6.81 homepage / Fall 2010 http://mit.edw6.01/mercurial/fall 1 0/www/information.html

1 of 4

L;} 5&464

6.01: Introduction to EECS 1

software engineering — feedback and control — circuits — probability and planning

Announcements Information & Policies Calendar
Software Online Tutor Reference Material

Subject Information and Policies

Questions: Please send questions to 6.01-help@mit.edu. This will ensure a
quicker answer than questions to individual staff members.

Description

6.01 explores fundamental ideas in electrical engineering and computer science, in the context
of working with mobile robots. Key engineering principles, such as abstraction and modularity,
are applied in the design of computer programs, electronic circuits, discrete-time controllers,
and noisy and/or uncertain systems.

Prerequisites: None

Corequisite: 8.02

Units: 2-4-6

Lectures: T 9:30-11:00, room 32-123

Lab Section 1: T 11:00-12:30 and R 9:30-12:30, room 34-501
Lab Section 2: T 2-3:30 and R 2-5, room 34-501

Attendance at the lab sessions is mandatory. Contact your lab instructor if you must miss a
lab session because of illness or other extraordinary situation (excused by a Dean).

Staff

Name Role Office email at mit.edu
W. Eric L.@ Instructor 38-401 welg

Denny Freeman Instructor 36-889 freeman

Tomas Lozano-Perez Instructor 32-G492 tlp at csail

Tim Lu Instructor E17-438 timlu

Ali Mohammad Instructor 34-501 alawi

9/7/2010 9:32 PM

6.01 homepage / Fall 2010 ht'tp;//mit.edufﬁ.()llmarcu_ria]/fall10/www/information.htm]

2 of4

Russ Tedrake Instructor 32-380B russt at csail
Kendra Beckler T. A 34-501 kkb

Nicole Bieber T. A. 34-501 nbieber
Sam Davies T. A. 34-501 sdavies
Daw-Sen Hwang T. A. 34-501 dawsen
Evan Iwerks T. A. 34-501 iwerks

Office Hours

All office hours will be in 34-501.

e Monday: 6:00PM to 9:00PM
e Tuesday: 7:00PM to 9:00PM
e Wednesday: 6:00PM to 11PM

Textbook

The textbook for the course will be a set of notes (around 300 pages) written by the staff. The
notes are available as a PDF file on the reference tab of this page. You will also be able to
order a bound copy from CopyTech for approximately $23.

6.01 Grade

Your grade in 6.01 will be the weighted average of the following component grades:
Online Tutor Exercises 5%

Online Tutor Software Labs 10%

Online Tutor Design Labs + Interviews 20%

Homework Problems 5%

Nanoquizzes 10%

Midterm 1 10%

Midterm 2 15%

Final Exam 25%

Collaboration Policy
We encourage students to discuss assignments in this subject with other students and with

the teaching staff to better understand the concepts. However, when you submit an
assignment under your name, we assume that you are certifying that the details are entirely

9/7/2010 9:32 PM

6.91 homepage / Fall 2010 http://mit.edw/6.01/mercurial/fall10/www/information.html

’ your own work and that you played at least a substantial role in the conception stage.

You will work with a partner in the design labs. You and your partner can equally share all
results, code, and graphs that you develop as a team. However, tutor questions about the
software labs and design labs are individual. You alone are responsible for any written text
that you hand in.

You should not use results from other students (from this year or from previous years) in
preparing your solutions to online tutor problems, nanoquizzes, exams, or written answers.
You should not take credit for computer code or graphics that were generated by other
students unless you developed those materials while working with your assigned lab partner.
Students should never share their solutions with other students.

Incidents of plagiarism will result in a grade of zero on the assignment and, at the discretion of
the staff, be reported to the Committee on Discipline (COD). More information about what
constitutes plagiarism can be found at http://web.mit.edu/academicintegrity/

Due Dates, Lateness Penalties, and Extension Policy

Due Dates for all assignments are given on the Online Homework Tutor. Assignments must be
completed by the scheduled due dates unless officially excused by a Dean. Participation in
sports, music, interviews, projects, etc. are not official excuses for late work (you can use
your extensions for these activities). Unless officially excused, your grade for late assignments
will be multiplied by 0.5. Written homework assignments will not be accepted more
than one week late, except by special arrangement with an instructor.

Each student will be allowed exactly two extensions that can be applied to all the
assignments for any single week. Extensions do not cover nano-quizzes, interviews or exams.
Instructions for requesting extensions will be posted here after the beginning of the term.

Once you request to use your extension, it cannot be rescinded. Extended assignments are
due one week after the original due date. Extensions cannot be applied to interviews or to
nanoquizzes or to exams.

Nanoquizzes

A short (15-minute) on-line nanoquiz will be given prior to each design lab session. The
purpose of these nanoquizzes is to provide motivation and feedback for learning the materials
presented in the weekly lectures, readings, and on-line tutor problems. Nanoquizzes will
generally consist of a simple question from this week's assignments and a more difficult
question from previous weeks.

The nanoquizzes can only be accessed on-line during the first 15 minutes of your design lab
session in 34-501 (i.e., starting at 5 minutes past the hour). Contact one of your lab

instructors if you must miss a nanoquiz because of illness or other extraordinary situation
(excused by a Dean).

Nanoquiz Makeups. You can pick any two nanoquizzes to take again (plus any additional
nanoquizzes that were officially excused by a Dean). Participation in sports, music, interviews,
projects, etc. are not official excuses for missing Nanoquizzes (you can use your makeups for
these activities). Nanoquizzes can only be retaken at a makeup session near the end of the
term, from 4pm to 9pm (except as supported by a Dean). You will have 15 minutes to

complete each makeup nanoquiz. Your grade on the makeup nanoquiz will replace your
previous nanoquiz grade.

3of4 9/7/2010 9:32 PM

6.01 homepage / Fall 2010 http://mit.edw/6.01/mercurial/fall 10/www/information.himl

Midterm Exams

Midterm exams will be given in the evening of October 12 and November 10 (see Calendar
page). The exams will cover all materials contained in lectures, on-line tutor problems,
nanoquizzes, software labs, and design labs up to the date of the exam.

Final Exam

A three-hour final exam will be given during the Final Examination Period at the end of the
semester. The final exam will be comprehensive across all materials in this subject, however,
materials since the midterms will be weighted more heavily. The final exam will be scheduled
by MIT's Registrar's Office. Conflicts with the scheduled time must be resolved by scheduling a
conflict examination with MIT's Registrar's Office.

Regrade Policy

If you find a grading error in an examination or homework assignment, please submit your
exam/homework along with a cover sheet that describes the error that you found to your TA.
We will review your concern and then regrade the entire exam/homework to try to eliminate
the error that you identified as well as any other grading errors. Requests for regrades must
be made within one week of the date when the graded exam/homework was returned.

Advanced Lab Assistant Option

Students with substantial background in EE and CS can satisfy the requirements of 6.01 by
serving as a lab assistant, as follows:

complete the tutor exercises and software labs (same as regular 6.01)

prepare for design lab by attending the Tuesday staff meeting from 4-7pm

help students as a lab assistant during ONE of the regularly scheduled design labs
take midterm and final exams (same as regular 6.01)

Grading for the advanced LA option has the following weights:

Exams: 50%

Advanced preparation (reading, software labs): 10%
Staff lab session attendance: 20%

Participation and engagement as an LA: 30%

Thus, students in this option still register for 6.01; they simply satisfy the course requirements
in a different manner. As part of the teaching staff, participants in this option are expected to
attend all staff sessions and serve as an LA in prearranged design labs (or to make prior
arrangements with the faculty in charge). Failure to do so will result in a substantial grade
penalty. If you are interested, speak to an instructor.

Advanced Programming Option

For students with substantial programming experience, we will be offering a separately
graded 3-unit subject that you can do in addition to 6.01. This subject will involve an
additional weekly meeting and 4 programming projects spread across the term, each taking
2-3 weeks. If you are interested, speak to an instructor.

4 of 4 9/7/2010 9:32 PM

' 6.01: Introduction to EECS 1 Week 1 September 9, 2010

: | P i) miﬁﬁmpiﬁﬂmd_ﬁm’ ples

Today’s plan Outline

e Will defer the standard admininstrivia on course mechanics to first e Compositional systems
real lecture on Tuesday e Python interpretation

e First hour will be spent talking about Python and computational e Object-oriented programming
thinking

Reading: Course notes 1, 2, 3.1—3.5, A.1, A3—A.4
¢ Remainder of first lab will be spent working through programming

examples /\L_v .)

— If you don't have a lot of experience with Python or program- Wl (GA{-"(J\CF.’ Lgfh{) SYb'ffr?s
ming, you can spend that time working through the Python
tutor 00,0

— If you are an experienced programmer, you can jump into the
assigned problems

e Regular schedule will begin next week

Suﬂ “Q‘IJﬁlm qu+oflq \

! \
cedan, arali e, paiafuly Conplex_ g ems

Compositional Systems Some compositional systems

The most powerful way of building complex systems. Natural Numbers

What does it mean for a system to be compositional? e Zerois a natnum

e Set of primitive objects ¢ If x is a natnum, then x+ 1 is a natnum

¢ Ways of combining primitive objects to get a new object Arithmetic expressions

e New objects can be used and combined in all the ways that s A numeral is an arithmetic expression

primitive objects can a i - o If x and y are arithmetic expressions, then so are

_ AbSteac] 0 . - Bk & .t

Allows one to isolate behavior of module from details of module £ v ,H’ '{Q de.'v

« easier to design by suppressing details - -y f (&3

- x*y

bt wit %o oy abed all of S
ﬂ‘t I“-Y?./; - (@

Note abstraction — in x + y, = or y could themselves be complex

~con }m} Comfle‘ﬁ ; f'r expressions

Spprate opeatin = USe

6.01 is about Compositional Systems Compositional Systems in Software

¢ In computer programs

« In control systems Procedures Data

* i Primitives +, %, == numbers, strings
+ In estimation and decision making ComBination if, vhile, £(g(x)) fists, dicts, objects
In each case, will learn Abstraction dos EHTE, darses

e primitives Patterns higher-order procedures generic functions
e ways of combining primitives o i

e ways of abstracting to create new “primitives”

e patterns by which combinations are typically used

Mo SpageHi calg
~a)os 1] 10

6.01: Introduction to EECS 1

Week 1 September 9, 2010

Why Compositional Systems: Declarative vs. Imperative
Knowledge

Declarative knowledge captures statements of fact: "what is true”

Knowledge. Ty e e

e The square root of z is that non-negative y such that y*y =z.

e This doesn’t tell us how to find a square root, though it does tell
us how to recognize one if we see it.

Imperative knowledge captures methods for inferring new informa-

tion: "how to" knowledge

e Start with a gueﬁ_

4 e If g+g is close to z, stop, return g

¢ Otherwise take a new guess by averaging ¢ and x/g

¢ Repeat

Compositional systems let us capture these computational patterns:

they help us put together primitives to infer new knowledge, in a

manner that suppresses details and supports abstraction,

Python Interpreter

Need a language for capturing computational patterns

Syntax: What sequences of symbols, numbers, words make a legal

program
Semantics: What a program means
—

The definition of the interpreter is the definition of the semantics
of the language

Python Shell:

¢ Prompts the user for an expression (>),
¢ Reads what the user types in,

o Interprets the expression, and

o Primts out the resulting value

Need to define process of interpretation!
p

Ways b infer squae ot W\: wy

6!06{, o'l

Interpretation

Python Expressions: Primitives

The interpreter is the ultimate imperative knowledge:

e It defines the rules for composing simpler expressions (or compu-
tations) to create more complex expressions (or computations)

e [t defines the set of legal expressions in a language (or composi-
tional system)

o It defines the steps by which a value or meaning is associated with
an expression

}'IOW Jo@g Pﬁ’hm ’}?&[{ da e‘lﬂféasfoﬂ
lums, & Valy,

Simple data primitives are things like numbers, strings.

>»> 2.0

2.0

>>> 0.1

0.10000000000000001 # Note, not exact
>»> 1.0 / 3.0

0.33333333333333331 # Note, not exact

>»>1/3 y \
0 # will change in Python 3.0 —’u.lf'eﬁe(- Jt'}fﬁ}f
>>> ‘‘this is a string’’ (\

'this is a string’ ,O—W’uﬁ
>>>str(3)

}3)

P

Python Expressions: Primitives

Understanding the Interpreter

Like a calculator, apply operators in order of precedence until a single
value remains.

>>> 2+ 3
5
>»> (3 *8) -2
22
’FE{OUO@

oW of gorrations

e The interpreter captures the rules of evaluation of expressions .

e The interpreter uses chains of environnments to keep track of
values associated with names

e A variable has meaning only with respect to ent

e An expression is always evaluated with respect to an environment

e Understanding how the interpreter creates and uses environments
help understand how programs capture patterns of computation

L}n 11‘“5 3 N s h/qllfﬁs)CW;fmmgf}

L

6.01: Introduction to EECS 1

Week 1 September 9, 2010

Interpreting Expressions

Variables

Define a procedure 1 that takes a Python program as input and an
environment in which to interpret it and:

e Returns a value, and possibly

¢ Changes something about the internal state of the computer

Note — we can actually write such a procedure! For purposes of
6.01, however, we will simply use the interpreter provided for us; the
goal here is to describe how the interpreter evaluates expressions, as
that defines our language's behavior.

Input I (Input, E)
num num
I (exprl, E) 4+ I (expr2, E)

exprl + expr2

Rules apply recursively, e.g., exprl might be a complex expression
that requires further evaluation

e Want to give names to values of expressions, so that we can
compactly refer to them
e Assignments are one way to do this (will see others shortly)

>>> foo = -506 * 2

Examples:
o CCats & Liadiy

Variables

Assignments change the environment

A binding environment specifies a mapping between variable names

and values. T
b 3
x 2.2
foo -1012
>>> b n L 4 vd vt
3
55> a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ’a’ is not defined
>>>

>>> a =3
>»> a
3
>>»> b
>>> b
5
>>>b=b+1
6

]
o
+
N

Rule: get value of RHS using interpreter's evaluation rules; bind LHS
to that value in environment

Interpreter

Procedures

e The value of an expression depends on the environment
¢ Assignments change the environment
‘-"-'-—-_—-l—..——-’-_

Input Side Effect I (Input, E)
var E[var]
var = expr | E[var] =1 (expr, E)

2 . 1 L]
Need way of capturing common patterns: 1"3% ‘ {— s M

2%2
3*3
(8+4)*(8+4)

def square(x):
return x * x PQ}((’,JWE FUMHW\
>>> square(6)
36
>>> square(2 - square(2))
4

goe:

P
¢

6.01: Introduction to EECS 1

Week 1 September 9, 2010

Evaluating Procedure Definitions

Calling a Procedure

Side Effect on E
E[var] = Procedure(args, body, E)

Input

def var (args) body

Note that evaluating a def creates a binding for the procedure name
together with the body of the procedure and the environment in
which it was created; it does not actually evaluate (or call) the

procedure.
61‘% ’f%@ﬁzr inbo Staclsre

<expr0>(<expri>, ..., <exprn>)

1. Evaluate <expr0> in calling environment
2. Evaluate (<expri>, ..
3. A new environment is created:
— binds the parameters of the procedure to argument values
— has as parent env. that in which the procedure was defined
4. The procedure body is evaluated in the new environment

., <exprn>)

I (Input, E)
proc =1 (e0, E)
vl =1 (el, E)

Input
el (el .. eN)

newE = Env(proc.args, (v1, ..., vN), E)
e
I (proc.body, newE)

Calling a Procedure

Calling a Procedure

>>> square(a + 3)

1. evaluate square in E1 and get Procedurel.
2. evaluate a + 3 in F1 and get 5.

evaluated in this environment (E1): 3. Create E2:
— bindsx to 5
— has FEl is its parent.
E1
a 2 Procedurel E1
(%)
square —1|
e return x*x '. a 2 Procedurel
= i square ° ol %)
[return x*x
] [—1—e
]
\
\\
-~
E2°{___* 5
The dotted line indicates parent environment
4. evaluate x * x in E2, return 25
(dn but lew chal
Jtu, ln 0m|0 La
"9, C Chaly
Non-local reference Data Structures
dag hisia)s Procedures capture common patterns of computation; let's us ab-
S stract away details and use as if were a primitive
>> b =6 We also need ways of grouping data elements together into more
>>> biz(2) complex structures that can be treated as primitives.
Python has several important ones, which you should explore:
E1 i
Procedured % Lizis
. e r— -] (a) e Tuples
' return a+b e Dictionaries
! b 6 e Y
\}P |‘ We will come back to these next time, as well.
\

L e N I S

Ll

6.01: Introduction to EECS 1

Week 1 September 9, 2010

Classes and Instances

6.01 Domain

One important way to group information together is to aggregate

common data elements and common_procedures for manipulating
those da ents into a single structure

e Instance: collection of data and procedures
e Class: what is in common among a collection of instances

fhject -odeted O/ ogAming
“dagtgdtes of data

name role age building room course
Pat Prof 60 34 501 6.01
Kelly TA 31 34 501 6.01
Lynn TA 29 34 501 6.01
Dana LA 19 34 501 6.01
Chris LA 20 34 501 6.01

Class Definition

Class Definition

class Staff601:

T course = '6.01° Creak COM"M"’}\]

building = 34

room = 501
ittt
E1 2 Males Eavjpamd
T course '6.01"
Bfscoeat] " building 34
room 501

Evaluation of class definition creates an environment!
Accessing and setting attributes of the class
>>> Staff601.room

501
>>> Staff601.coolness = 11

class Staff601:

course = ’6.01’
building = 34
room = 501

Accessing and setting attributes of the class

>>> Staff601.room
501
>>> Staff601.coolness = 11

Note rules of evaluation:

o First variable name is evaluated, points to an environment

e Second variable name is evaluated with respect to that environ-
ment, leading to binding of name and value; value is returned,
or value is bound

P

Instances ﬁ fu‘[:‘f.(, \/5151043

Instances

>>> pat = Staff601()

o Cproadue 2 Al idaag

&~~~ course '6.01"
Staff601 [S—— :
> building 34
pat o
room 501

4

E3

—
By

Evaluating class instantiation creates a new environment, scoped
by parent environment of class; any init expressions (see later) are
evaluated wrt to this environment; environment is returned as value

>>> pat.course
’6.01”

>>> pat.name = ’Pat’

>>> pat.age = 60

>>> pat.role = ’Professor’
>>> pat.building = 32

>>> pat.effree = G492’

(o0m
E1 E2
SCaPEE0L | course '6.01"
pat B[building 34
=N room 501
R
=N
name 'Pat’
age 60
role 'Professor’
building 32
roem 'G492"

6.01: Introduction to EECS 1 Week 1 September 9, 2010
Methods h loﬂﬁé {-D ?:;;:t):lureQ
class Staff601: Z return self.role + ' ' \
course = ’6.01’ Class .l + self.name
building = 34 /) \
room = 501 fhﬂ E1 E2 | salutation »
def salutation(self): ¢ (COMMgn My J 'Ofe t[{d% SEEETEDL & course "6.01'
return self.role + ’ ’ + self.name e B | building 34
r- : }' 1— \ room 501
Poiars To insfpmee <
E3
name 'Pat’
age 60
role 'Professor’
building 32
room 'G492'

Calling Methods

Initialization

>>> Staff601.saluation(pat)

¢ Evaluate pat to get the instance Ej.

¢ Make a new environment, Ey, binding self to Ey. The parent of
E4 is Ey, because we are evaluating this procedure call in Ej.

e Evaluate self.role + > ’ + self.name in FEj.

e In E;, we look up self and get Ej, look up role in E3 and get
’Professor’, etc.

¢ Ultimately, we return ’Professor Pat’.

>>> pat.salutation()
is exactly equivalent to

>>> Staff601.salutation(pat)

We can specify particular computations to perform whenever we
create an instance.

class Staff601: 1

def __init__(self, name, role, salary): l)dl H’ L\
self.name = name
self.role = role
self.salary = salary

def salutation(self):
return self.role + ' ’ + self.name

def giveRaise(self, percentage):
self.salary = self.salary + self.salary * percentage

To create an instance

>>> pat = Staff601(’Pat’, ’Professor’, 100000)

String Methods

Rest of today

class Staff601:
def __init__(self, name, role, salary):
self.name = name
self.role = role
self.salary = salary
def salutation(self):
return self.role + * ’ + self.name
def __str__(self):
return self.salutation()

>>> pat = Staff601(’Pat’, ’Profesgbr’, 100000)

>>> print pat

Professor Pat JJ

Without __str__ method, we would get:

<__main__.Staff601 instance at 0x9e19a80>

e If you are new to Python and/or programming:
— Work through the Python Tutor first
— Come to office hours on Sunday, to get a 'free’ extension on
this week's work
e Work through this week's Software Lab assignment
e First nanoquiz at end of session — can retake at end of term if
you need to; this gives you sense of what we expect

If you have a problem with your assigned
section, please email welg@mit.edu.

6.01 Intro to Python and OOP — Fall 2010 1

Software Lab 1: Intro to Python
and OOP

Setup

For this lab, it will be easiest to use one of our laptops or desktop machines. If you have already
installed Python on your own laptop, you can use it, instead. If you haven’t installed Python yet,
and would like help, please bring your laptop to evening or weekend office hours.

e Using a lab laptop or desktop machine

— Log in using your Athena user name and password.

— Click once on the Terminal icon (usually on the bottom left of the screen.) In the terminal
window, type athrun 6.01 setup. This step is only done for the first lab; for subse-
quent labs, do athrun 6.01 update. It will create a folder in your Athena account called
Desktop/6.01.

e Using your own laptop
— Go to the course web page: http://mit.edu/6.01
— Go to the calendar tab, and download the zip file for software lab 1. Unzip it.

— When we mention finding a file in Desktop/6.01/. . ., look for it in the folder you got by
unzipping the archive.

e Using course notes in lab
— Click once on the Firefox icon at the top left of the screen.
— Gotohttp://mit.edu/6.01.
— Click on Reference Material in the navigation bar.
— Click on Course Notes.

— In the popup window, click on Open with, choose Document Viewer from the pull-down
list and click OK.

6.01 Intro to Python and OOP — Fall 2010 1

6.01 Intro to Python and OOP — Fall 2010 2

e Using the online Tutor

— If you have not already registered for the 6.01 tutor, do so now. (Note that the online
homework tutor is different from the online Python tutor, which you may have been using
to prepare for 6.01. You need to register separately for the homework tutor.)

* Click once on the Firefox icon at the top left of the screen.
* Gotohttp://mit.edu/6.01.
* Click on Online Tutor in the navigation bar.

% Under the Homework Tutor section, click on the register here link and follow in-
structions

e Writing and running Python programs
— In the Terminal window, type idle &.
— You can type Python expressions in Idle’s Python Shell window.
— You can write your programs in a file and test them using Run Module. For example:

* Click Idle’s File menu, select New Window, and write print ’Hello World’ in the
window.

x Click Idle’s File menu, select Save as, navigate to Desktop/6.01/labl/swLab/,
and enter the file name test.py.

When using the lab laptops, if you find yourself in a file dialog box that seems to be far away from your
home directory, you can always type ~ (the tilde character) in the box, followed by the Enter key; that
should take you to your home directory, which contains your Desktop folder.

% Click Idle’s Run menu, then select Run Module.

* Look at the Python Shell window: you should see Hello World.

6.01 Intro to Python and OOP — Fall 2010 2

6.01 Intro to Python and OOP — Fall 2010 3

2 Exercises

If you have already worked through our Python programming tutor and /or have had other
Python experience, then go ahead and do the problems below.

If not, then please work through the Python tutor. To register for the Python tutor, go to the
course web page, click on the Online Tutor link, and register for the Python Tutor. You
will get instructions on how to log onto that tutor. If you need extra help in Python, come to
our help session on Sunday. At that session, you can sign up for a free 'new programmer’
extension on the work of this week.

2.1 Simple Looping Procedures

Open the file Desktop/6.01/1abl/swLlab/sl1Work.py and complete the definition of the
myAdd procedure. This procedure should take a list as an argument, and should return the sum
of the elements of the list. If the argument list is empty, the output should be 0. Do not use the

built-in Python sum procedure — we want you to get practice in writing looping procedures.
£

Debug it in Idle until it seems correct. (0 F(/o
8 i f b f45’(1 how o stict gl o), It
o ddldstietye
Wk.1.3.1 Check your results by copying the text of your procedure from Idle and

pasting it into the tutor problem Wk.1.3.1. .

Similarly, complete the definition of the myMul procedure, which will compute the product of the
elements of the list supplied as argument. If the argument list is empty, the output should be 1.

Wk.1.3.2 Check your results by copying the text of your procedure from Idle and
pasting it into the tutor problem Wk.1.3.2.

6.01 Intro to Python and OOP — Fall 2010 3

2.2

2.3

24

6.01 Intro to Python and OOP — Fall 2010 4

Factorial

Open the file Desktop/6.01/1abl/swLab/s11Work.py and complete the definition of the fact
procedure, so that fact (n) returns the value of n! (e, nx (M —1) x (N —2) x ... x 1)

Debug it in Idle until it seems correct.

Wk.1.3.3 Check your results by copying the text of your procedure from Idle and
pasting it into the tutor problem Wk.1.3.3.

Reverse

Open the file Desktop/6.01/1abl/swLab/sl1Work.py and complete the definition of the
myReverse procedure. This procedure should take a list as input, and return a new list as output,
whose values are in the opposite order to the input.

Debug it in Idle until it seems correct.

Wk.1.3.4 Check your results by copying the text of your procedure from Idle and
pasting it into the tutor problem Wk.1.3.4.

Object-Oriented Practice
J tun ﬂ,/a@k on b

Wk.1.3.5 Get some practice with object-oriented concepts in this tutor problem.
. /
Wk.1.3.6 Get some more practice with object-oriented concepts in this tutor prob-
lem.

6.01 Intro to Python and OOP — Fall 2010 4

6.01 Intro to Python and OOP — Fall 2010 5

2.5 Two-dimensional vectors
Open file Desktop/6.01/1abl/swLab/sl1Work.py and complete the definition of the V2 class;
—_—
it represents two-dimensional vectors and supports the following operations:
—_— LI
e Create a new vector out of two real numbers: v = V2(1.1, 2.2). (ﬂML _ 4 IW?) < [{
e Convert a vector to a string. -

e Add two V2s to get a new V2.
e Multiply a V2 by a scalar (real or int) and return a new V2.

Step 1. Define the basic parts of your class, with an __init__ method and a __str__ method, so that if

you do

print V2(1.1, 2.2) hﬂw WP/&%ML ‘/ed'ar
it prints ’és X, v 5(3‘1@.;}3
¥2E.1. 2.83

Exactly what gets printed as a result of this statement depends on how you’ve defined your
__str__ procedure; this is just an example. Remember that str (x) turns x, whatever itis, into a
string.

Step 2. Write two accessor methods, getX and getY that return the x and y components of your vector,
respectively. For example,

>>> v = V2(1.0, 2.0)

:;>(>) v.getX() (9 reﬂd 3@ [F‘(‘.‘

>>> v.getY()
2.0

Step 3. Define the add and mul methods, so that you get the following behaV1or

>>> a = V2(1.0, 2.0) 68[{ _F
>>> b = V2(2.2, 3.3)
T flst avgm
rint a.add(
. P A gy

>>> print a.mul(2) % U6€, M[
v2[2.0, 4.0] esgvbﬂ'-
Lgc%xC)j fe WY Jd (efvf Yo q

C(QA)LE’ N
Mol c["!fcﬁﬂf L.\/[U] dq‘t'ﬂl Ul dQﬁ/LM
’CLd&

“peiiate™ .

6.01 Intro to Python and OOP — Fall 2010

6.01 Intro to Python and OOP — Fall 2010 6

>>> print a.add(b).mul(-1)
v2[-3.2, -5.3]

Step 4. A cool thing about Python is that you can overload the arithmetic operators. So, for example, if
you add the following method to your V2 class

def __add__(self, v):
return self.add(v) - 00] \
LY

then you can do

>>> print V2(1.1, 2.2) + V2(3.3, 4.4)
V2[4.4,6.6]

Add to the class the __add__ method, which should call your add method to add vectors, and

thhod, which should call your mul method to multiply the vector by a scalar. The

scalar will always be the second argument. \L |
e oas el or W, CL e/
. o .. . [/ or
Test your implementation in Idle until it seems correct to you. (\)
dont forget fo cead)

Wk.1.3.7 Check your results by copying the text of your procedure from Idle and
pasting it into the tutor problem Wk.1.3.6.

Concallades 4 v/ |¥
ltl’-@. ‘}1\/‘1 %/if}

V1

gl et

Chst a5 flouls

it ol gy Migles

!
6.01 Intro to Python and OOP — Fall 2010 (/l'l' :/l']C[O‘d— 6

o cypy Hiostioy

CO\ Des:ﬂy, Lab I

|ioks

—_—

F [oxible

e~ (0 ! +60‘M q""f'hﬂ; {9

&ﬁ%Ww,
“MuigBle Ll shingg

L: [] me)}7
L-(12,3,4]

L [, (et 'ghi)]
L[l ndex

n_]en L) i 9mp|7
[‘afﬂd

LU

f

—/7 78 > ko

[1,2];- [\,2} Sfe
1205 (12] 3 falg

6
[{ [Jﬁ’oo}g}rf7
L:ATMJ [5%4}%1’ %
tle)

m[L Stilouat 7
i

gor X r‘q O\l(
Pent x, Jon ()

(\No«/ aa‘aa[l, (Jttl ;’f)

F*/Gi(tl Thln‘ﬂw\ a,bo;/} COMPQW'} ﬂ‘iés
dnd how k’ Lo baste mags

bt ICm[eJ L Hoe oy tutor
000 ~ st iaglule et |lno

(I 500 what h‘? dd
Ty ot et ()

ki 5 bw wll T 4 7

fa
-Ha i | Tela| = l

545) 10570 55080 o 29-()

fact (2)

"% T wis Close

.._g\')”, /t\ |
(" gond laqemj [Odr 40 5ee ""l”‘d 50;@ i
os-
" 4 i
—;k €(ond fw-}- vds (3)171
A% Wi I Was &“1 ;’“WU
W, i
dhg = l 7
for (i Ungg (2/’”0 :
Ong < Arg | . SW
(Ch/m An,
Rese
Eon =)
(0 fum)

flgp
f@’}t/ﬂl h ® 'ICLO} 6\"’)
T

bzt anf ?%rg(yf dbot h!)

Y Rongg
Cieg e Jiol
6IL04 ot end
L[]
)ﬁn ~ lengw
Vd 160f X w;f\\
fiz L[Wf Ql&n ‘*1]

—

l
ﬂu{ Ans of (a0 Myl b’l/w/}p/

’(o(\ X ‘

‘if
s ”[]-}m % g

%u Tl f‘“%ﬂ

ﬁ;qf wo(f,;t/
ik

Are Egin’rew

b=a,
E——pilal

Sdine uo"

—

o« Gp,

£ patt o Copy
(= st (a)
C=af!]
Bu\- 9,‘[7 1 lowl I,

“Oflwiss copy, dup apy

Fele> Jle a Lih ot ot abl (chgde)
qQ= (1/ 2’ 3)

a-172,3

b= e ooy, SVl Lo
6#"‘3 F Il Chatactery
P race dure, o

X \
—n 4 Jlé{crmjr oniwormat

v
bJﬂL Can L W@

=3
dof b()!

O=atl & a), aboqd, beea M’MFQ
Pr‘unL a

loes gt "glba] o
“$0 ot Changeg Tl glob) 4

“Aoni make L new Umdl‘ft
proledure, Ly /

Chn fus prcedures as Ay rints
5cluare(sq¢ove(x])

Th, (=5 Readl,
aﬂ CL‘OUJ}L ‘Oﬂob)f}#\ GDMfU e -jmﬁ‘ji
Fk = Oxpoaatu)

obes ‘,Jﬂe\tff \l/\td‘tb‘wq (fWﬂQh J/OW’?)

Can bl stringes o repaf then

! FU;*S)“ ~ ”FU:\FV(‘\F/I‘\k
CompenY s

L

\l’\'l' ¢ ﬂod;\ (J‘Lfftlﬂ}fnL

(aweck o Fload (15) = |60

(T H# %S 6 fhdy an wl b
7 0° rod s OQDrcﬁel‘, (elyms [emalnle

A\
n [1 3 ,,‘ e .
lile Ph? G ds A ﬁw Jont eed Trn

fri
5094 yu o) el sond Y

“ha ol vold ot know wha ot ‘10149
- \pu‘ﬁ(r Yo Octor

“Why \ov M(\L‘\Q ')ms*)]lQD/ ji N/“M, |
1&2& Vhy pPpplP Il p\/ﬂwn < betid {(1@
(OWM\Q ml 'Hnﬂ Cagl o{ k@}fi PP“”'L 6 plbaps new {:fl{’/
o o Jile PI\P {Df(i‘aLL\

SHrings de o atag wl pah lothr dn patry
an o Sliges
Pf\tn& 5[0‘»5} ﬂffh‘ﬁ. Eirgt b C’wmlW)
4 5—]—&(\1 (gunilmﬂ a0 % uge ,th Jalogdv\
rings are cmvtble
- st gy 67”(?43

nﬁ;/ff 'h’w/@M' ‘Lbodé‘ Aav o Jo l[zlrﬂ
lgts be nested
WS @ (ourse nates

e (0) > To,12,3,9,56,7% 4
0 theds F ovele i i fe [\tsk
il et (b a4 lisk
Moy [igks for mafricles
T u‘o\@ oo /ol
M type: Jidoniey <&
— s 50uatlp_ atoys
162 T caa e vie 00P fols n,ajmg[

L(()/ldiwuj Camp atoffg w/ 'hm,}— &6/"6(/{‘
500% matix Exomple ooy |

5@“& ofen v clog, ﬁ”c'ylor\} for {“8 }1&44'"‘9 a5 ﬁai‘ﬂ

€ [l php wrrays

9
bt oo mat b o ghing, o st)
0 v FLCNL f)lag (n (Mg gem,‘:%c/f)

Clﬂbj = vser dpfied Compond 00
Jeﬂﬂﬂ s and Tha Crate inglanes

CI e This e)(Pnﬂd“M Mo Thas Cc((/ D‘Dﬁfeﬁ)
50Mngss ;nf’!faeﬁﬁ Poiat

Shallor= 5e00 n Ay oty
dg@p “Sam iy - J()Pp%e} whet T worl] thils

/ﬁ}f note allul@ ha ppt
~Go fmpoff Py modle + use F
‘S{«z%v @pits ok fop]
T b due el

ob Jegp (0,07
(e ba n V2 ok gt

‘ m“j'*:ﬂj Now objecty
"H/{ whtq Yoy Lwe A moJff.‘f’r t wha L/ cfaﬂ‘f
.._Spﬂe

Progans On\y e vmo | fias |
al goflﬂ\ . SEV{JﬁtI Lol

B Methads e d fforent fhan Longlions
“Ae{‘"bi Inb\vdﬁ * o[ﬂ%&
~d oo Syt

e . prit()

b was my (/2 Pfoblém]: 'H"‘ﬂ(«

(6{/1 d@fmg, OJ}GL‘JE (,Lﬂ&& 73] a ﬁ//'éhﬂﬂ'
"9 bad Cheddn,
Tl b oadl alf

U2.add(V2b)

m X add ek (V7, / Zb)

(Ctimgd o vedor
feﬁ/m V1 (- /“‘—)

Pl mocthism - il ﬂlﬂﬂt work ot mog Y) bypt

“(net hat T thovdd # al
(6[!’\ ‘ | f}h it Mey
Mﬂ l\?l? Ub)0(, b)

@M, Th cad exanplo

X hafyra))
ad /Wtc mi thats [Mfd“ o) —add enedk, 4,
((6{&5 D@CL‘

rMlq :
e tage

71(@’

ks all e cords

“hw clags tht 6 molbied e of ol cless
69/%'{{'{\3 U\%{u, }V Wﬁ_ 6{[
Wty
_/\
sy (el |

w (me 5(@&%@, pot el ?/ Iz

_) &Cofﬂwtkﬂ
d/b = (2{3) € ’71:) 25 f%f‘lr Wity)
2 0 t b % » ‘
. £ ‘t%uj 1
74 = [2 3]
7 ath

~ S e oh g o was nott q“b)’

7[0&,L7 £ (Z 3)

~> O rf)

_{5‘ e w7 whe eud qbof ﬂ,é" @

> (0,6) = [ah] mar it bo o st
“Som abd}n l‘

S

(k) < (Z/ 3/ C{)

€rfo/5 —7log MoAy (/OLL/ds]Lo dnﬁack

6,b) 72
erne ot obeck not (Hoable

———

(0\/ (b/(’]) N (2/ (31 b’”

v orks
(0, (byc)) = (2,34) do il ~F oo lat

a fiwg or Son{,f’h:@

@ OOP PMT\U/L Naw/

- Moy V\:%!l, b0 L\ﬁl,ﬂ

NWL(:’O/
A,y D)
4\
B bx =]
a ¢ X WK
L_J
Thiag | Yoy ae oasy
L/ o o owel .
¥ i o
\/
T ~feal, fd Cxecisty
~o(us
ot C= noget < Wmﬂ?
Th
CoX T19.\(=7
Mgﬁl f Aontlsge < o) [g,f !
Aot (1-7)
d\\)(:—(e
C‘X - (how_]: e w(n.q?l (815 i 5 ‘
a‘gu T ‘"G g /o~ 0-‘/,0?3 mdk éw’—qf lowst V’/ &ieﬁ:&

(0

Yacd LY
hﬂlms Wﬂ@le
';nCIFf\fnfb X 1»1 {

~ otk has P, Mo led 7L e
0\: _n\‘mﬂ e 6{a(ﬂnj "WC F/&}]? “ 5‘10*/“

b bids appm

Q\X:S

G
k]: T}{(ﬂg
LX = T]almﬂ
E‘X \K:B

el A
l)- X X ;'(,{
bosc, hesBetn =1

v Crooe gfmcg (.X m)nt Jgﬁﬂﬂd? @é

"”J’

© M ﬂ’,@ Mang|p
M ﬂq\mq. MW@]e

ngw methed
(ol o & G, Cight?)

(&lay o4 ol alf
P o] l’l Mot %/@l)ﬂﬂ

Mangled (2)

0= Nw n'v‘mﬁ

Ok\éf;f(;) © Jon‘} Abss o 41‘/‘%%
O\ mﬂ/\glf L]

Cotum o ™ hat

n

| \
9(/65 (fypht Qlror MEssayeS

lt (/{53 f}%(“{n

’(k" J\”o QQ[J[— hot It-ft 4(/2@9
(Xéétgn T’\lﬂgg (7714,13!/ 7},@ 2) f:‘puxe bt T ?%‘44,
Thing 1. 44 (ﬂ‘hﬁl,%)
% Put3
@l b iy ()

"ol efieb

et gl Pogs
+OLL€§ l“f’+ 0{ ﬂ;ﬂ{jﬁ

—

é@f AW tlr\ H";’&ﬂ S&S)‘

Lum < %f V\.ge/fﬁ)ﬂ’ém
L TV
W}ML celura Jﬂnltng, nol- dn ik
6{'(/{ Mo ~Jsays J:& ol ﬁ/f“ Pnobl&y,
TS b iy gt
2o ém(x, 5@4())
{\
Vo ,
| 'ﬂu-\@[/‘d e (0 mpiny &,f (’wf
SRl ng| s %, HSJ, Camffgm)m\\

_JOL(,MfIJ[d“Quq LS {’WJ, {'0 leg/@}“’{i
143 w:H\ [- éf __,7

L&M = Gum 4 n.gh A G n o ‘h,,’na L;&ff

6c Chun ‘
9 S l/d(cd“(; h
Now e

1 ety
,M) Cetug, @,EJ wt N cum

\J{ least |y pag
o\‘%}
bt Lo g e e o e

— o o ‘4

\ My Wiy + (Ub"e ﬂﬂt 60(18 n - "f/\[;L System

% Wé /9']"/4 'emP‘b ltd as 7}1:/15 —not qu

@

Ah:; wer

CLE‘L Sumof All ﬂ\m(dg([Oan%g>
A Thiag(

0, m(&m/(ﬂ Gut() for | 1, Jotof 771/&0]))

/ef
v g here | ¥ Wee | ghw’d Litt/f %ﬂc[!om/

e ==

1Y p

\m{ { 7);:/{3 C/ore

0Oy meb T)ﬁm
—opy Vague

Pat /) e
y

R COmonbi
Cnonbee — must o)

T bl +g(5e{gm((

(2

6.01: Introduction to EECS 1

Week 2

September 14, 2010

Stafr

Course Goals and Course Coverage

Lecturer: Eric Grimson

Instructors TAs

-—3Denni5 Freeman Kendra Beckler

Tomas Lozano-Perez Nicole Bieber
-:) Tim Lu

Ali Mohammad
Russ Tedrake

Sam Davies
Daw-Sen Hwang
Evan Iwerks

Plus many excellent undergraduate Lab Assistants (LAs)

e Design and analysis of complex systems via abstraction and mod-
ularity

e Importance of models for analysis and synthesis

e Dealing with partially specified problems

e Basic skills in EE and CS

Captoe - ptiems _ syprss olefels

e Software (2.5 weeks, throughout) & [{am {1 ? w:(‘.s.[
e Linear systems/Control (3 weeks)

e Circuits/Sensing (3 weeks)

e Probability/Localization (2 weeks)

e Search/Planning (3 weeks)

Come /P uf qud madtls

Course Mechanics

More Course Mechanics

e Lecture: Tue 9:30AM 32-123
e Software Lab: Tue, 11:00 or 2:00 in 34-501
— done individually
— some problems due in lab, some two days later
« On-line tutor (register via 6.01 web page; different login from
the Python tutor) problems
« Written homework problems ?{‘(‘Vd n‘(//\ PﬂEJ
o Reading (assigned on calendar web page)
» Nano-quiz (at the beginning of design lab) 'DY//‘
— easy question from Tuesday lecture or software lab or tutor
probs
harder question on previous material
open book
— don't be late!!

e Design lab: Thu, 9:30 or 2:00 in 34-501
— lab work done with partner (randomly assigned)
— some check-offs due in lab, some a week later

e Two interviews (individual)

¢ Two midterms and a final exam

e Advanced programming option (separate 3-unit subject)
— If you are interested, see Prof. Grimson

Outline

Collecting data: data structures

e Data structures and procedures
¢ Functional programming style

¢ Inheritance

¢ Procedures as first-class objects

Reading: 3.4.6, 3.5.4, 3.6, 4.1, A.1, A.2

e Would like a way to gather data together into structures that
can be manipulated as a single entity
e Have seen classes as one mechanism
e Simple linear mechanisms: list and tuples
— Lists are mutable; tuples are not
— Linear collection of elements
— Kind of PCAP — elements can themselves be complex data

structure [
tructures a(b&mﬂqw‘l

6:.01: Introductiomto EECS 1

Week 2

September 14, 2010

Lists: Creation

Lists: Accessing and copying

>>> foo = [1,2,3,4]

>>> foo

[1, 2, 3, 4]

>>> bar = list(’abcd’)
>>> bar

[?al’ 1, ig?, :dn]

>>> bar = list(’abcd’)
>>> bar[0]

)a)

>>> bar[3]

Ddl

>>> bar[-1]

" lot (hedl really be ~0,b4 oh %I})

>>> bar[1:]

[¥Bi . Yely, 3443

>>> bar[:1]

[’a?]

>>> bar(:]

[2a’; *h%; e, 247]

ferda.

f
ﬂl‘{s /4 0q [V J

Lists: Mutation

Manipulating Lists: List Comprehension

—
>>> bar = list(’abcd’)

= { }
>>> foo = bar :
>>> foo ;iiﬁﬂ E I H/Ib :‘7’ fafh! |JF
[:a:, :b:' ICJ. :dl] Tp——
>>> bar[0] = 'z’
>>> foo
['Z,, JbJ, Jc!l ld)]
>>> bar
[lzl, lbl, ’Cl, ’d’]

>>> oof = tuple(’abed’)
>>> 00f[0] = 'z’ °
Traceback (most recent call last):
File ‘‘<pyshell#35>’’, line 1, in <module>
ocof [0] = *z?
TypeError: ’'tuple’ object does not support item assignment

e Could write procedures that loop over indices into a list, com-
puting functions of each element

¢ Ideally would like to think about doing things to elements of a
list without worrying about looping structure

e List comprehension provides such an abstraction

e Note how this abstraction can change your mode of thinking —
focus on manipulating a list as if it were a single entity; rather
than getting bogged down in the details of the list itself!

> foo = [1,2,3,4,5]
> def doubleIt(lst):
return [x*2 for x in 1st]
> doubleIt(foo)
[2, 4, 6, 8, 10]
> doublelIt(doublelt(foo))
[4, 8, 12, 16, 20]

Ubgractor, shpses Leutly

Dictionaries: Read about them

What are standard ways of structuring software systems?

>>>d = {’a’:7, 'b':8}

>>> d[’a’]

T

>> dl’c’]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'c¢’

>>> d[100] = ’a hundred’

>>>d

{’a’: 7, 'b': 8, 100: *a hundred'}

3 Aspociq e afrO-{\‘

>>> d.has_key(’a’)

True

>>> d.has_key(’d’)

False

>>> for k in d:
print k, d[k]

a’7

b8

100 a hundred

e Object oriented programming
— Focal point is an instance — a collection of related data ele-
S y 4
ments and procedures for manipulating them
— Organize in hierarchies that inherit or share methods and

data — glmula Hlers

e Procedural (or imperative) programming

le — Focal point is sequences of instructions and changes in state

— data structures are mutated to reflect state of computation
— Organize around looping constructs and state changes
; ———
e [unctional systems
— Focal point is idea of mathematical function — procedures
that convert input into output without mutation or side effect
— Organize in collections of functions that support modular
connections

00

6.01: Introduction to EECS 1

Week 2 September 14, 2010

Functional Programming Style: An Example

Standard procedural style

Return the name of the team with the most efficient offense

i med gs. y 4

bigLeague [[’patriots’, [1000, 1100, 900]],
[’colts’, [350, 315, 400]],

[’raiders’, [100, 150, 225, 117]]]

T4 vords of ofoncl

def bestTeam(yardsData):

Proce dym | (vkqi- 1
Jm)
Lsp vl

None
-1

winner
bestYards
for i in range(len(yardsData)):

total = 0

numYards = len(yardsDatal[i] [1])

for j in range(numYards):

total = total + yardsData[i][1][j]
avg = total / float(numYards)

if avg > bestYards:
bestYards = avg
yardsDatal[i] [0]

winner

return winner

gofl{ on sl §l2e Pmblt’m

Mt Q0f

Functional Style

Most of the program

Procedures are 'first class': treated the same as any other kind
of data

Procedures generally designed around concept of transforming
input to output (like 2 mathematical function) without Site-
eWon oaly pure fuacthay e
Very small procedures with specific tasks, and useful names —
modular design allows for reuse of procedures

5pIt ako fractlon
9‘»4, This [q,{‘ﬁr [Cwod)

Return the name of the team with highest average yards
def bestTeam(yardsData):
(name, yards)

argMax(avgYards, yardsData)
return name

Given record for a single team, return its average yards
def avgYards(teamData):

teamData Uj) P(}C(\

return listMean(yards)

(name, yards)

Return the mean (average) of a list of numbers
def listMean(data):
return sum(data) / float(len(data))

>bestTeam(bigLeague)
'patriots’

nho rdlcws anywive |

Argmax!

Given a procedure that takes an item and returns a number, and
a list of items, return the item for which the procedure returns the
highest number

def argMax(f, items):
bestItem

None

bestScore = None

for item in items:

f(item)

if bestScore == None or newScore > bestScore:

newScore

bestScore = newScore

bestItem

item
return bestItem

\1.5 ’ F‘DF [oof

{R?am

e An alternative way to do simple iteration

e A natural generalization of functional programming

e The only convenient way to do some operations on nested lists
e Powerful way to think about PCAP

Fundamental idea:

Define a procedure f:

e recursively in terms of f applied to simpler arguments

e with a non-recursive base case for the simplest arguments

OR

Given a problem, assume you can solve a simpler version of it
Decide how to use solution to simpler problem, plus simple oper-
ations, to construct larger solution

Decide for what size problem you can solve directly

oy mation

(}v\u/oqs sod o bae Case
~an pscape classe

Tecks

6.01: Introduction to EECS 1

Week 2

September 14, 2010

Recursion on natural numbers

Slow exponentiation

base case: 0Oor 1l

recursive case: f(n) defined in terms of f(n—1)

Exponentiation:
- {b-b-...-b

C byl
)

1 ifn=0 3 !
)= {bf(n ~1) otherwise SIMdEr asive ot
Sam Probit
W {(1‘1"1'2)2 if n even
b-b"~! if n odd
— 1 ifn=0
) f(n)=< bf(n—1) if n odd
(f(n/2))? if n even

def expo(b, n):
if n == 0:
return 1
else:

return b * expo(b, n-1)

How does the time it takes to ¢

apot2, 10
expo args: (2, 30)
oxpo args: (2, B)
expo args: (2, 8)
axpo args: (2. 7)
expo arga: (2, €)
ampe args: (3, B
axps args: 2, O
w1pe arge: (2, 33
expo args: (2, 2)
expa arg: (2, 1)
expo args: (2, 0)
expo resalt: 1
expo resuie: 2
expo result: &
e1pe result: B
axpa result: 16
arpe resuls: 32
erpe result: 64
erpe resalt: 128
1po result: 36
axpo resslt: 517
arpo resule: 1024
1034

ompute " grow as n grows?

4“?1%4(“1

Fast exponentiation

Towers of Hanoi

D« Quandry

fexpo(2, 10)
fexpo args: (2, 10)
fexpo args: (2, 5)
fexpo args: (2, 4)
fexpo args: (2, 2)
fexpo args: (2, 1)
fexpo args: (2, 0)
foxpo result: 1
fexpo result: 2
fexpo result: 4
fexpo result: 16
fexpo result: 32
fexpo result: 1024
1024

def fexpo(b, n):
if n == QO:
return 1
elif nY2 == 1:
return b * fexpo(b, n-1)
else:

return fexpo(b, n/2)#*2

How does the time it takes to compute " grow as n grows?

Move a stack of 64 discs of di

def Hanoi(n, From, To, Spare):
if n ==
print ’'move from ' + From + *
else:
Hanoi(n-1, From, Spare, To)
Hanoi(1, From, To, Spare)

Hanci(n-1, Spare, To, From)

A |
log\7)

does a larger disc cover a smaller one.

How does the time it takes to compute " grow as n grows?

fferent sizes, such that at no time

hord fo o i)mced.m[f;

to ' + To

Fd | 0
Wci Tt

\W

Inheritance

Stafr6.01

| logn =110

Just as
« Classes capture shared attributes among their instances,
o Superclasses capture shared attributes among their classes.

Superclasses are environments
—_

Classes are environments
whose parent can be a superclass environment
—_—

Instances are environments
whose parent is a class environment

class Staff601:
course = '6.01’
building = 34
room = 501

def giveRaise(self, percentage):
self.salary = self.salary + se

class Prof601(Staff601):
salary = 100000

def __init__(self, name, age):
self.name = name

self.giveRaise((age - 18) =* 0.

de

=

salutation(self):
return 'Professor’ + self.name

[00¢

((neat =

¢ quadatic 10000
Expoecy|

1f.salary * percentage
P

Fhtg Enu;mwﬁf-

? fﬂ\dh’} (/mt ,ﬁjf)f/'(,(zw)

6.01: Introduction to EECS 1

Week 2 September 14, 2010

A professor is born

Call the __init__ method

Prof601(’Pat’, 60)

Anral
giveRaise *——— | (self, percentage)
E1 E2 course “6.01° salf.salary = self.salary + \
s self.salary * parcantage
YT b Thuilding 3% -
Prof6ol - “:" 01
< Procedured
t A
Lo 3, -~ L (self)
E3 ! return ‘Professar ' \
salutation = P s
— init__
| Procedurell
salary 100000 (baie, same, age)

#elf.nane = name

A

salf.raiss((age-18)#0.03)
A

gt

Prof601(’Pat’, 60)

E2 Procedureld
giveRaise *———1 3| (self, percentage)
E1 - course "6.01" salf.salary = self.salary + \
—_— salf.salary * parcentage
CTSTI L) — building EL) =
Profe0l a oo LLE
- A Pr
PRt 3 o — i (sal2)
4 E3 f \- return 'Professor ' \
i salutation fay = L et
¥ —init__ =
B | salary LT TR B (e i
H ry salf.name = name
self Balf.raise((age-18)70.01)
nana Pat’
age 60

nl
iR

Call the giveRaise method

Final Instance

Prof601(’Pat’, 60)

E2 10
givaRiise s———1 | (self, percentage)
E1 course TE6.01" self.salary = salf.salary + \
- salf salary * parcentage
FTETITIT — Duilding ED =
o1
Frof60l] N
T — A Procedured
; L A, o n (solf)
i§ [] return ‘Professor ' \
i E3 \- 4 self.name
I salutation =
“I' it Procedurell
] - Procedure
i\ s salary 100000 plobpiivaynn
1 Ailam: = aam
1 aalf.raiss((age-18)%0.03)
|‘ o

N
QR

Prof601(’Pat?’, 60)

E2 19
giveRaise *———1| (s0lf, percentage)
E1 course v6.01" self.salary = self.salary ¢ \
- self salary * parcentage
Staff601 | building o =
Prof601 - Foe L
pat LY _— (salf)
_ return 'Professor ' \
=l , + salf.nsse
| B 11
ary 100000 (saif, nama, age)

L = nase
salf. raise((sge-18)°0.01)

E=
e

E4

mass [he]
Z26000

Procedures and instances are first-class

Constructing procedures

They can be

e stored in variables or other data structures
e passed as a parameter to a procedure

e returned as a result from a procedure

<function <lambda> at 0x2e4ddb0>

>>> lambda x: x + 1 gf")kf‘ ﬂd’{'ﬂ a P@(Bél/fg

>>> (lambda x: x + 1)(4)
b

Can separate concept of procedure as description of computational

process from concept of abstraction by naming e
def foo(a):

def bar(x): @)WE 91"8 I‘{'@ %

return x + a

return bar(6)

>>> foo(3)
9

6.01: Introduction to EECS 1 Week 2 September 14, 2010

Storing procedures Procedures as parameters

>>> procs = [lambda x: x + 1, def applyTo5(p):
lambda x: x + 2, return [p(x) for x in range(5)]
lambda x: x + 3]

>>> [p(100) for p in procs] def proc(x):

[101, 102, 103] return ’this is a ' + str(x)

(ocedy/re
> applyTo5(proc) (dﬂ- ‘364(((48 p
[’this is a 0’, ’this is a 1’, ’this i8 2 2, Ay () POfM’(E{,

‘this is a 3’, ’this is a 4°’]

How could we apply the second procedure in a list of procedures
| to the argument 2007 > applyTob(lambda x: [x, x+x, x*x, x**x])
“ (fo, 0, 0, 11, [, 2, 1, 11, [2, 4, 4, 4],
(3, 6, 9, 271, [4, 8, 16, 256]1]

Procedures as return values Trace
def foo(a): def thing(x):

def bar(x): ' ' return x + X * X

vz + 2\ VW alsa defie odile
return bar — t def trace(f):
LU[’ how ﬁ 'hlf""(def tracedFun(arg):
>>> foo(6) ypd d print ’Arg:’, arg
<function bar at 0x2e45dd0> (g JMY CQ{' result = f(arg) f‘ﬂcuer F(\:ﬂé‘ fV'C ﬁ‘”’ gy
)

ba{ F{JJ‘] {:As:& (09 print ’Result:’, result

>>> foo(6)(3) return result

9 return tracedFunC] I"Q{PMSS(:

>>> thing = foo(5)

] 1
;)) thing(3) U('At A (‘e ‘/g Q/blf, "{‘faﬁef
Check Yourself This Week

Software lab: Practice with programming and OOP classes

22 Hhingld) 2 Design lab: Building a complex class for polynomials

Homework 1: Symbolic calculator with ideas from Python's eval,

>>> trace(thing)
\ :) .
W f GU :‘ A ’ 7 and state machines. Due in parts, see Homework Tutor for details.

>>> tracedThing = trace(thing)

55> tracedThing(4) Q!’{&\,Mﬂ s weird

Ar ;[‘l @,uVH:ZO ZO
>>> tracedThing(tracedThing(4)) ——

- N

>>> trace(thing) (3) To get help:

¢ Email 6.01-help@mit.edu
¢ Go to lab hours (see course web page for times)
e Remember to check your due dates/times on the tutor

.

L

6.01 More Python and OOP — Fall 2010 1

Software Lab 2: More OOPs

Setup

For this lab, it will be easiest to use one of our laptops or desktop machines. If you have already
installed Python on your own laptop, you can use it, instead. If you haven’t installed Python yet,
and would like help, please bring your laptop to evening or weekend office hours.

Using a lab laptop or desktop machine

Log in using your Athena user name and password.

Click once on the Terminal icon (usually on the bottom left of the screen.) In the terminal
window, type athrun 6.01 setup. This step is only done for the first lab; for subse-
quent labs, do athrun 6.01 update. It will create a folder in your Athena account called
Desktop/6.01.

Using your own laptop

Go to the course web page: http://mit.edu/6.01
Go to the calendar tab, and download the zip file for software lab 1. Unzip it.

When we mention finding a file in Desktop/6.01/. . ., look for it in the folder you got by
unzipping the archive.

Using course notes in lab

Click once on the Firefox icon at the top left of the screen.
Gotohttp://mit.edu/6.01.

Click on Reference Material in the navigation bar.
Click on Course Notes.

In the popup window, click on Open with, choose Document Viewer from the pull-down
list and click OK.

Using the online Tutor

If you have not already registered for the 6.01 tutor, do so now:

6.01 More Python and OOP — Fall 2010 1

6.01 More Python and OOP — Fall 2010 2

* Click once on the Firefox icon at the top left of the screen.
* Gotohttp://mit.edu/6.01.
*x Click on Online Tutor in the navigation bar.

* Under the Homework Tutor section, click on the register here link and follow in-
structions

e You can type Python expressions in idle’s Python Shell window.
e You can write your programs in a file and test them using Run Module. For example:

— Clickidle’s File menu, select New Window, and write print ’Hello World’ in the win-
dow.

— Click idle’s File menu, select Save as, navigate to Desktop/6.01/1labl/swLab/, and
enter the file name test.py.

When using the lab laptops, if you find yourself in a file dialog box that seems to be far away from your home
directory, you can always type ~ (the tilde character) in the box, followed by the Enter key; that should take

you to your home directory, which contains your Desktop folder.
— Click idle’s Run menu, then select Run Module.

— Look at the Python Shell window: you should see Hello World.

2 Exercises

If you have already worked through our Python programming tutor and/or have had other
Python experience, then you should be all set to work on the problems below.

If you are still trying to get up to speed on Python, then please continue to work through
the Python tutor. If you attended our extra help session last weekend, you should have
signed up for a free 'new programmer’ extension on the work of last week, and we will
extend the same extension to those who signed up for this week.

6.01 More Python and OOP — Fall 2010 2

2.1

2.2

2.3

6.01 More Python and OOP — Fall 2010 3

Fibonnaci

Open the file Desktop/6.01/1labl/swLab/sl1Work.py (same as last week) and complete the
definition of the fib procedure, so that fib (n) returns _T_],_t_fL Fibonnaci number. Recall that £ib(n)
is equal to the sum¢ of £ib(n-1) and fib(n-2), that £ib(0) is 0 and that £ib(1) is 1.

Debug it in idle until it seems correct.

Wk.2.1.1 Check your results by copying the text of your procedure from idle and
pasting it into this tutor problem.

Inheritance

[Wk.2.1.2 Get some practice with inheritance in this tutor problem.]

Rotating V2

Last week, you created two-dimensional vectors as a class, and provided a set of methods for
supporting manipulation of those instances. This week, we want to extend the class by adding
one more method, rotate, that creates a new vector which represents the original vector rotated
about the origin.

You could go back and edit your class definition from last week to add a new method, but what
if you had not written the original class yourself and did not have the original code? Instead, we
will use inheritance, to define a subclass of V2. The V2R class should behave just like V2 except
that:

e italways converts its input coordinates to floating point numbers, using Python’s float, e.g.
float (1) return1.0.

e ithasanew rotate method.

You should not make any assuptions about the implementation of the V2 class, in particular, you

should not assume that you know how the __init__ method of the V2 class works or what the
instance variables are; you should only use the methods of the class.

6.01 More Python and OOP — Fall 2010 3

Step 1.

Step 2.

24

6.01 More Python and OOP — Fall 2010 4

Open Desktop/6.01/1abl/swLab/sliWork.py (same as last week, which should have your
definition of the V2 class) and do the following:

Define the basic parts of your class, with an __init__ method and a __str__ method, so that if
youdo

print V2R(1, 2)
it prints something like
V2R[1.0, 2.0]

Exactly what gets printed as a result of this statement depends on how you've defined your
__str__ procedure; this is just an example. Remember that str (x) turns x, whatever itis, into a
string.

Define the rotate method, which rotates a V2 (around the origin) by some angle 8, yielding a
new V2. You may want to import the math module in order to use trigonometric functions. You
should get the following behavior:

>>> a = V2R(1.0, 2.0)
>>> print a.rotate(math.pi/2)
V2R[-2.0, 1.0]

Wk.2.1.3 Check your results by copying the text of your procedure from idle and
pasting it into this tutor problem.

Two-dimensional line segments

Now we want you to create a two-dimensional line segment, which is composed of two (rotatable)
vectors, and start vector and an end vector. Think of a line segment an arbitrary line between a
starting point and a termination point.

Open Desktop/6.01/1abl/swLab/s11Work.py (which should have your definition of the V2R
class) and add the definition of the Seg2 class; it represents two-dimensional segment and sup-
ports the following operations:

6.01 More Python and OOP — Fall 2010 e

Step 3.

Step 4.

Step 5.

6.01 More Python and OOP — Fall 2010 5

e Create a new segment out of two vectors: u = V2R(1.1, 2.2), v = V2R(-1.5, 3.4),
seg = Seg2(u, v).

e Convert a segment to a string. 1

e Translate a Seg2 by adding a vector to both the start point and end point, yielding a new Seg?2.
e Multiply a Seg2 by a scalar (real or int) and return a new Seg2.

e Rotatea Seg?2 (around the origin) by some angle 0, yielding a new Seg?2. This involves rotating

the end points of the segment.

Define the basic parts of your class, with an __init__ method and a __str__ method, so that if
you do

print Seg2(u, v)
where u and v are V2R instnaces, it prints something like
Seg2[V2R[1.1, 2.2], V2R[-1.5, 3.4]]

Exactly what gets printed as a result of this statement depends on how you've defined your
str__ procedure; this is just an example.

Write two accessor methods, getStart and getEnd that return the Start and End components
of your segment, respectively. For example,

>>> s = Seg2(V2R(1, 2), V2R(-1, 3))
>>> s.getStart()

V2R[1.0, 2.0]

>>> s.getEnd()

V2R[-1.0, 3.0]

Define the translate and scale methods, so that you get the following behavior:

>>> a = V2R(1.0, 2.0)
>>> b = V2R(2.2, 3.3)
>>> ¢ = V2R(3.3, 4.4)
>>> s = Seg2(a,b)

>>> print s.translate(c)
Seg2[V2R[4.3, 6.4], V2R[5.5, 7.7]]
>>> print s.scale(2)

Seg2[V2R[2.0, 4.0], V2R[4.4, 6.6]]

6.01 More Python and OOP — Fall 2010 5

6.01 More Python and OOP — Fall 2010 6

Step 6. Define the rotate method, so that you get the following behavior:

>>> a = V2R(1.0, 2.0)
>»> b = V2R(2.2, 3.3)
>>> s = Seg2(a,b)

>>> print s.rotate(math.pi/2)
Seg2[V2R[-2.0, 1.0], V2R[-3.3, 2.2]1]

Test your implementation in idle until it seems correct to you.

Wk.2.1.4 Check your results by copying the text of your procedure from idle and
pasting it into this tutor problem.

2.5 More Inheritance

[Wk.2.1.5 Get some more practice with inheritance in this tutor problem. }

2.6 List practice

Wk.2.1.6 Get some practice with list structures in this tutor problem.
" >y
s B
Wk.2.1.7 Get some practice with list comprehensions in this tutor problem.
- v

6.01 More Python and OOP — Fall 2010 6

W Lah 27 i
bt

[)
O b mlke O fewngng

1

Erar 54 obed ot Feable

e

(Mf an ou,a/wwl(&//w ome ot of thrafy,

Jn {7 i’]-—L 4’ nxz

NN CORYN

RALL QUATT
S +{\.'b_3ﬁ+{ihz oo 0
i, Y=+ € 4 g | e +f}szﬂ\1,«0 ,L)l

60 {’/1 {"’ do :a [FI/AG{I‘M

fw (0 - @

(e =t @&

£y (2) < ﬂLI’H fo{_l 0
0

o (3 - flp 31 + £ib 3-2 ¢ i 33
Fib 74 + ’ i I
|t (¢ b ¥y <L

@
fy 6= b §-1 +£0 &7 md .
now Tt U Cighd
Em\b@r dpe T Theatt
W ond oot b b Fhrogh £l cectsi

—_—

?‘7, l‘l(‘! ng
£oo. gt a
A
foton o g)
6‘“(n + & \
Lror “% ‘tml ¥ %}'/5/@
@ €oh ;+ (0a cd‘fg
R — S
e
25 VIR
"ol sy b wht e defsel -
&127 Ve ((4+?/Fq,(,g
/94‘4/4@

Al ovnd gr\(g\lo N

Crels Gpt b flaut

"
. @

© |
[OJM{—E” e Yo Mg m{,h } Lj
“MPVJF Mafh
pifr < 90°
cjx npy
y g
S \ e =
x
Py =g
X L CW{OX/
- 0 A0 -
6}4 Cﬁféf %le{'/
e 056 = o
ﬂ?u Ay~ 5@/@5@
A
Ny = 0 (],/605 G

el fogel (
W s Gl () el ol ()

Y%
k-

e —

\/M . | - ((((am((?‘ M‘CY))

Wt saye b sonewle
@0% #fwtntmg [)u+ (o”‘]LQ eCor

i H;AL’mﬁ)ﬂ e Conrd D ((, 9)

¥

Ol
R .
. Y
hld ’
1
) }b(’,zcjmi{
L
ool P
e
tor
mln

X/
g
o5l
46
)

¥ e
2
51/1(%
f@)
7\
A
al
0 QA
r\g\g

X/
- "ol)
|)
5 oﬁ
W . A@W%M[M QF
y, : % 5}4.@ . o tgy
_/;Q Lﬂ
. : dos V/
0594\/5;49 @d‘é ﬁw
4
X
hG
}reqll
lﬂr r Lu
i Pfesa/f')
Clasy !

T; &H f(/"d“(}\preséu/f@tl {’ot{c&y

"“Mé fo Th[m\,\

—dan’t lean
e\ o, N P

5 foo monfhy

\'0 N vJ\i“L

Mgt p(eg;dra& (7

S Lab 2 o () 95
Z\Ll 20 Ufe gegmrﬁb

4__——-—-_-_-—-.-_'—

/?JM"‘ F./”» L/:’IOIWE f‘dﬂJ

p— b how can v hare ‘%Wll F oud
I'I{Q V%Jﬁof?

lm;‘t ~ Pf;,ﬁ wo s bs ln‘”*9+ "Ty
Vor et X() ot [()J

L atessor pathols

Jot stat F(Md\/'
B ’Em.?
fw 'f(o{/dule

Mok over

by 0 coddn vedor |

qr \/JWL ‘ls ”L 40"49

— Jsst addng
Shooll T poilk gef Stk X ()

00 wll 7GeF Gl () 9! XO wod 7",

&M@Q = Gettiy K4 'f\a/tﬂ of This|

(

@ \/‘f‘fla\l (s Sealo

"WH‘(PH (0\1 A sCalw (f&c[0n :4”

¢
5@62 K feal”

;ml,lorwj/ Hoa*’

J\/‘a)L (:]0 M(/H;Pl\tqf‘@q \/-)wl{n ce[ued eﬂs»/
ang [&:ah (‘to}’

(otate mitiod
~ oh ro

—will o old nethod
o b all

6”WJ[‘\ ‘A‘J’Q,
m ’Da%ed 15'{' ‘H“/lq

S~

19 Fl\nherlc]lu/l[e

Aot Dolbes [ok)
A osit dollacs()

o(e,{‘mﬁ b Do Pounds
bt ke Twe o 24 b oo (8P

| BGBP= 9 s
T ~ |

vibe ool sty (sk, ok,)
W T hd g pit whd £ g

72 fera

0 2y ot
e e (
(i o polie ol shiomst ok el b g,

- (r/Q‘l((l/ ‘ .
= Yah W[h&ms‘m lt(f b)

m Gy |
, O Coll
“OPR t was pointing it o %(bt whele bax

—

7‘7 K\(bl' CO”IPfeM/lS:Go
*'h{u, VAS [A:«Ll CM{I/atq?

[t b e W et T

\LQ. [fkduﬂ\‘jqr% [?() for x @ Pr},,%ﬁ';(X>5J
A

ia [?\'Y for % i P’%ﬂﬂﬁ for v ('A [[;2/3]]
U b st g
ot Lt by
“wird b Wada gt
P()f‘]' PARY We‘c/‘i
T @ s oo of T ofke Thing s

bk T ok T chady L
L\W W/ 7, HﬂLS

6.01 Polynomial — Fall 2010 1

Design Lab 2: Polynomial Class

Design labs are generally done with partners, but this one should be done individually.

e Using a lab laptop or desktop machine
— Log in using your Athena user name and password.
— Click once on the Terminal icon (usually on the bottom left of the screen.) If you have not
already done this, in the terminal window, type athrun 6.01 setup.

Type athrun 6.01 update to get the latest batch of files.

e Using your own laptop
— Go to the course web page: http://mit.edu/6.01
— Go to the calendar tab, and download the zip file for design lab 2. Unzip it.

The design lab for this week is to implement a Python class that provides methods for performing
algebraic operations on polynomials.

Representation

We can represent a polynomial as a list of coefficients starting with the highest-order term. For
example, here are some polynomials and their representations as lists:

x* =73 +10x2 —4x+6 [1, -7, 10, -4, 6]
3x3 [3, 0, 0, 0]
8 [8]

Wk.2.2.1 Part1 It is a little bit tricky to implement addition and multiplication of polyno-
mials. Do Part 1 of tutor problem Wk.2.2.1 before you start programming,
and be sure you understand the results in the example transcript near
the end of this handout.

Operations

Edit the definition of the Polynomial class in Desktop/6.01/1lab2/designLab/d12Work.py.
Your class should have one attribute and several methods:

6.01 Polynomial — Fall 2010 2

e An attribute called coeffs, which is the list of coefficients used to create the instance. It must
have this name or the tests in the tutor will fail.

e __init__(self, coefficients): initializes the coeffs attribute to be a list of floating-
point coefficient values.

e coeff(self, 1i): returns the coefficient of the x' term of the polynomial. For example, the
coefficient of term 3 of x* — 7x> + 10x? — 4x + 6is —7.

e add(self, other): returns a new Polynomial representing the sum of Polynomials self
and other. Be sure that performing any operation on polynomials, e.g. p1 + p2, does not
change the original value of p1 or p2.

e mul(self, other): returns a new Polynomial representing the product of Polynomials
self and other

e __str__(self): converts a Polynomial into a string. Do the simplest thing that shows the

coefficients; remember that str(x) turns x, whatever it is, into a string.

After you're done with everything else, go back and change your __str__ method to print
polynomials out as they are shown in the transcript at the end. This is not required; do it only
if you have time and interest.

e val(self, v):returns the numerical result of evaluating the polynomial at x = v.

e roots(self): returns a list containing the root or roots of first or second order polynomials
(for orders other than 1 and 2, just print an error message saying that you don’t handle them).

For second-order (quadratic) polynomials, return real roots (a single number) if possible, and
otherwise return complex numbers. Python has built-in facilities for handling complex num-
bers: 3 + 2j stands for a number with a real part of 3 and an imaginary part of 2. You can
take square roots of complex numbers by using a fractional exponent:

>>> (3 + 2j)**0.5
(1.8173540210239707+0.550250522700337473)

To take the square root of a negative number, you first have to convert it to a complex number;
you can do this by adding 0j to it or by using complex(x, 0), where x is the number.

>>> (=3)**x0.5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: negative number cannot be raised to a fractional power
>>> (-3 + 0j)*x0.5
(1.0605402120460133e~-16+1.7320508075688772j)

You can get the real part of a complex number z by using z.real.

Try to do things as simply as possible. Don’t do anything twice. If you need some extra proce-
dures to help you do your work, you can put them in the same file as your class definition, but
outside the class (so, put them at the end of the file, with no indentation).

6.01 Polynomial — Fall 2010 3

Operator overloading

In order to use expressions like p1 + p2, p1 * p2, and p1(3), for addition, multiplication, and
evaluation, respectively, define the specially-named methods __add__, __mul__,and __call__.
So for example, include

def __add__(self, other):
return self.add(other)

def __mul__(self, other):
return self.mul(other)

def __call__(self, x):
return self.val(x)

Multiplication will be similar to addition. Also, in order to have your polynomials printed out
nicely by the Python shell, you can add this line to your class:

def __repr__(self):
return str(self)

which says that the the shell should print the string returned by the __str__ method.

Sample transcript

>>> pl = Polynomial([1, 2, 3])

>>> pi

1.000 z**2 + 2.000z + 3.000

>>> p2 = Polynomial ([100, 200])

>>> pl.add(p2)

1.000 z#*2 + 102.000z + 203.000

>>> pl + p2

1.000 z**2 + 102.000z + 203.000

>>> p1(1) :

6.0

>>> pl(-1)

2.0

>>> (p1 + p2)(10)

1323.0

>>> pl.mul(pl)

1.000 z**4 + 4.000 z**3 + 10.000 z**2 + 12.000z + 9.000
>>> pl * pl

1.000 z**4 + 4.000 z**3 + 10.000 z**2 + 12.000z + 9.000
>>> pl * p2 + pl

100.000 z**3 + 401.000 z**2 + 702.000z + 603.000
>>> pl.roots()

[(-1+1.4142135623730947j), (-1-1.41421356237309473)]
>>> p2.roots()

[-2.0]

>>> p3 = Polynomial([3, 2, -1])

>>> p3.roots()

[-1.0, 0.33333333333333331]

6.01 Polynomial — Fall 2010 4

>>> (p1 * pl).roots()
Order too high to solve for roots.

Wk.2.2.1 After you have debugged in idle, check and submit your results by copy-
ing the text of your class and associated definitions from idle and pasting
it into the tutor problem Wk.2.2.1.

Optional

There’s a particularly elegant way to implement the val method, using Horner’s Rule. For com-
puting the value of a polynomial, it structures the computation of

R B T e oo RN A
as
("'[C’-1mx+ﬂn—l}x+"'+a1}x+ ap

In other words, we start with a,,, multiply the entire result by x, add a,_;, multiply by x, and so
on, until we reach ap. For example, we’'d evaluate 8x3 —3xZ +4x+1as

(8- x—3) - x+4)-x+1

For fun, try implementing val with Horner’s rule. Think about how many multiplication opera-
tions it takes to evaluate a polynomial using Horner’s rule, compared to the usual way.

i

hin 142

- ?o\\, kam‘m\lg

M Yy s (1,779, (]

Ly (/;rﬁ/q of f%;f;m

= Yoor proglem Sl pglh

Peo Lot
=)Lo(gg/\’ (:F

’“MUH}PH Puch (oofF tat” No —(@mmber

(1 (1) = Jg2 (13
@QZ} "2}&?) = _|0xS

g
[Qm”y h\‘m(« I 5LQ/IA (et 0rd€f 41[l“‘f?}
~Tea sl b ol ()

/(W@&&f*’\ws o bit]rf\cdk[vv/ 0 (tﬂdﬂ)(etc

~T J/f;’r aesdd + CWc(gJ

Wete otjtu-k Pr\rn‘\ mothgd |

O%ﬁr m 1 ()(0 [09f7nfmiq,l
61/10\;{(1, %[69 d‘J h'(, — e jﬁé@ _

\/‘/L’t s ‘Jr ‘ ;
[T Cnay b mychl =t @‘éi‘f{%m \
00 r S
(o o ak Cedesod

0c Ug lel‘]tto‘}' F/no* Y T’\\' 9
{ Xoby Coc b4 (‘a ggll(ot é,r v lr\ oﬁ%@é]
. ¢

%

Aow aoJng Ov@!t'/d ‘“WOI/)
OUH, lﬂor\\5 Ay, Vv/ ,‘f\',h aﬁL g ane {rﬂf\ojh’}‘
~ Wha
“E;ﬂt(

S

i€
ot gy Lifgh'.‘

wete Checher + Flxer ((,@1,)
e a mort obet SCr;,a}-

o (et Alrealy hat
6 b e not i o elom 0 € g%‘;ah!

CO@l I T}\\lnlﬁ my o
may Tdie Logdn ang glf aett(:) cefurnng ()
H)f:m o+ Wor ks | " e

Now mu\sﬂoly
ki b | be vih hordos

[, 2]
Prhaps g0 fhough eah 'a ofler o al-q Fine
- 0 -4 rolhiey
|, shift vt o e Cight
bk depeding o b placesusr
Wl ik by molfn

pos F [a] ?mmyo P /}3} /WH&OL7

[. l > Mavp. WP{yi'h}/\g ,{;—-[ond_ ﬂW”}ﬂ
2"5 Mg @Jw»,ﬁ,‘,,\ﬁ ovor) ert/fl:y;

" 5 n() (“:ﬂh?/,j

H [7’ E Mu”}plf }, Thak

f

(60U -9 0] <ty oy

vorl !

~f oy T 0 a bl
% %’db{ ofkr

ér X i~ alke '
| | d wh Entlag (fy vaft)
£x g Tt mllp
Mnﬁfh“m X pod:f:o\ﬂs/ h?" /h‘//"/o()'
Svh](}nofﬂn (pr, dﬁm}

Gty loind, Condstd on wfyf &s oh)alk
._sﬂ,\@ qo}

t o leflq l
‘w‘\‘q,h Vy |

s o worle

gh)r Soly
ﬁ \ \
Ur Qhmng 0y Grf;o/
T ad

to apprad af e
Tt appeg (Yo,

(/\ﬂ,a 5 wly g gnld faly_
0r e msmL (l/x) 56%

(f
Rk 't gt b okl s
;164]Lfy
“ant iyl by ¢!

>~ SIC‘m

FQO NOw I onwe

La{o,({,vv/ 0,0,0, O,O,O,dj

Tl) e 5 9 b o of2

B L\/O(\ns by |

On pud
_\Worsson ropnp
/‘}/Y 60 oh(’S
~ Teod gl from o bove

e i

Vol
V=S [1/ (2(37 S [5)1 +7 (5) { 3
;) (6
(30
ot ot

[[/ "'7/ /6/“’('{/QJ al U;l

o[l) ey

5 6@

I\OW V:'Z

y
D 9007 0 ()7 4(a) +¢
“E ¥ ‘-7‘? t /(5"(- +

lC-5¢ U -~ Frg =7 @)
S(f\wbd be @ood

(oot

= what s s a‘ga‘m 'ﬂ%ﬁmﬂ,{(qﬂf

"(}lf\ (o@itm'w/ s qvaﬁt“a {o/'nu’q
“look p oy 9P Fron Ffotn gy |

/z,né g(dQ/ W

6\{‘ F3x bl
V63,77 S (=3

N b oc
70

el goad Cxample
(x+ 1) (x +2)
K2 4 %x 0
M vrwng — Consh for b

O e .

= ol _bQ“"S‘ (omlJ{é on 5"‘1,Q

’{:X(’(l (00}5
"V/\ U exda pratngye
" how W
Compla_x
~5l\rb,d PQ "

dutomatic

Use QLS not 501#(’)
ond cqll complax on Tl nom o

TR Aumios nepd OT added T ch

- dfa/‘b

‘Ob\ '“0(%of‘ TLfdﬂnj

—

O ?Ofvﬁt*of euir {f"({{rlnj
“reedcall and e

—

fow vy Ql[qfle'm’

* :mum“’\f Mt v (lase

~tor log) s Shouly et j: nvmbis /{)k h o {, manall
0L s S 4 () 00 % ¥l

@
lOOleOO

100 x =0
X:: "‘2

- J oot metl
- Jmp\mdet
= (#memor 63(\ l[\s} ordec Elfd% nol” mather

OL\ I‘Y Paﬁf’\ﬂ 5{' (’l 4 goe I'N?w 7_ 'Fd]

,m.f W ol 9re Wro'g(
—0h Wmf and f‘/P
,})A M &a;d'mg H‘ unL(? PD/\z/wm@ 5{5!9/’7

~or pé’fhw ﬂ{Z %}‘7/%0 gt ngt er@ ﬂyﬂdﬂ 600{6

“ iy The fine A /orod.xgi é)’“fﬂ'f’v O/a%fﬁfzf{
~3ed oy

BA 1\Ow ¢ OLJ({, 5 wong =) +ce+€i f'(g"w[?

‘ 1

VAN 9 .
-—(q,”{’t('}d('(/p

“+fvz 6‘imp(€f Cag

[1,0,'_7 + [7’/]\]
~ wocky!
el what Uy hae manal

ety 1|

“oane 65 T s i pytfhon W

~ Unlegs my c//yd@/ls]laacf((ﬂg ot s w w oy
T L e Wyt e gty di caleg?
"50/%‘543 (oot Elogls

Ty A ek wll o] lafle exanples
fom D logq

“ad Gl ek g

~Cuen ods Ladls |
“oh 4wk s Y pates 07
o (€4,| ang }Mﬂi"‘“’f

“Nw 'ﬁ' a{(Mssed W

:0'\\ veh W e |elda fi Samg
dt\(xfm{ il

~ O], ot
B (9“"046\[‘{ Confus P

t e y l\av‘u\g Wt mabe sae 't {M;n@ pr
~ hope

5 p@m% 4

|

0

(omil) il
61" ot T Wa PfOLw:nb A (@ML
M AL e Ty by w b oy g
gt
Mty B s b Ty vkl ook
b e b i
R T (W cal(
bty g ciey \efop That
B e (fm;/)
Ty vad gaetts b b ' poper foomay

b bae b omomnh all cde?
~oer

/(Q"‘Pl(zc(male Swe £y (lafa
- Al vorh, Yl
T ol Gogmg b s worlking whal L ﬂwughf/)t

3 Uy2 - Gu b3+ Uy -27
Yeth T am owel wdl’:nc, w0 (gt

@ 575()[Ecom Croa }
ﬂen M Cach P\(CQ

not ym/f’r,'plr [what yos hue]

o Tt Foom bach

Yoa
It tea be ot o ﬁ’dﬁ#/# Tresh tady
al ff step
WY (el ang

GLX&(V 2]y 3 #qyz-&fﬁ(ﬁ(77

[, 2,1, ¢, 29
@(o(ﬂi’d

Now 1 drgasCoppt
__b[t{\%o
50 T s (}9}% At wimng T whole iiwﬁ

——

\mq/ éof‘ &« CMLK
bot 'hL RAPEC GAys cefun cepl ot vha IOO%:’MF
~ (Jeal 'h\{ﬁr \Lj whad My (0 il do

B\m\o}{) Code wars S

9
/@; Ok on (| skt F grewed op
S i complex f)\((aﬁ celued +() T
/8((\
I ‘\ué cmmpl@ ' e
L only way o Jo oF o o Stultne

W@H w/g = {'09 late o

@ Wk 1 Hl Brepies

[
m+f 9 '1Lo (T @a/fg‘(m
(. ld&% N 1231

- u+ +"\09Q I’[ﬂ}'GS Jon\‘f’ ekflsf /‘{
"CW&“ geq{

base cases = | o more

(Ke(,wsfv& cases I 1 sc mart

—_—

"l 51 0@{
’7\7\‘9 [otkes 5%?21
fﬁ‘(‘(+ out

74T

"’[ﬁ\(m Meicd
it L b ol b Wb

AL by Ay pymbor S
*_(’“LW[ot pegly 7
E m,./ﬁ })(’ P%H‘Vf /
J

" b
A
!

~

il
Q_G_gﬁ, Put

99{’ H‘
W T Gt B g adl 27 /ch}m call

P
—

#2 5[0\«/ mod

: FMOd‘/L& Qperq,{zﬂf\

_,0/0
— WP fads e maunge of Suson »f | by anhy

—

(el Tndun
ANl [
' ~ posilup f&ng/g Cpl
)
Can 0"\1 + = M{q £y tets

T poten

Slow mod (9*/ 2)
5' - 2 IESENENN N {
\le\nl(), > o Cewrswe ’!"bk%i,?

21[a-y 7L
Slow mad (@%y %@fb,)

- /?,qu/‘n 0\-[0

—ES H nof (frqu;‘mj PfOf)Q(LZ /I)
(0tura S]mw Nod (ﬂ*’b(b)

ﬂt/ﬁ we 97
)

— wilgay
b o (ach) 70
é[on/ flvd(q/ 6)

"WN@
N ZF b ra cat very HP

(gt

ﬁ Tohofne + Sttt Machles

Couran Wohs‘ ’
P(o(187 cead ?.Q Va emw/

‘{or o504
All of chy Y s stalt aghlo
"ﬂﬂ J(OP‘(for rad- fuw weth
“shylg Ceq I MIY

U Recursin 4

an intoprehe & dlo rewsive

funchion poocehre 1o a blacg koY

(i g 0 b of o e~ @ e bif cuh fimt
(al; tole from (g Me iself |

hoe oy case(s) dnl ceqrs e case(s)

O\M (M/n)'.
’n[n “Ol

f@'h//p\ m
tlop
(b L+ abd (M n 1)
% Add (’Z, 2)
§\ss

A4 (2,)

ad { (2/ O
\ OHQC?/O)

bae case
(/3 2

fv";’;:’ " Stk Machiy eeus i

)
,MQ’HWOJ v}(mod@“ag 576)Lp,,1 w)@be_ M,ro\/} 0’(f@r)ds on ﬂlﬂ
enHﬂ? h&o(y of T !

ir Mvaw/h) S mt J\/ﬂ' Tl(mns?L (eent /”/Du}-
VS Case

T -Jbu,boafl/ Mavst

“Convacsations > it doyads on vhat hes oo said
“otate of SPU Crafl > valyy 0ptn s

" 500 eat) pathns 1o DA

"l be Cntings toe or Jisce time
l J
Contingass et e will e
Jifeembal ey fo 4
DXplain Gyt . nuelcy
bgfl Songor § ovt pit
s Juscroke

.,}0‘) of QMLQJAQA 5\(‘5&/\'\ P PQ[{o(m '{mf%djﬁt;aq Eoom A
tlrem (am Sequfnw) of inpd vahes t

o 4 5}73;:,#(oF p./?lfdits
| ¢,
" ¥ “’u} [0

[
P s ks Qv
oll pulos Ol Al
{'\P\IE dul‘pﬂ

@ o ve Wil defle ol we wat b Jook af
UM ometioss b luow vhet dales o ok aF

?) WAy will v tffl 'ms Class

l| é\/njrhgﬂm,llr D Can §P€C‘¢Fy a "P(Qgrqm\\ {:of ml)o)r

‘mfah, > Yasr ({’J&i\hﬁg
0(}['-?\]}55 COﬂ)('fol CuP)MdAJ;

2. A'\Myﬂta&‘ﬁ (fin *{esc‘*‘\}ﬂl Tl g(\o‘)w‘

l Al
lﬂf’d‘)‘s S A Lm
O pd 3

1
1

popetis of o ¢ yofon

Pl CPmag fo atin oy gtbom

Simpk meqsure pf Stale of Syshm

7 bl y Wlsa §loba) Syshem osdllafv or duerge, ok
ook Can ofesu';hp how ’nc Oiomen] wo/ ks

e Whe T Wl el /p T vt don & ol)

< which path ol I tde fhogh cpure to
@ath o Cer Faan Shke

—

(5+44(rSuston, the oo all wed b Guse ¢, £5) i
Ahstratly gy el

L)Ulld CMP}W 5Jm/h Mh;’% L?’ CDM}LI:@ ﬂbf‘zm;ﬁvc €+a*ﬂ MC‘I{'/Z&)

@ Pr lm\if(&/{’ Statt Machiey
s frcms deEr X SM b y 5/9&1/ z‘@‘
gpeo!ﬁ/ a W . | ‘

St of g’mf’ﬂx@

% of I pV’rs @ E; ;“‘PVWL Vom,M[/
TSk of o ok ps @ “MJ(/’LPU¥ vocwh/b/f
Tk g Gt [l ¢)

U gk ol e } d2 B and otk qf e F
o T cate ot Fim ij"; Cay

T Mf& Ict//\d‘mn

- Mg 'tnPd* ab tine 4 ad et ok AN
(hl. Odﬂy*‘ d/+ /{'/ 04

B a!nH'd/\ SJWL‘E .
~Stuke at Fing O
E?&qmpl@

“‘Holk *ocL mh‘lw@
“L0,1,0,1 ~fialp ~shle
- l!gr\ﬂftg inpt
“(onfroller of (Jclg\il“wl wahy
"I’f"l'\sumcs WMS (buHon Pf@%) l(nf‘o 5@5// of oJtpuls
ey o€ g,

Y

gzmpléf] ﬂ{—q#e mwhf,@ LS a pure funghlon

— o $lake

“odpd 1 oy < t]

“idgh apt 3 odpt celafio gip
["“E“G {ine l"'wﬂffmf- 6ysHms in OL"P s
Lﬂﬂgtﬁ({j? prqaa}o(\

P .
Tleban e of gt 6 @ Gelals palhey 1b:C

—Uses gtalec 0,1;2 b stug for Sebuins
~ § tute 3= X amply mrL PX'ORM

$0,4,2,)
I [ab §
0= ¢ Ty, (ase}

| I 520 a3
not)= b2 g
3w ge)

0 (1) i o Bl <

6t oMt g

0 <()

©

Glake dan it (ta\cj am

Tk Ay e a gl

A e tawadis T mabin o gy

~labelg lnf*}/oa}pwl
rhoop

'](Sf:) 0(5,2)

= diredign) W Grtowg

- Mg :LQ A e Com‘(% o overy e {of 0wy f)o;s;&é,
tngd\

;T
@ &/ Trsp

S
bt
m

[

@ W Glte Mok Taby

'{‘[‘ O { 2 Yy
;nﬂdl' :0 ltl :7')
Ghate S5 4, 507, ol
tovkpd Og Q2 CUa '
Rl

g s |

how Cord o maghle with 01, G a ¢, d,b

e 1o 1T 7 3 W
e T
Staky O | 2 0 (g 3 3 ~ =
M-f"* (Trug T T T F F ?C

-_—

for Cl%S of fﬁgdcr Lfﬂﬂ‘/ﬂ@ﬁ /947%/45 Sop Gﬁc& mac/;lw{
UF t Do\m (ML]L@F

“Gwts at (
L€ {»}(’,fs o\ ﬂcr\ Ly

! (J } Ol‘lf(t’ﬂwth
TOAp = re iyl o) i gy
b ink0grs h(e,z) L S+ (=4
T "‘{(/, J,} Ofs,) = h[ﬁ,i)

Q0= \‘“*Qﬁers

% =()

@ 6{'041’5 _P_lg(/‘“‘l/g llf\ p“/WL

o vp 6%9\9 wfadvre
- 00p
"SI bk class

% GuppeC e

Clage. umdetor (811)
St Glae < ()

d(’ﬂ(Gt Net Vil (SE (stuby MM)
(e h//‘n (S}MLE f mf’ . 5'}dr+fi g mf’)

"Oh? dis 20l ghae Sk of Machirg

Sing e Jul bt s Gngdlon b fzs’* what nuw Uglve bi“"

(I S0 rov how \ou cgn 12 A pover fo] b shract Conigph
m ?\Qq\‘r ot 54\\/& lof\q

Maly | lf\ﬂldn(ﬁ by Callug Sl
ﬂ@n hove i+ aw%”y Cl“v‘fjﬁ Vi SWC"'P)

ﬂ’g"‘ﬂ ord | (ap Aot

AM to Waul, }Jnff
/LW, in !AFU}(

[V

Ité e kab AN _..:n‘t{'_- m(’/ﬂwd w/ Stk as Algumin
> TLQ:\ we o Qo Q(’/f(‘ﬂ

1«3 7 ﬁ st mi&“n?é_
Ttechhic] Coep

[/We me({ be o Seperuke me fhod

Tohy17)
Stp (10, 1p)

1) = el qthak Vil (el e o)
Solf sYahe <
(et 0

of .
(G ma[ﬂ (* F/‘Q"Sd“(?[) Fer }%}?@ ol mfv/S
J'mdme(ge(g (lapu}s)
SB[(‘gfo(fC)

e tur, [egl@\,qLep (c'qp) for :"P in :npu/s]

Car dofln som Jefoult mg fhads

s

ol 4o M-

4 bt Sfafe Wi (1)
fddes dib gt ot

“Othng st atpd

TN e Gl e € luss

- lw”d (ovﬂ“fg Gute Mﬂdfl'l/‘& (lasy
T b b g gy,

T peyt vake

U e e gy
Ml ke defd ln b gl

“Thn gt svbtlass 1 A longe Zevos
.._@70/ el/Q(\ (D}efj 0:[,

T add Hy = O
e ;OIO/ ('2101 ['\1/() Con
~ sty St [+SM clasges
IR s b @ afe Y gobdag et

0
BA’ -h\d[‘ lfs No ;f\PtA \m h’;‘tj
-')‘jb" (tgnﬂfﬂ

""[gtk Nud Va kit
[6"}' [6‘{1/{] < S{R'ff’

“(emader Jopt chuge state hert

.,Qlon"'f &Qﬂfq % s\ hate
Rt g geecc stk machine

Ghe
P‘ Lpt G)FWLQ

JF@ fun,,‘mj
=Yl Comp‘tled S codg

T N Q\U\lﬂg Wk e on
0t T e called # 0"

- /3 ofgur\»emts Q\M?,n /Jmtes 2

—Omne ol Goys That r/]l :s omo&/[e, fot S OLU;
B T SRS N P

‘ln‘t{ éM

® Jir(on) shald Tl o/ wdab moll define

Wk does athg - 4 did in tomgg it daes
G how To ok tolwald
by an W NI (v

ol puieod ot S
6ha Agnq 59{‘ ﬂ\‘fg WW{M(‘fh‘mj

cwy S0 oMb b dn Qitagle w class LT
o Tompelomy, Cl# C“_i;im/_,,\
&P bacl +braou§ old adtes 0n OCW

~ pe \/J{))(‘mq\Qn‘Y é(‘\ '““190(6

_Som(
~nov Nhy u\o@s Q@J(O‘AF} qut/e '041 6‘{‘601@ I dn §4P¢{- ff

“Powkodde 0wl sk
_,‘MP){ éoeb n ot ma?H'ar
"Woflrj
“hh o ogub Ak il dlg '
negds |
“0c does A W o
“éo We pat Cae gt s Ut/‘}fd
ot get Nod vabe /
ok Stk ¥l y 9@} @dePJ} (Shﬁ t l)
"MVC\(\ IDP‘H“/
T reed AY ()
"hM CIr'Q(/[\

b by 4 i

(ot ud &

l
1{5 Vg an

“)

g will Tk odd

/w[ll J(Jb+ o blafe

~ (4n W({mm‘a@ otn 0F on Tl f[n(
—(00l wolks

’—JYP(' o
~ Wrong
~d demads &n K'@Ml/\% '[L(w(ﬁute, wothad

~oh 4t (V4 Tom J@{‘m N 661L0u+9¢ WJ[HW\ _’@n)
MRl ab a [ge

WAy /wan.

Ot ed el fo inpfs

" bt ha, "

‘L\o»v { g
b e i R defitn

Y
i 1%(@ﬁ//\m‘?o 3 o\/fpuﬁl ~ gapvﬁl on %@gwq
Nt gy
L (il —ahot 2,
i OMA - b
"o

Qnfug f\ O/ 5«{*@‘@ ¢ WJ?(,-} !

by
9 megale |

g% Negt Vol
fu[u//
n é‘luﬁ +
il
Nw S{W}E / M 'l [
ot (Sate, |
Cstont f /Vi)/

Ghate

4

a
Jhe wth hog p
\ P ”\ l
PW?S

3:7 _Tmplomﬁg an f n}?gO/ef?/

% (““3 Méw = 5}0\?1@ é\/nfM of gc@"’(
t OOP Q{ pyhlm

c {Uu\[FM/LW S‘t%&&
-oond ey Ul Oxpresign

~ Qs 6)(Compdfer
=~ ﬁard \C(Lf kumaft‘)

~ asovmg 600‘0,0/@ (NfoQ 'ILO\JLQ’C%@[m% b/ﬂdd/kb :OM
;nh) A Io\tb\' of l"ﬁh
= Lealure s

i
’"“}Q\?{‘S

Py / e

0554 poot

{yntons

Zé/f’d 0 J@f'm}PM

0d a4}
B e ;1[5{

Compound ex fressions

E\/@l\/ il ‘{Aﬁ |
~Ublag dn | foptrker (€xewff’> Code dl/f’on)
- €/f 5Jf /\w)[cetvin 'J 4 l\m/e. an (r4 I—aﬁ@/

v

— 4 beg‘ln\\ - refura (0 ‘“WVMI

O pressia
™ how Svmbolg any fh'qu bese ¢ HF or (7
“heed dn gt d oy
o
* Poteat poy
T o Symbl s M_ K. I detine|

] [eh/{-“o%h‘}P k\o«‘{ > (/alJ@)

lmeﬂ
_
Need b l)e, gtbtg b perform @ M

"l(ffblL in Qru/; ‘l\t(,]%ﬂa{r
LT pacent 5 pav

= tlée Crtor
ToNd a0 4] L{n&,\j operatinn
-fw\d‘roﬂﬁ I
- f Al eﬁm%f:m ffs ’lﬂ_’_’ a 5;39024} symbo/ g <'f3 q
'Q/J‘OHM Cct”

i h/ﬁﬁs 9F f"‘f\OHO/g
— pr;m‘;i"t/(’, - bt % , b adwul work
T Use deflel 7 sit of primbie fuudion

Mn hot Y parts
| jr ‘ J@{‘ - 5PC¢‘LO[[gx(ﬂ/b’
2 (w\d‘ma Al

?. ’@mea[Pa\(dmeﬁ’o
4. _bzfr

wha dotie shore (e FMM’/JF%/ bacl, / pnsromint i Jct(m/(
6[0\7@]

‘. {122 P/jU)

futon calls
- H‘t(«\"‘iﬂﬁ{]o()(*
"{}rfﬁ et/d[Qa(,\r\ QXP/%S‘H)'\
L gty Gflen imstnce €, ¢

-pake g hey Egu
Lol of 6w vhe iF was {ofled

_"_ﬂf v whe b s (azwé((lm net N[’hf)

Now gual Qxf)/%s?oq w Ne aw/ ey
é) ae i new 0w
) o 3(@%(pAY

(an & & duq o S whd o 9"5”3 2

(v o o do it 5 ommg Pl fu)

&

"'t o piable WlE - (€ Eadan
Ve (ut sfop Cocursin

0 dt fally get why)

CMPW ,(
00P Spy

{;mdeled o0 Python s 0P) simpler
C{ax(’.b and instuae ae Ld}h Gnv;mﬂwbb

Ol neel b ag 9
AFteibe ook

OL;.q =) [aﬂ—r OlDJ a)
R

look ¥ a e "5

svatafe feahe®s’

Class Jefiafion
\od of sub Pnrb (Lf)

©

(t sv/ml)o) ”class\

/. namg
?| Guper Clabb
. Cloes bod Proeie. |
4 e b o
Cefun Endiconmiat)
6!01’4(

Simple Class l

bid s o ploceliy 4y gl

~ net d:feul!, fo })Mﬁfif‘ v
I S b poues
|, Mabe oav for cluss

/2' qu(' da;,g Lgdr - S0 KCgulM gpr

! /W-c O, c@njfmfﬂf ﬁ/“d"m/\ —{‘e vabht 2&5}%(@)

6.01 HW1: Calculator — Fall 2010 1

Homework 1: Calculator

Mechanics Asﬁ\t,an(H\ (0&5 OP?%M +' 11/1[0[)'\u/ Ff‘ﬂ Hem)

This assignment consists of three major parts, each of which can be entered into a problem on the
tutor. The first two parts are due one week from the start of the assignment; the third part is due
a week after that. See the tutor for the due dates. Your code will be tested for correctness by the
tutor, but also graded for organization and style by a human. We will deduct points for repeated
and/or excessively complex code.

Hand in, printed and stapled, in 34-501, before the beginning of your nano-quiz on September 30:

e A printed version of your commented code, including the code you submitted to the three tutor
problems and the code for the extension you chose.

o A transcript demonstrating it running on the test cases discussed below and any additional test
cases.

e An answer to the ‘check yourself’ problem for the extension you chose.

Do your work in the file 6.01/1ab2/designLab/hwiWork.py, which you can get via athrun
6.01 update on Athena, or by downloading a zip file from the calendar page.

You can discuss this problem, at a high level, with other students, but your program must be your
own work.

Symbolic Calculator

We will construct a simple symbolic calculator that reads, evaluates, and prints arithmetic expres-
sions that contain variables as well as numeric values. It is similar, in structure and operation, to
the Python interpreter.

To make the parsing simple, we assume that the expressions are fully parenthesized: so, instead
ofa = 3 + 4, we will need to write (a = (3 + 4)). In other words, in any expression which
involves subexpressions that are not simple elements, those subexpressions will recursively be
enclosed within parentheses. Thus any complex expression contains an expression, an operator
and another expression, and each of these expressions, if not a number or a variable, is itself
contained within parentheses.

The following is a transcript of an interaction with our calculator, where the 7 character is the
prompt. After the prompt, the user types in an expression, the calculator evaluates the expression,
possibly changing the environment, and prints out both the value of the expression and the new
environment.

>>> calc()
h (a=3)
None
env = {’a’: 3.0}

6.01 HW1: Calculator — Fall 2010 2

% (b= (a+2)
None
env = {’a’: 3.0, ’b’: 5.0}
% b
5.0
env = {’a’: 3.0, ’b’: 5.0}
h(c=(a+ (b*Db)))
None
env = {’a’: 3.0, ’c’: 28.0, ’'b’: 5.0}

Syntax Trees

The calculator operates in two phases. It
e Parses the input string of characters to generate a syntax tree; and then

o Evaluates the syntax tree to generate a value, if possible, and does any required assignments.

A syntax tree is a data structure that represents the structure of the expression. The nodes at the
bottom are called leaf nodes and represent actual primitive components (numbers and variables)
in the expression. Other nodes are called internal nodes. They represent an operation (such as
addition or subtraction), and contain instances of child nodes that represent the arguments of the
operation. The following tree represents the expression (1 + ((2 * 3) + (a / b))). Note
the use of parentheses to separate each subexpression:

We can represent syntax trees in Python using instances of the following collection of classes.
These definitions are incomplete: it will be your job to fill them in.

class BinaryOp:
def __init__(self, left, right):
self.left = left
self.right = right

def __str__(self):
return self.opStr + (7 + \
str(self.left) + 7, 7 +\
str(self.right) + ’)’
repr__ = __str__

class Sum(BinaryOp):

4.1

6.01 HW1: Calculator — Fall 2010 3

opStr = ’Sum’
class Prod(BinaryOp):
opStr = ’Prod’
class Quot(BinaryOp):
opStr = ’Quot’
class Diff (BinaryOp):
opStr = ’Diff’
class Assign(BinaryOp):
opStr = ’Assign’
class Number:
def __init__(self, val):
self.value = val
def __str__(self):
return ’Num(’+str(self.value)+’)’
class Variable:
def __init__(self, name):
self .name = name
def __str__(self):
return ’Var(’+self.name+’)’

Leaf nodes are represented by instances of Number and Variable. Internal nodes are represented
by instances of Sum, Prod, Quot, and Diff. The superclass BinaryOp is meant to be a place
to put aspects of the binary operators that are the same for each operator, in order to minimize
repetition in coding.

We could create a Python representation of (1 + ((2 * 3) + (a / b))) with

Sum(Number (1.0), Sum(Prod(Number(2.0), Number(3.0)), Quot(Variable(’a’), Variable(’b’))))

Note that we will be converting all numbers to floating point to avoid problems with division
later on.

In addition to numerical expressions, the language of our calculator includes assignment ’state-
ments’, which we can represent as instances of an assignment class. They differ from the other
expressions in that they are not compositional: an assignment statement has a variable on the
left of the equality and an expression on the right, and it cannot itself be part of any further ex-
pressions. Because assignments share the same initialization and string methods, we have made
Assign a subclass of Binary0Op, but they will require very different handling for evaluation.

Parsing

Parsing is the process of taking a string of characters and returning a syntax tree. We’ll assume
that we parse a single line, which corresponds to a single expression or assignment statement.
The processing happens in two phases: tokenization and then parsing a token sequence.

Tokenization

A tokenizer takes a sequence of characters as input and returns a sequence of tokens, which
might be words or numbers or special, meaningful characters. For instance, we might break up
the string:

Step 1.

4.2

6.01 HW1: Calculator — Fall 2010 4

>((fred + george) / (voldemort + 666))°

into the list of tokens (each of which is, itself, a string):

[°¢, *(, ’fred’, ’+’, ’george’, ’)’, ’/’, ’(’, ’voldemort’, ’+’, 6667, ’)’, ’)’]

We would like our tokenizer to work the same way, even if the spaces are deleted from the input:
’ ((fred+george) / (voldemort+666))’

Our special, single-character tokens will be:

seps = [207, 202, 239, =0, ey, A0 B=a]

Write a procedure tokenize(inputString) that takes a string of characters as input and re-
turns a list of tokens as output. The output of tokenize(’ (fred + george)’) shouldbe [’ (’,

*fred’, ’+’, ’george’, ’)’]. There are other test cases in the hwiWork.py file.
Wk.2.4.1 After you have debugged your code in Idle, submit it via this tutor prob-
lem.

Parsing a token sequence

The job of the parser is to take as input a list of tokens, produced by the tokenizer, and to return
a syntax tree as output. Parsing Python and other programming languages can be fairly difficult,
and parsing natural language is an open research problem. But parsing our simple language is
not too hard, because every expression is either:

e anumber, or

e avariable name, or

e an expression of the form
(expression op expression)
where opisoneof +, -, *, /, =

This language can be parsed using a simple recursive descent parser. A good way to structure
your parser is as follows:

def parse(tokens):
def parseExp(index):
<your code here>
(parsedExp, nextIndex) = parseExp(0)
return parsedExp

6.01 HW1: Calculator — Fall 2010 5

The function parseExp is a recursive function that takes an integer index into the tokens list.
This function returns a pair of values:

the expression found starting at location index. This is an instance of one of the syntax tree
classes: Number, Variable, Sum, etc.

the index beyond where this expression ends. If the expression ends at the token with index
6, then the returned value would be 7.

In the definition of this function we make sure that we call it with the value index corresponding
to the start of an expression. So, we need to handle only three cases. Let token be the token at
location index. The cases are:

If token represents a number, then make it into a Number instance and return that, paired with
index+1 . Note that the value attribute of a Number instance should be a Python floating point
number.

If token represents a variable name, then make it into a Variable instance and return that,
paired with index+1. Note that the value attribute of a Variable instance should be a Python
string.

Otherwise, the sequence of tokens starting at index must be of the form:

(expression op expression)

Therefore, token must be > (* . We need to:

— Parse an expression (using parseExp), getting a syntax tree that we'll call leftTree and
the index for the token beyond the end of the expression.

— The token beyond leftTree should be a single-character operator token; call it op.

— Parse an expression (using parseExp) starting beyond op, getting a syntax tree that we'll
call rightTree.

— Use op to determine what kind of internal syntax tree instance to make: construct it using
leftTree and rightTree and return it as the result of this procedure, paired with the
index of the token beyond the final right paren.

We will give you two useful procedures:

numberTok takes a token as an argument and returns True if the token represents a number
and False otherwise.

variableTok takes a token as an argument and returns True if the token represents a variable
name and False otherwise.

It is also useful to know that if token is a string representing a legal Python number, then
float (token) will convert it into a floating-point number.

Step 2.

5.1

6.01 HW1: Calculator — Fall 2010 6

We have implemented __str__ methods for the syntax-tree classes. The expressions print out
similarly to the Python expression that you would use to create the syntax tree:

>>> parse(tokenize(’ (1 + ((2 * 3) + (a / b)))’))
Sum(Num(1.0), Sum(Prod(Num(2.0), Num(3.0)), Quot(Var(a), Var(b))))

It is very important to remember that this is simply the string representation of what is actually
an instance of the syntax tree class Sum.

Here are some examples:

>>> parse([’888’])

Num(888.0)

>>> print parse([’(’, ’fred’, ’+’, ’george’, ’)’])

Sum(Var(fred), Var(george))

>3> pl'i!lt parse([’(’, _,(,’ :a),)*J, Jb)’ J):.)/’JJ)(?’ ’cee’, J_J’ ’doh’,))J ’:))])

Quot (Prod(Var(a), Var(b)), Diff(Var(cee), Var(doh)))
>>> print parse(tokenize(’((a * b) / (cee - doh))’))
Quot (Prod(Var(a), Var(b)), Diff(Var(cee), Var(doh)))

Implement parse and test it on the examples in the work file, or other strings of tokens you make
up, or on the output of the tokenizer. Start by making sure it handles single numbers and variable
names correctly, then work up to more complex nested expressions.

Wk.2.4.2 After you have debugged your code in Idle, submit it via this tutor prob-
lem. You should include only the code you wrote for parse.

Evaluation

Once we have an expression represented as a syntax tree, we can evaluate it. We will start by
considering the case in which every expression can be evaluated fully to get a number; then we'll

extend it to the case where expressions may remain symbolic, if the variables have not yet been
defined.

For our calculator, just as for Python, expressions are evaluated with respect to an environment.
We will represent environments using Python dictionaries (which you should read about in the
Python documentation at
http://docs.python.org/tutorial/datastructures.html#dictionaries), where the
keys are variable names and the values are the values of those variables.

Eager evaluation

Here are the operation rules of the basic calculator, which tries to completely evaluate every ex-

pression it sees. The value of every expression is a number. The evaluation of expr in env works
as follows:

Step 3.

5.2

6.01 HW1: Calculator — Fall 2010 7

e If expris a Number, then return its value.
e IfexprisaVariable, then return the value associated with the nanie of the variable in env.

e If expr is an arithmetic operation, then return the value resulting from applying the operation
to the result of evaluating the left-hand tree and the result of evaluating the right-hand tree.

e [f expris an assignment, then evaluate the expression in the right-hand tree and find the name
of the variable on the left-hand side of the expression; change the dictionary env so that the
variable name is associated with the value of the expression from the right-hand side. Note
that all the values in the environment should be floating point numbers.

Optional: You can make your program more beautiful and compact, using functional program-
ming style, by storing the procedures associated with each operator in the subclass. The Python
module operator provides definitions of the procedures for the arithmetic operators. Here is an
example of using operators.

import operator

>>> myOp = operator.add
>>> myOp(3, 4)

T

Write an eval method for each of the expression classes that might be returned by the parser. It
should take the environment as an argument and return a number. In real life, we would worry a
lot about error checking; for now, just assume that you are only ever given perfect expressions to
evaluate.

Test your program incrementally, using expressions like:

>>> env = {}

>>> Number (6.0) .eval(env)
6.0

>>> env[’a’] = 5.0

>>> Variable(’a’).eval(env)
5.0

>>> Assign(Variable(’c’), Number(10.0)).eval(env)
>>> env

{’a’: 5.0, ’c’: 10.0}

>>> Variable(’c’).eval(env)
10.0

You may find it useful to use the testEval procedure to test your code.

Putting it all together

Now, it’s time to put all your pieces together and test your calculator. The work file defines calc,
a procedure that will prompt the user with a >%’ character, then read in the next line of input that
the user types into a string called inp. On the following line, you should make whatever calls are

Step 4.

6.1

Step 5.

6.01 HW1: Calculator — Fall 2010 8

necessary to tokenize, parse, and evaluate that input. The procedure will print the result of the
evaluation, as well as the state of the environment after that evaluation.

For debugging, it can be easier to type in all the expressions at once. The calcTest procedure in
the work file takes a list of strings as input, and processes them one by one (much the way Idle
works when you ask it to ‘run’ a Python file). You can use testExprs in the work file, as input to
this procedure for testing. And feel free to make up test cases of your own.

Fill in the calcTest procedure, so that it calls your code, and make sure it works on the examples.
Here is the desired behavior of the lazy evaluator on testExprs:

>>> calcTest(testExprs)
% (2 + 5)
7.0
env = {}
% (z = 6)
None
{’z’: 6.0}

5
<
]

env = {’z’: 6.0}
hw=(z + 1))

{222 o605 2w T.0F

]
=}
<

]

{’z*: 6.0, "w*: 7.0}

]
=
<

n

Note that this is due at a later date than the earlier problems.

Wk.2.4.3 After you have debugged your code in Idle, submit it via this tutor prob-
lem. You should include the class definitions for Sum, Prod, Quot, Diff,
Assign, Number, Variable and any other class or procedure definitions
that they depend on.

Extensions

You should do one of these extensions to the calculator. Include your solution and your answer
to the corresponing Check Yourself question in your written paper.

Tokenizing by State Machine

Write a state machine class, called Tokenizer, whose input on each time step is a single character
and whose output on each time step is a either a token (a string of 1 or more characters) or the

Step 6.

6.2

6.01 HW1: Calculator — Fall 2010 9

empty string, ”, if no token is ready. Tokenizer should be a subclass of sm.SM. Remember that
the state of a state machine can be a string.

Here are some examples. Note that there must be a space at the end of the string.

Tokenizer() .transduce(’fred ’)

[)J’ ;:’))’ JJ, JfredJ]
Tokenizer () .transduce(’777 ?)

[l’, ?),)),)777’]

Tokenizer() .transduce(’777 hi 33 ?)

[):’ ::’ ::, ;777:, :», :x’ 'hi',):, a” ,33;]
Tokenizer() .transduce(’**-)(?)

[):’ J*)’)*” JWJ, :):, J()J

Tokenizer() .transduce(’ (hi*ho) ?)

[, *¢*, **, *hi’, **?, 7, *ho?, ?)?]
Tokenizer() .transduce(’ (fred + george) ’)
[’),)(),)7!)?] ?")fred,, ”-‘)+’, ”,)’, ?,,)’,)],))’ Jgeorge)’ ,)}]

Now, write a procedure tokenize (inputString) that takes a string of characters as input and
returns a list of tokens as output. The output of tokenize(’ (fred + george) ’) should be
(¢, *fred’, ’+’, ’george’, ’)’].Todo this, your procedure should:

e Make an instance of your Tokenizer state machine.

e Call its transduce method on the input string, with a space character appended to the end of
it. An important thing to understand about Python is that almost any construct that iterates
over lists or tuples will also iterate over strings. So, even though transduce was designed to
operate on lists, it also operates on strings: if we feed a string into the transduce method of a
state machine, it will call the step method with each individual character in the string.

e Remove the empty strings to return a list of good tokens.

Check Yourself 1.

e Explain precisely why you need a space character appended to the end
of the input to the Tokenizer input.
e Compare and contrast your two tokenizer implementations.

Include your answer in your write-up.

Lazy partial evaluation

To make the calculator flexible, we will allow you to define an expression, like (d = (b + ¢)),
even before b and c are defined. Later, if b and ¢ are defined to have numeric values, then
evaluating d will result in a number.

Step 7.

6.01 HW1: Calculator — Fall 2010 10

Change your eval methods, so that they are lazy, and can handle symbolic expressions for which
we do not have values of all the symbols.

If the expression is a Variable, test to see if it is in the dictionary. If it is in the dictionary,
return the result or evaluate the value for the variable in the environment, otherwise, simply
return the variable. (The Python expression *a’ in d returns True if the string ’a’ is a key
in dictionary d).

When you evaluate an assignment do not evaluate the right hand side; simply assign the
value of the variable in the environment to be the unevaluated syntax tree. Notice this means
that the values in the environment will always be syntax trees and not numbers as in eager
evaluation. This is called lazy evaluation, because we don’t evaluate expressions until we
need their values.

If your expression is an arithmetic operation, evaluate both the left and right subtrees. If they
are both actual numbers, then return a new number computed using the appropriate oper-
ator, as before. If not, then make a new instance of the operator class, whose left and right
children are the results of having evaluated the left and right children of the original expres-
sion (because the evaluation process may have simplified one or the other of the arguments)
and return the operator node. This is called partial evaluation because we only evaluate the
expression to the degree allowed by the variable bindings.

When you look a variable up in the environment, evaluate the result before returning it, be-
cause it might be a symbolic expression.

If you want to check whether something is an actual number (float or int), you can use the isNum
procedure defined in the work file.

Note that, if you are writing your eval method in the Binary0Op class, you will need to be able
to make a new instance of the subclass that self belongs to (e.g. Sum). Python provides a

class__ method for all objects, so that self.__class__ can be called to create a new instance

of that same class.

Here are some ideas for testing eval by itself:

>>> env = {}

>>> Assign(Variable(’a’), Sum(Variable(’b’), Variable(’c’))).eval (env)
>>> Variable(’a’).eval(env)

Sum(Var(b), Var(c)]l g———07 ‘I?bff}

>>> env[’b’] = Number(2.0)

>>> Variable(’a’).eval(env)

Sum(Num(2.0), Var(c))

>>> env[’c’] = Number(4.0)

>>> Variable(’a’).eval(env)

6.0

>>> calcTest(lazyTestExprs)
% (a=(b+c))

None

env = {’a’: Sum(Var(b), Var(c))}

6.01 HW1: Calculator — Fall 2010

A (b=(d=*e)/2)

None
env = {’a’: Sum(Var(b), Var(c)), ’'b’:
4 a
Sum(Quot (Prod(Var(d), Var(e)), 2.0), Var(
env = {’a’: Sum(Var(b), Var(c)), ’b’:
% (d=8)
None
env = {’a’: Sum(Var(b), Var(c)), 'b’
% (e = 5)
None
env = {’a’: Sum(Var(b), Var(c)), 'b’
% a
Sum(15.0, Var(c))
env = {’a’: Sum(Var(b), Var(c)), ’'b’
A (c=19)
None
env = {’a’: Sum(Var(b), Var(c)), ’c’
Num(6.0)}
% a
24.0
env = {’a’: Sum(Var(b), Var(c)), ’c’
Num(6.0)}
% (d=2)
None
env = {’a’: Sum(Var(b), Var(c)), ’c’
Num(2.0)}
% a
14.0
env = {’a’: Sum(Var(b), Var(c)), ’c’:
Num(2.0)}
>>> calcTest(partialTestExprs)
h(z=(y +w)
None
env = {’z’: Sum(Var(y), Var(w))}
L2
Sum(Var(y), Var(w))
env = {’z’: Sum(Var(y), Var(w))}
Aly=2
None
env = {’y’: Num(2.0), ’z’: Sum(Var(y),
hz
Sum(2.0, Var(w))
env = {'y’: Num(2.0), ’z’': Sum(Var(y),
% (w=4)
None
env = {'y’: Num(2.0), ’z’: Sum(Var(y),
L8
6.0
env = {’y’: Num(2.0), ’z’: Sum(Var(y),
% (w = 100)
None
env = {’y’: Num(2.0), ’z’: Sum(Var(y),
%z
102.0
env = {’y’: Num(2.0), ’'z’: Sum(Var(y),

Quot(Prod(Var(d), Var(e)), Num(2.

c))
Quot(Prod(Var(d), Var(e)), Num(2.

: Quot(Prod(Var(d), Var(e)), Num(2.

: Quot(Prod(Var(d), Var(e)), Num(2.

: Quot(Pred(Var(d), Var(e)), Num(2.

: Num(9.0), ’b’: Quot(Prod(Var(d),
Num(9.0), ’b’: Quot(Prod(Var(d),
: Num(9.0), 'b’: Quot(Prod(Var(d),
Num(9.0), ’'b’: Quot(Prod(Var(d),
Var(w))}
Var(w))}
Var(w)), ’w’: Num(4.0)}
Var(w)), ’w’: Num(4.0)}
Var(w)), '«’: Num(100.0)}
Var(w)), 'w’': Num(100.0)}

0))}
0}
'd’: Num(6.0)}
0)), *e’: Num(5.0),
Num(5.0),

ralt:

Var(e)), Num(2.0)),

Var(e)), Num(2.0)),

Var(e)), Num(2.0)),

Var(e)), Num(2.0)),

: Num(6.0)}

: Num(6.0)}

: Num(5.0),

: Num(5.0),

: Num(5.0),

: Num(5.0),

11

6.01 HW1: Calculator — Fall 2010

12

Check Yourself 2. What happens if you evaluate

(a = 5)
(a=(a+ 1))
a

e Using eager evaluation?
e Using lazy evaluation?

Include your answer in your write-up.

ﬂh/ Aﬁé‘tg/l ‘

Tmal W ggsignanat

(E\/m more (10! HV(‘)
*{Qo many d,‘tf‘h/@ml +~10&) P‘F Hlf‘/)

“hetd Yo roaf pocsee chyp T Yhink

~(0ad le\af
~ % ol ale gt ke s n{esca'bcc/
“C¥c- ooms @ MHe S:mp@r Tt Copy Code fron
V% our Statt madur 47 X
Ttk ka0l
—ah! -gead e caftr o oo shates |
/ ygkasas
~P0f$@ Syn Ay tree
~ Qvd|uatey
(pr%%rv{' Sy o W/ pllechion of ¢ %5Q)

“dehnﬁtons :fx comp]{b}‘(

Wow 10“5 f@prmnt il of Clags cation
“QURS kd[

MUl vt wll need o parce (k
- pacts

tobeiz e b gl
QU_{'E’F Sertes of fodua 4

Oy

(ne»ms Covas (n h\\ts Ct%\ffannm} l)

~Go Jolenizer

(ot - g | (wltow) + 664

L(; C/ (feil ?L} @Qof@}ﬁ/)/ // C/I/OMMJ/}/ ;L/ 66@[2\))

"6 lgroe Spacy
*—angle char Foleng :[(/)/ #/ 7 éif/ // :j
—fest cose5 |n €UL
W [of¢ fog !
“ it 9o Thiogh adding Chus fo emp
“hll reah g dogle choy tolien
\dfpend temp o ars
" AP Gegle gl fola

" repedt
. [, \\
Oh from ustrday mport b GOLgm s sm
T

OL'H’W]éjf tey | {0\:(()7 qoo&l,

r./n/?* [\@f/cl ""q]uanofg SPC‘(Wb

~dnd famp Tines fomp 16 tmphy
—dvhL aperd thal

Lk failed o feot (8 el ot s * Sppu
s s complt Sint 1a QALY ol chor W - ok
(are q\ooml 5P0((€5
/0/\[1 i R (A SPP@wa-a LC&%@ dnd. Cgffwwcfﬁﬂ%
~ctn fotward 1 btk
—~of St gpacl & ho’ﬂ\‘mg @lgc/ comes Sp

vw\;:df\ s Clemf
-tk g Gom ek ot state Machial

- ‘@!L(,\Q& \4)

;(Q\trb'}' o ZM} (L\O(T o ds Mf/”

~and doa t GPPQ@ if stpugler & & SpaLq

*’éw 7 d\u’k‘% olc](on (M&L
26 mia iy

Hf‘” Pos fot)

s ‘ﬂl)}" {
j%if%ﬁz‘if[t&o% foles g
Mt Gy reg

“hord o o Pﬁ%q ond hare o
natsa) {W

“bd o Gyt Casy h pars
~bery expreoapa
=4t
- waq};lg ngn |
RS of b (e

ye?L fWStJ

op 6?)(/0(‘8551‘0" }
r

= pace ‘/5;3 smple oasig e

fMGr‘

*Jﬁ” Phvde o baste iTh struturp
~ (Tlung p?(Pfesslm dt gfv(fl/lg ' ri\cle)c\\ An d 2
Tt g Call for [t staf 4f bﬁg)ﬂ;

3‘% G'Ot‘eﬂ ;5 T/'O&erl Cn(d‘d/‘)t,/tj :I/)(]ﬁ)
,'}Oé@ﬂ ‘E # /h'ldle, o -ﬁ_ ;454"’/1((’ [f/mﬂnj ’D;L)
(btury i}
(Uom (fm/)c d

9
t f \(
]"/‘j (n C/“CX

7

“‘an ﬂ/afiw“e, Ml N Myhe l/arf’db/@/%k' tfwéfdnf@

letun |1
et indpx t)

)

_Oﬂww'zgt ‘m hc (fKFfE%JM @)p Pxpfé’%;m) éo//y,
”\C(MF fom ¥ (,

“Pa(&& h Qﬁfrwion Ln{u{’,
@ WHLly \/S\inﬂ Pars E"\cp ()
T OEt Gynlay e |oft Tree
— neg {‘(ahj\ :OPP (Q‘mg)e (/‘40()
TP gl exp@sn
P —)
vl we P Exp ()
- (e ()P o docde what M/u{ of t(ﬂh?/"a{ 571115)(e b "%
“onstgt o[bl Ty . Ch T
A7 GO
L ol P d

~Number ok 9 e 'E A numbor

'VM‘(@HC Pl ~ 'fn/g & & vicahle pamg

—< Sk _. mettod plemafy |

vl Ml oy L coplow) ahorto,,p,
\qH i Enéf;‘ﬁej @ e

)

\/_—_’—\—'\/
(*é?f/lt‘g Peessired toom sher L)

O Work or Pm@f 9/?0

/mi){(’wen% Al

“oh gledy bt @ 6 aumber |

Vi aple
'€as1 hjo

~ b4 What abwd f (___,op)
~ (s
=S Calel

“dlko ha dop, Porsnd Ex adqmle
| fo Pe 0w pithen

HC’W w] [alg(
Y
S |t T -

f?membf!f We o deaf‘mj V‘/ ’,lgﬂm ot 6/7‘
(]ﬂﬂw (3{1//11 1\ 91ﬂ+4)<

(s tet a e

Cloe < ol eotga
L\Ow ‘l:v W{,L/Q be“dg At ds M}Cf' }Adfy

e
frep

N fow o cefom & Sutny frog
- Clags < Sum
“Ooh (g g8 dedemies what &
T Qg gbclses o€ biwp g
— ~ (eturn §am((eff Tree, &ftqlﬂ Teet) idex +U

@ 1s W9 Ny robum ndex o et ”

Onway offt G pot qotlag aervrithen
0T gt gl (Culsivp

“And some of Pt?fffﬂ’l»e?é A scrtntd v
"t,ndc)t covim 3 Pob fud

— ad OLSG\tqan' i
|
— (etuin ‘\L%p& A5 ¢/

~ Yenh for M rgasin pewt it ‘G‘Iﬂy ‘ldd@i f’o Q/]lfy}
bred dlsy be'm_g gpi} B», Fobem'ger

— howmm!

]Cr/ e’rt’,/

af hrong lgaf- e |
e Many — comminfs

\'{:X'e(l/ V\’QS

.fO,A 5’(‘(& leﬂ']L[ge :5 hgf- ‘}uhr(,,ﬂ ;n(},e)((.g{z///p
i‘:ﬁ/ ("ﬂm IL/(?L + afp 5ho¢ﬂ bast o € ﬂaﬂ

~foel # g | [
“‘40‘& o mice. ‘th dii Vd' effa‘ ' ‘l
~(an (go one C Ce - \o\o\)) bot et muflipe
] (Jub\' ﬁ)lgk\(‘u\g' w{ v JEY
Pt W 4 s | ot L

“all fes ., TOLE mgd 5 v 4 bty

@ (h’*{f)p
~ ghat loays cotun Floafs
“CMe at Nvmbyr
\Mﬁl' and T hae @ GZVO} e b Pode
\ (
id D e sl be queb
QOOl f\pw“

Ol 3d pot t)t/f, i anoter wedh

~—N+hwgh pow Thgf oo :Fl Wand o tadelt
bt dgie fill abhe ledw b oot ﬁv/

ke T gt skl Wl GO don F ot b o

~ 6.01: Introduction to EECS 1

Week 3 September 21, 2010

6.01: Introduction to EECS 1

Capturing Common Patterns: State Machines

Week 3 September 21, 2010

Outline

e State machines : a new PCAP system
— Properties of state machines
— Examples of state machines
— Implementing in Python
— State machines as a PCAP

Reading: 3.4.6, 3.5.4, 3.6, 4.1, 4.4, A.1, A.2
[
prwfwa;
hbstract1
Patters
foﬂnb@uﬁa

Remembering

State machines

e Programs thus far:
— Purely functional — output depends only on input
— Object oriented — methods only really depend on state of
attributes and input

What if you want a procedure that can remember some results of
its computations from one call to the next — whose output depends
on entire history of inputs?

 —

State machines are a way of organizing and managing the memory

of a computation over time; way of modeling systems whose output

depends on entire history of inputs

e If oy is output at ¢, and i is input, we want a mapping such that
(E5eves i) — 0

¢ Compare this with functional programming, where i; — o

¢ Too complicated, so look for set of states, where each state
captures essential properties of history of inputs, and determines
the next state and output

¢ Need to find set (finite?) of states

State machines

State machines: example usage

input state output
in | Sn On

On the ot step, the system '.Hﬂ 551"““

" gets input iy,

e generates output o, and

L:_ moves to a new state s,

Qutput and next state depend on input and current state (which
captures essence of history of inputs)

¢ User interfaces (if mouse click, and previous input = X, do Y)

e Modeling conversations, natural dialogue systems (to what does
“it" or “this" refer in a conversation?)

e State of a space craft (what is level of fuel, oxygen, given that
certain valves are currently open?)

¢ Video games, e.g Quake, WarCraft (actions of agents deter-
mined by sequence of inputs of users)

Ly E(Lflv Videq games

6.01: Introduction to EECS 1 Week 3 September 21, 2010

State machines: generic usage | Turnstile
c»ﬁr fohors
e Synthetically — specify program for a system embedded in world Given an embedded system, can supply it with a stream (infinite
— inputs are sensor data, outputs are control commands sequence) of inputs, it will “transduce” stream to give stream of
e Analytically — analyze properties of coupled system (control sys- outputs ~

tem and environment it is controlling)
e Predictively — plan trajectories through space of external world
to reach desired goal state, choose between alternatives

Want to model such a system, here is an example

Inputs #= {coin, turn, none}

Outputs + {enter, pay}

= {locked, unlocked}

Will use state machines for all three purposes
States -

unlocked if i = coin
nextState(s, i) & ¢ locked if i = turn
s otherwise
. enter if nextState(s, i) = unlocked
output(s,i) = pay otherwise \ p
) L .
T hot (=g (ffp/
s = locked

bous ants Glute
o lpe aty]
A rlmgrm‘l,i

Tede{ Y Gl n;u,h[y;

State-transition Diagram Turn Table
1
¢ Nodes represent states ~ ((rL[LS - :
e Unlabeled arrow goes to start state time 0 1 2 3 4 5 6
e Arcs represent transitions: label is input / output state L Iz U U L i U
e,
in None coin None turn turn coin coin

out pay enter enter pay pay enter enter

none / pay & coin / enter none / enter
turn / pay coin / enter

turn / pay

Transition tables State Machines in Python

We will use state transition tables to examine the evolution of a SM Class:

state machine.

Methods that are shared among all state machines

e start(self) — initialize state

e step(self, input) — get next state, compute and return output

e transduce(self, inputs) — initialize, then process sequence of in-
puts, return sequence of outputs

For each column in the table, given the current input value and
state we can use the output function to determine the output in
that column; and we use the next-state function applied to that
input and state value to determine the state in the next column.

In general we have: Turnstile Class:

time 6] 1 2 Attributes that are shared among all turnstiles
e startState
e getNextValues(self, state, inp) - transition diagram

input i i1 in
state S0 §1 82

output | oy 03 o3 Turnstile Instance:

Attributes of this particular turnstile, including current state
] state

*Clﬂ'l‘ll Gk oﬁpv’\/ A 5[‘01{13‘2 ﬂdh cun b any dake sfafure,

“bok & dieplay suten

6.01: Introduction to EECS 1

Week 3 September 21, 2010

Turnstile Class

Turn, Turn, Turn

class Turnstile(SM):
startState = ’locked’

def getlNextValues(self, state, inp):
if inp == ‘coin’:
return (‘unlocked’, ’enter’)
elif inp == ’turn’:
return (’locked’, ’pay’)
elif state == ’locked’:
return (’locked’, ’pay’)

(eprebenfs fi
ffq,,;ﬂo’\ (ﬂ‘j”m

else:
return (’unlocked’, ’enter’)

testInput = (None, ’coin’, None, ’turn’, ’turn’, ’coin’, ’coin’]
ts = Turnstile()

ts.transduce(testInput)

Start state: locked

In: None Out: pay Next State: locked

In: coin Out: enter Next State: unlocked

In: None Out: enter Next State: unlocked

In: turn Out: pay Next State: locked

In: turn Out: pay Next State: locked

In: coin Out: enter Next State: unlocked

In: coin QOut: enter Next State: unlocked

[’pay’, ’enter’, ’enter’, ’pay’, ’'pay’, ’enter’, ’enter’]

SM Abstraction

SM Class

e Have built our example on abstraction of state machine

e Can think in terms of states, transitions, without worrying about
details

e But need underlying substrate — will provide one, which makes
some assumptions!

class SM:
def start(self):
self.state = self.startState

def step(self, inp):
(s, o) = self.getNextValues(self.state, inp)
self.state = s
return o

def transduce(self, inputs):
self.start()
return [self.step(inp) for inp in inputs]

Note that getNextValues should not change the state.
State is managed by start and step.

Accumulator

Check Yourself

Here is a very simple state machine — just adds up inputs

class Accumulator(SM:
startState = 0

def getNextValues(self, state, inp):
return (state + inp, state + inp)

leckor 4ae o twte pde

>>> a = Accumulator()
>>> a.start()

>>> a.step(7)

>>> a.step(-2)

>>> a.state

777 5—

>>> b = Accumulator()
>>> b.start()

>>> b.step(10)

>>> b.state

777 l()

6.01: Introduction to EECS 1

Week 3 September 21, 2010

Classes and Instances for Accumulator

State machines as acceptors

—_—
FLiet e Another standard use of a FSM is as an acceptor
a.start() ditiel het! ; tis | I
a.step(7) ° e(lil EStW : ::Er Inpuf |Is ega
REten1-2) e only outputs true or false
b = Accumilatoer() Examples include natural language parsers, user interfaces
b.start() FSM “defines’ the language — determines all legal “words” that are
b.step(10) X accepted
‘&‘ start .
. (d.\ A step . _—A J \ W ‘h/ l P ’
Q\' ,* | transduce . Ga Tip ree a M {a’!}t, m% "afér ﬁ{ 5
global @V run . 46
A
SM -~ H
Accumulator :
a -~ startState | 0 |
b N *\ gutNextValuss] . I
\ [
£ LS
| state | 10 | state]
A language acceptor Am A3 L].o[\ State Transition Diagram
v
A language acceptor
§=1{0,1,2,3} /CfTrue
= {a,b,c} alTrue—»‘ | }-—blTrue
O = {true, false}
. a/False
1 ifs=0i=a c/False
(5,) 2 ifs=1li=b b/ False a/False
n(s, i) = ’ / Fal
0 fs=2i=c¢c c/ralse b/ False
3 otherwise
olasd) = { false if 11(8,1). =3
true otherwise
a/ False
so=0 b/ False
c/False
State transition diagram for language acceptor
Simulation Python implementation
3 class ABC(SM):
time 0 1 2 3 4 0 6 startState = 0
input 'a’ b’ e 'a’ ‘e’ ‘a’ B def getNextValues(self, state, inp):
state 0 1 2 0 1 3 3 if state == 0 and inp == ’a’:
output | True True True True False False False return (1, True)
elif state == 1 and inp == ’b’:
c.'True return (2, True)
elif state == 2 and inp == ’c’:
aJTrue b/ True
@ return (0, True)
/ Fal: .
:fF:\:: else:
b/Fal
afF:l;: W :;:::g veturn (3, False)
a/lFalse
b/ False

c/False

6.01: Introduction to EECS 1 Week 3 September 21, 2010

Simulation I'm thirsty

>>> abc.transduce([’a’, 'b’, ’c¢’, ’a’, ’c’, ’a’, ’b’], verbose =
True)

Start state: 0

In: a Out: True Next State:
In: b Out: True Next State:
In: c Out: True Next State:

Let's model a Pepsi machine. For simplicity, assume a Pepsi only
costs 10 cents.

Inputs = {5, 10, GimmePepsi, GimmeMyMoney}
Outputs = {Kerplunk, Return5, Return10, None}

States = {NoCoing, Have5, Havel0}

LT3 sp = NoCoins

= O N -

In: a Out: True Next State:
In: ¢ Qut: False Next State: 3

\
In: a Out: False Next State: 3 PEP&‘
In: b Qut: False Next State: 3
[True, True, True, True, False, False, False] 5EC 9‘(’@(’
PCAP System for State Machines State Machine Primitives
e Primitives: Basic state machines Accumulator
¢ Combinators: Ways of connecting them to make new state ma- Delay
chines !
« Abstraction: Naming combined machines class Delay(SM): (
def __init__(self, v0): 5
self.startState = v0 ‘L
def getNextValues(self, state, inp):o &
This week’s design lab and exercises will focus on state-machine return (inp, state)

combinators and abstraction. TErarant

We will also use these ideas in future weeks to model robot control
and sensing systems

class Increment (SM): \ \

[
(
def __init__(self, incr): 5 _..)‘J,_,)‘J
self.startState = incr / /
def getNextValues(self, state, inp): 6 / /
return (safeAdd(inp, state), safeAdd(inp, state))

Dataflow Combinators Example cascade
mi = Delay(99)
m2 = Delay(22)
Cascade: - My ok e i C = Cascade(ml, m2)
Cascade(m, my)
time 0 1 2 3 4 5 6
ml input 3 8 2 4 6 5
ml state | 99 3 8§ 2 4 G 5
Parallel: mloutput | 99 3 8§ 2 4 6
a-H'QrMI’@ m2input | 99 3 8 2 4 6
f m2state | 22 99 3 8 2 4 6
('or C(Mf,(,% m2output | 22 99 3 8 2 4
S (1 N iy i I

6.01: Introduction to EECS 1

Week 3 September 21, 2010

Example Feedback

Example Feedback

We would like a machine that counts:

Inputs = Numbers
Outputs = Numbers
States =M NUM ‘m
nextState(s, i) =i+ 1
output(s, i) = nextState(s, i)
sp=0

We have
oft] =i[t] +1

Suppose we connect input to output: ift] = ot]

We cannot satisfy these equations! A FSM cannot have a direct
dependence of its output on its input!!

Delay(0)

Counter

Let's delay our output, to line it up with the next input:

ol = it + 1)
wil—ie_n iy U importaat
iilt] = oglt]

[
ialtl = oil] st Snd, Wl uphs]e

First two equations describe machines, second two describe wires

Sequence Combinators

Example Feedback
R S S PR
Incr Delay(0) >
Counter
Now we have
”i{t] = i['[!] +1
=o4lt] +1
=iglt—1]+1
=oit—1]+1
Now output will be one greater at each time step!

e Terminating state machines have a done method, that returns
True when the state machine has terminated.
e Combine terminating SMs with:
— sm.Sequence: takes a list of state machines, runs each until
termination and starts the next one
— sm.Repeat: takes a state machine and a count, runs the state
machine until termination the specified number of times, then
terminates

4 bogetbr slaple mahiy

This Week

Software lab: Practice with simple state machines

Design lab: Controlling robots with state machines

To get help:

e Email 6.01-help@mit.edu

e« Go to lab hours (see course web page for times)

o Remember to check your due dates/times on the tutor

w i

F(MOHM 5?1?”*@
“"{’ = 0+ (l | .
Illlz g <eun by ->0f‘

OF{(H))
T n vl for Pm e dﬁf’%ls 4 /f\Cfﬁwa ﬁ
mph, 1 possibie ® of s
0ok pvts

f’l X [mdw\ If I’ln VdUES/ n Fbﬁs:wﬂ DJ}P)S

npk
Ve paab g Stafty, suh thef

Oi— (ﬂ‘/ |l&) 5‘;5 ((',L, &-,)

Czle va;/ &”fl“k

|, Stat e;cpu’ch behaiio -
U T hae every fopt st every ot o

Ndu!& A ng‘tavx eo'ks':oa i}b @@} fe W C}'la(‘—gﬂ

B vt # B b Bl
_(jmj hae Sfafe @/ fach Qmb of S0

—0dd o SR Yacahly <y bl
— Chh vhin 9:1/{ oty -

00 pA e o 3 cthe ot

® N @ 5 /Nont lO/th/m (0
\‘\

Whta Syshm QoS comflex) gre tue pleags YU (i s

6.01 SWLab 3: State Machines — Fall 2010 1

Software Lab 3: State Machines

1 Setup

If you have already installed Python on your own laptop, you can use it. If you haven’t installed
Python yet, and would like help, please bring your laptop to evening office hours. Otherwise,
please use a lab laptop or desktop.

e Using a lab laptop or desktop machine

— Log in using your Athena user name and password.

— Click once on the Terminal icon (usually on the bottom left of the screen.) In the terminal
window, type athrun 6.01 update. It will create a Desktop/6.01/1ab2/swLab direc-
tory and put a file in it.

e Using your own laptop
— Go to the course web page: http://mit.edu/6.01
— Go to the calendar tab, and download the zip file for software lab 2. Unzip it.

— When we mention finding a file in Desktop/6.01/. . ., look for it in the folder you got by
unzipping the archive.

2 Exercises

Wk.3.1.all Do these problems on the tutor. You can test your code in idle by im-
plementing your programs in the file 1ab3/swLab/s13Work.py, which
imports the sm module and has some useful test cases.

il Cllu La h

S

09 qufor Pl blems

Stay Maghing
(’AP'/‘L
0 (2
4t G\ % 30
Sale | 0 0
a AR -
30 7 0

r
et o Mes

JUtpd = sam o Voo Sfdte

t'mfa[5 Fafe =(

—Cowﬁ FAMWJ ,quﬁ‘wa/l ﬂwe’ Y r C sef /:./w/
F(g“lﬁ }\w M47 .01'/’

(41 f@[-,[p/,)
)= cespt
wpt () CoAPt | o ok - (
§fate yy
)/O 2 2
1,7 ¢
0,0 |

1Y

6h ww Gl ¢ r’gH{ Y boswds # bacﬁw/é} mol Y é//f// /3

2, Tu/mﬁf%

TSame 08 et

(O(LEJ, /CO;n

~— or /i/ef’ fool\ v [edafg m/L‘fb

—§ 14t c(('#é/fnﬁ

s Lok ab digagnl Do /

}Z 54?/))

0 Doble Doy Ghufe Mckie

~dilays iapd L gt
“negd fo g'Me (t il L apds
~dafa gtecke ghall be 4 [ub

“hed 4y W(‘ﬂd@{} 1 Zg,é 5:4“' 27 dog VA

,_0[0,\,/
s IWE "f bﬁ q d‘fﬁféwf,np{‘ /rly}'
S0 e ok et mat e ol
~0k Wt u/orltzxuj

(¢ fum [5%[1]/ zﬂp J/ Sk’k’[g
TR bome mere practie v/ il

Poct ' Commont mahie 5 o lotor

, 7
75 jf{"fngﬁ
@"’*4 2l oy o ot}
¥ C M
v, g TN % e b 1 Sk
1

Q) Gy Go (hvn»gh 5HA9 y 0u+puﬁ‘v) NW
‘“Z({]fb‘[’ to \# ?fﬂ

flen gutp pch feftr 1)) v Jing

~ Seems M/\AA ehsy

~ Ghad [_z'fw]%x , " CO"IMQIJ)IJ
7 ?
Lt Jootlin

’OL\MGJ PV 94 o dodifa,
~0k “pow Just # omd W U‘/fPJHed

- O‘/L}M KA T}(/C
“od ot oadpd \n

“ond oA gou Not® ot vahe fonc

“OL\ N walt we wan t k/dlvi WD’Q

“dU wok bare gk Wiohgd
‘M W s ¢

Lok ot olon = edsy varaton on Tewt
Tt Togd mgleertieg G o

1:# \;a; b e o vas not mufj
R ey

6.01 Controlling Robots — Fall 2010 1

Design Lab 3: Controlling Robots

1 Materials
This lab should be done with a partner. Each partnership should have:

e Alab laptop.
— Log in using one partner’s Athena user name and password.
— Click once on the Terminal icon (usually on the bottom left of the screen.)

— If you have not already done this, in the terminal window, type athrun 6.01 setup.
Otherwise, do athrun 6.01 update to get the latest batch of files.

e Arobot and a serial cable.
— The serial cable is a long beige or gray cable. Most of the robots already have one attached.
— Warning: if your robot starts to go too fast or get away from you, pick it up!!

e A white foam-core board with bubble-wrap on one side.

Be sure to mail all of your code and data to your partner. You will both need to bring it
with you to your first interview.

2 Simple Brains

1. Run a brain in the simulator.
a. In the Terminal window, type soar &.

b. Click soar’s Simulator button, navigate to Desktop/6.01/1ab3/designLab/worlds and
choose tutorial.py, click Open. This loads a specific virtual world into our robot simu-
lator.

c. Click soar’s Brain button, navigate to Desktop/6.01/1lab3/designLab/smBrain.py,
and click Open. This loads a specific state machine definition into the robot simulator.
That state machine describes the actions that the robot will take in response to sensed
information about the virtual world surrounding it.

d. Click soar’s Start button, and let the robot run for a little while.

6.01 Controlling Robots — Fall 2010 2

e. Click soar’s Stop button.

f. Notice the graph that was produced; it shows a ‘slime trail” of the path that the robot fol-
lowed while the brain was running. You can just close the window. (If you don’t want the
brain to produce a slime trail, you can set the drawSlimeTrail argument to the Robot-
Graphics constructor in the smBrain. py file to be False).

2. Modify the brain and run it.
a. In the Terminal window, type idle & to open up an Idle environment.

b. Click Idle’s File menu, select Open..., navigate to Desktop/6.01/1ab3/designLab/smBrain.py,
and click Open.

¢. The state machine that controls the robot’s actions is defined by the MySMClass definition.
Think of this state machine as taking sensory data as input, and returning as output in-
structions to the robot on how to behave (we’ll see more about this kind of state machine
modeling of a robot and world next lecture). The io.Action object returned as the out-
put by the getNextValues method of the MySmClass tells the robot how to change its
behavior, and has two attributes that are important to us:

* fvel specifies the forward velocity of the robot (in meters per second)

* rvel specifies the rotational velocity of the robot (in radians per second), where positive
rotation is counterclockwise

d. Find the place where the velocities are set in the brain, and then modify it so that it makes
the simulated robot rotate in place.

e. Save the file.

f. Go back to the soar window and click the Reload Brain button

g. Run the brain by clicking the Start and then the Stop buttons. \/
3. Run it on the robot

a. Connect the robot to your laptop, making sure the cable is tied around the handle in the
back of the robot.

b. Power on the robot, with a switch on the side panel.
Click soar’s Pioneer button, to select the robot.

d. One partner should be in charge of keeping the robot safe. Keep the cable from getting
tangled in the robot’s wheels. If the robot starts to get away from you, pick it up, then,
turn it off using the switch on the robot.

e. Click soar’s Start button. You should be able to hear the sonar sensors making a ticking
noise.

6.01 Controlling Robots — Fall 2010 3

Sonars

The inp argument to the getNextValues method of MySMClass is an instance of the
soar.io.SensorInput class, which we have imported as io.SensorInput. It has two attrib-
utes, odometry and sonars. For this lab, we will just use the sonars attribute, which contains
a list of 8 numbers representing readings from the robot’s 8 sonar sensors, which give a distance
reading in meters. The first reading in the list (index 0) is from the leftmost (from the robot’s
perspective) sensor; the reading from the rightmost sensor is the last one (index 7).

Now we will investigate the behavior of the sonar sensors. Don’t spend more than 10 or 15
minutes experimenting with the sonars. When you’re done, ask a staff member for a checkoff.

e Modify the brain so that it sets both velocities to 0, and uncomment the line print
inp.sonars[3]. Reload the brain and run it. It will print the value of inp.sonars[3],
which is the reading from one of the forward-facing sonar sensors.

e From how far away can you get reliable distance readings? What happens when the closest
thing is farther away than that?

e What happens with things very close to the sensor?

e Does changing the angle between the sonar transducer and the surface that it is pointed to-
ward affect the readings? Does this behavior depend on the material of the surface? Try bubble
wrap versus smooth foam core.

e Now, set the sonarMonitor argument to the RobotGraphics constructor to be True.

Reload the brain and run it. This will bring up a window that shows all the sonar readings
graphically. The length of the beam corresponds to the reading; red beams correspond to “no
valid measurement”. Test that all your sonars are working by blocking each one in turn. If
you notice a problem with any of the sensors, talk to the staff.

Checkoff 1. Explain to a staff member the results of your experiments with the sonars.
Demonstrate that you know your partner’s name and email address.

Make the robot move forward to approximately 0.5 meters of an obstacle in front of it and keep it
at that distance, even if the obstacle moves back and forth. Do this by editing the getNextValues
method of MySMClass; there is no need to change any other part of the brain. Don't set the
forward velocity higher than 0.3. Debug it in simulation, by clicking soar’s Simulator button and
choosing tutorial.py. Once it seems good, run it on a real robot, by choosing soar’s Pioneer
button.

[Checkoff 2. Demonstrate your distance-keeping brain on a real robot to a staff member.]

6.01 Controlling Robots — Fall 2010 4

Following Boundaries

Our goal now is to build a state machine that controls the robot to do a more complicated task:

1. When there is nothing nearby, it should move straight forward.

2. Assoon as it reaches an obstacle in front, it should follow the boundary of the obstacle, keeping
the right side of the robot between 0.3 and 0.5 meters from the obstacle.

Draw a state-transition diagram that describes each distinct situation (state) during wall-
following and what the desired output (action) and next state should be in response to the
possible inputs (sonar readings) in that state. Start by considering the case of the robot moving
straight ahead through empty space and then think about the input conditions that you encounter
and the new states that result. Think carefully about what to do at both inside and outside
corners. Remember that the robots rotate about their center points. Try to keep the number of
states to a minimum.

E "
J
r N
Checkoff 3. Show your state-transition diagram to a staff mamber. Make clear what the
conditions on state transitions are, and what actions are associated with
each state.
L 3

Copy your current smBrain.py file to boundaryBrain.py (you can do this with Save As in
idle), and modify it to implement the state machine defined by your diagram. Make sure that you
define a startState attribute and a getNextValues method.

6.01 Controlling Robots — Fall 2010 5

Try hard to keep your solution simple and general. Use good software practice: do not repeat
code, use helper procedures with mnemonic names, try to use few arbitrary constants and give
the ones you do use descriptive names.

To debug, add print statements that show the relevant inputs, the current state, the next state, and
the output action.

Record a slime trail of the simulated robot following a sequence of walls; make sure that it can
handle outside and inside corners. Going around very sharp corners or hairpin turns, such as the
Lin tutorial.py, is not required, but is extra cool.

Checkoff 4. Demonstrate your boundary follower to a staff member. Explain why it
behaves the way it does. Mail your code to both partners.

V/O’Z#; W/ Z
o ot D adienf
Wt gt i e e

= q [WQ‘Zj {’/ "/C
A /‘I/OK bgﬁ@(

by ol sl e Iy iy -l
Y

J

ks Lah 2 L oma

,[JmLM T gucv/ @l
M ied Vet =G

s Crto

Meters

——m—

L5 s abd pax owe ol 904
~ Constaginfd - b, fables

- MJHQ/ non bubbly wocks abost TR Sumy
117 LS Smgllos)-

bubbl Veap -hﬁb/}ﬁtq”/ 315 pose wavty

- ;e-("5 ook b@‘[‘hf

%
Mowns Moy ¥ back t ot)l dgfme = 3
‘“}“ ﬁap
’Eas‘zeh

___‘_—;

Ghald }'\fflvtl& 5"‘%“\&43 oA Slagr 7

o
"(’ou[{ fojraH, -}w B'{Jifé\ m (:7273
0C

URT1s
H
6‘,][0[_'[fo“}td't [L{?Z 65 (
ey Cofade

78w 1773
_ 7 rotute sie b o

0T el pn pg /'9019

6@4 9 o [&{i Y (ofefe
- Tetenl G 0dp [Pf/)aafs' 545)
St b Tend rotghing

i CW’G’ Mg, “j(a Lse z;fa aCCé%/'
—hoad G oo g g a gl

)
A

Nowd 4 I@G\Z on)9{4 J;J@

q }low 1(0 ktlﬂw Uv“r(ﬁ Wiy Té'b ﬁ’/l/)
-'qlwﬁﬁ ‘fum %/ﬁ’ﬁ’ G:?

, 9
T
-t ¢ cae. Y

L L (Y] e3

I
(") I ¢ S- - /*l ; }.
d/w&;; il ﬂiﬁé/’
7‘ P 5/{46 faﬂad(,,‘,}

C. S 51

(“[E) 7 Q'
| o I VA SYR m&gy /.G 25

E 45 b 176 + 793 +725

buLHes Con, (OTm@ stoy

Satbleg,
“M;F

4

Veed — qone staly,

: “k/M
turmn L
(\UL\ &Wwé
ALY , ¢ 4 (S PP s
Pﬂlﬂ\’“(o Q ‘
¢ ‘
(un gowa/(x/ £ “f’(,f :
G 51709 ans
h‘)&‘}» E/Se | 6[‘
W v —4—1—41? R e i

Sent Lt
%’7’) WY

{7y YY) R A
’ and WW
779 a4)46
’IE[L\CJ v

& WV W‘td(’,

define glates o5 0, | [,3 -see o
it

\wor ks d[L

W 704 == (i 7]

Lt vl fun Sught
- R G"“ﬂof }0 ‘5(,{' @ }o "'ul’{f\ ;fL {ﬁl@"e »ﬁ‘)/ward/ ’],
oA l
’L\P/ OVO(shat i Colnor
N4 W‘WS “)VO"' C‘ﬂw 0P lLt//'l (au“c/j
w%ﬁ’w‘twb)

T b hag o&a«ged e ~wlen gy 513'1/7{’

“ bl e A 4%’{ left —ouer fu § b
———

N —

[}
M., s carer
R

({“ﬂhk F 74

//: L«/‘d(l, A Sfate ﬂoJ(wfllM .aa%Z@faf

O¢ @> . @

Ao v 7"5_
748 ad Y 7)) s enfat

0

T ((L{ﬂ @(ﬁ*r V/WP@OL mo(€

t 77[¢ % }[H(JJ)? Tlon]Lv,n}4j (Fﬂ

Uz .6 oo Cloge
’{L/m L
Ul oo Finia
Ty q/ palse £ gx
UWM, rot
have fhagy/

Now ﬂG'!' \.llfmj wue J’/L@l fl{qh}'
TSews ty by olfem) oach (e
‘(o dowa ,

“loat Al 2 G

b S

Can gt gonc af howo

G
(D Wor lﬁmj Cﬁl howe b\{ My gl row
~aly Can ofty Ny, 6[(/2%
g,)
B Mhoctul% cont.

\T N ’h) (%”7 ‘{'hr[fLL bt ,9(5{/1

“I Wiy Joun %\(WO -

/Ldl(T7(Hw

~

}}]Y CM Ars A“d Pem ‘)b L’Wlh
(om?c’f‘.

] I ‘)‘Ub} HM Seach faﬂ:fﬁmj e
Lo Mty

@ /M%é 0N 154[retd b or(rl/e [O '4("1 ewl/- h
66\(vt "n‘nj (/u)

@ T‘:ec[ILO do of for gfmwﬂ [)7”%“[”

Lﬂh See hc‘lr ans,
*’”’W J:({ J’)LNLC{J(J gW\

§1LML@ ““[prev, pa,a [D]

125

@ Laoked PV ad IIAP
- .Pf&/ < A d *npu* N
= Rver 'nlpudl’l{ k {oet\ af priv
T vold Ahedys w, o advane
‘“‘:h‘? (et na v pb
Trob cewdwd Cach i
;VwL Jiff Mg B &b i eSS
= —_
BQCL JFo . obol'

Jonill bt‘; LM’YI‘

/(Onequ@ft _
— b poF andom gee
- eteglly Cung Gughu

< &850~
9n My fcr[— fas}o P/@Hs

o slate 2 oo gl Tl (o o, 7

TRk G gl Aesrl

FLSMM T Jebaktd
“Compmton g (e

) (M[Jlfﬁuhl miclo/

“Sk wha o comgd Nl
~ 0T o ks b Lf,l,,,/ ,L(ef/
~0dd g

¢b 6/ gm @/f

Do\mq a4 fea“y Mg h/fn /@Miko;

I\W;aj (+ P’f!# Joasis (S cJMJ!

vad & % Tm a e 9
— |ener
/M A o v kpow when GJ’ 90
“Now F Wes owner 3

\ J (
"j: d% ('1" MMf' f‘p 5\/["337; MIYL')""’fj

s oo o he &';Omblm of e T poat want

-}-0 Wld N {Ca{f‘drg -"'}‘[7]Co ﬂnd \AJL, A@und
{fdfw !0:\9@/

beg ‘C“‘ 1[‘”"”‘ 0}"}8(/1 —fa r}ahk
—netd o

“hae whin 7 71
"’malg :IL tf

= qumbes Slowly
—stll fo (s |
TR o kb 7 g i

~ 94 Shll o s [off
—oe T 4 v fat

" W0/ ey bl Jut ngd b got beck Ay slort)

¥
Q - muely More cl(&s‘(p‘:"’d L(f‘p\/"(l/}j Mor¢ w/ 57%/@ FN'/M%/P
~eath ik & @ mihmosh
W Ghdl s b Clun
“Swl T il desls Claf g
]&, f 7L2 O\
123 ¢
WA
~an T gafy”

— lemt
What T oy

' ol forwad
~ St ight oy !

b LA
1LS sy e b gl
’h/m T@FF
o 78 ->(fl L cly,) oty Clear
Ge 61erﬁu bt only | dlhon
ble Gt

fom Lot

61%@ =) ﬂS%quhL

ZZ\Z 3 aboud to (ash ¢n [\Lﬂh,‘!

TLum l(’,H rsbgud W
9
l WA 0 bot o (resh o.r\}@qu
Fura clghi |
[78 > dum clght bl by,
ﬁ/m dbM
l/i 45 2 feonl ulf (7%
7L‘/ff\ f'((dm\
Sh’t -:’5 "‘) ('L,h\l
l /A vala
43 D abet h (ash on ‘%fw leff
Toen ot Jﬁ
gl 423 7wt b i
'h//q r'tgh}
({ 7‘ @LJ 71“5 J glfu‘(fﬂf sz d?ﬁ‘f f-w@m”
Jo Sraigh eI

4§ 5 abid 4 o

©
S That voded fuia really nigp)
“ow T opad b Cloga Up

~abd b crash ook

“ahd lemn up f‘(j%
K

SO QJJI‘l"lf\j C((Ul\ @/OIAGA[{{ €0f &fl d/f {‘GP WO/‘
‘*v[fopp(’c(, 9 s oF ode

T wish we had a0l wyeld 1L"+/7

NO f?gh'f (Wn VP

~on Y (lyl. et (nd clog & wol/
I Tvotles € d,

'\./o/Ll{H
“hda b of Ll cod
~ (0
Lonile @08 25 alones g0 s dbaddy?
hOw: W
A0 “4 ¢.§ ‘3leff |
47,6 4 stagd glse [off
2: (’, [tﬁ— “"_) [‘(9Ltl <« Aas ,',\ ge [c,ﬂ/'-'
304ds 5 e

led stf as

O aluays g0 lefd
G0l Wp/
“dov reully ool a fef FobE o Bpme]
7 hondled gl
Og+’b\L([/\6() no (U',()
»

((an L 49 EJr Shlé’[f?g
e ot Shy ot b

I ‘Hm W {ﬂ H\dl h{(b fldzbi'{, I an uv/ 50 many ¢ e
WAQ(}77 mj ([—5 mw 1]({lng,, MH& nkcp
O\f\ 6‘} 6” nOE o L)/Ed I wjr of O

‘A‘H\a# 2& WL\/I (.LM(](_ hf,g& 5{‘“{29
r\“f}” Says _l]’
TOOL\ 0 mull oyt

T fo b ok of shik 1
“oh]

WW\.@F@/‘}
TN Cof dow) tam cghf in L
= ¥y |
ﬂw« j; Am @o]ﬂ +o e

N
}\0 be ‘99Jr H o york — At Wl of prvg, cody 6) vs Y7
a‘ld]Nﬂf&-—(on nﬂyr e d l, L0 Th}fd VA

/3
Hiv) ﬁrﬁ‘ﬁ;‘(L Togetlr

P fee Togllr thg)

-_—

= Ao %" éﬂf
(qlc P(omfh . wer) 9pes

) }/OILLW“W@/ s Pa(go 5 QWLL/WW

“prat pvalabion & o eav

— Ted medvft Co
-ntd h W\ by ¢/
—oh 0~

(‘ Y
YO/ pa% Oxpresses and jp
— or

y"u put 5"”‘%:"‘9 /‘n
“Oh mp.}} Chavl{ bo eot E—

SH Tn I negds i Ca/[@l‘thf! [
IRAY Ve W cef

of The frob/g,,
%

«g/éhc@ ~) 9?‘7(’(45045 Nyl

4’7})65 ‘[f .

"5 pd t‘l)r{’/h’ Js

Lm%ev PLse 2 Lyylit ,
o

“Mn regl Y, bvylate “how?

'F (om “C

/_,*\/_,._ . Ql/q// éﬂl/)
P Jeff‘/tecf any wlere

"t Vbl /ew/
EUMJ J\‘Of‘wmf7
&3@/

"(OlﬂfA/@; Ellry eKlﬂfe-%‘@ﬂ ;(' 5005

LMo b Valne

CX ”W

~ 5 L/mL for Nmbor fr}n* o+ !.
T pasy) ((04’/\/

2. i Vm(lwme % ek Vil feom JE(,F
~AEM glroad, n Bk wpraf

~dot

3oatbe § n o el o cght
—Can gmgH'D'M) ?roﬁ(amm‘mg st lﬁ
~ Uhg fom glf. lH + $[f.caght

00 Ny \f’/f[- ~fedh Oﬂwﬁe mefow

Dog Cac Sm
Copy o A2
L[, ;4‘05\(54'44#

gk on (‘\{q\'l"
~Vale oa let|

_Changﬁ (W/I‘H{Qhaéwp
— f?’l’f/m nojmllrﬂ
~ Oh - bt Vm‘w‘ﬂlf () (bfvins ;‘lb 2z

~ndl| & e /00| d o

‘ BRI nanylly
don, /

bad ool bt
= dont ceally qvich now

OLL 'HM o shml

- [d faled o (0(/50
T o

Doy /

“Now ¢a wﬁns‘m

L

iz

T e i
R%Eqmml‘ ‘W%ﬁ})

%ﬁ}_ﬂ/\ = P“CL‘/L

“Tolonining g1
N 59{’5444 5\({[‘(/ M/grf\ a{OMJ"t’ﬁI

] 4 gh pcadifg
“’l(gg\{ 7

~Sepms narp Le’p{vl
S g hM}f‘ﬁﬁeA vaables

(.2 Lasy Pportly b

(& > (rbfc))

5)

‘3, OPQ@“{)@ ,‘ lem&le

‘1:.4 an:bF/}/ (B‘IL(/M (;LL L&fdr
—d
(

«(Wﬁe PfZ'lL oF W&ﬁb[@ o §k0w (r{/:

- Ndrq TQLQ(\ (’,r(Dr;«\,j
“Change o o
/6‘“1‘[foor\m;
-4 ',5/\/,,,“([&?) Gd 15 Klom ((zqu)

¢

hat Mt by e }{'H(\,i/pl—
Solf class__ malos 0w wmghane

hS%LK on WLY ”’ S0y (//l'PJPWMd %Wdfl({ Fff@ bor {
‘énﬁdﬂlﬁ 3 ;ﬂd_%
f\jm‘(ﬂ\hf@, 15

(d‘/m‘t@ NNMW wmq(j
00 cant pul o
“ d T Tk o o?um Noe
_.—l{ q)(\\(n'}j {;ﬂe
= vk wanlt g e
Wil o el ¢t
00 gl |oft vOLgh
W 5‘/“\ wan do IL\(]
—f ?P/\ﬂq?’ Tt cight
O
-.x\/()/]‘-\¢
- Qc C\rtd/\ ‘t@ M@Qﬁ,\/o&wbk 4@%& as /uxnber
€ o (v et
e)YW '(5 ot rw“, wk@i e @ 5/;19% b dy

G\ ¢ v
“ad O dold el ke s vp

Cﬂ thL ‘}0 /IOfﬂM{ el/;,(t s0p ;f 67’;“ Wﬂ/L‘)

"t 5[1[or‘mj Sorw def-zﬁl)plé) s A//mbe((&D)
N L b e

- MJ’ AN lfﬂj

- shuld alayy o, |
~ b what f sm"l\

T g Yhogh o dll Cudtoy emle S0 offl s

) ~0h my Lj/\/dfq I }md (»1049
Ty Nl vl g o

“dnd tex
b b e Vil g 1 e
5 b Qaaml
=(Oh (lch/“uT WOfL({,q? hew
<~ Con|

Y

b what waf vetony] |
- # ;M/ml ({cH) dod 1y Nom (coght)

hot [{rsNam (léfi) * "5 ’[W"[&“ffl’fl?
“Oh e Blalla

or I T Lot s Wom [febt wQW)

“ohih AUt f, add, (0,
I i gtplo

Y6 4 it Cetorn doa I el
)Ql/J' [001’}\ I h\{nk ey

not (. pﬂ)bzf/h ?T?
—qnd c\o“#

—~ Clagg
'j’gs\l /‘./‘o‘} file 496#

~ (o0 i@n&

Ue

— —

"“NOW ﬂ{\! WM'\' A%é 60% er‘iﬁ'm (IS
“C’Cdd Pr‘ml lofe, 0{C SAE

