@m f@am
e {Af@M 0 ;) J
ot Cwitly il W b
X x vz Assume LENIENT Mux, propagation ¢
EH i e (lla‘l-d‘ rfm‘m ° :ela of T, e —
Tro 0 i @ Does lenience guarantee a
=gl .
= il BUT... Achangein D or G Lo il WOI"kll"lg latch?
' bo QrERG contaminates Q, hence ¢ &=, D atablafor Ty,
T Fow can this independently of Q; or @ What ifDand G
A . ¥ LA possibly work? - @' =D stableforT,,, P change at about the
G="1:QFollows D, independently of Q fndependent{yafG,rgr' @ same time...
G=0:QHolds stable @', independently of D . 6=0,Q" stable forT,p,
ma'ependent{yafﬂ
retd all o ﬁe/z,
6.004 - Fal 2011 9r22 LOS - Sequential Logc 9 6004 -Fal 2011 ’ID Q‘l» F vl-g WL\ 9/22 LOS - Sequential Logic 10
6 v
lﬂ'\ ) D (ag e
... with 1 little discipline Lets tryit out!
i K Y ok
\ DStable 4
Q D va- T New
— G i State
D G \ D Q
Current
G —_ State Combinational
Q ) EO S
et ogic
To reliably latch V2: e \/
- i i R Input Output
* Apply V2 to D, holding G="1 T T
. \ SETUP  'HOLD
AR T Bappealean e=a’ gy i Plan: Build a Sequential Circuit with one bit of STATE -
- After another Tpp, @ &Dboth Dynamic Discipline for our latch:
valid for Typ; will hold @=v2 | ] Toi = 2T Interval prior£06 + Single latch holds CURRENT state Wh:f' "ZPP:';S
SETUP —__ PD" when G=
l:]DV = independertly of G 4 hﬁlt we é« o transition for whichDust be - Combinational Logic computes L
Mé 9 + Set G=0, while Q" &D hold Q=D stable & valid - NEXT state (from input, current state)
* After another Typ, G=0 and Q' Tyop = Tep: Interval following G 7
Mé Ilﬂd are sufficient to hold Q=V2 -ﬂutra:gition for which Dinust be "‘QEI.PUT W oo ipub.euncons etatel
*PD independently of D stable & valid + State changes when G = 1 (briefly!)
6004~ Fall 2011 po (] I‘Of eer !‘T{ orz2 105 - Sequential Logic 11 6004 - Fal 2011 o2z . LO5 - SequentialLogic 12
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T o

Fansaren = 0pfn

Combinational Cycles

D Q
Combinational
Loglc

... provides a combinational path from D to Q.

Current
State

Input Output

Looks like a stupid
Approach tome...

o

When G=1, latch is Transparent...

Can’ £ work without tricky timing constrants on G=1 pulse:
* Must fit within contamination delay of logic
~ g —

* Must accommodate latch setup, hold times

Want to signal an INSTANT, not an INTERVAL...

Flakey Control Systems
Here's a strategy f . - P
for saving 3 bucks B
on the Sumner
Tunnel!

6004 -Fal2011 — ez LOS - Sequential loge 13 arzz LOS - Sequential Logc 14
(rtoay_o paﬂ i Vq,L/gJ m‘g
Q, nly [ open ¢
Escapement Strategy Edge-triggered th Flop U &
J Pea posshle f
lateh is open when
the clock is low T&
The Solution: p—={D aF—D ar>=a D—D Qr>aQ
Add two gates @ Whisciie master slave o
G — CLK — 1>
and Ol’lly open % L’q The gate of this
’__'_-‘ latch is open when
ensara |('l\J'pJ ’ ::alock :high
or\‘ Observations:
transtionsmark — # only one latch “transparent” at any time:
Instants, not. in ls "
/ e ¢ master closed when slave is open
¢ slave closed when master is open
0 = no combinational path through flip flop
., (the feedback path in one of the master or slave latches is always active)
¢ Q only changes shortly after O —1
transition of CLK, so flip flop appears _f_\
to be “triggered” by rising edge of CLK
6004 -Fal 2011 o2z LOS - Sequential Loge 15 6,004 - Fall 2011 o/22 LO% - Sequential Logic 16




, o
Flip Flop Waveforms c}gh,‘k f Yimiyg
J e

D—D Q@—D ar= D—D Qr>a

master slave

I:OE I—‘G
CLK

o LML pep el ad
o T LT L b, st

sﬁrm
a_l S R
LY__AW._) '

., slave closed
master open

2]

CLK ==

master closed ,.~
slave open

a/22

——olﬂx_y oot op Hmﬂ

L05 - Sequential Logc 17

|
requilta,
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d\(w [lL QJ ‘5?];/,

Um, about that hold time...

The master’ s contamination
delay must meet the hold
time of the slave

D D G‘t‘% Q
master sl
I—;O G |—> G
CLK

Consider HOLD TIME requirement for slave:

* Negative (1 —0) clock transition = slave freezes data:
gl btk
* SHOULD be no output glitch, since master held constant data; BUT
» master output contaminated by change in G input!

—_—
* HOLD TIME of slave not met, UNLESS we assume sufficient
contamination delay in the path fo its D input!

‘-h-‘-'_‘—-—
Accumulated t¢, thruinverter, G — Q path of master must cover
slave t,, , foFThis design to workl

need 1049 G/“’vat‘
ot () evof pasy of Tros ¢
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Flip Flop Timing - |
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>tw—- - mwa
Q :@(:C\O(}\L

CLK QM&'
.

>Thow

t¢p: minimum contamination delay, CLK—Q %Vd‘ﬂt A6sme O LW(P

topnup: setup time
guarantee that D has propagated through feedback path before master ciosese Y'['e" (ﬁ d !"9/

\-'_-’-/_-—\__“‘\
tyop: hold time CIDGL (’/466

guarantee master is closed and data is stable before allowing D to change

CLK ==

tpp: maximum propagation delay, CLK—Q >Topmp
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Single-clock Synchronous Circuits
Cles) Smdl  cofuble

We'll use Flip Elops and Registers - groups of FFs sharing a clock
input - in a highly constrained way to build digital systems:

Does that
.r ~~ symbol
register?

Single-clock Synchronous Discipline

*No Gamﬁmlesm%# 30 'leb-fd‘k {‘ﬁd‘l

*Single periodic clock signal shared

g all clocked devices

+Only care about value of register data
inputs just before rising edge of clock

A

*Period greater than every
combinational delay + setup time
[ 0¥ . C‘hange 5avefi state -aﬂ'.er noise-
inducing logic transitions have
C\OQL Vil stopped!
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Flip Flop Timing - Ii

-'l(\eH, )(W, %,

Mo/t o

Model: Discrete Time w/ C[gclk Pﬁ/;’ﬂ X8

( Ullf"ﬂ b N
gl * b q Questions forregister-based desbgns eﬂ’ f St:u:e
regl req? + how much time for useful work ‘Metmory =
> > : % ¢ ¢ Current
(i.e. for combinational logic Device oo
GLK delay)? _hj_l = State Combinational
; Clock Logic
¢ does it help to guarantee a 47 L I'“W*\
minimum tCD? How about ¢ Input Output
| designing registers so thaﬂb@ lp “’6 E(\P-bm
Teoreg > THoLD.reg? i Nﬂ\mw Active Clock Edges punctuate time ---
+ what happens if CLK signal CO - Discrete Clock periods
Hegsniyative At thatwo "‘W"f} + Discrete State Variables
_ registers at exactly the
%= eireg1 + Fop1 > Priornirege same time (a phenomenOi’l & MQ/L b - Discrete specifications (simple rules - eg tables - relating
2 = Pppeg1 * troa < Poi = Torrupireg2 known as “clock skew ( Q‘Q,\’ \nﬂ.; 4 outputs toinputs, state variables)
+ ABSTRACTION: Finite State Machines (next lecture!
and (e i It Ha Stare MAMHES )
L |
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Tw b dioaan, Jicpliad (an Sl o Lot
~ d\umn 0 ﬂwu L glepiin
. ‘ v S e Summa
Sequential Circuit Timing . Rl i
Sequential~ Circuits (with memory):
" 13 ’
e L New Basic memory elements: P T b >
COR ™ ;
topg =3NS St + Feedback, detailed analysis => D 30000( N
top=2ns| Current R basic level-sensitive devices = i
[ o [ Compinatinal (cg,latch) o I
T ok P’ i g= ? + 2 Llatches => Flop Q B B
+ CD‘; Bns - Dynamic Discipline: Sty
Input e Output constraints on input timing < <
\ Svnchronaus 1-clock logic:
Questions: \Q/ \& +  Simple rules for sequential
{1 \‘-@ circuits
>1ns IG

+ Constraints on T, for the logic?

+ Minimum clock period?

)
>10n8 (Tppp+Tep, + Tor) \'\0\&& 0‘(!\\1@\\

+ Setup, Hold times for Inputs? -
(v

Ts=Tppy +Tsp
Tu=Tur-TeoL

This is a simple Finite State Machine ... more next lecturell

6004 -Fall 2011 N2z LOS - Sequential Logic 23

E@i

105 - Sequen

Yields clocked circuit with Tg, Ty
constraints on input timing

Finite State Machines
Next Lecture Topic!
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Two's complement /Qm(! 7 /2 3

From Wikipedia, the free encyclopedia

The two's complement of a binary number is defined as the value obtained by subtracting the number from a

large power of two (specifically, from 2N for an N-bit two's complement). The two's complement of the number then
behaves like the negative of the original number in most arithmetic, and it can coexist with positive numbers in a
natural way.

Two's Complement is referred to as Binary Number Representation (or BNR) in protocols used in Aviation
(ARINC_429).

A two's-complement system, or two's-complement arithmetic, is a system in which negative numbers are
represented by the two's complement of the absolute value;!! this system is the most common method of

representing signed integers on computers.'* In such a system, a number is negated (converted from positive to
negative or vice versa) by computing its two s complement An N-bit two's-complement numeral system can

represent every integer in the range —2N=1qp 2N-1q

The two's-complement system has the advantage of not requiring that the‘gd_@n_a.udwlgg;jphcircuitry
examine the signs of the operands to determine whether to add or subtract. This property ma e system both
simpler to implement and-capable of easily handting-irigher precision arithmetic. Also, zero has only a single
representation, obviating the subtleties associated with negative Zero, which exists in ones'-complement systems.

The method of complements can also be applied in base 10 arithmetic, using ten's complements by analogy with

moscomplenents  pas, o dy i ( os. + “

Contents 7y (Ootc
i @q )
? = 1 Explanation

~——01111111-= 127

= 1.1 Two's-complement numbers | 01111110 = 126

_ = 1.2 Making the Two's Complement of a number 00000010 = 2

[ m 1.3 Alternative conversion process | “ 0‘“0 00000 1 = 1
E = 1.4 Sign extension 3‘ =

' = 1.5 The most negative number ‘ Q000000 0: - Y

= 1.6 Why it works 1 11 111111= -1

= 1.7 Calculating two's complement ; , 11111110 = =2

= 2 Arithmetic operations ‘r E 1000000 1 =-127

= 2.1 Addition 5 10000000 =-128

m 2.2 Subtraction
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m 2.3 Multiplication P J

= 3 Two's complement and universal algebra "
= 4 Potential ambiguities in usage

‘ = 5 See also

‘ = 6 External links i
m 7 References |

Explanation

Two's-complement numbers

Two's complement numbers is a way to encode negative numbers into ordinary binary, such that addition still
works. Adding —1 + 1 should equal 0, but ordinary addition gives the result of 2 or —2 unless the operation takes
special notice of the sign bit and performs a subtraction instead. Two's complement results in the correct sum
without this extra step.

A two's-complement number system encodes positive and negative numbers in a binary number representation. The
bits have a binary radix point and the bits are weighted according to the position of the bit within the array. A
convenient notation is the big-endian ordering. In this notation, the bit to the left of the binary point has a bit index

of 0 and a weight of 2% Thé&Bit Indices increase, b;gne, to the left of the binary point, and decrease, by one, to the
right of the binary point. The weight of each bit Jif/éxcept for the left-most bit, whose weight is —2'. With this bit
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numbering, a two's complement number with m integer bits and n fractional bits is represented by the array of bits

U=0n-1,0m-2,...,01,9.A_1,Q_9,...0_,, (‘

0 e f{""‘4j tuctinal  bils *

The value of this number is given by the following formula.

m—2

—ley X 2™ 4 Y g x 2

i=—n

The left-most bit, also called the most-significant hit (MSB), determines the sign of the number, but, unlike the

sign-and-magnitude representation, also has a weight, —2™1 a5 shown in the formula above. Because of this
weight, it is misleading td"call this bit the "sign bit". =——

The two's complement enceding shown above ca? represent the following range of numbers

Ay |

Zero representation is l\ ‘L
0:0,0,...,0 ¥

'a

Ly

The maximum positive number i;‘g
2"t 27 :0,1,1,1,. .., 1,1
The minimum, non-zero, positive number (smallest absolute value) is

27":0,0,0,...,0,0,1
The minimum negative number is
37 5 10,08,0,:. 0,0
The maximum negative number (smallest absolute value) is

e T i T %, PR 1,1
Making the Two's Complement of a number

Positive numbers are represented in two's complement as binary numbers whose most significant bit is zero.
Negative numbers are represented with the most-significant bit being one, making use of the left-most bit's
negative weight. All radix complement number systems use a fixed-width encoding. Every number encoded in such
a system has a fixed width so the most-significant digit can be examined.

Algorithmically, to create a two's complement binary value:

1. express the binary value for the positive number
2. if the original value was negative,

2a. complement the value

2b. add one
3a. if the value is positive, add leading zeros to achieve the proper number of bits
3b. if the value is negative, add leading ones to achieve the proper number of bits
(3. replicate the MSB to achieve the proper number of bits)

In general, for a radix r's complement encoding, with r the base (radix) of the number system, an integer part of m

m—1_

digits and fractional part of n digits, then the r's complement of a number 0< N<r r " is determined by the

formula:

We can also find the r's complement of a number N by adding r™ to the (r-1)'s complement of the number i.e.,

09/23/2011 11:44 AM



Two's complement - Wikipedia, the free encyclopedia http://fen.wikipedia.org/wiki/Two's_complement

Alternative conversion process

A shortcut to manually convert a binary number into its two's complement is to start at the least significant bit
(LSB), and copy all the zeros (working from LSB toward the most significant bit) until the first 1 is reached; then
copy that 1, and flip all the remaining bits. This shortcut allows a person to convert a number to its two's
complement without first forming its ones' complement. For example: the two's complement of "0011 1100" is
"1100 010Q", where the underlined digits were unchanged by the copying operation (while the rest of the digits
were flipped).

In computer circuitry, this method is no faster than the "complement and add one" method; both methods require
working sequentially from right to left, propagating logic changes. The method of complementing and adding one
can be sped up by a standard carry look-ahead adder circuit; the alternative method can be sped up by a similar
logic transformation.

Sign extension

When turning a two's-complement number with a certain number of T pg————————— e BSSCLR
bits into one with more bits (e.g., when copying from a 1 byte variable  DPecimal|4-bit notation 8-bit notation

|2 sl ki
to a two byte variable), the most-significant bit must be repeated in all \[ 5 | 0101 | 00000101 |
the extra bits and lower bits. ‘f -5 | 1011 i 1111 1011 |
Some processors have instructions to do this in a single instruction. sign-bit repetition in 4 and 8-bit integers

On other processors a conditional must be used followed with code to
set the relevant bits or bytes.

Similarly, when a two's-complement number is shifted to the right, the most-significant bit, which contains
magnitude and the sign information, must be maintained. However when shifted to the left, a 0 is shifted in. These
rules preserve the common semantics that left shifts multiply the number by two and right shifts divide the number
by two.

Both shifting and doubling the precision are important for some multiplication algorithms. Note that unlike addition
and subtraction, precision extension and right shifting are done differently for signed vs unsigned numbers.

The most negative number

With only one exception, when we start with any number in two's-complement representation, if we flip all the bits
and add 1, we get the two's-complement representation of the negative of that number. Negative 12 becomes
positive 12, positive 5 becomes negative 5, zero becomes zero, etc.

The two's complement of the minimum number in the range will not have the e e e (e e

desired effect of negating the number. For example, the two's complement of  —128 | 1000 0000

—128 in an 8-bit system results in the same binary number. This is because a in{réft bits | 0111111 17
positive value of 128 cannot be represented with an 8-bit signed binary ;‘ = ===l Pt 0000
numeral. Note that this is detected as an overflow condition since there wasa L _add o L ,1090 st |
carry into but not out of the most-significant bit. This can lead to unexpected The two's complement of -128 results
bugs in that a naive implementation of absolute value could return a negative in the same 8-bit binary number.

number.

The most negative number in two's complement is sometimes called "the weird number," because it is the only
exception.[3][4]

Although the number is an exception, it is a valid number in regular two's complement systems. All arithmetic
operations work with it both as an operand and (unless there was an overflow) a result.

Why it works

Given a set of all possible n-bit values, we can assign the lower (by binary value) half to be the integers from 0 to
(2™1-1) inclusive and the upper half to be —2™1 to —1 inclusive. The upper half can be used to represent negative
integers from —2" to —1 because, under addition modulo 2" they behave the same way as those negative integers.
That is to say that because i + j mod 2" =i + (j — 2"°n) mod 2" any value in the set {j + k2" | k is an integer} can
be used in place of j.
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For example, with eight bits, the unsigned bytes are 0 to 255. Subtracting 256 from the top half (128 to 255) yields

the signed bytes —128 to 127.

The relationship to two's complement is realised by noting that 256 = 255 + 1, and (255 — x) is the ones'

complement of x.
Example

—95 modulo 256 is equivalent to 161 since

—-95 + 256

=-=954+2554+1

=255-95+1

=160 +1

=161
1 1 00 00 8 i |
1 1111 1111 255 :
= 0101 1111 - 95 i
|=========== ===== '
1 1010 0000 (ones' complement) 160 i
H 1 + 1 H
1 ]
lo o e e e e = e = = = = = = = = e e e e e
B e T T Sy U Sy |
i 1010 0001 (two's complement) “;EI .

Fundamentally, the system represents negative integers by counting backward and
wrapping around. The boundary between positive and negative numbers is arbitrary,
but the de facto rule is that all negative numbers have a left-most bit (most significant
bit) of one. Therefore, the most positive 4-bit number is 0111 (7) and the most
negative is 1000 (—8). Because of the use of the left-most hit as the sign bit, the
absolute value of the most negative number (|]—8| = 8) is too large to represent. For
example, an 8-bit number can only represent every integer from —128 to 127
(2~(8-1) = 128) inclusive. Negating a two's complement number is simple: Invert all
the bits and add one to the result. For example, negating 1111, we get 0000 + 1 = 1.
Therefore, 1111 must represent —1.

The system is useful in simplifying the implementation of arithmetic on computer
hardware. Adding 0011 (3) to 1111 (—1) at first seems to give the incorrect answer of
10010. However, the hardware can simply ignore the left-most bit to give the correct
answer of 0010 (2). Overflow checks still must exist to catch operations such as
summing 0100 and 0100.

The system therefore allows addition of negative operands without a subtraction
circuit and a circuit that detects the sign of a number. Moreover, that addition circuit
can also perform subtraction by taking the two's complement of a number (see below),
which only requires an additional cycle or its own adder circuit. Lastly, the two's
complement system allows a subtraction circuit to return 1001, equivalent to —0001,
for 0001 — 0010 rather than 1111. To perform the former, the circuit merely pretends
an extra left-most bit of 1 exists. To perform the latter, there must be a sign check, a
possible rearrangement of the number, and finally a subtraction.

Calculating two's complement

In two's complement notation, a positive number is represented by its ordi inary

representation, using enough bits that the high bit (the sign bit) is 0. The two's complement operation is the
negation operation, so negative numbers are represented by the two's complement of the representation of the

absolute value.

i = |
Two's

;Decimal complement '
{“:iéz_ 0111 1111 |
| 64 | 01000000
1 | 00000001
0 | 00000000 |
I Eee
" .64 | 11000000
| 4127 1000 0001
’ 128 | 1000 0000

Some special numbers to note

Two's : " i
;De(:lmall

. complement | " lgﬂ Lajrd}

0111

;
oo |6 O gy
0101 5 ! (
T
o0 | 4
\ 0011 3
o0 | 2 (97
o0 1 f
0000 0 Z?rl‘% :
1111 -1 ¢2¢]
1110 | -2 |
1101 =3 !Cﬂ\ ’
1100 =& | &mﬁ,
IEEECTER T S
1010 %B—ﬁ-
L_Bﬁm_gﬁ'AJ
| 1000 -8 s

TW-'(:J'.':? complér;{ent- u;mgia_ !'{3 f\dj‘ l(
4-bit integer d{g;o '@&b
(e -7

In finding the two's complement of a binary number, the bits are inverted, or "flipped", by using the bitwise NOT -—23 ¢ 20

operation; the value of 1 is then added to the resulting value. Bit overflow is ignored, which is the normal case with

the zero value.

For example, beginning with the signed 8-bit binary representation of the decimal value 5, using subscripts to

indicate the base of a representation needed to interpret its value:

000001012 = 510

~_gai.’

—_..._-——-_-—-_-—-__-

C (eve/

NDW hew db w ol |
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The most significant bit is 0, so the pattern represents a non-negative (positive) value.

To convert to —5 in two's-complement notation, the bits are inverted; 0 becomes 1, and 1 becomes 0:

11111010

At this point, the numeral is the ones' complement of the decimal value 5. To obtain the two's complement, 1 is
added to the result, giving:

111110112 =— 5719

The result is a signed binary number representing the decimal value —5 in two's-complement form. The most
significant bit is 1, so the value represented is negative.

The two's complement of a negative number is the corresponding positive value. For example, inverting the bits of
-5 (above) gives:

00000100
And adding one gives the final value:
000001012 =519

The value of a two's-complement binary number can be calculated by adding up the power-of-two weights of the
"one" bits, but with a negative weight for the most significant (sign) bit; for example:

11111011p=- 128+ 64+ 32+ 16+ 8+0+2+1=(-2"+2%+ . )=-5

Note that the two's complement of zero is zero: inverting gives all ones, and adding one changes the ones back to

zaros (the overflow is ignored). Also the two's complement of the most negative number représentable (€.7. a one as
e most-significant bit and all other bits zero) is itself. Hence, there appears to be an 'extra' negative number.

A more formal definition of a two's-complement negative number (denoted by N* in this example) is derived from

the equation N * =2" — N, where N is the corresponding positive number and n is the number of bits in the

N\ representation.

For example, to find the 4 bit representation of —5:

N =510 therefore N =01012

' \ o
s Yo bow ) b resese

Hence: ‘b’ Lt 7 }0

N*=2"—N=24—5|o= 100002 — 01012 = 10113

0]

The calculation can be done entirely in base 10, converting to base 2 at the end:
N*=2"-N=2%-5=1119= 1011
Arithmetic operations

Addition

Adding two's-complement numbers requires no’_m_!gcial processing if the operands have opposite signs: the sign of
the result is determined automatically. For example, adding 15 and -5: =

]
111111 111 (carry) [ +
i 0000 1111 (15) 71( (o PU/

+ 1111 1011 (-5)

P S0 AND ead bift

) L\A h (MY }

———
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This process depends upon restricting to 8 bits of precision; a carry to the (nonexistent) 9th most significant bit is
ignored, resulting in the arithmetically correct result of 101p.

The last two bits of the carry row (reading right-to-left) contain vital information: whether the calculation resulted
in an arithmetic overflow, a number too large for the binary system to represent (in this case greater than 8 bits).
An overflow condition exists when these last two bits are different from one another. As mentioned above, the sign
of the number is encoded in the MSB of the result.

In other terms, if the left two carry bits (the ones on the far left of the top row in these examples) are both 1s or
both Os, the result is valid; if the left two carry bits are "1 0" or "0 1", a sign overflow has occurred. Conveniently,
an XOR operation on these two bits can quickly determine if an overflow condition exists. As an example,
consider the 4-bit addition of 7 and 3:

........................................................................................................................

50111 (carry) H
0111 (7)) i
#0011 (3) '
_____________ !
1
1
1

v 1010 (-6) invalid!

In this case, the far left two (MSB) carry bits are "01", which means there was a two's-complement addition
overflow. That is, 10102 = 101 is outside the permitted range of —8 to 7.

In general, any two n-bit numbers may be added without overflow, by first sign-extending both of them to n+1 bits,
and then adding as above. The n+1 bit result is mresent any possible s 5/ can
represent values in the range —16 to 15) so overflow will never occur. It is then possible, if desired, to 'truncate'
the result back to n bits while preserving the value if and only if the discarded bit is a proper sign extension of the
retained result bits. This provides another method of detecting overflow—which is equivalent to the method of
comparing the carry bits—but which may be easier to implement in some situations, because it does not require
access to the internals of the addition.

Subtraction

Computers usually use the method of complements to implement subtraction. Using complements for subtraction is
closely related to using complements for representing negative numbers, since the combination allows all signs of
operands and results; direct subtraction works with two's-complement numbers as well. Like addition, the
advantage of using two's complement is the elimination of examining the signs of the operands to determine if
addition or subtraction is needed. For example, subtracting —5 from 15 is really adding 5 to 15, but this is hidden
by the two's-complement representation:

........................................................................................................................

1

1 11110 oee (borrow)
l 0080 1111 (15)

,— 1111 1011 (-5)

Overflow is detected the same way as for addition, by examining the two leftmost (most significant) bits of the
borrows; overflow has occurred if they are different.

Another example is a subtraction operation where the result is negative: 15 — 35 = —-20:

, 11100 0006 (borrow)
' 0000 1111 (15)
0010 0011 (35)

As for addition, overflow in subtraction may be avoided (or detected after the operation) by first sign-extending
both inputs by an extra bit.

Multiplication
The product of two n-bit numbers requires 2n bits to contain all possible values. If the precision of the two two's-
complement operands is doubled before the multiplication, direct multiplication (discarding any excess bits beyond

that precision) will provide the correct result. For example, take 6 x —5 = —30. First, the precision is extended
from 4 bits to 8. Then the numbers are multiplied, discarding the bits beyond 8 (shown by 'x'):
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00000110 (6)
x 11111011 (-5)

This is very inefficient; by doubling the precision ahead of time, all additions must be double-precision and at least
twice as many partial products are needed than for the more efficient algorithms actually implemented in
computers. Some multiplication algorithms are designed for two's complement, notably Booth's multiplication
algorithm. Methods for multiplying sign-magnitude numbers don't work with two's-complement numbers without
adaptation. There isn't usually a problem when the multiplicand (the one being repeatedly added to form the
product) is negative; the issue is setting the initial bits of the product correctly when the multiplier is negative.
Two methods for adapting algorithms to handle two's-complement numbers are common:

= First check to see if the multiplier is negative. If so, negate (i.e., take the two's complement of) both
operands before multiplying. The multiplier will then be positive so the algorithm will work. Because both
operands are negated, the result will still have the correct sign.

= Subtract the partial product resulting from the MSB (pseudo sign bit) instead of adding it like the other
partial products. This method requires the multiplicand's sign bit to be extended by one position, being
preserved during the shift right actions.!®!

As an example of the second method, take the common add-and-shift algorithm for multiplication. Instead of shifting
partial products to the left as is done with pencil and paper, the accumulated product is shifted right, into a second
register that will eventually hold the least significant half of the product. Since the least significant bits are not
changed once they are calculated, the additions can be single precision, accumulating in the register that will
eventually hold the most significant half of the product. In the following example, again multiplying 6 by =5, the
two registers and the extended sign bit are separated by "|":

10 0110 (6) (multiplicand with extended sign bit)
yx 1011 (-5) (multiplier)

| =|====|====
1 0]0110|0000 (first partial product (rightmost bit is 1))
0]0011|6000 (shift right, preserving extended sign bit)

]
]

1

1

1

'

i

1

11001|€000 (add second partial product (next bit is 1)) s
1

1

1

1

1

1

1

1

1

1

18100|1000 (add third partial product: @ so no change)

1001010100 (shift right, preserving extended sign bit)
1/1100|8100 (subtract last partial product since it's from sign bit)
1/1110|0810 (shift right, preserving extended sign bit)

11110|0810 (discard extended sign bit, giving the final answer, -30)

c]
0|0160|1000 (shift right, preserving extended sign bit)
]
o]

Two's complement and universal algebra

In the classic "HAKMEM" published by the MIT AI Lab in 1972, Bill Gosper noted that whether or not a machine's
internal representation was two's-complement could be determined by summing the successive powers of two. In a
flight of fancy, he noted that the result of doing this algebraically indicated that "algebra is run on a machine (the
universe) which is twos-complement.“[sl

Gosper's end conclusion is not necessarily meant to be taken seriously, and it is akin to a mathematical joke. The

critical step is "...110 = ...111 = 1", i.e., "2X'= X — 1", This presupposes a method by which an infinite string of 1s is
considered a number, which requires an extension of the finite place-value concepts in elementary arithmetic. It is
meaningful either as part of a two's-complement notation for all integers, as a typical 2-adic number, or even as one

of the generalized sums defined for the divergent series of real numbers 1 +2 +4 + 8 + - - A7
Potential ambiguities in usage

One should be cautious when using the term two's complement, as it can mean either a number format or a
mathematical operator. For example 0111 represents 7 in two's-complement notation, but 1001 is the two's
complement of 7, which is the two's complement representation of —7. In code notation or conversation the
statement "convert x to two's complement" may be ambiguous, as it could describe either the change in

70f8 09/23/2011 11:44 AM



Two's complement - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Two's_complement

§of 8

representation of x to two's-complement notation from some other format, or else (if the writer really meant "convert
X to its two's complement") the calculation of the negated value of x.

See also

® Division (digital), including restoring and non-restoring division in two's-complement representations
= Signed number representations

= p-adic numbers

= One's complement

m Offset binary

External links

= Tutorial: Two's Complement Numbers (http://www.vb-helper.com/tutorial_twos complement.html)
= Two's complement array multiplier JavaScript simulator (http://www.ecs.umass.edu/ece/koren/arith
/simulator/ArrMIt/)
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[ = — A 2-to-4 line single bit decoder = — = = Truth Table
I I
Ao I A1 Ao|Ds D2 Dy Do
Do 0o 0lo0o 0 o0 |

+ E
o 1o o 1 0

-
M

| 0 0 [ 0 0

l
I
| | |
| I
| f I 1|1 0 o0 0
I
I
[
| I | Minterm Equations
| L e Do~ A AL
| | 0= A1 A0
| - i Di-A-Ag
| D: D2-Ar-Ag
ji = I

L = —— = = — = ] Dis=Arr Ao

o
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(Synchronous)
Finite State Machines

Lab 2 is due Thursday!

6004 -Fal 2011 927 modfed 926011 1051 LOG - FSMs 1

Our New Machine

State

Registers

SLE] Clock >‘

Current

Combinational
State

Logic

. New

State

m
Input

-

Output

+ Engineered cycles + Acyclic graph
+ Works only if dynamic + Obeys static discipline

discipline obeyed

+ Remembers k bits for a total

Tl :
of 2 unulz_ue combinations columns

 Can be exhaustively enumerated by a
truth table of 2¥Mrows and k+n output

Ve Lareh

eyl

AT
Oﬂ Q’ffkcé L Clan
8004 -Fall 2011 C e 5h{(

- ‘“{TL[M l‘, 1sv‘picpw\' Pmpggi?w,z

JYMG\L c“&P lne

Must Respect Timing Assumptions!

tepr=1ns
Pppg =3NS

e’dﬂq aﬂf Clﬁ(L lédt |, New

1 state

Lop=2ns| Current [~Fo i binational
Hik=cns| State Logic
N @t .
Clock tee =7
CoL T
tpgl[‘!ﬁns

Input Qutput

p
it et ke g lif for
Sorg, 1
tepg (1 18) + ey, (7) > 1y x(2 ns)
'7‘2:01"5 Jap;«.@ - f\on Hvt 16!/

1
Yeux > Lpogttepyt bog > 1008 {‘I [ ﬂ af
* Setup, Hold times for Inputs? tg=typy +tag=715 s

[qk ﬂ} 56)6(4 ty=typ-tep=1nS A
We know how fast it goes... But what can it do? f\'iﬂfvh

P L@(Vc Gd‘&‘aues:ioig? Hw}& HNE’

L afec n

+ Constraints on T, for the logic?

* Minimum clock period?

8004 -Fall 2011 9/27 LOG -FS5Ms 3

o —

°
/i

A simple sequential circuit. ..

Lets make a digital binary Combination Lock:

Specification:
\
* Oneinput (“0” or“1”) 5‘}?.,.8 of Ub
IN—
. >I.ock v ‘S-U(Jne output (“Unlock” signal)
pe UNLOCK s 1 if and only if:
b v 8 5 Last 4 inputs were the
Ineed? ™\ combination : 0110

H’*f ""’di éfuk "p QWE/(
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Abstraction du jour:
Finite State Machines

m
—“*  Clocked :
—-—> FSM

/' A FINITE STATE MACHINE has \:

\/ State Transition Diagram e

[st 3t s wt 0,

(et

Lm%
it £

Why do these
gotoS0and 5017

g o} fodimal iy

G004 -Fall 2011

The assignment of codes to

. states canbe arbitrary, however,
if you choose them carefully you
can greatly reduce your logic
requirements.

& dutod states >,
bifs

learned for combinational

ool " pesnt
5 hh’, bu\d '

LOG -FSMs 7

) Heavy circle
 KSTATES:S, ... 5, (one s “initial” state) Resiphiiganrioekss e
i * Need an initial state; call it SX. NAME =
* mINPUTS: ...,y PR s
- nOUTPUTS: 0, ... 0, * Must have a separate state for each step (5
: of the proper entry sequence \\_
ransition Rules: s'(s, I) for each state s and input | '
x .-(-—-).. P * Must handle other (erroneous) entries Lureur C'::;::
K Output Rules: Out(s)for each state s / Wh‘;:;l:hlﬁ m,,siﬁ?,,,
6004 -Fal 2011 Bk ;:2.7“  Chliie 0¥ SR W1 LOG -FSMs 5 6004 - Fall 2011 ar27 LOG - FSMs 6
Yet Another Specification Valid State Diagrams
. All state transition ' @ @ -
[\y\ diagrams can be 1 Wit |
Q\ L H described by truth o ‘“lm\;.lﬁj
) IN Current State Next State Unlock tables... \
0 SX 000 50 0010 1 @ C OM T
‘(_0“\ 1 SX 000 SX 0000 Binary encodings are
' ql 28 gg 1 231 ga g assigned to each state MOORE Machine: d MEALY Machine:
0 501 011 S0 0010 (abitofanart) Outputs on States Outputs on Transitions
1 501 011 5011 0100 |
(o] 5011 o010 501101 000
1 5011 o010 SX 0000 g e L Arcs leaving a state must be:
0 s0110100 50 0011 be simpliﬁed using the . 1 tuall lusi
1 50110100 s01 o111 reduction techniques we [1)umshuslly exlinies

6,004 -Fall 2011

- can’t have two choices for a given input value

(2) collectively exhaustive

- every state must specify what happens for each possible input
combination. “Nothing happens” means arc back to its

—_——
927" LOG -FSMs &

gk



Now put it in Hardware!

4 inputs = 2% locations

4~ gachlocation supplics 4 bits
N ROM s unlock
16x4
(0 rﬂlb Lo (
Current state Next state
We assume '6, 6‘11_‘{
inputs are 3 3 t{'
5ynchramzed ] +f' {
with cloc s
G'\
' g
571“‘6
bit

Trigger- update periodically (“ clock™)

6004 -Fal 2011 ej L) e'( 227 LOG-FSMs 9

Discrete State, Time

inputs —] T outputs
ROM " Two design choices:
(1) outputs only depend on state (Moore) &
STATE HEXY (2) outputs depend oninputs + state (Mealy)
S 5,\
s state bits = 2°possible states
. L
STATE X4)L4X<X.X
VA" / o NS Va .
NEXT H'O00“0NN.NN0.0NN"“ON.
Clock Clock Clock Clock Clock
Period Period Period Period Period
1 2 3 4 5

6004 - Fal 2011 or27 LOG - FSMs 10

Asynchronous Inputs - | My M ﬂﬂ( Q&(
(el by

1o} @mlfor
p

Our example assumed a single clock transition per input. What if the
“button pusher” is unaware of, or not 5ynchromzed with, the clock?

What if each button inputis an ?. L M 0oy
asynchronous 0/1 level? How 0oy 10 DOL " me ﬁ
do we prevent a single button 0 - - R ock

press, e.g., from making
several transitions?

lofﬂ} BO\O tE};:\O B1Y\ 31/ B\
Use intervening statesto synchronize button presses!

/27

But what
About the
D namic
Dnscnpllne?

\

losing
i e/

5/

U=0
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FSM Party Games

1. What can you say about the | ROM HE f LS”}? _
nuwsz ;k " - P/ 't Q(.j '(
X y z
2. Same question: ™ o T et
s n "n States States
ceocE>

3. Here's an FSM. Can you
discover its rules?

ot ghoal s

10'5":'
g
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What’ s My Transition Diagram?
784 made

FSM Equivalence

1
c @D = o

[
3‘12 0=$th? 0 ..-. 1 ve 5
1 [}
ey s, © A @ (@ © (] ARE THEY DIFFERENT?
_ oo an’l NOT in any practical sense! They are EXTERNALLY
‘ *
- Ifyou know NOTHING about the FSM, you' re never surel [E[?TINGUISHABLE' hencginkarchangeazle.
« Ifyou have a BOUND on the number of states, you can discover its FSMs EQUIVALENT iff every input sequence
behavior: yields identical output sequences.
K-state FSM: Every (reachable) state can be
reached in < k steps. ] ENGINEERING GOAL:
BUT ... states may be equiva ent! o = - ﬁ. * HAVE an FSM which works...
- * WANT simplest (ergo cheapest) equivalent FSM.
6004 ~Fal 2011 927 5 -FSH 4-Fa2 ! ar27 | } - LOG-FSMs 14
e -* LOG -FSMs 13 6004 -Fal 2011 [] ¥
uvs} U‘SC C‘eapef —( E fq;//w /MJ
Lets build a@ Lost in space
Blego? + SENSORS: antennae L and R, each 1 ifin
. contact with something.
% * ACTUATORS: Forward Step F, ten-degree
turns TL and TRTleft, right).
GOAL: Make our ant smart enough to get out of a maze like: Action: Go forward until we hit something.
"N—’-—'_-‘.______._—-—-—-—-——____\
f
$ 7107 in dufﬁr
e
“lost” is the
initial state
STRATEGY: "Right antenna to the wall"

6,004 - Fall 2011 927 LOG - FSMs 15




I W\IU
h\b ‘M

s 3 3"

Action: Turn left (CCW) until we don’t touch anymore
— \-_-_

Bonk!

6004 -Fal 2011 927 LOG - FoMs 17

Alittle to the right...

¥

Action: Step and turn right a little, look for wall

6004 -Fal 2011 27

LOG-FSMs 18

Then a little to the left

Action: Step and turn left a little, till not touching (again)

6.004 - Fall 2011 927 LOG -FSMs 19

Dealing with corners

f\r -1

Action: Step and turn right until we hit perpendicular wall
B

6004 -Fal 2011 927

LOG-FSMs 20
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l

| \ \
Ccm Wwe 5lm9ltH i
Equivalent State Reduction

Observation: 5, = §,if
1. States have identical outputs;
2. Every input =equivalent states.

Reduction Strategy:
Find pairs of equivalent states, MERGE them.

6004 -Fal 2011

M)wu‘w\! 4[(

LOG-FoMs 21

ﬁ Cactly :

|

sl

An Evolutionary Step

Merge equivalent states Wall1 and Corner into a single new,
combined state.

s

Behaves exactly as previous (5-state) FSM, but requires half the
ROM in its implementation!

Sune, 050109
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Building the Transition Table EML )f"ﬂ*’ht/

S LR|S TRTLF
L*R 00 00 | 0O 0 1

L+R @ 00 1 - 01 0 1
00 0 1 0 1

0OL1-]01L0 1 0

O 0101 0L 0 1 0

6.004 - Fal 2011

o
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Implementation Details

s1’ 8,5,
}k S LR| S TRTLF Oooililg
on e - mespriy S LR gg g 001 1
‘el 0000 1000 0 1 T
}gbl@ LostT< 001 -]1010 O 1 5 9 6 o 3
| soo1j010 0 1 oot
[ OL byl Bt 4 S/ =S,5, +LS, + RS,
RCCW =< 0101 ] 010 1 0
lotoo 100 1 o - 8
[ 10-0)] 101 0 1 e T
WALLTT 190 -1 1111 0 1 0o
¥ 00 0 0 0 O
-l Nl IROI 1 1 1 1
WALLz< 1100 | 100 1 1 ol -
li101 1120 1 1 N R
Complete Transition table s "R+L§+LS
0 1 0
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Ant Schematic (an (:20 l"' Roboant®
3 \

5] =0id Maze
FSM state i s dER ﬂ ¥ > adlection
table T mtted e . - :. - 1
TFtan teem lecture @““ Jiaz Sma hm On-mm "
1 TT
snow LRSS Inext LRFNE
i B e o g
lost 1 --|rotecw 00100 - I
—-—D: lost D 1- | cotcew0D0200 ; Plan view
lrotccw 00 - | walll 100CO I
l otcew 1 - ~ | retccw 1 0000 F of maze
rotcew D1 - | retecw L 00 0 O
D walll -0 - |walll 01100
Walll - 1-lwl2 01100 i
N kealtz L -~ | xatecw 10100 . Simulation
) s Wellz 01 - |wallz 10100,
3 s Status ez oo-tam toiso [ controls
L o display e T e S 1‘
4
4 Featuring the new Mark-Il ant: can add (M),
erase (E), and sense (S) marks along its path.

$o cﬁﬁa&rmu

T ] O dkyy ot wek b to defet cay,

t dvonry i1

Housekeeping issues. .. Twisting you Further...

Did we all descend from FSMs?7?

puts —]  ROM [ — outputo Ay Clea/ * MORE THAN ANTS:
o Swarming, flocking, and schooling can result | prefer to think we
el 1. Initialization? Clear the mem ? au 00()() from collections of very simple FSMs ascended...
— (4
STATE HEXT 2. Unused state encodings? - PERHAPS MOST PHYSICS:
s s - waste ROM (use PLA or gates) Cellular automata, arrays of simple FSMs,
tel | flui
whasdocsiomeart  Uniiel by canmoresearately e fids
- can the FSM recover? =
* WHATIF:
~ U 3. Choosing encoding for state? g]lah MLGM‘Lh We replaced the ROM with a RAM and have
D_ FE— _ . L outputs that modify the RAM?
3 izing input ch ith o
W EguohranEng PUTCRangss Wi Cle o ... You'll see FSMs for the rest of your life!
v

state update?
L T 3 :‘ic(:: Ula;;a i’ur1:3:r1 I,’ r{_ /ﬂ}f
L{ !9 ing state machine \jx i on 5
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Lab #2

Introduction &E’K{ Q/ZL(

Your mission this week is to design and test a CMOS circuit that performs addition on two
unsigned 4-bit numbers, producing a 5-bit result: :
]M{'pe "ﬂf / eongl \(E’l

AQ—P

Al —»

A2 [—* S0
ADD il

B0 —¥| > S3

Bl —» —> 54

B2 —¥

B3 —¥

When you've completed and tested your design, you can ask JSim to send your circuit to the on-
line assignment system using the process described at the end of Lab #1. The checkofT file for
Lab #2 (lab2checkofT.jsim) checks that your circuit has the right functionality; the qn-line system
will give you 5 points for checking off your lab using this file. (You’ll receive your points after
completing the on-line questions and a checkoff meeting with a TA.)

Note: Our ability to provide automated checkoffs is predicated on trusting that you’ll use
the checkoff and library files as given. Since these files are included in your submission, we
will be checking to see if these files have been used as intended. Submittals that include
modified checkoff or library files will be regarded as a serious breach of our trust and will
be dealt with accordingly.

1: Ripple Adders

Let’s start with a simple ripple-carry adder based on the full-adder module discussed in lecture.
Later we’ll discuss higherperformance adder architectures you can use in the implementation of
the Beta (the computer central processing unit we'll be designing in later labs).

The full adder module has 3 inputs (A, B and C;) and 2 outputs (S and C,). The logic equations
and truth table for S and C, are shown below.

6.004 Computation Structures -1- Lab #2



S=A®B®C, C,=A-B+A4-C,+B-C,

G AB, SC,
0 00[00
0 0114
01010
011(01
1 00|10
1 Bl 9g.1
Tl O 8 165 6 4
T

Typically S is implemented using two cascaded 2-input XOR gates. One can use three 2-input
NANDs and one 3-input NAND to implement C, (remember that by Demorgan’s Law two
cascaded NANDs is logically equivalent to a cascade of AND/OR).

The module performs the addition of two one-bit inputs (A and B) incorporating the carry in

from the previous stage (C;). The result appears on the S output and a carry (C,) is generated for
the next stage. A possible schematic for the 4-bit adder is shown below:

As Bs A> B. A By Ao Bg

TN, o g g s o

FA. % Fli %51, FAs - %7 -FA . %= “0¢

l Voo l

S4 Ss3 Sz Sy So

2: XOR/XNOR Gates

Since we're using individual gates to implement the logic, a good place to start is to build your
own gate library (e.g., inverter, 2-input NAND, 2-input NOR, 2-input XOR), test them
_h l A individually, and then use them to implement your design. It's much easier to debug your circuit
A2 61\94 } module-by-module rather than as one big lump. XOR/XNOR can be challenging gates to design;
?fﬁ b’; \(l_ here’s one suggestion for how they might be implemented:

“ (0 CQPY \Cm lML v M[\
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A
B&;D

XOR

Si=4

SL=1

h

—
ol Eﬁ o R

B[

sy | swi=z
R SL=1 [ sL=1

3: Generating Test Signals

You can use voltage sources with either a pulse or piece-wise linear waveforms to generate test
signals for your circuit (see Lab #1 for details). Another source of test waveforms is the file
“/mit/6.004/jsim/8¢clocks.jsim™ which can be included in your netlist. It provides eight different
square waves (50% duty cycle) with different periods:

clkl  period = 10ns
clk2  period = 20ns
clk3  period = 40ns
clk4  period = 80ns
clk5  period = 160ns
clk6  period = 320ns
clk7  period = 640ns
clk8  period = 1280ns

For example, to completely test all possible input combinations for a 2-input gate, you could
connect clkl and clk2 to the two inputs and simulate for 20ns.
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4: Plotting Results

Interpreting analog signal levels as logic values can be tedious. JSim will do it for you
automatically if you ask to plot “L(a)” instead of just “a”. The logic-high and logic-thresholds
are determined by the “vih™ and “vil" options:

.options vih=2.6 vil=0.6
Initial values are specified in “/mit/6.004/jsim/nominal.jsim”, but you can respecify them in your

own netlist. Voltages between vil and vih are displayed as a filled-in rectangle to indicate that
the logic value cannot be determined. For example:

You can also ask for the values of a set of signals to be displayed as a bus, e.g.,
“L(a3,a2,al,a0)”. The signals should be listed most-significant bit first. A bus waveform is
displayed as a filled-rectangle if any of the component signals has an invalid logic level or as a
hexadecimal value otherwise. In the following plot the four signals a3, a2, al and a0 are
interpreted as a 4-bit integer where the high-order bit (a3) is making a 1—0 transition. The
filled-in rectangle represents the period of time during which a3 transitions from Vy; to V.

L(a3.a2,al,a0) OxF 0x7

5: Design Guidelines

Here’s a list of design tasks you might use to organize your approach to the lab:
1. Draw a gate-level schematic for the full-adder module. XOR gates can be used to
implement the S output; two levels of NAND gates are handy for implementing C, as a

sum of products.

2. Create a MOSFET circuit for each of the logic gates you used in step 1.

(%]

Enter .subckt definitions in your netlist for each of the logic gates. Use Jsim to test each
logic gate with all possible combinations of inputs. Debugging your gate designs one-by-
one will be much easier than trying to debug them as part of the adder circuit. Here’s a
sample netlist for testing a 2-input NAND gate called nand2:

.include "/mit/6.004/jsim/nominal.jsim"
.include "/mit/6.004/jsim/8clocks.jsim"
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.subckt nand2 a b z

. internals of nand2 circuit here
.ends

Xtest clkl c1k2 z nand2

.tran 20ns

.plot clkl

.plot clk2

.plot z

4. Enter a .subckt definition for the full-adder, building it out of the gates you designed and
tested above. Use Jsim to test your design with all 8 possible combinations of the three
inputs. At this point you probably want to switch to using “Fast Transient Analysis™ do to
the simulations as it is much faster than “Device-level Simulation™.

5. Enter the netlist for the 4-bit adder and test the circuit using input waveforms supplied by
lab2checkoff.jsim. Note that the checkoff circuitry expects your 4-bit adder to have
exactly the terminals shown below — the inside circuitry is up to you, but the *“.subckt
ADDER4...” line in your netlist should match exactly the one shown below.

.include "/mit/6.004/jsim/nominal.jsim"
.include "/mit/6.004/jsim/lab2checkoff.jsim"

. subckt definitions of your logic gates

.subckt FA a b ci s co
. full-adder internals here
.ends

.subckt ADDER4 a3 a2 al a0 b3 b2 bl b0 s4 s3 s2 sl s0
* remember the node named "0" is the ground node

* nodes c0 through c3 are internal to the ADDER module
Xbit0 a0 b0 0 sO cO FA

Xbitl al bl c0 sl cl FA

Xbit2 a2 b2 cl s2 c2 FA

Xbit3 a3 b3 c2 s3 s4 FA

.ends

lab2checkofT.jsim contains the necessary circuitry to generate the appropriate input
waveforms to test your adder. It includes a .tran statement to run the simulation for the
appropriate length of time and a few .plot statements showing the input and output
waveforms for your circuit.

When debugging your circuits, you can plot additional waveforms by adding .plot
statements to the end of your netlist. For example, to plot the carry-out signal from the
first full adder, you could say

.plot Xtest.cO
where Xtest is the name lab2checkoff.jsim gave to the ADDER4 device it created and c0

is the name of the internal node that connects the carry-out of the low-order FA to the
carry-in of the next FA.

6.004 Computation Structures -5- Lab #2
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https://6004.csail.mit.edwssldocs/on_line questions.doit?username=th...

6.004 On-line: Questions for Lab 2

When you're done remember 1o save your work by clicking on the Save'button at the bottom of the page. You can check if your
answers are correct by clicking on the Check'button.

When entering numeric values in the answer fields, you can use integers (1000), floating-point numbers (1000.0), scientific
notation (1e3), or JSim numeric scale factors (1K).

Problem 1. The following questions are multiple-choice. Using the "check" button, you can of course simply keep guessing until
you get the right answer. But you'll be in a much better position to take the quizzes if you take the time to actually figure out the

ANSWErs.

A. If we set the inputs of a particular CMOS gate to voltages that correspond to valid logic levels, we would expect the staric
power dissipation of the gate to be

non-zero, but very small (picowatts)

B. Measuring a particular CMOS device G, we find 1.5V noise margins. If the widrh of all mosfets inside of G were doubled,
we would expect the noise margins of the new gate to

stay about the same
C. To decrease the output rise time of a CMOS gate one could
increase the width of all pfets

D. Suppose one wanted to decrease the propagation time of a CMOS circuit. Which of the following actions would lead to the
greatest possible speed up?

increase the power supply voltage and lower the operating temperature

Problem 2. Almost all of the power dissipated by CMOS circuits goes into charging and discharging nodal capacitances. This

2 % 4 § . 5 . .
power can be computed as C(V)F where C is the capacitance being switched, V is the change in voltage, and F is the frequency
at which the switching happens. In CMOS circuits, nodes are switched between ground (0 volts) and the power supply voltage

(VDD volts), so V is either +VDD or -VDD and so vZis VDD,
A. Suppose we have a device implemented in a technology where VDD = 5V. If we have the option of reimplementing the

device in a technology where VDD = 3.3V, what sort of speedup (i.c., change in F) could be specified for the
reimplementation assuming we want to keep the power budget unchanged?

Speedup (eg, 2.0 would be twice as fast): 2.29

Problem 3. As we saw in Lecture 4, there are 16 possible 2-input combinational logic gates. The cost of implementing these gates
varies dramatically, requiring somewhere between 0 and 10 mosfets depending on the gate. For example, it takes 2 mosfets to
implement "F = NOT A", but 4 mosfets (organized as two inverters) to implement "F = A",

For each of the 2-input gates whose Karnaugh maps are given below, indicate the minimum number of mosfets required to
implement the gate. You should only consider static fully-complementary circuits like those shown in lecture; these
implementations meet the following criteria:

e no static power dissipation

* Vol = 0V, Voh = power supply voltage
» Nfets appear only in pulldown paths, Pfets appear only in pullup paths

1of3 9/29/2011 9:45 PM
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e the pullup and pulldown are complementary, i.e., when one path is "on", the other is "off"

e the pullup and pulldown circuits can be decomposed into series and parallel connections of mosfets

e all gate implementations restore incoming logic levels (so a wire connecting an input terminal to an output terminal would
not be a legal gate implementation)

A.
& 'H I B Virigy o A 5'://169 /4 5VN(’?€C[ fv Jﬂ /
F % 7l +AR Y
Number of mosfets needed to implement "NOR" :
B. _
A’\D}O?I NPND (‘{ ’L(Ml{'ﬂf 5%
| Do 1]
Number of mosfets needed to implement "AND" : ﬁ' (L
G,
XNOR Set P"é‘b\

Number of mosfets needed to implement "XNOR" : 6 f"ﬂ/ﬂ'ﬂ/ﬂ Q{ @
BA, h‘w % dfﬁdL t’é \B "‘f'/f ’—q

Woon b

Number of mosfets needed to implement "NOT B : v

: | Hdw vkl I ")”‘M |
H{ '| el fogth 7 | fd
JERE M Y
rlﬂ E‘ .—‘_ [ w bJ{P "M+
| | - bdld/‘*f/i!/h W
Number of mosfets needed to implement : LJM‘\‘ £ ﬂvv
&’76? b-c}
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Karnaugh map

From Wikipedia, the free encyclopedia

The Karn h map (K-map for short), Maurice Karnaugh's 1953 refinement of
Edward Veitch's 1952 Veitch diagram, is a method to simplify Boolean algebra
expressions. The Karnaugh map reduces the need for extensiveTalculations by
taking advantage of humans' pattern-recognition capability, permitting the rapid
identification and elimination & potential race conditions. &~ ':

In a Karnaugh map the boolean variables are transferred (generally from a truth
table) and ordered according to the principles of Gray code in which only one
variable changes in between adjacent squares. Once the table is generated and the
output possibilities are transcribed, the data is arranged into the largest possible

groups containing 2" cells (n=0,1,2,3...)[1] and the minterm is generated through flA.B.C,D) = E(6,8.9.10,11.12.13.14)
the axiom laws of boolean algebra. EoRG taBdcD A

F={A+B)(A+C)(B'+C'+D'HA+D")

Contents M? ‘ .
w1 Ex.';unpl].t-:'1 o \ = OL/}.pV ls  Chte erf’hlf/c [ﬂ( (4[/7 ({f ﬁW4l

1.2 Kalrnaugh map O/]_
1.3 Solution d
1.4 Inverse Q&L;/ﬁue & hﬂ(ﬁ 6 ],( M/I/’[j
1.5 Don't cares
= 2 Race hazards {0 }}

= 2.1 Elimination 6 (’ (/(/0\/:

w 2.2 2-variable map examples |

= 3 See also ‘ MU H( ‘H(]W@d )0(93 fqﬂp

= 4 References
= 5 Further reading
= 6 External links

An example Karnaugh map

Example

Karnaugh maps are used to facilitate the si ification of Boolean algebra functions. The following is an
unsimplified Boolean Algebra function with Boolean variables 4, B, C, D, and their inverses. They can be

represented in two different notations:

w {4,8,C,D) = 2(6,8,9, 10,11,12,13,14) Note: The values inside Z are the minterms to map (i.e. rows which

have output 1 in the truth table). .
e able hbhOrW{ no]“qf(m I /’LQ"Z m}- YQYL 55‘7‘7

® f(4.B,C. D) = (ABCD)+(ABC D)+(ABCD)+(ABCD)+(ABCD)+(ABC D)+(ABTD)+(ABCD)

Truth table ﬁft é’f W d@@i Vg ]Lp J

Using the defined minterms, the truth table can be created:

# 4B CbﬂABCD)j

io 00000 ]

1/00l0j10 | Luild
2 | 00100 (C{r\

3 00_1_1_0 !

4 (011000

09/29/2011 11:43 AM
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510 ]
6 101
7 01
8 10|
9 110
10110
11[1]0
121111 o
13|11 |
1411 | o
1511] ]
Karnaugh map , ' (,(
a9/ X
The input variables can be combined in 16 different ways, so t -
Karnaugh map has 16 positions, and therefore is arranged infa 4 x 4 AB
grid. 00 01 11 10
| " ABCD ABCD

The binary digits in the map represent the function's output for any JEL RS0 0000-0 i
given combination of inputs. So 0 is written in the upper leftmost . £001:=1 10013
corner of the map because f= 0 whenA=0,B=0,C=0,D =0. gl v | s 139 00102 1010-10
Similarly we mark the bottom right corner as 1 because A = 1, B = 0, O o= 1011 -13
C=1,D =0 gives f= 1. Note that the values are ordered in a Gray Al 3 {7 s | g oed i
code, so that precisely one variable changes between any pair of HOE=3 L0l=13
adjacent cells. ol 2| 6 | 14| 10 0110-6 1110-14

0111.7 1.1

After the Karnaugh map has been constructed the next task is to find K-map constiuction.

the minimal terms to use in the final expression. These terms are -
foundmﬁg_gﬁnmm%—%he groups must be Cﬂ/‘d ale S0y olo
rectangular and must have an area that is a power of two (i.e. 1, 2, 4, 8...). The rectangles should be as large as
possible without containing any 0Os. The optimal grouping® in this map are marked by the green, red and blue lines.
Note that groups P. In this example, the red and green groups overlap. The red group is a 2 x 2 square,

the green group is a4 X 1 rectangle, and the overlap area is indicated in brown.

The grid is toroidally connected, which means that the rectangular groups can wrap around edges, so AT is a valid
term, although not part of the minimal set—this covers Minterms 8, 10, 12, and 14.” ———  —

Perhaps the hardest-to-visualize wrap-around term is BD which covers the four corners—this covers minterms

0,2,8,10. : :
bt whe ae by Bl <Ll il bk

Solution

20f6 09/29/2011 11:43 AM
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Once the Karnaugh Map has been constructed and the groups derived, the solution
can be found by eliminating extra variables within groups using the axioms of
boolean algebra. It can be implied that rather than eliminating the variables that
change within a grouping, the minimal function can be derwed by noting which

variables stay the same. b., whld\ \q L&& ‘ol

= The variable 4 maintains the same state (1) in the whole encircling, therefore
it should be included in the term for the red encircling.

= Variable B does not maintain the same state (it shifts from 1 to 0), and should
therefore be excluded.

= C does not change: it is always 0. Because C is 0, it has to be negated before
it is included (thus, (). [

= D changes, so it is excluded as well. 4 a ij Shao

{/C[?(gf;
a4/l
eI e

F=++AC'AB'BCD’
F=(A+B)A+CHB'+C'+0D')

For the Red grouping:

K-map showing minterms and
boxes covering the desired
minterms. The brown region is
an overlapping of the red
(square) and green regions.

Thus the first term in the Boolean sum-of-products expression is

For the Green grouping we see that 4 and B maintain the same stateg,
change. B is 0 and has to be negated before it can be included. Thus the second term

is AB.
In the same way, the Blue grouping gives the term BC'D.

W\zﬂt% dlwasys {“/uc

msl(a_ &my

The solutions of each grouping are combined into:(AC + AL + BCD.

Inverse ad({ as 0&5

The inverse of a function is solved in the same way by grouping the Os instead.
e

s brown— 11

- R Can @([Ba lo"L (ﬁL ’Zﬂ Oj

The three terms to cover the inverse are all shown with grey boxes wi{i different colored borders:

= gold— 4

This yields the inverse:
F=AB+AC+ BCD

Through the use of De Morgan's laws, the product of sums can be determined:

=AB+AC+BCD
(4+B)(4+C) (B+CT+D) proa Thal Game

Don't cares

==l

3of6 _ 09/29/2011 11:43 AM
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\& I{ TT ({'w/vt‘ ?.f

Karnaugh maps also allow easy minimizations of functions whose_truth tables include
"don't care" conditions (that is, sets of inputs for which the designer doesn't care
what the output is) because "don't care" conditions can be included in a circled
group in an effort to make it larger. Thery are usually indicated on the map with a

dash or X. 150 Can M&’/J 5 { 0%

The example to the right is the same above example but with minterm 15 dropped
and replaced as a don't care. This allows the red term to expand all the way down
and, thus, removes the green term completely.

This yields the new minimum equation:
F=A BC’D _ aﬂy vabes dont rmﬁgf

Note that the ftrst term LSJust A not 4C. In thlS case, the don't care has dropped a
term (the green); simplified another (the red); and removed the race hazard (the
yellow as shown in a following section).

Also, since the inverse case no longer has to cover minterm 15, minterm 7 can be
covered with (_4D) rather than (BC D) with similar gains.

Race hazards
Elimination

Karnaugh maps are useful for detecting and eliminating race hazards. Race hazards
are very easy to spot using a Karnaugh map, because a race condition may exist

when moving between any pair of adjacent, but disjointed, regions circled on the
map. N

= In the example to the right, a potential race condition exists when C is 1 and
Dis 0, Ais 1, and B changes from 1 to 0 (moving from the blue state to the
green state). For this case, the output is defined to remain unchanged at 1,
but because this transition is not covered by a specific term in the equation,
a potential for a glitch (a momentary transition of the output to 0) exists.

m There is a seconmgm%mame example that is more difficult
to spot: when D is 0 and A and B are both 1, with C changing from 1 to 0

(moving from the blue state to the red state). In this case the glitch wraps
around from the top of the map to the bottom.

Whether these glitches will actually occur depends on the physical nature of the
implementation, and whether we need to worry about it depends on the application.

;t:igccngl- E(6, ssra—m'ﬁil-u
F=lA+B)(A+CIA+D")

The minterm 15 is dropped

and replaced as a don't care,

this removes the green term

completely but restricts the

blue inverse term

00 01 11 10

flA,B.C.D) = E(6,8,9.10,11.12.13.14)
F=AC'+AB'+BCD'+AD"
F=(A+B)(A+CI(B'+C'+D" 1 A+D")

Above k-map with the 4])
term added to avoid race
hazards

In this case, an additional term of 47) would eliminate the potential race hazard, bridging between the green and

blue output states or blue and red output states: this is shown as the yellow region.

The term is redundant in terms of the static logic of the system, but such redundant, or consensus terms, are often

needed to assure race-free dynamic performance.

Similarly, an additional term of {]) must be added to the inverse to eliminate another potential race hazard.
Applying De Morgan's laws creates another product of sums expression for F, but with a new factor of (.-l + E).

2-variable map examples

The following are all the possible 2-variable, 2 X 2 Karnaugh maps. Listed with each is the minterms as a function

of Z() and the race hazard free (see previous section) minimum equation.

’D]Ul“ 4@#‘ ﬂ(’f\
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Problem 3. In the Karnaugh maps below the use of "X" in a cell indicates a "don't care" situation
where the value of the function for those inputs can be chosen to minimize the size of the overall

1128

expression. AC‘ + AD \—FD N F.BCB;
AB : ’(“ 59 : | f;mua/;{/tt/ b
00 01 1110 S Covpr M/,,h,",j &”%{L
OO,D{EM 1) Tt do Vs Ao +8C
01 l] || R Tdd lonn
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A. Circle the prime implicants in the Karnaugh maps and write a minimal sum-of-products
expression for each of the maps.
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Synchronization, Metastability
and Arbitration

Did you vote for Bush or Gore?

Mﬂ“f{ J&:blﬂft

:n 'f:‘m IT ‘mﬂ;;

Didn't have enough time to decide.

Well, which hole did you punch?

Both, but not very hard...

y
o1

The Importance of being Discrete

T

We avoid possible errors by disciplines that avoid asking the tough
questions - using a forbidden zone in both voltage and time dimensions:

P4

Digital Values:

Problem: Distinguishing voltages
representing “1” from “0”

Digital Time: Z
Problem: “Which transition
happened first?” questions
Solution: Dynamic Discipline: avoid
asking such questions in
closeraces

Solution: Ferbidden Zone: avoid
using similar voltages for “1"

i |
b t"z (l
a(L /f«. HA

ik

\ " ¢
debtﬁzﬁ’b and “0 sl wa, ‘fp/ gl
"If you can't be just, s b {”’L
be arbitrary" I-i"‘ e "I,,.‘
- Wi Burroughs, Naked Lunch .
- US Supreme Court: 12100 = ck T
Due tonight: i > Q _;s:l:
OLab #2 ke e oy e
Qlab #1 checkoff meeting N{TL‘SMHQ Glll{ll?. Slﬁ.ﬁt, szfl‘h(_ =5 JC_“'.I
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e iy tin
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If we follow these simple rules. ..

(4~ ball abikally Cong

Can we guarantee that our system will always work? 59"{5“5

In g - GO m T el LN out
L cumblnln‘t:lunal ) L CComhlnluenal g ﬂmb'ﬂl:lnnl' g ]
Clk "’i ‘) /\’t._:‘dbf‘;; ) ‘\_\-}inul - T dﬂw! 6hf€(,
)
J +d‘fﬂﬂn¢(

S T o, o e dpie
C’:nm::::hr!ll} g (‘Cambl::al:ioq::j g {Fconan':;::cuonq‘] g
‘\-._‘_,\_/.__ ) C ‘-\,/L“'j’ L\)\_,’*)'

With careful design we can make sure that the dynamic
discipline is obeyed everywhere*...

* well, almost everywhere... "I\D"‘ h{_ }q{JVh

6004 -Fal 2011

%29 LO7 - Syrchronzation 3

o

e

Witk wiad Thell ik
The world doesn’t run on our clock!
(/: 'Cd’eldrnw’i(

What if each button input is : ‘ E::u:h;i
an asynchronous 0/1 0oy ‘5!3 [ Dynamic
level? 0o _ e 0 Discipline?
T \( 10 1Lock u \
(st hq'bsrf’b’“iv A = 2
atie lod ﬂé@ﬁﬁ

To build a system with asynchronous inputs, we have to break the rules:
we cannot guarantee that setup and hold time requirements are met at the
inputs!

So, lets use a “synchronizer” at each input: CQP

— Valid except for brief periods
following active clock
200y ut)
o (Unsynchronized)

Which edge
Came FIRST?

correer (rblkade W Clock g5
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The Asynchronous Arbiter:
a classxc/{aroblem ec[qm 1[.0( ot Pm]ﬂ bn
UNSOLVABLE

Violating the Forbidden Zone

B ] 5
Arbiter
(&

r (1243 'L)

Y Gnfigoss

Vit labl b el

atts

H,u{ lodl Ingide 5"(
asisiasois (% ‘l’m(nﬂﬁ (lose *\Nﬂﬁi% d{ v’/ m

107 - Gy

mad

for Tk

For NO finite values | )
: : ' att¢
D“‘M'Y B [ an B 5 of t; and t, is this d crpte va. (ab\f =
(3 ¢ [ u ¢ Ariter sl el el Issue: Mapping the continuous variable (£, - t,)
: atte ; with reliable onto the discrete variable S in bounded time.
: -
dq/de W A l(}l\ ]L " "H} components! o \IJM} | .
: : S Output With no “forbidden zone,” all inputs have to
Al‘b'lter epeclﬁc?tlor'ls. happe”'d lb/pde( h“" HQ"%I{ g//ﬂ/ Nty be mapped to avalid output. As theinput
« finite t,, (decision time) % . e inuities ina.it [
pproaches discontinuities in the mapping, it |
- finite T; {allowable error) B :’ _—1_14— F 1 takes longer to determine the answer. Given
+valug of S at time £+t , a particular time bound, you can find aninput. |
1 ift.e<t _tc; 0 & _’]{T i i that won't be mapped to a valid output
i .IQ o - 1 e doa J within the allotted time.
0 iftg>to+t; P‘-’ T H y Sl 0 ; E— —
0, 1otherwise l G arg o . L
i d‘:—fslﬁ CASE 2 ‘EAEEJ & (1;8!1;6) c eic
! = Earlier
l : { B [& f‘ Earlier o
6004 -Fal 2011 O :F C (# 9/29 7 - Synchronization 5 6004 -Fal 2011 29 07 - Synchronization 6 MY
0
T b ll Unslabl £ had a loob Jhat dtkods £ 0 uLe/e I Frariiton i
QW‘ o D\Ea / r
v Unsolvable? ;
i The Mysterious Metastable State ;
COW 3 that can't be true... L(L]m‘ﬂ @éMHM@
Gl '“w\,g 5 Cor (] lD.‘)Q, % So}u (o eqv
Lets just use a D Flip Flop: PROEION (=0 T 0008 VTC of q/ {
ALLOWABLE ERROR is max(tseryps thowp) » “closed” latch
B: _l— atts —{p Ql— Ourlogic: Vout i :“_“T_h::'a't:
Typ after T, we’ Il have
¢ [ atg P Q=0iff ty + tognp < I et
Q=1iffto+tyyp <ty Recall that the latch output is the an undefined i
g state
' - Gadies T sttntes solitontepposieuitanecus AT
We' re lured by the digital ’ \
abstractioninto assuming 1.The VTC of path thru V(}Jl‘ " UVI
that Q must be either 1 or O. B D @ ,‘é’_ D a MUX; and Latched in (g >
But lets look at the input latch e alave 2y =y a ‘0’ state ’V
in the flip flop when B and C $—> G r G i In
change at about the same
tnmeg ¢ In addition to our expected stable solutions, we find an unstable

equilibrium in the forbidden zone called the “Metastable State”

6004 -Fall 2011 LO7 - Synchronization
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Metastable State: Proper’buf ﬁ(
(loter Ve tre

1. It corresponds to an invalid logic level ] s l'f
- the switching threshold of the 0;\3
device. i‘dt}%

2. Itsan unstable equilibrium; a small
perturbation will cause it to

accelerate toward a stable O or 1. & >
3. Itwillsettletoavalid Oor1...
eventually. EVERY bistable system?
Yep, every last one.
4, BUT- dependmg on h?ws[ose itisto Coin fip??
theV, =V, “fixed point” of the / Couldland on edge.
device - it may take arbitrarily long to ' §  Horse race?? 2
settle out. Photo finish.
Presidential Electi
5. EVERY bistable system exhibits at (Wh ,m:l:m:'a_: e
ere sthistwi
least one metastable statel been hiding???)
6004 -Fall 2011 9/29 LO7 - Syrchronization 9

eal viall £1} €l

(dn Ohsie

Observed Behavior:
typical metastable symptoms

Following a clock edge on an asynchronous input:

D _\ : : _ _ GO
< Slower—p fo

(P We may see exponentially-distributed metastable intervals:

14l 7,
S R (e e e——

1.4 6 [0
Or periods of high?Frequency oscillation (if the feedback path is long): i%
o YWAVAVAMAAAMAMAMAMAN

pnvdn nag(,mpltcwfei J\/nqna', [zslnwmf

6004-Fal 2011 29 LO7 - Synchronization 10

Mechanical Metastability
_-—‘-‘-‘_‘-_'—‘—-—~

If we launch a ball up a hill we
expect one of 3 possible

outcomes:

a) Goes over
b) Rolls back
c) Stalls at the apex

loble gfute
That last outcome is not
stable.
-a gust of wind
- Brownian motion
-it doesn t take much

i b;}/arj gtk e

LO7 - Synchrenization 11

Metastable State

¢tas

T gnein®

6004 -Fal 2011 «29
})Dv

How do balls relate to digital logic?

/A\d‘lﬂ hl" { T«S{-W Our hill is analogous to the derivative
| of the VTC (Voltage Transfer
Vou ! e 4(3 j ﬂ/Vl Curve)... at the metastable
A point, the derivative (slope) is
ZERO.

Notice that the higher the gain thru
the transition region, the steeper
the peak of the hill... making it
harder to get into a metastable

Wor state...

We can decrease the probability of
V;n getting into the metastable
state, but - assuming continuous
models of physics - we can't
eliminate the slope=0 point!

6004 -Fal 2011 a/29 LO7 - Synchronization 12




Viu=Vy implies Vg r =V,
e —

8004 -Fal 2011

The Metastable State:

Why is it an inevitable risk of synchronization?

Our active devices always have a fixed-point voltage, V, such that

Violation of dynamic discipline puts our feedback loop at some
—_—
voltage V,near Vy,

(loser @
The rate at which V progresses toward a stable “0” or “1” value isd,p

proportional to (V - V,,) ‘H fa b}a woi
S P’nf’ o{h'ru

I
Since there' s no lower bound on (V- V,,), there's no upper bound on ’{b J(_g/ld"(g

the settling time. {(’ah (l/_

The time to settle to a stable value depends on (V, - V,,); its
theoretically infinite for V, =V,

Noise, uncertainty complicate analysis (but don’t help).

[

LO7 - Syrchronization 13

Sketch of analysis... |.

Assume asynchronous 0->1 0

at Ty, clock pcriod CP: 10 Synchronizer (Synchronized)
Whats the FF output voltage, e —

Vg immediately after T,? ruun

Clock

Sefptheld Yt =
(notter Pwdw

1. Whats the probability that t!

bob in Frovble whea violate Dl

Potential trouble comes when V,, is near the metastable point, V...

v
{ ¢ voltage, V,, immediately after
TA is within/ € of V2
V
. Twtastable
Y R X Tatc
< tgtty (st 2
s+ [H £
Vo-Vu|se]s *
£ R Vu Vo)
G004 -Fall 2011 929 LO7 - Synchronization 14

2.ForV,

exponential whose time constant
reflects RC/A:

3. Given interval T, we can compute how
small = |Vo-Vy| must be for output to

still be invalid af-berTsecands:%.{:‘ h \M\Jﬂ \ ] é

4. Probability of metastability after T is
computed by probability ofa V,
yielding € (T) ...

6004 -Fal 2011

Cate abbioh

We can model our
combinational
cycle as an
amplifier with gain
A and saturation
atV, Vv,

-

Sketch of analysis. .. II.\olkay [
= petfus bk, vole
% Slope = A
. s poportivg
‘] fo e for
o mhustuble V.
oug N€Ar Yy, Vo (t) isan . S T ;
by EZ:,, " fo ths s
g ,Q‘gpcf@ﬂtht

—
——

) & (Me(Vy=-Vie-""

Pu(T) & P[[Vo-Vyl < € (T)]

ak gty
S {
t ]qj aNngj f 07 - Syrehronization 15
( nsip 1 We Wi {__

Failure Probabilities vs Delay

Making conservative assumptions about the distribution of V, and system
time constants, and assuming a 100 MHz clock frequency, we get results like
the following:

Average time

Delay P(Metastable) between failures

31ns 3x10716 1 year

33.2 ns 3x1017 10 years

100ns 1045 10%0yearsl 49 % P

[For comparision:
Age of oldest hominid fossil: 5x106 years
Age of earth:; 5x10° years]

Go (i
pruti)

1t/

Lesson: Allowing a bit of settling timeis an
easy way to avoid metastable states in
practice!

LO7 - Syrchronization 16
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Antiquity: Early recognition

The Metastable State:

Denial: Early 70s

Folk Cures: 70s-80s

(NN{ b pait (m b work

Reconciliation: 80s-90s

6004 -Fall 2011

abriefhistory
———

Buriden' s Ass, and other fables...

Seple el b bush it axdt

Widespread disbelief. Early analyses
documenting inevitability of problem
rejected by skeptical journal editors.

S

Popular pastime: Concoct a “Cure” for :
the problem of “synchronization M” &"
failure”. Commercial synchronizer

Rvery Pale

products.

1
Acceptance of the reality: A UVWk/
synchronization takes time. Interesting
special case solutions.

%29 [‘QU‘“‘Q’L {'O (DPL \Hgﬂ‘smitm:m 17

1 Shoulda

6.004 - Fall 2011 9/29

lm M‘iu‘ﬂ Ja p”‘}f?) Or/ Foac[

Ancient Metastability

Metastability is the occurrence of a persistent invalid
output... an unstable equilibria.

The idea of Metastability is not new:

The Paradox of Buridan' s Ass

Buridan, Jean (1300-58), French Scholastic philosopher,

who held a theory of determinism, contending that the

will must choose the greater good. Born in Bethune, he

was educated at the University of Paris, where he studied with
the English Scholastic philosopher William of Ockham (whom
you might recall from his razor business). After his studies were
completed, he was appointed professor of philosophy, and later
rector, at the same university. Buridan is traditionally, but
probably incorrectly, associated with a philosophical dilemma of
moral choice called "Buridan's ass.”

In the problem an ass starves to death between two alluring
bundles of hay because it does not have the will to decide which

/,(a“ L Mok v mid

07- s,mrrmmm 18

Folk Cures

the “ perpetual motion machine” ofdlgntallaglc

Q/T{Q’hﬂlfb (rwd mﬁ

Bad ldea # 1: Detect metastable state & Fix

e _
Bug: detecting metastability is
ﬁy’:: — ] ‘_“"gl'f"L itself subject to metastable
2 i FXER, + o states, i.e., the “fixer” will fail
to resolve the prabfem in
b Quattnkeforeschee
) undedtime. ('t bl &
f e ehay mill

Bad Idea #2: Define the pr-oblem away by making metastable point a valid output

6004 -Fall 2011

Q"

vali

== Bug: the memory element will fiip
some valid “0 " inputs to “1”
after awhile.

Many other bad ideas - involving noise injection,
strange analog circuitry, ... have been proposed.

~wlla

~me4 fo expldn s
lmha,ll, \/umP Fron 0 to ﬁf\

Synchronization 19

Ptodlen

—

"Metastable States":

%’1 *

bl
1o

-Fall 2011 929

There’ s no easy solution

.. 80, embrace the confusion.

* Inescapable consequence of bistable systems
-u——-—'-__'-__—_—-.

* Eventually a metastable state will resolve itself to valid binary
level.

* However, the recovery time is UNBOUNDED ... but influenced by
parameters (gain, noise, etc)

¢ Probability of a metastable state falls off EXPONENTIALLY with
time -- modest delay after state change can make it very unlikely.

Our STRATEGY; since we can’ t eliminate metastability, we will do
the best we can to keep it from contaminating our designs

Con bt enmvgh dele, fiac_

107 - Synchronization 20




6004 -Fall 2011

Modern Reconciliation:
delay buys reliability
T Anmetastable state here

will probably resolve itself
to a valid level before it
— gets into my circuit.

e =

And one here will almost certainly

— getresolved. Mﬁ.\ C\‘l

' e &QJ\\'\‘.

| . E g -

©Synchronizers, extra flip
flops between the
asynchronous input and
your logic, are the best
insurance against
metastable states.

Out

The higher the clock rate,
the more synchronizers
should be considered.

o4y

(an \PQ GAQ;OO\'[ (&U‘-'tgﬂ)
Things we CAN’ T build

e
1. Bounded-time Asynchronous Arbiter:
_, S=0iff Bedgefirst, 1iff C edge first,

1 or O if nearly coincident
Svalid aftert , following (either) edge

—— | B
Arbiter

pd

2. Bounded-time Synchronizer:

Asynchronous : Qutp_tut 5 D at active clock edge, either 1 or O
Input iff D invalid near clock edge
- Qvalid after Loa following active clock edge

3. Bounded-time Analog Comparator:

Oor1,
finite t,;

fi

>5 141597

Continuous
Variable

(ot o Cpnﬂﬂztu) Ui aple

T dlscaly (in boaled

LO7 - Synchronization 22
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( Comblnaﬂoml*’__.>

Some things we CAN build
P

1. Unbounded-time Asynchronous Arbiter:

S valid when Done="1; unbounded time.

S=0 iff B edge first, 1 iff C edge first,
1 or Qif nearly comc:derl

\(r mell Up min

K

2. Unbounded-time Analog Comparator'

After arbitrary interval,

+— oor1 decides whether input:
) put at
Con\fml:log-;s >3.141597 time of last active clock
ariable Done edge was above/below

threshold.

3. Bounded-time combinational logic:

el
- -

A

Produce an output transition within a fixed
propagation delay of first (or second)
transition on the input.

ok ekl whih

cat tb#

6.004 -Fall 2011 LO7 - Synchronization 23

V\Q)\ On qj(/z?:

Interesting Special Case Hacks
L'F mﬂ{ /,,,mf} Llﬂtxf

Predictive periodic synchronization:

LIL Data1 Data2 f{e&tc“’t & lﬂdﬂ
Df\“'{ A Taa Exploits fact that, given 2 periodic
444444 CLK, clocks, “close calls” are predictable.
0!\ CLK, — 4444444441044 Predicts, and solves in sidvance, —
1 arbitration problems (thus eliminating

cost of delay)

For systems with unsynchronized clocks
of same nominal frﬂuency. Data goes to

Mesochronous communication:

Datat two flops clocked a half period apart; one
CLK > outputis bound to be “cléan” . Anobserver
% circuit monitors the slowly-varying phase

Data2

relationship between the clocks, and
selects the clean output via a lenient MUX.

)+ |

CLK, —*

Constraints on clock timing - periodicity,
etc — can often be used to “hide” time
overhead associated with synchronization.

CLK, ——

Vs Ol )llnlaq ,T,ﬁ(ﬂ 10 fix

6004 -Fall 2011 LOT - Synchronization 24




Every-day Metastability - |

Ben Bitdiddle tries the famous
“6.004 defense”:

Ben leaves the Bit Bucket Café
and approaches fork in the
road. He hits the barrierinthe
middle of the fork, later
explaining “l can’ t be expected
to decide which fork to take in
bounded time!”.

——

Cdm
{3r 5¢Jn

Is the accident Ben’ s fault?

“Yes; he should have stopped unsil his decision
was made.”

Judge R. B, Trator, MET@

it for duley

beer (W@
Cres f)"f'\
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(G
(

Every-day Metastability - I

GIVEN:
+ Normal traffic light:
+  GREEN, YELLOW, RED sequence 5
+ 55 MPH Speed Limit
+ Sufficiently long YELLOW, GREEN periods
+ Analog POSITION input
+ digital RED, YELLOW, GREEN inputs
+ digital GO output

Can one reliably obey....

+ LAW #1: DON' T CROSS LINE while light is RED.

GO = GREEN
@ \/W LAW #2: DON' T BE IN INTERSECTION while light is RED.
n 7l PLAUSIBLE STRATEGIES:

A.Move at 55. At calculated distance D from light, sample color (using an
unbounded-time synchronizer). GO ONLY WHEN stable GREEN,

B.S5top 1 foot before intersection. On positive GREEN transition, gunit.

led
fighl—

6004 -Fall 2011 229 LO7 - Synchrenization 26

Summary

The most difficult decisions
are those that matier the least.

As a system designer...

Sometimes,

Avoid the problem altogether, where possible gfn:a’;’"
Use single clock, obey dynamic discipline L el

long time.

*  Avoid state. Combinational logic has no metastable
states! /

"

LO7 - Synchronization 27

Delay after sampling asynchronous inputs: a
fundamental cost of synchronization

6004 -Fall 2011 9/29
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Q\K (e daonn

: ipelining
what SeymouCray taught the laundry industry

I've got 3 months
Worth of laundry
Todo tonight...

Funny, consldering that
he's only got one
outfit...

1) [2ees 0| [TITE] [2eee 0|
A==\ x (——\VY/—\
= o
I |

L\zxuo, a goed
Of boildig Mods,
*ﬂeﬂymmg rZ

ipeiring 1

Lab #3 du

Ing Lq;éeof

6004 -Fal 2011
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!

L

occhitadd ¢t

Forget circuits... lets solve a “Real Problem”

{= (MIOWB

... o]
INPET: —\ Device: Washer
dirty laundry
- Function: Fill, Agitate, Spin
—_— Washerpp = 30 mins
OUTPUT: [0 .-
6 more weeks ' R, Device: Dryer
m Function: Heat, Spin
_— Dryergp = 60 mins
6.004~Fal 2011 1004 108 - Piplining 2

b al [ile q  Combo dpvice

Oneload at a time

Everyone knows that the real
reason that MIT students put off
doing laundry so long is not
because they procrastinate, are
lazy, or even have better things to
do.

" o
The fact is, doing one load at a time S

is not smart.

Total = Washer,p, + Dryeryp
=_90 mins

6004-Fal 2011 1004 108 - Pipeliring 3

Doing N loads of laundry

: Step 1:
Here’s how they do laundry at
Harvard, the “combinational” way.
e e Step 2:
(Of course, this is just an urban legend.
No one at Harvard actually does .
laundry. The butlers all arrive on BIEE
Wednesday morning, pick up the dirty
laundry and return it all pressed and
starched in time for afternoon tea) Step 4:
Total = N*(Washerp, + Dryery;)
= N*90 mins

6004 -Fal 2011 1004 108 - Pipdining 4




Doing N Loads... the MIT way

MIT students “pipeline” Step1: =)
the laundry process.

o |
n Wwaby

Step 2:
That’s why we wait!
Step 3:

"0 ?

Actually, it's more like N*60 + 30 |
if we account for the startup 1
teansient correctly. When doing
pipeline analysis, we're mostly i

interested in the “steady state” | =__ N80 mins

where we assume we have an | A
infinite supply of inputs. f (oa LC‘U'\ m qa O

Total = N * Max(Washeryp, Dryeryp)

(0 n clack cxde

6004~ Fal 2011 LOB - Pipelining 5

Performance Measures
I
Latency: C/.}@M (TV&{ﬁi af é 60({

~The delay from when an input is established until the output
associated with that input becomes vali

d
Pefﬁm'{na |604fv{ﬂﬁm

(Harvard Laundry=__ 20 min5) Assuming that the wash
( MIT Laundry = 120 mins) + isstarted as soon as

possible and waits (wet)

\
00 nie ok (ycle ,Foles 2 ¢, ) ittt
Throughput:

The rate of which inputs or outputs are processed. E‘Jl' we (we

rin ‘(“’.]l‘ Hid

(Harvard Laundry = __1/90 outputs/min)
(- MIT Laundry = 1/60 __ outputs/min)

6.004 - Fal 2011 10/4 LOB - Pipeining 6

5

Lo’]‘b of {lﬂpd L (o-m{’»f\'(

Okay, back to circuits...

_—

For combinational logic:
latency = tpp,
throughput = 1/t

We can't get the answer faster, but
are we making effective use of our
hardware at all times?

X X 2 \m‘in to%w!
2 plped T
T —

k..._Y_J

F &G are “idle”, just holding their outputs

stable while H performs its computation
— e

(ol mole

6004-Fal 2011 LOB - Pipelining 7

(9dys chapr to Wl F

¥ Pipelined Circuits
use registers to hold H's input stable!

Now F & G can be working on input X, 4
while H is performing its computati

X, We' vecreated a 2-stage pipeline: if we
have a valid input X during clock cycle j,
P(X) is valid during clock j+2.

Suppose F, G, H have propagation delays of 15, 20, 25 ns and
we are using idf@ﬁegiﬁers:?’o 15
Iatenc)f throughput :
unpipelined 45 1/45 & AVl-se gf /Ql&c

2-stage pipeline 50 1/25
worse\ better 4
Con :
6004 - Fal 2011 CI'CL MY O‘C 10/4 LO& - Pipelining B
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Pipeline stages

6004 -Fal 2011

J Lomaon W47 o
diffomt
Sages

o b

4 wf}*!“ utio

Pipeline diagrams

Clock cycle —s
i i+1 i+2 i+3

Input X Xipa 5 | Xus
L4 N N
FReg ? F(XD\ FOGaN F(X,2)
GRﬁQ E(Q {(xlﬂ} %m)
N :
HReg \@g(x,}@m) .

The results associated with a particular set of input data
moves diagonally through the diagram, progressing
through one pipeline stage each clock cyclelz.

ar glltsw

10/4 LOS - Pipdiining 9

bt v of Hiv

el
\l/bh\'i
T , \&

Pipeline Conventions Qoo™ C1¥
DEFINITION: ¢

a K-Stage Pipeline (“K-pipeline”) is an acyclic circult having exactly K

registers on every pathfrom an input to an output. —_

_‘—'__—-'--..__

a COMBINATIONAL CIRCUIT is thus an O-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its

OUTPUT (not on its input). 0\.“_ CQM&(’ lﬁ\g'{, V‘fo to r?,g:b\?d
ALWAYS:

The CLOCK common to all registers must have a period sufficient to cover
propagation over combinational paths PLUS (input) register tp, PLUS

(output) register topryp. v
nslae pieliy

The LATENCY of a K-pipeline is K times the
period of the clock common to all registers.

The THROUGHPUT of a K-pipeline is the
frequency of the clock.

6004 -Fa1 2011 10/4 108 - Pipelining 10

Consider a BAD job of pipelining:

H\@J{\: (Qg\t&i!‘a ‘m
llI-formed pipelines Willy nilty “‘L»w}

hx:Tﬂ—_'r’\ >/

AN

‘{bf/'d@ a M[/

A pipelining methodology T |
Pipelining methodoloay Y pphy,
STRATEGY:

Focus your attention on placing
pipelining registers around the Rd pﬂ 4
lwgest paf

Step 1:
Draw a line that crosses every output
in the circuit, and mark the endpoints

as terminal points. slowest circuit elenignts

(BOTTLENECKS). \iO

Step 2:

Continue to draw new lines between
the terminal points across various
circuit connections, ensuring that
every connection crosses each linein

L[MJ
W

For what value of K is the following circuit a K-Pipeline? ANS: hone the same direction. These lines
demarcate prpe]me‘stages.
Problem:
Successive inputs get mixed e.g., B(A(.XM). Y. This Adding a pipeline register at every
happened l?ecause some paths from inputs to outputs point where a separating line crosses a f
have 2 registers, and some have only 1! connection will always generate a valid (,lv'LL T=1/8ns [ "
e L=24 '
This CANT HAPPEN on a well-formed K pipeline! plpalifs. 2 Tt [ n [,/.v €
o flia o> et pe
6004 -Fal 2011 1074 LO8 - Pipelining 11 6004 -Fall 2011 /‘ 7& Y 10/4 h LL ] LOS - Pipelining 12
l /on ]L \/ov ]n(,i,e 7“ (
. o o L2 Y

W

lllnlmg Ip



ﬂpe\h‘mg (L“o Y ?ro i SPe@i

3,4“&?
b

[

y \NPipeline Example

|

1
OBSERVATIONS:

* 1-pipeline improves neither
LorT.

* Timproved by breaking long

\
comb_inatlonal paths, MWW
allowing faster clock. Wﬁé,nw “, ‘

* Too many stages cost L,
LATENCY THROUGHPUT don’t improve T. ibfw’h L
QP 4 14 » Back-to-back registers (Om
1-pipe: are often required to keep
4 gl pipeline well-formed.
2-pipe: 4 1/2
Spipe i 172 € vl )Lh'.qdj wosg!

VTS

10/4

aally proed Yo fido i will KO

Pipelining Summary

Advantages:

- Allows us to increase thruput, by breaking up long
combinational paths and (hence) increasing clock

frequency bu +
&

Disadvantages:
- May increase latency...

- Only as good as the weakest link: slowest step
constrains system thruput,

4
This bottleneck
is theonly

lsn’t there a way around this “weak link” problem?
Cdn ceplae qomporn v Pi‘n‘” I

10/4

Cchpﬂfﬂ 7£i

6.004-Fal 2011 LOB - Pipelining 14

}f I)a'f'f/wvﬁ Cé

XY

ARl s

T )
L

-

Pipelined systems can be
hierarchical:

* Replacing a slow
combinational component
with a k-pipe version may
increase clock frequency

+ Must account for new
pipeline stages in our plan

4-stage pipeline, thruput="1

but...but...
How can | pipeline
a clothes dryerf??¢

" BATY Cltly ot p}pf/l\mble
P B vy
5@%@1\6 Ol\f_

10/4

6.004-Fall 2011 LO8 - Pipelining 15

Rod b pipeling
How do 6.004 Aces do Laundry?

They work around the bottleneck.
First, they find a place with twice
as many dryers as washers.

' A
Throughput= 1/30 _loads/min "9

6\/?/1

Latency= _ 90 mins/load

6004 -Fall 2011 104 L08 - Pipelining 16
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i
Back to our bottleneck... Slov L P
N@u\&

Recall our earlier example...

+ C-the slowest component -
limits clock period to & ns,

* HENCE throughput limited to
1/8ns.

We could improve throughput by
* Finding a pipelined version of C;
OR...

+ interleaving multiple copies of C!

‘[fﬁl‘f{

We can

version of a slow
component by replicating
the critical element and

————
alternate in ut? between LD al
the various copies. » o

R

Circuit Interleaving

latches betly Thaa

>
% pa~ o LY
G

simulate a pipelined

ceq st 5

= C(X.2)

5 ; DaQ
This is a simple 5 /
2-state FSM !
that alternates\ C
between O and 1
on each clock

9 P e W e Wl
b e W

6.004 -Fall 2011 10/4 LOS - Pipelining 17 G6.004-Fall 2011 10/4 LOS - Pipelining 18
Circuit Interleaving Circuit Interleaving
We can simulate a pipelined
version of a slow ' z
31 : i
component by replicating g | " © W Xs Jiin Co
the critical element and L CX) 2-Clock Martlmzmg - G L )
alternate inputs between V& “Inbyt,outbyt,,” LD al- g
the various copies. G ¢
When.a 1'6.1 the lower paifh is N-Way inter[eaving DQ
combinational (the latchis ish___"equivalent to {\/’f@fﬂl - 1 =
open), yet the output of the N bibaling Stazas C
upper patiwill be.enabled ALty acts ke 2 2-stage pipeline” PP Hingintars i 3l Co el
oo the Ipue of tha ot + Clock period O: X, presented at input,

register ready for the NEXT clk @
clock edge.

Meanwhile, the other latch

maintains the input from the C,output
last clock.
Mux output
6004 -Fall 2011 10/4

\
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|

—

propagates thru upperlatch, C,.

intlerleave

+ Clock period 1: X, presented at input,
propagates thru lower latch, C,. C5(Xp)

“way ot e
propagates to register inputs.

+ Clock period 2: X, presented at input,

6004 -Fall 2011

propagates thru upperlatch, C. Co(X;) loaded
into register, appears at output,

104 LOB - Pipelining 20




Combining techniques

By combining interleaving with
pipelining we move the
bottleneck from the C element
tothe F element.

We can combine interleaving and
pipelining. Here, C' interleaves two C
elements with a propagation delay of
&nS.

The resulting C" circuit has a
throughput of 1/4 nS, and latency of
& nS. This can be considered as an
extra pipelining stage that passes
through the middle of the C' module.
One of our separation lines must
pass through this pipeline stage.

L=25ns

6004 ~-Fall 2011 10/4 LO& - Fipelining 21

And a little par'allelism. s

(m f(’p”cwhi I')/Jl‘{ &na

Step 1: F—\ =\ P\ Wecancombine interleaving
Q g Q and pipelining with parallelism.
Step 2: = = Throughput =
: O 2/30=1/15 _load/min
Step 3: Latency = S0  iin

Step 4:

Step 5:

6.004 -Fall 2011 10/4

double  Thogh by

LOB - Pipelining 22

Control Structure Approaches

Synchronous Globally Timed

Timing dictated by
centralized FSM according
——

ALL computation “events”
oceur at agtive edges of a
periodic clock: time is
divided into fixed-size

RIGID

Locally Timed

Each module takes a START
signal, generates a
FINISHED signal. Timing is

dynam‘gdat& ndent.
ic, epe 7

LO8 - Pipglining 23

Events -- eg the loading of a
register -- can happen at at

arbi_t_ra_rz_t;hnes.

6004-Fal 2011

Synchronous, globally-timed:

|—>|
Control signals (e.g., load enables) = i
From FSM controller o o

Control
Synchronous, locally-timed: > Logic
Local circuitry, “handshake” controls
flow of data: x X X ) L Y
X
% o here's X l" \_/
here's X
"got)(” got X
2 ax "1 YT E
Asynchronous, locally-timed system using transition signaling:
X
x X X XX
“pere's X"
“ere = = here’s X __n" L
got X
gotx [ L
6.004-Fal 2011 10/4

nC
ON“\(

LOB - Pipglining 24




Self-timed Example

X ( Y AKX i

A==

Hees — L
&-Got1 Gat =
> Heres1 Got1 {
o Bl (S
€ Got2 Ry
Heres2 ¥ “ "
P Heres 9 Igetit! Asees “gotit” as 1 when bothB
R4 and C have asserted “got it”. And then
Heres - TR0, “gotit” returns to O when bothB and C
Got € have deasserted "gobit".
|
6.004-Fal 2011 10/4 LO& - Pipelining 25

Self-timed Example
aApy L &
here’s . . D C

Elegant, timing-independent design:

* Each component specifies its own time constraints
* Local adaptation to special cases (eg, multiplication by O)
* Module performance improvements automatically exploited

* Can be made asynchronal.}s (no clock at all!) or synchronous

so04-Far2011 (,(/H/ ﬁowﬁ e

108 - Ppelinng 26

Control Structure Taxonomy

Easy to design but fixed-sized Large systems lead to very

interval can be wasteful (no data-

dependencies in timing) Just say no! -
/
\ Synchronous Asynchronous  /
N Vi
Globally Centralized clocked Central control unit tailors
Timed FSM generates all current time slice to

current tasks.

corG% qnals J, U v EMJ

\'&f

Start and Finish signals Each subsystem takes
Locally generated by each major asynchronous Start,
Timed subsystem, generates asynchronous
synchronously with Finish (perhaps using local
. global clock. clock).
// \ The “next bigidea” forthe last

several decades: alot of design
work to do in general, but extra
work is worth it in special cases

The best way to build large
systems that have
independently-timed

6004 -Fall 2011 cornponents. 1004 LOB - Pipetining 27

complicated timing generators...

Summary

* Latency (L) = time it takes for given input to arrive at output
* Throughput (T) = rate at each new outputs appear
* For combinational circuite: L = t,, of circuit, T=1/L

*For K-pipelines (K > O):
+ always have register on output(s)
K registers on gvery path frominput to output
Inputs available shortly after clock i, outputs available
shortly after clock (i+K)
© T="1/(tppges + tep of slowest pipeline stage + topnyp)
- more throughput = split slowest pipeline stage(s)
- usereplication/interleaving if no further splits possible
+ L=K/T
- pipelined latency 2 combinational latency

6004 -Fall 2011 10/4
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

In this laboratory exercise, we’ll build the arithmetic

6.004 Computation Structures

Lab #3

logic unit (ALU) for the Beta processor.

The ALU has two 32-bit inputs (which we’ll call “A” and “B”") and produces one 32-bit output.
We’ll start by designing each piece of the ALU as a separate circuit, each producing its own 32-

bit output. Then we’ll combine these outputs into a single ALU result.

When designing circuitry there are three separate factors that can be optimized:
-_-_-—-—-—'_‘—-

(1) design for maximum performance (minimum latency)

(2) design for minimum cost (minimum area)

C UP (ﬂ‘\\'l (3) design for the best cost/performance ratio (minimize area*latency)
o5 Y

Happily it’s often possible to do all three at once but in some portions of the circuit some sort of
design tradeoff will need to be made. When designing your circuitry you should choose which of
these three Tactors is most important to you and optimize your design accordingly.

A functional ALU design will earn six points. Four additional points can be earned if you
implement the optional multiplier unit — see the section labeled “Optional Design Problem:

Implementing Multiply” for details.

ALU Specification

The 32-bit ALU we will build will be a component in the
Beta processor we will address in subsequent laboratories.

The Togic symbol for our ALU is shown to the right. Itisa
combinational circuit taking two 32-bit data words A and B

as inputs, and producing a 32-bit output Y by performing a
specified arithmetic or logical function on the A and B inputs.
The particular function to be performed is specified by a 5-bit
control input, ALUFN. whose value encodes the function

according to the following table:

ALUFN —\S\

32

ALU

A 32

( ALUFNM:0] Operation Output value Y[31:0]
N—+tabed Bitwise Boolean Y[i] = Fasea(A[i], B[i])

00000 32-bit ADD Y = A+B

00001 32-bit SUBTRACT Y = A-B

00010 32-bit MULTIPLY (optional) | Y =A*B

00101 CMPEQ Y = (A ==B)

00111 CMPLT Y = (A <B)

01101 CMPLE Y = (A <= B)

01000 Shift left (SHL) Y=A<<B

01001 Shift right (SHR) Y=A>>B

01011 Shift right, sign extended (SRA) | Y = A >> B (sign extended)

6.004 Computation Structures
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Note that by specifying an appropriate value for the 5-bit ALUFN input, the ALU can perform a
variety of arithmetic operations, comparisons, shifts, and bitwise Boolean combinations required
by our Beta processor. B A v

— 1 1 1
The bitwise Boolean operations are specified by ALUFN[4]=1; in this case, the
remaining ALUFN bits abed are taken as entries in the truth table describing
how cach bit of Y is determined by the corresponding bits of A and B, as shown
to the right.

== O
—_ O = O y
QB“GD..I

The three compare operations each produce a Boolean output. In these cases, Y[31:1] are all
zero, and the low-order bit Y[0] is a 0 or 1 reflecting the outcome of the comparison between the
32-bit A and B operands.

We can approach the ALU design by breaking it down into subsystems devoted to arithmetic,
comparison, Boolean, and shift operations as shown below:

ALUFN[3] = o\ o 32 éo Gad\. Fﬂ
SR / Al
/ArZ.V.N - 606.5 +D o / u/ﬂﬁt ;/
32 ; 1
ALUFN[1:0]—» ARITH |—* 0]32 0 PW1L j
; ! »l0] 32
} } ALUFN[2] % by
A B ALUFN[3] ]
32 ; 7
ALUFN[1:0]— SHIFT |4 ALUFN3:0]—] BOOL ALUFN[4]

2T

By following this strategy, you can use supplied test jigs to debug each of the four modules
separately before assembling them to make your ALU. —

Standard Cell Library

The building blocks for our design will be a family of logic gates that are part of a standard cell
library. The available combinational gates are listed in the table below along with information
about their timing, loading and size. You can access the library by starting your netlist with the
following include statements;

.include "/mit/6.004/jsim/nominal.jsim"
.include "/mit/6.004/jsim/stdcell.jsim" G_Iwh'[ e B/W (aéIL Zﬁ/ﬁ

Everyone should use the provided cells in creating their design. The timings have been taken
from a 0.18 micron CMOS process measured at room temperature.
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Netlist Function tep trp tr tr load | size
(ns) (ns) | (ns/pf) | (ns/pf) | (pf) (1)

Xid z constant0 Z=0 —_ — — — — 0
Xid z constantl 7 =1 — — — — —_ 0
Xid a z inverter .005 02 2.3 1.2 .007 | 10
Xid a z inverter_2 = .009 02 1.1 .6 013 | 13
Xid a z dinverter_4 Z=4 .009 .02 .56 3 027 | 20
Xid a z inverter_8 .02 11 28 A5 | .009 | 56
Xid a z buffer .02 08| 2.2 1.2 003 | 13
Xid a z buffer_2 Z=A .02 07 | 1.1 .6 005 | 17
Xid a z buffer_4 .02 .07 .56 3 .01 130
Xid a z buffer-8 .02 .07 28 15 .02 | 43
Xid e a z tristate .03 A5 2.3 1.3 .004 | 23
Xid e a z tristate_2 Z = A when e=1 03] 131 1.1 .6 006 | 30
Xid e a z tristate_4 else Z not driven .02 12 .6 3 011 ] 40
Xid e a z tristate_8 02 1 3 A7 .02 | 56
Xid a b z and2 Z=A-B .03 A2 4.5 2.3 .002 | 13
Xid a b ¢ z and3 Z=ABC .03 A5 ] 4.5 2.6 002 | 17
Xid a b ¢ d z and4 Z=A-B-C-D .03 d6 | 4.5 2.5 002 | 20
Xid a b z nand2 7 - 4-B .01 03| 45 2.8 .004 | 10
Xid a b ¢ z nand3 Z7-AB-C .01 051 4.2 3.0 005113
Xid a b ¢ d z nand4 7-ABC-D .01 07| 44 95 005 | 17
Xid a b z or2 Z=A+B .03 A5 | 4.5 25 002113
Xid a b c z or3 Z=A+B+C 04 211 45 2.5 003 | 17
Xidabcdz ord Z=A+B+C+D .06 29| 4.5 2.6 .003 | 20
Xid a b z nor2 7 - 4+B .01 05| 6.7 2.4 .004 | 10
Xid a b ¢ z nor3 7 =m .02 .08 | 8.5 2.4 00513
Xid a b c d z nor4 7 w di Bd O D .02 A2 9.5 2.4 0051 20
Xid a b z xor2 Z=A®B .03 d4 | 4.5 2.5 .006 | 27
Xid a b z xnor2 Z=;“é9—3 .03 14| 4.5 2.5 .006 | 27
Xid al a2 b z aoi2l 7 =m .02 07| 6.8 2.7 005113
Xid al a2 b z oai2l 7 =m .02 07 6.7 2.7 005 | 17
Xid s d0 d1 z mux2 Z=D0whenS=0 .02 12| 4.5 2.5 005 | 27

Z=DlwhenS =1
Xid s0 s1 d0 d1 d2 d3 z mux4 Z=D0 when S;=0, §,=0 04 19| 4.5 2.5 .006 | 66

Z=D1 when S¢=1, §;=0
(Note order of s0 and s1!) Z=D2 when 5¢=0, S;=1

Z=D3 when S=1, §;=1
Xid d clk g dreg D—Q on CLK{ 03| .19 43 2.5 002 | 56

t = .15, t =20
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Gate-level Simulation

Since we’re designing at the gate level we can use a faster simulator that only knows about gates
and logic values (instead of transistors and voltages). You can run JSim’s gate-level simulator by

climthe toolbar. Note that your design can’t contain any mqsfets, resistors, capacitors,
etc.; this simulator only supports the w in the s;tandard cell library. .

So jut gl 16 o (s
Inputs are still specified in terms of voltages (to maintain netlist compatability with the other
simulators) but the gate-level simulator converts voltages into one of three possible logic values
using the VIL and VIH thresholds specified in nominal.jsim:

0 logic low (voltages less than or equal to VIL threshold)

1 logic high (voltages greater than or equal to VIH threshold)

X unknown or undefined (voltages between the thresholds, or unknown voltages)
-

A fourth value “Z” is used to represent the value of nodes that aren’t being driven by any gate
output (c.g., the outputs of tristate drivers that aren’t enabled). The following diagram shows
how these values appear on the waveform display:

Connecting electrical nodes together using .conncc{

JSim has a control statement that lets you connect two or more nodes together so that they behave
as a single electrical node: a7 |
/
e’la‘mg / ¢lies

The .connect statement is useful for connecting two terminals of a subcircuit or for connecting
nodes directly to ground. For example, the following statement ties nodes cmpl, cmp2, ..., cmp31
directly to the ground node (node "0"):

.connect 0 Cm@,\‘jm‘w{eﬁ

Note that the . connect control statement in JSim works differently than many people expect. For
example,

.connect nodel node2 node3...

.connect A[5:0] B[5:0]

will connect all twelve nodes (A3, A4, ..., A0, B5, B4, ..., B0) together -- usually not what was
intended. To connect two busses together, one could have entered

.connect A5 B5
.connect A4 B4
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which is tedious to type. Or one can define a two-terminal device that uses . connect internally,
and then use the usual iteration rules (see next section) to make many instances of the device with
one "X" statement: =

e

.subckt knex a b
.connect a b

.ends

X1 A[5:0] B[5:0] knex

Using iterators to create multiple gates with a single “X” statement f JIENAN k{/ pe
Sk What « an “)0 g Mmeqf |

JSim makes it easy to specify multiple gates with a single "X" statement. You can create multiple
instances of a device by supplying some multiple of the number of nodes it expects, e.g., if a
device has 3 terminals, supplying 9 nodes will create 3 instances of the device. To understand
how nodes are matched up with terminals specified in the .subckt definition, imagine a device
with P terminals. The sequence of nodes supplied as part of the "X" statement that instantiates the
device are divided into P equal-size contiguous subsequences. The first node of each subsequence
is used to wire up the first device, the second node of each subsequence is used for the second
device, and so on until all the nodes have been used. For example:

Xtest a[2:0] b[2:0] z[2:0] xor2 OV]
is equivalent to xfest a2 al go bz bs be z22/zo Kmo/",?
Xtest#0 a2 b2 z2 xor2 ) |
Xtest#l al bl zl xor2 ' ) Ve
Xtest#2 a0 b0 z0 xor? OPP%'M Df pfp(/(ﬂ/j ‘
since xor2 has 3 terminals. There is also a handy way of duplicating a signal: specifying "foo#3"
is equivalent to specifying "foo foo foo". For example, xor'ing a 4-bit bus with a control signal
could be written as
Xbusctl in[3:0] ct;'l#4 out[3:0] xor2

which is equivalent to

Xbusct1#0 in3 ctl out3 xor2
Xbusct1#1 in2 ctl out2 xor2
XbusctT#2 inl ctl outl xor2
Xbusct1#3 in0 ctl out0 xor2

Using iterators and the “constant0” device from the standard cell library, here’s a better way of
connecting cmp[31:1] to ground:

Xgnd cmp[31:1] constant0

Since the “constant0” has one terminal and we supply 31 nodes, 31 copies of the device will be
made.
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ALU Design

Designing a complex system like an ALU is best done in stages, allowing individual subsystems
to be designed and debugged one at a time. The steps below follow That approach to
hnmeﬁﬁﬁﬁgmgxfﬁfﬁgfﬁﬁgﬁﬁshmm1m1m@eZ.“wtwgnbyhnmemmnmganALU
framework with dummy subcircuits for each of the four major subsystems (BOOL, ARITH,
CMP, and SHIFT); we then implement and debug real working versions of each subsystem. To
fielp you follow this path, we provide jsim “test jigs” which test each class of ALU operations
separately.

NOTE: the ALUFN signals used to control the operation of the ALU circuitry use an encoding
chosen to make the design of the ALU circuitry simple. This encoding is not the same as the one
used to encode the 6-bit opcode field of Beta instructions. In Lab 6, you’ll build some logic
(mnmﬂyaRONDﬂmthHanMEmeommdeﬁddohmgﬁugmglmguﬁiéigﬁﬁg?_

ALUFN control bits. il
bbl {J“ﬂ QX CWMC( {com Gtoyd VP

(A) Make a new file (called, say, “lab3.jsim”) and paste in the following code:

.include "/mit/6.004/jsim/nominal. jsim"
.include "/mit/6.004/jsim/stdcell.jsim"
.include "/mit/6.004/jsim/1ab3_test_bool.jsim"

.subckt BOOL alufn[3:0] A[31:0] B[31:0] OUT[31:0] af{:)
xdummy OUT[31:0] constant0 69 QQ(/[/L 0{ m ‘/J
.ends

.subckt ARITH alufn[1:0] A[31:0] B[31:0] OUT[31:0] Z V N
xdummy OUT[31:0] Z V N constant0
.ends

.subckt SHIFT alufn[1:0] A[31:0] B[31:0] QUT[31:0]
xdummy OUT[31:0] constantO
.ends

.subckt CMP alufn3 alufnl Z V N OUT[31:0]
xdummy OUT[31:0] constant0
.ends

.subckt alu alufn[4:0] a[31:0] b[31:0] out[31:0] z v n

*%% (Generate outputs from each of BOOL, SHIFT, ARITH, CMP subcircuits:

xbool alufn[3:0] a[31:0] b[31:0] boolout[31:0] BOOL «
xshift alufn[1:0] a[31:0] b[31:0] shiftout[31:0] SHIFT }fﬁiﬂl
xarith alufn[1:0] a[31:0] b[31:0] arithout[31:0] z v n ARITH j
xcmp alufn[3] alufn[1l] z v n cmpout[31:0] CMP

***% Combine them, using three multiplexors:

xmuxl alufn[4]#32 nonbool1[31:0] boolout[31:0] out[31:0] mux2

xmux2 alufn[2]#32 arithshift[31:0] cmpout[31:0] nonbool1[31:0] mux2 l_‘
xmux3 alufn[3]#32 arithout[31:0] shiftout[31:0] arithshift[31:0] mux2 C

.ends il/
haadels  Golatun P
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Note the relationship between this file and the block diagram on page 2. The file defines
an alu subcircuit, with its appropriate inputs and outputs. The body of this subcircuit
creates instances of modules called BOOL, ARITH, CMP, and SHIFT (corresponding to
blocks within the diagram), and muXxes them together according to our ALUFN coding
scheme. However, each of the four component modules is simply a dummy definition that
connects each output wire to logical 0 (using the constant0 device).

(B) Now, design the circuitry to implement the Boolean operations for your ALU. To do this,
replace the “xdummy ...” line in the definition of the BOOL subcircuit with jsim code that
combines its 32-bit A and B arguments according to the supplied 4-bit alufn code, and sets
OUT[31:0] to the result.

Our implementation of the 32-bit boolean unit uses a 32 copies of a4-to-1 multiplexer
where ALUFNO, ALUFNI1, ALUFN2, and ALUFN3 encode the operation to be

performed, and A; and B;are hooked to the select inputs. This implementation can

produce any of the 16 2-input Boolean functions.

ALUFND
ALUFMN1
ALUFN2
ALUFN3

BOOLE,

The following table shows the encodings for some of the ALUFN[3:0] control signals
used by the test jig (and in our typical Beta implementations):

Operation ALUFN[3:0]

AND 1000
OR 1110
XOR 0110
A 1010

The test jig actually checks all 16 boolean operations on a selection of arguments, and
will report any errors that it finds. It is specified in your lab3.jsim file by the line that
reads

.include "/mit/6.004/jsim/lab3_test_bool.jsim"

Then do a gate-level simulation; a waveform window showing the ALU inputs and
outputs should appear. Next click the checkoff button (the green checkmark) in the
toolbar. JSim will check your circuit’s results against a list of expected values and report
any discrepancies it finds. Using this test jig file, nothing will be sent to the on-line server
—it’s provided to help test your design as you go. Once your ALU passes this test suite,
you have some moderate assurance that it is working properly.

(C) Design an adder/subtractor (ARITH) unit that operates on 32-bit two’s complement inputs
and generates a 32-bit output. It will be useful to generate thrtput signals to be
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used by the comparison logic in part (B): “Z” which is true when the S outputs are all zero,
“V” which is true when the addition operation overflows (i.e., the result is too large to be
represented in 32 bits), and "N which is tru¢c when the S is negative (i.e., S3; = 1).
Overflow can never occur when the two operands to th€ addition have different signs; if
the two operands have the same sign, then overflow can be detected if the sign of the
result differs from the sign of the operands:

V= X4, + XBy S, + XA, - XB,, - S5

Note that this equation uses XBj, which is the high-order bit of the B operand to the
adder itself (i.e., after the XOR gate — see the schematic below).

ALUFNO will be set to 0 foran ADD (S= A + B) and 1 for a SUBTRACT (S= A - B);
A[31:0] and B[31:0] are the 32-bit two’'s complement input operands; S[31:0] is the 32-
bit result; z/v/n are the three condition code bits described above. We’ll be using the
“little-endian” bit numbering convention where bit 31 is the most-significant bit and bit 0
is the least-significant bit.

The following schematic is one suggestion for how to go about the design:

Drr“ N q
Jut AER
32 >V
A31... A0——F XA >
32 32-bitadd S A——+531...50
32
331...130—‘@) > 2 VR 32
ALUFNO X@@\

The ALUFNO input signal selects whether the operation is an ADD or SUBTRACT. To
do a SUBTRACT, the circuit first computes the twg’ig_)ﬂ}ﬂ’cmgut_n_egatio\nofthe “B”
operand by inverting “B” and then adding one (which can be done by forcing the carry-in
of the 32-bit add to be 1). Start by implementing the 32-bit add using a ripple-carry
architecture (you’ll get to improve on this later on the lab). You’ll have to construct the
32-input NOR gate required to compute Z using a tree of smaller fan-in gates (the parts
library only has gates with up to 4 inputs).

We’ve created a test jig to test your adder. Once you’ve filled in definition of the ARITH
subcircuit, change the line including the Boolean test jig to:

.include "/mit/6.004/jsim/lab3_test_adder.jsim"
and debug your newly implemented adder circuitry.

The Beta instruction set includes three compare instructions (CMPEQ, CMPLT, CMPLE) that
compare the “A” and “B” operands. We can use the adder unit designed above to compute
“A-B” and then look at the result (actually just the Z, V and N condition codes) to determine
if A=B, A<B or A<B. The compare instructions generate a 32-bit Boolean result, using “0” to
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u]n

represent false and to represent true.

(D) Design a 32-bit compare (CMP) unit that generates one of two constants (0™ or “1”)
depending on the ALUFN control signals (used to select the comparison to be performed)
and the Z, V, and N outputs of the adder/subtractor unit. Clearly the high order 31 bits of
the output are always zero. The least significant bit of the output is determined by the
comparison being performed and the results of the subtraction carried out by the
adder/subtractor:

Comparison Fquation for LSB ALUFN3  ALUFNI
(MWPEQ  A=B  LSB-Z 0 0
O‘LPLT A<B LSB=N@V 0 1
A =B LSB=Z+(N@V) 1 0
(nbLE
ALUFN bits 3 and 1 are used to control the compare unit since we also need to control the
adder/subtractor unit (i.e., ALUFNO = 1 to force a subtract).

Performance note: the Z, V and N inputs to this circuit can only be calculated by the
adder/subtractor unit after the 32-bit add is complete. This means they arrive quite late
and then require further processing in this module, which in turn makes cmp0O show up
very late in the game. You can speed things up considerably by thinking about the relative
timing of Z, V and N and then designing your logic to minimize delay paths involving
late-arriving signals.

We’ve created a test jig to test your compare circuitry. Once you've filled in definition of
the CMP subcircuit, change the line including the test jig to:

.include "/mit/6.004/jsim/lab3_test_cmp.jsim"

and debug your newly implemented functions.

(E) Design a 32-bit shifter (SHIFT block) that implements SRA, SHR and SHL instructions.
The “A” operand supplies the data to be shifted and the low-order 5 bits of the “B”
operand are used as the shift count (i.e., from 0 to 31 bits of shift). The desired operation
will be encoded on ALUFN[1:0] as follows:

Operation ALUFN[I1:0]
SHL (shift left) 00
SHR (shift right) 01

SRA (shift right with sign extension) 11

With this encoding, ALUFNO is 0 for a left shift and 1 for a right shift and ALUFNI
controls the sign extension logic on right shift. For SHL and SHR, 0’s are shifted into the
vacated bit positions. For SRA (“shift right arithmetic”), the vacated bit positions are all
filled with A31, the sign bit of the original data so that the result will be the same as
dividing the original data by the appropriate power of 2.

The simplest implementation is to build two shifters—one for shifting left and one for
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shifting right—and then use a 2-way 32-bit multiplexer to select the appropriate answer as
the unit’s output. It’s easy to build a shifter after noticing that a multi-bit shift can be
accomplished by cascading shifts by various powers of 2. For example, a 13-bit shift can
be implemented by a shift of 8, followed by a shift of 4, followed by a shift of 1. So the
shifter is just a cascade of multiplexers each controlled by one bit of the shift count. The
schematic below shows a possible implementation of the left shift logic; the right shift
logic is similar with the slight added complication of having to shift in either “0” or
“A31.” Another approach that adds latency but saves gates is to use the left shift logic for
both left and right shifts, but for right shifts, reverse the bits of the “A” operand on the
way in and reverse the bits of the output on the way out.

A[31:0)—{0 W[31:0]—>{0
132 W[31:0] /\\ %32 X[31:0]
A[15:0],GND#16—]1 W[23:0),GND#8—»]]
B4 B3
X[31:0]—{0 Y[31:0]—»{0
x32 Y[31:0] x32 Z[31:0]
X[27:0],GND#4—1 Y[29:0],GND#2—»|1

Z[31:0]—>»0
32—»SL[31:0]
Z[30:0],GND—>{1 c
T 6(/"( \
BO
We’ve created a test jig to test your compare circuitry. Once you’ve filled in definition of
the SHIFT subcircuit, change the line including the test jig to:

.include "/mit/6.004/jsim/Tab3_test_shift.jsim"

and debug your newly implemented shift functions.

(F) When you’ve completed your design, you can use lab3checkoff_6.jsim to test your circuit.

Change the test jig include line to
.include "/mit/6.004/jsim/Tab3checkoff_6.jsim"

and run the gate level simulation. This runs each of the test suites that you’ve used to
debug the component subcircuits, so unless there’s some unforeseen interaction among
your blocks you’re likely to pass the test. Clicking the green checkmark on success will
record your success: you’ve earned 6 points and are ready for your checkoff interview!
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Optional Design Problem: Implementing Multiply

The goal of this design project is build a combinational multiplier that accepts 32-bit operands
and produces a 32-bit result. Multiplying two 32-bit numbers produces a 64-bit product; the
result we’re looking for is the low-order 32-bits of the 64-bit product.
_._‘_‘—‘*——*-_'_—*——_
Your multiplier circuitry should be integrated into the ARITH design you completed in the first
part of this lab. Your augmented ARITH unit must be modified to produce a product if
ALUFN[1] is asserted, otherwise outputting from the adder/subtractor as it did before.

Here’s a detailed bit-level description of how a 4-bit by 4-bit unsigned multiplication works. This
diagram assumes we only want the low-order 4 bits of the 8-bit product.

A3 A2 Al AD (multiplicand)
* B3 B2 Bl BO (multiplier)
A3*BO A2*BO A1*BO AO0*BO (partial product)
+ A2*Bl1 Al1*Bl AO0*B1 0
+ A1*B2 AQ0*B2 0 0

o
>
o
¥
[we)
(U8 ]
o
o
o

This diagram can be extended in a straightforward way to 32-bit by 32-bit multiplication. Note
that since we only want the low-order 32-bits of the result, you don’t need to include the circuitry
that generates the rest of the 64-bit product.

As you can see from the diagram above, forming the partial products is easy! Multiplication of
two bits can be implemented using an AND gate. The hard part is adding up all the partial
products (there will be 32 partial products in your circuit). One can use full adders (FAs) hooked
up in a ripple-carry configuration to add each partial product to the accumulated sum of the
previous partial products (see the diagram below). The circuit closely follows the diagram above
but omits an FA module if two of its inputs are “0".
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The circuit above works with both unsigned operands and signed two’s complement operands.
This may seem strange — don’t we have to worry about the most significant bit (MSB) of the
operands? With unsigned operands the MSB has a weight of 2M5B (assuming the bits are
numbered 0 to MSB) but with signed operands the MSB has a weight of -2™*". Doesn’t our
circuitry need to take that into account?

It does, but when we’re only saving the lower half of the product, the differences don’t appear.
The multiplicand (A in the figure above) can be either unsigned or two’s complement, the FA
circuits will perform correctly in either case. When the multiplier (B in the figure above) is
signed, we should subtract the final partial product instead of adding it. But subtraction is the
same as adding the negative, and the negative of a two’s complement number can be computed
by taking its complement and adding 1. When we work this through we see that the low-order bit
of the partial product is the same whether positive or negated. And the low-order bit is all that we
need when saving only the lower half of the product! If we were building a multiplier that
computed the full product, we’d see many differences between a multiplier that handles unsigned
operands and one that handles two’s complement operands, but these differences only affect how
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the high half of the product is computed.

We’ve created a test jig to help debug your multiplier. Instead of including the checkoff file, use

.include "/mit/6.004/jsim/Tab3_test_mult.jsim"

This test jig includes test cases for

all combinations of (0, 1, -1)*(0,1,-1),
2%1 fori=0,1, ..., 31

49 o1 =;, 1y sy 31
(B<<i)*3fori=0,1,...,31

When you’ve completed your design, you can use lab3checkoff 10.jsim to test your improved
ALU implementation and record your successful completion of the optional multiplier. This
checkoff file contains all the tests from lab3checkoff 6.jsim plus the multiplier test suite.

Design Note: Combinational multipliers implemented as described above are pretty slow! There
are many design tricks we can use to speed things up — see the appendix on “Computer
Arithmetic” in any of the editions of Computer Architecture A Quantitative Approach by John
Hennessy and David Patterson (Morgan Kauffmann publishers).

6.004 Computation Structures -13 - Lab #3



3 A ) s
d WP o0 BLLL

~ Lo Comflosal
P6V]0¥/%t}@4 A+ TB
‘\mM (ngbf@()

= Conntal ot

WOWM 92
22 5epe/oofc

it « o b by by
Hoe 4 wl lib

Voo gub g

b fe allply  gobo

Tona og\ bt e
Dol T g s



lgoo\w/\
Ve oL Y-l milbiplerer
Ct & o eay bt g TT

WMo 2 - (}q _2)7([85]
7Bt Y

b4 Ay :
00§ st ot D
() ( C \le‘((,k L2 UM{T
L? h

e st of Y bwl%q
i B 0ty wre TT

k‘_\]b 50 M%f«f@h«/\ﬂ M‘)"Qb Eth ”)/ MQH] = M
Now o it o, %P)

1000 & AW Hlafos
st v abed TT L



Y

0o -
b~ |
Do TV ofod e Joop & |
A<] B ( [000 |, 0
0 ‘,
6 0 ,, ;

Eﬂ%{@sﬂw,“ K Qeebe, t stleds @ of TT 0 adpd
Don ¥ f@w[lz 600 Why o —Sme 5,pem[ M Ty
Pl — ol e oF e MK 27
ok g b, pet gt b dol ot Yo
Just bald ¢

¥ Wb oy |

~tonfies =y somligy €



©)

ﬁm, H ILS MMM\{ 8

@ Bogl e "

‘)qr'cﬂ\\_ - r

2 otpts -
2 oo all oobs e ()
S b ki sefl

\/&)N/ Whin iy

ﬂﬂﬂhjr ﬁn{a s s (omPlesanl
S hal Ak il as Thef

O\/ﬂ"“ﬂwb ['IL J(ldn of /&/H J:{{{((‘j F/Om
516“\ ot gye-aads |

\/: XAS]’XQN ’zgl %XA\’;I "M’S%/

Thign dcdor it

ALURV O & ol
L Sybtrat

—




I
~ bt 3 Mo )
0 Leb

bo  Chat of et & byld

Sbbact et aad add |

{/\/@,@&A 32 WOR
o bwld

oo o i




) = Zgam) - Ty

é@ el 2 ANQS

(e & L Moy
/:{) va o { Wiy !IWH- “‘ ]ﬂq,(/{x

IR







0,

0 é()(‘ é :M/ a/H 0\4({

M M0 al e
IR & ot )
Pubs why Wit 30 bF WOL
e !

]\/M, hae  gmme Cay

Lo ofttting A wany
,\27 NO& \way M* CD%'IG’?J"@ ‘2[]6 3/d {WZ/AL
( NO& h"bﬂ ) (ewHa/f
Uc v ae Mty aah bik
RIS
g/ft(g L; 32 in
@W %{ O(d@( o‘f OF)

C) ﬂ/p]’ hf/('}

| e norma|



I ‘Lwi A wah é( SM@/I Clrors
);O‘Q“ fot A/()R

e Tl clse witw
Lo 3T aplt
of Tl

()A a XJWWL\ Mo(¢ \/O(UMM
36 -

@ ()WL lc‘lL <fa wo/)w\( “‘Add?/

Compyre

g ((MPWQ JP(J/MJJ. Do A “‘9 Cmd ZOotL ar revlb

Tegher ode 3 bk Ao Qhnys () &
L ¢h C#O) s e okt

LLoRv 3, 1 sed gy
Qf\ow; Up (ate



b,
o Ty Tk_ 0res ‘W+

T

M

V¥ Lcas@é N gk
hes

O |
Jn f. G)(b XO& JL\

Co |
Y }Ztk ) otalt g
- /Mﬁk /1
e ©) 9 e

¥ -F0 <F2
g L



b

I Jf\ang‘L {'Wﬁ (vay f@}HL
[\’\QUL\ Conpire {abf‘

G S“(MMG
s\ﬂl BQ \ g O

2 o 0
o coll o Com last fim

Moo iy e m [dee b

0000 —2  0¢ L0

L l l“ —~) 000 [
| S

{ ey uot

ﬂ*g wt e ..

2 laloe Y
(\/ \Kb \ —Sl\wu :+ L& ( — (Vo
0k fuhor of el

Vot 0 hall - b



@

O\\ M(/\(M miglﬂlr La«.e been OQWWL e
@ HX% O(XHP/ ’

NOW (o "4s
mp "6(’@/{1} &\0 bQ Wf’L\Mﬂ

\ A \
N 0 (,T (5 Wml WVMﬂ {%c{ (?wltﬂf probfﬁm

v btk 0
him

Heds, rob vl - pet, €

D\\ H'(p | qad )

@ Compe. o
L

= e daby

B he md ghyy

MUk | ()
oML ~_p o
S — 1




©

Go ALURW) 6 (O

e ryht

| 5((gn ekcfeﬂw{o’\
Wow J‘wzde ’(14'@ :a (o

’”éo d bafh o pMvX /%v“
Cwiade ety of 0
5.0 L% é)lﬂt :5

\
A
éo 61\[(“?/ 3 (astade  of moltlexes
ot how Comngf ﬁ)g?/h@/ :
Mol w@;o}
AL oLl ,QW/

Mo
R {)L.(LH' COVA
Oh =

% Ny G

f

{—h'& 0y imast



Y

O Alls,60] ¢NO (b

G Use tiet | },;}5 ﬁ” (ull @l
W/ CND %I 502
OLL J’VblL Conrat "hnm Mﬂﬁﬁ/

b of tdiibal  hoges
(TML?/(GLE ‘(0(" J@;m 6)\&1“ Bk })eﬂ_(,( ,howrwib\/‘gu% ;f)

Tt 6 HL
—nild b Sl

Daa & aipr cign
Do soled £t

— Muy

L‘f""'--...
Q—
Ry —

N
ALV ‘ 0)



®

& Fo/ 6ﬂ/ﬂr /551& Wb‘t . l«/}/e l//

0 s A9
0~ 4e
#‘3\ . ] /f:nﬂewi 06 ﬁq/{ L&FM’
Alda

e o Mt ot of oher O

0 0 i

®’ m{&/\]p(\‘{ WP

KLW&L\ nd (el 000 ... 0 Copete
dikal 100 00

Wh .
1 (10&5 if gl/{ :Lz/nlv @m')[gb/(‘

MJ7L Wby lOQ (/»/fOnﬂ
"‘Ymh h/‘:H .+ Wwiony

Fe he A ad g






https://6004.csail.mit.edu/ssldocs/on_line_questions...

6.004 On-line: Questions for Lab 3

When you're done remember to save your work by clicking on the "Save" button at the bottom of the page. You can check if your
answers are correct by clicking on the "Check" button.

When entering numeric values in the answer fields, you can use integers (1000), floating-point numbers (1000.0), scientific notation
(1e3), or JSim numeric scale factors (1K).

Problem 1. lab3checkoff_10.jsim tests your ALU circuitry by applying 169 different sets of input values. These questions explore how
those values were chosen. e e i e,

No designer I know thinks testing is fun -- designing the circuit seems so much more interesting than making sure it works. But a
buggy design isn't much fun either! Remember that a good engineer not only knows how to build good designs but also actually
builds good designs, and that means testing the design to make sure it does what you say it does.

._'—*——.

An obvious way to test a combinational circuit is to try all possible combinations of inputs, checking for the correct output values
after applying each input combination. This type of exhaustive test proves correct operation by enumerating the truth table of the
combinational device. This is a workable strategy for circuits With—= few inputs but quickly becomes impractical for circuits with many
inputs. By taking advantage of information about how the circuit is constructed we can greatly reduce the number of input

combinations needed to test the circuit. gDOlﬂm md«,f (‘041{: — (’VF ’: éLODf

The ripple-carry adder architecture suggested in Lab 3 uses 32 copies of the full adder module to create a 32-bit adder. Each full
adder has 3 inputs (A, B, CI) and two outputs (S, CO):

: FA 2l i (J)
b

A. A single test vector for the full adder consists of 3 input values (one each for A, B and CI) and 2 output values (S and CO). To run
a test the input values from the current test vector are applied to the device under test and then the actual output values are
compared against the expected values listed by the test vector. This process is repeated until all the test vectors have been used.
Assuming we know nothing about the internal circuitry of the full adder, how many test vectors would we need to exhaustively
test its functionality?

Number of test vectors to exhaustively test full adder?: l l

B. Consider a 32-bit adder with 64 inputs (two 32-bit input operands, assume CIN is tied to ground as shown in the diagram below)
and 32 outputs (the 32-bit result). Assume we don't know anything about the ihwireaé«tqv—aad so can't rule out the
possibility that it might get the wrong answer for any particular combination of inputs? 5T Words, just because the adder
got the correct answer for 2 + 3 doesn't allow us to draw any conclusions about what answer it would get for 2 + 7. If we could
apply one test vector every 100ns, how long would it take to exhaustively test the adder?

Time to exhaustively test 32-bit adder? (in years): r J!
C. Shown below is a schematic for a 32-bit ripple-carry adder. @ ({
111t rrigrg L0
s FA ci—Fo FA c1o « a x oo FA c3—Fo FA ¢1—bo FA e .
e—nF{\ 1 OF{\ cite o F{\‘:l T T _l V\f, in & YW
s3 s30 S2 st S0

Except for the carry-in from the bit to the right, each bit of the adder operates independently. W:(can use this observation to
test the adder bit-by-bit and with a bit of thought we can actually run many of these tests in parallel. In this case the fact that
the adder got the correct answer for 2 + 3 actually tells us a lot about the answer it will get for 2 + 7. Since the computation
done by adder bits 0 and 1 is same in both cases, if the answer for 2 + 3 is correct, the low-ofder twd bits of the answer for 2 + 7

will also be correct.

So our plan for testing the ripple-carry adder is to test each full adder independently. When testing bit N we can set A[N] and
B[N] directly from the test vector. It takes a bit more work to set CI[N] to a particular value, but we can do it with the correct
choices for A[N-1] and B[N-1]. —_—

If we want to set CI[N] to 0, what values should A[N-1] and B[N-1] be set to? If we want to set CI[N] to 1? Assume that we can't
assume anything about the value of CI[N-1].

1of3 10/06/2011 01:31 AM
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g |k

l 1 Values of A[N-1] and B[N-1] to make C[N]=1?: | --select answer-- G_] /

D. Here's a proposed set of 10 test vectors which we'd like to use as an exhaustive test of the 32-bit ripple carry adder.
"-——-—-_._____..-‘—_“-.._‘

[Test Vector # | A[31:0] | B[31:0]

[1 [0x00000000 |0x00000000

2 [0x55555555 (even bits) [0x00000000

3 [0x00000000 [0x55555555 (even bits)
|4 [0)(55555555 (even bits) .|0x5555__5555 (even bits)
5 [0XAAAAAAAA (0dd bits) [0x00000000

6 [0x00000000 |0XAAAAAAAA (odd bits)
[7 [0XAAAAAAAA (odd bits) [OXAAAAAAAA (odd bitts)
s ~ [oxFFFFFFFF |oxFFFFFFFF

o [0x00000001 |0xFFFFFFFF

10 ~ |OXFFFFFFFF 0x00000001

To see if the tests are exhaustive, fill in the following table, indicating which test vectors tested which combinations of input
values. There are separate tables below for even adder bits (bits 2, 4, 6, ...) and odd adder bits (1, 3, 5, ...). Ignore adder bit 0
when filling in the "Even adder bits" entries since it 1s aspecial case with its CIN tied to ground.

pabak

Even adde_r bits I

0dd adder bits_

Alg[cIN Tested? [A[B[CIN] Tested?
0/[0Yo—"]ves, by A = 0x00000000 and B=0x00000000 [ofofo [ves, by A = 0x00000000 and B=0x00000000
001 [ves, by A=OXAAAAAAAA and B=0xAAAAAAAA 0[0[1 [Yes, by A=0x55555555 and B=0x55555555
selectanswer=-M x — </ L] -celect answer- a
ol lo --select answer: %6 5@-_5___\_{__“"*\, ol lo select answer i 9 7) ﬂﬂ _,_\
d Bm P e mae e ol | — » ' ) 5 S
/ ofp o [lzsslectanswer-: QGI_EFF MUNEY 3 ) g T R =L
/ I : 1 | --select answer-- @ /— A /\r'],\ _C_'|: 1lolo  ll-select answer-- A AI, A, ¢
J/,.L vado UW I\IA’—[)G@—
0 o) e e e S A et s A sl U ] I e e e~ ; =
( L fipp !:'_Sﬂ“ic_t.j'li"??[f;,,,,,,,F‘,,I‘F_,.Aod. secdBlliloh  fstledanster Lol ugd s
¢ L i ( T [
[-select answer- E“z-r—__ A 13] |-selectanswer- A A A 5
tfifo | CC vl o 14-/1,_“.
VJduJ J BYRYANA
tflfly flSelect answer-- [:F_FFF f—- wt¥dlifli 4.','.5’?.'35'?3”,5?‘,’?:1,,A,MAQ,,FAPMF FF F’,
E. Three of the compare unit's inputs (Z, V and N) come from the adder/su in subtract mode. To test the compare

time!). It also turns out that co

ractor runnin
e combinations

unit, we'll need to pick operands for the adder/subtractor that generate all posst

, Vand N. It's easy to see

that any combination with Z = 1 and N = 1 is not possible (the output of the adder cannot be negatjve and zero at the same
Tnations with Z = 1 and V = 1 cannot be produced by a subtract operation.

For each of the combinations of Z, V and N shown below, choose the subtraction operation that will produce the specified
combination of condition codes.

2:56“’.

\
\/ ¢ Quer { (OPZ) fo"lfw {omh)ubtraction that produces Z=0, V=1, N=0?:  --select answer-- 8 66;:;:

(

\ \ h({@(d‘,,&

20f 3

Subtraction that produces Z=0, V=0, N=0?: i':-'},é_l—éc_t_a_ri_sw'e?-"fﬁﬁ ’Tficﬁ,l_ DFH ﬁ
o i 14

Subtraction that produces Z=1, V=0, N=0?: | --select answer-- g 3 a-_!

3
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Subtraction that produces Z=0, V=0, N=1?: ?\--select answer--

B 0006

Subtraction that produces Z=0, V=1, N=1?: | --select answer-- ~[{"[" ¢ |
= -

| Check || save |

source: on_line_questions.py, lab3questions.xdoc

@ Qu@sﬂw
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Cost/Performance Tradeoffs:
a case study '

No !‘@"(’/[e TUP/MI’QW&I Systems Architecture 1.01
Qui%f/; |
e

FLMN( *\-‘ y
Y 7
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B ES

Lab #3 due tonight!

. Taghdly 6fn. Yoma
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T4t Fa/@(,|7 Chcmu{afh%c (oH@m

Binary Multrpllcatlon

.‘
[1¢

EASY FROBLEM: design

combinational circuit to multiply

tinMS-bit) operands...
HARD PROBLEM: design circult to
multiply BIG 552 -bit, 64-bit)

2nbits 49 J0e Pmd%}'"""‘bers Wil 1

since (2"-1)% < 2% b \"'0 M"'”'P“@/)

[a]
« L]

n bits

nbits

We can make big
multipliers out of ' 0~

little ones! é

Engineering Principle:
Exploit STRUCTURE in problem.

6004 -Fa 2011

Making a Zn-bit multiplier
using n-bit multipliers

Given n-bit multipliers:

EE-

nbits nbits nbits

2y |2, |
x by ]

ab,

Synthesize 2n-bit multipliers-

N\

')
ﬂ a by
E N b [ ap

X @ ha,\vf{b +¥_uJ

2nbits

1016

ot of
potlal

@\ @(OM}
| omef lile

in, Cleweades
@ol .

Our Basis:

n=1: minimalist starting point
Multiplying two 1-bit numbers is pretty simple:
——

[a]x[e] = [o]a]

© P ltong
Yt

AND

Of course, we could start with optimized combinational

multipliers for larger operands; eg.

-—

a,a—>—
bybg—5—

2-bit €3C,€1Cq

e
Multiplier
(gn MFJN‘WL '%‘Lw

6004 - Fal 2011
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Ourinduction step:
lauction
2n-bit by 2n-bit multiplication:

1. Divide multiplicands into n-bit pieces
2.Form 2n-bit partial products, using n-bit by n-bit

T~

multipliers.
3. Align appropriately REGROUP partial
4. Add. products - /]
b 2 additions
a by rather than 3|
ayb, | ab it
— H L

|aH|aL|x|bH|bL| — +

ayb,

Induction: we can use the same structuring
principle to build a 4n-bit multiplier from our
newly-constructed 2n-bit ones...

Multiplier Cookbook: Chapter 1

Step 1: Form (& arrange)
Partial Products:

Given problem:

|2y 2] 2y a
x Lbsl b b,[ b

a;bs | agb,
| aybs | a.by| agh, |
Subassemblies: | 33b3 a?_bz [a& I aobo |
+ Partial Products |
- Adders asb, | asb; |a;b,
GG Lagb: | 200
e ab

-

LO9 - Multiphers 7

eih

Brick Wall view
of partial products

Making 4n-bit multipliers from n-bit

ones: 2 “induction steps”

| 2o 2,] 2y 2
« Lo bo[ b b

'}kaﬂl\[)da//all(’ncz s N

(ow§

Performance/Cost Analysis

f@gg;m'otauom

"g(n) is of order f(n)"

P Elower Dosnt
g(n) = @(f(n)) if thereexist Co=C4>0,
such that forallbut finitely many integral

crf(n) =g(n) < czf(n)

~ a(n) = O(F(n))

N\

g(1) = @ (f(n))

nz0

;#MM%

= (AND -~
——=

O(...) implies both
inequalities; O(...)

i

Partial Products

\

Example:

since
2

(&
u:vd, 0«4".7

LO9 - Mutiphers 6

“almost always”

n

implies only the Things to Add: 2n-2 =
Secang, L J Adder Width: 2n =
Hardware Cost: ? =
Latenc;y; 0(312) rrs

6004 - Fal 2011 T

n 24—2n+5 = @(n 2)

n<s=(n 2+2n+3) =2n2

LO9 - Multipliers B




T &5

aibs | agk, @(n) partial products.
| a,b, l ab,| agb, l @(n") full adders.
| agbs | agb, la b | agbg i
asb, | ab, b | 2
| azby | apby nf‘d 4 "'
asb, BUnt“e o(

6004 -Fall 2011

| wt({V -I:D

s

o= an + efmww.ﬂcx
J bk

Repackaging Function

Engineering Principle #2: aln ?) partial products

2,
Put the Solution where the O(n ) full adders.

Problem is.

:MU.LT: ) "(‘/P\E-Dé
2D

&

ba apb,
a

iy
SN
N F
—
- -~
~ How about n? blocks, each doing a

little multiplication and a little
addition?

6004 - Fal 2011 1016 L09 - Multigliers 10

Goal:

Array of Identical Multiplier Cells

(oo

k+1

Tni je} mor]vl{
pute neor Righly

Sy

| /b. (Grmtfntc

Single brick” of brick-wall
array...

Ck+2

+Forms partial product.

6004 - Fal 2

2011

* Adds to accumulating sum
along with carry

| .

keb:‘i" ks

Necessary Component: Full Adder

Takes 2 addend bits plus carry bit. Produces sum
and carry output bits.

CASCADE to form an n-bit adder.

1006 LO2 - Multipliers 11

g

Array Layout:
* operand bits bused diagonally
* Carry bits propagate right-to-left
* Sum bits propagate down

(1[065 ””W\lﬂrl(wﬂdn antl q;“;

5Iu1

0

FA J{ FA

Brick design:
+ AND gate forms 1x1 product
+ 2-bit sum propagates from top to
bottom
+ Carry propagates to left ]

(o

k+2

Wastes some gates. .. but consider
(say) optimized 4x4-bit brick!

- S

10/6

(alf Abaite Wie

GO0A - Fall 2011 LO9 - Multipliers 12
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Latency revisited

Here' s our combinational multiplier:

RER™ o

. ao\ b( b3 ?0{\&‘\ What' s its propagation delay?

bz
as N a1b3l:0b2| -/ b,
oo laebalabibilaes]

*3”3!“2“2{"1”1|ao"0
] o azb1la1bol
as b, | 3, by I
/ L_la_aJ[ {
60(”\)“3

[ ANV IR
o Uy o

Naive (but valid) bound:

+ O(n) additions

+ O(n) time for each addition

* Hence O(n?) time required
—\———

On closer inspection:
* Propagation only toward
left, bottom

. Héﬁmﬁ/rw: path
bounded by length + width

e
b{v}: of array:

O(n+n) = O(n)!

——— LO9 - Mulupliers 13

Multiplier Cookbook:

Chapter 2
Combinational Multiplier:
Ao b
a, N / b, Hardware for G(nz)
a, . m / B n by nbits:
as N a, by | ag b, / b, Latency: O(n)
N Iazb3|a1bz|aob1| /
[a,b, | 2,0, |a,b, | ayb, Throughput: ~ ©(1/n)

a; b, l a, b, | a by

Note: lots of tricks are

a, b,
Lot available to make a faster

+|lill

I |a3b1|a2b01|
|

combinational multiplier...

LO9 - Multiphers 14

Combinational Multiplier:
best bang for the buck?

Suppose we have LOTS of
multiplications.

Canwe do better from a

cost/performance
standpoint?

6,004 -Fal 2011 1016

LO9 - Multighiers 15

The Pipelining Bandwagon...

where do | get on?

WE HAVE:
* Pipeline rules_—_i\.y_ﬂ
formed pipelines" a, bs
. Plenwl%sters a, ~ / b,
* Demand for higher a, N __lagh,] - p
throughput. a, »__laibslagh & b,
) ™ |azb3la,b2 aobl /
What do we do? Where do we &, b, | az z
define stages? f | aa bz az b1 a1 bo
33 b1 az bo ‘ |
Riswrs




~

Stupid Pipeline Tricks

¥ . T, +

Y Fd\ p
o ¥

gotta break
that leng
carry chainl

e

ay by |a;b, | agb,
| llll-llvili- I 7 }
b, |a,b, |a, b, |ab ‘
e /o Plrmenie  jmpioay

i:"ﬂzllf’zbllfﬁ bczl . —-G‘?)Bh W@-m

Clock Period: ~ @(n)
Hardware cost. for n by nbits: On 2)
Latency: @(;—ﬁ
Throughput: ~ ©(1/n)

l’lu/t “dl %J/oll I’W
o (W;) P(OP'\ﬂuHm mjlwfh)

4

~ =

Even Stupider Pipeline Tricks

WORGSE idea:

 Doesn t break long

4, b

J a, b 3022] Q

combinational paths

la,b, 4,4

* NOT a well-formed pipeline...

I a; b, | . different register

I counts onalternative
l az by l a bl i B, by ag b‘L| paths

a b, | 4, b IiLbo

.. data crosses stage

a; b

A, b boundaries in both

directions!

—

Back to basics:

what" s the point of pipelining, anyhow?

10/6 LO2 - Muluplers 18

Breaking O(n) combinational paths

L) b,
LONG PATHS go down, to left: Sy ¥ :
2
+ Break array into diagonal a, / b,
slices e v b
poiE o

+ Segment every long
combinational path

No ¢ln) path

hee

GOAL: © (n) stages;

G004 -Fall 201

® (1) clock period!

1046

LO2 - Multipliers 19

Multiplier Cookbook: Chapter 3

Stages: O (n)
Clock Period: ~ © (1) a3 bs
Hardware cost fornby nbits:  © (n?) N / B
Latency:  © (n) Fd 2 :
Throughput: !

* Well-formed pipeline

(carefull)

* Constant (highl)
throughput,
independently of
operand size.

N hufe oes
wigh g3
lmpu\t‘) )‘

e
__Z

\

.. but suppose we don’ t
need the throughput?

6004 -Fall 2011

LO9 - Mutipliers. 20
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"{ Oﬁlq | l‘lu‘“iﬂl‘ml\on % m{?’f”l:

Moving down the cost curve...

Suppose we have INFREQUENT a, b
multiplications... pipelining N / b
doesn’ t helpus. ——— : / “
e a, b,
Canwe do better from a cost/ Y, v /K / by
performance standpoint? «J( /- /

Hmmm, do |
really need
all these

extras? \

W,

K
)

G004 - Fall 2011 1006

o o 5l

Multiplier Cookbook: Chapter 4

Sequential Multiplier:

Stages: 1

+ Re-uses a single n-bit “slice”
to emulate each pipeline stage

+ aoperand entered serially

+ Lots of details to be filled in...

Clock Period: © (1) (constantl)

Hardware cost fornby nbits:  © (n) li i
) s (ot

Latency: © (n
Throughput:  © (1/n)

G004 - Fall 2011 1006

Neat Jrih

LO9 - Multiphers 22

(Ridiculous?)

Extremes Dept...

Cost minimization: how far can we go?
s T
b, Suppose we want to minimize
hardware (at any cost)...
b, + Consider bit-seriall

b, + Form and add 1-bit
partial product per clock

- Reuse single “brick” for
each bit bj of slice;

+ Re-use slice for each bit

—nat i
F(\dz“‘wbl a&m of a operand

GO0A -Fal 2011 1016

LO9 - Mutighers 23

Multiplier Cookbook: Chapter 5

Bit Serial multiplier: 3

* Re-uses a single brick to emulate %
an n-bit slice

+ both operands entered serially /

+ O(n?) clock cycles required //-

+ Needs additional storage
(typlcally from existing
registers)

Stages: © (1/n}
Clock Period:  © (1) (constant)

Hardware cost for nby nbits: © (_1__1 + 2 /‘Pe{ @ lﬂ% pﬁﬁ ('ed :4_5/5

Latency: © (n?)
Throughput: @ (1/n?) 60’.)

6O04 -Fall 2011 1006

LO9 - Multiphers 24




Summary:

Scheme: $ Latency Thruput
ka/ Combinational 8(n?) 8(n) B8(1/n)
N-pipe 8(n?) 8(n) B8(1)
Slice-serial e(n) a(n) 8(1/n)
Bit-serial 8(1 ): 8(n?) B8(1/n?)
+teglters

Lots more multiplier technology: fast adders, Booth Encoding, column

compression, ...

6004 -Fall 2011

LOZ - Muttiphers 25
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6.004 Computation Structures

Spring 2011

Quiz #2: March 11, 2011

Wame

\thena login name

Score

[TA: Deborah, 34-303
O WF 10
OWF 11

[TA: Arkajit, 34-302
O WF 12
O WF |

[TA: Caitlin, 34-301
OWF 1

O WF 2

TA: Eben, 34-302
OWF2

OWF3

Problem 1 (6 points): Quickies and Trickies

(A) NovaFlop, Inc advertises a reliable flipflop with an unusual guarantee: it may enter a metastable

state if the dynamic discipline is not followed, but that when metastable state settles to a valid
logic level, it will always be a 1 rather than a O

bt net
Is their claim plausible? Circle oney'Y . Can’t Tell

(B) MetaSure, Inc advertises a 2-input device that claims to produce a p051t§g1:an51t10n on its output
within 1 ns after positive transitions have occurred on both of its inputy, mh%
@Z

Is their claim plausible? Circle one: NO ... Can’tTell

(C) A latch is constructed from a 2-input lenient MUX having a propagation delay of 200ps and a

contamination delay of 20ps, using the design shown in lecture. Give the minimum h
appropriate setup time specification for this latch. O ( o a(ﬁ//({
10Dy

(D) Give the best achievable asymptotic throughput for a pipelined multiplier capable of multiplying
two N-bit operands. Enter a number, a formula, or “CAN’T TELL”.

Setup time (ps):

Asymptotic throughput: @
_—

of T
(E) A complex combinational circuit is constructed entirely from 2-input NAND gates havmg a 9\,‘1 !
propagation delay of 1 ns. If this circuit is pipelined for maximal throughput by adding

registers whose setup time and propagation delay are each 1 ns, what i3 the-throughput of the
resulting pipeline? Enter a number, a f§tmula, or “CAN’T TELL". ,L

069,1# E’lroughﬁ/t (ns): 3 e
Ll A Tnig fok
(F) You are given the sequent1a1 circuit and component specs

shown to the left. What is the shortest clock period that can
be used?

1Iinimum clock period (ns): (
gz Zhy ty

for euh Goofian

mverter: tcp=1ns, tpp=2ns
nor2: tep=1.5ns, tpp=2ns
D register: tep=0ns, tpp=2ns, ty=1ns, ts=3ns

6.004 Spring 2011 -1of5- Quiz #2



K =53 M 2 > 1
Problem 2 (10 points): Pipelining
The RIAA has come up with a new media encryption engine
called the Piper, consisting of nine combinational modules Y : Y.
connected as shown to the right. 2 > 1 > 3
The device takes a music sample X and computes an encrypted
version C(X). In the diagram to the right each combinational v v v
component is marked with its propagation delay in . N
microseconds; contamination delays are zero for each 1. > 1 > 1 C(X)
component. Unfortunately, it is too slow. [O

(A)

(B)

“50

—————

{ ]' ‘ f

9
Latency (microseconds): (O (/
Throughput (1/microseconds): 1//'0 \_/

(4 points) Show the RIAA how to pipeline the Piper by adding registers to maximize
throughput, but achieve the smalleslateney that meets the maximum throughput constraint.

Using the diagram below indicate the locations for ideal (zero-delay) registers to create a
pipelined implementation that meets these goals. Remerftber that your answer should have a
register on the output signal.

X 3/‘2 > 1
o

NP o on mfb% Pt ! / (and Jp“ft ¥

Extra copies of this

N
\ 4
-

> 3

diagram can be found on 6\42 /VW‘{,

page

©

6.004 Spring 2011 -20f 5-

Y

the back of the previous
’ Y Y KI‘
1 1 <L C(X)

(2 points) What is the latency and throughput of your pipelined implementation? /L_ /
| i3 . 3
Latency (microseconds): ; Throughput (1/microseconds):

(2 points) Suppose you found pipelined replacements for the components marked 3 and 2 that
had 3 and 2 stages, respectively, and could be clocked at a I microsecond period. Using these
replacements and pipelining for maximum throughput, what is the best achievable
performance? /

; Throughput (1/microseconds): (

f gvess en widny

T ndat (gt pm“’/ ~ (h (0«/{ f@ﬂ% %{

Latency (microseconds):

Quiz #2



Problem 3 (14 points): Self-timed protocols

Self Timed Systems, Inc makes clocked modules that pass data to each other using a simple, stylized
yst p 15108 nple, st
protocol. Data is passed between connected modules - a “sg_r_l_tkei” and a “receiver” - using an interface

consisting of three parts as diagrammed to the left. The diagram shows a
typical connection, over which data is occasionally passed from sendin
N yp n, yp g
Dozl D module S to receiving module R.
S [
H

H R The handshake protocol allows data to be transferred between sending and
Wie w receiving modules on appropriate clock edges, selected by the availability of
data at the sender and the capacity of the receiver to receive the data. The
wires connecting sender and receiver include an N-bit D (data) word
containing the data to be communicated, as well as control lines H (asserted
by the sender to signal “Have data”) and W (asserted by the receiver to signal “Want datﬁ’ﬁhc clock
input to each module is connected to a single, global, periodic clock. Data is transferred from S to R on

those active clock edges for which the H and W signals are both 1 (asserted). /
g g ( > shoa F_,ﬁjl Al /“my

When the sending module has data for the receiver, it drives the data on the D lines and asserts H (sets it
to 1) to indicate data availability. When the receiving module is ready to accept new input data, it asserts
W and prepares to load data from D at the next active clock edge. At each active clock edge, an N-bit
word of data is transferred from S to R if and only if both H and W signals are asserted. If H is asserted
but not W, the sender keeps driving D and H so that R may accept the data in some subsequent cycle; if
W is asserted but not H, the receiver ignores data it loaded and continues driving W until the sender is
ready to respond positively to its request for data. Each of these events happens on an active clock edge
(i.e., a positive transition), and each module samples incoming signals only on active clock edges. The
protocol is self-timed, meaning that each module may take arbitrarily many clock cycles for each of its

responses. \ﬂ é[&

(A) (1 point) Suppose the period of the clock is P seconds. What is the maximum throughput, in N-

v

A 4

bit words/seconds, of such a connection? |
Max connection throughput for clock period P: fﬁ words/sec

The flagship STS product is a FIFO (“First-In-First-Out™) module
useful for buffering streams of N-bit data, diagrammed to the right. ¢ . /
The FIFO module incorporates an N-bit register capable of holding Piv Fifo Pour

a single N-bit binary data word (for —Hy Hour —>
example, an N-bit binary number).
7 7 Input and output to this register are Win Wour
performed using separate IN and
LE OUT connections to the FIFO, each
using the above connection protocol. The idea is that one or more FIFO
modules may be spliced into a path between a source of data and its
consumer, providing a buffer between these modules.

v

LE STS engineers choose to implement the FIFO module as a simple “Fifo
FC Controller” (FC) FSM connected to an off-the-shelf N-bit register. The
FC component implements the “Have” and “Want” control signals for
—{Hy Hourt—> both the input and output ports, and produces a Load Enable (LE) signal
which, when 1, causes the register to load new data at the next active clock
edge. The FC is to be implemented as a Moore machine, meaning that
cach of its output is a function only of its current state.

1—_\__‘_/

6.004 Spring 2011 -3of5- Quiz #2
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Problem 3 (continued)

The FC was designed by a summer intern from MIT, hired
because he got an impressive score of 26 on Quiz 2 of
6.004. His design, shown to the right, is a simple 2-state
Moore machine whose states are marked with FC output
values and whose transitions are marked with appropriate
input conditions. The initial state is S0. Same-state
transitions are not shown; unless the FSM is in state S0 and
Hin=1 or is in S1 and Wour=1, it remains in its current state. Woyr =1
Unfortunately, the diagram is incomplete; the values for the Load Enable signal

to the register have been omitted. —_—

(B) (1 point) What value of LE should be produced for cach state of FC?
LE value for state S0: ; for state S1:

Cass Cade, VP of Performance for STS, decides

to explore the throughput properties of two FIFO LE LE

modules cascaded to make a 2-word FIFO buffer.

Rather than experiment with complete FIFO FCL H FCR
1

modules, however, Cass finds it convenient to use
just the FC portion since no actual data need be
transferred in her experiments. Wy «—— W,y Woyrte Wiy Wourle——W,
W
1

Hy —Hin Hous

Hn Hour—H;

Y

Cass models the case of two casaded FIFOs by
the diagram to the right, showing an FSM
consisting of two FC modules (Left and Right). She labels the two inputs, two outputs, and two internal
connections (between the FC modules) as shown. Cass denotes the state of this FSM by S.Sr, where St
is the state (0 or 1 for SO or S1 respectively) of the left FC, and Sr is the state of the right FC.

(O) (1 point) Viewing the two interconnected FC’s as a single FSM, how many states does it exhibit?
Number of states in two cascaded FC modules:
Next, Cass models an always-available data source and an always-empty data sink by tying HO and W2

to 1 in the above picture. She runs the
FSM for several clock cycles,

Cycle 0 1 2 3 intending to fill in the diagram below.
State: SiSr “00”
(D) (5 points) Fill the missing entries
Ho 1 1 1 1 in the table to the left, showing the
behavior of the dual-FC FSM with
Wo 1 inputs tied to 1 for the first few
cycles of its operation.
H1 0
Wi
Hz 0
(Complete table to left)
Wa2 1 1 1 1
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From her two-FC experiment, Cass predicts the maximum throughput of a two-word FIFO buffer
constructed from two cascaded FIFO modules.

(E) (1 point) For clock period P, what maximum throughput would you expect from two cascaded
FIFO modules?

Maximum throughput for clock period P: words/sec

Cass generalizes the above experiment to involve a chain of K FIFO modules, connected as shown below,
and measures the throughput of the chain.

0 =“~>Dw Fifo Pour = = =“>D Fifo Pour <>
1 ——{Hn Hour F—> — ——»{Hn Hour —>
«—W Wour j— — «— Wy Wour j&— 1
| |
||

K Fifo Modules

(F) (2 points) For clock period P, what throughput would you expect the K cascaded FIFO modules?

Throughput for clock period P: words/sec

It occurs to Cass that she might improve throughput of the FIFO by using combinational logic to cause a
“Want” signal on Wour to force Win to be asserted during the same cycle. Cass reasons that, even if the
buffer is full during the current cycle, the Wour signal from its output side ensures that the register can be
used to hold new data during the next clock cycle. She asks her engineers about this proposal, and gets a
variety of counter-arguments:

Cl: “That would cause a combinational cycle in a FIFO cascade!”

C2: “Your FC would no longer be a Moore machine.”

C3: “That would introduce unsolvable arbitration problems.”

C4: “The proposal wouldn’t increase throughput at all”

C5: “The proposal would require a clock period proportional to K, for K cascaded FIFOs”

(G) (3 points) Which of the above complaints are valid? Circle each valid complaint, or NONE:

Valid complaints (circle all that apply): C1 ... C2 .. C3 .. C4 .. C5 .. NONE

END OF QUIZ!
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures

Fall 2010

Quiz #2: October 15,2010

Name

dthena login name

\Score

TA: Caitlin, 26-322
O WF 10
O WF 11

TA: Quentin, 34-303
O WF 11

O WF 12

TA: Sabrina, 34-304
O WF 12

O WF |

[TA: Steve, 34-303

0O WF 2

Problem 1 (5 points): Quickies and Trickies (1 point each)

(A) A combinational circuit C, built entirely from 2-input NAND gates having a propagation delay of
2ns, has a propagation delay of 20ns. You pipeline C for maximum thruput using the minimum
number of registers necessary; the registers have 1ns setup time and Ins propagation delay. What
would you expect for the latency of the resulting pipeline? Answer “None” if you can’t tell from
the information given.

Latency of pipelined version, or “None™:

(B) If we account for fanin limitations but ignore wire delays, what is the asymptotic latency of the
fastest combinational N-input AND circuit we can build?

Asymptotic latency of N-input AND, or “None”: O(_ )

(C) Is O(logz2 N) the same as O(logio N)?

Circle best choice: YES ... NO ..

only for some N
(D) Putting latches on the shared A and B data inputs to the arithmetic, boolean, shifter, and
comparator units of an ALU may improve

1) Latency

2) Reliability

3) Throughput

4) Power dissipation

5) None of the above

Select best choice:

(E) True or False: It is impossible, in theory, to build a 100% reliable bounded-time, bounded-error
analog voltage comparator.

Circle best choice: TRUE ... FALSE
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Problem 2 (19 points): Comparative Anatomy

MaxOut is a Cambridge startup whose products are binary
comparators which determine the largest of several unsigned binary
integers. A building block common to all MaxOut products is the
combinational CBit module depicted to the left.

Each CBit module takes corresponding bits of two unsigned binary
numbers, A and B, along with two Ci, bits from higher-order CBit
modules. Its output bit, R, is the appropriate bit of the larger among A
and B, as determined from these inputs; it passes two Cou bits to
lower-order CBit modules.

The propagation delay of cach CBit module is 4ns. The two Cou bits indicate, respectively, if A>B or
B>A in the bits considered thus far,

The first MaxOut product is MAXC, a combinational device which determines the maximum of its two 4-
bit unsigned binary inputs. It is constructed using 4 CBit modules:

A, B, A, B, A B, A, B,

R, R, R, R,

In the above diagram, unused inputs are tied to 0. The output Rs. is the larger of As.0 or Biuo.

(A) (2 points) What propagation delay specification is appropriate for the combinational MAXC
module? What is its throughput?

MAXC propagation delay spec: ns

MAXC throughput: 1/ ns

(B) (1 point) If A3, and Bs.o are identical numbers, what two bits would you expect to see coming out
of the (unused) Couw outputs from the low-order CBit module?

Low-order Coyu bits for A=B: and
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MaxOQut’s second product, MAXP, is identical to MAXC except that it includes the minimum number of
registers necessary inserted to pipeline the circuit for maximum throughput.

(C) (2 points) On the diagram below, show contours indicating where ideal (zero delay, zero setup/hold
time) registers are inserted to pipeline MAXC for maximum throughput. Be sure to include at least
one register on each output.

As; Bs; A, B; A By Ay Bo

CBit || CBit [, | CBit || CBit

R3 R2 R1 I?O

(scratch copies are on back of previous page)
(mark diagram above)

(D) (2 points) What are the latency and throughput of your pipelined MAXC?

Pipelined MAXC latency: ns

Pipelined MAXC throughput: 1/ ns
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Expanding their product line, MaxQOut’s next product — the MAX4X4 -- is a combinational multiplier
capable of determining the maximum of four 4-bit binary inputs:

Az Az A4 Ag

BS:O

A 4 A 4 A 4 A A Y v Y
Cs0

A 4 v A 4 A\ 4 A 4 v A\ 4 \ 4
D30

R, R, R, Ro
(E) (2 points) What are the best latency and throughput that can be achieved using the combinational
MAX4X4?
Latency: ns
Throughput: 1/ ns

(F) (6 points) Mark, on the above diagram, contours indicating placement of ideal registers for
pipelining the MAX4X4 for maximum throughput. Give the best latency and throughput that can
be achieved by pipelining the MAX4X4. (Scratch copies on back of previous page).

Latency: ns

Throughput: 1/ ns

(mark diagram above)
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To round out their product line, MaxOut’s latest product
uses an alternative approach. The MAXFSM is to be a

clocked finite state machine that takes two N-bit binary A ’

numbers, An.o and Bnip in bit-serial form, most significant B N

bit first, and outputs the larger of these numbers as Rx.1:0 ! MAXESM
also in bit-serial form. The MAXFSM is a Moore >

machine; recall that this means its output is strictly a
function of its current state (like those FSMs shown in lecture).

Before each active clock edge, the i bit of the A and B inputs are applied; during the next clock cycle, the
i'" bit of the larger of the two input numbers appears at the R output. Note that the serial output bits are
delayed with respect to the input bits by one clock cycle, in order to allow each it output bit to be
influenced by the i input bits.

(G) (1 point) What is the minimum number of states necessary to implement a Moore machine obeying
the above specifications?

Number of states required:

i [gnoring your answer, MaxOut decides to build
the MAXFSM using a CBit module and several
flipflops, as shown in the diagram to the left.

9 i The registers have the following specifications:
CBit Z
J < tpd 4ns
ted Ins
" v ts Sns
2 //2 th Ins

Recall that the CBit has a 4ns propagation delay;
assume that its contamination delay is zero.

v
R4

(H) (1 point) What is the shortest clock period for which this circuit will operate reliably?

Clock period > ns

(I (2 points) What setup and hold time requirements should be specified for this FSM?
FSM Setup time: ns

FSM Hold time: ns
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Problem 3 (6 points): Big Adders

Carrie Guess, a star 6.004 student, has taken a coveted summer internship at
the behemoth Froogle, Inc designing hardware for their web servers. Her
A B assignment is to develop an adder for two 1000-bit binary integers, the critical

step in a new web service to be offered.
1000

i — 0 Remembering the ripple-carry adders she built in labs 2 and 3, her first
approach is to build a 1000-bit ripple-carry adder using Froogle’s standard Full

1000 Adder component, having a 1ns propagation delay. Asshe did in lab 2, she
feeds 0 into the low-order carry input, and ignores the high-order carry output.

(A)(1 point) What is the propagation delay of the 1000-bit ripple-carry adder?

Propagation delay:

ns

Carrie’s boss tells her that her adder is too slow, by about a factor of two. Searching for a scheme to
speed up the adder, Carrie decides to break it into two 500-bit ripple carry adders, and simply “guess” that

the carry input into the high-order sum will be a zero, as follows:

In this design, each of the A and B inputs, as well as the SUM
outputs, is broken down into high and low halves, each 500
bits wide. Carrie’s new adder now produces a 1000-bit sum
whose high-order bits will be correct only about half the time;
as an added feature, it produces an error signal to indicate
when the sum is invalid. She stays up all night rewriting the
user interface to Froogle’s new service, replacing the
“Compute” button with one that reads “I feel lucky”, and
introducing a response “You're not THAT lucky” when the
adder fails.

(B) (1 point) What is the propagation delay of the new
adder?

Ani By Ao Big
500 i 500 i
«— + |« 0 a
i 500 l7 i 500
"YOU
SUM, LOSE" SUM g
Propagation delay: ns

Plagued by complaints from irate users, Carrie’s boss reports that he likes the speedup of her new adder,
but that reporting failure is not an acceptable option. After some thinking, Carrie comes up with the

following revision to her adder:
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AHI BHI AHl BHI ALO BLO

SN

1 e e— 1 haaile— 0 — - «— 0
Z + 500 Y 500 ¥ 500
out 0
: .
r v
1 0
500
\ 4
SUMy, SUM,o

This design uses three 500-bit ripple carry adders, computing the high-order sum under both possible
assumptions about its carry input. A final 2-way MUX selects the proper sum and carry outputs, based on
the actual carry from the low-order sum. The propagation delay of each MUX is 1ns. Carrie calls this
design a “Carrie-select” adder.

(C) (2 points) Does the “Carrie-select” adder always compute the proper sum? What is its propagation
delay?
Always works? Mark one: YES: ;or NO:

Propagation delay: ns

Carrie starts thinking about replacing each of the 3 500-bit ripple-carry adders in her “Carrie-select”
design themselves with Carrie-select adders (each comprising three 250-bit ripple-carry adders).

(D) (2 points) What is the propagation delay of this 2-level Carrie-select adder? How many Full
Adders are required in its construction?

Propagation delay: ns

Total number of Full Adders required:

(E) (1 point) Suppose the Carrie-sclect approach were used at every level of an N-bit adder -- i.e., each
k-bit adder used as a component were replaced by a k-bit Carrie-select adder wherever that
improves performance, and the components of that Carrie-select adder were recursively so
upgraded. What is the asymptotic latency of the resulting N-bit adder?

Asymptotic latency of N-bit recursively-constructed carry-select adder: ©( )

END OF QUIZ 2
(phew!)
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