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Piazza Dashboard http://piazza.convclass#spring2012/6006/498

note 167 views

Quiz 2 topics
Quiz 2 will cover everything up to lecture 18 (last thursday, the 19th - intro to dynamic programming}, including:

- All the quiz 1 topics (especially BSTs and hashing, two of the most recycled ideas)

- Counting and radix sort

- graph representation, DFS, DAGs and topological sort

- finding paths: BFS, Dijkstra, Bellman-Ford, A*, bidirectional Dijkstra

- Introductory dynamic programming (memoization like Fibonacci, simple DP like the crazy eights problem)

Again, there won't be a cheat sheet allowed. | J( {
hvres &

#ouiz Zmin

follow 14 lke 0 5days agoby 5t Wu 3 edits

followup discussions, o lingering questions and comments

* Resolved  Unresolved

Anonymous (5 days ago) - Not sure if this was covered already, but will we be allowed 1o use a cribsheet for the exam? IIRC the instructors
mentioned in a previous post about exam 1 that it would be considered for exam 2.

i Anonymous (4 days ago) - Are we going to be tested on all-pairs shortest path algorithms?
i Anonymous (2 days ago) - Such as Floyd-Warshall. etc.
I . Jeff W (Instructor) (2 days ago) - No cribsheet. Sorry.

You won't be tested on Floyd-Warshall gither. But we did cover an all-pairs shortest path algorithm via dynamic programming in the last lecture {lecture 18),
so you might expect to see that.

Writs a reply...

¢ Resolved = Unresolved
i Anonymous (4 days ago) - Will the grades for Quiz 2 be out before Drop Date, considering that Quiz 2 is just one day before Drop Date?

I Jett i (Instructor) (3 days ago) - Unfortunately, | dan't think so.

Anonymous (1 day ago) - What about those of us who were sick and missed exam 1, for whom exam 2 is warth 40% of the grade? For us, there is
i currently very little information on what grade we will gst. Will it be possible for us to drop it late, if we do badly on exam 27

Writz a reply...

* Resolved = Unresolved
1 Anonymous (1 day ago) - Do we need to know about Minimum Spanning Trees, Kruskal and Prim Algorithms, and Canstraint Graphs?

i Anonymous (1 day ago) - Reason I'm asking is because | believe Minimum Spanning Trees was mentioned briefly in my recitation a few weeks ago.

@ Victor Pontis (1 day ago) - Definitely not.

I l=ff Wy (Instructor) (1 day ago} - No.

Write a reply...

¢ Resolved Unresolved
Anonymous (1 day ago) - If you're going to have lecture 19 on the exam can you post some more detailed notes about what that entails?

The slides from lecture 19 (and all the lectures for that matter) are not great study resources...

I of2 4/24/2012 11:29 PM



Piazza Dashboard http://piazza.com/class#spring2012/6006/498

a Anonymous (1 day ago) - Lecture 18 not 19,

et W (Instructor) (1 day ago) - Know how the Fibonacci memoaization works. Understand the crazy eights problem well: Also the all-pairs shortest path
&f algorithm. Does that help?

Sarry if the slides aren't great. Feal free to go to office hours to ask about that lecture. Recitation on Wednesday will also review that lecture.

Write a reply...

¢ Resolved  Unresolved

Anonymous (15 hours ago) - What key properties do we need to know about DAGs? For example we were expected to know about how coloring
i relates to even and odd cycles on a previous exam. Any specifics would be helpful!

i Anonymous (14 hours ago) - previous pset

Jatf W {Instructor) (12 hours age) - The pset question about coloring wasn't just about DAGs...

DAGs are impartant because they're a spacial case of directed graphs which comes up often. and for which many preblems (B-F/Dijkstra. for example) have
faster solutions than more general graphs. The ability to topalogically sort in linear time is important.

Write a reply...

* Resolved = Unresolved
' Jancatlo Perez (8 hours ago) - Do we need to know about Strongly Connected Components for the quiz?

Thanks.

Jetf W (Instructor) (28 minutes ago) - Yes - you should know their definition, at least. You do NOT need to know how to find them

(But the algorithm is here if you're curious: http:fen vikipadia orgmmkl/Tarn

© {22 minutes ago) - Thank you

Write a reply. .

* Resolved  Unresolved
i Anonymous (7 hours ago) - Yeah, | was wondering if All-Pairs Shortest Paths are covered as well.

o
38

10 {7 hours ago) - Read above: "Know how the Fibonacci memoization works. Understand the crazy eights problem well. Also the all-pairs
* shortest path algorithm. Does that halp?”

i Anonymous (7 hours ago) - Crap, my bad. Thanks Chelsea.

Writ2 a reply...

20f2 4/24/2012 11:29 PM
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6.006 Intro to Algorithms QUIZ 2 REVIEW NOTES April 12, 2011

Sorting

Counting Sort

Counting sort can sort n integers in the range 0 to k in O(n + k) time. Say the unsorted n integers
are stored in array A. Counting sort works as follows:

1. Initialize counting array C', where C[%] will contain the number of times the element ¢ occurs
in A. Atinitialization, C[z] = 0 for all 7. Also initialize sorted array B, where B will contain
all the elements in A in sorted order.

2. Iterate through A, incrementing C[7] by 1 for each value 7 seen in A. At the end of this step,
C[7] = number of times element ¢ was found in A

3. Iterate through C, setting C[i] = C[i — 1] + C[i] for each i in C'. At the end of this step, C[i]
= number of elements less than or equal to ¢ that were found in A

4. Tterate through A backwards, placing element A[7] into B[C'[A[%]]] and decrementing C[ A[#]]
by 1 for each ¢ in A. At the end of this step, B will contain all the elements in A in sorted
order

Radix Sort

Radix sort can sort n integers in base k& with at most d digits in O(d(n + k)) time. It does this
by using counting sort to sort the n integers by digits, starting from the least significant digit (i.e.
ones digit for integers) to the most significant digit. Each counting sort will take O(n + k) time
since there are n elements and the elements are all integers in the range 0 to & since we’re in base
k. Since the maximum number of digits in these n integers is d, we will have to execute counting
sort d times to finish the algorithm. This is how we get a O(d(n + k)) running time for radix sort.

The running time of radix sort depends on the base k that the integers are represented in. Large
bases result in slower counting sorts, but fewer counting sorts since the number of digits in the
elements decrease. On the other hand, small bases result result in faster counting sorts, but more
digits and consequently more counting sorts.

Let’s find the optimal base k for radix sort. Say we are sorting n integers in the range 0 to v — 1.
The maximum number of digits in an element will be log,. u for some base k. To minimize running
time, we will want to minimize O((n + k) log, ). It turns out that to minimize running time, the
best k to choose is k& = n, in which case the running time of radix sort would be O(nlog, u).
Note that if u = n°(), the running time of radix sort turns out to be O(n), giving us a linear time
sorting algorithm if the range of integers we’re sorting is polynomial in the number of integers
we’re sorting.



6.006 Intro to Algorithms QUIZ 2 REVIEW NOTES - Part 2 April 12, 2011

Graph Representation

The two main graph representations we use when talking about graph problems are the adjacency
list and the adjacency matrix. It’s important to understand the tradeoffs between the two repre-
sentations. Let G = (V, E) be our graph where V is the set of vertices and F is the set of edges
where each edge is represented as a tuple of vertices.

Adjacency List

An adjacency list is a list of lists. Each list corresponds to a vertex « and contains a list of edges
(u,v) that originate from w. Thus, an adjacency list takes up ©(V + E) space.

O o — [[—{s[]
[
c |

H—[

Adjacency Matrix

An adjacency matrix is a |[V/| x |V| matrix of bits where element (z, 7) is 1 if and only if the edge
(vi,v;) is in E. Thus an adjacency matrix takes up O(|V|?) storage (note that the constant factor
here is small since each entry in the matrix is just a bit).

Comparison

The worst case storage of an adjacency list is when the graph is dense, i.e. E = ©(V?). This gives
us the same space complexity as the adjacency matrix representation. The ©(V + E) space com-
plexity for the general case is usually more desirable, however. Furthermore, adjacency lists give
you the set of adjacent vertices to a given vertex quicker than an adjacency matrix O(neighbors)
for the former vs O(V') for the latter. In the algorithms we’ve seen in class, finding the neighbors
of a vertex has been essential.



6.006 Intro to Algorithms QUIZ 2 REVIEW NOTES - Part 2 April 12,2011

BFS

BFS (breadth first search) is an algorithm to find the shortest paths from a given vertex in an
unweighted graph. It takes ©(V + E) time.

BFS(V,Ad,s)
level={s: 0}; parent = {s: None}; i=1
[frontier=[s] #previous level, 1-1
while frontier
next=[] #next level, 1
for u in frontier
for v in Adj[u]
if v not 1 level #not yet seen
level[v] =1 #level of u+l
parent[v]l =u
next.append(v)
frontier = next
1+=1

DFS

DFS (depth first search) is an aIgorithmr that explores an unweighted graph. DFS is useful for many
other algorithms, including finding strongly connected components, topological sort, detecting
cycles. DFS does not necessarily find shortest paths. It also runs in ©(V + E) time.
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* parent = {s: None}
o call DFS-visit (V, Ady, s)

def DFS-visit (V, Adj, u)

for v in Adj[u]
if v not m parent #not yet seen
parent[v]=u
DEFS-visit (V, Adj, v) #recurse!
Edge Classification

We classify the edges in the resulting DFS tree as one of the following four types:
1. Tree edge - an edge that is traversed during the search.
2. Back edge - an edge (u,v) that goes from a node u to an ancestor of it in the DFS tree.
3. Forward edge - an edge (u, v) that goes from a node u to a descendant of it in the DFS tree.
4. Cross edge - any other edge in the original graph not classified as one of the above three

types.

Selected Past Test Questions

You are at an airport in a foreign city and would like to choose a hotel that has the maximum
number of shortest paths from the airport (so that you reduce the risk of gefting lost). Suppose you
are given a city map with unit distance between each pair of directly connected locations. Design
an O(V + E)-time algorithm that finds the number of shortest paths between the airport (the source
vertex s) and the hotel (the target vertex t).

If a topological sort exists for the vertices in a directed graph, then a DFS on the
graph will produce no back edges.
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Other Important Topics

We did not have time to cover all possible topics regarding Graphs/BFS/DFS at the review session.
You should also review anything else in the lecture/recitation notes. For example:

e Beginning/Finishing times for DFS

Topological sort

BFS queue vs DFS stack

Rubik’s cube graph

Proofs of correctness and runtime

e DAG’s

Connected components
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1 Depth First Search: Characterizing Nodes and Edges

1.1 Discovery and Finishing Times

Discovery Time: The discovery time d[v] is the number of nodes discovered or finished before first seeing
v (call to DFS-VISIT).

Finishing Time: The finishing time f[v] is the number of nodes discovered or finished before finishing
the expansion of v (return from DFS-VISIT).



tree edges (formed by parent)
nontree edges

back edge: to ancestor
< jifbrward edge: to descendant
Cross edge (to another subtree)

Figure 1: Edge classifications

For two nodes u and v, either [d[u], fu]] C [d[v], f[v]] (or vice versa). or the intervals [d[u], f[u]] and
[d[v], flv]] are disjoint.

Proof: If u is a descendent of v in the search then dfv] < d[u]. Moreover, we must return from
DFS-VisiT(u) before we return from DFS-VIsiT(v) so flu] > f[v]. In this case [d[u], fu]] C [d[v], f[v]].

If w is not a descendent of v and v is not a descendent of u then we must either finish expanding v
before we discover u or finish u before discovering v (since if we discover u while expanding v then u is
a descendent of v). In this case [d[u], f[u]] and [d[v], f[v]] are disjoint.

1.2 Edge Classifications
When doing a DFS, we think about four types of edges:

o Tree edges: Edges traversed in the search. If the edge is (u,v) then, when we first saw edge
(u,v), we expanded v. If there is a path of tree edges from w to s then w is an ancestor of s and

[d[s], f[s]] < [d[w], flw]]-

e Back edges: A mnon-tree edge leading from a node u to a node v where there is a path from
v to u consisting of tree edges. If there is a back edge (u,v) then v is an ancestor of u so

[d[u], ful] € [d[v], FI]).

e Forward edges: A non-tree or -back edge leading from a node u to a node v where there is a path
of tree edges from u to v. Here u is an ancestor of v so [d[v], f[v]] C [d[u], f[u]].

e Cross edges: Edges that are not tree, back, or forward edges. If (u,v) is a cross edge then [d[u], f[u]]
and [d[v], f[v]] will be disjoint.

Examples of edge types are shown in Figure 1

1.3 Node Coloring

During depth first search, a node can be in three states:

e Never been seen (White)



e Currently on the stack (Gray)

e Already popped off the stack and fully expanded (Black)

The color of the node when we see it tells us a lot about the structure of the search to this point. Assume
we are expanding node v and considering child »

e u is white:

We will expand u right now
— u is a descendent of v

— v is an ancestor of u

v can reach u (possibly u cannot reach v)

— (v,u) is a tree edge

— We discovered u after v and must finish expanding it before we finish expanding v so [d[u], f[u]] C
[d[v], flv])-

e u is gray:

— u is currently on the stack, therefore it is currently being expanded

— u is an ancestor of v

— v is a descendent of u

— u can reach v and v can reach u

— (v,u) is a back edge

— There is a cycle in the graph involving v and u

— We started expanding v during the expansion of u so v was discovered after u and must be
finished before u: [d[v], f[v]] C [d[u], f[u]].

e u is black

— The graph must be directed
— v is an ancestor of © or u is not an ancestor of v and v is not an ancestor of u

— (v,u) is either a forward edge or a cross edge (which can be determined by starting and
finishing times)

— Either [d[u], f[u]] C [d[v], f[v]] (forward edge) or [d[u], f[u]] and [d[v], f[v]] are disjoint.

Undirected Graphs have only tree and back edges: Let (u,v) be an edge not traversed during
DFS. Then when we saw edge (u,v) we must have already pushed v onto the stack (since we do not
expand v). Moreover, if we are currently visiting u then clearly we had not visited v when we pushed
v onto the stack. Therefore, we cannot yet have finished v because there is a path from v to u (along
edge (u,v) among others). Thus v is an ancestor of u and (u,v) is a back edge.



2 Topological Sort

Recall: We must sort vertices such that if u can reach v then u is sorted before v. We run DFS on a
DAG and then sort by decreasing finish times. Given Section 1.1, it’s clear why it works:

Assume u can reach v. While expanding u, we must see v. When we see v, it is either white, in which
case v is a descendent of u and we have f[v] < f[u] or it is black, in which case f[v] < f[u] since f[u]
has yet to be assigned. Note that v cannot be gray since the graph is acyclic. Therefore if u can reach
v, 4 will have a higher finishing time than v and be sorted first.

3 Graph Representations and Transformations

3.1 Implicit Representation

Sometimes we don’t want to actually build the graph using an adjacency matrix or lists.

Example: An infinite grid. This cannot possibly be constructed... but that doesn’t mean you can’t

view it as a graph! Given a point (z,y) on the grid, we can define its neighbors using an adjacency
function

Api(z,y)
1 return [(z - 1,y),(z +1,9), (z,y — 1), (z,y + 1)]

That’s really all we need! Why is this useful? Because you may still care about things like the shortest
path in the grid from one point to another. Even though you cannot possibly represent the graph, you
can still do Dijkstra’s early-termination algorithm on it!

3.2 Graph Transformations

Problem: Assume we add 1 to every weight in a graph. Can this change the shortest path from u to
v? What if we multiply every weight by a positive constant a?

Solution: After adding 1 to every weight the path lengths change by:

w'(p) = w(p) +|p|

where w'(p) is the cost of p after we add 1 to every weight, w(p) is the cost before and |p| is the length
of the path. Therefore, adding 1 to every weight can change a path. Assume we have one path from s
to v with three edges, each with weight 1 and another path with only one edge of weight 4. Then the
shortest path from s to v with unmodified weights is along the 3-edge path (length 3) while the shortest
path from s to v with modified weights is along the one edge (length 4).

If we multiply each weight by 1 then
w'(p) = aw(p)

Therefore if w(p1) < w(p2), w'(p1) < w'(p2) and the shortest path remains the same.



Fall 2009 Quiz 2 Problem 5: Given an undirected, weighted graph G, we have some subset of edges
R C E that are considered “rough”. Give an algorithm to find the shortest point from a vertex s to all
other vertices that uses at most one rough edge.

Solution: Create a new directed graph G' = (V', E’). For every vertex v € V, add two vertices v,
and v, to V' (so |V| = 2|V”’|). For each smooth edge (u,v), add the edges (us,vs), (vs,us), (Uy,v,) and
(vr,ur) to E' (remember (u,v) was undirected). For each rough edge (u,v), add the edges (us,v,) and
(vs,ur) to E'. Run Dijkstra on G’ from s,. Then (s, v) = min(d[v,], d[vy]).

In this graph, both the smooth (subscript s) and rough (subscript r) clusters have only smooth edges.
However, rough edges are only in the graph as a path from the smooth to the rough cluster. Once you
have traversed a rough edge to the rough cluster, there is no path back. Therefore, if we start at s, and
finish at v, we have traversed exactly one rough edge. If we start at s, and end at vy, we traversed no
rough edges.

4 Shortest Path Theorems

You can cite any of these during the quiz so you should definitely know them! Knowing their proofs will
help you understand why all the shortest path algorithms work. All are proved in CLRS or in the notes
from Recitation 15.

e Subpath Theorem Let {v;,v2,...,v,} be a shortest path from v; to v,. Then any subsequence
of this path from v; to v; is a shortest path from v; to v;.
e Triangle Inequality Yu,v,z € V, we have d(u,v) < 6(u,z) + d(z,v).

¢ Upper Bound Property We always have d[v] > d(s,v) and if we ever find d[v] = d(s,v), d[v]
never changes.

e Path Relaxation Property Assume we have a graph G with no negative cycles. Let p =
(vo,v1,...,v5) be a shortest path from vy to v;. Any sequence of calls to RELAX that includes, in
order, the relaxations of (vg,v1), (v1,v2), ..., (vj—1,v;) produces d[v;] = &(vp,v;) after all of these
relaxations and at all times afterwards. Note that this property holds regardless of what other
relaxation calls are made before, during, or after these relaxations.

5 Bellman-Ford

5.1 Things to Know

e You cannot be sure that d[v] = é(s,v) until the algorithm has finished.

e Bellman-Ford returns FALSE if it finds a negative cycle.

e The running time is O(|V||E|). This is (much) worse than Dijkstra’s algorithm.
e The running time of Bellman-Ford on a DAG is only O(|E| + |V]). See below.

e The proof for why this works is in the book and also in the notes for Recitation 15. Knowing this
proof is an excellent way of understanding how the algorithm works.



5.2 On a DAG

Bellman-Ford takes forever because we must relax all edges for every possible path in order. However,
on a DAG, we can figure out the order of relaxation easily! Here's what you do:

1. Topologically sort the graph O(|E| + |V|)
2. Run one iteration of Bellman-Ford taking the vertices in topological order O(|E| + |V])

3. Note: We know there are no cycles, so we don’t need to do the negative cycle check at the end!

Assume p = ((s = v, v1), (v2,v3), ..., (Un—1,vn)) is a shortest path. Now consider edge (v;,vi+1). Then
v; Is sorted after all vj; and before all v;5; so we relax all edges (vo,v1), ..., (vi—1,v;) before (vi,vit1)
and all edges (vi+1,Vit2,-.-; (Un—1,vn) after (vi,v;41). So by the path relaxation property (look it up in
CLRS or Recitation 15), we will report the shortest path!

6 Dijkstra’s Algorithm

6.1 Things to Know

e When a vertex v pops off the priority queue, d[v] = (s, v), the shortest path from s to v

e When a vertex v pops off the priority queue, no vertex u will pop off the priority queue at any
point later in the algorithm with dfu] < d[v].

e Once a vertex v has popped off the queue, we will never change d[v].

e The running time of Dijkstra depends on your priority queue implementation. If you use a Fibon-
nacci heap, the running time is O(|E| + |V|log|V]). If you use a binary heap, the running time is
O((IE| + |V]) log [V]).

e See the paper or Recitation 17 for speedups.

Fall 2008 Final Problem 9: Assume we have a directed graph G = (V, E) with non-negative edge
weights. We wish to find the shortest path from a vertex s € V to a vertex t € V' with one caveat: While
traversing a path from s to ¢ you may set one edge weight of your choosing to zero. Given an algorithm
for finding the shortest path with this caveat.

Solution: First run Dijkstra’s algorithm to find the shortest path from s to every other vertex in the
graph. Then run Dijkstra’s on the transpose graph to find the shortest path from every vertex in the
graph to t. Now iterate through the edges (u,v) calculating the path cost from s to ¢ if we set that edge
to zero weight:

w(s — t) = min(8(s,t), d(s,u) + 8(u,v))

Choose to set the edge to zero that minimizes w(s — ¢). Note that if the path cost from s to ¢ is non-zero
then w(s — t) should be less than §(s, ).



7 Example Problems

Fall 09 Quiz 2 Problem 3: Consider a graph G = (V| E) that has both directed and undirected edges.
There are no cycles in G that use only directed edges. Give an algorithm to assign each undirected edge
a direction so that the completely directed graph has no cycles.

Solution: First topologically sort the graph using only the directed edges. Create an array so that
for each vertex you store its number in the short. Then, for each undirected edge, draw the edge in the
direction that goes from the vertex with the lower sort number to the higher sort number.

Fall 2008 Problem 3a: Given a directed graph G, you would like to get from s to ¢ stopping at u if
not too inconvient where “too inconvenient” means the shortest path that stops at u is more than 10%
longer than the shortest path from s to . Give an algorithm for returning the shortest path from s to ¢
that stops at u if convenient.

Solution: Run Dijkstra’s algorithm once from s and once from u. The shortest path from s to ¢ is
found in doing Dijkstra’s algorithm from s. The shortest path from s to ¢ through u is the shortest path
from s to u plus the shortest path from u to t.

8 More Example Problems

Problem: Give an algorithm to find the shortest path containing an even number of edges in the
directed graph with non-negative weights. Your algorithm should have the same running time as Dijk-
stra’s.

Solution: - Create a new graph G’ as follows: for each v € V, add two-vertices v.oq and vp,e to V'
(so |V'| = 2|V|). Then for every edge (u,v) in E, add the edges (uyeq, Vhlye) and (“blue'”red? to E'
(so |E'| = 2|E|). Run Dijkstra on G’ starting at s,,4 and report the distance from s to v as the distance
from s o4 t0 Vpeq-

Every time you traverse an edge in G’ you change the color of your cluster. Therefore, if you begin
at a red vertex and end at a red vertex you must have traversed an even number of edges. Prove the
correctness rigorously yourself as an exercise in how Dijkstra works!

Critical Edges: You are given a graph G = (V, E) a weight function w : £ — R, and a source vertex
s. Assume w(e) > 0 for alle € E.

We say that an edge e is upwards critical if by increasing w(e) by any e > 0 we increase the shortest
path distance from s to some vertex v € V.

We say that an edge e is downwards critical if by decreasing w(e) by any € > 0 we decrease the shortest
path distance from s to some vertex v € V (however, by definition, if w(e) = 0 then e is not downwards
critical, because we can’t decrease its weight below 0).

1. Claim: an edge (u,v) is downwards critical if and only if there is a shortest path from s to v that
ends at (u,v), and w(u,v) > 0. Prove the claim above.



Solution: First, note that if (u,v) is on any shortest path, then because subpaths of shortest
paths are shortest paths, (u,v) will also be on a shortest path to v.

Second, we prove that (u,v) is downwards critical implies (u,v) is on the shortest path from s to
v.

Proof by contradiction: Assume (u,v) is downwards critical, but it is not on the shortest path
from s to v. Then d[s,v] < 8[s,u] + w(u,v), so let € = (§[s,u] + w(u,v) — §[s,v])/2 is positive. If
we decrease w(u,v) by ¢, we'll only be changing the cost of the paths to v going through (u,v), so
the cost of the minimum path will stay the same. By the choice of ¢, the best path going through
(u,v) will still cost more than the minimum path. So the minimum path cost doesn’t change when
w(u,v) is decreased by e. Contradiction.

Third, we prove that (u,v) is on the shortest path from s to v implies (u,v) is downwards critical.

If (u,v) is on a shortest path to v, then decreasing its weight by any ¢ > 0 decreases the cost
of that path. We know that no other path through v had a lower cost than w(w,v), so the path
containing (u,v) is still the shortest path to v. So by decreasing the weight of (u,v), the weight of
the shortest path to v is decreased, which means (u,v) is downwards critical.

. Make a claim similar to the one above, but for upwards critical edges, and prove it.

Solution: Claim: (u,v) is upwards critical if and only if all the shortest paths from s to v end
at (u,v).

First, we again start by noting that if (u,v) is on all shortest paths to any particular node, then
it must also be on all shortest paths to v.

Second, we prove that if (u,v) is upwards critical then all the shortest paths from s to v end at
(u,v).

If (u,v) is upwards critical, then increasing w(u,v) by € > 0 must increase the cost of all shortest
paths from s to v, otherwise the minimum cost to get from s to v would stay the same. Increasing
w(u,v) only impacts the paths containing (u,v), therefore (u,v) must be contained on all shortest

paths to v. Since all the edges have positive weights, (u,v) must be the last edge on any the
shortest path from s to v. :

Third, we prove that if all the shortest paths from s to v end at (u,v) then (u,v) is upwards
critical.

If all the shortest paths from s to v include (u,v), then increasing w(u,v) by any € > 0 increases
the cost of all these paths. Therefore, the minimum cost to get from s to v is increased, so (u,v)
is upwards critical.

- Using the claims from the previous two parts, give an O(Elog V) time algorithm that finds all
downwards critical edges and all upwards critical edges in G.

Solution: Run Dijkstra using binary heaps as a priority queue (binary trees or Fibonacci heaps
are also acceptable data structures here). Save the results in d[v] and =[v].

Iterate through all edges, and report an edge (u,v) as downwards critical if d[u] + w(u,v) = d[v].
This is correct because the edges satisfying the condition must belong to the shortest paths from
s to v. While doing this, compute de[v] = the number of downwards critical edges coming into v.

Iterate through all the vertices, and report (n[v],v) as upwards critical if dc[v] = 1. This is correct
because the check implies that (w[v],v) is the only edge coming into v that is on a shortest path
from s to v.



Running time analysis: all vertices are reachable from v, so it must be that V' = O(E). Then the
running time of Dijkstra is O((V + E)logV) = O(ElogV’). Reporting downwards critical edges
takes O(E), because we do O(1) work per iteration over all the edges. Reporting upwards critical
edges takes O(V'), because we do O(1) work per iteration over all the vertices. So the total running
time is O(ElogV + E + V) = O(ElogV)

9 Radix and Counting Sorts

9.1 Counting Sort

Counting sort can beat comparison sort bound because it doesn’t use comparisons. In order not to use
comparisons, we must have a little bit of “extra” knowledge. Namely: given an array A to sort, we need
to be able to map every element that might appear in A uniquely to integers in [1, k] where k is a small
integer.

Input: A array to be sorted
Output: B sorted array of elements of A

Pass 1: Create array C of length k. C[i] stores the number of times ¢ appears in A. For each i,
ClA[i]) = C[A[z]] + 1

Pass 2: For each entry i in C, put C[i] i’s in B.
This takes O(n + k).

Problem: B is not stably sorted. Two equal keys may swap their relative orders. We would like to avoid
that.

New algorithm: Create C’, which stores in C’[i] number of numbers in A less than or equal to i. Fill in
C’ after filling in C just by keeping running total.

Now, for j = length[A] downto 1, place A[j] at C’[A[j]] in B and decrement C’[A[j]]. Now the sorting
is stable.

Example: We know we are sorting numbers from 1 to 8

A = [2,7,5,3,5,4]
C = [0,1,1,1,2,0,1,0]
¢’ = [0,1,2,3,5,5,6,6

Stepping through the second pass (0 in B indicates nothing there yet):

1.

B = [0,0,0,0,0,0]
c 0,1,2,3,5,5,6,6]

B = [0,0,4,0,0,0]
B! 0,1,2,2,5,5,6,6]

I



B = [0;0,4,0,5,0]

¢’ = [0,1,2,2,4,5,6,6]
4.

B = [0,3,4,0,5,0]

¢ = [0,1,1,2,4,5,6,6]
5.

B = [0,3,4,5,5,0]

¢l = [0,1,1,2,3,6,6,6]
6.

B = [0,8,4,5,5,7]

¢ = [0,1,1,2,3,55.6]
7.

B = [2,8:4,55;7

¢’ = [0,0,1,2,8,5,5,6]

9.2 Radix Sort

Digit-by-digit sort of list of numbers. Sort on least-significant digit first using a stable sort.

‘Why least significant? Example: Most significant

33 33 52

5, —= 5 = 33

52 52 55
Oops!

Why do we need a stable sort? Because we don’t want to mess up orderings caused by earlier
digits in later digits!

Example: Sort 33, 55, 52

33 52 33
5% = 33 —= 52
52 55 95

We can only guarantee that 52 comes before 55 if we can guarantee the sort on the second digit is stable!

Running Time: Sorting n words of b bits each: Each word has b/r 2"-base digits. Example: 32-bit
word is has 4 8-bit digits. Each counting sort takes O(n + 2"), we do b/r sorts. Choose r = logn, gives
running time O(nb/logn).

10



Correctness: By induction on number of digits. Do it for practice!

11
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Quiz 2

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

e You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz booklet contains 19 pages, including this one. Two extra sheets of scratch paper
are attached. Please detach them before turning in your quiz at the end of the exam period.

e This quiz is closed book. You may use one handwritten, 8%" x 11" or A4 crib sheets (both
sides). No calculators or programmable devices are permitted. No cell phones or other
communications devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

e Good luck!

| Problem | Parts | Points | Grade | Grader | | Problem | Parts | Points | Grade | Grader |
1 8 24 6 - 10
2 6 24 7 - 10
3 4 12 8 - 10
4 - 10 9 - 10
5 - 10
Total 120

Name:

Athena username:

Nick Nick Tianren David Joe Joe Michael

Recimton WF10 WF11 WF12 WF1  WF2  WF3a WF3b
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Problem 1. True or false [24 points] (8 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice.
(Your explanation is worth more than your choice of true or false.)

(@) T F Instead of using counting sort to sort digits in the radix sort algorithm, we can
use any valid sorting algorithm and radix sort will still sort correctly.

(b) T F The depth of a breadth-first search tree on an undirected graph G = (V, E)) from
an arbitrary vertex v € V is the diameter of the graph G. (The diameter d of a
graph is the smallest d such that every pair of vertices s and ¢ have d(s,t) < d.)
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(¢) T F Every directed acyclic graph has exactly one topological ordering. has valid
topological orderings [a, b, c] or [a,c,b]. As another example, G = (V| E) =
({a, b}, {}) has valid topological orderings [a, b] or [b, c].

(d T F Given a graph G = (V, E) with positive edge weights, the Bellman-Ford algo-
rithm and Dijkstra’s algorithm can produce different shortest-path trees despite
always producing the same shortest-path weights.
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(e) T F Dijkstra’s algorithm may not terminate if the graph contains negative-weight
edges.

(f) T F Consider a weighted directed graph G = (V, F,w) and let X be a shortest s-t
path for s,t € V. If we double the weight of every edge in the graph, set-
ting w'(e) = 2w(e) for each e € E, then X will still be a shortest s-t path in
(V,E,w).
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(g0 T F If a depth-first search on a directed graph G = (V, E) produces exactly one back
edge, then it is possible to choose an edge e € E such that the graph G' =
(V, E — {e}) is acyclic.

(h) T F If a directed graph G is cyclic but can be made acyclic by removing one edge,
then a depth-first search in G will encounter exactly one back edge.
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Problem 2. Short answer [24 points] (6 parts)

(a) What is the running time of RADIX-SORT on an array of n integers in the range
0,1,...,n° — 1 when using base-10 representation? What is the running time when
using a base-n representation?

(b) What is the running time of depth-first search, as a function of |V'| and | E|, if the input
graph is represented by an adjacency matrix instead of an adjacency list?
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(¢) Consider the directed graph where vertices are reachable tic-tac-toe board positions
and edges represent valid moves. What are the in-degree and out-degree of the fol-
lowing vertex? (It is O’s turn.)

X X

O
O
X

(d) If we modify the RELAX portion of the Bellman-Ford algorithm so that it updates d[v]
and w[v] if d[v] > d[u] + w(u,v) (instead of doing so only if d[v] is strictly greater
than d[u] + w(u,v)), does the resulting algorithm still produce correct shortest-path
weights and a correct shortest-path tree? Justify your answer.
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(e) If you take 6.851, you’ll learn about a priority queue data structure that supports
EXTRACT-MIN and DECREASE-KEY on integers in {0,1,...,u — 1} in O(lglgu)
time per operation. What is the resulting running time of Dijkstra’s algorithm on a
weighted direct graph G = (V, E, w) with edge weights in {0,1,..., W —1}?

(f) Consider a weighted, directed acyclic graph G = (V, E, w) in which edges that leave
the source vertex s may have negative weights and all other edge weights are non-
negative. Does Dijkstra’s algorithm correctly compute the shortest-path weight (s, t)
from s to every vertex ¢ in this graph? Justify your answer.
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Problem 3. You are the computer [12 points] (4 parts)

(a) What is the result of relaxing the following edges?

(b) Perform a depth-first search on the following graph starting at A. Label every edge in
the graph with 7" if it’s a tree edge, B if it’s a back edge, F if it’s a forward edge, and
C'if it’s a cross edge. To ensure that your solution will be exactly the same as the staff
solution, assume that whenever faced with a decision of which node to pick from a set
of nodes, pick the node whose label occurs earliest in the alphabet.
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(c) Run Dijkstra’s algorithm on the following directed graph, starting at vertex S. What is
the order in which vertices get removed from the priority queue? What is the resulting
shortest-path tree?

10
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(d) Radix sort the following list of integers in base 10 (smallest at top, largest at bottom).
Show the resulting order after each run of counting sort.

Original list | First sort | Second sort | Third sort
583
625
682
243
745
522
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Problem 4. Burgers would be great right about now [10 points]

Suppose that you want to get from vertex s to vertex ¢ in an unweighted graph G = (V| E), but
you would like to stop by vertex w if it is possible to do so without increasing the length of your
path by more than a factor of a.

Describe an efficient algorithm that would determine an optimal s-t path given your preference
for stopping at u along the way if doing so is not prohibitively costly. (It should either return the
shortest path from s to ¢ or the shortest path from s to ¢ containing «, depending on the situation.)

If it helps, imagine that there are burgers at u.
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Problem 5. How I met your midterm [10 points]

Ted and Marshall are taking a roadtrip from Somerville to Vancouver (that’s in Canada). Because
it’s a 52-hour drive, Ted and Marshall decide to switch off driving at each rest stop they visit;
however, because Ted has a better sense of direction than Marshall, he should be driving both
when they depart and when they arrive (to navigate the city streets).

Given a route map represented as a weighted undirected graph G = (V, E, w) with positive edge
weights, where vertices represent rest stops and edges represent routes between rest stops, devise
an efficient algorithm to find a route (if possible) of minimum distance between Somerville and
Vancouver such that Ted and Marshall alternate edges and Ted drives the first and last edge.
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Problem 6. Just reverse the polarity already [10 points]

Professor Kirk has managed to get himself lost in his brand new starship. Furthermore, while
boldly going places and meeting strange new, oddly humanoid aliens, his starship’s engines have
developed a strange problem: he can only make “transwarp jump” to solar systems at distance
exactly 5 from his location.

Given a starmap represented as an unweighted undirected graph G = (V, E'), where vertices repre-
sent glorious new solar systems to explore and edges represent transwarp routes, devise an efficient
algorithm to find a route (if possible) of minimum distance from Kirk’s current location s to the
location ¢ representing Earth, that Kirk’s ship will be able to follow. Please hurry—Professor Kirk
doesn’t want to miss his hot stardate!
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Problem 7. The price is close enough [10 points]

As part of a new game show, contestants take turns making several integer guesses between 0
and 1,000,000 (inclusive). In scoring each round, the show’s host, Professor Piotrik Kellmaine,
needs to know which two guesses were closest to each other. Provide an asymptotically time-
optimal algorithm that answers this question, argue that it is correct, and give and explain its time
complexity.
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Problem 8. Call it the scenic route [10 points]

In the longest path problem, we’re given a weighted directed graph G = (V, E, w), asource s € V,
and we’re asked to find the longest simple path from s to every vertex in GG. For a general graph, it’s
not known whether there exists a polynomial-time algorithm to solve this problem. If we restrict G
to be acyclic, however, this problem can be solved in polynomial time. Give an efficient algorithm
for finding the longest paths from s in a weighted directed acyclic graph G, give its runtime, and
explain why your solution doesn’t work when G is not acyclic.



6.006 Quiz 2 Name 17

Problem 9. Rated M for “Masochistic” [10 points]

You're playing the hit new platform video game, Mega Meat Man, and are having trouble getting
through Level 6006. You’ve decided to model the level as a directed graph, where each vertex
represents a platform you can reach, and each edge represents a jump you can try to make. After
extensive experimentation, you’ve labeled each edge with the probability (a number in [0, 1]) that
you can successfully make the jump. Unfortunately, if you fail to make any jump, you instantly
die, and have to start over. Describe an efficient algorithm to find a path from the start platform s
to the goal platform ¢ that maximizes the probability of a successful traversal.
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Quiz 2 Solutions

Problem 1. True or false [24 points] (8 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice.
(Your explanation is worth more than your choice of true or false.)

(a) T F Instead of using counting sort to sort digits in the radix sort algorithm, we can
use any valid sorting algorithm and radix sort will still sort correctly.

Solution:  False, Need stable sort.

(b) T F The depth of a breadth-first search tree on an undirected graph G = (V, E) from
an arbitrary vertex v € V is the diameter of the graph G. (The diameter d of a
graph is the smallest d such that every pair of vertices s and ¢ have 8(s,t) < d.)

Solution: False. An arbitrary vertex could lay closer to the 'center’ of the
graph, hence the BFS depth will be underestimating the diameter. For exam-
ple, in graph G = (V. E) = ({a.v,b}, {(a.v), (v,b)}), a BFS from v will have
depth 1 but the graph has diameter 2.
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(© TF

d) TF

Every directed acyclic graph has exactly one topological ordering.

Solution: False. Some priority constraints may be unspecified, and multiple
orderings may be possible for a given DAG. For example a graph G = (V, E) =
({a, b, ¢}, {(a,b), (a,c)}) has valid topological orderings [a, b, c] or [a,c,b]. As
another example, G = (V, E) = ({a, b}, {}) has valid topological orderings [a, b]
or [b.c].

Given a graph G = (V, E) with positive edge weights, the Bellman-Ford algo-
rithm and Dijkstra’s algorithm can produce different shortest-path trees despite
always producing the same shortest-path weights.

Solution: True, Both algorithms are guaranteed to produce the same shortest-
path weight, but if there are multiple shortest paths, Dijkstra’s will choose the
shortest path according to the greedy strategy, and Bellman-Ford will choose the
shortest path depending on the order of relaxations, and the two shortest path
trees may be different.
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(e) T F Dijkstra’s algorithm may not terminate if the graph contains negative-weight

M TF

edges.

Solution: False. It always terminates after | E| relaxations and |V |+ | E| priority
queue operations, but may produce incorrect results.

Consider a weighted directed graph G = (V, £, w) and let X be a shortest s-t
path for s,t € V. If we double the weight of every edge in the graph, sel-
ting w'(e) = 2w(e) for cach e € E, then X will still be a shortest s-t path in
(V, E,u').

Solution: True. Any linear transformation of all weights maintains all rela-
tive path lengths, and thus shortest paths will continue to be shortest paths, and
more generally all paths will have the same relative ordering. One simple way of
thinking about this is unit conversions between kilometers and miles.
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(g) T F If adepth-first search on a directed graph G = (V, E) produces exactly onc back

(th) TF

edge, then it is possible to choose an edge e € FE such that the graph G' =
(V, E - {e}) is ucyclic,

Solution: True. Removing the back edge will result in a graph with no back
edges, and thus a graph with no cycles (as every graph with at least one cycle
has at least one back edge). Notice that a graph can have two cycles but a sin-
gle back edge, thus removing some edge that disrupts that cycle is insufficient,
you have to remove specifically the back edge. For example, in graph G =
(V,E) = ({a,b,c}, {(a,b),(b,c), (a,c), (c,a)}), there are two cycles [a, b, ¢, a)
and [a, c, al, but only one back edge (c, a). Removing edge (b, ¢) disrupts one of
the cycles that gave rise to the back edge ([a, b, ¢, a]), but another cycle remains,
la, ¢ a].

If a directed graph G is eyclic but can be made acyclic by removing one edge,
then a depth-first search in G will encounter exactly one back edge.

Solution: False. You can have multiple back edges, yet it can be possible to
remove one edge that destroys all cycles. For example, in graph G = (V, E) =
({a,b,¢}, {(a,b), (b,c), (b, a), (¢, a)}), there are two eycles ([a, b, a] and [a. b, ¢, a])
and a DFS from a in G returns two back edges ((b, @) and (c, a)), but a single re-
moval of edge (a, b) can disrupt both cycles, making the resulting graph acyclic.
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Problem 2. Short answer [24 points] (6 parts)

(a) What is the running time of RADIX-SORT on an array of n integers in the range

(b

—

0,1,...,n% — 1 when using base-10 representation? What is the running time when
using a base-n representation?

Solution: Using base 10, each integer has d = logn® = 5logn digits. Each
COUNTING-SORT call takes ©(n + 10) = ©(n) time, so the running time of RADIX-
SORT is ©(nd) = B(nlogn).

Using base n, each integer has d = log,, n® = 5 digits, so the running time of RADIX-
SORT is ©(5n) = O(n).

2 points were awarded for correct answers on each part. A point was deducted if no
attempt to simplify running times were made (e.g. if running time for base-10 repre-
sentation was left as ©(log,, n®(n + 10))

Common mistakes included substituting n® as the base instead of 10 or n. This led to
B(n®) and ©(n%) runtimes

What is the running time of depth-first search, as a function of |V| and | £|, if the input
graph is represented by an adjacency matrix instead of an adjacency list?

Solution: DFS visits each vertex once and as it visits each vertex, we need to find
all of its neighbors to figure out where to search next. Finding all its neighbors in an
adjacency matrix requires O(V') time, so overall the running time will be O(V?).

2 points were docked for answers that didn’t give the tightest runtime bound, for ex-
ample O(V? + E). While technically correct, it was a key point to realize that DFS
using an adjacency matrix doesn't depend on the number of edges in the graph.

6.006 Quiz 2 Solutions Name.

(c) Consider the directed graph where vertices are reachable tic-tac-toc board positions

(d

and edges represent valid moves. What are the in-degree and out-degree of the fol-
lowing vertex? (It is O's turn.)

X X

0
0
X

Solution: There were three possible vertices that could have pointed into this board
position:

X

®|O|O

O xolo

And there are four possible vertices that could have pointed out from this board posi-
tion as O has four spaces to move to. In-degree is 3, out-degree is 4.

If we modify the RELAX portion of the Bellman-Ford algorithm so that it updates d|v]
and 7[v] if d[v] > d[u] + w(u,v) (instead of doing so only if d[v] is strictly greater
than dfu] + w(u,v)), does the resulting algorithm still produce correct shortest-path
weights and a correct shortest-path tree? Justify your answer.

Solution: No. There exists a zero-weight cycle, then it is possible that relaxing an
edge will mess up parent pointers so that it is impossible to recreate a path back to
the source node. The easiest example is if we had a vertex v that had a zero-weight
edge pointing back to itself. If we relax that edge, v’s parent pointer will point back
to itself. When we try to recreate a path from some vertex back to the source, if we
go through v, we will be stuck there. The shortest-path tree is broken. I point was
awarded for mentioning that shortest-path weights do get preserved, but also thinking
the tree was correct..
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(e) If you take 6.851, you'll learn about a priority queue data structure that supports

U]

EXTRACT-MIN and DECREASE-KEY on integers in {0,1,...,u — 1} in O(lglgu)
time per operation. What is the resulting running time of Dijkstra’s algorithm on a
weighted direct graph G = (V, E, w) with edge weights in {0,1,...,W = 1}?

Solution: The range of integers that this priority queue data structure (van Emde
Boas priority queue) will be from 0 to |V'|(W —1). This is because the longest possible
path will go through |V| edges of weight W —1. Almost the entire class substituted the
wrong value for u. Dijkstra’s will call EXTRACT-MIN O(V) times and DECREASE-
KEY O(E) times. In total, the runtime of Dijkstra’s using this new priority queue is
O((IVI+1E]) lglg(IV]w))

2 points were deducted for substituted the wrong u, but understanding how to use the
priority queue’s runtimes to get Dijkstra’s runtime

Consider a weighted, directed acyclic graph G = (V, £, w) in which edges that leave
the source vertex s may have negative weights and all other edge weights are non-
negative. Does Dijkstra's algorithm correctly compute the shortest-path weight d(s, t)
from s to every vertex  in this graph? Justify your answer.

Solution:  Yes, For the correctness of Dijkstra, it is sufficient to show that dfv] =
d(s,v) for every v € V when v is added to s. Given the shortest s ~ v path and given
that vertex u precedes v on that path, we need to verify that w is in S, If u = s, then
certainly u is in S. For all other vertices, we have defined v to be the vertex not in S
that is closest to s. Since d[v] = d[u] + w(u,v) and w(x, v) > 0 for all edges except
possibly those leaving the source, u must be in § since it is closer to s than v.

It was not sufficient to state that this works because there are no negative weight cycles.
Negative weight edges in DAGs can break Dijkstra’s in general, so more justification
was needed on why in this case Dijkstra’s works.
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Problem 3. You are the computer [12 points] (4 parts)

(a) What is the result of relaxing the following edges?

3
(i)
(ii)
(iii)
Solution: 7, 16, 11 for the new value of the right vertex

one point for each edge

(b) Perform a depth-first search on the following graph starting at A. Label every edge in

the graph with T if it's a tree edge, B if it's a back edge, F if it's a forward edge, and
C'if it’s a cross edge. To ensure that your solution will be exactly the same as the staff
solution, assume that whenever faced with a decision of which node to pick from a set
of nodes, pick the node whose label occurs earliest in the alphabet.
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Solution:

-1 for minor errors in labeling, sometimes resulting from incorrect choice of which
node to visit
-2 for major errors in labeling
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(c) Run Dijkstra’s algorithm on the following directed graph, starting at vertex 5. What is
the order in which vertices get removed from the priority queue? What is the resulting

shortest-path tree?

Solution: Dijkstra will visit the vertices in the following order: S, C, A, D, F E, B.
Dijkstra will relax the edge from D to E before the edge from F to E, since D is closer
to S than F is. As a result, the parent of each node is:

(—®
C—O ©—®
(&)

-1 for minor errors, such as a missing vertex in the ordering of vertices removed from
the priority queue or an incorrect edge in the shortest-path tree

-2 for major errors, such as not providing the shortest-path tree (some people mistak-
enly provided the shortest-path length in the tree)
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(d) Radix sort the following list of integers in base 10 (smallest at top, largest at bottom).

Name.

Show the resulting order after each run of counting sort.

Original list | First sort | Second sort | Third sort
583
625
682
243
745
522
Solution:

Original list | First sort | Second sort | Third sort
583 682 522 243
625 522 625 522
682 583 243 583
243 243 745 625
745 625 682 682
522 745 583 745

-1 for minor errors

-2 for major errors, such as not using a stable sort for the individual sorts.
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Problem 4. Burgers would be great right about now [10 points]

Suppose thal you wanl 1o gel from vertex s to vertex ¢ in an unweighted graph G = (V, E), but
you would like to stop by vertex u if it is possible to do so without increasing the length of your
path by more than a factor of .

Describe an elficient algorithm that would determine an optimal s-¢ path given your preference
for stopping at u along the way if doing so is not prohibitively costly. (It should either return the
shortest path from s to ¢ or the shortest path from s to ¢ containing u, depending on the situation.)

If it helps, imagine that there are burgers at u.

Solution: Since the graph is unweighted, one can use BFS for the shortest paths computation,
‘We run BFS twice, once from s and once from u. The shortest path from s to ¢ containing u is
composed of the shortest path from s to u and the shortest path from u to t. We can now compare
the length of this path to the length of the shortest path from s to ¢, and choose the one to return
based on their lengths. The total running time is O(V + E).

An alternative is to use Dijkstra algorithm. This works, but the algorithm becomes slower. Same
for Bellman-Ford.
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Problem 5. How I met your midterm [10 points]

Ted and Marshall are taking a roadtrip from Somerville to Vancouver (that’s in Canada). Because
it's a 52-hour drive, Ted and Marshall decide to switch off driving at each rest stop they visit;
however, because Ted has a better sense of direction than Marshall, he should be driving both
when they depart and when they arrive (o navigate the city streets).

Given a route map represented as a weighted undirected graph G = (V, E, w) with positive edge
weights, where vertices represent rest stops and edges represent routes between rest stops, devise
an cfficient algorithm to find a route (if possible) of minimum distance between Somerville and
Vancouver such that Ted and Marshall alternate edges and Ted drives the first and last edge.

Solution: There are two correct and efficient ways to solve this problem. The first solution makes
a new graph G, For every vertex u in G, there are two vertices uy, and ur in G': these represent
reaching the rest stop u when Marshall (for uyy) or Ted (for uy) will drive next. For every edge
(u,v) in G, there are two edges in G': (uar, vr) and (ur, var). Both of these edges have the same
weight as the original.

We run Dijkstra’s algorithm on this new graph to [ind the shortest path from Somerviller to
Vancouvery (since Ted drives ro Vancouver, Marshall would drive next if they continued). This
guarantees that we find a path where Ted and Marshall alternate, and Ted drives the first and last
segment, Constructing this graph takes linear time, and running Dijkstra’s algorithm on it takes
O(V log V + E) time with a Fibonacci heap (it’s just a constant factor worse than running Dijkstra
on the original graph).

The second correct solution is equivalent to the first, but instead of modifying the graph, we mod-
ify Dijkstra’s algorithm. Dijkstra’s algorithm will store two minimum distances and two parent
pointers for each vertex u: the minimum distance dygq using an odd number of edges, and the
minimum distance dy., Using an even number of edges, along with their parent pointers 7,qq and
Teven: (These correspond to the minimum distance and parent pointers for uz and uy in the previ-
ous solution). In addition, we put each vertex in the priority queue twice: once with doag as its key,
and once with dyyeq as its key (this corresponds to putting both ur and uy in the priority queue in
the previous solution).

When we relax edges in the modified version of Dijkstra, we check whether Vdggd > t.deven +
w(u,v), and vice versa. One important detail is that we need to initialize Somerville.dyaq to oo,
not 0. This algorithm has the same running time as the previous one. .

A correct but less efficient algorithm used Dijkstra, but modified it to traverse two edges at a time
on every step except the first, to guarantee a path with an odd number of edges was found. Many
students incorrectly claimed this had the same running time as Dijkstra’s algorithm; however,
computing all the paths of length 2 (this is the square of the graph G) actually takes a total of
O(V E) time, whether you compute it beforehand or compute it for each vertex when you remove
it from Dijkstra’s priority queue. This solution got 5 points.

The most common mistake on the problem was to augment Dijkstra (or Bellman-Ford) by keeping
track of either the shortest path’s edge count for each vertex, or the parity of the number edges in
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the shortest path. This is insufficient to guarantee that the shortest odd-edge-length path is found,
and this solution got 2 points. Here is an example of a graph where the algorithm fails: once the
odd-edge-count path of weight 1 to A is found, Dijkstra will ignore the even-edge-count path of
weight 4 to A since it has greater weight. As a result, the odd-edge-count path to V will be missed
entirely.

Another common mistake was to use Dijkstra, and if the path Dijkstra found had an even number
of edges, to atlempt to add or remove edges until a path with an odd number of edges was obtained.
In general, there is no guarantee the shortest path with an odd number of edges is at all related to
the shortest path with an even number of edges.

Some algorithms ran Dijkstra, and if Dijkstra found a path with an even number of edges, removed
some edge or edges from the graph and re-ran Dijkstra. This algorithm fails on the following
graph, where the shortest path with an odd number of edges uses «ll the edges and vertices (note
that we visit A twice; the first time, Ted drives to A, and the second time, Marshall drives to A):

One last common mistake was to attempt to use Breadth-First Search to label each vertex as an
odd or even number of edges from Somerville (or sometimes to label them as odd, even, or both).
This does not help: the smallest-weight path with an odd number of edges could go through any
particular vertex after having traversed an odd or even number of edges, and BFS will not correctly
predict which. These solutions got 0 points.

Algorithms which returned the correct answer but with exponential running time got ar most 2
points.
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Problem 6. Just reverse the polarity already [10 points]

Professor Kirk has managed to get himself lost in his brand new starship. Furthermore, while
boldly going places and meeting strange new, oddly humanoid aliens, his starship's engines have
developed a strange problem: he can only make “transwarp jump” to solar systems at distance
exactly 5 from his location.

Given a starmap represented as an unweighted undirected graph G = (V, E), where vertices repre-
sent glorious new solar systems to explore and edges represent transwarp routes, devise an efficient
algorithm to find a route (if possible) of minimum distance from Kirk’s current location s to the
location ¢ representing Earth, that Kirk’s ship will be able to follow. Please hurry—Professor Kirk
doesn't want to miss his hot stardate!

Solution: In general, the idea is to convert G = (V, E) into a graph G' = (V, E') representing all
the feasible transwarp jumps that Kirk can make, i.e., with an edge (u, v) if there is a simple path
in G from u to v of length exactly 5. (Note that this definition is the notion of “distance” in the
problem, as clarified during the quiz.) Once we have such a graph G', we simply run breadth-first
search on G’ from s, and follow parent pointers from ¢ to recover the shortest route (if there one)
for Kirk to follow. The running time of this breadth-first search is O(V + E') = O(V?).

The central question is how to compute G'. The best solutions we know run in O(V*) time. There
are two ways to achieve this bound.

The first O(V*) algorithm is a modification of breadth-first search from every vertex. For each
vertex v, we construct the set Ny (v) of all neighbors of v. Next we construct the set Na(v) of all
vertices reachable by a path of length 2 from v, by taking the union of N (u) for eachu € Ny(v).
Then we construct Ny(v), Ni(v), and N5(v) similarly. Constructing N, (v) costs O(V') time, while
constructing Ni.(v) for k € {2,3,4,5} costs O(v?) time. The key here is that we remove duplicate
vertices in each set Nj(v), so each such set has size O(V'). Because we do this for every vertex v,
we spend O(v?) time total. Finally we set I/ = {(v,w) : w € N3(v)}.

The second O(V'?) algorithm is to compute the adjacency matrix A, and compute A% = A- A. A.
A- A. Each matrix multiplication costs O(V*) time, for a total of O(V*) time. The nonzero entrics
in this matrix correspond to the edges in G,

A simpler O(V1E) = O(V®) algorithm is much simpler: for each vertex vy, for each neighbor v
of vy, for each neighbor v2 of vy, for cach neighbor v; of vy, for each neighbor v4 of 3, for cach
neighbor vg of vy, add the edge (vo, v5) to E’. The first two loops cost a factor of O(E), and the
next four loops cost a factor of O(V4).

The grading scheme was as follows. A O(V?) solution was worth a nominal value of 10/10. A
O(V*) solution was worth a nominal value of 9/10. Very few students achieved such solutions.
A O(V*E) or O(V®) solution was worth a nominal value of 7/10. These nominal values were
adjusted according to clarity, quality, and/or errors. The idea of computing a graph like G was
worth a nominal value of 4/10, Executing this idea by performing a depth-5 BFS or DFS was
worth a nominal value of 5/10, Simply running BFS and focusing on the layers divisible by 5 was
worth a nominal value of 1/10.
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Problem 7, The price is close enough [10 points]

As part of a new game show, conlestants lake turns making several integer guesses between 0
and 1,000,000 (inclusive). In scoring each round, the show’s host, Professor Piotrik Kellmaine,
needs to know which two guesses were closest to each other. Provide an asymptotically time-
optimal algorithm that answers this question, argue that it is correct, and give and explain its time
complexity.

Solution: algorithm: We first radix sort the input n guesses using base 10. Then we go through
the list of n sorted integers and compare adjacent ones o see which pair of adjacent integers are
closest to each other, and output that pair of gusses.

correctness: We see that the closest pair of guesses have to be adjacent to each other in the sorted
list because or else there will be some integers in between them making them not the closest pair.
In other word, say a and b are the closest pair, then if a < ¢ < b, we see b — ¢ and ¢ — a are less
than b — a, therefore contradicting the fact that a and b are the closest pair of guesses.

runtime: radix sort takes Q(7 - (n + 10)) time if we take base 10 which is O(n) time. Going
through the list once and compare all adjacent pairs only take O(n) time because there are only
n — 1 pairs we have to compare and find the minimum absolute difference between them. So the
total running time is O(n).

grading: one point is taken off for not mentioning the base of radix sort or using counting
sort instead because 1000000 is a relatively big constant factor in the case of this problem. three
points are taken off if students did not present an explanation on how to iterate through the sorted
list to find the min difference.

three points are given if the student gave the naive algorithm which takes all M:_”l pairs and
find the minimum. four points are given for students who choose a sorting algorithm that takes
O(nlgn) time.
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Problem 8, Call it the scenic route [10 points]

In the longest path problem, we're given a weighted directed graph G = (V. E, w), asource s € V,
and we're asked to find the longest simple path from s to every vertex in G. For a general graph, it's
not known whether there exists a polynomial-time algarithm to solve this problem. If we restrict G
to be acyclic, however, this problem can be solved in polynomial time. Give an efficient algorithm
for finding the longest paths from s in a weighted directed acyclic graph G, give its runtime, and
explain why your solution doesn’t work when G is not acyclic.

Solution: Algorithm: We map this to a single-source shortest paths problem by creating a new
graph, G', with the same vertices and edges as G but whose weight function is the negative of the
original.

Now we can run the single-source shortest paths algorithm for DAG’s shown in class to find the
shortest paths in ©(V + ). This algorithm relaxes the edges of G’ in topologically sorted order
only once. See class notes to see why this works for finding the shortest paths in a DAG.

We could alternatively use Bellman Ford here, although that will give us a suboptimal runtime.

Runtime: Creating G is a simple process and only requires @(V + E) time to iterate over all the
edges and vertices to create our new graph and weight function. Topologically sorting the edges
takes O(V + E) since topological sort is done using a modification of the DFS algorithm. Finally,
relaxing all the edges once only takes G(E) time. Thus, the runtime is ©(V + E) overall.

Why G needs to be acyclic: We can’t use the single-source shortest paths algorithm for DAG’s
if G is not acyclic since we would no longer have a DAG. But, even assuming we used Bellman
Ford, which can handle negative weight cycles, we would still be in trouble. The main reason we
need G to be acyclic is that we're looking for the longest simple path (i.e. no vertex is repeated).
Negative weight cycles in G' wouldn’t be much of an issue if we didn’t restrict our paths to be
simple. Simply detecting them and marking those paths as infinite is easy to do in asymptotically
the same time as Bellman Ford.

Grading: Overall, 6 points were given to the algorithm and 4 points were given to the explanation
of why we need G to be acyclic.

Many students tried BES or DFS, both of only work on unweighted graphs. Another large portion
of students attempted to use Dijkstra or a modified Dijkstra algorithm. The problem with a Dijkstra
approach is that Dijkstra for shortest paths relies on the fact that once we visit a vertex, we wont
ever find a shorter path to that vertex. This requires non neg. edge weights, however. So, in the
longest path problem, we would need all neg. edge weights in order to be able to have a similar
invariant. But, there's nothing in the problem statement that allows us to make this assumption. If
you're still skeptical, here's a counterexample to the Dijkstra approaches seen:
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Dijkstra will not find the longest path from S to C.

Otherwise, the majority of students did not give an adequate explanation to why the graph needs
to be acyclic. We were mainly looking for some comment about the problem specifying simple
paths, since that's at the heart of the matter. Any solution that didn’t mention this, or touch on
something close to this, lost credit.

Finally, while Bellman Ford is a correct approach, it is not optimal. Only a point was docked for
this.
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Problem 9, Rated M for “Masochistic” [10 points]

You're playing the hil new platform video game, Mega Meat Man, and are having trouble getting
through Level 6006. You've decided to model the level as a directed graph, where each vertex
represents a platform you can reach, and each edge represents a jump you can try to make. After
extensive experimentation, you've labeled each edge with the probability (a number in [0, 1]) that
you can successfully make the jump. Unfortunately, if you fail to make any jump, you instantly
die, and have to start over. Describe an efficient algorithm to find a path from the start platform s
to the goal platform ¢ that maximizes the probability of a successful traversal.

Solution: Intuitively, we'd like to maximize [[; p; over the vertices in the path we take from s
to t. Since the log function is monotonic, this is the same as maximizing 3, log p;, which is the
same as minimizing — 3~ logp; = ¥, (—log p;). Therefore, if we create an auxiliary graph in
which the weight w of each edge is replaced with — log w, the shortest s-¢ path is the maximum
probability path. Additionally, p; € [0.1] = logp; < 0 = —logp; = 0, so all edge
weights are nonnegative. The negative logarithm goes to oo as p; goes to 0, which suits us just
fine; if we never make the jump, we should never try that path. Because all of our edge weights are
nonnegative, we can use Dijkstra to find the shortest s-¢ path; the creation of the auxiliary graph
takes O(| E|) time, so the total time complexity of the algorithm is O(|E| + |V|lg [V]) (if we use
a Fibonnaci heap).

Solutions that did not provide the time complexity of the algorithm or that used a less efficient
algorithm, solutions that did not convincingly argue that edge weights were nonnegative (while
using Dijkstra), and solutions that did not convincingly argue that the shortest s-¢ path in the
auxiliary graph corresponded to the solution to the original problem lost points. Some solutions
tried to modify Dijkstra instead of reducing the problem given to a standard shortest-path problem.
This itself did not cause any loss of credit, but often led to mistakes (subtle or otherwise) or a lack
of clarity.
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Quiz 2

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

e You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz is closed book. You may use two 8%” x 11" or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e When writing an algorithm, a clear description in English will suffice. Pseudo-code is not
required.

e When asked for an algorithm, your algorithm should have the time complexity specified in
the problem with a correct analysis. If you cannot find such an algorithm, you will generally
receive partial credit for a slower algorithm if you analyze your algorithm correctly.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. This quiz is shorter
than the first, so we expect you to take the time to write clear and thorough solutions.

e Good luck!

[ Problem [ Parts | Points | Grade | Grader |

1 2 2
2 4 38
3 2 20
. 1 20
5 3 20
6 1 20

Total 120

Name:
Friday Aleksander Arnab Alina Matthew

Recitation: 11 AM 12 PM 3PM 4 PM
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Problem 1. What is Your Name? [2 points] (2 parts)

(a) [1 point] Flip back to the cover page. Write your name there.

(b) [1 point] Flip back to the cover page. Circle your recitation section.
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Problem 2. Short Answer [38 points] (4 parts)

(a) [9 points] Give an example of a graph such that running Dijkstra on it would give
incorrect distances.

(b) [9 points] Give an efficient algorithm to sort n dates (represented as month-day-year
and all from the 20" century), and analyze the running time.
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(c) [10 points] Give an O(V + E)-time algorithm to remove all the cycles in a directed
graph G = (V, E). Removing a cycle means removing an edge of the cycle. If there
are k cycles in G, the algorithm should only remove O(k) edges.

(d) [10 points] Let G = (V, E) be a weighted, directed graph with exactly one negative-
weight edge and no negative-weight cycles. Give an algorithm to find the shortest
distance from s to all other vertices in V' that has the same running time as Dijkstra.
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Problem 3. Path Problems [20 points] (2 parts)

We are given a directed graph G = (V, E), and, for each edge (u,v) € E, we are given a proba-
bility f(u,v) that the edge may fail. These probabilities are independent. The reliability 7(p) of a
path p = (uy, uo, . . . ug) is the probability that no edge fails in the path, i.e.

7(p) = (1 — f(uy,ug)) - (1 — f(uz,us))... (1 — f(ug—1,ur)). Given a graph G, the edge failure
probabilities, and two vertices s,t € V', we are interested in finding a path from s to ¢ of maximum
reliability.

(a) [10 points] Propose an efficient algorithm to solve this problem. Analyze its running
time.

(b) [10 points] You tend to be risk-averse and in addition to finding a most reliable simple
path from s to ¢, you also want to find a next-most reliable simple path, and output
these two paths. Propose an algorithm to solve the problem, argue its correctness, and
give its asymptotic running time.
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Problem 4. Flight Plans [20 points]

When an airline is compiling flight plans to all destinations from an airport it serves, the flight
plans are plotted through the air over other airports in case the plane needs to make an emergency
landing. In other words, flights can be taken only along pre-defined edges between airports. Two
airports are adjacent if there is an edge between them. The airline also likes to ensure that all the

airports along a flight plan will be no more than three edges away from an airport that the airline
regularly serves.

Given a graph with V' vertices representing all the airports, the subset W of V' which are served by
the airline, the distance w(u, v) for each pair of adjacent airports u, v, and a base airport s, give an
algorithm which finds the shortest distance from s to all other airports, with the airports along the
path never more than 3 edges from an airport in W.
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Problem 5. Tree Searches [20 points] (3 parts)

In this problem we consider doing a depth first search of a perfect binary search tree B. In a perfect
binary search tree a node p can have either 2 or 0 children (but not just one child) with the usual
requirement that any node in the left subtree of p is less than p and node in the right subtree is
greater than p. In addition, all nodes with no children (leaves) must be at the same level of the
tree. To make B into a directed graph, we consider the nodes of B to be the vertices of the graph.
For each node p, we draw a directed edge from p to its left child and from p to its right child. An
example of a perfect binary search tree represented as a graph is shown in Figure 1.

Figure 1: An example of a perfect binary search tree represented as a directed graph.

(a) [6 points] We structure our adjacency function such that at a node p, we first run
DFS-VISIT on the left child of p and then on the right child. When we have finished
expanding a node (i.e. just before we return from DFS-VISIT), we print the node.
What is the first node printed? What is the last node printed? Give a short defense of
your answer.
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(b) [7 points] Does DFS print out the nodes of the tree in increasing or decreasing order?
If yes, give a proof. If no, give a small counter example where the algorithm fails to
print out the nodes in increasing or decreasing order and show the output of DFS on
your example.

(c) [7 points] Recall that usually when doing depth first search, we use the parent struc-
ture to keep track of which vertices have been visited. During the search, if a vertex
v is in parent, the search will not run DFS-VISIT(v) again. Aspen Tu declares that
parent is unnecessary when doing a DFS of B. She says that whenever the algorithm
checks if a vertex v is in parent, the answer is always false. Do you agree with Aspen?
If you do, prove that she is correct. If you do not, give a small counter-example where
a depth first search through B will see a vertex twice. Remember, B is a directed
graph.
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Problem 6. Computing Minimum Assembly Time [20 points]

As you might have heard, NASA is planning on deploying a new generation of space shuttles. Part

of this project is creating a schedule according to which the prototype of the space shuttle will be
assembled.

The assembly is broken down into atomic actions — called jobs — that have to be performed to build
the prototype. Each job has a processing time and a (possibly empty) set of required jobs that
need to be completed before this job can start — we will refer to this set as precedence constraint.
Given such specification, we call an assembly schedule valid if it completes all the jobs and all the
precedence constraints are satisfied.

Now, as the plan of the whole undertaking is being finalized, NASA has to compute the minimum
assembly time of the prototype. This time is defined as the minimum, taken over all the valid
assembly schedules, of the time that passes since the processing of the first scheduled job starts
until the processing of the last job finishes. (Note that we allow jobs to be processed in parallel, as
long as their precedence constraints are satisfied.)

As the prototype assembly is an immensely complex task, can you help NASA by designing an
algorithm that computes the minimum assembly time efficiently? Prove the correctness of your
algorithm and analyze its running time in terms of the number of jobs n and the total length of the
required jobs lists m.

Formally, the assembly is presented as a list of n jobs Jy,. .., J,, and each job J has a specified
processing time, and the set of required jobs. We assume that there always is at least one valid
assembly schedule corresponding to the given specification.

Example:

Job: | Processing time: | Required jobs:
A 1 (T, I}
Ja 6 0

J3 4 {Ja2, J5}

Jy 2 {Js, J3}

Js 3 0

Jg 5 0

Jz (i )

Here, n = 7 and m = 6.
Solution: The minimum assembly time is 12.

(The corresponding schedule starts jobs Js, J5, Jg, J7 at time 0, J3 at time 6, J; at time 7, and J; at
time 10.)
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Problem 2. Short Answer [38 points] (4 parts)

(a) [9 points] Give an example of a graph such that running Dijkstra on it would give
incorrect distances.

Quiz 2 Solutions

Problem 1. What is Your Name? [2 points] (2 parts)
Solution: Below is one example of such a graph. There needs to be a vertex u such

(a) [1 point] Flip back to the cover page. Write your name there. that when it is extracted, the distance to it is not the weight of the shortest path. But
this alone is not enough: there needs to be a vertex v adjacent to u whose shortest
path is through u. Since the edges from u get relaxed only once, then even though the
distance to u could later be updated to the correct shortest distance, the distance to v
will not be. Dijkstra will also yield incorrect distances for a graph with a negative-
weight cycle.

(b) (1 point] Flip back to the cover page. Circle your recitation section.

Figure 1: A gets extracted first, after which edges (A, B) and (A, C') are relaxed, and the distances
are d[A] = 0,d|B] = 5,d[C] = 10. B is extracted next, leading to edge (B, D) being relaxed, and
d[D)] becomes 6. D is extracted next, but it has no edges to relax. Finally, C' is extracted, relaxing
edge (C, B) and making d[B] = 3. The shortest path to D has weight 4, but d[D] = 6.

(b) [9 points] Give an efficient algorithm to sort n dates (represented as month-day-year
and all from the 20 century), and analyze the running time,

Solution:  Use radix sort. First sort by day using counting sort with an array of size
31, then sort by month using counting sort with an array of size 12, and finally sort
by year using counting sort with an array of size 100, where the counter in slot i
corresponds to year 1900 + i. The running time of radix sort is ©(d(n + k)). In this
case, d = 3 and k is maximum 100, so the running time is G(n).
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(¢) [10 points] Give an O(V + E)-time algorithm to remove all the cycles in a directed Problem 3. Path Problems [20 points] (2 parts)
=(V E - = "
S e ke gy OO D We ae given a directed graph G = (1, E), and, forcach edge (1) € E, we ae given a probi-
: ’ bility f(u, v) that the edge may fail. These probabilities are independent. The reliability 7(p) of a
path p = (uy,ua, ... 1) is the probability that no edge fails in the path, i.e.
Solution: Do a DFS of the graph, and at the end, remove all the back edges. As you 7(p) = (1= fluy, u)) - (1 = flua,uy))...- (1 = f(ug-1,ux)). Given a graph G, the edge failure
traverse the graph, you can check whether the edge you are trying to relax goes to a 3 probabilities, and two vertices s,t € V', we are interested in finding a path from s to ¢ of maximum
node that has been seen but is not yet finished, and if so, then it is a back edge and you reliability,

can store it in a set. After the DFS, remove all the edges that are in this set.
(a) [10 points] Propose an efficient algorithm to solve this problem. Analyze its running
time.

Solution:  Since the logarithm is a monotonic increasing function, maximizing the
reliability 7(p) = (1 — f(ur, u))(1 = fur,ua)) -+ (1 — f(ug—1,u)) of a path is
equivalent to maximizing log 7(p) = log(1 — f(wy, ua)) +log(1 — f(uy, u2)) + -+
log(1 = f(uk—1,ux)), equivalent to minimizing — log 7(p). Assign each edge a weight
w(u,v) = —log(l — f(u,v)). These weights are all non-negative - and so we can
apply Dijkstra,

Alternatively, simply modify the Dijkstra's algorithm (appropriately defining and ini-
tializing d[u], replacing extract-min by extract-max, and using the relaxation step “if
d[v] < du](1 = f(u,v)), then d[v] = d[u](1 — f(u,v))". These modifications work

(d) [10 points] Let G = (V, E) be a weighted, directed graph with exactly one negalive- since 0 < f(u,v) < 1forall edge (u,v) € E.

u{eighl edge and no negative-weight cycles. Give an algorithm to find the shortest (b) [10 points] You tend to be risk-averse and in addition to finding a most reliable simple

distance from s to all other vertices in V' that has the same running time as Dijkstra. path from s to ¢, you also want to find a next-most reliable simple path, and output
these two paths. Propose an algorithm to solve the problem, argue its correctness, and

Solution: Let's say the negalive-weight edge is (u,v). First, remove the edge and give its asymptotic running time.

run Dijkstra from s. Then, check if d,[u] + w(u,v) < d,[v]. If not, then we're done.

If yes, then run Dijkstra from v, with the negative-weight edge still removed. Then, Solution: We are not asking for a most efficient algorithm, simply a correct one.

for any node ¢, its shortest distance from s will be min(d,[t], d,[u] + w(u, v) + d,[t]). First notice that if the graph has no more than one simple path from s to t, then the

problem has no next-most reliable simple path, and our algorithm should indicate this.
We first found a most reliable simple path from s to ¢, if one exists. A next most
reliable simple path must differ from it by at least one edge. So repeatedly resolve
the problem after removing each edge of the initial path from G, one at a time, and
chose among all these solutions the one that maximizes the reliability (if for each edge
removal s is not connected to ¢ anymore, the algorithm output "no next-most reliable
path from s to t). This algorithm works since it will find a next-most reliable simple
path that has to differ from the first one. It takes up to k < n — 1 iterations of Dijkstra,
where & is the number of edges in the initial most reliable path.
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Problem 4. Flight Plans [20 points]

When an airline is compiling flight plans to all destinations from an airport it serves, the flight
plans are plotted through the air over other airports in case the plane needs to make an emergency
landing. In other words, flights can be taken only along pre-defined edges between airports. Two
airports are adjucent if there is an edge between them. The airline also likes to ensure that all the
airports along a flight plan will be no more than three edges away from an airport that the airline
regularly serves.

Given a graph with V vertices representing all the airports, the subset W of V which are served by
the airline, the distance w(u, v) for each pair of adjacent airports wu, v, and a base airport s, give an
algorithm which finds the shortest distance from s to all other airports, with the airports along the
path never more than 3 edges from an airport in W.

Solution:  As written, this problem asked that all nodes in the paths be within 3 edges of a node
in W. So, we can solve this in two steps. First, we eliminate the nodes that are further than 3
edges away from a node in W. The most efficient way to do this is to create a supernode connecled
to all nodes in W and then run BFS 1o only four levels, eliminating all nodes not encountered.
Alternately, using BFS the algorithm could run BFS as normal but start with a queue filled with all
nodes in W, Other slower options include running BFS from every node in W or running Bellman-
Ford with edge weights of 1 and nodes in W with starting weight 0. After eliminating the nodes
which are further than 3 edges from a node in W, we can just run Dijkstra as normal. The running
time of BFS in O(V + E) is overtaken by Dijkstra's running time of O(£ +V log V') giving that as
the total. Solutions suggesting using multiple runs of BFS but skipping already-visited nodes from
previous runs were invalid because the already-visited node may be reached at a shorter number
of edges from a node in W, allowing more of its children to be included in the graph. Similarly,
an algorithm just using Dijkstra but also tracking the distance from a node in W while running
Dijkstra fails because there may have been a longer earlier path which would have run through a
node in W.

Another interpretation of this question which was also accepled was that every node in the path
must be within 3 edges of a node in W which is also in the same path. In this case, valid solutions
used a graph transformation, making copies of each node for edge counts away from W, with each
edge linking either to a higher-distance node or back to 0 if the node was in W. Similarly, another
valid solution to this interpretation was to keep track of the shortest path thus far for each valid
edge count away from W.
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Problem 5. Tree Searches [20 points] (3 parts)

In this problem we consider doing a depth first search of a perfect binary search tree B. In a perfect
binary search tree a node p can have either 2 or 0 children (but not just one child) with the usual
requirement that any node in the left subtree of p is less than p and node in the right subtree is
greater than p. In addition, all nodes with no children (leaves) must be at the same level of the
tree. To make B into a directed graph, we consider the nodes of B to be the vertices of the graph.
For each node p, we draw a directed edge from p to its left child and from p to its right child. An
example of a perfect binary search tree represented as a graph is shown in Figure 2.

Figure 2: An example of a perfect binary search tree represented as a directed graph.

(a

—

[6 points] We structure our adjacency function such that at a node p, we first run
DES-VISIT on the left child of p and then on the right child. When we have finished
expanding a node (i.e. just before we return from DES-VISIT), we print the node.
What is the first node printed? What is the last node printed? Give a short defense of
your answer.

Solution: The first node printed will be the smallest node in the tree because DFS
goes all the way down the tree before finally returning from a DFS-VISIT so that the
first node it prints is in the bottom row. Since DFS first visits the left children, this will
be the leftmost node in the bottom row. Since the bottom row is full, this node is the
left child of its parent (which was the left child of its parent, etc) so it is the smallest
node in the tree.

The last node printed will be the root node since this is the last node DFS finishes.
Since the tree is perfectly binary, the root node is also the median of the tree.

Grading:

e 6/6: For something like the above answer. If you just did it on the example
tree you received full credit provided you gave an explanation that showed you
understood the order in which DFS expands node.

e 3/6: If got only one of the two right.
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(b) [7 points] Does DES print out the nodes of the tree in increasing or decreasing order?

=

-

If yes, give a proof. If no, give a small counter example where the algorithm fails to
print out the nodes in increasing or decreasing order and show the output of DFS on
your example.

Solution:  For the tree shown in Figure 2, DFS prints out

4,6,5,8,10,9,7

Grading:

7/7: For any counter-example

e 5/7: For a counter example that was not a perfect binary search tree.

4/7: 1f you showed a counter-example where DFS does not print out the nodes in
order, but gave the wrong order or failed to give the output.

2/7: If you said DFS does not print out the nodes in order but gave no counter-
example,

1-2/7: 1f you said DFS prints out the nodes in order, but gave a reasonable justifi-
cation for why you might think that.

0/7: If you said DFS prints out the nodes in order and gave no justification.

[7 points] Recall that usually when doing depth first search, we use the parent struc-
ture to keep track of which vertices have been visited. During the search, if a vertex
v is in parent, the search will not run DFS-VISIT(v) again. Aspen Tu declares that
parent is unnecessary when doing a DFS of B. She says that whenever the algorithm
checks if a vertex v is in parent, the answer is always false. Do you agree with Aspen?
If you do, prove that she is correct. If you do not, give a small counter-example where
a depth first search through B will see a vertex twice. Remember, B is a directed
graph.

Solution:  Aspen is correct. Each node has only one incoming edge. When doing a
DFS on a directed graph, we traverse each edge only once. Therefore, we can only
see each node once in the search. You could also say that the search only produces
tree edges and seeing a node twice requires a cross, forward, or back edge.

If you assumed the search did not start from the root then you do need the parent
structure. This answer with correct justification also received full credit.

This question may have been confusingly worded. Every seen node is put into the
parents data structure; not just the parents on the current path. This should have been
clear from context, but naming the structure parents was a little misleading. It was
done this way because that is how it was shown in lecture in class.

6.006 Quiz 2 Solutions Name.

Grading:

7/7: For a correct answer with a good justification.

5/7: For saying the tree is a DAG but making it clear that you thought parent just
stored current parents on the path. This is not true and we were trying to use the
notation from class, but it was misleading.

4/7: For saying the tree is a DAG. This does not show you will not see a node
twice. DAGs can have forward edges.

377 if you showed an example in which DFS would see a node twice that was not
a perfect balanced binary search tree.

2/7: For the correct answer with no or very little justification,

1-3/7: For the wrong answer, but a justification that shows some knowledge of
how DFS works.

0/7: For the wrong answer and no justification,
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Problem 6. Computing Minimum Assembly Time [20 points]

As you might have heard, NASA is planning on deploying a new generation of space shuttles. Part
of this project is creating a schedule according to which the prototype of the space shuttle will be
assembled.

The assembly is broken down into atomic actions — called jobs — that have to be performed to build
the prototype. Each job has a processing time and a (possibly empty) set of required jobs that
need to be completed before this job can start — we will refer to this set as precedence constraint.
Given such specification, we call an assembly schedule valid if it completes all the jobs and all the
precedence constraints are satisfied.

Now, as the plan of the whole undertaking is being finalized, NASA has to compute the minimum
assembly time of the prototype. This time is defined as the minimum, taken over all the valid
assembly schedules, of the time that passes since the processing of the first scheduled job starts
until the processing of the last job finishes. (Note that we allow jobs to be processed in parallel, as
long as their precedence constraints are satisfied.)

As the prototype assembly is an immensely complex task, can you help NASA by designing an
algorithm that computes the minimum assembly time efficiently? Prove the correctness of your
algorithm and analyze its running time in terms of the number of jobs n and the total length of the
required jobs lists m.

Formally, the assembly is presented as a list of n jobs Ji, ..., Jn, and each job J has a specified
processing time, and the set of required jobs. We assume that there always is at least one valid
assembly schedule corresponding to the given specification.

Example:

Job: | Processing lime: | Required jobs:
J 1 {Js. J7}

Ja 6 0

Ja 4 {2, Js}
Jy 2 {Ja, J3}

Js 3 0

Js 5 0

J7 7 0

Here,n = Tand m = 6.
Solution: The minimum assembly time is 12.

(The corresponding schedule starts jobs Jz, J5, Jg, Jy at time 0, J; at time 6, J attime 7, and Jy at
time 10.)

Solution: We start by augmenting the set of our jobs with two dummy jobs Jy and Jy41 that
have processing times equal zero. Furthermore, we make all the original jobs require Jy to be
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completed, and we define the set of required jobs of J,,4, to contain all the rest of the jobs, In this
way, Jy can be thought of as a “start” job and J,,4, as a “finish™ job.

Next, we create a dependency graph that has one vertex per each job in our (augmented) set. For
two jobs J;, J;, we put a directed edge from vertex J; to vertex J; if J; is required by J;. We set
the weight of this edge (J;, J;) to be equal to the processing time of J;. Note that the fact that
there must exist at least one valid assembly schedule means that there is no circular precedence
constraints and thus the dependency graph has to be a DAG.

It is easy to see that the minimum assembly time is just the maximum length of Jy-Jy, 41 path in
this dependency graph.

This length can be computed by negating all the weights of the edges and finding the Jy-J,, 4 dis-
tance 8(Jy, Ju41) in resulting graph — the minimum assembly time will be equal to (—d(Jy, Juy1)).
Since this graph is a DAG, we can compute this distance by running an appropriately modified
version of Bellman-Ford that works in O(m + n) time. (This version of Bellman-Ford was pre-
sented both in the lecture and in the recitations.) The total running time of this algorithm will be
O(m + n), as desired.
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Problem 1. True or False [30 points] (10 parts)

For each of the following questions, circle either T (True) or F (False). There is no penalty for

incorrect answers,

(@) TF

() TF

(¢ TF

[3 points] For all weighted graphs and all vertices s and ¢, Bellman-Ford starting
at s will always return a shortest path to £.

Solution: FALSE. If the graph contains a negative-weight cycle, then no short-
est path exists.

[3 points] If all edges in a graph have distinct weights, then the shortest path
between two vertices is unique.

Solution: FALSE. Even if no two edges have the same weight, there could be
two paths with the same weight. For example, there could be two paths from s
to ¢ with lengths 3 + 5 = 8 and 2 + 6 = 8. These paths have the same length (8)
even though the edges (2,3, 5, 6) are all distinct.

[3 points] For a directed graph, the absence of back edges with respect to a BFS
tree implies that the graph is acyclic.

Solution: FALSE. It is true that the absence of back edges with respect to a
DFS tree implies that the graph is acyclic. However, the same is not true for a
BFS tree. There may be cross edges which go from one branch of the BFS tree
1o a lower level of another branch of the BFS tree. It is possible to construct a
cycle using such cross edges (which decrease the level) and using forward edges
(which increase the level).
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d TF

() TF

m TF

(® TF

[3 points] At the termination of the Bellman-Ford algorithm, even if the graph
has a negative length cycle, a correct shortest path is found for a vertex for which
shortest path is well-defined.

Solution: TRUE. If the shortest path is well defined, then it cannot include a
cycle. Thus, the shortest path contains at most V' — 1 edges. Running the usual
V — 1 iterations of Bellman-Form will therefore find that path.

[3 points] The depth of any DFS tree rooted at a vertex is at least as much as the
depth of any BFS tree rooted at the same vertex.

Solution: TRUE. Since BFS finds paths using the fewest number of edges, the
BFS depth of any vertex is at least as small as the DFS depth of the same vertex,
Thus, the DFS tree has a greater or equal depth.

[3 points] In bidirectional Dijkstra, the first vertex to appear in both the for-
ward and backward runs must be on the shortest path between the source and the
destination.

Solution: FALSE. When a vertex appears in both the forward and backward
runs, it may be that there is another vertex (on a different path) which is fur-
ther away from the source but substantially closer to the destination. (This was
covered in recitation.)

[3 points] There is no edge in an undirected graph that jumps more than one level
of any BFS tree of the graph.

Solution: TRUE. If such an edge existed, it would provide a shorter path to
some node than the path found by BFS (in terms in the number of edges). This
cannot happen, as BFS always finds the path with the fewest edges.
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(h) TF

i TF

G TF

[3 points] In an unweighted graph where the distance between any two vertices
is at most 7', any BFS tree has depth at most T', but a DFS tree might have larger
depth,

Solution: TRUE. Since all vertices are connected by a path with at most T°
edges, and since BFS always finds the path with the fewest edges, the BFS tree
will have depth at most T. A DFS tree may have depth up to V' — 1 (for example,
in a complete graph).

[3 points] BFS takes O(V + E) time irrespective of whether the graph is pre-
sented with an adjacency list or with an adjacency matrix.

Solution: FALSE. With an adjacency matrix representation, visiting each ver-
tex takes O(V) time, as we must check all N possible outgoing edges in the
adjacency matrix. Thus, BFS will take O(V?) time using an adjacency matrix.

[3 points] An undirected graph is said to be Hamiltonian if it has a cycle con-
taining all the vertices. Any DFS tree on a Hamiltonian graph must have depth
V-1

Solution: FALSE. If a graph has a Hamiltonian cycle, then it is possible, de-
pending on the ordering of the graph, that DFS will find that cycle and that the
DFS tree will have depth V' — 1. However, DFS is not guaranteed to find that
cycle. (Indeed, finding a Hamiltonian cycle in a graph is NP-complete.) 1f DFS
does not find that cycle, then the depth of the DFS tree will be less than V' — 1.

Name. 4
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Problem 2. Neighborhood Finding in Low-Degree Graphs [20 points]

Suppose you are given an adjacency-list representation of an N-vertex graph undirected G with
non-negative edge weights in which every vertex has at most 5 incident edges. Give an algorithm
that will find the K closest vertices to some vertex v in O(K log I') time.

Solution: We use a modified version of Dijkstra’s algorithm for shortest paths. Suppose that we
were to run Dijkstra's algorithm from v until we visited the (K -+ 1)-st vertex (i.e. v plus X' more).
Then, these K vertices (not including v) would be the vertices we want.

However, we must make a modification, In the version of Dijkstra presented in class, we creale a
binary heap (or Fibonacci heap) and initialize the distance of all IV vertices to co. We can’t do that
here, as that would require O(N') time to initialize and as subsequent heap operations would take
O(log N) time instead of O(log K) time. Thus, we start with an empty heap. Then, when we relax
an edge, we insert the destination of the edge into the heap if it isn't already there.

The total time for this algorithm can be determined by the number of operations we perform. As
each vertex has degree at most 5 and as we visit [’ vertices, we perform at most 5K Inserts,
5K DecreaseKeys, and X ExtractMins, Since we perform at most 5K Inserts, the size
of the heap is at most 5/ and all heap operations take O(log 5K) = O(log K) time. Thus, our
modified Dijkstra takes O(5K log K + 5K log K + K log K) = O(K log K). (Using a Fibonacci
heap results in the same asymptotic runtime.)

[Note: Many students lost points on this problem for not explaining how the heap needs to start
empty and how it never grows beyond 5K elements.]
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Problem 3. Word Chain [15 points] (3 parts)

A word chain is a simple word game, the object of which is to change one word into another
through the smallest possible number of steps. At each step a player may perform one of four
specific actions upon the word in play — cither add a letter, remove a letter or change a letter
without switching the order of the letters in play, or create an anagram of the current word (an
anagram is a word with exactly the same number of each letter). The trick is that each new step
must create a valid, English-language word. A quick exaple would be FROG — FOG —+ FLOG
— GOLE

(a) [5 points] Give an O(L)-time algorithm for deciding if two English words of length
L are anagrams,

Solution: Iterate through each of the L letters in cach word, tracking the frequency
of each letter. If both words have the same counts, the words are anagrams. This is
similar to counting sort and runs in O(L+ S) time where S is the size of the alphabet.

(b) [2 points] Give an O(L)-time algorithm for deciding whether two words differ by one
letter (added/removed/changed).

Solution: Iterate through each of the words comparing each letter as you go. If the
letters do not match and one word is longer, then move to the next letter in that word.
If a mismatch is found twice, return false, otherwise return true at the end.

Where the previous part asked about identifying anagrams, this asks about the one-
off changes other than anagram listed above. Solutions which looked for a one-off
anagram were nol accepted,

[8 points] Suppose you are given a dictionary containing N English words of length
at most L and two particular words. Give an O(N? - L)-time algorithm for deciding
whether there is a word chain connecting the two words.

(c

Solution: Construct a graph with cach word in the dictionary being a node. For
each node, create an edge to another node if the function from either a or b return true.
Then use BFS on this graph to determine if one word can be reached from the other.
Building the graph takes L time for each comparison, done comparing cach node to
each other node, N2 time. This takes longer than BFS, so total time is O(N? - L).
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Problem 4, Approximate Diameter [15 points]

The diameter of a weighted undirected graph G = (V, E) is the maximum distance between any
two vertices in G, i.e. A(G) = max,, yev d(u, v) where A(G) is the diameter of G and §(u, v) is
the weight of a shortest path between vertices u and v in G. Assuming that all edge weights in
G are non-negative, give an O(E + V log V)-time algorithm to find a value D that satisfies the
following relation: A(G)/2 < D < A(G). You must prove that the value of D output by your
algorithm indeed satisfies the above relation.

Hint: For any arbitrary vertex u, what can you say about max, ¢y d(u,v)?

Solution: 'We run Dijkstra's algorithm for single source shortest paths (using a Fibonacci heap)
with an arbitrarily selected vertex u as the source. Since the vertices are removed from the
heap in non-decreasing order of distance from u, the distance from u to the last vertex in the
heap is max,ey d(u,v). Thus, we can find max,ey d(u, v) in O(m + nlogn) time. We output
max,ey 8(u, v) as D. Since A > d(u, v) forallu,v € V, D < A, Further,

D = maxd(u,v)
vev

T A, vy) + (u, v2)

1€V 2

e 8(vy,u) + 8(u,v2)

vi,va€V 2

d(vy, vg)
2

(since the graph is undirected)

>  max
vi €V

A

7

(by triangle inequality of d)
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Problem 5. Triple Testing [20 points]

Consider the following problem: given sets A,B,C, each comprising N integers in the range
— Nk .. N* for some constant k > 1, determine whether there is a triplea € A, b€ B,ee C
such that a + b+ ¢ = 0. Give a deterministic (¢.g. no hashing) algorithm for this problem that runs
in time O(N?).

Solution: Perhaps the simplest solution involved Radix-Sort. We start by generating a set D
of all pairs a + b,a € A,b € B; this takes O(N?)-time. Then we sort D in O(N?) time using
Radix Sort; this is possible since after adding 2N* to each element in D, all elements in I? become
integers in the range 0...4N*, where k is constant. Let D’[1... N?] be the sorted array. Now, for
each ¢ € C, we check whether —c € D; this can be done in O(log V) time per element ¢ using
binary search on . Since |C| = N, we can perform all checks in O(N log N) time. Overall, the
running time is O(N?).

There are many variants of the above solution. Here are common examples:

eInstead of searching for —¢, ¢ € C, in D', one can search for —d, d € D, in a sorled version
of C. This solution is correct, but takes O(N'2 log N) time, so it received only a partial credit.

oTo find collisions between elements in D and the inverses of elements in C', one can (i) label
each element to denote whether it comes from D or is the inverse of an element in C, (ii)
perform Radix Sort on the union of D and the inverses of the elements in C' and (iii) check if
the sorted array contains any consecutive elements that are equal, and have different labels.
This takes O(N?) time.

#One can use hashing to check whether an element —¢, ¢ € C, belongs to D. Unfortunately,
this involves using hash functions, which are either randomized (as in universal hashing)
or heuristic (there are some sets on which the hash function has bad performance). As such,
hashing was explicitly disallowed by the problem statement. Still, solutions involving hashing
received some partial credit.

Overall, the best way to approach this was problem was to use Radix Sort (or some other form of
sorting). Some people attempted to map the problem into some shortest paths problem, where the
elements of A, B and C' are used as edge weights. However, finding @, b, ¢ such thata+b+c¢ =0
would typically require finding a path of length 0, which is quite different from finding the shortest
path,
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Problem 6. Number of Shortest Paths [20 points]

You are at an airport in a foreign city and would like to choose a hotel that has the maximum
number of shortest paths from the airport (so that you reduce the risk of getting lost). Suppose you
are given a city map with unit distance between each pair of directly connected locations. Design
an O(V + E)-time algorithm that finds the number of shortest paths between the airport (the source
vertex s) and the hotel (the target vertex t).

Solution:  First we view the map as an (unweighted) undirected graph with locations as vertices
and two locations are connected if and only if there is a unit-distance conneclion between the two
locations. Then we do a breadth-first search (BFS) starting from the airport. We augment the data
structure so that each vertex has an additional field paths to count the number of shortest paths
from the root to that vertex. Initially we set paths(s) = 1 for the root vertex s (that is, the airport)
and paths(v) = 0 for all other vertices. After each vertex (say v) is explored during BFS, we check
all the neighbors of v and set paths(v) to be the sum of the paths of its neighbor nodes whose level
is one less than the level of v. That is (recall that, for every v € V(G), N(v) denotes the sct of
vertices adjacent to the vertex v),

paths(v) = Z paths(w).
w € N(v) and level(w) = level(v) = 1

The correctness of the algorithm follows from the fact that all the shortest paths from the root
node s to a node ¢ at level k must have length k, and cach of the shortest path is of the form
(8,01, - .., = t), where node v; is some node at level i in the BFS treeand 1 < i < k. The only
modification to the original BFS is about the counter paths(v) for every vertex v, it is clear that
initialization takes O(V') time and updating the counter at any vertex v takes O(| N (v)]) time. Note
that 3, vy [V (v)| = 2E and an ordinary BFS takes time O(V + E), therefore the total running
time of our modified BFS is O(V + E) + O(V) + O(E) = O(V + E).
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Quiz 2

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

¢ You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz is closed book. You may use two 8%” x 11" or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e When writing an algorithm, a clear description in English will suffice. Pseudo-code is not
required.

e When asked for an algorithm, your algorithm should have the time complexity specified in
the problem with a correct analysis. If you cannot find such an algorithm, you will generally
receive partial credit for a slower algorithm if you analyze your algorithm correctly.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

o Good luck!

[ Problem | Parts | Points | Grade | Grader |
1 10 30
2 1 20
3 3 15
4 1 15
5 1 20
6 1 20
Total 120
Name:
Friday Zuzana Debmalya Ning Matthew Alina Alex

Recitation: 10 AM 11 AM 12 PM 1PM 2PM 3PM
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Problem 1. True or False [30 points] (10 parts)

For each of the following questions, circle either T (True) or F (False). There is no penalty for
incorrect answers.

(a) T F [3points] Forall weighted graphs and all vertices s and ¢, Bellman-Ford starting
at s will always return a shortest path to ¢.

(b) T F [3 points] If all edges in a graph have distinct weights, then the shortest path
between two vertices is unique.

(¢) T F [3points] For a directed graph, the absence of back edges with respect to a BFS
tree implies that the graph is acyclic.

(d) TF [3points] At the termination of the Bellman-Ford algorithm, even if the graph
has a negative length cycle, a correct shortest path is found for a vertex for which
shortest path is well-defined.

(e) T F [3points] The depth of any DFS tree rooted at a vertex is at least as much as the
depth of any BFS tree rooted at the same vertex.
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® TF

@ IXK

(h) TF

i TF

G TF

[3 points] In bidirectional Dijkstra, the first vertex to appear in both the for-
ward and backward runs must be on the shortest path between the source and the
destination.

[3 points] There is no edge in an undirected graph that jumps more than one level
of any BFS tree of the graph.

[3 points] In an unweighted graph where the distance between any two vertices
is at most 7', any BFS tree has depth at most 7", but a DFS tree might have larger
depth.

[3 points] BFS takes O(V + E) time irrespective of whether the graph is pre-
sented with an adjacency list or with an adjacency matrix.

[3 points] An undirected graph is said to be Hamiltonian if it has a cycle con-
taining all the vertices. Any DFS tree on a Hamiltonian graph must have depth
V-1
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Problem 2. Neighborhood Finding in Low-Degree Graphs [20 points]

Suppose you are given an adjacency-list representation of an N-vertex graph undirected G with
non-negative edge weights in which every vertex has at most 5 incident edges. Give an algorithm
that will find the K closest vertices to some vertex v in O(K log K) time.
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Problem 3. Word Chain [15 points] (3 parts)

A word chain is a simple word game, the object of which is to change one word into another
through the smallest possible number of steps. At each step a player may perform one of four
specific actions upon the word in play — either add a letter, remove a letter or change a letter
without switching the order of the letters in play, or create an anagram of the current word (an
anagram is a word with exactly the same number of each letter). The trick is that each new step
must create a valid, English-language word. A quick exaple would be FROG — FOG — FLOG
— GOLFE.

(a) [5 points] Give an O(L)-time algorithm for deciding if two English words of length
L are anagrams.

(b) [2 points] Give an O(L)-time algorithm for deciding whether two words differ by one
letter (added/removed/changed).

(c) [8 points] Suppose you are given a dictionary containing N English words of length
at most L and two particular words. Give an O(N? - L)-time algorithm for deciding
whether there is a word chain connecting the two words.
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Problem 4. Approximate Diameter [15 points]

The diameter of a weighted undirected graph G = (V, £) is the maximum distance between any
two vertices in G, i.e. A(G) = max, ev 6(u,v) where A(G) is the diameter of G and d(u,v) is
the weight of a shortest path between vertices u and v in G. Assuming that all edge weights in
G are non-negative, give an O(E + V log V)-time algorithm to find a value D that satisfies the

following relation: A(G)/2 < D < A(G). You must prove that the value of D output by your
algorithm indeed satisfies the above relation.

Hint: For any arbitrary vertex u, what can you say about max,cy d(u, v)?
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Problem 5. Triple Testing [20 points]

Consider the following problem: given sets A,B,C, each comprising N integers in the range
—N* ... N* for some constant k > 1, determine whether there is a triplea € A, b € B, c € C
such that a + b+ ¢ = 0. Give a deterministic (e.g. no hashing) algorithm for this problem that runs
in time O(N?).
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Problem 6. Number of Shortest Paths [20 points]

You are at an airport in a foreign city and would like to choose a hotel that has the maximum
number of shortest paths from the airport (so that you reduce the risk of getting lost). Suppose you
are given a city map with unit distance between each pair of directly connected locations. Design
an O(V + E)-time algorithm that finds the number of shortest paths between the airport (the source
vertex 5) and the hotel (the target vertex t).
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Introduction to Algorithms
Massachusetts Institute of Technology
Profs. Constantinos Daskalakis and Silvio Micali

April 25, 2012

Quiz 2

Quiz 2

You will have 2 hours to complete this exam. No notes or other resources are allowed. Unless
otherwise specified, full credit will only be given to a correct answer which is described clearly

and concisely.

Do not discuss this exam with anyone who has not yet taken it.

Problem | Points | Grade | Initials |

Name 1 [ H P

1 24 &(j@

2 18 /5%

3 AN fﬁt

4 25 [

5 |2 | MUY

Tota.l 100 _;.7 ; £ ra
(Ine qnei
Name: [1 point] ) , * (f}“ uy I i /
/RO RO2 RO3  R04  ROS RO6 RO7
[ WF10 WF11 WF12 WF1 WE2 WEF3 WF3
\%mn Shaunak Alan Jeff Rafael Henrique Dragos
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Problem 1. True/False [24 points]

Note: Correct answers are worth 2 points, blanks are worth 0 points, and incorrect answers
are worth -3 points. You will not be graded on any explanation.

Circle: @ or False wﬁﬂ_i Yoo %P p/ ."c/

(b) Breadth-first search can be modified to check if there are cycles in an undirected graph.

Circle: ,f@e or False con ek in gorg ) {,'

/0.4 T r” Ln, ,'4 "v'l,'?
e @ or False (0 v Vi G : I 1 01 Vlun Vil
\ Ved i % ¥ A

) ot g "/
(d) In this problem, suppose that G is a directed graph and that u and v are vertices of this
graph such that there is a path from  to v in G but no path fromz o .

et

i. Any depth-first search in G that discovers both u and v must discover u before it

discovers v. ! & /4’/ '
, e ! )V VY -
Circle: True orGalse :
. — ~p| P [studad
ii. Any depth-first search in G that discovers both u and v must ﬁmsh u before it
finishes v. . /)\

Circle: 'I‘rue or (fa\ﬁe) Chre PLyamfle-

iii. Any depth-first search in G that discovers u and lafer discovers v must finish u
before it finishes v. / —_—
\

o p , ‘

ircle: e or Fa \ A — \

Circle: Tru @ | /
(= A ;

'In the terminology of CLRS, the discovery time is the time it is colored grey.
2The finishing time is, in the terminology of CLRS, the time in which a vertex is colored black.
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(e) The strongly-connected components of a directed graph are preserved if you reverse

every edge — that is, if you replace every edge (u,v) of the graph with the edge
(v, 0¥

Circle: @r False L LIRS VAR O 14 £ S
§

(f) We can use Dijkstra’s algorithm to find the shortest path between two vertices in a
graph with arbitrary edge weights.

Cile: True.or(Falle N0 N J Cdge

(g) The worst-case running time of A* is asymptotically better than the worst-case run-
ning time of Dijkstra’s algorithm. { oy

; o HL,/ o el A2
Circle: True or False I V{U[}/fg ( 9 /

(h) Suppose that s and  are vertices in a weighted graph G that does not contain negative
cycles, and suppose that there is a path from s to £. We run Bellman-Ford on G with
starting vertex s.

i. If there is a shortest path from s to ¢ consisting of & edges, then after the k*

iteration, then Bellman-Ford’s estimate of the distance to ¢ will be correct. _ /1, «f ,, / ,
ciits e I . C ah L
: | ki d ; ay {£ El
ircle: (/u or False \dﬁ/_;f(’: e 3 — f y /0 R
dn (¢ Toe iz, J‘:.

ii. If Bellman-Ford’s estimate of the distance to ¢ is correct after the k** iteration, I
then there is a shortest path from s to ¢ consisting of at most k edges. e
Circle: (f‘r)\le or False

\
(i) If we draw out the full recursion tree of a problem that can be sped up by memoization,
the same subproblem might appear multiple times in the tree.
Circle: .ﬁ\e or False [W.OI (7f%¢ S0 i : ,l . i fres

3Recall that u and v are in the same strongly connected component if there is a path from u to v and a path from v
to u. s T
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Problem 2. Short Answers [18 points]

(a) [6 points] Mark the entries of the following table that correspond to properties that
are true of counting and radix sort, as described in lecture.

| Property | Counting sort | Radix sort |
Can be implemented so it is stable V4 (7

Can be implemented so it is in-place X R4
Sorts n integers in the range {0, 1,. . c}; . g
in O(n) time, for any constant ¢ 5 0 >< 7 / e

(b) [8 points] On which of the following undirected graphs does @d’gﬂg&a_l_b_rgadth—
first search perform asymptotically better than regular “breadth-first search? Circle the
numbers of all that apply.

i. A path graph on n vertices, in which s and ¢ are connected by a path of length
n — 1 (and there are no other edges). FUSE U290 / yi

/ i,/ A complete graph, in which there is an edge between every pair of vertices. { 050 Cepprontsa

d) A star graph, in which s, ¢, and n — 3 other vertices are all connected to a central
nth vertex (and there are no other edges). ¢ | ) £

iv. | A balanced binary tree on n vertices in which s ) are leaves. ~
/N
(c) [4 points] Ben Bitdiddle thinks it is possible to find stleﬁgs'tpj.thsan any weighted
graph using the following algorithm:

// .\‘\

1. Find the minimum weight, m, of any edge.

2. Subtract m from the weight of every edge - that is, let w'(4, j) equal w(z, j) — m
3. Run Dijkstra on the transformed graph. 0 }{

Draw a three-vertex directed graph with vertices s, ¢, and u on which Ben’s algorithm

does not find the shortest path from s to ¢. Label the vertices and assign non-negative
welghts to the edges to consfruct your ‘counterexample.

i
Y
it

6\\\ T S

,,,,,,,
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Problem 3. Bellman-Ford [12 points]

In this problem, you must run Bellman-Ford manually on the directed graph provided below, start-

ing at the source vertex S. In each iteration, the edges will be relaxed in the following order: BC’

AC, BA, SA, and SB

L ———

-

(a) [8 points] Fill in the table with the distance estimates for each vertex after each itera-
tion. Note that all the edges are relaxed in each iteration. For example, after the first
iteration, you should find that the distance estimate for B is —2.

Y7

| Vertex | Iteration 0 | Iteration 1

Tteration 2 I Iteration 3

S 0 0 0 0
A fo's) Y 73 7
B 00 -2 -1 -
c  [oo q ]

(b) [4 points] In the worst case, the Bellman-Ford algorithm runs for |V/| — 1 iterations,
where |V| is the number of vertices. However, for this particular graph, there exists
an ordering of the edges such that for any edge weights, the Bellman-Ford algorithm

will terminate after a single iteration.

Give one such edge ordering, and briefly explain why it works.

A ] '
{ H

— f
iy L "l 5 (A
¢ . 7/)
Ol{\/ {"/I/‘., [.n'{‘f A 0 {'
(Oree Dyl

Jd
ok

3
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Problem 4. Optimal Travel Plans [25 points]

In this problem, your goal is to determine a sequence of ﬁxghts between airports which will get you
from your current Jocation to a target destination asw/y as possible.

Each airport is fepresented by a vertex on a directed graph G = (V, E). Each direc ted edge
e = (u,v) in the graph has an associated array, e. .flights. The array e.flights has at most k

entries. The i** entry in the array is a pair (dep;, arr;), which means that a direct flight leaves u at
time dep; and arrives at v at time arr;.

For each edge e, the array e. flights satisfies the following constraints:

1. No flight can arrive before it departs:

For each i, dep; < arr;.

2. The array is sorted by i 1ncreasmg departum time:

For each i, dep; < dep;yq.

For each i, arr; < arriy;.

3. Flights that depart later also arrive later: Nl {,

Given a source node s and an initial starting time, your goal is to determine a sequence of flights
that can be taken to reach a target node ¢ as early as possible. Of course, in order for you to takc a
flight, you must be at airport tt that the e flight departs from by the time th that i 1t departs.

Continue to the next page.
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(a) [20 points] Design and analyze an efficient algorithm to compute a sequence of flights
which arrives at ¢ as early as possible. Be sure to ex licitly state your algorithm’s
running time in terms of |V, | E|, and k. H /’G(f ¢

Note: You will receive 6 points for a blank answer to this question. You will get

more than 6 points for progress towards a correct solution, but any other text will
count against you.

\n/@ Gspnﬁaf.g lw (« /0*»1 [ q ﬂon/e(fﬁfm-;JI/ s
s {w g(%dvf PH 1 7

b

L4

(ovglen  Corpd

69 m"?‘ wp)ﬂ@ Overy node ~&o 8F5
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| pr\ 1[) Qv O'( M‘{L ]L QVW/M\U({’; }:(001 ﬁﬂty( ¢ 4 JO/”
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6.006 Quiz 2 8

(b) [5 points] Suppose now that we now have additional geographic information about
- the graph. In particular, we model the Earth as a plane, and we determine the location
by, (@, yu) of each airport in the plane. We also know that the speed of any plane is

bounded by a top speed, s.
Explain how to use a heuristic to speed up your search algorithm in practice. Be sure
to explicitly define any heuristic functions that you use.

Note: Use at most four sentences. You should only need half of this page.
W@ Vep hl (9(0"5’! C/‘;'-ﬂ" aa( ?,‘-'*’ (oo wte
] N\ T .
% r Tﬂl § ,‘:n od 1 -{ 1 aid A f i7 2 s ;
. | b/ yé

Whsh
W
ﬂ)eed ( which hor@j/y (s mf} b (nd e
(Tight o

_[hi | . (0w rj';b{‘”é? \ *()(( -Xy +1 i ~ Y,
/)\ =1l ffw} [E’n{j/d -~ = VLM - 'Y

e e Dbt 8 5l hod 01 e mk fhe

e | ,
U1y 1o A {(on [Le /‘{‘/3{ iiq ’/i e (e (O l4 “Jy

éﬂ b:ﬁ[o( (Om[{)ﬂfla O-{'L-,’M‘ ATW{ H(?L{ + AU(‘féff'c 0 rJ P}(/}L ?/)Mﬂ,/je
y . 19 YRl
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n v
‘ﬁ#’ c[ !J lf#':: (< :ﬁ. ?7 y /
on wae (A6 Mg by e /6 (405 /ﬂ/£

]

L/
_‘\)w‘?{' =5

o



|

. \ 11 |2 ¢

6.006 Quiz 2 \ \r\(.., '(wl ‘{}1 D 9 ©
L/M 7/3/@570’5
Problem 5. Longest Football Subsequence [20 points]

In the game of football, teams can score ?;__Z’)L_le_pgimgs\gt a time. A JSootball sequence is a
sequence of valid scores for the two teams in a football game. That is, it is a sequence of pairs of

nonnegative integers (a;, b;) that satisfies the following properties: ' S Yo bl
: (L 18 J0dhpast

1. The initial scores are 0: ‘ :
(a0, b0) = (0,0). M?”

2. Exactly one team scores at a time:

FE'_;H‘;’J, either a;11 = a; or b;,; = b;, but not both.
3. Teams score in the correct increments:

If aiyy # a;, then a;y — a; is either _2_‘,%3#9; 7, and
If b4y # b;, then by — b; is either 2, 3 or 7
For example, the following sequence is a football sequence:
(0,0),(0,3),(0,5), (7,5), (7,12), (9, 12).

In this problem, your goal is to determine the length of t/th_longes_t football subsequence of a given

n-clement sequence S of pairs of nonnegative integers (z;, ;). (Note that your subsequence may
include non-consecutive elements of S, as long as their relative order is preserved.)

For example, if
5 =1(2,7),(0,0),(7,0),(0,3), (0,6), (7,6)

then the longest football subsequence is
(0,0),(0,3),(0,6), (7,6),
s0 your algorithm should return 4.

H
Lt wil | il !

Continue to the next page.
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(a) [10 points] Give a simple dynamic programming algorithm which finds the size of the
largest football subsequence in time O(n?). Briefly prove your algorithm’s runtime
and argue its correctness.

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Ww(\ '((Jf’l hg Aa{/‘}(\ -ﬁ)ﬂmt
% For pach |( 296 L/ (c{/cu{ Jl“[)

JP[}) gg, 0| /‘-\ uild (Eﬁi P d:
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a7 RAEA L | ! Em
34 { S 6 ol fod bl add O (,w.oﬂwc

g@m W Ce ‘#I’ 7 u(cgfi ‘/mc.,i f /fw"/; st {}{[f } /j C@_U.M ab-t »uag

> y o /
( /O> & Pl 1[0f OULLL i'i‘f‘,m on m [“r ffﬁ :,! '-' gy ’f*' é

Franle (27) 04

AC4G L 04

o(fcﬂf Ao WL(@ C{(]J/

/}f _jf w. f{\\’/ o
S b / ‘ELT{W‘!Z{ ﬁf(.{ o
-"k_\n_{“v_’ _ I oMa, | éf,ﬁﬁ;; ’ éMv
L
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I Mé ¥ @
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(b) [10 points] Design and analyze the most efficient algorithm you can for this problem.
Be sure to explicitly state your algorithm’s running time in terms of n, and briefly

argue its correctness. NW 6‘Jl Cf()/ S Gt O Pﬂ?wo\,g " 0[n 1)

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Nlow Q@H ‘fo mlﬂ —

(cﬁ(c JP&) of 00(4 cMc/ m@mﬁ;z@

[d oe (-1 —» ole= OW df(w
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Introduction to Algorithms April 25, 2012
Massachusetts Institute of Technology 6.006
Profs. Constantinos Daskalakis and Silvio Micali Quiz 2

Quiz 2

You will have 2 hours to complete this exam. No notes or other resources are allowed. Unless
otherwise specified, full credit will only be given to a correct answer which is described clearly
and concisely.

Do not discuss this exam with anyone who has not yet taken it.

| Problem | Points | Grade | Initials |

Name 1

1 24

2 18

3 12

4 25

5 20

Total 100

Name: [1 point]

RO1 R0O2 RO3 R04 RO5 RO6 RO7
WF10 WFI11 WF12 WF1 WF2 WF3 WEF3

Shaunak Shaunak Alan Jeff Rafael Henrique Dragos
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Problem 1. True/False [24 points]

Note: Correct answers are worth 2 points, blanks are worth 0 points, and incorrect answers
are worth -3 points. You will not be graded on any explanation.

(a) Depth-first search can be modified to check if there are cycles in an undirected graph.

True

(b) Breadth-first search can be modified to check if there are cycles in an undirected graph.

True

(c) If we represent a graph with |V| vertices and ©(|V|) edges as an adjacency matrix,
the worst-case running time of breadth-first search is ©(|V|?).

True

(d) In this problem, suppose that G is a directed graph and that u and v are vertices of this
graph such that there is a path from u to v in G but no path from v to u.

i. Any depth-first search in G that discovers both u and v must discover u before it
discovers v. !

False

ii. Any depth-first search in G that discovers both u and v must finish u before it
finishes v. 2

False

iii. Any depth-first search in G that discovers u and later discovers v must finish u
before it finishes v.

False

'In the terminology of CLRS, the discovery time is the time it is colored grey.
*The finishing time is, in the terminology of CLRS, the time in which a vertex is colored black.
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(e) The strongly-connected components of a directed graph are preserved if you reverse
every edge — that is, if you replace every edge (u,v) of the graph with the edge
(v,u).3

True

(f) We can use Dijkstra’s algorithm to find the shortest path between two vertices in a
graph with arbitrary edge weights.

False

(g) The worst-case running time of A* is asymptotically better than the worst-case run-
ning time of Dijkstra’s algorithm.

False

(h) Suppose that s and ¢ are vertices in a weighted graph G that does not contain negative
cycles, and suppose that there is a path from s to ¢. We run Bellman-Ford on G with
starting vertex s.

i. If there is a shortest path from s to ¢ consisting of k edges, then after the k**
iteration, then Bellman-Ford’s estimate of the distance to ¢ will be correct.

True
ii. If Bellman-Ford’s estimate of the distance to ¢ is correct after the k" iteration,
then there is a shortest path from s to ¢ consisting of at most & edges.

False

(i) If we draw out the full recursion tree of a problem that can be sped up by memoization,
the same subproblem might appear multiple times in the tree.

True

3Recall that « and v are in the same strongly connected component if there is a path from u to v and a path from v
to u.
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Problem 2. Short Answers [18 points]

(a) [6 points] Mark the entries of the following table that correspond to properties that
are true of counting and radix sort, as described in lecture.

Solution:
| Property | Counting sort | Radix sort |
Can be implemented so it is stable X X
Can be implemented so it is in-place
Sorts 7 integers in the range {0, 1,...,n°}
in O(n) time, for any constant ¢ > 0. X

Note: We gave everyone full credit for the in-place question. This is because,
while what we did in classl

(b) [8 points] On which of the following undirected graphs does bi-directional breadth-
first search perform asymptotically better than regular breadth-first search? Circle the
numbers of all that apply.

1. A path graph on n vertices, in which s and ¢ are connected by a path of
length n — 1 (and there are no other edges).

ii. A complete graph, in which there is an edge between every pair of vertices.

{1) A star graph, in which s, ¢, and n — 3 other vertices are all connected to a central
nth vertex (and there are no other edges).

@¥. A balanced binary tree on n vertices in which s and ¢ are leaves.

(c¢) [4 points] Ben Bitdiddle thinks it is possible to find s-t shortest paths on any weighted
graph using the following algorithm:
1. Find the minimum weight, m, of any edge.
2. Subtract m from the weight of every edge - that is, let (%, j) equal w(i, j) — m.
3. Run Dijkstra on the transformed graph.
Draw a three-vertex directed graph with vertices s, ¢, and u on which Ben’s algorithm

does not find the shortest path from s to £. Label the vertices and assign non-negative
weights to the edges to construct your counterexample.

Solution:

Any graph where the shortest s — ¢ path goes directly from s to t,, yet goes through
u after transforming. For example, have w(s, u) = w(u,t) = 2 and w(s,t) = 3.
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Problem 3. Bellman-Ford [12 points]

In this problem, you must run Bellman-Ford manually on the directed graph provided below, start-
ing at the source vertex S. In each iteration, the edges will be relaxed in the following order: BC,
AC, BA, SA, and SB.

(a) [8 points] Fill in the table with the distance estimates for each vertex after each itera-
tion. Note that all the edges are relaxed in each iteration. For example, after the first
iteration, you should find that the distance estimate for B is —2.

Solution:
| Vertex | Iteration O | Iteration 1 | Iteration 2 | Iteration 3 |
S 0 0 0 0
A ') 3 2 2
B o0 -2 -2 -2
C oo o0 4 3

(b) [4 points] In the worst case, the Bellman-Ford algorithm runs for |V| — 1 iterations,
where |V| is the number of vertices. However, for this particular graph, there exists
an ordering of the edges such that for any edge weights, the Bellman-Ford algorithm
will terminate after a single iteration.

Give one such edge ordering, and briefly explain why it works.

Solution: Since the graph is a DAG, we can take any ordering which will process all
of the edges of a path in the correct order. In particular, a sequence works if and only
if for every node, the incoming edges are relaxed before any of the outgoing edges.
There are actually many such sequences.
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Problem 4. Optimal Travel Plans [25 points]

In this problem, your goal is to determine a sequence of flights between airports which will get you
from your current location to a target destination as quickly as possible.

Each airport is represented by a vertex on a directed graph G = (V, E). Each directed edge
e = (u,v) in the graph has an associated array, e.flights. The array e.flights has at most &

entries. The i** entry in the array is a pair (dep;, arr;), which means that a direct flight leaves u at
time dep; and arrives at v at time arr;.

For each edge e, the array e. flights satisfies the following constraints:
1. No flight can arrive before it departs:

For each i, dep; < arr;.

2. The array is sorted by increasing departure time:

For each i, dep; < dep;;.
3. Flights that depart later also arrive later:

For each 1, arr; < arrjy;.

Given a source node s and an initial starting time, your goal is to determine a sequence of flights
that can be taken to reach a target node £ as early as possible. Of course, in order for you to take a
flight, you must be at airport that the flight departs from by the time that it departs.

Continue to the next page.
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(a) [20 points] Design and analyze an efficient algorithm to compute a sequence of flights
which arrives at ¢ as early as possible. Be sure to explicitly state your algorithm’s
running time in terms of |V|, | E|, and &.

Note: You will receive 6 points for a blank answer to this question. You will get
more than 6 points for progress towards a correct solution, but any other text will
count against you.

Solution:

We solve this problem by running a slightly modified variant of Dijkstra’s algorithm
(using a fibonacci heap, for optimal running time.) In our algorithm, for each node v
we will keep track of d[v] which is earliest time for which we know it is possible to
arrive at v, when we leave from s at ¢ = 0. (We initialize d[v] = oo for all v # s and
d[s] = 0.) We now run Dijkstra’s algorithm using these d values. The only difference
is in how we relax an edge.

Consider relaxing edge e = (u,v). Because of the properties of e.flights, we know
that leaving u for v as early as possible will be at least as good as having a longer
layover in u and leaving for the direct w — v flight later. Therefore, we look for the
smallest z* such that the corresponding depart;. in e.flights is greater than or equal to
d[u]. We can use binary search to find this 7 in time O(log k).

To relax the edge e = (u,v), we set d[v] to be the minimum of the current d[v] and
d[v] + arrive;-.

The correctness of this algorithm follows from the correctness of Dijkstra’s algo-
rithm. The running time, using a fibonacci heap for the Dijkstra priority queue, is
O(VlegV + Elogk). (The O(logk) term comes from needing to find the earlier
flight to take on a given edge.)

Partial credit was given for the O(V logV + kE) solution which did a linear scan
through the departure times. Also, note that using binary heaps instead of a fibonacci
heap gives running time O(log kElog V).

Note that this problem was a modified (harder) version of an idea from

hittp : [ Jwww.csl.mtu.edu/cs2321 Jwww /newLectures/30_More_Dijkstra.htm

Notes on grading:

e Getting runtimes using binary heaps instead of Fibonacci heaps lost you no
points.

e Not getting the binary search step caused you to lose 2 points.

e There were other solutions which involved modifying the graph, which got
a worse running-time, and thus 16 or 12 points, depending on whether the
transformation obtains Ek or V Ek edges in the new graph.
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(b) [5 points] Suppose now that we now have additional geographic information about
the graph. In particular, we model the Earth as a plane, and we determine the location
(Zu,¥.) of each airport in the plane. We also know that the speed of any plane is
bounded by a top speed, s.

Explain how to use a heuristic to speed up your search algorithm in practice. Be sure
to explicitly define any heuristic functions that you use.

Note: Use at most four sentences. You should only need half of this page.
Solution: We can use a heuristic of h(u) = \/(zu — 7t)? + (yu — y)?/c, which is
clearly a lower bound on the minimum time it will take to get from u to . We modify

our Dijkstra algorithm analogously to A*: instead of sorting our queue by d values,
we sort by d + h values.
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Problem 5. Longest Football Subsequence [20 points]

In the game of football, teams can score 2, 3, or 7 points at a time. A football sequence is a
sequence of valid scores for the two teams in a football game. That is, it is a sequence of pairs of
nonnegative integers (a;, b;) that satisfies the following properties:

1. The initial scores are 0:
(@o, bo) = (0, 0).
2. Exactly one team scores at a time:
For all 4, either a;;1 = a; or b;; = b;, but not both.
3. Teams score in the correct increments:
If ;11 # a;, then a;, 1 — a; is either 2, 3 or 7, and
If b;1q # b;, then b;, — b; is either 2, 3 or 7
For example, the following sequence is a football sequence:
(0,0), (0, 3), (0,5), (7,5), (7,12), (9, 12).

In this problem, your goal is to determine the length of the longest football subsequence of a given
n-element sequence S of pairs of nonnegative integers (z;, ;). (Note that your subsequence may
include non-consecutive elements of S, as long as their relative order is preserved.)

For example, if
§=(2,7),(0,0),(7,0),(0,3),(0,6),(7,6)
then the longest football subsequence is

(0,0),(0,3),(0,6),(7,6),

so your algorithm should return 4.

Continue to the next page.
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(a) [10 points] Give a simple dynamic programming algorithm which finds the size of the
largest football subsequence in time O(n?). Briefly prove your algorithm’s runtime
and argue its correctness.

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Solution:

Let C[i] be the length of the longest football subsequence which ends at S[i]. We now
do a scan of S from left to right to compute the C values. To compute C/[i], we need
only look at the values between C[1],...,C[i — 1] and look at the maximum value
C/[j] for which we could append S[i] after S[j]. The correctness of this algorithm
follows trivially by induction: Given that we have computed the first ¢ — 1 values of C
correctly, it follows that any football subsequence ending with S[z] is constructed by
taking a football subsequence ending before 7 and (if valid) appending S[¢] to the end.
(If S[i] = (0, 0), then we can instead have the length-1 subsequence consisting of S[i].
Since football subsequences are increasing, (0, 0) can only appear at the beginning of
a subsequence.)

This gives us the following pseudocode algorithm:
e Initialize C[i] = —co for all 1
e Fori=1ton:

— Let ¢* be the maximum C/j] value for j < ¢ such that S[i] can immediately
follow S[j] in a valid football sequence (that is, the first components are equal
and the second component increases by 2, 3, or 7, or instead the second com-
ponents are equal and the first component increases by 2, 3, or 7.) If no such
7 exists, set ¢* to —co.

- If S[é] == (0,0), set C[i] — 1.

— Otherwise, set C[i] « ¢* + 1.

e Return max{max; C[i], 0}.
Notice that in the final step, we return max{max; C[i],0}. This deals with the case
that (0, 0) does not appear in S.

Our algorithm has running time O(n+1+42+3+ .-+ (n — 1)) = O(n?).
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(b) [10 points] Design and analyze the most efficient algorithm you can for this problem.
Be sure to explicitly state your algorithm’s running time in terms of n, and briefly
argue its correctness.

Note: You will receive 3 points for a blank answer to this question. You will get
more than 3 points for progress towards a correct solution, but any other text will
count against you.

Solution:

We can solve this problem by doing a single linear scan through S. As before, we let
C'[z] be the length of the longest football subsequence ending at S[z]. We note that, for
S[i] to appear in a sequence, there are at most 6 possible terms that could immediately
proceed S[i] (corresponding to subtracting 2, 3, or 7 from either the first or second
component.)

As we scan S, we will hash each pair (a, b) for which we have found an j with S[j] =
(a,b) and C[j] > 0. The value of (a,b) will be the length of the longest football
subsequence we have found thus far which ends at (a,b). We will compute C|[i] by
searching for all six possible proceeding (a, b) pairs in the hash table, and setting C'i]
to be 1 more than the maximum of the corresponding C' values for these six pairs. We
give pseudocode for this algorithm below. Correctness follows from a trivial induction
argument, similar to that above.

e Create a hash table d.

e Fori=1ton:
- Denote by (a, b) the term .S[i].
- If (a,b) == (0,0), set C[¢] + 1 and d[(0, 0)] « 1.
— Else:

* Let P be the set of the (at most 6) pairs which could possibly proceed
(a,b) in a football sequence. (i.e., P consists of the terms (a — 7,b), (a —
3,b), (a — 2,b),(a,b —7),(a,b — 3),(a,b — 2) in which both values are
nonnegative.)

* If there exists a p € P for which d.has_key(p), let ¢* be max,cp d[p] (if
any p is not in d, initialize its value to —oo). Set C[i] « ¢* and d[(a, b)] —
max{d[(a,b)],c* + 1}.

* Otherwise, set c[i] «— —oo.

e Return max{max; C[i], 0}.
By resizing our hash table appropriately, the amortized running time for our hash
operations will be O(1) per operation. Therefore, each iteration of the inner loop

takes O(1) time, and therefore the overall running time is O(n). (Notice that there are
several slight variations of this algorithm which also achieve O(n) running time.)
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