[

CE\Law\ \ ﬁ)mo//o»v)

e

J«Odtq(/ Sor‘l(Mj Dq,zj

WMO(AI% q) WW/ 5 besk
W\m a O(”) W@Wd
\
(o g}
ﬂb“ W OL‘@Q'hWL) We Gaw &0 é/
Vst compartsos 4o ot
O(M@gn) s e bt v i b

0{(,\.5(034 Tfed

E:\/@fY ﬂﬂ&a 408) a COWLPIV&Q |
60 l@é}’ 6Md f\(ﬂlﬂl Lwi on A r@”{fﬂﬂéo’}

Fad baf s o pecatation showty fh ods

EM{ (@ﬁP“5594 free hes @ Q/%&ﬂiﬂa Hree é},ﬁ,& +
S P T
Worst pusshle = Mﬁ(q{ of tree

da(l, L%F)/\\C(tjl’lf :5 ﬂ/ﬁjn)@[ﬁhf
/l(q ﬁnj n)eke(tdmt

(
W@e ma* COn]LUM A F]\, l@@/@

S n! I()(J/MJMHW

febt b boay fre ho £ flewes
ST

Wow WL will beat fnat! ﬂﬂ)

Lv)r (JO% not w/k I Wd{ (ase
éoes hot Lol 01 Spts O‘F g ?%C /)Oﬂlz K5

au)(: "
Cm/l(] i ”9(9/{1 sjogﬁ |
(um* A Cooilytn T 591&%/

(({Mﬂ} (U{/ fw} ﬂ%(e ”

(" 3

“lﬁ%’&j 5 [l 0 Z'L]

| | §33 Y c

(0“ lout[d @/mabfwe Rizs Ll

{1 1o

[2 94

)

éb ZLnow wW j@oﬁ‘fﬂ"” Jro pwf each M«j

~ g0’ fwn ol
ﬂ@aew@ Cout by | ¢ 1 ‘J)'Mi/
_QQPcwl

(Gl i g
Cﬂ/hppl(ajef{, Wy i ((o Qs ﬂgy

oty it [

M«j pepely
~(y] ?os;h'm P fnpﬂt .,0/%@/5(‘
“w te Lk 3 s S g a3
T sl rale S beo
bt g 3 (oe W/ Wl gde o prwn
Lo MU 6 onpuisn oo
Botly i Iiled al sf s
Mot be a Ll sof o ales
(omtlsty sy v T e ol

(oo bik Yo 170 (o5

(l\%'ﬂl L\[“/\13!4

P bt il bl
L e Lnat b

L
@uflﬂ("ﬁ e il W/ L b y
%“”‘\ oy -9—- bue 7 4" diyh
e o) hib gl |
H tah b-i4 vord e ub - bt plg
- Ll foss <l 6{:1 T27

éo (:/0‘7) g;/@ 9(;4} 0 fuss o7
9(%5«) S[[o/\“b!

)

[/x\j
(‘ Vi
e}l
F([;i(

Introduction to Algorithms, Lecture 5

6.006- Introduction to
Algorithm

Lecture 10

Prof. Constantinos Daskalakis
CLRS 8.1-8.4

Comparison sort

All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.

So the elements could be numbers, water-
samples compared on the basis of their
concentration in chloride, etc.

The best running time that we’ve seen for
comparison sorting is O(nlogn).
Is O(nlog n) the best we can do?

Decision trees can help us answer this question.

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

THid 4 (Gnole

Menu

 Show that ®(n Ig ») is the best possible
running time for a sorting algorithm.

» Design an algorithm that sorts in ®(») time.
» Hint: maybe the models are different ?

Decision-tree

A recipe for sorting n
things (a;, a, ..., a,)

- Nodes are suggested
comparisons:
a;:a; means
compare g, to a;.

- Branching direction
depends on outcome
of comparisons.

- Leaves are labeled with permutations corresponding to the
outcome of the sorting.

Introduction to Algorithms, Lecture 5

Decision-tree example

laaa| [aaal

|a;ﬂ_~‘ﬂ:] |a3a§az

Each internal node is labeled a;:q; for i, j € {1, 2,..., n}.

*The left subtree shows subsequentcomparisonsif a; < a;.

* The right subtree shows subsequent comparisons ifa; > a;.

* Each leaf contains a permutation (n(1), ©(2),..., n(n)) to
indicate that the ordering a, ;) < a,5) < +++ < a,,, was found.

Decision-tree example

Sort {a,, a,, az)
=(9,4,6):

Each internal node is labeled aga; fori,je {l1,2,....,n}.

* The left subtree shows subsequentcomparisonsif a; < a,.

* The right subtree shows subsequent comparisons ifa; > a;.

*Each leaf contains a permutation {rt(1), ©(2),..., n(n)) to
indicate that the ordering a,), < a,5) < +++ < ay,, was found.

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Decision-tree example

Sort {a,, a5, az)
=(9,4,6):

ialﬂ1a:1 i;a;d,ﬁ;] l'aza:,a,] |“3”:“1|

Each internal node is labeled a;:a; for i, j € {1, 2,..., n}.

* The left subtree shows subsequentcomparisons if a; < a;.

* The right subtree shows subsequent comparisons ifa; = a;.

*Each leaf contains a permutation (n(1), ©(2),..., n(n)) to
indicate that the ordering a,;) < ;) < -+ < @, Was found.

Decision-tree example

Sort (ala ay, (13)
={9,4,6):

A, | I“s“?.“l I
4<6<9
Each internal node is labeled a;:a; for 7, j € {1, 2,..., n}.
*The left subtree shows subsequentcomparisonsif @; < a;.
* The right subtree shows subsequent comparisons ifa; > a;.
*Each leaf contains a permutation (n(1), ©(2),..., 7(n)) to
indicate that the ordering a,;) < @,y < *+* < Gy, was found.

ltaia, |

Introduction to Algorithms, Lecture 5

Decision-tree model

A decision tree can model the execution of
any comparison Sort.
* One tree for each input size .

* A path from the root to the leaves of the tree
represents a trace of comparisons that the
algorithm may perform.

* The running time of the algorithm = the
length of the path taken.

» Worst-case running time = height of tree.

Sorting in linear time

Counting sort: No comparisons between elements.

o« Input: A[1..n], where A[j]e{1,2, ..., k}.
* Quitput: B[1 . . n], a sorted permutation of 4
* Auxiliary storage: C[1 . . k].

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Lower bound for decision-
tree sorting

Theorem. Any decision tree for » elements
must have height Q(nlogn).

Proof. (Hint: how many leaves are there?)
 The tree must contain > »! leaves, since there
are n! possible permutations.

* A height-% binary tree has < 2” leaves.

* For it to be able to sort it must be that:

2k> nl

h = log(n!) (log is mono. increasing)
2 log ((n/e)™) (Stirling’s formula)
=nlogn—nloge
=Q(nlogn).

Counting-sort example

one index foreach
n=5, k=4 possible key stored inA
1

1 2 3 4 5 1 2 3 41

Introduction to Algorithms, Lecture 5

Loop 1: initialization

B

fori<—1tok
do C[i] « 0

Loop 2: count frequencies

B:

forj«—1lton
do C[A[j]] « C[A[j]] +1 © C[i]=|{key =i}|

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 2: count frequencies

B:

forj< 1ton
do C[A[j]] < C[4A[/11+1 © C[i] =|{key =i}|

Loop 2: count frequencies

B:

forj«<1ton
do C[A[j]] « CIA[j11+1 & C[i]=|{key =1}

Introduction to Algorithms, Lecture 5

Loop 2: count frequencies

B:

forj<« 1ton
do C[A[j]] < ClA[/1 +1 © C[i]=|{key = i}|

Loop 2: count frequencies

B:

forj« 1ton
do C[4[j]] - Cl4[j]1 +1 & C[i] =[{key = i}|

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 2: count frequencies

b

forj <« 1ton
do CA[j]] « C[A[jI1 +1 & C[i] = |{key = i}

[A parenthesis: a quick finish

Walk through frequency array and place
the appropriate number of each key in
output array...

Introduction to Algorithms, Lecture 5

A parenthesis: a quick finish

February 20, 2003

A parenthesis: a quick finish

A parenthesis: a quick finish

A parenthesis: a quick finish

© Charles E. Leiserson and Piotr Indyk

B is sorted!
but it is not “stably sorted”...]

Introduction to Algorithms, Lecture 5

Loop 3: from frequencies to
cumulative frequencies...

1 2 3 4 5 1 2 3 4

A: 4L 314 173 C: [RIEIRORISO 0

B:

fori«—2tok
do C[i] « C[{] + C[i-1] & C[i] =|{key < i}|

Loop 3: from frequencies to
cumulative frequencies...

1 2 3 4 5 1 2 3 4
A: [T c: [0 21 2

B: C" [BIENSIE 3 |82

fori<—2tok
do C[i] « C[i] + C[i-1] & C[i]=|{key < i}|

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 3: from frequencies to
cumulative frequencies...

1 2 3 4 5 1 2 3 4
A [RS e S C: 1R ()= SO E)
B: C: | 1 28D

fori<2tok
do C[i] « C[i] + C[i-1] o C[i]=|{key <i}|

Loop 3: from frequencies to
cumulative frequencies...

A 4] EsEi e e 3 C: B 0D

B: C" [@lE s 5

fori<2tok
do C[i] « C[i]+ C[i-=1] © C[i] =|{key < i}|

Introduction to Algorithms, Lecture 5

Loop 4: permute elements of A

B:

for j < n downto 1
do B[C[A[j]]] < A[/]
ClA[]] « Cl4[/1] -1

Loop 4: permute elements of A

1.%Zr 3 & 85 1 2 3
A: ARSI ST IE AT 3 C. [l 3 |85

2

B: 3 Used-up one 3; update counter in C
. for the next 3 that shows up...

for j < n downto 1
do B[C[A[j]]] <= A[J]
ClA[1] < ClA[]] -1

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 4: permute elements of A

I i@ & 8 1 2 3
A: [N S SR 3 C: [MEEll 3 [

B: There are exactly 3 elements <A[5]. So
' where should I place A[5]?

for j <« n downto 1
do B[C[A[j]]] «- Al[/]
ClA[j1] « ClA[j1 -1

Loop 4: permute elements of A

B: 3

for j < ndownto 1
do B[C[A[/]]] « Al/]
ClAL]] « Cl4AUTT -1

Introduction to Algorithms, Lecture 5

Loop 4: permute elements of A

B: 3 =

for j < n downto 1
do B[C[A[j]]] < A[/]
ClA[]] « Cl4[/]] -1

Loop 4: permute elements of A

B: 3 4

for j < n downto 1
do B[C[4[/]]] < A[/]
ClA[1] < CI4[/1] -1

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 4: permute elements of A

1 2 3 4 5 1 2 3
A: RS 4 (= C: [E(EEOR S

B: 3 There are exactly 5 elements <A[4]. So
d where should I place A[4]?

for j « n downto 1
do B[C[A[j]]] < Al/]
ClA[11 « Cl4[1 - 1

Loop 4: permute elements of A

B: 3 4

for j « n downto 1
do B[C[A[j]]] « AL/]
ClA[j]] « Cl4[/1] -1

Introduction to Algorithms, Lecture 5

Loop 4: permute elements of A

B:

L]
-+

for j «— n downto 1
do B[C[A[j]]] < A[/]
ClAL1] « ClA[1]1 - 1

Loop 4: permute elements of A

B 318 4

for j < n downto 1
do B[C[A[]]] < A[/]
ClA[/]] « Cl4[/]] - 1

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 4: permute elements of A

B: 3

(V5]
-

for j < n downto 1
do B[C[A[/]]] <~ A[/]
ClAL]] < Cl4[/]] - 1

Loop 4: permute elements of A

LIS
(S
o+

B: |

for j «<— n downto 1
do B[C[A[/]]] «- A[/]
ClA1] < Cl4[/1] - 1

10

Introduction to Algorithms, Lecture 5

Loop 4: permute elements of A

Bl

UJ
(VS
E=N

for j < n downto 1
do B[C[A[j]]] <~ A[J]
CA[J]] « CIA[1] -1

Loop 4: permute elements of A

B: B ERS 4

for j <— n downto 1
do B[C[A[/]]] « A[/]
ClA[j]] « Cl4[j]] -1

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Loop 4: permute elements of A

(O8]
U
I

B:| 1

for j < n downto 1
do B[C[A[/]]] < ALJ]
ClA[]] « CIA[1] - 1

Loop 4: permute elements of A

B: [T SE 4 |5t

for j < n downto 1
do B[C[A[/]]] <~ A[/]
ClA[1] < Cl4[/]] -1

11

Introduction to Algorithms, Lecture 5

Counting sort
fori—1tok

doC[i]«0 6(k)
forj«< 1ton store in C the frequencies
do C[A[]] « C[A[/1] +]} of:the differentkeysind ~ ®(n)
i.e. C[i] = |{key = i}|
fori<2tok store in C the cumulative
do C[i] « C[i] + C[i_l]} frequencies of different keys @(k)
in 4, i.e. C[i]=|{key < i}|

for{«» dOWl_lto 1 . using cumulative
do B[C[A[j]]] « A[J] frequencies build ®(n)
C[A[/]] < CTA[J1] = 1| sorted permutation

O(n+ k)

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: di s |4 S

B: EIE@a 3 |48l

This does not seem useful for this example, but imagine a
situation where each element stored in 4 comes with some
“personalized information” (wait 2 slides...).

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Running time

If k = O(n), then counting sort takes ®@(x) time.
* But, sorting takes Q(n lg») time!

* Where’s the fallacy?

Answer:

« Comparison sorting takes Q(n lg n) time.

» Counting sort is not a comparison sort.

« In fact, not a single comparison between
elements occurs!

Radix sort

* Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix [@].)

» Digit-by-digit sort.

» Hollerith’s original (bad) idea: sort on most-
significant digit first.

* Good idea: Sort on least-significant
digit first with auxiliary stable sort.

12

Introduction to Algorithms, Lecture 5 February 20, 2003

Operation of radix sort Correctness of radix sort
Induction on digit position

328 780 iz’ 2° Assume that the numbers et §2°

454 S8 o o> > are sorted by their low-order N -

657 436 436 436 t— 1 digits. 436 436

839 457 839 457 - 839 457
. digit ¢

436 657 355 657 HOOILCLE] 355 657

720 329 457 720 457 720

355 839 657 839 657 839

NG i M S

Correctness of radix sort Correctness of radix sort
Inducti digit iti Inducti digit iti

nduction on digit position o B, nduction on digit position e =,
» Assume that the numbers 399 355 » Assume that the numbers 329 355

are sorted by their low-order are sorted by their low-order
t—1 digits. 436 | 436 t—1 digits. g36—>d36
« Sort on digit ¢ 832 i 7 « Sort on digit ¢ ggg fi> 7
= Two numbers that differ in 35 657 = Two numbers that differ in 5 657
digit are correctly sorted. 457 720 digit ¢ are correctly sorted. 457 720
657 339 = Two numbers equal in digitz 657 839

are put in the same order as
L/ the input = correct order. _/

(just used stability property!)

© Charles E. Leiserson and Piotr Indyk 13

Introduction to Algorithms, Lecture 5

Runtime Analysis of radix sort

 Assume counting sort is the auxiliary stable sort.
« Sort n computer words of b bits each.

* Each word can be viewed as having b/r base-2"

digits. ~8 8 8 8
Example: b=32-bit word | [| | |

« If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes @(n + 27) time.

* So overall ®(b/r (n + 27)) time.
» Setting »=log n gives @(n) time per pass, or
®(n b/log n) total

Herman Hollerith
(1860-1929)

* The 1880 U.S. Census took almost
10 years to process.

» While a lecturer at MIT, Hollerith 3
prototyped punched-card technology.

» His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

* He founded the Tabulating Machine Company in
1911, which merged with other companies in 1924
to form International Business Machines.

© Charles E. Leiserson and Piotr Indyk

February 20, 2003

Appendix: Punched-card
technology
 Herman Hollerith (1860-1929)
 Punched cards
* Hollerith’s tabulating system
* Operation of the sorter
* Origin of radix sort

» “Modern” IBM card
» Web resources on punched-card ¢eum to1ast
technology slide viewed.

Punched cards

» Punched card = data record.
* Hole = value.
* Algorithm = machine + human operator.

Ve wiw i Yrlols o wie ei- ik i K]

3o« v wialetmos wiile jrr»jlwsaanay

TF) dam e s oniilw: s o wir win MR ¥YREY

541 tjaim em eilie AR AR YR .

T oein FEARPrUD Y Replicaof punch
voain " LR card from the

! 2 Frabubtasit ol Bkt A ST w2}

g w3 ERINCIET 1900 U.S. census.

it 02 H ot Kl e W SR (23 Howells 2000

[) LR SRR IR A O E R N R T
« r.a timtla e ne o uly

e : N e AR e |

vooor aleimTy vie 3 e almio|o momioa nu

14

Introduction to Algorithms, Lecture 5

Tt st
‘HOLLERITH”

scirical
CENILE COUNTING MACHINT

Hollerith’s
tabulating
system

*Pantograph card
punch

Figure from

*Hand-press reader
*Dial counters
*Sorting box

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

© Charles E. Leiserson and Piotr Indyk

[Howells 2000].

February 20, 2003

Operation of the sorter

i ; i
* An operator inserts a card into [} osvosecee
the press. = i |jooDe
3
f:

* Pins on the press reach through
the punched holes to make .
electrical contact with mercury- g |
filled cups beneath the card. B WL

» Whenever a particular digit

value is punched, the lid of the
corresponding sorting bin lifts.

» The operator deposits the card
into the bin and closes the lid.

» When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

‘ Hollerith Tabulator, Pantograph, Press, and Sorter l

“Modern” IBM card

* One character per column.

Q12534SATEIABCIEFGHT KLIHOPERETUVLRYE THTRODUCTON TO ALCORITHHE A% 242081

RLTEIL] S] [B na BB
(T pEE MW EEE R

] TTTTTTT ol 1010
Y R RSy FR R TR RN RS SR ER RN PR E] FRSURFRERETE] INE PR ERTIE SN
MarrazaaNs NN A e R T e ez PTOAUCED DY
FEE] BY RNV FLF R FER] EVEEREY) FRRRERRER] EFER] | FEE] EFR PRV FRRFRFRRFRNEEEWER Y] thc WWW
494 F34 49434 4F4 1449494094444 34J2 44444404 J944 4944 1444444 Q4444 Faa 4144949444 Virtual punch_
SEYESPELS 5
§666060666666608046€60CHE564668B0666866006C456CATCGEETEEEE6C665E88660K68604EC Card Server.

IR AT I T I T T I T I I I T I IR IR TN ITIT I NN IR I A NI I NI

99390990 099999599099979 9990079090902 0 3909 99999999799 39 30N 997 PN 290799999999%

So, that'’s why text windows have 80 columns!

15

Introduction to Algorithms, Lecture 5 February 20, 2003

Web resources on punched-
card technology

» Doug Jones’s punched card index
* Biography of Herman Hollerith

» The 1890 U.S. Census

* Early history of IBM

e Pictures of Hollerith’s inventions

» Hollerith’s patent application (borrowed
from Gordon Bell’s CyberMuseum)
* Impact of punched cards on U.S. history

© Charles E. Leiserson and Piotr Indyk 16

Ty

Lede ||

/“Pkﬁ ﬁ@ toendd) % Caudh
Vbl 1o (b toes [&lO“/Z)
Vo' of satis
FC Vay (@M’/’f of L/erhrwp)

b of =n
M L n(n“[)fO(r]YJ

59”{ QMV\W)

1

Lol &f alation
“Web DG i
- Qmujl'mj
=~ (ovds

M 7,;(2)(2 Qabl’X Cv(F

b’ O vy o eah s of b b
Oni edge for Cah Ve
G fuw
=) wags bt l'//; W

<Y Q‘LH"/D o eah stk

69}/9, Ly \[}n&ha 7 f’cbﬂq {m M 710 coluf
T Y
g CUMML) I y T%:Hﬂ% - g{ a//aqﬁg/(%ﬁ

Cuh kY ot < 37 f yushihle

i 4
&)] R
X 1 ¢4 Q@ — 7 (LBl a
J (/ == [G
g (:{ L‘ 5]

){,
i il f
I ((

I ke o W getatios of b o
= S Bl gt

3

()Q}w ﬂ&e = GOJ; N(,mhe/
/———fﬂow Jo W (preseqf;

l’l Pﬁbb'llo‘M'J‘@
‘pfdj]}o)l |
~ Twudoe \M
= i LJ] (matic |
~ Tl (eresentty

IW/:JWQ, LisH

@;ﬁi For 7 yidex y /ml 4!7‘5 elye)
A”GL{ A of ZV) AT

Fo eV e 0lges
(Hm 5 s dfewt 9

0 ve
/7% [t ~objed ¢ ok vefex ()
UWDL@“M

6{@\\ m &bﬂ{
A W o« able S [y laoby
oy AL < laghy patis b oty
AD,O (ol MMh'ﬁ"zzﬂ) % ﬁg fvpage@qah

/Und[lfw@d @/o{p\l P SYWLQHL mal
— (Ml e e\tgﬁn\/d‘/"é

T{WOK ‘ oPe

Rogoe Voot (|]
A o v e 4 node per el

Spag él(f/l tm lay)

}[Hj Y‘flmL/l,\(64 1/11 O4diips

QJL QWJ’I %’7’7 Cdn LQ stz[[lgtl)/

5 gl
[latiy betlr nly for vy (e ﬁfaﬂ)
e pl

@ Goagle o v

M, pdao)
i A 5 OO) i

fllp bt [odd of skt

G(I) San

anL all Iwh{]m of v \/e/ya cofw) OC’U 6(’?@)%)
Rinne ¢y \
))’}t ud + g

Iﬂtfﬂo\# Agpesnbutin
”Don%l ﬁw qfq)l At d/)
“Twlat G AY[0) Wt s Tif of naphlon felge

QU{%/& ha Rl Uk gs Yoo el gl

Y
Hﬂw an e Q}Mh ijo‘tph?

Bay 1ok
& %ML W) \/(?/]L\’.Yv \/
~ ol ik N/ltﬂllbm (df&}ange l)
B Nﬂ OL” hq/{[f mlﬂl’lb&) (dt{bhﬂéé Zj

- olc

~@[9m’m ﬂwf{nj naNe
N d@ﬂv\g {—(o\mL@fr F
N t\w;m”y‘ F"‘{@-}
= fpat M < g Wghhos of valq ot
('/JH Y(MJ
QG{@@A\Z M@"“ fol ds huh as Paj""%
(. each Keaq/l]

IF ks o At

L

S 1 |
i ey g g,

= Il fot- shek “ Dack F/M\
oy bt hal e

A L e st a i,

Rtg ~9€,:L oy Wﬂ@f'm of df&}?@

(

/l/@d— H./e 1%(/\«\0& l (‘{LLQ,

Rrande Mt Gable

- L‘W@rﬁ@i DH
- 6‘}/2&3 To hadi fracle

6.006- Introduction to Algorithms

Lecture 11

Prof. Costis Daskalakis
CLRS 22.1-22.3,B.4

Graphs

» Useful object in Combinatorics
* G=(V,E)
+ Vasetof vertices
— usually number denoted by n
« Ec V x Vasetof edges (pairs of vertices)
— usually number denoted by m
— note m <n(n-1) = O(n?)
* Two Flavors:
— order of vertices on the edges matters: directed graphs
— ignore order: undirected graphs
* Then at most n(n-1)/2 possible edges

Lecture Overview

Graphs, Graph Representation, and

Graph Search
Examples
+ Undirected » Directed
« V={a,b,c,d} * V= {a,b,c}
« E={{a,b}, {a,c}, {b,c}, ¢ E={(a,.), (a,b) (b,c),
{b.d}, {c.d}} (c.b)}

Pocket Cube
(aka Harvard Sophomores’ cube)

« Web i -
— crawling] I 2 x 2 x 2 Rubik’s cube
— ranking » Start with a given
. i A

Instances/Applications

» Social Network configuration

— degrees of separation * Moves are quarter

turns of any face
« “Solve” by making
each side one color

+ Computer Networks
— routing
— connectivity
+ Game states
— solving Rubik’s cube, chess

Configuration Graph Number of States
. . . « One state per arrangement of cubelets and
Imagine a graph that has: orientation of the cubelets:
— One vertex for each state of cube — 8 cubelets in 8 positions: so 8! arrangements
— One edge for each move from a vertex — each cubelet has 3 orientations: 38 Possibilities
* 6 faces to twist —Total: 8!~ 38= 264,539,320 vertices
* 3 nontrivial ways to twist (1/4, 2/4, 3/4) + But divide out 24 orientations of whole cube
s 86 18 ol Famils + And there are three separate connected
0, 13 edges out of each state components (twist one cube out of place 3 ways)

* Solve cube by finding a path (of moves) from
initial state (vertex) to “solved” state

Result: 3,674,160 states to search

R Representation

GeoGRAPHy o
1 6 9
2 27 54
+ Starting vertex 3 120 11 _
- 6 vertices reachableby ¢ 534 1847 « To solve graph problems, must examine graph
one 90° turn 5 2,256 9,992 + So need to represent in computer
+ From those, 27 others : :39;:3 ;2;:26 « Four representations with pros/cons
by another 8 114,49 870072 — Adjacency lists (of neighbors of each vertex)
* Andsoo - . e — Incidence lists (of edges from eachvertex)
Qs 10 930,588 623,800 i
0NN 1 1350852 2,644 — Adjacency matrix (of which pairs are adjacent)
O O 12 782,536 — Implicit representation (as neighbor function)
o7 13 90,280
14 276
5 ~
(aka God’s number)
Adjacency List Example

» For each vertex v, list its neighbors (vertices to which

|

it is connected by an edge) (a) a »[ol
— Array A of V| linked lists
— For veV, list A[v] stores neighbors {u | (v,u) € E} b__’ Z I 7
— Directed graph only stores outgoing neighbors O °
— Undirected graph stores edgein two places C___b m
* In python, A[v] can be hash table

— v any hashable object

Incidence List (Object Oriented Variants)

+ For each vertex v, list its edges + adjacency list: object for each vertex u
— Array A of V| linked lists — u.neighbors is list of neighbors for u
— For veV, list A[v] stores edges {e | e=(v,u) € E} « incidence list: object for each edge e
— Directed graph only stores outgoing edges — u.edges = list of outgoing edges from u
— Undirected graph stores edgein two places — e object has endpoints e.head and e.tail
« In python, A[v] can be hash table O "
€.a € Q
« can store additional info per vertex or edge
without hashing
Adjacency Matrix Example
+ assume V={1, ..., n}
* n x n matrix A=(a;) 0 | i
—a;=1if(ij) € E 0 0 1
—a;; = 0 otherwise i i ;

* (store as, e.g., array of arrays)

Graph Algebra Tradeoff: Space

» Assume vertices {1,...,n}
 Adjacency lists use one list node per edge
— So space is @(n+ m log n)

* can treat adjacency matrix as matrix
* e.g., A2 = #length-2 paths between vertices ..

* A® giveg pagerank of-v.ertices (after » Adjacency matrix uses n? entries
appropriately normalizing of A) — But each entry can be just one bit
« undirected graph = symmetric matrix — So ®(n?) bits
« [eigenvalues carry information about the * Matrix better only for very dense graphs
— (Google can’t use matrix)
Tradeoff: Time Implicit representation
* Addedge + Don’t store graph at all

— both data structures are O(1) .] .
« Check “is there an edge from u to v*? » Implement function Adj(u) that returns list

— matrix is O(1) of neighbors or edges of u

— adjacency list of u must be scanned + Requires no space, use it as you need it
* Visit all neighbors of u (very common)

— adjacency list is O(neighbors)

— matrix is @(n) * e.g., Rubik’s cube
« Remove edge

— like find +add

* And may be very efficient

Searching Graph

« We want to get from current Rubik state to
“solved” state

* How do we explore?

Depth First Search

« Like exploring a maze
« From current vertex, move to another
 Until you get stuck

+ Then backtrack till you find a new placeto
explore

* e.g “left-hand” rule

Breadth First Search

» start with vertex v

« list all its neighbors (distance 1)

+ then all their neighbors (distance 2)
* etc.

S

* algorithm starting at s:
— define frontier F
- initlally F={S} frontier
— repeat F=all neighbors of vertices in F
— until all vertices found

Problem: Cycles

What happens if unknowingly revisit a
vertex?

BFS: get wrong notion of distance

DFS: go in circles
Solution: mark vertices

—BFS: if you’ve seen it before, ignore
—DFS: if you’ve seen it before, back up

Conclusion

* Graphs: fundamental data structure
— Directed and undirected

* 4 possible representations

* Basic methods of graph search

* Next time:
— Formalize BFS and DFS
— Runtime analysis
— Applications

The Minotaur

noK

Inventor of DFS?

Daughter of Minos king of Crete
And sister of...

The Minotaur resided in a maze nextto Minos’s palace.
The best of the youth from around Greece was broughtto
the maze, and unable to navigate inside it got lost and
tired, and eventually eaten by the Minotaur...

Inventor of DFS fell in love with Theseus and Theseus follows algorithm, finds the Minotaur...
explained the algorithm to him before he wasthrown
to the maze..

and... Theseus and Ariadne then sail happily to
: ; Athens..

(06 Redhiny e

Vol avy W50 g—=f5
Lho'} ([OKQ 3%‘“’\7

H{ WL " Hﬁ‘"‘“@“ Ty fumed 9u7[Am{cf
ﬂ\W\ }\L ']L}wﬂh

wa
M wAle @; i &)mp/ex ﬁ M ﬁ
5t aq N9 ﬂSTS

a ~Pude 6 Nk g proyan

Hue [Ok;/ b‘)

%\fow ot %” f’&\{(ﬁ :
for whlh Ny exihs

A, <y
(01 éL
ne [Eéc I8
M Nt J{Xﬁf’dHﬂj " s JbE
OH,LJ; Lere (omﬂorq/bff’ fo QM o’ﬁff ﬂ('lé;

;s 7

@ Tw?ﬁw befﬂL (e 0/{4 [,;y,ﬁ

T(Jb\m M[]&tﬁ V\l 1%/ }:va

T ak o au
Mue b o ok met

D\EDG N NJ?l quLW&[j

%e g v (e o PO;AILS hﬂ/l' ‘L"”’ ;L txa/e
QVW]L},t,/\j ko dr) (/b/ e Qc"\ 07’70
Ga best ity b reposd

~

~
__,_____—--—-—-‘

o8

'Po}nb &@

ma!/‘afttel Q, [e(,f'd"je
A r
Ths M a1

0

éMJ(on l &:Ndbgoq @[f)'{ F[ob}gw

—

X
bort s o
l ' (go g(;.,ok {’4 ol 18 ’7’%
P a pd o ah o x Ji

60 {Eﬂ (ﬂfwgl’t M) |
WFWMW% Lsome a,) 05 W aR T
ey po}mt 7Y mag

rale hab ey

s = dns T4

O(Jog 1)"“C"” SM
HQ (Qqst%&s Yov rfltfjh not /\W& 2%/9}7# 95[7’%

C

(I NAr 4av Such A W,HMHU

Y

Oﬂw @oéb} e (rhom &MP]?K) gulotos (5#// (&my

_ﬂgme dn X{S Cmd r’f@/%@l /\/Hlo ﬁm({gfm;ﬂj
4 Ofdﬂf
Lk i [y) e WT by
M_IMW\H/“‘j Jeble {(1(:) P
\}\WQ]L“)6\{9 gmL f

Wil fee st b oo e
mﬂpf' ((’0!,”7 a 'Jf[% —mMoh. l&,k Q [f;:lﬂ& /t;/

Tfj ot et CM/OI&H/ w Lol
— il cawe vo/ fo pale hilks

Q“"ﬂ @Ml\%‘)' a 9V7 YLO ”)/(//de OlL b
/S‘bw 60&/4][&/“ 7[)1(’1 //

1/3 g0l b Coed
iy 5wac£ e pjr (ool M Jabrl Coptstation of U

*‘th n)ayt do mig Ao s /lk fho

y\la}(io(((}q,i [15 Mins /8 fQChMﬁ(

(//{f\ QZQ P@Mem W/o duﬁkﬁﬂf{'f/}ﬂff

SO/‘L W/ > aly
60 ﬂ\ Jwemj O(Ql@ 0{ 3

lake a 5)0““{ (edd aﬁmﬁ 5y

Wl Jow 5 ¢ 2

©

O,\l# (e @BM FQH}, (/V/ a Afﬂll X)}/
j)t XY wé/onﬂ}f A /)Of/th Tt e h%

L

B BST hed 6, wald by
Z‘{‘[d A[y ba(,{w/c/)

M\M gm‘ N p]I 5@(/0]4 fo o

96@56«% n X f/ee
P/@M(&sgo/ " v fae

o otetde

Z ¥ & oy muja/f?@é

/Orféo d@ (WLC '@

"lrl(v ('6 @/WIL@/ "}M/plt d@[@fe Oéw/)
(ot That- Mw)azz%é < bt wl f)cvf of B5}

% ot O(logn) sk Jofe

50 ot KWY 57[1?0 s loj /) 1@ h o g

Bt A Bl b

,,-—-"'"."_'—_—-_-_——

ool

&\/‘H @0 more algo Jﬂ?/d’a

l&‘m{q- M Slm
/@% qc J/%

A owh /Jf sl iy

[9\/4% %Qm,»f#
)
(2,1,0)
(210 [2)

(40,2

s last fﬁ?b/&’n

i o d 4 e a1

3
OWW (LJ klww No 66#&/ O(ﬂ {09!4)

J
Ia\dolﬂ) O/Jgf

J/ :) f
o hly wall ke dotn

W\M]Swtﬁz\‘} ‘}@L})Aﬁ v, /‘/4‘}("'3 iis hat needed

Q) tk 3l b sy efiatt
L) {31,[{2(6%7 \LM 9/%}2202%/ a4 5}4’4&(’4} 0‘/4{?/
6) Doy Sl ok o ol b hé ek g

FM&{ 'ﬁ% # 0& (lq(ﬁ("é [2/;) /'(/1 ﬁp
st 6ih hal ‘

LC]
YA <d

N'w, h'
é@ \l,o WHW(é(y‘gj

LSimce b pattes

Al A 24
MR
M A

Dw/ﬂ }n Znae@}/ﬂ O/JO/
ao 1~ (L7 9 b U

!
6o 0 4

Tha 4 b iy 7L(‘l
bl puple)0 by middly
Lo &0 T B 4 b B2

Lolls tﬂ[(Mg ‘é i h25 Mmore (f’"lP/W “%T

60/% y\)m“)

| Ol
68()\/0\/\ (ijn [H}

(O\/N \ov @0 M lef /(q Olq)
Mo sobd Tl fue € 2 che pl
Do td pat ks cnbf

-__ 802/\9 Ck[\) a,;l
e l\j 5
mo/e) 2/1’{ AO‘/I ' 54% KWWVWL |

L)

Verly wolks = ot beg "‘””‘{'?9 ?{?fwa‘tjﬁ(‘

G - (U) E) U\o PPT)
\/ < d o volles
IR
dl]/@f@d (:JD
b/\&i/ed “‘ﬂ { ;/33

M
frigatsh i

QOW@{@(‘:'&)
[1aps
gln(a @uﬂaﬂa e Justc
FlX>Y
{Q@[@“o«\b 201 miye, /%:(
L Xe)

5/20

Lt e T cpandetos

- AdJ(215} Fow
““ga{plg (o hue W%ﬁ of edyo
- { ”ﬂ 1((I'€W(1614 ;ﬂ q ("WOH

\/"/ h= |wocl$ papelai o

F [‘,,c] qu W!ﬂce; g&fé’iwdm@é 1 A 5 "'V@? \/(/vLegc g

(lusy Upd el
K@\L(W{an: D}/&('@é

S Gmdk bt U, Of P oL it}
V=52 S0, %y v o=t
Dighante b/v $ W = lf’*g“’L 4 Sharkess palh

Moo

Fied UQQ, P %véo/l Cﬂdﬂ — (oled0 s
2 Pk (ode. — Conplonity

N
BFS (e
%H“& “5” mdQ/J‘CC5§ (omzof@d f M

BJ\‘ lm‘\t@h)L h(b/e ey w/ ne (mmd/{m
(0t ot Do €

5 O 2
G X\;ngﬁ

(‘{tlfl

WO%’ fQo[/“L((),}aflo{}/tj ’65'\(@ oY dgf(?&

TWL podls %“ W/]‘:(og KMM/W(L Z'L >)

~ musl (03 AT Fcﬂtk 4 ﬂjL

(omplesity §
f\UUJ, an d/@t’ QL[2'!16%) ?40./ WW/L

Y

(09 (n] p/
QJJ‘ ain INCW
§)- 6-0- 0-0-0-0— &b

éo prost (e e o fine
0(+)
(% v @W M/S@i)
h {‘\M{rl/ Pg QV

I

BGHW Pl (ole
Teah Coter oF ddoss 1 mult §

Ay N | ol [— @3“)% = @
Vi g d VARG e A

'Lf lwm'nL Geen H? Ml Hous %1
il wset 1t al de el ety

@(m{m) ‘EW ﬂ ﬂ(‘fﬂb Q’({’&P@C%ﬁ 9nce

@ Uﬂ yw (Jo be/ﬂ(/;

7}[}[/0/%1(@(5 BFS (QMNL'OT P‘”%J P%f/io !

Doty k50, ghesos
Do ik vl 31+l (i Yl Con o

O lO 0-0? ??waa P@ﬂu
O O———/O

a,hl%?,
Cant be L Sine w /wﬁi ot I

ﬁ’@ /

C"MP(”‘”] ,' §4 ‘l i hﬂnl(/:j has dmga@

%

—6 {
A4

0

I ow Pﬁe,uc‘o (1de

Ak wd
Ubes T UVLM lgoﬁ

ill e Jﬂm " mlw/ | at & i
Lpitic g o mab SHE Ly
Lam il a BFS fee

(;Q“L! 1\‘&& A(W

= @TC@ S ¢ Cesponstale 15

x\@_,;@ Mk

Nor d‘)c L\/ouu. é& 8 lOW [J&ﬁ,

(>

MNate
e oE 2

@fﬂp\fvﬁ M&L@l me %0

bf §w/ﬁ¢¢g o(f%ﬂl% % M{e{ﬁéﬂ

W?OOS /7 Spudy H)?j
HW IL() \/Lyr —h? MW LOW/P ‘m qn /)r/
W() %/u\@g

v Maze;

(j‘b\ I edee Fovesd Rutce
C@llm)' (mzbiij

Lo Ting
Hopf/oﬂ'{f; 1L TW‘; an ; 105

i Gag ol

T Mk glyg b edaus ¢ end

" Miner v (M- for b %a
~ Nl o Eile s nado

e

o S—

WIFT
@v»
Kj - /f ’

O §_, LMHML\ (»JW%’ i b 1

(bt DFS wels gl veles Guagy 1
)Lﬁ q }Oaﬂlh '(("/'l 3 1{—0 7{\

)
6—0—t)
Onlu, (acwl\?LraJ& i@ nf 6%(’, (e Lu(ve f/wwL

Cflug

N Tee

—Trae Q‘LQ(’)
‘“’B&bl« (’/i@@

©
e
r End
5

] Q4
i
u;c:% |
‘MM
;
%

a%q
N Q
V\1
jw
%/
/\ /L

N
"
i
] :;L)
:i’i
|
Viw]i Mg
fo
he
Cloor

4/6/2012

6.006- Introduction to Graphs
Algorithms G=(V,E)
v St S

» V a set of vertices
|V| denoted by n. Often: V ={1,...,n}
« E c V XV aset of edges (pairs of vertices)

|E| denotedbym < n(n—1) = 0(n?)

Graph Flavors
* Directed: “edges have a direction” Le., (i,j) =i > j

Lecture12 o Undirected: “{i,j}not (i,/)”: (,j))=(,D)=i—]j

S 5 e < n(n—1)/2 possible edges
Prof. Silvio Micali 2
CLRS 22.2-22.3

g e
-_—
=]
Examples Graphs model lots of stuff: =
4 Friendshi SO
Undirected Directed ¢ gga'edr;rigs = §
. V={a,b,c.d} . V={abc} Hiog £
° Ez{{a’b}’ {a,C}, {b!C}Q . E = {(a,C), (asb) (b,C), (C’sb)} Why?
{b.d}, {c,d}} &
Functions are basic -~
XY
o Relations are more basici *

RcXxY

Graph Power!

Computer Representation
Four representations with pros/cons

= Adjacency lists (of neighbors of each vertex)

Searching Graphs

Finding all vertices connected to a given vertex s WLOGs =1

Class: Undirected Graphs
Recitation: Directed Ones

¢ s connected to t if there is a path P froms to t

Computer Representation
Four representations with pros/cons

» Adjacency lists (of neighbors of each vertex)

¢ P=5=55S,u, Sk =t such that {s;, s;j41} € E
¢ lengthof P =k (we count edges!)
4 Distance between s and t = length of shortest path from s to ¢
Plan
Pseudo®Code first for “mathematical” correctness
Pseudo Code next (implementation ideas) for complexity

Real Code home for getting an output!

Breadth First Search| (Wrong) ’

All vertices initially unmarked, but s
1. Until all vertices are marked, mark all neighbors of currenlly marked vertices

4/6/2012

4/6/2012

. . 2
Breadth First Search (Pseudo?) Breadth First Search (Pseudo®)
All vertices initially unmarked, but s All vertices initially unmarked, but s
1. Until no new vertices are marked, mark all neighbors of currently marked vertices 1. Until no new vertices are marked, mark all neighbors of currently marked vertices
Complexity?
Example At least: Pseudo Code or Implementation Details!
Marked
|n

[~

| 0]

L @-0-0-0—-0-0-0-0
Y

| 0

@(n*)for such graphs

Can it get worse?

1-"&—"" -<nzm—nmt—l=>|

[=]=

Breadth First Search
(Better Pseudo Code)

Augmented Breadth First Search

All vertices initially unmarked, but s _ShorteSt Path Alg
1. Until no new vertices are marked, mark all neighbors of currently marked vertices
(Pseudo?)
Adjacency = I 1]
List Frontier = . Lw] o L | 4—11 A Marked Initially, s is marked 0, all other vertices are marked oo
| ‘marked atlast Step 2* 1‘ o] 1.i«<0
*Move & process d" 1] 2. Find all neighbors of at least one vertex marked i. If none, STOP.
— “ 1] 3. Mark all vertices found in (3) with i + 1.
JE e P PV o b
=] “““E! S-_E_E:::::::M’:::.-." g 1]
| 0] Claim: Every vertex is marked with its distance form s
O(n + m)for all graphs 0 Proof: ...
. , h[1|
== . Can you do better? — Complexity: ...

Example (Pseudo?)
1 0 2
()—) (D—(P)]
1
® 'K,

BFS Tree Structure

4 Spanning Tree: subgraph (V', E") that
1.isatree
2v'=V

(V',E") subgraph of (V,E)iff¥' cV andE' c E

4 Extra Struclure:
| et J [| et

| S | | Lecaas

BFS Tree: Few Data, Very Informative!

Nooooooo!!!|

Possible!
Possible Too

Example (Pseudo)
0 2

Note!

Graphs model mazes.
But: Searching Graphs # Searching Mazes

T

4/6/2012

4/6/2012

1800s Depth First Search Hopcroft's & Tarjan's DFS
(P S eud (0] 3) 4 Mark edges rather than their “"entrances” and "exits”

4 Number vertices (augmentation for fulure use)
4 Remember your father node rather than the edge who discovered you

In spocken Englsh (sort of...) 0. Mark all edges “unused’. Forallv € V, #(v) = 0. Leti=0 and CoA =s.

Liei+1l #(Cod)«i
How to visit the Louvre in an hour and come out

ALIVE! 2. If CoA has no unused edges, go to (4)
; 3. Choose an unused edge CoA & u. Marke used. If#(u) # 0goto(2). Else
|
No strings allowed! F(u) ~CoA CoAvu andgolo(t)

(No questions either!) 4. If#(CoA) = 1 HALT

Claim 1: No edge is traversed twice in the same direction 5. CoA < F(CoA) andgolo(2)

Claim 2: Upon Termination each edge has been traversed once in each direction

Thm: DFS Visits all vertices connected to s Good News

Proof: ... More Board Explanations!

DFS Tree Good Implications

4 Tree edges
‘ Back edges More Reasons to come to class!
Odds & Ends S
4 Queues vs. Stacks njoy It!
4 Strings??!

4/6/2012

Lecture is over!

Please walk calmly to the nearest
EXIT

\ | [
Urged

Introduction to Algorithms: 6.006 Problem Set 3
Massachusetts Institute of Technology March 8, 2012

Problem Set 3

This problem set is due Wednesday, March 21 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. Hash Collisions (20 points)

Consider hashing integers which are selected independently at random from the uni-
verse U = [1,2,...,84]. Recall that a hash family h; from U to {0,1,...,m — 1} is
universal if, for any distinct = and y:

Pri[lu(z) = h(y)] < —.

m

a. Suppose we would like m = 4. Consider the hash family h;(z) = 2*+z+17 (mod 4),
for i € {0,1,2,3}.
1. What is the probability of having NO collisions when TWO random elements
are hashed using the function ho(z) = 2% + z + 2 (mod 4)?
2. The family h;(z) a universal hash family. True or False?
b. Suppose we would like 7n = 3. Consider the hash family h;(z) = 2 + i (mod 3),
for i € {0,1,2}.
1. What is the probability of having NO collisions when TWO random elements
are hashed using the function hy(z) =z*+ 1 (mod 3)?
2. The family h;(z) a universal hash family. True or False?

c. Suppose we would like m = 12. Consider the hash family h;(z) = iz + 2 (mod 12),
for i € {0,...,11}.

Problem Set 3

1. What is the probability of having NO collisions when TWO random elements
are hashed using the function h7(z) = 7z +2 (mod 12)?

2. The family h;(z) a universal hash family. True or False?

d. Suppose we would like m = 7. Consider the hash family h;(z) = iz + 2 (mod 7),
for i € {0,...,6}.

1. What is the probability of having NO collisions when TWO random elements
are hashed using the function hs(z) = 5z + 2 (mod 7)?

2. The family h;(z) a universal hash family. True or False?

Solution Format:

Your answer for the first part of each question should consist of a float probability
in the range [0, 1], accurate to within 0.001 of the correct answer. Your answer to the
second part of each question should be a boolean.

Problem Set 3 3

2. Open Addressing (30 points)

Suppose you are hashing items into the hash table of size 10 below, using the hash
function h(k) = k mod 10 to find the location of key k and using linear probing to
resolve collisions.

After inserting 6 values into the empty hash table, the table is in the state below:

0
1
2122
3113
4154
5132
6 | 46
7|43
8
9

(a) Which one of the following insertion orders would result in this state?
1) 46, 22, 54, 32, 13, 43
2) 54, 22, 13, 32, 43, 46
3) 46, 54, 22, 13, 32, 43
4) 22, 46, 43, 13, 54, 32

(b) Suppose that 46 was deleted from the table. How many cells would be inspected
if you then searched the table for 657

(c) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell i contains the value i+17 Give an example of such a sequence,
or prove that no such sequence exists.

(d) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell 7 contains the value 9 — i? Give an example of such a
sequence, or prove that no such sequence exists.

Solution Format:

For part a), your answer should be an integer choice, and for part b) it should be
a integer answer. For parts ¢) and d), if you believe that no such sequence exists, your
answer should be a string containing a proof of this fact. If you have a counterexample,
you should enter it as a list of tuples; the first element of each tuples should either be
an 'i’ for insertion or a 'd’ for deletion, and the second should be the key being inserted
or deleted.

Problem Set 3

3. Price changes (20 points)

The local supermarket sells n products whose prices are stored in a sorted array
[p1,P2, . .- Pn), where p; < p;iq foralli <n—1.

After some seasonal price cuts, k of these prices are updated. Suppose you are given

the original price array and an array [d;,ds,...d,] of the price changes, all but k£ of
which are 0.

Give a fast algorithm (in terms of n and k for computing the resorted array of new
prices after the changes, and analyze its running time.

Solution Format:

You answer to this problem should be a string containing a concise description of
your algorithm and its runtime.

Problem Set 3 5

4. One-Bit Error Correction (60 points)

Suppose that you want to recover messages sent over a noisy channel. You are given
a list of k valid messages m,, ma, ... my, each of which is an n-bit binary string. The
messages 7 received from the channel are all corruptions of one of these k strings - each
one differs from exactly one of the m; in exactly one position. Your goal is to find the
index ¢ of the valid message that r is derived from.

Write a function recover_original messages that takes two parameters, the lists
valid messages and corrupted._messages, and returns a list containing the indices
of the valid messages corresponding to each corrupted message. Each of the valid and
corrupted messages will be a string containing only the characters >0’ and >1°. All of
these strings will be the same length.

Note that the number of valid messages, the number of corrupted messages, and the
length of each message will be quite large. Your algorithm should scale well with all
of these parameters.

Here are some tests which your function should pass:

recover_original_messages([’000’, ’111°], [’110’, ’010°]) == [1, O]
recover_original_messages([>000000°, ’110001’, ’001110°, *111111°],
[?001010°, ’110000°, °110111°]) == [2, 1, 3]

Solution Format:

You should answer this problem by filling in the body of the recover_original messages
function in the solution template.

Introduction to Algorithms: 6.006 Problem Set 3
Massachusetts Institute of Technology March 8, 2012

Problem Set 3

This problem set is due Wednesday, March 21 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. Hash Collisions (20 points)

Consider hashing integers which are selected independently at random from the uni-
verse U = [1,2,...,84].) Recall that a hash family h; from U to {0,1,...,m — 1} is
universal if, for any distinct z and y:

1
Pr;|hi(z) = h; < —.
thi(e) = hio)] <
a. Suppose we would like m = 4. Consider the hash family h;(z) = 2>+ z+¢ (mod 4),
for i € {0,1,2,3}.
1. What is the probability of having NO collisions when TWO random elements
are hashed using the function ho(z) = 22 + z + 2 (mod 4)?
2. The family h;(z) a universal hash family. True or False?
b. Suppose we would like m = 3. Consider the hash family h;(z) = 22 + 4 (mod 3),
for 7 € {0,1,2}.
1. What is the probability of having NO collisions when TWO random elements
are hashed using the function hy(z) = 2% + 1 (mod 3)?
2. The family h;(z) a universal hash family. True or False?

IThe integer keys are chosen independently. It is possible that we attempt to hash two things with the
same key, in which case we will consider this a hash collision.

Problem Set 3

c. Suppose we would like m = 12. Consider the hash family h;(z) =iz + 2 (mod 12),
for i € {0,...,11}.
1. What is the probability of having NO collisions when TWO random elements
are hashed using the function h7(z) = 7z + 2 (mod 12)7
2. The family h;(z) a universal hash family. True or False?

d. Suppose we would like m = 7. Consider the hash family h;(z) = iz + 2 (mod 7),
for i € {0,...,6}.

1. What is the probability of having NO collisions when TWO random elements
are hashed using the function hs(z) = 5z + 2 (mod 7)?

2. The family h;(z) a universal hash family. True or False?

Solution Format:

Your answer for the first part of each question should consist of a float probability
in the range [0, 1], accurate to within 0.001 of the correct answer. Your answer to the
second part of each question should be a boolean.

Problem Set 3 3

2. Open Addressing (30 points)

Suppose you are hashing integers into the hash table of size 10 below, using the hash
function h(k) = k mod 10 to find the location of key k and using linear probing to
resolve collisions.

After inserting 6 values into the empty hash table, the table is in the state below:

22
13
o4
32
46
43

OO U iD= O

(a) Which one of the following insertion orders would result in this state?
1) 46, 22, 54, 32, 13, 43
2) 54, 22, 13, 32, 43, 46
3) 46, 54, 22, 13, 32, 43
4) 22, 46, 43, 13, 54, 32

(b) Suppose that 46 was deleted from the table. How many cells would be inspected
if you then searched the table for 657

(c) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell 7 contains the value i4+17 Give an example of such a sequence,
or prove that no such sequence exists.

(d) Is there some sequence of insertions and deletions, starting from an empty table,
after which each cell ¢ contains the value 9 — i? Give an example of such a
sequence, or prove that no such sequence exists.

Solution Format:

For part a), your answer should be an integer choice, and for part b) it should be
a integer answer. For parts c¢) and d), if you believe that no such sequence exists, your
answer should be a string containing a proof of this fact. If you have a counterexample,
you should enter it as a list of tuples; the first element of each tuples should either be
an i’ for insertion or a 'd’ for deletion, and the second should be the key being inserted
or deleted.

Problem Set 3

3. Price changes (20 points)

The local supermarket sells n products whose prices are stored in a sorted array
[p1, D2y - - - Pn), Where p; < pipq foralli <n—1.

After some seasonal price cuts, k of these prices are updated. You are informed of
an array of price changes [(1,d1),. .., (i, dx)]. Here, a tuple (i, d) means that the ith
price should be changed by d (which may be negative), so p; is changed to p; + d.

Give a fast algorithm which takes the original price array and the array of price changes,
and computes the resorted array of new prices after the changes. Analyze its running
time in terms of n and k.

You can assume that comparison of prices can be done in constant time (and you may
not assume anything else about the prices).

Solution Format:

You answer to this problem should be a string containing a concise description of
your algorithm and a brief analysis of its runtime.

Problem Set 3 5

4. One-Bit Error Correction (60 points)

Suppose that you want to recover messages sent over a noisy channel. You are given
a list of k valid messages my, my, ... my, each of which is an n-bit binary string. The
messages 7 received from the channel are all corruptions of one of these k strings - each
one differs from exactly one of the m; in exactly one position. Your goal is to find the
index 7 of the valid message that r is derived from.

Write a function recover_original messages that takes two parameters, the lists
valid messages and corrupted messages, and returns a list containing the indices
of the valid messages corresponding to each corrupted message. Each of the valid and
corrupted messages will be a string containing only the characters 0’ and 1°. All of
these strings will be the same length.

Note that the number of valid messages, the number of corrupted messages, and the
length of each message will be quite large. Your algorithm should scale well with all
of these parameters.

Here are some tests which your function should pass:

recover_original_messages([’000’, ’111’], [’110’, ’010’]) == [1, O]
recover_original_messages([’OOOOOO’, 1100017, ’001110°, 2111111°],
[7001010°, *110000°, ’110111°1) == [2, 1, 3]

Solution Format:

You should answer this problem by filling in the body of the recover_original messages
function in the solution template.

006 Ps3

{f \H,a,g\/\ (OHLSIM/}
(T TM!@H e ML ({faw, w/ [\%m ,\,\)
Haoh ateyws | 594

- puk o,
Hagh
0> 0-- m
Il 7 £t
%h Cal| clay
OL\ S/]PWMQ m="Y

@% hilx) ~ X TX*J @wi‘f)
WL@p 6€0 ?,j

L P@{-@w no Co“”’”d/’) Wheq

L Qadom bls pe husked \/e(f/tj
Lo Ml <kt xs 2 (madY)

Y
GuM} ﬁ)fOH@m

gO (dn Aq/a Any }AML
X L R A R
el Y b

e

L ot = pfoj) of OJLo Y
Yeah Tw /W#] cv/p

g)64’ 12 ?,n(l, oL

0 & Y%
| Qi

7 ‘E" 1y
9 3 o

O
o) W) e il ok
Chask. o

CO]\Q(/ﬂfm \/ALJQ"?“«I ¢ I[@/ ouh W({ .
O\C dt(&ﬂﬂojr l;e»w (L) Q € U)(’l{
Jf{: O€ {/UAE;I’L fins he H tor

whigh \\m ‘[/bwj o b st L

Dasteally o o heh Frtion (enln

Cihpse’l {/Wq H/ M Clﬂﬁ/w[/l DD[Cﬂtﬂé‘"’?
9 o g Pt L £ oy

Z
- (Cm&”h\) ¢ 140?'7

A"J' {l‘/6+ I ALY h!ﬂtu/’lg A9
PJ% M [%7 T O/ l/2/3 rodqnj ﬁm[

Hf (an ﬂ{)@(/gq,”Y be oM7 1/4//@
[\LLL ‘Lg l\uszx S\
Uu[d l“? '
(16 - 9 ANt LN BN &

Mol Y

CO(éc} Q((/(q OIOHWL /107, e{'/(\l/

7 Um//o(m[lwh {W@

a5 bofoy o, Jar

9 f xv=§ =
Banlll
U= |+ &

(o an we Vit Z[ML exa fp

he. ﬂ/l3 Tk iy mod
§
mel U = 7
- 0

\,\)(\)—’O

S B
751

Nadih
Tel md Y
Ore wiy
N md Yy =7
Oc
Tmbd

)

Go T ik pay atfenlion 4, Mpp}/\j
we tan hee B - 7y

{»9{‘: Sy L5
|G mod Y - 9
3 3 mit Y + 2 t L (/“‘”& C{)

\ ’3 g L l

= &

M o s fived gl eads Jo Yixth wipd
[4o lalpf]

7 |1 /Yy
e we g " ho Miny s
md <y
A (VR VRSN (R 0
o
Lnd 7l Zj
% (0 o 4,
é'mc{e)
Olvwv{
M1
)
%‘: 1L

N

Ry

By

=y

1 T
‘EL(&Q g‘l/\(g @LI |
by vaks o] i

\J\th\ qQ l‘Mw NOMVé ﬁﬁ‘iL W[w}@ /ar\%
OWL (orpronl ¢)

OFN/W[“C, 670(@ CQV\W/&%@)) S0 /10,?(

t’f’/gﬂﬂ/
sty
)b i)

q) g‘M wm&
S

0)

L 0

L §

] 3
¢

5 (

G y

7.l)
2 T((,fz

QW‘(L {{JQ/7 47

| \
(5 P

%%

=1 - 7y = 72
3= iy YRy ?}@

l

5 cel @J/}ﬂe 55«@7

0

(

7120

2 | &

4

5 | VL @
¢ |'e
(BAY

q

Y

]

@ Sup%g\% J@ {fod

ﬁva_w_ﬂﬁ (@“‘ le\&f'@f“{q é/

i

?

2 11
713

Z ijl ¢
b dilifee c'@
} V3 ¢
A Vo

©

C) Is M Gone_ 560[/ OF msa w5 G ﬁwﬁ
ey gyl (onfain EI“)

Ns ~ O (fyw Mt be f‘\

W’l ﬁt(&s)r
0 9
[0
)
1 g
5 45 Mwﬁ‘@mq
i
OAQ (fb{zutélf

BO»L SHops At h[ﬁfk)vlj
O Ga Solede Lok,
{ 0 gjglﬁ/? “\‘/({

hm &@Mﬂ Sﬁ
b st Y

b4 05
A . e e

16, 678 90103 Y

d(,WQ 5
i
It (

Jelfda o
an@ﬂL 7

OL\ lvant ﬁ ,g\f }

?\I{g\(\ e do ot

0~ |
bl ool 0y

60 g/w\/G*\”/Oj

{lefe ¢
‘mse(J; G

st 7

@ fole § €whah 0 ¢
S ek Yo da mad Vil

Y
Q(&,(Q,l?,[&,ﬁ,m/{ LY
3 dolle G
et [
J,‘ Lo
¢
i
B
ot iece +'ffluL\,
00 Mov\/ T -4
b 3 s j-5=¢ 0l
(le 0/)
VML 9 \%
3 |G -
\; i (ﬁno(z ({0 Q/’dv omrﬂ/ 7%{4)
613
gl

|
W@P dQW‘%JD bt okl ok

M@ne; il e Toobe Optina Gty ¢ f
’Calﬁ\’o

W
2‘ Uice O/W&OL@
| nopoddy

900‘1%(“(MZ [(‘)f/ {)T/ /PJ

Plé)O;+| for ;<nﬂ,

g@bﬂnﬂ(«[& i b
szcc% vp &“W

Ml\/ J!)/ S (@f‘kfik)]

A {ufle G,J) rltn th /o/Zce
gl\ouli l}e Cﬁfagﬂd 197 d

P & P Hd

e o i alp
dcdy fng (Csots

viln}/ﬁ 'Hm/;

]Q/Ll C@npvfég

U
g@t@d‘(m - Conglant te
o Mt for

% monea \o/ CRMY Y@

[\lw(m W W/a?

[((‘Dpy gnﬂe N, N 'V\/ 0}(/ Uiy g5 q Vil
(ARSI B |
o ?) CtJmMe P: to
A0 %1 Tn 1y, a/mr Gm{ Ne ONL /ule f‘
é(:[nuqnqmt }\L W o (M
~ Conr {g0n 05 My gy p

il

D h -

AL
| Bl AVl of P> V\{a

i f@f QUgh P/‘LC(-’L onge k
‘. Find fen + dolofe zaﬁq j

U Toset pPoid; 5M4>K%4

e

|
Se. N

&
=
=

oo
L5

A"L\ph'ﬁ\a lQGLILG’c
(ﬂmﬂf\? &(71'?

.

I (less Jevision e ol Mfﬂgo
T (awf hound

%ﬁm gf) LW& z}/l} Edr bo - ZMO

200 i
pald n
7\(«\ Qﬂ/U/L })b}"\ [;:/Ll‘@(, it of H@mj
hat o W‘WJCMLMbW
s o /
bl 1 l
i e l

&L ?ml oot N

H o an e g plut O@)
G il D gl
Hite T @ does Specmale - (‘,,,,017 ML gl

e |

ML OW) 4 G ol o+ duste.

ﬂ_% “ ,%S %

R %
IRHL m "

fon 2

NTB

%3 @
M Moy O

Qj (g Tir 0 a@wi\ \Q\MQ MQ

$.Q§LSG

| (
eyt \

&\\8\

= 5
o ik
Vl b“’
b
bt
awpl-

(T
e
M
i
;
.
f
y
IL
:
(n \
p/‘(c
:
P (s
!
Gl
e
Dl
ot

6.006 Intro to Algorithms Recitation 06 February 18, 2011

Rolling Hash (Rabin-Karp Algorithm)

Objective

If we have text string S and pattern string P, we want to determine whether or not P is found in
S, i.e. P is asubstring of S.

Notes on Strings

Strings are arrays of characters. Characters however can be interpreted as integers, with their exact
values depending on what type of encoding is being used (e.g. ASCII, Unicode). This means we
can treat strings as arrays of integers. Finding a way to convert an array of integers into a single
integer allows us to hash strings with hash functions that expect numbers as input.

Since strings are arrays and not single elements, comparing two strings for equality is not as
straightforward as comparing two integers for equality. To check to see if string A and string B are
equal, we would have to iterate through all of A’s elements and all of B’s elements, making sure
that Afi] = Bl[i] for all 7. This means that string comparison depends on the length of the strings.
Comparing two n-length strings takes O(n) time. Also, since hashing a string usually involves
iterating through the string’s elements, hashing a string of length n also takes O(n) time.

Method
Say P has length L and S has length n. One way to search for P in S:

1. Hash P to get h(P) O(L)

y f
| L = V(ft‘{dw Nl
2. Iterate throug length L suBstrings of .S, hashing those substrings and comparing to i(P)

O(nL)

3. If a substring hash value does match h(F), do a string comparison on that substring and P,
stopping if they do match and continuing if they do not. O(L)

This method takes O(nL) time. We can improve on this runtime by using a rolling hash. In
step 2. we looked at O(n) substrings independently and took O(L) to hash them all. These sub-
strings however have a lot of overlap. For example, looking at length 5 substrings of “algorithms”,
the first two substrings are “algor” and “lgori”. Wouldn’t it be nice if we could take advantage of
the fact that the two substrings share “lgor”, which takes up most of each substring, to save some
computation? It turns out we can with rolling hashes.

“Numerical” Example

Let’s step back from strings for a second. Say we have P and S be two integer arrays:

6.006 Intro to Algorithms Recitation 06 February 18, 2011

P =109,0,2,1,0] (1)
S =1[4,8,9,0,2,1,0,7])

The length 5 substrings of .S will be denoted as such:

So=[4,8,9,0,2] \/W'/LAM 61%6 — 5(3)

S =8,9,0,2, 1] 4)
Sy = [9,0,2,1,0] 5)
(6)

/
We want to see if P ever appears in S using the three steps in the method above. Our hash O[/[(/’[/&
function will be: o

St 5
h(k) = (k[0]10* + k[1]10% + k[2]10% + k[3]10" + k[4]10") mod m (7)

Or in other words, we will take the length 5 array of integers and concatenate the integers into
a 5 digit number, then take the number mod m. h(P) = 90210 mod m, h(Sy) = 48902 mod m,
and h(S7) = 89021 mod m. Note that with this hash function, we can use h(Sp) to help calculate
h(Sy). We start with 48902, chop off the first digit to get 8902, multiply by 10 to get 89020, and
then add the next digit to get 89021, More formally:

h(Siz1) = [(M(S;) — (10° x first digit of S;)) * 10 + next digit after S;] mod m (8)

We can imagine a window sliding over all the substrings in S. Calculating the hash value of
the next substring only inspects two elements: the element leaving the window and the element
entering the window. This is a dramatic difference from before, where we calculated each sub-
string’s hash values independently and would have to look at L elements for each hash calculation.
Finding the hash value of the next substring is now a O(1) operation.

In this numerical example, we looked at single digit integers and set our base b = 10 so that
we can interpret the arithmetic easier. To generalize for other base b and other substring length L,
our hash function is

h(k) = (K[0Jb" + k[1]b5 2 + k[2]b% 3. k[L — 1]6°) mod m 9)

And calculating the next hash value is:

h(Sis1) = b(h(S;) — b*"'S[i]) + S[i + L] mod m (10)

6.006 Intro to Algorithms Recitation 06 February 18, 2011

Back to Strings

Since strings can be interpreted as an array of integers, we can apply the same method we used on
numbers to the initial problem, improving the runtime. The algorithm steps are now:

1. Hash P to get h(P) O(L)
2. Hash the first length L substring of S O(L)

3. Use the rolling hash method to calculate the subsequent O(n) substrings in S, comparing
the hash values to i(P) O(n)

4. If a substring hash value does match 2(P), do a string comparison on that substring and P,
stopping if they do match and continuing if they do not. O(L)

This speeds up the algorithm and as long as the total time spent doing string comparison is
O(n), then the whole algorithm is also O(n). We can run into problems if we expect O(n) colli-
sions in our hash table, since then we spend O(nL) in step 4. Thus we have to ensure that our table
size is O(n) so that we expect O(1) total collisions and only have to go to step 4 O(1) times. In
this case, we will spend O(L) time in step 4, which still keeps the whole running time at O(n).

Common Substring Problem

The algorithm described above takes in a specific pattern P and looks for it in S. However, the
problem we’ve dealt with in lecture is seeing if two long strings of length n, S and 7', share a
common substring of length L. This may seem like a harder problem but we can show that it too
has a runtime of O(n) using rolling hashes. We will have a similar strategy:

1. Hash the first length L substring of .S O(L)

2. Use the rolling hash method to calculate the subsequent O(n) substrings in S, adding each
substring into a hash table O(n)

3. Hash the first length L substring of 7" O(L)

4. Use the rolling hash method to calculate the hash values subsequent O(n) substrings in 7.
For each substring, check the hash table to see if there are any collisions with substrings
from S. O(n)

5. If a substring of 7" does collide with a substring of S, do a string comparison on those
substrings, stopping if they do match and continuing if they do not. O(L)

However, to keep the running time at O(n), again we have to be careful with limiting the
number of collisions we have in step 5 so that we don’t have to call too many string comparisons.
This time, if our table size if O(n), we expect O(1) substrings in each slot of the hash table so we
expect O(1) collisions for each substring of 7". This results in a total of O(n) string comparisons

6.006 Intro to Algorithms Recitation 06 February 18, 2011

which takes O(nL) time, making string comparison the performance bottleneck now. We can
increase table size and modify our hash function so that the hash table has O(n?) slots, leading
to an expectation of O(%) collisions for each substring of 7. This solves our problem and returns
the total runtime to O(n) but we may not necessarily have the resources to create a large table like
that.

Instead, we will take advantage of string signatures. In addition to inserting the actual sub-
string into the hash table, we will also associate each substring with another hash value, h,(k).
Note that this hash value is different from the one we used to insert the substring into the hash
table. The hsk hash function actually maps strings to a range 0 to n* as opposed to 0 to n like
h(k). Now, when we have collisions inside the hash table, before we actually do the expensive
string comparison operation, we first compare the signatures of the two strings. If the signatures
of the two strings do not match, then we can skip the string comparison. For two substrings k; and
ko, only if h(ky) = h(ks) and hy(ky) = hy(ko) do we actually make the string comparison. For
a well chosen h,(%) function, this will reduce the expected time spent doing string comparisons
back to O(n), keeping the common substring problem’s runtime at O(n).

@
#U‘ Om BH f//()f (a//@ﬁm

L((/a“i Msugey M

i PU My
W o w5 g 5”7
‘bﬁ Mg ¢ an @l Uy gtans k

(Xl i
G(A(/{q 1 ({L&pfb ‘/n dﬂ/&,_ /0465]"[{97

Fiﬂc', e f/w’@x . of fe il verlye
(15 dﬂ/z/eb\/ 1[/04l

Wy dgy B e s
S vy b ikt
o
A” 6}72499 Ao Sam 671/9/\@‘#
Ohorld 14l of ‘('/ N
k # ¢

& £

b

?(wﬂ‘m& ot o /o{,c(X Gt
Tell o]

;EM mf«&«@ d(w?LMﬁe
LMVmL)Je. V) *\

(CL((, #djc‘s 4
Cpaid, iy mgj ot
- Y (o Compmy
Mutrerc - M /fpl U

05

@@ w0 Cae My W
bt Bl g T'ne

hﬁ Codld C\We/ @[WW That Gk of 77)’)

N hash o gort oc }w_qf’
Dusiston Tree Wbl b Al

-

1\(‘»9. '@/‘d:@{\ C"’\ bQ\—r/

| /
| 6}\0\/)4 e W{;R s LJ ‘*qu *

T Pume BT
”71]'14/(& D'F a Vllré/e 90/‘”\({()& C}Kdﬁt (L O@c)

" ZOL of (Mﬂvjwml(‘ﬂd{' qu/f OV S0
\ (\(
71M> N /eutm Wwe

(o1l hoh

High 1hle Thia |
Touah Lot LY - pheh Thet™ Ao

Wl W thon Thet B

les m fe bt @ P

C My olgral + e
ke
/

G (ol & Jff for K70 or 70 7

N il 6 ol labs by
VM;]L \ﬁoue (ommiq Q/Jv g“}/c’ftg Z 5 W
X s candealy bl al

(ot é;/\m 1o Q)BU('M
” :{amler I o

e hwk ol
Mo o
~all b Comen sheing

W of 8w 6
b | by b ol
)ML WHM& (/@ol(qﬁ)
LQ’D /l/ﬂl /0/} [AM 2 {/'/LJ YaNS?/, (Mg,

C“(/D ‘D’WL m /Wlﬁ/ JWHL 1L° 0/0 V/ /ey/é
51\;, Wl XOR et cap

OM
Fﬂow ﬁ’ {p A (ol ‘4@ I’Lf(&l??
B(/ i g Gun .

Q@L O(Q l@; fom 5/)/((46 U

T
W00 = [aTp " v 4])l [

kL] bo] nad

L= leagd oA ubnge”

ﬂaﬂ\ Wk
/ i
M
e
s et |
%))

) k£ o
hash
"

(
ol o
5

p
L l\/al‘?](\)O
J‘
(

M
" St
sz’fﬁ
Id %]
|

b by hak e,

(QU()OB Plore L/o/k

s -

m\ M WL/T 1 f,molzé’vml

()0 Can jﬂff

0&07\(/4,,/7@((;14/‘%(
6 <SSR, Sy W & h) 5\/{,}./@4[

C \
Aor chb B trighee
- l
- (‘}[‘z h\ﬁ(’fﬂ/\

No =V huh ae 45 |
ot (L{“W

¢

—

0

Pty I ov*ff"‘j qe Mﬂ Cinle
N i fge

QM\L fwif o O § WU h
Vashss o500 | o

- K) “’@////
[l Haa]q V\ﬂ'vl' un‘(qm €r1n»gl7
_ \/V(E(l /M IE‘JIHL

]/0][5 % hash (oa t“ﬁf"f‘}](
Ll e fla

O}\ nvtr (/61“9@(1 fo 5}/1 { Z('/"Of(;" ‘)./’7
[@67 5 /d /H(b%ct(

ép Now/ M(,Leo
il Qﬁ\ llo

@T h\ml\ L\fo\/k (0”;9%« ‘“M’W& tLM @ﬂ[ﬂ
belter hedy

(
""-\

1 dm do;“ 0 6{, @Vg(l

OL\ 10 mafebys OO

L\/&s @x,'amﬁ\cwﬁz\j Wheaq
@ 2 é\(m\()](; L ases

e

@ A]\t v f./oﬂpm C/aolé?é
T(l{}{ %9 {/{5@/‘}’](q '6/“][C(/é,f’

¢ % add N

@ H&@i Wm@
AR war
3 T

Tﬁ’b{’ 'fh(mﬂ; Olﬁﬁ [;ﬁ
@é@@w]Lo Wal M((m(

Té’b M(L‘(L/M, 2 s %o f(in(, A/{’

Guableg mar {lado
H@b\«(m Yo %
C M ld @b by b el of @d‘f}w bec]
bp‘h, my pdtlmr; ﬁ/mﬁg lﬂjfo ((41{

O Wed ot Yt |15
1\ noed. ,IZ, woll 01 @k’r éf/fl(f

Qwﬂié[”%@/@

T

s pHlo e i7"

Ty

Works mch VEHA {ugder
bJF (/fM{a)(

@%@ pass&i (m[p(e,][m[(2g)
O Vases dim —fude |

¢
O TA&M& log 7[(’(*1{) uable /W}’w? jf ¢ Cak hg
| r lo\vL %W
@ Pessed o feasy [
ﬂed' [-¥
[Lf m ﬁw
@:‘%blfl%\k s f@q(g(jf o
Tt pott T g

Q}VLDL\‘(GWL " 1"

Uan
(.;n\/”;ﬂ\-f)Jf

C\//dy

@ Wy o
Oﬁ pf{' ”F?MP " Vg P(Q%:

@g& ‘Oo;fblb L]'? ?
‘Q%“ ok ot ead) 0 = 2n~)
wt 7T S i,

Hlaa /’& N
W 5@@(6&*& IC(//H(TM

P——______________-__—__-_-—____

Dude by 1 Oé . {JZZJ —Suly
No 50 L O 5¢ pls - Sux
ﬂ\w @ 99 pb

Orhqr yrojlgw((M+>M) @ ¢ (P)rj [&6 Ph
G W

D:\Users\Michae\Documents\MIT Junior\6.006\ps3.py Saturday, April 07, 2012 7:53 PM

collaborators = 'Arianna, Crystal, and Shri'

Enter a float in the interval [0.0, 1.0] for each part 1 of problem 1.
Enter True or False for each part 2.
answer_for problem 1 part a 1 = .500

answer_for problem 1 part a 2 = False
answer_for problem 1 part b 1 = .444
answer_for problem 1 part b 2 = False
answer_for problem 1 part ¢ 1 = .916
answer_for problem 1 part c 2 = False
answer_for problem 1 part d 1 = .857

answer_for problem 1 part d 2 = True

On problem 2, enter an integer for parts a and b.

For parts c and d, enter a string proving that no such seguence exists,

or an insertion sequence providing a counter-example, not both.

answer for problem 2 part a = 3

answer_for problem 2 part b = {4

Uncomment one of the following lines for part ¢, and enter your answer
#answer_ for problem 2 part_c = 'Type your proof here.'

answer_for problem 2 part ¢ = [('i', 5), ('i', 1B}, ('i', 16), ('i', 17), ('i‘', 18), ('i',
18) 5 Vi, 20), (Mdt, 24y, (F4ir,22), Writ, 23y, d¥, 5), ("dm 8 . 0T, 15 (A0 3 |
'‘d?'y 16); (vivy 8), ('dr; 17y, «(vi', 9y, {(*dr, 1B), (viv, 10y, ('d', I19), (*i¢, 1y, {(*d", 20
Yoo ("1% 2)p (Al 210) (YAt By td, 22y (Ui,) 0tdr; 23), (ti', 5)]

Uncomment one of the following lines for part d, and enter your answer

tanswer_for problem 2 part d = 'Type your proof here.'

answer_ for problem 2 part d = [('i', 5), ('i', 15), ('i', 16), ('i', 17y, ('i', 18), ('i',
1%, ('i', 20), ('i', 21), ('i', 22), ('i", 23), ('d', 5y, ('i*, 4), ('d', 15), ('i', 3), {
Tdty 16) ity 2)4 tav; ATy, Avir, 1y, (vdt, 18),. (vdiv, 0), ('d', 19y, ('iv, 9)y, ('dY, 20
Yo KMy BYp{'dr; 21) s (Uit Ty (A 22); (it B) ottdr; 23), (Yir, 5))

Enter your answer to problem 3 here.

answer for problem 3 = '"'

So this has 2 possible answers depending on this question: is there a max price in our
supermarket? Generally the prices of items are in the $1 to $7 range. There are very vew
to no items above $20. Perhaps there are no items over $100. (If so those items could be
done under a nieve, parallel process that is optimized for very few items)

If yes: basically counting sort in O(n).

1. Have m bins for each price from $0.00 to $(m/100) max price.

2. Sort each item into a bin. We don't need to maintain which item the price is for, only
the count of the items which are that price. This takes 0(1) for n items = O(n)

3. Iterate through the k price changes. Look up the i-th item's original price in the
original array. This takes O(1).

4. Find this price's bin and decrement the count by 1. 0(1)

5. Calculate p+d. Find this new price's bin and increment by 1. 0(1l) as before. 0O(k) for
all:

6. When done, build the output array. O(n)

So because it is O(n)+0(k)+0(n) and n >= k, it's O(n).

If no, no max price: AVL tree in O(nlogn)

1-

D:\Users\Michael\Documents\MIT Junior\6.006\ps3.py

Saturday, April 07, 2012 7:53 PM

1. Build an AVL of Ps O(nlogn)

2. For each of the k price changes, find the item and delete it.
3. Insert p+d. Of(logn) For k price changes O(klogn)

4. Qutput the final array O(n) to iterate through in order.

So since n >=k, it's O(nlogn)

LN

Fill in the body of the code for problem 4.

def recover original messages(valid messages, corrupted messages):

n = len(valid messages[0]) #they are all the same

#hash all of the valid messages

valid hashes = {}

i, =0

for valid message in valid messages:
valid_hashes[int (valid_message, 2)] = i
i=1i+1

#for each received message, flip bits tell we find
answer = []
for corrupted message in corrupted messages:
hashsum = int (corrupted message, 2)
#flip each bit and check
i=0
temp = 1
while i < n:
hashsumtemp=hashsum”temp
if hashsumtemp in valid hashes:
answer.append (valid_hashes[hashsumtemp])
break;
i=1i+1

temp = temp << 1

return answer

This takes O(log n)

L

]
D:\Users\Michael\Documents\MIT Junior\6.006\p4é3-solutions. Tuesday, April 03, 2012 11:57 PM

import random
collaborators = '!

Enter a float in the interval [0.0, 1.0] for each part 1 of problem 1.
Enter True or False for each part 2.

mieen
Notice that none of these are universal hash families, since if m is what we are modding by,

then we have that for all i: h i(x) = h i(x + m)
Universal hash constructions are typically more complicated.

fmrmn

answer_ for problem 1 part a 1 = 1/2.0

answer_for problem 1 part _a 2 = False
answer_for problem 1 part b 1 = 4/9.0
answer_for problem 1 part b 2 = False
answer_for problem 1 part ¢ 1 = 11/12.0
answer_ for problem 1 part ¢ 2 = False
answer_for problem 1 part d 1 = 6/7.0
answer_for problem 1 part d 2 = False

On problem 2, enter an integer for parts a and b.

For parts c and d, enter a string proving that no such sequence exists,
or an insertion sequence providing a counter-example, not both.

answer_ for problem 2 part a = 3

answer_for problem 2 part b = 4

miren

Here is a general solution:

desired is an array, with what you want in slot i of the open addressing table in desired[i]

mmn

def get_sequence(desired):
sequence = [('1', 100 + x) for x in xrange(10)]
for i in range(10):
sequence.append(('d', 100 + 1))
sequence.append(('i', desired[i]))
return sequence

answer for problem 2 part c get_sequence([l, 2, 3, 4, 5, 6, 7, 8, 9, 10])

answer_for_problem 2 part_d = get sequence([9, 8, 7, 6, 5, 4, 3, 2, 1, 01)

mmn

Here are some shorter sequences that also work
nn
answer_ for problem 2 part ¢ = [('i', 0), ('i', 11), ('i',12), ('i', 13), ('i', 14), ('i', 15
(PR

("1, 18)y VLT, UTY o VLY, 18) (M3l 10Y, (rdv; ABY o (i
9.\

(rd*; 171y, {"i*, 8), (*4d*, 16), {(%i7', 1), ('4d", 1B), ("i%, @
)\

D:\Users\Michael\Documents\MIT Junior\6.006\ps3-solutions.py Tuesday, April 03, 2012 11:57 PM
(vd", 14), (L', 5), ('d%, 13}, ("i*, 4), {*d*, 12}, (*i%, 3

Y7 o\
(‘d', 11y, ('i', 2), ¢('4', 0, ('i', 1)]
answer_for_ problem_ 2 part_d = [itdty 10), (9d*, -0, (4% THY, (L% 8N (L% 2T e "L 4 T35 N
(AT, 16), {vdr, &Y, {*4%, 28), €2 S8y 1) ("a"; 1B
PR
(gt 11, UGEF; 1B %8 18)y (Pd'; 4) "%y 3} ("1, 2) 44

L' Wei’d"0)]

¥ Enter your answer to problem 3 here.
answer_for_problem 3 = '''
Algorithm:

Make a new array of size k, which contains the updated entries p (i j) + d_j for j in
range (1, k+1).

While doing so, mark the changed prices in the original array with a special 'Changed'
marker. This all takes O(k).

Sort the new array, in O(k log k)

Merge the new array and the original array, using the same algorithm as that from
merge-sort,

but skip the finger in the original array over entries with the 'Changed' marker.

This takes O(n).

Return this merged array

The algorithm is clearly correct, and runs in O(k log k + n).

BAn informal, non-rigorous argument that this is optimal:

We can't do better than O(k log k), since we need to sort Kk new prices, which could be
arbitrary.

We can't do better than O(n), since if the smallest price was updated to the middle, and
nothing else changed,

we would still need to shift at least n/2 elements in the array

Thus we can't do better than O(max(k log k, n)) = O(k log k + n)

LI B

mmnn

Our original solution to problem 4, which was actually designed for
the problem of correcting one-off polyominoes, instead of bitstrings

e

4 First, preprocess a bunch of random 64 bit integers r_i, each of which corresponds to one
position in a messgae

r = [random.randint (1, (2**63) - 1) for i in xrange (50000)]

roll = [r[0]] + [r[i-1] ~ r[i] for i in xrange(l, 50000)]

def recover original messages(valid messages, corrupted_messages):
(n, k) = (len(valid messages[0]), len(valid messages))

4 Our hash function is the xor of the r i's where message(i] is 1
This hash is easy to roll
def myhash (message):
return reduce(lambda %, v : x ~ y, (r[i] for i in xrange(n) if message[i] == 'l1'}, 0)

-

D:\Users\Michael\Documents\MIT Junior\6.006\ps3-solutions.py Tuesday, April 03, 2012 11:57 PM

valid hash = {}
for i in xrange(k):

[

valid_hash[myhash(valid messages[i])] =

answer = []
for cor in corrupted messages:
hash = myhash (cor)
for j in xrange(n):
hash *= roll[j]
if hash in valid hash:
answer.append(valid hash[hash])
break

return answer

Here's a time-optimized solution which gets ~0.20 seconds total on the large test cases
Code stolen (with permission) from Joshua Blum, Tal Tchwella, and Rishikesh Tirumala and
modified.

I'm sure many others had similar code, and it's possible there were faster things out there

nnon

def recover original messages(valid messages, corrupted messages):
(n, k, c) = (len(valid messages[0]), len(valid messages), len(corrupted messages))

answer = [0] * c

valid hash = {}
for i in xrange(k):
valid hash[int(valid messages[i], 2)] = 1

corrupt _hash = {}
for i1 in xrange(c):
corrupt_hash[int(corruptedﬁmessages[i],2)] = j

if (n < 5000): # This part due to Rishikesh Tirumala

pows = [(l << i) for i1 in xrange(n)]
for ¢ hash in corrupt hash:
for i in xrange(n):
hash = ¢_hash * pows[i] # Flip bit i
if hash in valid hash:
answer [corrupt _hash[c_hash]] = valid hash[hash]
break

else: # This part due to Joshua Blum, Tal Tchwella

for c¢_hash in corrupt_hash:
for v_hash in valid hash:
xor = ¢c_hash *~ v_hash # bitwise xor should have exactly one 1
if not (xor & (xor-1)): # check if xor is a power of two

-3-

D:\Users\Michael\Documents\MIT Junior\6.006\ps3-solutions.py Tuesday, April 03, 2012 11:57 PM

answer [corrupt hash[c_hash]] = valid hash[v_hash]
break

return answer

éL O% &Q’H ‘(0/\
(Ghot't ote T/Jr)
DFQ 1 @F‘§ 6n dzfeoff/d Q/"‘PL‘)

o
gL

Vot poitle fo ceah s fon |

m ¢ 1094 @JC

ohf J\CSU
me@d [\N] T(U(i
\/L%’M“ //Co i e Cm]ﬁwﬂ

o ot i \A/nuwoﬂ c
.' m@‘} ch/fe({]

LS [o]

(Lw, Mvmbl%)

0

BFS
e L
iy
6,7

(MLL Q%L\ Zz‘ell ;n w’a(u@“/
ety STt

e pt 0/8/71)7;“3 on T lof
oy B 6

Soute_ dr(bffl““o d/}dﬂnCG
“ 2

ﬁq,[‘r
BP"S"\’E“/H% has oon day o [alC

que(/e, I:O] <\
has Se@nI\/] = Tre

g

(" J)OC;J([(M ()

W\\EIQ CV&OS)L“OA 4 c(/uewi 1%#17
W< gt [ot/
VwH(w)

(ur F%H‘wn = (wp(aﬁ;f;ﬂ’l +|
{W i W N\tmm:
ot e foa L]

Queve . 4dotad M
his [y] < Tre

(Hodod exam hedy)
(&@}W{m ended 30 iy o4 1}

1006 Leghee /22

(? b A%kj .
IFs 0(1tm) w;‘b“f“ﬂb) (les Cad
- DrS O(nrm) / (aﬁ%ﬁ“ﬁp ’

o hah
CML 1((%& who 1 (owede) b vy

§thﬁ/€, —) 5P4mﬁfﬂ e

<5§%? (omefs g dg
4 5}) 1 S dldyues o lod ghf-

Bu‘t H, [OL[Q/J

Y
CDM\QU]L@(L C()mpomb

Lmkafﬁ WV\M/@\:@&
@\QUHWHM \l M}/@HLEL

2 Symmliic 0 (e[@f(m ﬁ@# 5&«47[(5(@

() (eflarin v al 3 <
== Tranik

4@({\/\ \{aml % {
“”% Mo \dfw, M ML\ '(kw‘l J&/e/ P

(f) (@/(rﬁ@i {o Qash OTLV

@ v(w €n£€, /] t(a,td m

/M\WM\ = CCM“L CL(JJ:L fo %

U e
< B (”“65 4 eqw (la
7 nale

6%51 2, 2, | i’[ﬂd@)

(lgorth s s * adpd

T ovaph
(/?Jt/e f

b wah vatee ek class o K
Gyholy 29
“tne sobls g s
S able Z/ 2(3/‘7
Mo qeb i
Vi « Ylo&e, b a Seaccl]
"Mk bl

B é}\WLQb\L Mh '&dam L/w pe anl I
@%@lﬁ f Can @acly

MWMU

Al n]

I ,m}é

i 1t of wnreded ccarqporm

v
O) ¥i nl1)=(

P\[(L\ A M@JQ

Sﬂ{ml (;/!Sxt l/(?/]lQ)c
e

0)?3:5 f{/O’V\ 57%/1L
Mack | hol e ceded

Ve .
Lojug
d /|30 fat € V E it en

el

o

@ M\m n@% @[ﬁ@ s mas hed "5}%/#

Y OALI }"[C{f(,lft {MM CWCV Once O&]

&
(OMPIQ% O(n-/m)

T e ———

ﬂ‘zw qu Wit @["‘ ”J

([(1‘ OMV/Q' L}/\\W} 5“’&!
Gtat |
i

\!+5 h, mj Efl -JLx @flﬂm{@& (0@00/04/,
//__’__’/

(e PG&“HQ@
Yoo dnd WM Cout
E\O(n* *m“) = O(n W\{

(

e

[k]eotm Jfo ((M}L
W\\q@; 4 ok as P@Qmﬁc‘t i3 - $e0my
NU Wsa b)wp;
T e leid * vty Ay caol| "

Teplyia] St
Dwted — gaph

0~ =00
H ™0

[QP[%G/IJF d f{m; (g@%ﬂl/{’]

proty ody of b A
54 numbef/fenmb@ ‘M\fj T of e e
Such Tt U=V impl
s (Q} £ ¥, (V)

“‘a ﬂ /@s for all et Gph
L> /\/D, Mf (1‘ e “ « Cple

|
145

18
mft aie o a,,ol@

b ill b o ooyl graph

—

@\ /0
=3 /@7
0)O\Ao\jo

N0 nod 5 pofvﬂ“mg WL‘DJ";”_\ = Qg
'}o @Ol(%uu\ ol F mv&TL L\Wﬂ hﬂuL
L{ toug O v (M Sop. b

Hﬂ”/# 7[& 50%@?
o e & vt
o, F ‘

(
6{@/6 7 B Q’CZO/K

Y
O—-—ao\/’m
w/"Qv/

“’E@c)}@(‘ Wl Cowp

As

A vy

(Lo v
A R{u) s A

p-Hala] =t 5(u)

: | (
n[Wl (Cda 'tétm{ %opﬁ%(cq! (0A5%, (o e Q]D
W

resmme e

Cavx Wi W{ {n 94({8

% bash Fasly
How o hecklok of Oxploi

"~

@ F;nd @ - e s | 1, @bde;)

1.006 Do i

et

2 "'\lf\ q,

%
S

0Fs \

A
W

publf\ JQ/J[Zue; 1@,]H e P(ocee 5

B e

Al 4l e vetleq Thal W bpga Ph cesse |
S ([
DFo D 09}»‘{* 0 ME ()
i oy q

UFsc pah cght, gl (b4

hby
4 b) Y
\l/DE
A e ONLC
Kppee 6
\,
ARD (E
Wy er
ﬂp{b\& fo [k

@V\!' Qlo:'\“]l Ql@lefﬂ W(Xo,q /e}ﬁ %, FO’[/}]LF/
SP]H), b h\mﬁb (1 Sone {W‘e/

J
S% cﬂml Theora T@ mdzm(/fe/i BH
Wiy v e e U b | gl o

T 49) Jgualy

Q(Jﬁ/ \(13\/ M o],@e,s hot WH@
“n eyt @ mi glqawe-z A o OZQC{W'SE sl

IFS
Y
et [b I b
SO ANV
Y T \HF
)
ABOEF
¥ bDEF
A&/QDEFC

E8BE [7¢

ABCDEF C
FBopEFe
b

| ol

rmg ‘lb J:He/emL nqq (e(/ﬁ/ﬁ
/Slwujn/cv) Yo be, b ol

A faght- L
<DH 5 MLJQ/”{ 1(00‘/47 AV/(J

V/ .
Choal - ot (bt 9o 1eld) (gt
A/“ Qlﬁ% 9o U‘*f V@b Wi{. %ﬁmaataﬁw
by

ﬂ?, d@w f\o"‘ ﬁll [Mﬂw }’mw)71 (9()67, %t ;r\ C&tﬁj
VQ(f?}Oq OF 0':5

)

Di\% e %0 (odo DH

"‘Dehcws \\:L Tk)eoﬁ//e M€/5}ﬂ7

k(1 Y)

(it pa,H\ D)r
! J

A g CE
A CE D

0%
ANCE DF A\DM?M

- —

ABCDF ¢
Mc

T\@m\ ‘@\@(‘,ﬁ 9 }7/¢ @(/GAQ}G 04d t’]L) 6{466&}0/)

@ (om\lr N

\l}/)/ (¢ Mm ‘}/9(7. w/M, Wawe)OOZ(

Very idfeen f

//\\ \)
\\

(\\) /% (0 hwe 4 dobed e olyes

N

T

Wonew e Vo ae abed b ke

Jiechd BFS D

A CL PR Y1 R YRy)
“Q&ge} Cdd b Fow(f (/P P Q /Ml

0

Fs

J

b it g ade fon (ol of
m Lot TE malfes)ﬂ/ 75\{ Tree
W (29 MIJF\ /% E\lge z{s /65¢/ 45
10"15 65 leeks Do explotn oy,

6

(chg gah bt met s
CW\ TLUM ;m)to ‘LOPL 60()L w/ “FOAH ﬁ/C{Q/

‘Hwég(Pfoblmj [(J,[M@[L 1('0 @r@p\/)

Fod 2 vedis 0 a Tuwyle
X5 4n C{()j]M |

A

(;) : i 000

0FS - ertiess low oy

Q&'baﬂk& Q/&ﬂﬁ

Q‘)} M \(9 /‘0+ ness | ww @ﬂw{

(e (an)
HFS

() ¢

WL(\(dﬂglﬂ Mp] 1/4 { ZM/
2/(;,\ Q hu)é/@/
P\md, 9

4 hash (cveﬁ”\[I ve T

I—

P[Ob\@"’t 5 @(ﬂL%{/”7 /Qq/” 7 [W(l/
‘Q&b\teb}“ g |

‘ ()(\m}vz (VL?(F s,w))

-~ e o 3088, Gre for st

Alfﬂ\',w teocked W path fen [
AV y

(0L G fos

@(qphﬁ ae gl o (S
6(&()(/\ ’QQWOHAJb ohe of Th VV\nfﬂt L&S;C &Pgﬂa)(('dﬂs
@epfesemm‘m/b b= (V,E)

bet wha GuR | E/“W)L
Most algo. ta s bk o
A\ mak

vy

-]OWL whin &%e)E}‘%{V}l

[(
O ’}e 66‘2, Lé ‘?/A-»a@ COM@HA,U 2 M_L/e/fl(:/_e)
acl; I;b\’ ‘

d u[,/ mak {i

oy (st

IR

Sum (’b () d| /EOW

’l{) mffemled

(Q“ “VL{{’JF 1Lo aﬂ/é \/vd@hb
OyMlﬁx QCW,)

Momr y

bt vndladd @ an of ohod i dolt

[I53 e

Or\e, ﬁ)lé TIL {mp{eblr @[@0/hm
i o st pod

ball [6t tee
L\fb GLO/"W\ 'M\Lk Icfowx,
J/wto& qw& L/V\/&/ /ﬁ()Lg

C‘D[ﬁfj L — U {de

I 0“7 (J,wmt/ff({
%w}\g% (ML‘, L&(qa/'e/“ﬂ(l, WA SWULQ,(L a“

M/Q, lq\te, [Lul MA‘JV\

flak o dlsaw jw

&”ﬂe

glrﬁf i - Flt o/f qrel

Shurkest path
- bn'/}]ﬁe a1

(Hothlyy oo dua'l sesd b be adgpt at te
Pfoa(% . u-)

fuet Prdecrsor Gbgeqh b

(gn 4 5 /c)c;/;}~ 5/]0/7[5# P“/M

5w Gl 6 (doth)

s
oo P faflyt mp
})q@k WB
@bpforeb rovf

Dita &Jeceﬁéor §oh C%Phj reRy be seoal rees

SMCQ, Sé(m/{d Coan [€ﬂ/&‘VL 1(“”’1 fgugm/ f{f(@
ﬁi’ e Sanp A5 &8[:5'

Seach miy copest fua motyle ,D’ft@
ham

foms JM W/ sonal ¥ frae;

6@/\/41 Golo's

each vl @])F dne

—h@% Moy IOt’, o(‘ts/‘ot(/tf

(\'w” d) Hmﬁ(m &LOZ?Z/O
”M%JW“WM g ¥
le\m 60{1) ller 66%%[})[%&%({) J.£
= ddZ U4
= %@b]ﬁmpg ? }@ Llv)

e @

Cotn L\‘We d%fé’/n[0"'[35 0\(U;b;ﬁltj /@;ﬂu}y)
o puh

Ul o 2 P/wf&g

Rl

/

V) for Tﬁmﬂﬂj each HWL
2 Wl = 8) 4 DR
b OV f)

(Tm{(’b‘ Se0ns ‘},, 6€ F/W\ O(f(d\cﬂq/l (,bli{/"ﬂ poh;b
ot Yo does BFS ot hae (
e 1(‘7 for Jided &)nl% ')
PW eifleseots 5%(@1&@
TR / slop (ool@

Monih may be pedte]

{rom mu/f((ple qu“

| / Y,
v) H PRlby)) 2)y
N

b |
O Ufzbbb‘b{ chJﬂlon 0 t E 0
o \ c[ass'céf Um%@es ()7 Wf
IITW g« (F fed

- M i i way dlscaned
45 - edgs (v, v) (omedlay @ varter
({ o an et Vo q DFE free
Cgoas bak To an c{,mgﬂtp/)
E_Q__E 5”1[log

. Bak o

?,, Forw{& 8‘{69 Non Jr/ﬂc 6(’»3“@ [d/d/
@nmﬁ@ a VQJ“??‘ U To a ({Ecma/ﬁ# v
i~ 4 |)FS Treq

(qu E’Ktmp(cfij

T Cos edges g on, tdyes

6 b /w vt Myt are ﬂf’j CE‘L(%IZG/}

T TF c/\l/T
X Y 2
Ve eV

P ot b o dumdint g hody Jisonad
& J o ity

(= 6l“ Ohﬁf @ig@ (ML Jeeeﬂué/a«cep%)

[e pees (u Fo VJ
W@ Can (eq{/cw dny @/qﬂh So TB/F ng.mwa/d
Ipval]
BN
Fy T'})\/F @éfc@
0 ©e<
Lot

@ B ks o 4 ceom 0% clow |

(O(wa/A {@MQ Ud « %V&A
(10% 68/3& (oL.d 7“)CIec«e/

| ‘ il
U/\&[MJ(@L 6.&4\9\@ b @ rIlufpe; o(4 [qﬁ?l{““m’) ﬁt@f“ ap//z'g)

@/V) or (V/ %)9 Whate.q, iy, {1}

(an @(J’AL, be @/WCL or Lau/h
Ay by,

S0en, £ {Mﬂl

of o DA6 (|
/L(Lf/w{?/&/ CLCyOt(C g&(pl/)
gl pedue oo
L\Dflféumlwl 60/4 wl\ffe uewe/f{’ll:% .Q—a Ia

@”O Bcu[xwavi 9(’,6&5?)

5(VFE) 4
Tor DFY () & ek Ue"’}//’

@ (QWW didu Tky fi’dfmffwf Dﬂé gt’ﬂﬂﬂyf)

it @@\ R

y i —me |
lg

h
O T /1[\
h %j@

Gl PPSLE) b vl ey fe 1 g

NLCY T

WO, fager 4f ,fofi"’L Cl[//%///;Z
of Ve /L t'toe)

) A eah ol S

3. Robm ujed [

éltfﬂﬂq\\((onchid (ompay

A Clussg apf of DFS
USE'UO l wPSP/)

Muay algotin, deanpse o ondd wnpoas
P[@(@bﬁ on ec«,ﬁ

(@COWH/Q, [&u!ﬁ

w ﬁ)r Ovry Mfr Jl£ (/9/7’6’@
Cad Ve hge goy

V=
~
@) v
GT b V6% ET Vl\‘i/‘« |

6 all dou Avpsy
Ly

i b Couke @OC%”E)

L
Aw @ {%mﬂgil’ CO’WC{[@({ Qﬂp&mé

(oot Ch ¢

Como\tsv all of e EL,

5 Vixe
(0/ el Mot M vl be @ SCC/

@“’%Q
\J@—a@

MM\ gpﬂ{ﬂw\(v\@ T/QQ

O\qm:\ Mot Convect *ﬂrset/@(o&[”0({% (n) %vgﬂﬁ,y
(an dﬂ ;n /l“] (,v;/@
C)A (ouw

Mk {655/'

/Z @l@mﬂ@
[z(rwslw(O @%V)
Pr‘M I i O(E +(/ﬂ7 V)
b et ¢ f]v]< E]
oth ae gledy — ol of D momga -

(50 s is ok of g |

e

Ohotkeg fath T —

}’\OW 110 @(u(5}7\(, éA@-L&';’J‘ /Mﬂ, 69/;1 /
(MJ {00[*\ at @)! /a/ﬁ%;r/'

d/” (W’% W/a C‘zo{ep/‘

®
BFS ok WL@A d/“ \,‘,64'3“{5 = /_L

L\a,ve A Q‘lv@v\ M
k- Gotet ol b all oafihes

— Or m (Al OL“ GOUIe, 6;4@% ({@J‘
"()rl M of (ore & ﬁ‘wm fb‘\(f

%0\ SL\OF/%WL Pémm w;// Cmﬁv(’/z Oh@/ 511017[%4‘ Pﬂu
l'\bllfclﬁ m(H /WQ
. D‘{W‘W‘lb P(%fqrﬂm‘l,\;j "9“” A P(Og/d’m (’nﬁa 5n1q,[/g/
PE&@;

\/ N_OT: Dﬁmﬁm“; uf“l‘{!@t(\

f (/\/&261’1{3 we O choat pall waights NoT
VUl defind

59 /f“/l\", & C};OIE’j
o htat @ gt 0= -7

No @ 0r @ Cyu[@

Or O
LJ‘/& Ny (,70[(25, PE(EOA‘

Mob(t/ﬂ[w‘m A L‘tbl\ 06 P/{)/Jt‘ceoo/j
59 Can cead [M[«wi

vo $ Wt 5 Iy
6@ qu/{?, Gﬂ\ ”61\0/}%} Mbh f/ee“

e a BFS dree
LV]L w/ {,\/@iglﬂt’

T{Q% dfe 140\} ”@55aﬂ£i7 V[A({ft/é

Redy

e lnath.

wibliee of @(V) algo

Pia {'@ﬂL & v wn ((mﬁM T shotel fath
bV s by g, M Tagh o

Teluy

—

5

QQ[M (Ul/ \// W) : |
Evd erddun) € gy

Vs) e gy
Ll R TR

Hae 4me papeti
“ e caequll
(7(9, v) éd/(ﬁ,u/ ¢ u(u,(/
" Y el ply

We dup e vid 2704 6 off

V@ﬁt‘u) \/%U drd o Vid A (hi.gs J@’/
H’ NV & dwudg

megn_pery_
(no‘L W/” l‘m\))

Cuth relatin propely

—_— e

fiden, ghyoh yaly

-—

&M 1[!4(/, E%o{h?ﬂL PWh'L l// 6 CosTs
refuns Twe / Cale £ 6 wigh% Cyole e
(”IWM» This 2 h session w/ G cost gmﬁ)

_ lé 4% CV(/[Q'éLMWJ 5/\%%7[M/;gw tpalhs

[\

X U(\t“%m o)
l ot By)1 of 0 ()

[C\%k for O Gl @(E)

g

)
(I qdves :r’f/' See t’,L 'I@ofx//(, 05 ms Bmfvte 4 ’E[L Malp /”Mé
Gonse ,W)

é(m@b"SOl)/CQ g 1‘0"% PWJA? f"\ Dl%ﬁ
@LL«wzb’ woll defind
"‘}0@)0(/)4]‘64/‘ 5DHL)’01@(‘/[1(0 Cmp(/f& 61?0/1'85} W}%
/VLA/\% [Pa;ﬁ wer "W@ sut ad wlox cach

OVt
FGH‘I Ulm[G

—

OU 11\6)%\ ; MﬁO/ﬁ\”\

é@Iv&s o A M:édlfﬂt@é, 00/@‘%0{ ip'/‘fP)?
l/\/l/?te, 6{}[[9&585 i =)
{DPAUW/ / me‘lr\ﬂ ‘“WL Vb‘dﬂ BP/HW(A IL;/ [

1 s
/1]1@141(64(&5 ol § of SRNJR’"* ~pet ety

5”%‘) ULG U,g a({ds 4} to }
(quge,j &[l @(‘tjfib [W;Aj !

©
a: p‘/‘(O{‘I]Iy queve

(V\oﬁce Conts /PQL{f‘(n(o o e {{MPL;c - |l C.d/}
1 dos fod D ghodoh path

\ \ ’
(‘h\b ston 15 much Mot wor ')

7
vy The
d n \ (2
‘@ff d @fll AOW MMWMII P[(m{7 e
ﬁ B t)(ﬂﬂf‘f l\qqp

b, hegy
(@r\& 16 w\wF (avﬂ‘m@ ([n lew“)

Q\‘fw‘am’ N@l@ j/ i

|
gf,/taw('/tj { QP/@M]‘Z{/HOA}

U of Bon @ b
_4d i ,
B Gddfj " oml/\q(] St 1 éoal\

B

~ noidoncg 1

“H+ @&ﬁé n¢+’ V@iqh$o(}

Tor Ob}eol
\/\/p’: ﬁofc 60(563 mﬂl (04 ﬁ;(r,z /gfp,g,la’
o,
N
A" 8 '(’ A W Jr L A_)(Arﬁ),@,c)
N §4,C B> 1,3 e By (Y
3 7 AJ (A5 2,3 13 ((/l’r),((/ﬁ)
mm’ﬁ fc bug :vméém@
{ (ot At (x Mty
?Cdn w&o

@
it cefeserqp,
WP Vertices or Q(J,ﬂe; ot G?‘p/tlg,,’/
O(WWLS 'M e C/e+0/ﬂu'fec/ q(gwf‘:'b/l'é//

“’9 év) ~ (e ouisly buld m}

[t on Hy ‘E]\(e cmp "‘j s OZ//]

W“H LJ{ o Much wor [
Moo AG() e fud m b fly

A&j (Mw[z‘\x

/L\/L o a T it T patts
bebed B potio

:/Bo‘l@d (‘|/ J]
(/n d(lfchC(f {:) }3

(T S haky b{ h PPT /&W@)

b T hid T @/@#g el vndeotind lec(/,?
(Qm L C“"‘l dt(OJe nol") Mﬁﬂvwk boftr

Not sue [Can 6w\w‘€, 0F5 M 5%@[% be ruud, G Hw

u am-v v1

W00k (e

(0T % bk L 0

\\/@ WAl J(bdfb‘mg aphy |
% = ge | Jiafel anl vt

T g
h =2 ¢
(b
@00(! L
or 6(1/&
bl 510 nf (/??p%f)éd

[
5Jfa(jr W{Jﬂx Vv
]L{A %: b
an I’bltgu)efj ol
(O) {

H‘[W ")Oo\\] W\l
I d‘t/@“m

u S

Il
i~ Sane (&r@(

' Lulx '\0{ !
JJmP(Aﬂ WH\(M(l@«é{)

o
‘DFS (9 lihe Q)(P)sz‘.«g d ma

ﬂlc‘w@ {{om &m {—5 Onﬂf
h” h@u@ +’p })(M/Hﬂw[\

ol e b dud b b
’(@W) A OFf _Ife(,

(OﬂlL ML boﬁo
V‘LD£+ lﬁk Oa/? [e,f‘f— >6t0@% Conveg Jn

e Ohy JQJ% beﬁf({% fﬂea QJg{

~ ok edge “/[v Yo dnd dn M%f"’)
~ It et al 8({1365 ~wlye Yo ww/() hase
Wm 71“1“%{ o o o Lasg s
CI hc(’/r({’o 5““1 ﬁu'ts mw@J

12 beweta MJ’@ CMJ hov Quuest?

- le% Y gn g(cfg‘ﬁ
~(vod pet o S

(i e a Jhaded DFS_foo

\f// ON(Qws vty w\wﬂz

3

¥ Y e [eava, A nﬂsze u//a opr/r@ a///
gome, 94/@@5 dnltf 9}&/'6% /r’l Ol}/@f@{
~ fonafl dys (W « gl /lélr@)

—

OfaelV
Canuted (orr\PW’“

\Dd('Fth/L m ﬂf‘W
Cd’L Jo /!q Ml;ng“/ jf/‘/v\L w/ gp‘éJ_ Cgvﬁf’ifj
ﬂf% M“d’["ﬂ w

Topol%\ s Y denk

r\umbﬂr M U(’I?\M) on 4 YJ}% Sy Ty~
¢ 00 1 T 21800

/‘é« yoa/w/z

Togehya e
TUP da @M} Un "~ 0l !
U\/M’f)/\E[P@d g0 = oty 800J w Oppoﬁ‘fv o M

Té(ﬂ =1 JMX)

Ml & fr el |
Vb o b Gl o IR

/\/\f\/\\ “Ths i vy T (ea;vfe s
—0¢ ,
(\C> \@Mn v 0 Are o4 D’l}(

r\. ~will e 4 Gl at g 7
O -1t kb of . fm

OFS \(@f froe @W Yov pro, (e
(. o) 1F

Mo Cooal Grated Piis 6 ?{V@\ .
del/@l"@d 6/ “p)’lb W/ hon 1YY ¢ ({@ t /f’“‘ﬁé’/

6:(\/,].:))Q:E —QJ:jJr@’Q}
J8T ft e

. QL{EA@,M/ {;4 eqad(‘?(f
}}(~)8 ¥)ﬁ 9(

Mo mte iy

(7”@%/%(

(Sht S

Jdwe § 45 =0
Ve % 2,3 edyes oot S

\JQ Mﬁkm h@t l/m(wa eﬁfﬁ |
dod ale Dt nw]e 1

ﬂﬁw& /L 661[5 alc \/efl"vdj [@-ful@)
TTTemp Orar 7
p'f p?/mw#
(he forph & le 00 his olde)(or st (e ml(bhle)

V’ 5%‘@@\' %W (A TKZML n«,](5)

aH’(? exp «Mj q/ M(}!i)

T@}‘Q A‘ v ‘QML T

3
FI O (M) o s for

W - o

O(Nﬁ‘m Ghsumtd | Oy 0[/1/1)

M W@ ((Jde /“NJ’ n mza LU(P

DO"l\L WW(Y Vs
5:«& 64&& [%M /5 Mg @
m:]((iLJfUL @/ 6{)0‘\
Y
CK/C\% dt‘“ ()/MJ me/
@ ﬁib%wc/@ﬂwl
{ass Ll

:ﬂ' M‘,) 80 Wﬂv/‘d h\L /9?/ for pur
H)r I\Q‘A‘ \tt,{ L{ng/t 0\/"* WIKLO{/Y >(0u S}WH Jg /\0/‘2

6.006- Introduction to Algorithms

IL{

Prof. Silvio Micali

Computer Representation

Four representations with pros/cons
Adjacency lists (of neighbors of each vertex)

Graphs
Undirected Directed
« V={a,b,c,d} . ?3/: {a,b,c} -
* E={{a:b}: {a,C}, (c,b){(a’C), (a’) ’C),
{b,c}, {b,d}, {c,d}}
(%)
®) ()
A [— [
H— E— I
= BE— &l

4/6/2012

Breadth First Search

Start with vertex v

List all its neighbors (distance 1)
Then all their neighbors (distance 2)
Etc.

BFS Tree Structure

4 Spanning Tree wilh Lots of Structural Information

Augmented Breadth First Search
=Shortest Path Alg

(Pseudo?)

Initially, s is marked 0, all other vertices are marked oo

1l.i«0

2. Find all neighbors of at least one vertex marked . If none, STOP.
3. Mark all vertices found in (3) with i + 1.

4 i«i+1

Thm: Every vertex is marked with its distance form s

Complexity: O(n +m)

Depth First Search

» Exploring a maze
* From current vertex, move to another
* Until you get stuck

Then backtrack till you find the first new
possibility for exploration

4/6/2012

<« VT Forward Edge

«<—— Tree Edge

DFS

0. Mark all edges “unused’. Forallv € V, #(v) = 0. Leti:=0 and CoA:=s.
fieci+1l #(Cod)«i
2. If CoA has no unused edges, go to (4)

3. Cheose an unused edge CoA Su. Markeused. If #(u) #0goto(2). Else
F(u) ~ CoA CoA+u andgoto(l)

4. I #(Cod) = 1 HALT

5. Cod « F(CoA) andgolo(2)

DFS Tree
Directed Case

Back Edge

-
~eo

Back Edge

Tree Edge

Connected Components

An equivalence relation

e

Linear with Good Counting!

4/6/2012

Topological Sort

TS: numbering of the vertices of a directed acyclic graph (DAG) such that

i GW—(») then TS(u) < TS(v)

More General Shortest Paths
for a given node s

Undirected (Directed in recitation!) graphs with non-negative edge length

G=W,E) £ E = [, +00)

Picture

4/6/2012

|dea:

Topological Reverse

TR: numbering of the vertices of a directed acyclic graph (DAG) such that
i wW—(») then TR() < TR(v)

TS(x) = n—TR(x)

Dijstra’s Algorithm

A: label. If A(v) = x, then there is a path from s to v of length x, not necessarily minimum
T: Set of temporarily labeled verlices
P: Selof permanently labeled vertices

0.A(s) « 0 T « {s} P«@

1. WhileT # @ do:
« Choose v € T with minimum label
* T« T\ {v} P« PU{v}
. Vviu do
* if u €T, then A(u) « min{ A(w), A(v) + £(e)}
* Else,if u@ Pthen A(w) «A(w)+£(e) & T««Tu{u}

4/6/2012

Analysis Cycles?

Introduction to Algorithms: 6.006 Problem Set p
Massachusetts Institute of Technology March 22, 2012

Problem Set 4

This problem set is due Wednesday, April 4 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. An assortment of sorts (10 points)

(a) Merge sort on n integers in the range {1,...,n*} requires time ©(n®logn).
What is ¢?

(b) Counting sort on n integers in the range {1,...,n®} requires time ©(n°).
What is ¢?

(c) Radix sort on n integers in the range {1,...,n*} (with optimal choice of param-
eters) requires time ©(n°).
What is ¢?

2. Median of two arrays (20 points)

Let X and Y be two arrays, each containing n ordered values already in sorted order.
Give the most efficient algorithim you can to find the median of all 2n elements in
arrays X and Y. Prove correctness of your algorithm and analyze its running time.

Problem Set 4

3. Cycle testing (20 points)

Design and analyze an algorithm for detecting if an undirected graph has an odd cycle.
(A cycle of length k is a sequence of k distinct vertices vy, ..., v, such that there are
edges between v; and v,, between vy and vy, ete, and also an edge between vy, and vy.)

4. BFS or DFS? (10 points)

For each of the following problems, answer B’ if the most appropriate search algorithm
is BF'S, or ’D’ if the most appropriate search algorithm is DFS

(a) You are a mouse who is trapped in a maze with no cycles. You have no memory,
but you know left from right. Your escape strategy is closest to which search
algorithm?

(b) You are a pirate looking for hidden treasure on an island. You are at the location
marked X on the map, but the maps is slightly inaccurate, so you believe the
treasure to be at a nearby location. How do you determine the order in which to
search the locations on the island?

(¢) You are Google Maps. Which search algorithm do you use to get driving direc-
tions?

(d) Which search algorithm explores a graph in a manner reminiscent to a BST in-
order traversal?

(e) Which search algorithm is good at keeping track of shortest distances from the
start node?

Problem Set 4 3

5. True/False (30 points)

(a)
(b)
()

Let G be an undirected graph. If we have a back edge when we run DFS on G,
then the graph has a cycle.

Let GG be a directed graph. If we have a cross edge when we run DFS on G, then
the graph has a directed cycle.

The running time of insertion sort can be reduced to O(n - log(n)) if we use
binary search when inserting each element into its appropriate position of the
array instead of traversing the array backwards.

The running time of BFS is O(V + E) irrespective of the graph representation.

Let G be a connected undirected graph, let v be a vertex in G, and let D be a
directed graph obtained by orienting the edges of G arbitrarily. Then it is always
the case that a DFS in D starting from v will explore the entire graph.!

If an undirected graph has vertices vy, vy, and vy in a triangle, then when per-
forming BFS, AT LEAST two of vy, v, and v3 must be at the same level.

If an undirected graph has vertices vi, vs, and v in a triangle, then when per-
forming BFS, EXACTLY two of v, v9, and v3 must be at the same level.

If an undirected graph has vertices vy, v9, and v3 in a triangle, then when per-
forming DFS, no two of them can be on the same level. (We define “level” as the
length of the path taken from the source in the DFS tree.)

Suppose that in the “Awkward Sort of Party” problem from Problem Set 2, each
of the n people are assigned a vertex in a directed graph G. DFS is run on the
grapl. and a person arrives at the party when his vertex is first explored by the
search, and leaves the party when his vertex is finished processing (“colored black”
in the terminology of CLRS). True or False: At the conclusion of the party, no
one will become a Twitter follower of anyone else.

A strongly connected component in a directed graph G is a maximal subset of
vertices such that there is a directed path from any vertex in the set to any
other vertex. True or False: Let C' and D be two (distinct) strongly connected
components of a directed graph G, and suppose that there is a directed edge from
some vertex in C' to some vertex in . Then any depth-first search will either
explore no vertices in D or will finish processing all vertices in D before it finishes
processing all vertices in C. (By “finish processing,” we mean, in the notation of
CLRS, that the node has been “colored black.”)

IThe DFS does not restart from other vertices when the first search finishes

Problem Set 4

6. Breadth-First Search (30 points)

One way of representing a graph in Python is as a dictionary edges mapping node
numbers to lists of adjacent node numbers. The vertex set of the graph is the set of
keys of the dictionary, that is, edges.keys(). A key k has a directed edge outwards
to each key in the list edges[k]. This representation is basically an implemention of
the adjacency lists discussed in class.

Write a function find_ distances that takes two arguments: an dictionary, edges,
and a list of vertices, sources. It should return a dictionary dist which records
the minimum distance from ANY source to each vertex of the graph, or None if it is
unreachable.

Your function should pass the following test cases:

sources = [0]

graph ="40: 11,81, 1 [2], 2 ¢ [0, 8], & [1](;‘9{0){

dist = find_distances(graph, sources)

dist[0] == 0
dist[1] == 1
dist[2] == 2
dist[3] == 1

graph = {1: [2],
2: [’skip a few’],
'skip a few’ : [99, 199],

98: [99]

99: [100],

100: [’skip a few’]

198: [199]

199: [200]

200: [1 }
sources = [1, 100]
dist = find_distances(graph, sources) SRR
dist[1] == 0 (
dist[2] == 1 ;> SKW A Le

dist[’skip a few’] == 1
dist[98] == Nomne
dist[99] == 2

e - 5@ @c, 5%

dist [199] 2
dist[200] == 3

L0y Py %
15
\t Aotbnad of ol

0) Mg St on n ifeget b b e
{u Sl n3} /6@/2/@ ‘{\WC e(’lc /ﬂa '7)

lwnL 5 Tr

é}\(l C@lev }/][%/]

go C”’{

b) (0\/4\‘5«9 Sort {l/ e 03) é(,,‘)

bl)
ﬂomc{,”7 t(*-’ O(ﬂ}
& ¢
b n

-9

C}W&&\t ot {l/ m,/nfb}
A ol hie o prtts

Ity
b=0{laya)
(=Ll cudt b K
G- (n) s MF vl

e ——— s S

O(Qf{dm fm# 6(" L k)

b 6 (d(x
JTCMMLM\L (}M)

QTO@J

| & ﬂ: mé d‘, | t
c@ﬂb gwnmj L@

-
(qn LQ H/} foﬂﬁo(\fﬂg l/q{/&

61\ W PNJMM @LB «‘/
(= |

——

Z(M()ﬂfm Oi[“fb/o O?//a@
LAY e o n Gorté
L/L\!/h]' +o '?["n({ W_@éflj{f\ ;'q){/f

Ok any o %Y
Mwm{\ [1,2,3]

\

~Cn +)\/t& simfly (peud

IR B B 1
b 5 1991 915
S*v WJLM fb
(1 11%77\9] zYMZfsz)
‘15 §c§$/ﬂ3‘
— Ty g
Jocs Y Y S
Gouting ahut acly

J——

Tl wdll o i
Ll D wd be ol ot L2, [

3. WW Ge Wik ofbet Y
v Tlowy wivh o il foom V\/z

O M M of by (o 13) on bott
Q- (orwa((’, Ok%\m = Vhigh 25 M[Smalle,

CU/(D

O? &wl @%%/

fr e he veek M“qr [4 m AL 7
O\Up oﬁs@fb ’

Y:E e Yo ow Mv*wauk
I

o wld' @ offel 2
Tk "

7. (e Tea“z}
OJJ Cyo/e(/ ML fﬂ Cyole W/ 0 odf g of

(1ode) W\‘%&@\
T]Q(L[Lm GZ ’(5 GOO@ZQ C(/b(e
69@&) ér 6096} ks~ e ok
‘ — (0”t()0’€ M?(any
/—\C“T T pedans ‘”’W?’ GCuh (o
n[LT A U Ty -

i

0(é“her vy WW/LA
Qepeuk ill - Hinf

I@r\o(z"rxﬁ S0M épeo(cwl)

0d Cyl
f/:?)g -—70&({,
@ o “
) Y

s
CHEE ol b fnd U e
e it (P~ {Dacﬁ\ " w'wf}ed pos

[aé cda qj
5"4 g 1% l '/79« CM"‘[
(ody
@0!1\9 DFS

T Sl

n\() da% g’mL & o]L Mc[u)

Y
Wtb 5 ﬂh hute W

m“’)/\ MZ{;

C o !'n MDY (éﬂ{ﬂlﬂ 9I;C @&OLL no!g

Ao vl oy ot ot ol o

)
ha OH}@M&J @ }J(rox p :O&]}

S—

44 POFS o VS

d\) Mose dapped 0 mese ol 1 Cylts
DFs

@ p[' e oy o fewn
BFS = f\ea//o/u

(/3 ok oy cffc/lag Jied o

@ D” Seach Wﬁm 5 BT 4 wde traecy

¢

@) éhmler dﬁ&fcmcg ﬁm sl ole
BFs

§{]}de / Foc/\‘vﬁ

a.\ s und,gted Cqdg
\

LM b DR e
e
g(@" U/),d‘lfw{i i o
3 E@q@“ﬁh l bk ol Mo 4 »
]0) Lot (5 Gy

[
5 (e ot gl 4o [b

C) Tnshon 6ot Glalya) € o, by South
%wv& ﬂ[/wt “M (OUHn?-

P((Jfg

J 4% b olng
TM} s Do oldey

6) O(Zﬁltcg/ al Mwlly
e (ol create M L g

\[> t) SD Jm/e /

M aleady g 4 nods
Lmﬂ rot ;a 75@ ’f[@@

Oc Wold hae Poed @ wf fire

/
o M Con éim ?[/frx@@
Jee

) T an iy Do haddh th unde o, n,///

So (vaat P@OPIQ \Nh" e QY/JIO(&L 6@[‘//{

W LNJT {"\tb]@({ @@é/e, 12(o
—Cant & o P — titn ‘fd/(

0

\)) MAK\(”ldl Sv 6% md, St 'ILMJF (s nayta gghej./éjgf Z&f
[.)JVQ/\@\, (er%]((fd 2 M{Vl {0n Ez@’ [j;/‘?‘ [0

(OL ﬂq 73 C{éfmmo)

OA\Y 'f[fom C‘-‘) @
b T

e

Ujm ‘ch-m‘m” [W‘Hf’(M\ y Mh)

ﬂﬁtlr tuh borvar T duld

6L BT/ G AQT 6()%@ f; Ed&[Vedtex

b e
/g@/ﬁ‘(OGJ(E/G bl dal M

6 {Q”WKQ wnl’m«@i L\%
feed Jr@ QL l{* /ﬂ I/Q/‘{ Llf

@
Usg Jidkunte 14% On 1Ko/ Ne ol
Lﬂ}j ety
Bt head s rit b omgh o0
s soue Yo o o of of song
R BFs

IWC @Mﬁﬂ\thﬁ ly %a,bte ")oozk vp(mi (4 Tt
o

&) Jﬂ\mu@l\ anL\ MJC

Sluk v o g
CO ‘fo PWJF :f\ !"[5}

E oley wle -l dat @l 4 iy

Gwor\ A 6%[[6/ i Qll 60

Af@ Onl‘l 21[@5‘} (ases
B vy gt o

QT’K on C{/H dJL sang. fz‘n@
lok of (F leed el £ cwh, fi,

W]zd/blﬂ hml 57L0’€5 (J%]Lcmcé) 45{//45/7‘9[
7@;/// /

ik [of Pwﬂv o Uk
p/@(omw?\ai (o513
nitliee dif f Mo

(foe s 055 fon (017

e

\f/)&{ = f@kL//A oM

.~

/‘41[7[?’/ 4 (:sf/f_ "“714/&). (ffwv('
/-/l ;
M b fiom Wy gne

I . (/@MO‘-%
(o0 ik) b e

@
@ fass cmgll toit e | /
D omifing el
A Y S
Vel Moo
% e vo vegd
Nd cd b ohk e fuble

@ @W S%L Cast
B vay o oo
L’U pnfﬂﬁfxzj
@M/ mil- €xceedf
Vel ¢ cleok Fuble

_/—

du Qe b gl

@ ol

Tuh Sl

His o L & flngy fo ol o
M?* s fo eay st

(h }% way A Gond

@]/IMVL ?K(MM
i aut bol

\..________

:H' wis m(wp“i ot /;W
"‘ﬂw\/u hoa mle /iglﬂt st

______’

K@ Slo 4 igoe ar
NT Gt :5 v 014
(Jl\mlﬁ P/\f o had S Zd/z_ﬂ/

]%l’] f’(‘tg\/@é A }q{ﬂu{@ ;/WL /il !(
e 7 (Lﬂ. L ondeshu hefos

b,
@\%9 4,((1%{ Cas@/ G cdi :

D54 lewe of G

Y/

ﬁl{)d@fe({ On 5@, 30‘

LHQ, Now A@(@@j
e Maks € 60(%

T//m ot fut A Ma

l/\/l\f)’t lf{ﬁ(’f% Mﬂl' Ve O(/“ C[ﬁefg/l/‘t oo
Whidh (#

b s @ WO T gy —Fuly

0 Py &
(hh lafiny ot Conly

Fdd’(St p il e m/&
})V% :L {0@@{— wh1 M, AM/J- éa/u t)l,(ﬁ'[u\

Vlty Wert 104

1y

D:\Users\Michael\Documents\MIT Junior\6.006\ps4.py . Saturday, April 07, 2012 7:53 PM
import random

from collections import deque

collaborators = 'Shri, Arianna, Crystal, Web resources'

Enter some numerical value for each part of problem 1.
answer_for problem 1 part a =1

3

1

answer_for problem 1 part b
answer_for problem 1 part c

Enter your answer to problem 2 here.
answer_for problem 2 = ''"'
First get the medians of the two sorted arrays al and a2 and then compare them.
1) Calculate the medians ml and m2 of each array.
2) If ml and m2 both are egual then we are done, return ml (or m2)
3) If ml is greater than m2, then median is present in one
of the below two subarrays.
a) From first element of al to ml (al[0...l _n/2 |])
b} From m2 to last element of a2 (a2[|_n/2 |...n-1])
4) If m2 is greater than ml, then median is present in one
of the below two subarrays.
a) From ml to last element of al (alll_n/2 |...n-1])
b) From first element of a2 to m2 (a2([0...] n/2 |])
5) Repeat the above process until size of both the subarrays
becomes 2.

This is correct because we always go towards the array with the larger median. We hill
climb up, with the range getting smaller and smaller, until we are left with the median.

This is hilleclimbing O(logn).

O(log n) is pretty good, and you can't do better than that. (Not very rigerous)

Enter your answer to problem 3 here.

answer for problem 3 = '''

Create a table with every node O(n)

Start DFS at an arbitrary start node.

Wach time you progress, you check the table if you have already been there O(1)

and append it to a visited list O(1)

Color nodes alternatingly red-black to record odd/even. Record the color in the table as
well.

When you come across a node that you have already visited AND is the same color as the node
that you are currently on, the graph has a cycle!

Redo on each connected component. (Still O(n) since still n nodes either n connected
components of 1 or 1 connected component of n)

So O(n)

This is correct because the colors store odd/even. The table stores where we have already
visited, so we can eaisly O(1l) check where we have been before. The list of visited places

-

D:\Users\Michael\Documents\MIT Junior\6.006\ps4.py . Saturday, April 07, 2012 7:53 PM

lets us return the nodes.

Your answer to each part should be the character 'B', or the character 'D'

answer for problem_4_part_a = 'D'
answer for problem 4 _part b = 'B'
answer for problem 4 part_c = 'B'
answer_ for problem 4 part d = 'D'
answer for problem 4 part_e = 'B'

Your answer to each part should be a boolean.
answer for_problem_ 5 part_a = True

answer for problem 5 part b = False
answer for problem_ 5 part_c = False
answer for problem 5 part_d = True
answer_ for problem 5 part e = False
answer for problem 5 part f = True
answer for problem_5 part_g = False
answer for problem 5 part_h = True
answer for problem 5 part i = True
answer_ for problem 5 part_j = True

Fill in the function here, for problem 6
def find distances(graph, sources):

fpre-generate Nones for all

distance = {}

for node in graph:
distance[node] = None

#the distance from all sources is 0
for source in sources:
distance[source] = 0

count = 1
while sources:
nextsources = []
for source in sources:
#print "exploring node "+str (source)
neighbors = graphl[source] #get neighbors
for neighbor in neighbors: # process each neighbor
if distance[neighbor] == None:
#print "neighbor "+str(neighbor)+" with count "+str (count)
distance[neighbor] = count

nextsources.append (neighbor) #add it to the queue
count = count +1

#print "start of count "+str(count)
#print nextsources
sources = nextsources

D:\Users\Michael\Documents\MIT Junior\6.006\ps4.py Saturday, April 07, 2012 7:53 PM

return distance

#small test cases

graph = {0: [1,31, 1: [2], 2: [0, 31, 3:[11}
sources = [0]

print find distances(graph, sources)

graph = {1: [2], 2: ['skip a few'], 'skip a few' : [99, 1991, 98: [99], 99: [100], 100: [
'skip a few'], 198: [199], 199: [200], 200: [] }

sources = [1, 100]

print find distances(graph, sources)

s

D:\Users\Michael\Documents\MIT Junior\6.006\ps4-solution.py Saturday, April 14, 2012 11:23 PM

import random

collaborators = 'Your
Enter some numerical value for each part of problem 1.
answer_for problem 1 part a = 1 # Merge sort is always Theta(n log n)

3 # There are Theta(n”3) buckets
answer_ for problem 1 part ¢ = 1 # Use counting sort 3 times to reduce it to Theta(n) time

answer_ for problem 1 part b

Enter your answer to problem 2 here.
answer_for problem 2 = '''

oo & o A Pt

Suppose m is the median value.

Then 1f there are exactly i elements less than m in X, there be eractly n—-i elements
X L4 £

g: Follows from the discussion above

cut down

constant

D:\Users\Michael\Documents\MIT Junior\6.006\ps4-solution.py

Saturday, April 14, 2012 11:23 PM

Enter your answer to problem 3 here.

LI)

answer_ for problem 3

e Tn——
DESCRIFTION

P

If not, we immediate return YES. Otherwise,

. ~) T i)
Correctness:

BFSes complete,

ication is simp

stances to the

E

return NO.

(o]

'O
]

sl

Your answer to each part should be the character

answer_for problem 4 part a = "I’
answer_for problem 4 part b = 'B’
answer for problem 4 part c = 'B’
answer_ for_problem 4 part d = 'Df

answer_ for_ problem 4 part e = 'B'

Your answer to each part should be a boolean.

answer_for problem 5 part a = True
answer for problem 5 part b = False
answer_for problem 5 part c¢ = False

lBI'

or the character

IDI

2.

D:\Users\Michael\Documents\MIT Junion\6.006\ps4-solution.py Saturday, April 14, 2012 11:23 PM

answer for problem 5 part d = False
answer for problem 5 part e = False
answer_ for problem 5 part f = True
answer for problem 5 part g = False
answer_for problem 5 part_h = True

answer_for problem 5 part i = True
answer_ for problem 5 part j = True

def find distances(graph, sources):
distances = {node: None for node in graph}
visited = set (sources)
i=20
while sources:
newsources = []
for v in sources:
distances[v] = 1
for w in graph[v]:
if w not in visited:
visited.add (w)
newsources.append (w)
i+=1
sources = newsources

return distances

a.

(06 et il

B b b b o

Yedrdoy Digshay
Toby o Boutge Toaf

Bifg Pm W]J/(Vz VZIRN @ua((mf“éé d‘[ﬁ;d;’?j éﬂmtc;f /4/7[4

L[MM AN 1473 fi’l 5]104&% J({n?[W

ﬁam J/l ;
‘ (9(.
L 0(117 wlls o = Cost f)qﬂb |

Visbet 1 4, 4

D\L\ St gt \A/(’/W@(f /Om‘/ s Th ¢ hotes - (Jzézéf((«
o g |

¢) o '/€§7{lfﬂ¢% ity

] mughto] paft

So Wp @rqph
Moo o, e ol dist. b addal dit

Estindtl ddess o Lbll

\W oWl bald
- P lgarthn
—b—ﬁﬂ fﬁw/% @vf\ dt‘anEJ {zgé
-
S| e e ﬂu@l 57% =(
€ B (a]mﬁ 7J W(f/ﬂhmj ole =<9
0| |
AC&‘/W\ (lef’otﬂég (Q“W' I\CWQ W Me 5ﬁ/{—
T !:), */‘WLLMS&/ ,hw /ﬁﬁj

’= }20\ MCJ, WH“I V:@Wd/ n

o5t dist o/ - duf

Vomallesl { ron jn ot Juble

L Do ‘i{‘ilt fon ot fable
C.Addd dvﬁcu,lluul ¢ tghbor
L For oy ol (w)zejuﬁ

(mph il (llf "}O[(\/ k/) L (iW st

/ N d W +o 0[Q‘ J
g vVt ‘f W
\}/ 20\ X vac{ Shorfg/ ﬂ\M (vt ed

y /M 2@@9@44 zdwk .
C

SO QMM{J)({
| Rewae) g wh bl

?/(AQ]A b, 0 7(0 GLCW’

5 bo g gl of 4, e iyh by
l/PJ(uLe

Y, Kepett. Tade b tabo dohal fable
! Vp&t&@ £ eghbors
Fed 10220, &6 wpdety

iy

8.) & e spallet oot
Jale ato pem fible

1 LML ol,jw ;1% N/l

/C gO & Jgn \/pdafhf /J) 520 @
oLy
J Bk

(%L H\wl }Lublf

W@ (Mi Ut(& JW@(\ B({ﬁ@s taveed 4o ﬁ’lt{
Shockest patty

- %cu/({k " Q@*@fw/@
Mk hae o Gl of W S pasenf-
NA ok adlwwis wlen add fo aghal Juk fable

9 v "
W\Nbl JML(& ﬁ/m(m {o M\\L (‘7)6 ast |
“4& \milq
| Lm@& fo dy fs V ﬂ%
Il wag Wb b

v by
Ly s gV b find

bt need do ypdale

gV the
mit dy B e

87 O(V[ﬂg Vit V)
YN

O(E lmo \/)

Can Wdﬂ/”? he Vose

i bt/Jf 800@[{gr ‘mﬂh‘q/z @VZI/&
i binich P G0 ey b
@Q DUO@ ") fo exfradf- o) o

dan F
(éﬁ?e& f

&WMT’ (me/

P@/J,olt Jin b (e ahot siace
Miny Al dond hae E

\ \
i patice

————

Bilhey Dot Shide
g Ual ot

Mﬁr p“ﬁ@‘{
Vb [TF0
oyt Wik & dygue

W@i bdatle

b o ekl o e

dwab 'y Ue‘lt/f (0@3)€O+)l

@ld &o A Q/Ouby lm lb[\

bt o lod of oveledd
U b o paabes all e remary

6 v o b
LWW@\ vies dmmperhized anting

ENLGAJ f€ Ea)ﬁ] \@4&;
L’&m H b gt b small

g

ddudz“t, (Mqug
What e Gt d/{ﬂﬂl/ 1L

FU&‘\ 1/:(01\"‘ vy [) ~
?"5,” Ll < muw a €

i;mL what abaud £ oWk we @ out'
C‘@dlﬁ[e, {k A o\ of . (WF

y he
[|
A [Cat‘é-e, (aa dt’(/t(l% hov Man7z 5/%@4& 91 Jef(/&
§ f aban oy (5

P*”L es W@g%{ea opale 0n e Qz

h‘m‘nL__ (%ZF) “
6g{£ l(W‘L‘(_’[]

S, a =0
Self b =0

\m/\@[[3 ‘d e 6 l d w/ o Ll

Self . | aba fgx[o]
Gl o = | £

—

.S@l\[lb <] 7b

/\Wr a)mp ole Sug we Lu(,g oprct

-
Wb ok sk, i)
Gl =1
§olf ot [ekl nf = wal
£ slba <=0
éefxﬁcﬁfe\oalhme ()

lef _coboline (se6)
Sl = Sl) — selt. a
Mo dobe = Fx gz x [4)

N R G D0 e) < g f dabe [sel,q el
Sl d g = e dafy

M G e ﬂk whe (¢ Sflee, 65'1(6 uf 57{'(//
00 il ap-)

Sofk o = e
ée(é b <)k QIF&

|

p\/bl\._[\uohwt (%K, \/w\) ‘r

elf dabo [selth) = vl

SQ/LF L'b +:1
£oslb b = fon (sell data) |
56(4 _ /ebwﬁ(m{?

[ij A5 5umey %ojﬂt 5:&@; w[{N ée b[/@? vﬁ“((€ Yy

I\C A(M Mre wa&; p ol (é W Mo gpeaﬁc Jgj

POP _ \q,{{(sglﬂ
5@((% = /’——
et ol e [sulf o0)

lm ; Wwdsgphh ot (- e|

b u A af e ust o

e as(

0
op ~Cunt (sl
S(f.} <]

fﬁ%//q ~ -~

N ZVP(W@ ﬁq F&/JS 7% ”0} (elLt//fl dflyfh"/lﬂ z/l{m }}%

Ilé CW[,OTLY

Lok LY
6!\04%*’ Rt 1o Geaph W/ é @&g@
Ulo) te e
flo) et

JQM Yo can zjgﬁ fon ¢ 1% (/;4 \KM Z@AWH
\’W\l{]n)r ot bQ Sj\a/]l@/‘

D) b oo & e i
el D) e

oty 45 e L1 E [or)
b *

P |
b @(9‘[ék”’f’”ﬂ
&
9 ¢ 0

A
6/,0,]%{ O O 70 ép@mm%
U

Tew Ak W gy 4 711 ¢

@
Expl@(e 1[(% LVUQ/

Mtg (,\/o/hts. for o rey
((n 1)
Tlpdn at et Wlw‘(‘ﬂ

Q‘f}* ‘}0&97 Q‘l E [“OQ/ Cﬁ]?
‘M Sl@ﬂ{ﬂ'}
Plakes 5% whin (La& o NG Cyle ,{

AL

/H\M P(@({eCebﬁV VA Te (‘%Lb@f ,Odfflz &
il D (5) =
1Y) <

Coiged

¢

6@#@1& SML
b] a0
m [s) &9
for ogh \/EVV(M
v dM ¢

ﬂ\[\/] H}‘lf

J

! vl
It ; mllT‘ﬂ[ﬂq

Mnlg,e 'HW :;7 (n @l& (U, V) . E

3 2 dl] s ffuy)

do %@l Ollll‘(((‘ut/”‘[ow ML\ Q
() €du) FHUg) | e

mm n
el whi

bj \lmf’k‘l éjft)? \((ey Cw(ﬁ

(Q{am;/;,/

60 aowre 19 ey Cyle
UHORG
by

@éwwb@/ (An p:olk Ay M)H/W Je
(se0 6l ganal

W :H: mC) l%SM]Ll‘Mj / /’mp(ovwnf)
T he o el

T - 1y 1TCA~Z)
Tode of 3 vele®

TQL‘J Wl box «fw}ce
Oﬂ(E dﬁ f(?kwf'ny

/LPJ. (ong F{m\ Pq/fq {o”of’t?

Tl - -6(2"

O @} QI‘«PW\\W{ (W«d{

COM})\VN\O’\\@ \ ‘
il bk) 0) g pmp@ﬁ‘/

\j\jOJ\IJ. PQ/((’I po,]jn:aml‘vl ﬁf‘@,

éo (/ﬂbjrea/d LQ CW@M Ao \ (()W
%0 il @] fasfe

Neol Al

Q@”num hfig

/Jm“\[I[‘L M 0‘4@/’1 of ﬁ@ odyts Q,
Crnt " anfon

0. Ma &)

1. U/ﬁ\;l no :!mpfmlnﬁﬂﬁ][a//;(l/

e =] b m
pos {:[4) sk bl A o) 7 At lfe)
T [€A ()M()

w1l

(o of | p OW
HUW mtf/\f P(Lb‘iij/; 4

V\Am é-ﬁ g(“wll 25 COﬂnq/)[O!

g o O—ﬂO»o 50584

@*p«»? 130 T - <o

b
lan@L % ‘“‘g s

)F J,s 7[0 (0, lw(‘/ O(n m)

P Ceah pass
N s

/ﬂw 0/ Pﬂ“ﬂt i Chtest p‘oﬂl S)mv)J
Gl by ghute

! Sstucli a[g@/ﬂm !
Lémm

Ly ol i poierty = globol a1

0

Tf ((\/,E) hao (w[%f

Fowe frog
ST

—

@Wolﬂ ‘!/v\q/l g Uhs 1[/ uf ‘[0’}
T{lg,\ﬂk [‘/\ Qc(W tl;
(obiles 5 (bl Gyttt

(ool ~ned 4o el bo)

6.006- Introduction to Algorithms

e

\ ,E 2
"“\‘

Lecture 17153

Prof. Silvio Micali

Recall: Dijstra’s Algorithm

Distances from s when £: E — [0,+]

Shortest Paths in a Graph

= : 1
N =Y,

¢ f¢(e) lengthofedge e
¢ 2(p) length of path p

Given a “source” s:
¢ A(v) 3 pathpfromsto v with £(p) = A(v)
You can get from s to v in A(v) length

¢ 6(v) distance from s to v
Length of a shortest path from s to v

Today: Shortest Paths (from s) in
Digraphs with General Edge Length
£:E — (—00,+00)

Makes sense when G has no negative cycles!

<
ot
3 N -2
S " hey \I / \g
./] 2] £k)
__/\ ___Jb\ I; //i/ -
2 N :‘/—i‘/
{
A <h“,f' _,,.)D

A generic start

ds] < 0
n[s] < s
foreachv e V- {s} initialization
do d[v] «
n[v] < nil

while there is an edge (v, v) € Es. 1.

div] > dlu] + €(u, v) do Relaxation
select arbitrarily one such edge (Improvement)
set d[v] « d[u] + £(u, v) Step

w[v] ¢ u

endwhile

Notation

¢ f¢(e) lengthof edge e
¢ 2(p) length of path p

Given a “source” s:
¢ A(v) 3 pathp from s to v with £(p) = A(v)

¢ §(v) distance from s tov

¢ n(v) predecessor of v on abest path so far
(initially, 7(s) = s, and t(v) = NIL v # s

Of course, it will not stop when
negative cycles exist

:
u ¥ \4 \
OO0 OO
. 1 § 2 1
/ 0 2

d(u] o ¥

2 0
etc

What if no negative cycle

™,

I

™, ™ ~”

N

4 6 8 8 ™
9

6 7 g

7

HOW? (Bellman Ford)

¢ Arbitrarily fix an ordering of the edges: e, ..., e,

0. A(s)« 0 Vx #5s: A(x) = 4o

1. Until no improvement found do:

Fori=1tomdo:
PASS® | |F 25 vis such that A(v) > A(w) + £(e;)
Then A(v) « A(u) + £(e;)

Cost of one PASS = O(m) How many PASSES ?

What if no negative cycle

Analysis = # of relaxations

T(n)? n = number of vertices
n
Tn)=34+2T(n—-2) =Tmn)=0(22)

Need to be careful how you relax!

Let this be shortest path from s to ¢

NN

0y

1t Pass 2 Pass 3 Pass 4" Pass 5" Pass

Ford's Total Complexity =0 (nm)

And if G=(V,E) had cycles?

Take Homes Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. By contradiction ...

P, Py Py

P=EVoerna V = V oAV,
R A '

v

P,

Combinatorics vs.

T . l . 1' = ° ° ° °
riangle inequality Combinatorial Optimization

Theorem. For all i, v. x € V, we have
K, v) € Ku, x) + Ax, v).

Proof.

"See you laters alligaters”

b0 Refitio %/ !

| ben o duedu (¥ (e Wg) ey
veghts . Fiad Clokss Pth Cmpgd o1
Cﬁb Pdges
b) 2 dges

/. 6&/@\ « DK o (ihe) el Wi
MJ ‘}w (/(](]UL(@ G GL/IJ, 7‘
Fd B (gngcsf ph fon 5 £y k

L(A./\éﬁ 1[(0\ Uy 6)LmL
/VI(Z:/@ ;v ik {om 0aly N Le
Wark — Shote pilt. </ 2@9@ T
g - 73 MEME

.

©
TW) Ml[(M”7 (‘M\\(laf \// h{ f(;mmm of
\/6\%‘4%& Pdh@
S
A%W

T
M‘[ﬁ %0 TMWL
| ﬂa{ N
6({2) Qt/ﬂq [)aﬂ[r mﬁ @(fj@
o Y 0% ot ha ﬁ%@
Lpo?« M/JF Q(Mx hote gl @f M/ (rn cmd
ok sl
- bfly E*

6(8&{1 WonL{* (ﬂ{\ v m an
— - qless bor Shoet ply

(@(\/3 ~ OVily Mpzt of l/mll

= Mot 1[md [€n@m’ in wwmnk TML
— @t 4 w/ d\,il ik
- &/4,/{ be |/ 7

VoW x
’Q\-ﬁb_—a@

~ (e ol A hah e

o Ad, fuekk)
\/1(@(, (b, 1) w)]

l\af;k TLW l(L pwj

A -0

bs (60
W-)§

[7%(& P@(/uxl@

Ah(f}kr }gw}fe ON(Q V Wor)
W (’/6{//’9/)

™ ﬁ

7

Padh o

flo Mot (UWL Fz

b b e e o pair & Cdjes

zé CQN(’.(/((/L

\/0/6][(dse —Gﬂlz F’L (
’:;’1&“ o node.

uk{ Qully 94{5(, (n Ont é)ﬂ P“/{f@L "// V
Om @Jge; @O{n@ Ot/vL

b f“:@(edges 90m9 " M@ﬂmj oo

(&)

g
\jp Mi{,g/fo /

-\
,\E ;wdéﬂ/€€
. \E |

0 6

hay
¥
\ n
L/(/blt P'%EJL mﬁ 6([
465 \
) 6’40/}% Qoing ({n e

(’:Of Qw/i\& Md
ol (
snalbd 0+ ol
G)L
OV)L

Bﬁr ﬁ
—fhy, MGvacsg mzAd, o ‘
k b | : |
HW ‘ il f} \J
; 64% (n QU rﬁ

@

\w Jm\% \/T E

rr——e

@l&n\i Ve Ay

W@U/IM 24@4@. of (ﬂ(/

P@/\\a V9¢ h@h 54 b)
— it a gc) W M L4 wald be t/;@(o/

o D[dg}/fk N _04{7 Nyn Nﬁ

"be Cdn WLM % o1 *\@
il o Gt B 0 Te ol

—HF

- @Q/\/\ M T:b/L
“goai e ©

/\s;nL@ {MTM dv A 1[ved lf“‘ﬁ/’/
/LO ‘0 _/p VW Aﬁﬁ

~ St
W"%ﬂ % %

/ (

Nov’
C
oas 0 Q/Jﬂ
L

best o ey

&\ml |

\ b /]

e
- ode l/

[
el b ge Do
ahs - |

y

TF we duflied qhod R Tk o
)/«ovH hot do

Wl billws Bod & 3ed conl

G006 Lle o
6240/11@11 Pﬂz 3

T%{:%B@“MM Fori on g pﬁd
- U&)Mm for ron —fed

\

8@”?1(!4 F@/d ‘0%

B

Cin't e d[ﬂfm [Ja‘w Wt vh -'meg?
Rolay Ldges nt sy qny Mok
s Topduiql gt

 folabled [gle]s
Billar Forcd

CR%
Py T oder
ooty b ol o el = 200

1 {a./lmﬁ ‘{(om

Lz 9 ((Vig) edge

Y
Do oo Y1 eges m oo
#’B} G b b T
et lat chy & M ngedyf

(

e ho cule
Of\(‘i l /{er(a{‘/ba olé f%mﬂ(tm

Nt dhov cored alte 4 (et V) choatos

0 () ahilizabo f
OCV”) /Pja%ﬂ(tan) 0(“ m)

&ﬁ’r’lj /',\ OfA?(
- "}opozt)g‘{cwwy 60r}' Ml M{n ﬂ gtf
lQ@@fwwhi(, 0o of edges

(ant b b s Dol
Ot gy G aln Ol n

9
§0 WW‘
s g OY(J@}
—E)po\ ot }mp“ab w [}xgw 0/({@}45 of wlie
(So iy W{i@,mﬂ ;’;om‘@fﬁ ;A G c.,a/
Go (an only celox wh odsc et

p(wwjfmﬁ
1= d(b}ll/afi «/enW/ d(ﬁ 5
(= Gy B o5 i thofest /mz‘lz fo /
in\w* = Con bt [5;] Co{/@flﬁ/
é[érl)b (ol (ompntecL by 9w)w)

LSH’S}Y el ARES (‘/}[51'—/] Cﬂmm

T"“* poe Q¢ﬂ€5 T_)ULIL go ;q
or (wold)\%ve P essud Thow e&zﬂ@/

9
| { Vol
ton & _Djbda
P@o{ ot corndese

Eefgo, M:@m‘s N neq
Compvhﬁ A 2/(5,0)

(o be ¢yl
Bﬂbztél/u‘[‘(&Q@dy /:Lm'ﬁ"@ QﬁfO@DL)

L‘@L G L ohaye Dl dele o by
NTRY 0 P L P %

C\le]LW (i ﬁm{l il e }c'él‘j)

p&!@u&!a e o0 S(\Ldﬂ

Dihﬂwﬁmi gCAL \/@L{’b 'fa J@ﬁv[\[
Bl ol e (§

AT

(hhy & £ P plele {]V]

(Y(’-b femp S0, Ao S]

e e "m le [ww%?)
@ mltj lechvie nidh Mﬂ@ ek b ¢)
e s il o o
[I nfusted iy hotfe (")
U){ 6]%M have (EL/QJE il G
1

TF B sni cndugp pre bosse
T g el i e

_-—-—-J-"’F-__—_—-_-—‘—_

Gﬁ&%{dll% Hion @6}49 [0y [V] a/ C5)

s ;5 Mm%d oW /’@Aﬂﬁ [Shﬁpb
- b /d
“@/db Mvm ﬁ/\oils &ﬁv

Wi

Tomingles

“ 07 J]G;V

o B—W@{’h@ it a/iﬁac[?s @J(ﬁeﬁlﬁ Do
weeﬁ

M Jﬂ!fl M g CL\M@ ﬁz d van

Dok by ol
Chaoth wdﬂvbl? lad

Cw/\

(ﬁ?/x\/%u

\S/ln,ca asame :> [QL jhin@
LJlr M ald mu@ﬂw IA/ You KBL*X A of C’dgﬁ
&[\)]:6@1@)
COML(}JW:O«I\ (ﬂd 5 hewtf /(\&é
(4 7 vl
S

=K J\/

Pk \/r('o (ﬂﬂl@s Iomﬂ’/)L/

e U s st b hble kit

Q[wt’ D.,[5”()

Qawk of ol Imﬂ s el
QL 6‘10(1?%'_ Pajh\
O/(Q,U t /X <O/(§/T)

@
5 07 15 copid el
COMLH Il

Wa@’ [;]f 0 fn) £ 1Y

Fods
W Jws b O odad

dad Tha deg”@e[) Nighhors
/h{ J&fﬁ%ﬂ “'IN 0/\ ﬁg Min P/O//f/\“‘/ it

’“L 60‘ R 'Lé(g’“)T

bevese foy

A fd
Inig pe Gdy

b e (I }W’? J:ﬁ ([vess
Q /l’(?ﬁffdb\[m‘m T&{L«%{ ley TU} q[

oy o o() ()

bl
O b

he

F |

(

"y

1 m
o
;
n/?{‘llé

T
not (
ol

b
(s

im

{
mota (

g

ol
m 7‘/1/7
il

L
0/
4 a
7
. 4

Lecture overview

6.006- Introduction to Algorithms
Shortest paths III

—Bellman-Ford on a
DAG (CLRS 24.2)

—Dijkstra algorithm for
the case with non-

Lcture negative weights
(CLRS24.3) ¢
Alan Deckelbaum

This graph has a special structure: DAG.
How to use it within Bellman-Ford?

=] ("J:V:).: (V,'~V4)'= (1’291’3)2 (1}451"2)}

E={(v02d (v (v v (v E={(v,va); (vrs) (va,vs)i (vsv)}

... Bellman-Ford ...

E={(v;;v2): (v;.v3); (va,v3): (viv))}

end of first iteration

and we are done !

the shortest paths from v,

... why does this work? ...

* there are no cycles in a dag => even with
negative-weight edges, there are no
negative-weight cycles ...

* topological ordering implies a linear
ordering of the vertices; every path in a dag
is a subsequence of topologically sorted
vertex order; processing vertices in that
order, an edge can’t be relaxed more than
once ...

Bellman-Ford algorithm on DAG

topologically sort the vertices V
(f V= {1, 2, VS such that (nv) €E = f(u) < f(v))

arrange E in lexicographical order of (f{e.a), f{e.B)) O(”_H”)
=)
ea e eb
dls] < 0: als] €5
foreach v € V' — {s} initialization O
do d[v] « =; w[v] « nil
do for each edge (1, v) € £) ’
do if d[v]> d[u] + w(u, v) one iteration of O(m)
then d[v] < d[«] + w(u, v) [relaxation steps ‘
afv] «~u

for each edge g, v £
do if d[v]> o + w(u, v) final steps not
then r¢porfa negative cycle | poeded

Proof of Correctness

o

Let t be an arbitrary vertex. Suffices to
show that we compute d[t] properly.

Let s=sy. 5;. 55, ..., 5;=t be a shortest path to
t. Show by induction that we compute each
d[s,] correctly.

d[s, ;] computed correctly by inductive
hypothesis.

(s;.;. s;) relaxed AFTER d[s; ;] computed.

Review of Dijkstra

(Non-negative Edge Weights)

Problem: Given a directed graph G = (V, E) with
edge-weight function w : £ — R+, and a node s, find
the shortest-path weight &s, v) (and a corresponding
shortest path) from s to each vin V.

Greedy iterative approach

1. maintain a set S of vertices whose shortest-path
distances from s are known.

2. at each step add to S the vertex v € V'— S whose
distance estimate from s is minimal.

3. update distance estimates of vertices adjacent to v.

Dijkstra: Example

e =)

| iniialization |

Q =V, a= EXTRACT-MIN(Q)

Dijkstra’s algorithm

dls] < 0
foreachv € V- {s}
do d[v] - 0 initialization
S«
O o8
while Q =& (Q min-priority queue maintaining /" 5)
do u# < EXTRACT-MIN(())
S« Suiu}
for each v € Adj[u]
}relaxaﬁon
)

steps

do if d|v] > dfu] + w(u, v)
then d[v] « d[u] +w(u, v

(Implicit DECREASE-KEY)

Dijkstra: Example

1st iteration G.a)

[azii Ny 3.a)*
| 2nd iteration | ()

Dijkstra: Example

Srditeration | @)

(10,b)
3!

Dijkstra: Example

(10,b)’

SR o ','
Sth iteration (3.a)

Dijkstra: Example

. . (10.5)°
[_‘J_l_lﬁlcrmion G.a) gy - 1)
: /
©.*)
(0 N
(13.8)"
(5.a)° 4
, 7
G.a)
@ (@) (15.¢)°

(|4V®\2‘
(0,4 ® ! @ (1hy
1

Correctness — Part I

Lemma. Initializing d[s] < 0 and d[v] < o for all
v e V— {s} establishes d[v] = (s, v) forallv € V,
and this invariant is maintained over any sequence
of relaxation steps.

Proof. Recall relaxation step:

it d[v] > dlu] + w(u, v) set d{v] < dlu] +w(u, v)

° dlu] o H’U—

dlv

Correctness — Part IT (continued)
Case 1: y=u

« Since u is the first vertex violating the claimed invariant,
we have d[x] = 8(s. x) at the time x was added to S.

« Just after x was addedto S, we therefore set d/[u] = (s, 1)
» This is a contradiction, since d[«] is never increased by
edge relaxation.

Correctness — Part I1

Theorem. Dijkstra’s algorithm terminates with
d[v]=06(s,v) forallv e V.

Proof.

« It suffices to show that d[v] = 6(s. v) for everyv € V
when v is added to §

* Suppose u is the first vertex added to S for which d[]
> 0(s, 1) . Let y be the first vertex in ' — S along a
shortest path from s to #, and let x be its predecessor:

S, just before
adding .

Correctness — Part II (continued)
Case2:y!=u

» Since u is the first vertex violating the claimed invariant,
we have d[x] = 8(s, x)

« Since subpaths of shortest paths are shortestpaths, it
follows that d[y] was setto 8(s, x) + w(x.) = 6(s. y) just
after x was addedto .S

» Consequently, we have d[v] = d(s, v) < (s, u) < d[u]

* But, d[y] > d[u] since the algorithm chose u first=>a
contradiction

Analysis of Dijkstra

while O =@
V| do 1 < EXTRACT-MIN(()
. S« S {u}
t Teoree .
s degree(u) I, for each v € Adj[u]
tmes 1 do if d[v] > d[u] + w(u, v)
then d[v] « d[u] + w(u, v)

DECREASE-KEY

Time = O() Tpxrpact-Min T @) Thpcrpase-KEy

Analysis of Dijkstra (continued)

Time = O(n) Tgyrpact-Mn T Q1) Tppcrease-KEY

Q TextractMin TDrcrease-Kpy — Total

array O(n) O(1) O(n?)
binary O(lgn) O(lgn) O(mlgn)
heap

Fibonacci O(lgrn) o(l) O(m +nlgn)
heap amortized amortized worst case

(06 Raitel, Wh

\‘\-——-_..__——-—'—-_-_-—-—-._'—_

R T |

Now Biloen B4 0V
L = Dest for gy sttal g0/

O ptits BB ~spals gegp, b 1,4
Dr‘j "’(cm Wk {,\,/ EMF does QA thb @)
T Gy s @Peij/h U
g%amcm C:/J Sy 1
M Looked_ of 2o X

©

49 MVBJ[To?ﬂo éoflt & VM’“? b o ﬂ/%
Mo do oy ¢ oy aior
(Ln@w hagd {g Jg)agﬁqf ‘D:rul pkfr {%0 U{’ (1,5 q W}y

QQW\@ b@ |
A (an galy gl © :
7 PO L =t 0y

() ,
M(MP P(ﬂ})b”\(Q’OMM/\ﬁ pOL@rmq }D(ola)(’/q

ARSI {WL/*\A 'hpe (71[{60{;1/%8 T
1})) {’ Fots s ellafie 4

O 0T
boal s £ Cud o e o s
Svh it
=
\ k/

r(\w\ A : ‘Fq(/{\ ’)) Qk
’ (| ‘)
male Svfe. s m»@d QG//M

b JL @H’O Wl/ﬁc

A e se 1) ko
QO/ }Jb{' /4— .(/m. h{‘,/e

TPI\(Olf/fc/cf?“f it 1w b’}}ﬂkn}flﬂ s ‘”’9
Mo« AN figles)7
W@ \0@@1}7)WQ on aJJ{ M{/ \\x
(an chaln 4l ;-5;*0\1\
@&J\ [Y\ML/“\" TLP/L\s YW “/w,;

13 “lokh ot 0 s o1 a J(\“‘ﬁw}

LS&) 61!(*\9(8’ ﬂq,\ T ﬂwfﬂ @62@ L/at/ a 6{1{(‘}('/‘?
M&Jr\ WYX Poin‘! “fhen hee T L[}»(f
[ﬂwH(o afton 9/}/\ t I) b Oasih ~ck BES

éo hm(\ oJﬂL 6Q]@
/W«OQ e (@l g)L[st 0 bl

\)nw(tghiei ~g M Pm P e /0/'/'6#4 o Bellpa, -Fod

I S =G N S R)
Pt e]
O(V (vt ED
Nt a caapallp cafin
Depends on how iy Vv E

m;I MQML /12 (16 pﬂ%/v?[Q

N p(oM@w\ N ber A Chotel pith

o Chm. bhwWMkM£ C% 4%4 il
of Shubet pals S %,

\\/l 20 (kmtv Ve CW[C Shotel f‘Vil [q

|

‘(r\ TUML bt Moo o wit A of 6%/1‘6’4/
palyy

A
N —>

2 4 ' [\L’(’A/ {61/0\
e b BECLL 6, o T
LMM%

M Courtl H: 0{/ ﬁfw; ﬁ’ appeas

?Tﬂ'ﬁdi s s ceagnable .y

Leabd omblon [l b aase?

nol™ Qaly Vo x
Q{M(Ll @\E& &p&m
IR - o B of The ny
| pear
K s)

Ming it
M {mo T Calibe Y

i)

é@ i dvist oy < 0

S
$
-
.

7,-—-—~

>§)7§7§7)

(.
50 ol he @ £ad (L Q}Pgﬂmﬂw{ ﬂw

0

-]mk @‘oa.} s L[«\o‘w@

3 S
g,
| MM M(‘X o 100[{\5(}Df@#y gﬁx’(l
D{/ ﬂOQL A p’%
[W 1 Wwb

\ Rolarlot ™ 1o Laghts

\Mm&mmwﬁ#$WW¥

o\ ¥ b < (1),
ﬁt Y
V25 npte W

o2 (e A AL A
k/n’fi",m 5uoh tat K 64)5{,{

= i (Aj)m

\j’5,23

Dok ek o ful cak

’Iu&bh{ pak (re
Vst bleary desch o0 j

IQQPM@A, 6%\/&(8
Ao At Ao 4% A®

B omple A MWZJJQ AMH
60 Alf :@(7)2 ‘JA
Alﬁ 2 @Q)’L
G ey Dy eodely ()
[> T(%) o)
gp (ling [032[[9\/2152

7 €6 (usmable

WJ, 5“(&, \m va W/ Dynx?rh('c fp/"zﬂ[“’"m:”?

Cuill legn [afer w6000

% J/‘Ls’fme d
f o pfedewasqs ot dolwe 4-1

i ghofet pihs fo A
wll) =S |
el p, . (P)

W@[{/ce 6W P*ﬁt f@b/em
n]La Tfmcfm(g 2 4)/@5 }O(OMM

hed (Kaginug

o4 dnall desth > i J
\/'Q/ﬂces 5ed o el
M Gy - le g

% of 5/\0/W p@ﬁw oo all vl
b1 d

%)J% AT pall
Couh, oy

(/I N nfﬂL ({’W”Z lé}{pd{'t],dj

o a Wt Pedel 4,
—h/u](s Wl(
ch{ a(éo ’b ‘/ﬂd@rs]raad

(ont p

/

@dsh% I&ﬁ//‘fﬂj) T i
D[tj’ﬁL/t{ i
BA tuke to oo for 6%)[6 [lags

’”€Jﬂaa of logd,
; 1()10 V@ﬂt\u@
100 o

0 e I g bl
Iy worej((ase gw/m% ¢
= ot (Méto ® ‘pzapﬁc@
“a,“ P(oéfé /\miwwﬁi

U et 1o T el

1l

@

Kk G
zw b of St andom czra/a@ b may

6/@(1 vakx fas (andom Odges
5 d vl don §

N(qu’ o it et]
/\"’Jk TS

we (an e onl, & apoy
Con be Cyd§s (Chad leit)

@FS (\4, q Ran Ui @[‘fph

Mot~ W/Jf'w; dye " Lull 1%(/ l‘@dé}(s
s %}‘ﬁd h /6:/@(5
Mok tve © o (s lodls

HOW CUn we ;mp//l)vc/;

- Q(‘{)l@/{ (Zgl b@/HW

@
5 90 591 ad 195 Gnshasly
%y e e vader Loo Wbl S ad 2
CQH Cu+ our [Jﬁ}//‘to by hale
Ccm Wéﬁ be Mie(f YLO g ﬁ/‘&f

of T ﬁ/&%
ﬂﬂL F o b Jﬁld«y)‘
o dfr gyt [
L

Ewloes Jn aess

[l Yo
Tmb(/lm L%é M hq/[{[(/d/l‘r

g;m Ohih lM((l"KC/@KU; Y g’ﬁ%ﬁ&w@
\/\/O(L‘Jy /4 \/u@” /’fl p/cd(\géj

A“A’ :" 7] KMJM @/«/)ﬁg

Ll/of
th
of
.
’ hl@
A

S
-
1
]
Hf%
|

I
(¢
No
e
|

]
3

B

:P/
}L
m;
: JL
:
v:/ L
+
@;L/
f
0 6;

gﬁ: ﬁ\?/ Shorkest pa/fk may it o sl
Jﬁé (ot hfwdbl QQWM@ n § dad sovffﬁ/f@ N

bo b 00 edge fou o wle x a5 b
LoVt y o T
Fud pdes J(4x) 0, MMY/*)
Y gy path 1 gy,)
Mt]
§ - m W eygect
Moo vl B/aph

——

Q(Wr] W‘Wed g

~ ViR Qv ue/{”w ’(s h o p'c?w(
= pepgue d\shene ww ?05’”5 S FZ%

)
g 8 G(aa%ﬁ maqb -0 & Map z(f‘ @emol

B o
DUS)W Moveg (n J(/@Ju{oxg i duscan (7

(dL %@% llq i C(\n’/{(

é ' 90@‘

We wat o g foads e goul

B; d}/EUJH\Uﬂa/l M\{b w4 ﬁy baddor of)
~ (ppae (lale gpeas
— Vlrge ;mpfo%)wrp\L ﬁtm (t cw/m

(At
Hoe a (W/rbl Jk()

@(m{%% Ttowfds [ov [OO{WM
I (o,0) = D) =0+ d(y)

R/{“ Sore \C[W«, = fWS‘{ nwlg/ Sut n WY,

P(om(\{ IJr \N\LH 61L:“ Qﬂd bhoﬂ%% Pcﬁ\

(Gao 6’:@)
Pc{w Yoo M O Cyde
Lif e e pune et

(0/16‘15)le/ﬂt H&/{{’ rgf(\c

Ho, (Choete /u“)
e [Qw cfo a5 (low f”w JZM&Q

(Tl bd b St b €01, 6,939

B un Ny anll po('n% 5 oviar 1

G of of edges malkled
— 1oy Jiatly doeasd Goo] =0 dibfonce
= Ay {ron ro{, 0 /on5

[Qn (Jwaosdl % /u) (i9 pag as
I “epally §(o.) - Alo) ¢ D) 76

EMNQ]E of A
(e 8lides

gﬂb{%“L{ \/.Ov @ﬁgﬂ v)4” O OU,O}W(

B)
\R’d!ﬁ A* ;f) o/ ('amj())(]cw%'eé
- et ve e huadic

~ofh tiws Dy gq diffeest

O’h.gf Liw
WWW Shotest s e Coten i
(,L(/gm{ —~ 150 A@\LQ {/om P//or v W/M)
Ofll'{ (eta dwpfah g}mpfml /M

Lots of vjonts of A
in &V €/1Lafm Cérmb &W@

(4n% b povahly oty fa | g,

bty pckiue

Lecture 17:

. Heuristics for Faster Graph Search

Today's goals

- Develop heuristics for shortest path searches
Preserve correctness

5 - Improve runtime in practice, not in theory

- Consider special classes of graphs:

- Random graphs
- Planar-weighted graphs

6.006 - Introduction to Algorithms

i

Linear time is too slow...

- Google Maps: ~10" locations, 10" edges
- Dijkstra's would take @(1 minute)

[Twamic | Wore.][Map | Satemte | Eam ||
04 TROK

vig
5 ; ~ U Aspen Hil
Ashoum p by Sd'\;'er
omac
Stering QITAG Spring Ccliege
4 Reston E3tk
Bethesca

Chantilly Qaktan

Centrevil Arlinglon = ggyean

s Farfax
53 < Alexandria

y @ 4R Manassas Buke Sprngheld Clinton
Wargiton - : N\:mn(.-hj,n_ B
Leke.Fuggo Lt S avashingion

Date Ciy Walder

Durifres

Trangie La Plata

lﬁLl_l A _
'2CE=2010 Soogl: - Map cata @2010 Goegler |- o* (of | Rassrtscrobiem

Part 1: “random” graphs
Every vertex has d random neighbors

- Consider the neighborhood of a vertex s

Number of vertices at distance 1: d
Number at distance 2: ~d?
- ...number at distance k: ~d"

EERR el b AR i i A abeai s

BFS in random graphs

- G is a random graph (n vertices, degree d)
- Suppose we search for a path from stofin G

- Almost all vertices are at levels ~logn

- Almost all time spent at the last levels
- How can we improve our runtime?

Example of bidirectional BFS

Shortest path from R1 - R2
Subgraph 1 Subgraph 2
L
1]
-y ©
L = Sy N
- 2 e >

Intersection point

Search 1 started lrom Root 1 Search 2 started from Root 2

Order of visitation: 1,2, 3, ...

Bidirectional BFS

Idea: instead of running a BFS from s to ¢, run
BFS from s to f and from ¢ to s simultaneously
- For each level I

- Compute vertices at distance / from s
- Compute vertices at distance i/ from ¢

- Stop when a vertex v has been found from
both s and ¢

- Shortest path from s to t runs through v

Proof of correctness

- If shortest path from s to tis of length 2k, then

middle vertex v,_appears in both level ks

- If shortest path is of length 2k+1, then vertex

V.., appears in s-level k+1 and t-level k

* Is this too easy?

“Analysis” on random graphs

- Bidirectional BFS expands (log_ n) /2 levels,
instead of log_ n

- Explores about +/n vertices
- Graph search in sublinear time!

- Performs well on many non-random graphs

Subtleties in bidirectional Dijkstra

The shortest path from s to t does not
necessarily run through the vertex v...

- It goes from something in S to something in T

Loop over every edge from a vertex x in S to a
vertex yin T
- Find paths with lengths d(s, x) + I(x, y) + d(y, t)

If any of these paths is shorter than the path
through v (d(s, v) + d(v, t)), return it instead

Bidirectional Dijkstra

< Run Dijkstra simultaneously forwards from s

and backwards to ¢

- Keep vertices in two min-heaps:

- First sorted by distance from s
Second sorted by distance to ¢
Pop the smaller of the two minimums

-~ From sheap: add itto aset S
From t heap: add itto T

- Repeat till we add a vertex v to both sets

Part 2: planar-weighted graphs
In a planar-weighted graph, vertices are points
Edge length /(u, v) is the distance from u to v

- We've seen this before:

Location:’ .
291 Firoadwayhew York N 100071514

e e
iy i?' = s W—-
i oY st
o
7:" Q- ‘;thri_g

Dijkstra on planar-weighted graphs

- In reality: - In an ideal world:

Edge modification preserves paths

- New edge costs: I'(u, v) = I(u, v) - A(u) + A(v)
- Claim: the shortest path from u to vis
preserved by edge modification

- Let(u, v, v, ...v, v)bea path from v to v

- New path length:
Mu, v)+iv, v)+.. +{v,v)
=lu, v)) - AU) + Av,) + (v, v,) - Mv) + A(v)) + .+ (v, V) - Av)) + A(Y)

=[u, v)) + (v, v)+..+lv,v)]=-Au)+ Av)

- New path length = old path length — A(u) + A(v)

Goal-directed search: A*

- |dea: use extra information to guide search

fromstot

- Assign each vertex v a potential A(v)

t should have potential A(t) =0
- Vertices close to t should have low potential

- Try to search toward low potential

Modify edge costs: /'(u, v) = l(u, v) - A(u) + A(v)
~ Run Dijkstra?

Consistent heuristics

Edge modification preserves paths

- We can use Dijkstra if I'(u, v) = 0 for all u, v

- As long as /(u, v) - A(u) + A(v) 20

- How to choose A(u)?

- Suppose graph is planar-weighted
- Use distance to t as potential: A(u) = d(u, f)
Triangle inequality: /(u, v) + d(v, t) 2 d(u, {)
Other graphs — other potentials

Results of A* '_ - Other ideas to speed up search...

- Precompute shortest paths for some pairs...

MRt £ TR I e nTarn

Gt

R L : - “Incremental”: use data from prior searches...
- x e S S Only return approximate shortest paths...
o "= | f M-

A* has been called one of the top ten
algorithms of the last century!

}FH&‘L P(ob{em‘\ #O{ Slo/f@lt Poﬁl‘zv {@m S">/+

" Uigghbl g caph

Ay mabin boda anga, i

s

LQ“@V\ 058 nar\ qw%a/(atféc
i /b & 91

Q‘I} Covld. Q gwad, //@cr Fint

OMO

M?L Jum aLL F of
Pa(/ﬁ“ ’{9 and’ﬁi‘g«, %’/
WA

e o7 yniic)

<

i

6;/\(0 Ny LM %3 6& dﬂL Te 0(“) Nades
Dﬁlf\g Mp() on c{,(l p(@l\/(‘o\é rodes a5l

Vsp(V) = Z rafy
IPKW

éla& ch/b\\ fode. Chn dn]7 be ;4 / /@@/
O(\)K[\/(5}1(" QM/(«\ nﬂnl@ O
ECU/LI 8(//90_ ’ el - most once

O(\/rE)
E(wb\ st W sV f(\mk

L &y s i forauad BFS
by]Lmlfu"?) it of Shate P“ﬂl«‘ f”f) each vprfer

Tﬂﬁ x of shytest pwm § 3

\

n A WG’(\%}Q& 6/0{,0}1 (// /on Mj W&z%/}

paeffpb‘_/ﬁgs
J%/I/ - Waghted age
BT’B ~ Mokt e uefo!
OFS o fopdgel gut (0sed &)

— Dyed TO o gy pghlyd %ge}@

fa“ﬂwm Fa[

[“e%? Ul fan Lok padl

(\

ol b o, i)

T
Ny

Yk p

\/‘/er % Q(dl[ﬂ(, JD@ 6?/Jr @1[p/e‘/;oug mad@

. T % il
((,SP@ (sp/ej \ 649/7(% ﬂ‘V%

69 nsfeag ol at it
Qwﬁ Pf@daus hds of a yuer |
Nd@ ﬂme (O‘/]d b& ;A Y(WL 966%‘] To Z(}?)L
V(’/HE 0N ofarked f)@ﬁ“ tan 4 % %
Nep (4 => Nsp(p:)

?rw ff)\ql@

»
i

J&"f \W\épcojﬂt‘on
Wo/ \ww m 7 ’Pfu/ Windes ot b@ Ones

Vg b g
!’JD/L = JO”‘F /@1%7 [ﬂmow [l
P

b“[a/[g 9/777'7
k
@/

éo o b | bmi(@%
]ocw[w/&;

H@e (oaﬁz‘Hms(acl (M@ I
"‘bﬂrﬂ’?_ l /Q%({) flﬂf 0 /‘{*
00 The can (¢4

Lth boe vte e b o i B 5
Lovdls J[é,f/)
Tsame dstoe = Sang [M/

(/\ec’,{/ @@

U&mg Qlﬁ/ﬁjm (q,] 060(@ a(S/ {f Vo [<e5

\i 15 A Py no e S% 4 c"(5[9#)*%4/’/) :a[g/y)
LEY ety e e (g e Ty

o dy & N e i
) T
“Forq/“ \/g/f((,éﬁ

e st oy ”;)
Rabe sk MW@

Go how b gl e 1
p(Q/t/ N d@ ﬁfqplq

L@%Q fon to v % U ¢ a o
Node of

Pubig 3 of ot ad et oty

(N@ CO%(&‘LML 0/(1[0/ 715 i ﬁﬁﬁ (:fé
\/1L JemLL)Ww \/Jh}oh O(iéf fo 96 (/’l

J——

M 5 gt o outhul ods b ol gy

bo v - s vl by 3[5/’/)
LDl dues abondty,

“Nep vahe of A G[prls oly g9
vxépb oﬁ W]L(cé; Closlf b s T&W

Ufmuj (0ad(eacgy

oam eqeties of BFS s Plrg |,

[

\fv/ 0 Cople > ©° ?:F Oé 6%*@#)@W Cocl
Lcan defat cle

A

0

by mflete alyo O(WVHE)
(ol gl fll Tk o6 b i st

\A/O(\k \Ca(woj{j \0017& fm(?j
‘—""‘j D‘Jjﬁlr/é\

—) N fom §

Tz\c&} AH . (\lﬂ&/‘[ﬂﬂ an O(JQ/

L [Omg Ky QUQ(Q ;5 an o JQ/

Aé [oﬂg 0o Tl o O odi- That works
Ve (an do (@mm[m“w/\

)

(BOL’P "@@ fﬁ Il/l}
i nep(*);
5 Wt bt
fehin wwiﬂ
. 1
f Fzeg) nMe _
sl [p) o b 0V o] 1)

wwpm?
(ot loo\wp 'lj
(hﬁ}_ P?(oble,,\ s (i Yin
A
(ol | spal ot for Sme e
() G Yyour fes Qn%M

gxponeat !
h

CM@\@L 0 duter s wa Diy 1
O{han(y M‘ﬂ%

Introduction to Algorithms: 6.006 Problem Set 5
Massachusetts Institute of Technology April 5, 2012

Problem Set 5

This problem set is due Wednesday, April 18 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. Graph Transformations (15 points)

You are given a directed graph G = (V, F) with positive or negative weights w(7, j) and
no negative cycles. Your job is to find a transformation from weights w(i, 7) to new
weights w'(7, j) that eliminates the negative edges but does not change the sequence of
vertices for each shortest path between any two vertices. Call such a transformation
“oood” if all shortest path vertex sequences in the graph with weights w’ are the same
as the shortest path vertex sequences in the graph with weights w.

For each part below, answer whether the transformation is good. That is, answer True

if the transformation is good, and False if it is not good.

(a) Replace each weight with its square so that w'(i,7) = w?(i,).

(b) Add a large constant C' to each edge weight, so that the weights w'(z, 7) = w(i, j) +
' all become nonnegative.

(¢) Suppose it is possible to find a value d(v) assigned to each vertex v of the graph such
that w(7, j)+d(i)—d(j) > 0 for each edge (i, 7). Take w'(i, j) = w(i, j)+d(i)—d(j).

't is possible to compute such d values by using a variant of the Bellman-Ford algorithm: Make a new
source vertex s, connect s to every vertex by a weight-0 edge, run Bellman-Ford starting from g, and let d(v)
be the length of the shortest path from s to v,

S

Problem Set 5

2. Topological Sort (25 points)

Consider the DFS code for directed graphs from CLRS. (This code iterates through all
vertices in the graph, and runs DFS starting from this vertex if the vertex has not yet
been visited in a prior search.) One can use this DF'S to obtaining a topological sort
of a directed acyclic graph (DAG) G. (In a topological sort, your goal is to obtain an
ordering of the vertices such that all directed edges go from a vertex to a vertex later
in the ordering.)

For each of the below proposals, answer True or False to the following: Running the
algorithm on a DAG necessarily produces a topological sorting.

(a) Run the DFS code from CLRS and order the vertices in increasing order of their
start time.

(b) Run the DFS code from CLRS, where we start DFS only from sources (vertices
with no incoming edges) and sort in increasing order of the start time.

(¢) Run the DFS code from CLRS on the reverse of the graph (where we reverse the
direction of all directed edges), and where we start DFS only from sources of the
reversed graph (vertices with no incoming edges), and sort in decreasing order of
the start time.

(d) Run the DFS code from CLRS, and order vertices in decreasing order of their
finishing time.

(e) Run the DFS code from CLRS on the reverse of the graph, and order vertices in
increasing order of their finishing time.

Problem Set 5 3

3. Making Unlimited Money (40 points)

You decide to use your MIT education play the stock market. Being an ambitious 6.006
student, you desire not just to make large amounts of money, but to make unlimited
money through a sequence of financial transactions. We will model this problem by a
walk on a directed graph, where each node represents a state of the stock market. If
there is a directed edge (i, 7) in the graph, then it is possible, by making some financial
decision, to move from state i to state j.

Each edge (7,7) has an associated nonnegative real number value, denoted wrlts 1)
representing the multiplicative change in your total cash assets as you move from i to
j. (If you have d dollars at state i and take the edge (i,), you will have d - m(i, 5)
dollars in state j. Thus, a m value greater than 1 denotes an increase in money, while
a value less than 1 denotes a decrease in money:.)

Your goal is to design an efficient algorithm to determine if it is possible, starting with
1 dollar and beginning from a start vertex s, to obtain arbitrarily large amounts of
money by making a series of financial transactions. At no intermediate step is your
cash balance allowed to be below some threshold b (with b > 0), since if you do so your
broker will not allow you to play the market further.

Formally, your task is to determine (yes/no) whether the graph has the following
property:

For any positive integer N, there is a sequence of steps beginning from s with 1 dollar
such that you have at least N dollars at the end of the sequence and at no point in the
sequence did your balance become less than b.

Design an cfficient algorithm for this problem, argue its correctness, and explicitly
state its asymptotic running time in terms of |V| (the number of states in the graph)
and/or |£] (the number of edges).

Problem Set 5

4. Shortest paths on expanders, in sub-linear time (30 points)

Suppose we construct an undirected graph in the following way: Fix some small even

d

value d, and for each of the n vertices, choose § random neighbors and create those
edges. Such a graph is an example of an expander graph, with expansion d. For
a graph like this, the number of nodes within distance & of a node is roughly d*, for

k< ;‘fﬁ&’(}) (i.e. when the square of the neighborhood size, d**, is less than the number

of nodes, n). For example, for an expander with expansion factor d = 10 and n = 10!,
a node will have about 10 neighbors, 100 nodes within distance 2, and 10 billion nodes
within distance 10.

We've seen how to use breadth-first search starting from s to find the shortest path
from s to ¢ on an undirected (unweighted) graph. But in the special case of expanders,
one can actually do much better than O(F) = ©(nd) in the average case. Your job will
be to design and code a function find_distance(graph,s,t) which quickly returns
the shortest path from s to ¢ on an expander, or None if there is no path (though this
is extremely unlikely to happen if d > 1).

Your code should pass the following test case (where d = 2):

graph = {1: [4, 5],

[3, &, By 8],
[2, 6],

[1, 2, 5, 6],
i - R
[2, 3, 4]}

Dy G W N

find_distance(graph, 1, 1) ==
find_distance(graph, 1, 2) ==
find_distance(graph, 1, 3) ==
find_distance(graph, 3, 4) ==
find_distance(graph, 4, 5) ==

5

find_distance(graph, 5, 6) ==

N = N WMo

(¢ 1l T
dleked

Too — WGt
0 g o

oy b g L of ey edgo

LﬂL Q(OEs ﬂol{ d\m Iw
® shtesd wt

Ny W gie o gyggoftins

I) 6\}0;\7 'ﬁz gaf }/LU\%L LT
4 Hwde
Bm ok o pah
2 o

* W ‘Ww o M‘? ¢

W hab b et

Mabe QQ\J’\ Pclh« {rackon
bt e g l‘

Y

B Thsey s, b sl

bh) Al C |
WON, e]LWLM/ C&Lﬂ} (01&5& hm[g Cr2

C) 59“"’&) 60mp}i (yJ({J

V= vatex vy
Billaer o
U ot oo
A,
—Soe o pih oflef
(s e |
P *’\/d/{/Q (§ be.fF \hy ﬁ%f #

(! M(Z ?)@9 Q/oe; (?v(/)a 9({’6(3
L E%[‘L §C€"V1}
T\W@h’! pL S J\/a‘f H 0% WY gre o

@
\
\

\j\/a/JroL@d \/;J@@ @f\'],',,, 7 W’/; @q[g& ey h}f

Ab/})\z%(?) &6@ of 6(/5@)
[W@H Jue earh Tl

A s (g
G 6(\/}2)

“E ey Vs
BJ?L it s B C([/)

Bgﬁhﬁrz (/,v/({ ¢ rov
bt g patt St 0 Loy

ey
T?O Puaryihf
e

2
Oq% L chl e g
ba © Pty vae Tt GF B o
LR ?

é}llfﬁ 50% 60A' ‘L([/Ad{{fﬂ/’

LT gt g
bl e oy

’U\M& [(’% 9@&

LTh not 6 sue 7
N)

%M (e w0

. dge mlfcatior f@(){v@ paths
\hich '23 fot-of /?

(bt cales o0 foidl,
0) &

57 :L?/ /s Closr S ©
g

“ (X as Uow 1[/[5 (jéﬁlﬂw
(hare

s gresat
| Hhs olotaipatt o g
ﬁ”““ﬁf;%,y p
ﬁl Fod gfwd (ag
/ (%

— W(Jl(,([(‘/(v)éﬂ,ﬂ “Go
Y & ﬂ[ge . Preice
b saq

/(" M W a/] O ,«\tig

0,

2. Jopo it
()/91/[Qo ou, Jﬂly on a WL

/ (,/V G o C[@('/y

O =0=2D0>0) =0 ¢t
O dfte 1 ot

oo 4 fudi (il OB5(9 b fid
V. f ta ea |/

Tf! Il ; 5
(m’éllfa]?n(; *)ﬂﬁé /@(Méﬂ &// /y/j(
Chill pote,

Wy oo

I o g
letm |4

, "
IO/;” lfmy/ﬁj
o b 4 Bt of Fritly <o catt)

©

DF 5 tlnllL&r | . otk WL'HQ/[‘); ;/
= Ly 0 avh VLVD?Z\/ |
«gg(PWLL WLJ @(Jgﬂ
@p’nfafe
;n[(,«M&Jfﬁ
N Ghp b k0 (Vi)
Al ysit Tt 2

g fntskd, g bl
i vt 4 T

5 ey {m‘/zg
%/M f Can har 7/ fe 9%

ok — rehned bak #om (F
7’}\ = ioa/mf

o

ok e St vl

Y

hL Waf@"ﬂ&e; his pldie @ fpo S0
4) Gyt fue 1

nods td fire (

bt/i' dﬂ‘—’i Lﬁr(‘g c&lsg/ A/d/(1

W]L WMJ’ $QI (Of/(iw["

uﬂde/‘o.wb = 5/10% = pfﬁn/ﬁ _‘)A;/p[9
Jadet 2

/(ht & Vv it M./W’/@ 7"0\&3
/1\/@4' 6’}.”’ @M(/LO/{, [qnbm

L2y Saks > st 3 e

G

Ny j&wl@\L éq/‘[m ‘H.g — W/Uy
\,mvs‘l' /(nll(s *ClWE}Y S0em> M‘Hfif

H ML dﬁL SOy Cfﬂ /ilfo"“i’l(j Qc/g
b Ofll‘q 4
T51-nth 5@4

[e st T
gjf(/) Ny — I 0[0]11/4/5’ t/,:[ﬂm" [aﬂL f‘l‘f

A

/1)
f(?(d Pm‘lﬁ 2 unllinag

Lo 4 He o St fy il

—) 4/\0& . §90LJ

No W‘W ;n é@ﬁfﬂ m%@ﬁy

L
b&) PR)

Te Db o

(- — i b Foyt

o hats bdeds o 3
£) fhose b g4

O.f(i(’(7\ ﬂqisfo/;\j ’/(\V‘(
I 145@[f‘li’) fvc(/(ho c//p,y

WW
- é“/ Lo ﬂ/‘g, %—MQ;J—)—FMAM_M
W‘D‘\ pndliesrt > pands > foit »

{OUL‘) 7 5}’\0‘/'@) 3

']L\d— OLCVLM“*[W/}»ﬁ I M‘Ié/f 7>/(

(Vi

g
. Gl
g\ J% i loge g
J)l\/&ﬂt@(l g/ot{o[’\
b wdy = Glare of glak maldt
&{ﬂi ;3 /((“L (6{,1 /m/& M/@

Tﬁw»e i ﬁej W
7] :7\/,/\{{
C{ s W ia 5

(an W/ 51/% abtal /Wgc J
/M‘)V"dé M@ A /ﬂop ﬂf _7/5

Gmi# vvtr ol Ly

T b ko a 2| oo
Bt rlﬁ e mu)#‘//l/cd‘“‘”'(,ﬂéﬂ IZ: a T 4»/
B (o e gt & Be

¢ f)aaca/ 4& i @[gr Tl ot Cyds 7]
()\Jﬂ(! /1 7(@}%\ fff

Cithm Cafse v /Z [M//

{
LQQ cw‘c J{/J'Zaﬁﬂn {5 what

b
JF;

y
Byl ~Foed

f)o% L/gé WOJP /WL (Jeuleo{’mj A Cyle

M@f ,WwL i f e jack wlo /0% for ”7/64¢

6"‘\1 m)/ Jo POSéAOQ

Lg (Z 90 V.24 b
@ £ aec<

é,.
)O W)'\q,ﬁ i V/ovg?

fit é"’ung for ko ;m/t,
LL’J' A Cv/&l@

JFS : tvde dededion /
CC(/\ @/sa Q& ‘V/ BFS
(D o bt gt

[’-ﬂt &(ﬁ C‘/(/\Q, COM‘:?

DFS ”LQH’ {0/ Cfak Jf?‘l"c?[(bﬂ;’
/Il)ée’l ‘WL cu]Lﬁ(d%/

Y

’ngmj[\bq @
IRORAOP 7
| ’

o ket db e bl

C bl b, bl 4 [ad v%/@ M pal
s " (% g
(Qdﬁ/\ m@]\ IR “l ! ﬁff’/ﬂf@ s chifl /l@@

A'IWO\% Movl;\ w/ ((/[/Ml* |

MM Lyl Q/@%@)%é/ D}Edl({g/ YL)«Q f)/€r///ﬂVJ/r weldl Nol¢
(7\ " Mq S (ebn Pt
/| WM QUJ/ b{wk ¥
o 1 w0 ol edps T mah a Z/@%
IF ﬂﬂf ﬁ\/OVOA {,\/L(,}g @/K{p)) (/@ @// é/@ﬂ
/LD[C?LJ/A f:o‘{ (&f

Conplosly
0Fs 1 6(veE)

bty oon b /

@FS COMdQKEILZ
st cah Ao a/(/)

(ot s agyegete faah s
T 171 oo ol)

ﬁr all N, Q 5%%/\ ofs Pl
MrS{“ (A5 T(/l) //i_ﬁd//

b anlial - 10)

9% me coslhy % 272%’
M /‘L ﬁwﬁ% ou:“;

176 % s 0l)

tm poyply a5 Ol1)

ﬂ/f'é’ms

eML zf Mi N‘U)HPOP [/6} ﬁ&n{ Pﬂpj K(/;ﬁm)
\t/ 71@1 Ths 6’5 0(]) ke Ly = O//d

b
\/\%l (AL /WW ("‘)
L6 (]
M E (m/z) 2 pilfip(3)
“0B) o) =00y
R P B P

P)W /%L[wﬁ 40()/1 ~O{)
ugf(h] agfgie it =0 (1)

Q& wost (g pond

& D]:g WnL 64{9 ﬁ&w o Cuh /My y
Léfmg fin Colotd

5)ZAob \/]] J

eV

Bowe g on buh odge

m l/\/(, \/;‘HC ey VGﬂlﬂf‘ On,c,ﬁ
Wy el e pre

ﬁ\(_ @ \M @[) liS Cﬁﬂ&ﬂf’y foénry'gee /ya/ﬂtcf//f

WS T (otte)

s il ovet O@
{Jhbcng‘/@ bah /62‘@4 kst Onig

(] <To)
émﬁ ach WLJ(/{9)1 on(e @Lgﬂ O/@@/ﬁé/)
yiia
§ (veg

T s Flobe © Uhboo s byg

[,o];l MO Sy O[V ij s bost o
‘DO%}H&{ Q/‘G?

%k T oo (b ”1 sohodid p/aHp
LI Tk ér‘ﬂ(ﬁ @oﬂl ’(»/; | JIIJWJﬁ w/ sl)bl

0

(1 6}\0/@{’ W’hw m {/M“W 7%(
591% (r\‘aLw ﬁ/b c}lfeoJW/lw{ FFﬁ 65 Gl QW oo she

@IJVWM Nﬁﬂ{ pok; ffwmhsf/y

O On hied)5 Seem @%/
LA s dols hed Ty gom sl comllaf)

QW(@W 200((il
Ll‘% (M@L / (//(

J)Va w “Tnd r’l('ﬂ Ny ae af— nob

Tle VNW ol
(vIsV +H| L ik & < foa curb vals

0

s 1, ol | S50

Weihled Jinded W cfﬁt oal, 7
Ol & MV%/CZ@) ok ,;0,0,,L
(\o Ay (7@[@5 ?0 Nﬂ Cyelts T‘{j
\ clonar [hatad | 1900 (4 gt
O(VE) sy +E)

w) e T e e,

oie St b n < VA

4 O(l/ff) (ton DFS to fop)
mbv@y; (/f} c{d&e({ (éme Ne g 67”/’9)

| st pW@éﬁ %
71 J'\;&]r o plss W T ff’ff’

' Ao £ b last
(M"‘ nL 'F%{' be e &%)

and (Q!W vu O
Lie chek of 5)|@/1’G/,c’tﬁz¥ (3/ [Ff[fﬁ@ cont

7 Mq oo neke /LOW/Q@VQ,L for st % Tloo

(5(0/11

w

pady vefey] (ndon. 9({(76)
50 ()22 \/6/{’8)@ (,;(Wa [WM .

1, $
O SG\LPLO/(; ﬁbm C)N, {(/9/L

HC&AJWW/ Vomoﬁ
([/ (/e/ w 9 b e fies
TUR

"2 hin Z’W/)j
()/O do Mﬂ T%/MJ(J, f £fw(

— /)2(/)« {Wdlﬂbﬁ {uon &tr% /*04,0
— Ghardest @m My ML@ ’ﬁwogé /

-bi Thogh mff’l\(hﬂ]

—9 dall edges x/mg to }//iLT
Fd?SX /%J)’,}V

- l/‘ﬁ Gt PwﬁL 5}&1«7% > Afuin. ﬁWﬂL
AL

0y
ﬂ) ZW/

— Vg]m//éﬁ e
B, Jt/ AY e ﬁ/s (fa}W
VO Co:»«f)(w@d

e g
Ol(\ fpok &UJ' p/o})(em nov

SOM v
- J

fr n ok
/o0t
/ (1 crute ¢
/; /“M{M :
o yormd i
v g '

LJW‘
P! '
past g -
rw pay 1
of 44
7%

g@lff’/\&lﬂg,cjl{

b ko) G
2 (o) by vall thon s s)

’Z}j'
O Ul B 4 fid 57 '

EA o I bbe Hue O[5]

____.___‘_,_..—-—-—'_'__-_‘_

&)L@[@U, ’M wlw{e L»}/o ;5 49
T o b-de [
Now A m‘mh ({o

wivy ~ 9V ,:I/@ /e
(MPT‘W@ onli,— b Al {ohiond iy /yAV Dyta 1/

\on %9 /
M nob aghtod = 5 b B8]
WMLJ (5 UI/\ W/ 61/” wl [,}3 —:,]
y
LDFS /\fo) g 1} p{oLf Al chodot I[%\ n thy
(W;‘f‘ 6 el DFS dis net Ciud doted f)aﬂ\
gA DIJ‘ M«Q P(d" on 6%{ P

o
Wb e all ghotst P“/ﬁx algs
DJ B ijr 1‘ le& g0 /C0

RUIL"W\ 0(4 t{'@
h¥ “*M&lc
()\;\ Y Wi gwi o i (IJQ«
W 25 IrnH*S‘M@le, Guvred
GF vl P
=o€ putat
| (1.0
6"’ ﬂw(ave et

a: r’l‘u\]/‘Uq)
LI fwgth g o A)
\t@hmt {of hdw/ IML /Mmﬁv at Som(/ooz‘/rh:

@
AW@Y (ﬂofk)
/) —h e b %Lm frev

F Jefin Onlh\a)t \/d/lJQ 7

Loy

b to Wl JEQEKE-kEY
Lol Ak (|, 1)

eyt
T, aus Wd> & DUN) seath
th l%(p @HQ/
ﬁv\t% B Conley b,
S
Gl vl odges Jecewe b,
N%i Wio 6J{0r<, 211; le @o}rl@f
O Do

L Hapefolt s 15 o Jag sl

DOQ‘: LM/*, [\‘W(/Wu La/e C/@‘S{Q éy o’[) ﬁe

(e+w
@%m fost cages
(0/ 167 for (006

|
/”\‘(z‘ L bﬂ 69 6[0“(
Nt 4l o Ge

() ass all D gl cay
W fde TR (ml ores

(n ,..,Conbﬂ{\(dcb‘@w\
D ek b i o ok
.

Lglrs o Mo {or g QAN g (MPA -

GSO ;/\6@’ 1(%;{5
LC/ML@ A hore

O l/ é%T

i W

7(‘((emau% Qe (e -
'j} FM%@; m N‘\M‘L cast
(To, gmf) /GmL

mf\ (iov C oded -
@Q{nﬁ Md&}b

@@@M o ~ (/pia/rﬁ ‘f“/ Mﬁ"’ﬁ ety eath e
LNQQ;;(, LMPIH

N(}v/ (L)JHL Eﬂéx"é
N&{ p;u&ﬂ (M
[OOL@C(for P | q;@; i 5/&&5)

- e

" dytete b oo ghe

LTL!ML ves
H‘&/ﬂ, %o {(‘Azﬁl/@({, ﬁméT
MO\V, b e dued

n bl gl

@m[um {36017\ [QAg/ﬁ
L(Gq Gl ’Q'TJ”L o P@mﬁ‘w
§MLQ OL“ (/4;_ {}/L}/ f

\/~/Q N, v JOWMJR\

/\M“f be l){ d‘(/cu{‘(nmof Q)fa/atx N
L@ (5 (/V\d(‘/&(-ﬁ\

Oh obe & by - g1
Tt ddvde o oo dy
00 dond dy Bt
o -dd Bh ol
Tt T ot o
b /9(.//@ iy

@WNL@ on 1ot cases
M‘:#W e 5\/})““@5 Conn

(W{ML)’\o, *%WL CAbey é;f M;)
O Y BV T
(1: '(“IMJ('\ G omg ﬁwéb I Gn (/J}nﬂ

e ol |,a7>

@

§> @) & m\cw ot e

525~ A
BJ:L WLZT 5 Do | = 3
N ndo |~ ¢
1973
LY
Q@\(/m hat E/lf}ewé
,D\]b 15 4 (O//Q()Lr\(,bj mestale — il o f/,»(
dﬂi 0{/“ k ,L§ l

(

QVMWI@(‘, (\/1

/_\
1k et bt Wiy o 5/0L/

Hﬂvv 1Lo flmpfav@/(
(/n[%f; z’lts mfécwﬂ?r J(ﬂ

UL‘{/ g D\/\‘/ - M That- %wld be o~

Fom g (Ao

3 Theoretical Results

We model our network as a directed graph G(V, E), where V' is the set of nodes and E the set of
directed edges. We refer to a link (7, j) as the pair of edges (7, j) and (7,7). We associate two values
with every edge (¢, j) € V': a positive weight w(i, j) and a nonnegative (bandwidth) capacity b(i, j).
Let S CV, D CV be source and destination subsets of V', such that Vi € S, we associate B; > 0

as the bandwidth needed by source i.

Define a multipoint connectivity structure (MCS) o(V', E') as a connected subgraph of G(V, E)
containing at least the nodes S U D and having at least one path from each node s € S to every
node d € D. The bandwidth and weights associated with an edge in ¢ are those associated with

the original edges of G.

Let S(i,7) C S be the subset of sources contributing flow to edge (i,7). Then:

Definition 1 An edge (i,7) is said to be underloaded if:
i) > Y B, (1)

peS(i,jg)

otherwise, the link is said to be overloaded.

A link is underloaded if both edges comprising it are underloaded. An MCS is called feasible if

all its edges are underloaded. The weight or cost of an MCS is the sum the weights of its edges.
In this paper we focus on searching and investigating low cost, feasible, MCSs.
3.1 The bidirectional connection

The simplest multipoint-to-multipoint (mtp-mtp) connection that one may conceive is a bidirec-

tional unicast connection. In this case, S = D = {s,d}. If we allow the paths p(s,d) and p(d, s) to

be distinct, the problem of finding a minimum cost feasible connectivity structure can be reduced to
computing two single source shortest-path problems with bandwidth constraint ([Wang95]). More

formally:

Algorithml:

—

. Create the subgraph G'(V', E') by pruning off edges (i,7) € V such that b(i,j) < Bs,.
2. Compute a shortest path m(s,d), between the source s and destination d.

3. Decrease the bandwidth of every edge (i,4) € m(s,d) by B,.

4. Create the subgraph G"(V", E") by pruning off edges (i,5) € V' such that b(i, j) < By.
5. Compute a shortest path m(d, s), between the source d and destination s.

6. Construct an MCS the includes all the nodes and edges comprising both m(d, s) and m(s,d).
Theorem 1 Algorithm! finds a feasible minimum cost MCS for S = D = {s,d}.

Proof of Theorem 1 If the MCS is formed by two disjoint paths, the Theorem follows by applying
[Wang95]’s result for each “half” connection, as if they were separate problems. So, let’s assume
that minimum paths m(s,d) and m(d, s) share some edges(s). However, the underload condition of
the edge guarantees that the referred edge will be present in the second shortest-path computation,

which will find the second minimum path m(d, s).

Let us require now that the MCS be a single bidirectional path connecting (s,d). To proceed,

we need the following simple definitions:

Definition 2 The length d°(s,d) of a path p(s,d) under cost function c is defined as:

r . .
2 (i,5)ep(s.d) €6 7)

if V(i,7) € p(s,d), b(i,j) > Bs and b(j.7) > By
dg(s,d) = ¢

otherwise

i.e. the path length is the sum of its link lengths if its edge components are all underloaded.

Otherwise, the path length is assumed to be cc.

Definition 3 The shortest path between (s,d) with respect to the cost function c is:

5°(s,d) = mind‘(s,d
5(s,d) ;1&1}131((s.d)

where P is the set of all paths p(s,d).

We now propose a Dijkstra type of algorithm to solve the single bidirectional path min-cost

problem. The pseudo-code follows:

3.1.1 BD-Dijkstra Pseudo-code é\

BD-DIJKSTRA G(V,E)

BD-Initialize(G,s); é/ gqm
S{hQeVIGE ~gqpp

while Q # 0 do ot
u= BD-Extract-Min(Q, d);
S+ Suu}l;
For each vertex v € Adj[u] do

BD-Relax(B;, Ba,w, v, b(u,v), b(v,u), c(u,v));
n

o (o \

+ (fan@ert

BD-Initialize(G,s)
For each vertex v € V|G|

Do d[v] + oo; w[v] = NIL ;
d[s] + 0;

(
Z[(w‘rqu :

BD-Extract-Min(Q,d)

i 005 U J\r.‘l.N-; f
’ *J g ©
Forie @ do [(U\\q’&—
If (d[i] < dmin)
{ dmin +— d[i]; v + #;}
RETURN u;

BD-Relax(B., By, u,v,b(u,v), b(v, u), c(u,v))

If ((B: < b(u,v))and(By < b(v,u)))
fw(,v) = e(u,v);}

else
fu(u, v) = 003}

If (d[v] > d[u] + w(u,v))
d[v] + d[u] + w(u,v);

w(v] + u;

3.1.2 BD-Dijkstra analysis

As usual in Dijkstra type algorithms, S is a set of vertices whose current shortest path is maintained,
and Q is a priority queue with vertices i € V — S with current distance d[i]. Each vertex u has
a pointer m[u] to its previous vertex in the current shortest path, which is initially set to NIL.
BD-Extract-Min fetches the vertex outside S which is closest to the source, and BD-Relax updates
vertices distances to the shortest ones, as is standard in Dijkstra’s algorithm. The twist here is that
BD-Relax tests il there is enough bandwidth on the link before consider it for relaxation. Notice
that this is possible only because at this time, the direction in which the link will be used in the path
is already defined. The reason why this link pruning is not done in advance is precisely because the
direction in which the links could be used for connectivity is not known up until they are inserted
in the path candidate, which is done by BD-Relax. So, BD-Dijkstra uses a cost function w which

is defined during run time only.

We now prove the following theorem:

Theorem 2 BD-Dijkstra algorithm computes 6°(s,d) shortest path as defined above.

Although we can prove the algorithm from scratch, we will rather build our proof on top of the
correctness of the original Dijkstra algorithm [Cormen90]. In the course of the proof, we differentiate

between w and c edge costs. We need the following lemmas:

Lemma 1 BD-Dijkstra is a usual Dijkstra algorithm with respect to the edge cost function w. It

therefore, computes §"(s,d).

Proof of Lemma 1 The proof is based on the fact that each link is accessed by the algorithm only
once', by BD-Relaz, whereby its cost value is determined and remains fized throughout the rest
of the computation. Therefore, after a first run of the algorithm, all edge costs w are determined
(notice that w is non-negative, as required). Thus, one can easily see that the running of a reqular
Dijkstra algorithm on the edge costs just defined by BD-Relax is guaranteed to compute the same
path as the one computed by BD-Dijkstra. From the regular Dijkstra algorithm, this path is the

shortest path in w.

Lemma 2 Throughout the execution of the algorithm, for every vertex v € V, d[v], the current

distance from the source s to vertex v, is non-increasing.
Proof of Lemma 2 The lemma follows from the reqular Dijkstra algorithm.
The last and most important lemma we need for the Theorem proof is:

Lemma 3 During the execution of the algorithm, for every path p(s,u) built by BD-Dijkstra, d[u] =
dy(s,u).

Proof of Lemma 3 A path is buill by sucessively calling BD-Relax, since this is the only place
where w[v] gets assigned. Using the previous lemma, it is easy to see that this assignment occurs
only if, for each edge (i,7) € p, w(i,j) < oo. But then ¥(i,j) € p,w(i,j) = c(i,5). Summing up

over all edges, we obtain dlu] = dj(s,u).

The last lemma dictates that every path computed in w by BD-Dijkstra has identical length in
c. Conversely, it is easy to see that any path with finite length in ¢ has identical length in w. It
remains to be proved that the minimum path computed in w by BD-Dijkstra is identical to the

minimum path in ¢, or 6*(s,d) = 6°(s, d).

If a link could be relaxed more than once, even if in opposite directions, loops could be formed. But we know

Dijkstra algorithm is loop free for non-negative edge costs

Proof of Theorem 2 Suppose that the minimum paths, p,p¥ for the two cost functions are dif-

ferent, thereby with different costs. We have:

(s, d) =) efi,g) (2)
edge€pg

(s, d) = S (i) (3)
edgecpl

For sake of contradiction, assume:
(s, d) < 6¥(s,d)

By the previous lemma, however, path pt has a cost given by:

dC

pe(8,d) = (s, d)

= Y wii,j)
edge€ps

< 0¥(s,d) (4)

But this implies that there is a path, pS, with lower cost in w than 8" (s,d), which contradicts

lemma 1.

The complexity of BD-Dijkstra algorithm is identical to the regular Dijkstra algorithmn, and is
O(Nlog N), where N is the number of vertices. However, it is worth noticing that the original
Dijkstra algorithm outputs shortest paths from a source to all other network vertices, or a Shortest
Path Tree, while BD-Dijkstra solves a single shortest path only. This is essentially due to the fact
that the optimality principle may be violated in this problem. This principle basically states that

subpaths of shortest paths are themselves shortest paths. More precisely, we can prove that:

Lemma 4 In the bidirectional shortest path problem, subpaths of shortest paths are not necessarily

shortest paths.

10

Proof of Lemma 4 Let m(i,j) be the shortest path between vertices i and j, with respective
bandwidth requirements B;, B;. Moreover, let k be an intermediate vertex on this shortest path,
k € m(i,j), with bandwith requirement By > Bj. Let there be a link (r,q) on the subpath p(i, k) of
the shortest path m(i,j) such that its edge bandwidth b(q,r) is By > b(q,r) > B;. Then, it is easy

to see that path p(i, k) is not even a feasible path connecting i and k.

It is easy to see, therefore, that an all shortest bidirectional path with bandwidth constraints

has O(M*®N log N) complexity, where M = |S U D|? .

3.2 Multicast Tree Problems

We now focus our attention to larger S and D sets. We are interested on a particular Multipoint

Connectivity Structure (MCS), called multicast tree, which we now define:

Definition 4 A multicast tree (mtree) MT(E',V') is an acyclic MCS o(E',V'),E' CE,V'CV

providing connectivity to every m € SU D.

One can easily see that an mtree is a Direct Acyclic Graph (DAG). Mtrees inherit the same
feasibility definition as for any MCS. Regarding the construction of feasible mtrees, we may devise

two problems:

Problem 1 Construct a feasible mtree.

Problem 2 Construct a feasible mtree of minimum cost.

Generic minimum cost tree problems are known as Steiner Tree problems. Steiner Tree problems
are known to be NP-Complete. Problems of such nature with additional constraints are called con-

strained Steiner Tree problems. Our approach, therefore, is to provide polynomial time algorithms,

*We can prove that an all shortest bidirectional path with bandwidth constraints has O(M?N log N) complexity
by using the known fact that a single shortest path has O(N log N) complexity plus lemma 4. A worst case analysis

leads to the desired claim

11

DQpl[h o+ 6F5

S

(o (Qm b
\)v(vJV é’} /w(%hlr i

(\/eve “0%@
q\j (3 g(/ Ldlw‘%

m(N{/& J(m Lo up A NNICS dég,fmg
44

((M From €ial only

6@ tﬁé)ﬂﬂx O(d%c(, 'oM CLWé

Q\AMHY ng \[/ QL((&{“W \(
‘Lol
Lk ¢ o

%/[5
mMat

OM’I (é@w # §lwf~ w/ ;]L(,% - Gtvew !{

@Wp[s bA WYERTY Slow
ngﬁwéamb - el)

A&L b&v[» WWL\
@ N@V coqg Gec ‘j/\@.&i LOZ

Oh o wed Lk 6 didhe
CHWI ?"PWJ Wk b dow

NQV/ , 00 74

‘Oiby | i
M Mgt GWI Mi dte\lw@/;
DA %y ae t, funt
T coms 4, mﬂ%

0031 @ beter
5““ {‘00 ézo.,/

¢

(

Jon © Cagh, ol psY 6|
ol dp digh
\00 35
Bt Tl & hae - GA?JM
ok

¢

(]0} /'(/l 4% a whles s P/},,/L
5““ §pb

MM G be Jlasllfm@
Céo i oy lo Compaahs)
ol ¢ pb
0017 naw
o cloe

fQP, M Ghagaly

QOW[l(\OOG
So J‘«d' Cogt A (oala/lo //
Caoly

RSy
/

@@/
D s e W) e
iy —
Go b pat s @b/
~ onfl
\)\k ?(066%& bith ¢ aqd 2ﬁ }Wf{
&o{s hot qud J‘d«w)
-
Oh & g @ o)
D‘\(/@ulc@é, Q_V‘£L

Oh — ot

D:Wsers\MichaeNDocuments\MIT Junion6.006\ps5-solution.py Saturday, April 21, 2012 9:03 PM

import collections

1

T |
ronry el

collaborators = '

Enter true or false for each part of problem 1.

answer for problem 1 part_a = False
An edge of weight -2 becomes weight 4, while an edge of weight 1 becomes weight 1.

answer for problem 1 part b = False
Paths may be different lengths

answer_for problem 1 part_c = True
The weight of a path from s to t is simply changed additively by d(s) - d{t)
Enter true or false for each part of problem 2.

answer_ for problem 2 part_a = False
If a non-source is chosen initially, its parents will come later

answer_for problem 2 part_b = False
Consider the graph (1, 2), (3, 2).

answer for problem 2 part c = False
This is equivalent to b

answer_ for problem 2 part d = True

See CLRS

answer_ for problem 2 part e = True

This is equivalent to d

Enter your answer to problem 3 here.
answer_ for problem 3 = '''

-

D:\Users\Michael\Documents\MIT Junion\6.006\ps5-solution.py Saturday, April 21, 2012 9:03 PM

def find distance(graph, s, t):
if s == t: return 0
slist, tlist = [s], [t]
visited_s, visited_t = set(slist), set(tlist)
i=10

def extend level (oldlist, visited, other visited, i):
i+=1
newlist = []
for o0ld in oldlist:
for new in graph[old]:
if new not in wvisited:
if new in other visited: return (None, None, i)
visited.add (new)
newlist.append (new)
return (newlist, visited, i)

while slist and tlist:
(slist, visited s, i) = extend level(slist, visited s, wvisited t, i)
if not visited s: return i
(tlist, visited_t, i) = extend level(tlist, visited t, visited s, i)
if not visited t: return i

return None

5

00k Reabafion % f

v T

(l (PN 1 pvge/{‘ l’telPJ

H:qu 'l((OM OTW @V?ﬁ\‘ 5{5/} 1[% ZQSYL p{e}{ (OJ(
Make {able inded
}3560\@ Cheoh for [ej)dd/fs o hoy it
ﬂO)fQ ﬂo Awlwxj Tvp &
m ar oud leep 1 [(GJE nm/O

s
well (f?q//y 1 4 Since Joﬁl d/f@o}[{ﬂo

Gcm My FFB A}%L Jo (Tw 918
()ﬂ&[byl £ [, "B
Joeg t by {d & cule”,
- N0 &a,/ﬁ((}g{ why ¢

"M (JmL VLML q C‘/Z(

/,

0

A vor bakdack — prase Th mlfidhe vale
~ S0t to Falee

5o

of/ N9
A

(0",

'S - ket Mdighly
fre QE/DH potadly chobibtdle - Wf:—‘hﬁ 5:+J
Ié O(\/r E) best— Ve do”

T, o gt o flup
WLUQQ hatl 4, B m Ity OFS b ue wu@f
L 4 s wll

4

—_—

g mitia ZMJ@@@‘
| - \&)ML +0mmo(4

- Jmobm\w(/& 1%/ 7LW41'/'j E’z&PMzﬂléa/) ﬂn{ (Bvrenges

\

;A‘}o PO?T nan 100\ J[[% £ @(,:///%/,z)

“Onl\f ‘ case b Th:s Wﬁ/lc\)

—whe vy smgllE of shfobla ek bk
S g calb aguin # agyh

~gsotaly G cealls fan b paon
—(/L b\ﬂéﬁ_ (@b\/l'}s /f/leW((, g\c Wﬂf[(/l
_ N ﬂ
Memyize
E‘gﬁdﬂ?\%t\ Co/npf};nj F(IMMIULL‘{;
St Gl

'”C . 2 f. [
Gofrn | “‘eg“';{
(ebin {1} (W’D *HM’MJ

0

@W‘ WLl‘M, ,(s P(O@ozﬂm, 7Lg ﬁ 106/’@ /@ﬁ///ﬁd

- (
L n nek i nip

freme [”J = {ih (n -) b (n ~1)

[Q)L(///l rmg (,ﬂ

IF fuly for gy cal

&QM (0(/“5 ait o/py bt

4(4@9, 1[6}) [‘{6} (fg@}

I
(v fh 3

PR N
Oy b chn fil 3
T(E’P@‘* T(@p@wlr

ﬂ\\w s -
Ol vas exp. Joo ot
()\umjf}ﬂt @@ A DP d/\ﬁ

() (#%Lf)ﬂ’b%)% (T}ng ’fo (ampl'/}ﬁ [’W\g(?g,/*

&b /)foi»ﬁm f—ﬂ/symf’y Ters
@ gol&(f)

e mae

(,af\ +\//n d/” @p WB }/Ntn WD/L\’"é/MJ(

\/N/W/t L d/lwﬁ 6{0@/)««%9
0 (uns M‘ ol Sfmok SP4q

MNQW l@/\@&ﬂL sv (e o T #

”"‘0+ NS Com&ewch&
= (dn LML 5mo(/{Q/ M 'I/T«Q_ "‘(MLE

L ¢ 3 447 1]

% ’ /zf\

[\““/ —(Cdn @}hﬂf 'wL/(((’, Or IWL M(//l
*——BLA‘ (h\/nlk lop

D LA ,

DJ\ (Q(,Ufge oa
l 51&@ P@[{ ¢ ad £
H (40[11&@, g/ LM{ \ \/

Ig 9 7] o Tale mox (1id) ¢ |
bdoc F and levs Yiun 9

IZ \lon(?L ;fle(lL g (D
llos“?qu] 5 10 (g
\\ts < }ong&% /{\SJL% % /
i)aHH-
i(ﬂw eany wl) wa{e’m 1/ g:]z;ﬁ_@(g_,

ﬂfo ol Hnwf]L}ne_ pe b f(obbw éw“lﬂf %':4) s n°

b 00k ()¢

[T

560, MUL Mom. Yoo gl h

TM quaﬂ‘u P{(a%/qu‘(/j

f’l - L€ {9@1&,\ /c‘l/Ho)

Lobk ho il D @ rabr
2% 5‘()}(4‘4 i q saflor CZOO[W";(’

§§ e Cowﬂlef
U (msee U an FUb Seq/

HOV Fao‘“ dfd% Fn, @[@W/(

Nushe Dot — does ol ik i
]%r \\Gw\bdQ *l\(ahive/

0
E" - Fn-l kﬁm ‘?2[:,\4
= ’2 JL((\) p ﬁpMMﬂc&NZ
0\/'} l\ow ({uio‘tlt(UM 'a (owpv*eff

prnm\ -') hO L2 (WL (Jg 6@/(\‘LV
L [@]LO/
Ehote (o

Lﬂst, (ap

r\'wufz,Cw\) £ Do [n ——y

iigaara
T(m} :W/‘“’D TT{VL«Z)
fib itald O(};)

Te\cpor@wf(/@(
ﬁ\/‘}\ l/‘/Q ?\[Q c(/oll/ly (L ‘L.j: C'E'{ (o(om / \/]L[h‘(’(j
fo itz
Memo = (]
fib(1)

o i e, (ofvn M,mg[i‘?

%)
Ohl ﬁu&(m‘/y ampde n ting
S O(“))

@wnan:fc P{(od/df‘@
= Rowr o - Vllﬁf’wk?—od(‘m

_ \/o(LuS‘W}\M -b‘L Q)) Can gr,p_ uP/O(\lv@f{b/
(ombniny Sols o 6

= '/1‘;41 9)1 0{ 5ubp/rob/@/n) &a/\ év /)@()»éﬂ(/
51 COMU’“) Gols mﬁ S5 pf@/;/%

~ bl o sbplions @0l

o, e Py
4l

(vl [QM Sob {)/0526% $

e

—

/

l(mrt] 5\/]9 61L/ucvjr/e

(/4%7 g ewm\PlQ

Juin & %4 o a/d> (M [%,lj
P&Wqﬂ (/4,/()7

Fid o bogob duk sy, €[4 7 i)
WLML /0\\ ¢ ,0\1\\5 /\L\&
A wok hue Suse Cadk saf o L b a0

dﬂwkﬂf’"ﬂﬁ] ek Gate (an f o 1 wy
W (lo% f\d‘ LM Tla gQ (on gL

(S/'mlla/ TL@ (Bf/tlltai(“1 “jML]; ﬁ/&ﬂﬂ \A/)ML W J(l ﬁi‘f{*’...}
(0\/ &o Vi f’c{ph G0 Uh QFS

O\o,\ﬂ% ol édog(g@ fetd

(bt C
o pateY

(e 6%5)613@@7 I ﬁﬁ{(njmf @l ﬁuﬂ

Lobl)) = lugh o B0 ool vk
Stubs b CIJ

ﬁ o (Zoﬂ;) fhb celah. 11 7f((c)‘u“b) w)[/

J‘]r((v (/‘) = \ +

NM «'HLI\]@4%

v o (L) e CL‘] 1chcL(J)

hox, foeb (i)

@
Q@ j P\Qﬂ\o}-’é@@
Mo < (}
L (i
NG |
TSRO

A \op W
{= | +-M‘W,}7‘1J ()] tmatrbe> C[’;] kaéj
frano |})<
fefun &

SU\JP(Q\) sy
o b

::hL

0 pin (g

S B
M%U]-l CPeps 21 () malthes ;) W”[J

=R Qubpm\b@ nofhe eudt < 6((11)

-all i palfo

Nw‘ e M*pwfl/a shotat paﬁo

/

“fot gt 6;@\@ Gite

v 1y we'(@%)r (vles
N D) o g gl
ﬁHM, ou@ /va/ t\><

(iij U’\) =4 bvelqlfllL ot @W‘L ‘paﬁ% Cam 4 ~‘)/’

Thib= st ab-most= py plge,

\\/CM{‘ A‘U‘ (n,\)

Ju[m) = 9 o, { di (v ,_%}
Vi, 1 &hide

bt J;J re) i 0[/)‘9

Wl & b e fi

6.006- Introduction to
Algorithms

v

Lecture 18
Prof. Constantinos Daskalakis
CLRS 15

Fibonacci Numbers

* Fibonacci sequence:
- F0=0 B F]=1
=1 n=Fn-l+Fn-2

s So F=0, F;=1, F,=1, F;=2, F,=3, F;=5, F,=8, F,=13,...

® Interesting fact: F,/F,_,— ¢ (the golden ratio)

= This is why if something looks beautiful in nature,
chances are that it involves two consecutive Fibonacci
numbers...

Menu

« New technique: Dynamic Programming
= Computing Fibonacci numbers — Warmup
= “Definition” of DP
= Crazy Eights Puzzle

Clockwise Spirals: 34 Counter-clockwise Spirals: 55

34 and 55 are consecutive numbers in Fibonacci sequence...

4/21/2012

Fibonacci Numbers

* Fibonacci sequence:
» F=0, F,=1
. Frr=F11-1+Frj-2

» So Fy=0, F,=1, F,=1, F;=2, F,=3, Fs=5, F=8, F;=13,...

= Interesting fact: F,/F, ,— ¢ (the golden ratio)
 How fast does F, grow ?
» F=F,+F,,>2F,, =F=200
» How quickly can we compute F,?
(time measured in arithmetic operations)

FM=F +Fn-2

n-1
* Algorithm II: memoization
memo = { }
fibo(7):
if i in memo: return memoli]
else if i=0: return 0
else if i=1: return 1 5
else:
£= fibo(i-1) + fibo(i-2)

- in the whole recursive execution, |
will only go beyond this point, n times

memol[i]=f (since every time I do this, I fill
return f in another slot in memof])
return ﬁbo(n) - hence, all other calls to fibo() act as
. Tlme‘7 O(n) reading an entry of an array

4/21/2012

Fnan-1+Fn—2

* Algorithm I: recursion
naive_fibo(n):
if n=0: return 0
else if n=1: return 1
else:
return naive_fibo(n-1) + naive_fibo(n-2)

* Time ? T(n)=T(n-1)+T(n-2) = O(F,)
» Better algorithm ?

Dynamic Programming Definition

e DP = Recursion + Memoization

* DP works when:

= the solution can be produced by combining solutions of
subproblems; F=F +F,,

® the solution of each subproblem can be produced by
combining solutions of sub-subproblems, etc;

MOTEOVEr. ... I N W A

= the total number of subproblems arising recursively is

polynomial. Bys Fosia

n

Dynamic Programming Definition

* DP = Recursion + Memoization
. DP Works when

ol _0 tlmal substructure

“/ moreover.... F,,, b +F.n -

&)

Overlapping Subproblems

dlstmct subproblems (repeated many tlmes)

A recurswe solution contains a “‘small” number of

B ,F

J

Crazy 8s via graph search

» Longest trick starting at c[1]?

+ Idea: BFS was good for shortest paths in unweighted graphs. Let’s
try it for finding a longest path in the graph of matching cards.

* Do IIBFS starting at c[l], compute BFS tree, and look at deepest
leve

cards matching c[1]
and are after c[1]
* Worst case BFS tree size?

* eg T2 10V 7228 5& 78 28 5&]0V 7d 2& 5& 74 28 S5S&,
+ size =27

Crazy 8s

Input: a sequence of cards c[0]...c[n-1].
E.g., 7% 7% K& K& 8¥
Goal: find the longest “trick subsequence” c[i}]...c[#],
where i} <i, <...<i.
For it to be a trick subsequence, it must be that:
V j, c[i] and c[i;1,] “match” i.e.
= they either have the same rank,
= or the same suit
= or one of them is an 8
= in this case, we write: c[i] ~ c[i;,;]

E.g., 7% K& Ka 8¥ is the longest such subsequence
in the above example

DP Approach

Identify subproblem:

Let trick(?) be the length of the longest trick
subsequence that starts at card c[/]

Question: How can I relate value of trick(7) to the
values of trick(i+1),...,trick(n)?

Recursive formula:
tI‘iCk(f) = I maxj>r‘, c[/] matches c[i] tI’iCk(]')
Maximum trick length:
max; trick(i)

4/21/2012

Implementations
Recursive
* memo={ }
* trick(?):

= if i in memo: return memo(/]
= else if /=n-1: return 1
= glse
3 f:: 1+maxj>,.‘ c[/] matches c[/] t[‘iCk(j)
* memo[i] :=f
* return [
« call trick(0), trick(1),...,trick(n-1)
* return maximum value in memo

Dynamic Programming

* DP = Recursion + Memoization
« DP works when

9 - ptxmal substructure

toa problem can be obtame b

: j:'_;olutlons to subproblems.

| mick() = 1+ M o1 machesetn tnck(n 1

<)

lllOI'ED\ er..

@C

Overlappmg Subproblems

dlstmct subproblems (repeated many tlmes)
: S | trick(0), trick(1),...

, trick(n-1)

Implementations (cont.)

Iterative

memo = { }
for i=n-1 downto 0

memo[z] I+max ‘>t c[j] matchesc[i] memo[]]
return maximum value in memo

Runtime: O(n?)

Menu

* New technique: Dynamic Programming
= Computing Fibonacci numbers — Warmup
= “Definition” of DP
» Crazy Eights Puzzle
= Next Time: all-pairs shortest paths

4/21/2012

All-pairs shortest paths

* Input: Directed graph G = (V, E), where |V | = n,
with edge-weight functionw: E—R.

* Output: »n x n matrix of shortest-path lengths (i, j)
foralli,j € V.

Assumption: No negative-weight cycles

Proof of Claim

k¥

drj(M) = mink{djk(m—]) + akj }

fork—1ton
if dy; > dy + ay
dyj+—dy + ay

“Relaxation” (recall Bellman-Ford lecture)

Dynamic Programming Approach

* Consider the n x n matrix 4 = (a;), where:

= a,=w(i)), if (i, /) € E, 0, if i=j, and +o0, otherwise.
* and define:

= d,(m= weight of a shortest path from 7 to that

uses at most m edges
* Want: d;)

Claim: We have
d,@=0,ifi=7, and +oo, if i # J;
and form=1,2, ..., n-1,
d, = min,{d,"" +a }.

Dynamic Programming Approach
* Consider the n x n matrix 4 = (a;), where:

= a,~w(i,j), if (i, /) € E, 0, if i}, and +oo, otherwise.
+ and define:

= d,m= weight of a shortest path from 7 to j that

uses at most m edges

* Want: d,f""')
Claim: We have

d;©=0,ifi=j, and +o, if i J;
and form=1,2, ..., n-1,

d, = min,{d, ™" +a; }.

Time to compute d, -2 O(n*) - similar to n runs of Bellman-Ford

Something less extravagant? Next Lecture

4/21/2012

Inventor of Fibonacci Sequence?

[s it Fibonacci?

where Fibonacci: Italian Mathematician (117
1250)

A: No. Fibonacei just introduced it to Europe. |

Sequence was known to Indian
Mathematicians since the 6 century.

So is it some Indian mathematician?

That’s more of a philosophical question,

Same as question: Who invented the prime
numbers some Greek, Egyptian or Babylonian?
After all, these numbers play a role in natural
systems that existed before humans...

4/21/2012

.0 Rl i

LO[\%\%‘ !'/\C/eziﬁ‘l/tj Sjbb&q‘/ﬁn(e (ijr)

—

o (Qaswy -
qd (expmhu]) Mite woy

G(V‘a) Dp vay Ta g

W ”Hm;c/lm(ym)c _1] e)(4()(]}

4 C[JJE pc eZCL/dO QS{' #_p

)zj[x[ﬁ[])

#:O{— &/ P“’Nem X (ev\@}wL i3 wbp(o Y
h"Jf Lvtwj
Whab 0 o s prblen’

0{7 (1 65{/00} N 5peam;} s vl = fhe meg ’0045

A gt 3 and. pouke € Y Wt
60 an* of M@(bbl%

Y
6\/&]9(&)“% dem(?ﬁ‘//%cd, z’z l}nd« A\ ovJF 1,,2\,2(/4
"ot ot

Arr\,&, £J~l [’/\{{Qﬁ j a,}‘ Wh({(/ll Wé { ; (qLer Faf\
belegy ¢ x[)

| J —h Cﬁa{’ce; o e
Erplas ALl g pgunshes has b G

Gorical|

~——

Y (»/O(Lv[{aﬁ éwkvwdj

—nfm WUMG, 'fo Anontr - q 5\/11(3&7“@4\ 5
Yoo b o nlie fo |t

(}ﬂ“ (ool 4 whal it g ({0},\3 - red fo Veiswo/‘i‘rf
Sop b 5{@

(A .
j d [L6 § 3 VO lG(‘é’ 0@ (’f/ \“l
mﬂ({lfa([?] F |) e choe 4

0c 'lfat()/ 5,3]) eoc Ghp tf

4

IMP ‘dné\ ‘} qm‘}{ ;Ie %W@
0(
IM/ \
5t/b
f){ﬂb)
¢

D} L
,L)
((@dﬂl’&
i/
“CW{J
(ﬂf
fk
50/0“@/‘

W
3
5
M
W
%
pfev;0v5
a
ol
.

Cbs. \ l ! @
5
e/
1 (/J/
C
)

[, L v
z\/
/)/3 d;
It U ¢
Mf/ |4 + i f
{t
F
#
u
q
'?’@p‘

‘ ¢
W= B §¢\gp(oH€m'
L Fiaute o st sk

\LPL%] -)pnﬁeﬁ- }nu&w{f@ 6L/LU@4/ ﬂlu/f' eﬂdj °‘// X[;]
H\M ahe for ey

-re L)

L
X()))

Wik tiw fo ghpley 1
i i/lpmhlt.@ n e Sheld 4oy o |

9

WM«L (‘LQM Ny % d §\/&>6@I/ P(a“%vy

Ir\ 6CN/‘VJ/ \or\@%\l g/h Seq/ f)ml]/@w whie Jav

- e D, Mj' Coni 0 6? olm
(an be dore 6(”2)

[Ql\/a'z, Qg =%)
~_/

) '/éQr Ioca/‘ Com.pd "50"7

}\'W}@ oves 6{/}/ 6“%%
Tl et 5y b b i

gP(ﬂot‘wl COV\(“HQA ‘(:40/@%!'9 [[&ch”ﬂq '*/«/bf" hﬂv‘J
GPQJWI condiHon oy Y (ledkt)

Lehabe e sam st or (aak

Since 10 Loy \ ¥ omPW‘ﬁﬂfl
LO@?

FOf PN’F(U\A{ (044/\1%}0/‘/3] M Can of’ﬁf/\ 5#,0&(1’ \/fJ
g‘/f‘@ll ‘Q(({})){m (O@F

———

[t can amr shpableas 4 iy

;wwb\wg O (k fﬂfg q)
(ary § O(3

TA\/OL/% Som. gpp,ofw] JW 5*”‘4(//6

BT - g dabeg o Gompwtin of ordend
l/@»fj = etb 9“‘ ﬁL \,('d'

EU} bt b ot dajod on deli-l)

6)

oo et l] e Tocde i)

Nd 4 ke able i ful maynd Mj}%
\/&"{i) o vgwint ek e w/ d{J E] aad poZe
o wor (H1) o kola o bk

\\/chr ZW@%‘L \/c{/L/e TMF is dl lﬁ/f

(QCOM 5@5{((/[/1 ‘m OUQ@ n) {’W/

0 g\/ln fOM v
6 tt:ne, éf’ eiph V][a(,n) O(H ﬁ% ")

p gl Wﬁwﬂfa/ha ~the g
0§ ’L‘#}(é BH‘ L ﬁ/“feg

may <J "3

T@\ & W‘, Can Feoqt e a5 o blodk loﬂy

That abet (ary 3 (vs& A;le‘;ﬂﬂ}

