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Please write your answers legibly in the spaces provided. You can use the
backs of the pages if you need extra room for your answer or scratch work.
Make sure we can find your answer!

You can use a calculator and one 8.5” x 11” cribsheet.

Partial credit will only be given in cases where you show your work and
(very briefly) explain your approach.
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Problem 1. Information, Entropy and Huffman Codes (30 points)

There’s a weekly surprise party at a local independent living group with an equal probability that
the event will happen on any of the seven days.

(A) (3 points) You learn that party won’t be on the weekend, i.e., not Saturday or Sunday. Give

an expression for the number of bits of information you have received.

(B)

Expression for number of bits of information received: [(0 2 9 (
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(4 points) Give an expression for the expected length in bits of a Huffman encoding of a

message that lists the day of the party for each week of the 52-week year, i.e., a message
consisting of 52 variable-length symbols, where each day is encoded separately using the
Huffman code. The choice for each week is independent of the choices for other weeks.
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when answering the following questions.

Expression for expected length of message in bits: ) [
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Examining the historical record, you discover that the probabilities for party days aren’t in fact
equal — weekends are very popular and the party is never held on Wednesday when 6.02 psets are
due. You prepare the following table showing the updated probabilities, which should be used

) s

day Mon Tue Wed Thu Fri Sat Sun
p(day) 0.125Y3] 0.125 [SEE0 0.125 0.25 4| 0.25
logs(1/p) 3 3 3 2 2
p*logy(1/p) 0.375 0.375 0.375 0.5 0.5
Encoding 17 ; b/ |
Jfrom part / jE ) 1) | L () | :
©

(C) (6 points) Using the updated probabilities, create a variable-length Huffman code for
sending messages listing party days. Note that no code is required for Wednesday. Please

enter the encoding for each day in the last row of the table above.
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(D) (4 points) Compute the expected length in bits to encode message containinsing

your code from part (C). Please give a numeric answer.
L £ L
% [ %= Expected length in bits: {1/ ]

(E) (4 points) Using the updated probabilities, compute the entropy of the underlying probability
distribution. Please give a numeric answer. Hint: much of the computation has already
been performed for you!

?P(?{J })0 i’ ( f/ Entropy: ?Lj v/

(F) (4 points) By changing the encoding scheme (say, by encoding pairs of days), would it be
possible to improve the expected length of messages? Briefly explain why or why not.

N Brief explanation
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O (5 points) A phone call from a friend causes you to revise the probabilities for the coming

week as follows: e
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w5 day Mon Tue Wed Thu Fri Sat
N p(day) 0.1 0.1 o1 0.1 0.6
p‘ A log2(1/p) 32220 3.322 3.322 3.322 0.737
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Problem 2. LZW compression (20 points)

sl
An 8-character message was encoded using thKLZW,éncoder whose pseudo-code is shown
below:

STRING = get input symbol
WHILE there are still input symbols DO
SYMBOL = get input symbol
IF STRING. + SYMBOL 1is in the string table THEN
STRING = STRING + SYMBOL (i
ELSE -
output the code for STRING f« ;4 i
add STRING + SYMBOL to the string table
STRING = SYMBOL
END
END
output the code for STRING

When the encoding process was complete the following additions had been made to the string
table:

table[256] = ho

table[257] = oh

table[258] = hoh

table[259] = hoho Voo
' 00 — 16N

(A) (10 points) What was the original 8-character message? /

Original message: l’\O L 0 L\rﬁ’}“t 0

(B) (10 points) Recall that the encoder only sends indices into the string table. What indices did
the encoder send? Hint: everything can be figured out from the string entries and their
order. The index of ‘h’ is 104 and of ‘0’ is 111.

KU (1] & VI
- _ Indices sent by encoder: 'U Al ir, 2 “)6_/ ‘/ 3(}
f 4 | h 6 h hoho 5
e u?
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Problem 3. LTI Models for Communication Channels (50 points)
SRR

Consider a communications channel C7 that is accurately modeled as aqoise-free linear

time invariant system with the following causal unit sample response: o
|

hei[2] | hei[3] | hei[4] | hei[>5] i«

hei[0] | hey[1] ‘
0.0 0.0 1.8 0.5 0.7 0.0 i ‘
} 3 {y

(A) (4 points) The unit step response for this channel, s¢[n], eventually reaches a steaay i
state value v.) What is v and what is the smallest k such that s¢;[k] = v?

Vs ]

Steady state value v:

Wl
] | Smallest k: ('/ K

IR
214

(B) (10 points) Suppose we built a communications channel C2 composed of two C1

channels connected in series:

Please fill in the following table, giving the first 10 values of L@ :
Not vaif ¢ F

response for the C2 channel.
/ ‘I‘( ‘,/';‘:-‘ - (;';.. n [ J; B
pdo b | ¢ o = id o i~y Fill in table
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heo[6] | hea[7] | hea[8] | hea[9]

hea[3] | hea[4] | heo[5]

(Hcal0] [ heal1] | Bal2]
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6 1O {2252 7 [ 11 11909 .

|

)
AN
e

Quiz 1

-50f8-

6.02 Spring 2011



60:‘&

Consider digital transmissions over the original channei\C/there we use{&amp@bit.
The following figure shows a test sequence x[n], the channel’s response y[n] and an eye
diagram constructed from y[n]. Assume x[i] =0 for i <0. Note that there are no vertical
scales on the plots for y[n] and the eye diagram, but both plots use the same vertical scale
(which is not the same vertical scale used to plot x[n] — you can’t get the answers by
measuring!). The receiver will periodically sample y[n] at the widest part of the eye and
compare those voltages against a digitization threshold Vy, to d&?ﬁn:l’ne the message bits.
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(C) (10 points) What are the possible voltages the receiver will see when it periodically
samples y[n] at the widest part of the eye? Since the diagrams have no scale, you
will need to compute the voltage values. To receive credit for this part you must
show your wortk.

g 9
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(D) (6 points) Referring to the figure for y[n], give the first three indices for y[n] where
the receiver will sample to determine the first 3 bits of the message.

) Y il
First index: ] Second index: J Third index: _/

—_————
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(E) (3 points) Assuming there is an equal probability of sending 0°s and 1°s, what value
of Vi will maximize the noise margins at the receiver?

/Iqm ‘c_](i‘-wf" ]L,.«) m ‘r{1 E” ‘:“* e )(S

bed Value of Vy: 2 ’5

(F) (3 points) What is the noise margin in volts using your threshold of part (E)?

vy ‘ .‘ = \
E ﬂ@ E‘)Og,pﬂhrlﬂ: (i.-'r N (L ?

Noise margin: |

3-S5 =
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(G) (9 points) Since the C1 channel is noise-free (obviously this a work of fiction), it is
possible to reliably use deconvolution to construct a perfect estimate, w[n], of the
input waveform given y[n] and hei[n]. Give an equation for w[n] where the only
variables are from the response (y[n], y[n-1], y[n+1], ...) and earlier values of w
(W[n-1], w[n-2];-..), everything else must be numeric. In other words, use numeric
values for any %c}lements appearing in the equation.

Give equation for w[n]

wlo)= Yo bt ot e, O off 2o o] |
h(0) leadin, hTL [‘j .

\«"2‘ L; / ) :\’ bt bt - B i | |
~ : = VU : [ |/ ~

or ~) e VIR AY d W = b
= \/[h} tngrh‘“i,‘f t 1/ Wn-¢f) .
\Lel&tz g adfrijednd) ®
(H) (5 points) The lecture slides and notes discuss some criteria under which the
deconvolution equation will be stable in the presence of noise, i.e., where the
estimate w[n] will not grow without bound if some of the y[n] have been affected by

noise. Does hci[n] meet this criteria? Briefly explain.

6+¢bll(} y [ ' Brief explanation
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END OF QUIZ 1!
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Problem 1. Information, Entropy and Huffman Codes (30 points)

There’s a weekly surprise party at a local independent living group with an equal probability that
the event will happen on any of the seven days.

(A)

(B)

(3 points) You learn that party won’t be on the weekend, i.e., not Saturday or Sunday. Give
an expression for the number of bits of information you have received.

Expression for number of bits of information received: log-(7/5)

We’ve gone from N=7 equally-probable outcomes down to M=5 equally-probable
outcomes, so bits of information 1s log>(N/M).

(4 points) Give an expression for the expected length in bits of a Huffman encoding of a
message that lists the day of the party for each week of the 52-week year, i.e., a message
consisting of 52 variable-length symbols, where each day is encoded separately using the
Huffman code. The choice for each week is independent of the choices for other weeks.

Expression for expected length of message in bits: 52%((1/7)*2 + (6/7)*3=52*(20/7)

The Huffman algorithm for 7 equally-probable symbols will build a tree with a depth
of 3 for 6 of the symbols and depth of 2 for the seventh symbol.

Examining the historical record, you discover that the probabilities for party days aren’t in fact
equal — weekends are very popular and the party is never held on Wednesday when 6.02 psets are
due. You prepare the following table showing the updated probabilities, which should be used
when answering the following questions.

day Mon Tue Wed Thu Fri Sat Sun
(day) - 0.125 0.125 0 0.125 0.125 0.25 0.25
log>(1/p) 3 3 -- 3 3 2 2
p*logs(1/p) 0.375 0.375 - 0.375 0.375 0.5 0.5
Encoding -
Jfrom part 101 100 - 001 000 11 01
(©) :
(C) (6 points) Using the updated probabilities, create a variable-length Huffman code for

sending messages listing party days. Note that no code is required for Wednesday. Please
enter the encoding for each day in the last row of the table above.

Fill in last table row

The Huffman algorithm will build a tree where M, Tu,Th,F have a depth of 3 and Sa,
Su have a depth of 2. Any code consistent with these constraints is okay as long as
none of the encoding is the prefix of another.

6.02 Spring 2011 -20f8- Quiz 1



(D)

(E)

(F)

(G)

(4 points) Compute the expected length in bits to encode message containing one day using
your code from part (C). Please give a numeric answer.

Expected length in bits: 2.5

Expected length = Sum of p(sym)*len(encode(sym))
= 0.125%(343F3+3)ck 0.25%(2+2) = 0.125%12 + (.25%4

(4 points) Using the updated probabilities, compute the entropy of the underlying probability

distribution. Please give a numeric answer. Hint: much of the computation has already
been performed for you!

Entropy: 2.5

entropy = Sum of p(sym)*log2(1/p(sym)) = 0.375%4 + 0.5*2

(4 points) By changing the encoding scheme (say, by encoding pairs of days), would it be
possible to improve the expected length of messages? Briefly explain why or why not.

Brief explanation

It’s not possible to improve on the expected length of messages by changing the
encoding since the expected length of the encoding of part (C) already equals the
entropy, which we know is a lower bound on the expected length of messages that
deliver the required information.

(5 points) A phone call from a friend causes you to revise the probabilities for the coming
week as follows:

day Mon Tue Thu Fri Sat

p(day) 0.1 0.1

0.1 0.1 0.6

log(1/p) | 3.322 3.322

3.322 3.322 0.737

p*logi(l/p) | 0.332 0.332 S 0332 0.332 0.442

How many bits of information did the phone call deliver? Please give a numeric answer.

Bits of information from phone call: 0.73

Entropy before phone call, from part (E) = 2.5 bits

Entropy after phone call = 4*.332 + 442 = 1.77 bits
—_——

Information m phone call is given by change in entropy = 2.5 — 1.77

m&f " e o T wag hat '1{70\/‘5/8 71
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Problem 2. LZW compression (20 points)

An 8-character message was encoded using the LZW encoder whose pseudo-code is shown
below:

STRING = get input symbol
WHILE there are still input symbols DO
SYMBOL = get input symbol
IF STRING + SYMBOL is in the string table THEN
STRING = STRING + SYMBOL
ELSE
output the code for STRING
add STRING + SYMBOL to the string table
STRING = SYMBOL
END
END
output the code for STRING

When the encoding process was complete the following additions had been made to the string
table:

table[256] = ho
table[257] = oh
table[258] = hoh
table[259] = hoho

(A) (10 points) What was the original 8-character message?

(B)

Original message: hohohoho

Observe from the pseudo-code that additions to the string table are STRING +
SYMBOL where the index for STRING is what’s sent. So simply by stripping the
last character from the table entries we can read off all but the last part of the
message: h, o, ho, hoh. From the last entry we know that the last symbol group
starts with SYMBOL = o. Since there are no further entries, that means the message
ends with either ‘o’ or ‘oh’. We're told that the message is 8 characters, so the
message must have been hohohoho.

(10 points) Recall that the encoder only sends indices into the string table. What indices did
the encoder send? Hint: everything can be figured out from the string entries and their
order. The index of *h” is 104 and of ‘0’ is 111.

Indices sent by encoder: 104, 111, 256, 258, 111

This is what gets transmitted encoding the message from part (A) — the transmitter
sends the codes for *h’, ‘o’, ‘ho’, ‘hoh’, ‘o’

6.02 Spring 2011 -4 0f 8- Quiz 1



Problem 3. LTI Models for Communication Channels (50 points)

Consider a communications channel C/ that is accurately modeled as a noise-free linear
time invariant system with the following causal unit sample response:

hei[0] | hey[1] | hey[2] | hey[3]

hci[4]

hei[>5]

0.0 0.0 1.8 0.5

0.7

0.0

(A) (4 points) The unit step response for this channel, sci[n], eventually reaches a steady
state value v. What is v and what is the smallest k such that s¢i[k] = v?

(B)

s[n] =uin]*h[n] = [0, 0, 1.8, 2.3, 3.0, 3.0, 3.0, .

-]

Steady state value v: 3.0

Smallest k: 4

(10 points) Suppose we built a communications channel C2 composed of two C1

channels connected in series:

Please fill in the following table, giving the first 10 values of the unit sample

response for the C2 channel.

Fill in table
hea[0] | hea[1] | hea[2] | heo[3] | hea[4] | hea[5] | hea[6] | hea[7] | hea[8] | hea[9]
0.0 0.0 0.0 0.0 3.24 25 0.7 0.49 0.0

hea[n] = hei[n]*heq[n]
hca[4] = 1.8%1.8
heo[5]= 1.8%.5 + .5%1.8
hca[6] = 1.8%0.7 + .5*.5 + 0.7*1.8
hey[7] =.5%.7 + .5%.7

]](-2[8] = 7“7

6.02 Spring 2011 -50f8-
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Consider digital transmissions over the original channel C1 where we use 2 samples/bit.
The following figure shows a test sequence x[n], the channel’s response y[n] and an eye
diagram constructed from y[n]. Assume x[i] =0 for i < 0. Note that there are no vertical
scales on the plots for y[n] and the eye diagram, but both plots use the same vertical scale
(which is not the same vertical scale used to plot x[n] — you can’t get the answers by
measuring!). The receiver will periodically sample y[n] at the widest part of the eye and
compare those voltages against a digitization threshold Vi, to determine the message bits.
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(C) (10 points) What are the possible voltages the receiver will see when it periodically
samples y[n] at the widest part of the eye? Since the diagrams have no scale, you
will need to compute the voltage values. To receive credit for this part you must
show your work.

Possible voltage values at sample point: 0.0, 0.7, 2.3, 3.0

Use convolution sum to compute y[k] where y[k] = voltage in eye diagram (avoid
y[0] and y[1] since they are due to 2-sample delay in channel)

lowest voltage (k=6): y[6] = 0*x[6] + 0*x[5] + 1.8*x[4] + .5*x[3] + .7*x[2] = 0.0
next voltage (k=5): y[5] = 0*x[5] + 0*x[4] + 1.8*x[3] + .5*x[2] +.7*x[1] = 0.7
next voltage (k=11): y[11]=0%x[11] + 0*x[10] + 1.8*x[9] + .5*x[8] + .7*x[7] = 2.3

highest voltage (k=24): y[24] = 0*x[24] + 0*x[23] + 1.8*x[22] + .5*x[21] +
J%x[20]1=3.0

(D) (6 points) Referring to the figure for y[n], give the first three indices for y[n] where
the receiver will sample to determine the first 3 bits of the message.

First index: 3 Second index: 5 Third index: 7
Sample at the widest part of the eye, taking into account 2-sample delay.
(E) (3 points) Assuming there is an equal probability of sending 0’s and 1’s, what value

of Vi, will maximize the noise margins at the receiver?

Valueof Vit 1.5
Maximize noise margin by choosing voltage a mid-point of eye.

(F) (3 points) What is the noise margin in volts using your threshold of part (E)?

Noise margin: 2.3-1.5=0.8

6.02 Spring 2011 -7o0f8- Quiz 1



(G) (9 points) Since the C1 channel is noise-free (obviously this a work of fiction), it is
possible to reliably use deconvolution to construct a perfect estimate, w[n], of the
input waveform given y[n] and h¢i[n]. Give an equation for w[n] where the only
variables are from the response (y[n], y[n-1], y[n+1], ...) and earlier values of w
(w[n-1], w[n-2], ...), everything else must be numeric. In other words, use numeric
values for any h¢; elements appearing in the equation.

Give equation for w[n]

w[n] = (1/1.8) * (y[n+2] - .5*w[n-1] - .7*w[n-2])
To eliminate channel delay and ensure a non-zero h[0], we need to shift h[n] and

y[n] by 2 to the left, which we can accomplish by adding 2 to their indices in the
standard deconvolution equation.

(H) (5 points) The lecture slides and notes discuss some criteria under which the
deconvolution equation will be stable in the presence of noise, i.e., where the
estimate w[n] will not grow without bound if some of the y[n] have been affected by
noise. Does he;[n] meet this criteria? Briefly explain.

Brief explanation

The notes say the deconvolution will be stable if X abs(h[m])/abs(h[0]) < 1.

S5/1.8+.7/1.8=1.2/1.8 <1. So h¢[n] meets this criterion.

END OF QUIZ 1!
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INTRODUCTION TG EECS 11
DIGITAL
COMMUNICATION
SYSTENMS

6.02 Spring 2011
Lecture #6

* Mean, power, energy, SNR

* Metrics for random processes

* Normal PDF, CDF

* Calculating p(error), BER vs. SNR

6.02 Spring 2011 Ltecture g, Slide 51

Definition of Mean, Power, Energy

x[n]
- '\\‘.“} (.-' ““ :f’\
l 'nfglﬂﬂnﬂh
Slides 3-16
Some interesting statlstlcal metrics for x[n]: derived from

6.02 slides by

a Mean: KU, _._Ex[n] O(, (f,l/g i ﬂqi. vaholé'lltke Perrott
e i " / Sublat

P:E\;v'gr: =—-§;x[n] I_i’—z x[n]- ,uI
n= ) N n=| % m&n
Energy: E, = Ex[n]2 E = 2:(x[irz]—,u,,)2
n=| n=1 *

In analyzing our systems, we often use metrics
so2sping 201 where the mean has been factored out. Lecture &, Slide 43

-

Bad Things Happen to Good Signals

Noise, broadly construed, is any change to the signal from its
e"“__e"c%d value, x[n]*h[n], when it arrives at the] :F;cewer
We’ll look at additive noise and assume he }1/(?138 in our
systems is independent in value and timing from the nominal
signal, y,n], and that the noise can be described by a random
variable with a_lmmbab 11ty d1str1butmn

ﬁwn Chenge(
We'll model the received 31gnal as y,{n| # noise[n].

“ 2 » -4
noisy” signal
- * . n iy
“noise-free” signal Ynd 0 vl .]\/\ receiver must
at receiver, i.e., process

x[n]*h[n] _
C* noise[n]

Independent random noise
———
6.02 Spring 2011 = Lectine 4, Slide #2

: pot ‘
Speste. Tetonone il of Oor | sipat ()
e Aoy TV Mnltipatn ‘

-1 ] . '-i!)lo;.;};, LRI P T
Signal-to-Noise Ratio (SNR) 100 10000000000
90 1000000000
- 80 100000000
70 10000000

The Signal-to-Noise ratio (SNR) is useful in T
judging the impact of noise on syst 5 T

performance: ,-,a_, b(f ecor (¢ 0? C[M’?C 40 10000

5 30 1000
SNR = Luwat O ‘ aB3

P . 10 10

noise .

fif, FEGOE 1
SNR is often measured in decibels (dB): -10 0.1
s “20 0.01.
P. -30 0.001
_ Y signal
SNR (db) = u@, o T %6 0.0001
noise -50 0.000001

{\t -60- 0.0000001
a)"\( Orafg DIC [ 70 0.00000001
i m‘{{jﬂ { h/é,?/ -80 0.000000001
-90 0.0000000001
/1_/ 100 0.00000000001
3db is a factor of 2

6.C2 Sprinig 2011 Lecture 4, Slide 44
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Stationary

SNR Example

SNR =20.4dB

Changing the amplification factor
(gain) A leads to different SNR values:
* Lower A — lower SNR
« Signal quality degrades with
lower SNR

6.02 Spring 2011 Lectire 6, Slide 5

7 Pragecdies
Stationary and Ergodic Random Processes

_haise(n]{irial=1]

statistical behavior is )m J » -h"?
independent of shifts in ' )
time in a given trial. Implies(val len{‘
noise(k] is statistically

indistinguishable from
nOISERFN]~— R
Ergodic 5 : ‘

statistical sampling can be
performed at one sample

ti‘me (i.e., r{=k) across 5@%3{ ng

different trials, or across

different sample times of the

same trial with no change in {4

the measured result MLD[(?)

'
6.02 Spring 2011 u n=k

) Sam St s
J“)an “\‘ (\'\dagﬁ W\/QfQ, ‘L\. ‘Lg, in P(QCE’,‘L;

i i
Lectare o, Stide 7

Analysis of Random Processes

Rolsédt), (Tal 1)

* Random processes, such as noise,
take on different sequences for
different trials

— Think of trials as different
measurement intervals from the
same experimental setup (as in lab)

|
i
|
i

noissin] (Trel2)

* For a given trial, we can apply our
standard analysis tools and metrics
— mean and power calculations, etc...

* When trying to analyze the ensemble noieln) mial 3)

(i.e., all trials) of possible outcomes, i

we find ourselves in need of new tools

and metrics ;
Fw I;T r 6, Slide

bl mabh ol
ﬁ/mmm%ﬁ all e

(‘uzvls

Experiment to See Statistical Distribution

noizein] (Tiial =1)

il L |l e

E‘P ] ” { f : Hislogram of 1,000 samples ‘oM |

Experiment: create histograms
of sample values from trials of
increasing lengths.

¥ ¢ I f
istogram of 10,000 samples pean s

1
:
..sampla .

““valua ! :

Assumption of stationarity o
implies histogram should
converge to a shape known as a
probability density function
(PDF)

Histogram of 1,000,000 samples

4.02 Spring 2011




Formalizing the PDF Concept

Histogram

Define x as a random

variable whose PDF has
the same shape as the R . o
histogram we just - value

obtained. H
) [{Jn

Denote the PDF X as s(.f‘
f(x) and scale f,(x) such CICE' J&QWDF

that its overall area is
1:

fi(x)=1
f M&( met

€.02 Spring 2011 Lecture §, Slide 59

Example Pl"obability Calculation

EfX(x) This shape is
2 referred to as a
Liilz_'&rm PDF.
00510 2 X

Verify that overall area is 1:
® 2
[ f(xdx= [ 05dx=1

Probabilia' that x takes on a value between 0.5 and 1:

VY M'kod;
# p(05<x<1.0)= f 0.5dx = 025
7

6.02 Spring 2011 Lectyre 6, Slide 71§

(le\.

Speeod

= l.sy tﬁ-

Formalizing Probability

The probability that random variable x takes on a value in the
range of X, to X, is calculated from the PDF of x as:
—_2

plx,sxsx,)= f; f.(x)dx

) T, s
% S

(,C{n i PDF

X4 X2

Note that probability values are always in the range

6.02 Spnirsg 2011 Lecture 6, Slide 210

Examination of Sample Value Distribution

X

nois;alk] =X

Assumption of ergodicity implies the value occurring at a given
time sample, noise[k], across many different trials has the
same PDF as estimated in our previous experiment of many
time samples and one trial.

Thus we can model noise[k] using the random variable x.

6.02 Spririg 2011 Lecture 6, Slide 212



Probability Calculation

noiselk] = x

In a given trial, the probability that noise[k| takes on a value in
the range of x, to x, is computed-as
——

p(x; sx=x,) =f:zﬁ(x)dx

6.02 Spring 2011 i Lecture 6, Stide 713

Visualizing Mean and Variance

Changes in mean of x Changes in variance of x
1ix(x)

Afx(x)

Smaller Smaller
Mean ! Varance

fx(x) : +x(x)
; Larger + Larger .
J Mean ! Variance !
é . é'—"'-b
E P X é ; X
0 @ Hx
Changes in mean shift the Changes in variance narrow

center of mass of PDF or broaden the PDF (but

area is always equ[al to 12
ectine §, 5

Aide 715

6.0 Spring 2011 Lect

Mean and Variance

: x
Hx

The mean of a random variable x, p,, corresponds to its average
value and computed as:

o= Jo X Mo glall 11 for

) . . R, No,
The variance of a random variable x, 0,2, gives an indication of tse,
its variability and is computed as:
Compare with
‘/1/ power calculation

ol = [T (x-u) f.(x)dx

6.C2 Spring 2011 Lecture &, Slide 14

Example Mean and Variance Calculation

+fx(x)
112 |
0 2 X
Mean:
- LS
=) xfi(x)dx=| x—dx==x"| =1
o= [ x fo)de= [ Lxod = 0
Variance:
2 o 2 2 21 1 3f? 1
o= [ G-my v (x-1) 3ds=clz-1f] -2
]




Noise on a Communication Channel

The net noise observed at the receiver is often the sum of many
small, independent random contributions from the electronics
and transmission medium. If these independent random
variables have finite mean and variance, the Central Limit
Theorem says their sum will be normally distributed.

The figure below shows the histograms of the results of 10,000
trials of summing 100 random samples draw from [-1,1] using
two different distributions.

Uniform - 0.5
= LS o e

-1
6.02 Spring 2011 Lectre 6, Slide #17

me stll teds o
be oma distrib e ¢

Cumulative Distribution Function(b

When analyzing the effects of Gaussian noise, we’ll often want to
determine the probability that the noise is larger or smaller than
——.,_._—'___________/'\

a ,giv\e%%a/m%g From slide #10:
(V¥rong —G? o
plrs)= [Lme 7 dem,,(5)
. y i :

X H

& 1 "(X".“}z o
p(x2x0)=fx —_— 20* dx=1—¢'#la(xo) l-¢p.c(x(-_)

°\270? -Aﬁ nL

H X

Where @, ,(x) is the cumulative distribution
function (CDF) for the normal distribution X—u
with mean p and variance 02. The CDF for Dyo(¥)= (D( )
the unit normal is usually written as just ®(x). ] £

“(onver! for

Lectre 6, Slide 515 nU*‘
i)

6.02 Spring 2011

b{“gf llfl (Olﬂf

The Normal Distribution

A normal or Gaussian
distribution with mean py and
variance 02 has a PDF
described by

oOF il
fx(x) - 1 e 2w’

2x0?

The normal distribution with
H=0 and o2=1 is called the
“standard” or “unit” normal.

&.02 Spring 2011

®(x) = CDF for

Most math libraries don’t
provide ®(x) but they do have a
related function, erf(x), the
error function:

erf(x) = % J’ O‘e-" dt

For Python hackers:

from math import sqrt
from scipy.special import erf H

‘# CDF for Normal PDF i ;
def Phi(x,mu=0,sigma=1): i
t= erf((x-mu)/(sigma'sqrt(zj))
return 0.5 + 0.5%t

6.2 Spnng 2011

Normal Distribution with u =0

o8}~

06

0o

=3 =) g H] i

? Lecture b, Slide 518

all 0 méa

Unit Normal PDF

Unit Normal PDF {j=l), o =1)

-4 -2 o 2 4

¢{r) = CDF for Unit Normal POF

lim @(x)=1
Saiitalanil

C(O)=0.5 e
0.z} - lim - Dfx)= O :

X— -

-4 -2 Q & 4

Lecture 6, Slide 220



Bft Error Rate éabf(lm Lol b Hj p(bit error)

Now assume the channel has Gaussian noise with p=0 and

The bit error rate (BER), or perhaps more appropriately the bit ! 8(/29 7 variance 02, And we’ll assume a digitization threshold of 0.5V.
error ratio, is the number of bits received in error divided by the”? We can calculate the probability that noise[k] is large enough
total number of bits transferred. We can estimate the BER by that y[k] = y, k] + noise[k] is received incorrectly:
calculating the probability that a bit will be incorrectly received ‘
due to noise. & 1-¢, (0.5) = &, ,(-0.5)
plerror | transmitted “0”); P g((—oo.SS—?)/m
Using our normal signaling strategy (OV for “0”, 1V for “17), on al il
a noise-free channel with no ISI, the samples at the receiver b os T
are either OV or 1V. Assuming that 0’s and 1’s are equally ®,4(0.5) + Gaussian noise
probable in the transmit stream, the number of OV samples is ' : i = AO=Ljo) =
approximately the same as the number of 1V samples. So the p(error | transmitted “17): = (D(_O‘S’C? , ‘5
mean and power of the noise-free received signal are s }) : 2
H ='I‘i =<2 1 %€ P{D s
WoON W Ne o ,[Lp %}. p(bit error) = p(transmit “0”)*p(error | transmitted “0”) +
’ 1 & IV 1&1V LN | p(transmit “1”)*p(error | transmitted £12)
Pes =-—E(y,,,[n]—-—) =—-2(—J =——=c Croor f(pﬁo = 0.5*®(-0.5/0) + 0.5*®(-0.5/0)
: Nza sl el Ll e 2sorrgaon = 9(-0.5/0) e, s
6.02 Spring 2011 Lecture &, Slide #21 4.02 Spring 2011 Lecture 6, Slids #22

BER (no ISI) vs. SNR

Bit Error Rate vs. SNA

We calculated the power of the
noise-free signal to be 0.25 and
the power of the Gaussian noise
is its variance, so

1!

10!

P
SNR (db) = 10|og(—sMJ . 1010g(9-22—5)

hoise o 0%
Given an SNR, we can use the X
formula above to compute o2
and then plug that into the o
formula on the previous slide

to compute p(bit error) = BER. 1t

qv

The BER result is plotted to the
right for various SNR values.

-
6.02 Spring 2011 Lectire 6, Slide 523
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: INTRODUCTION TG BECS Ii
DIGITAL
COMMUNICATION
SYSTEMS

6.02 Spring 2011
Lecture #7

« IS and BER
* Choosing V,;, to minimize BER

6.02 Spring 2011 an [ ? Lecture 7, Slide 51

X[n]) 9 hln) [~ Q_,a /)

hﬂt}ﬁ[ﬂj Pot evadpol

p(bit error) " 6'3*;“’;;4“

Now assume the channel has Gaussian noise with p=0 and
variance 02, And we’ll assume a digitization threshold of 0.5V.
We can calculate the probability that noise[k] is large enough
that y[k] = y,Jk] + noise[k] is received incorrectly:

Vi
flae sme vake of 4I%+ Tells

D

\
Goml ol = 10, 4(0.5) = b, ,(~0.5)
L"l\l M!{, plerror | transmitted “0”): = 9({-0.5-0)/0)
q = 0-0.5/a)
X
~ 0) 05
})d— Jﬂ'?f (58 CD]’ U Plots of noise-free voltage
0 4 E fkl, P[o p,,(O 5) + Gaussian noise
» ) = 0((0.5-1)/a) =

W, bQ p(error | transmitted “l ): = ®(-0.5/0)

Fursidy

6F TN\
p(bit error) = p(transmit “0”)*p(error | transmitted “0”) +
~————  p(transmit “1”)*p(error | transmitted “1”)

= 0.5*®(-0.5/0) + 0.5*®(-0.5/0)

= $(-0.5/0) 5

e

6.02 Spring 2011

Lectre 7, Slide 73

SNR (db) = lO]og

Bit Error Rate

The bit error rate (BER), or perhaps more appropriately the bit
error ratio, is the number of bits received in error divided by the
total number of bits transferred. We can estimate the BER by
calculating the probability that a bit will be incorrectly received

due to oise. @——mM—

Using our normal signaling strategy (OV for “0”, 1V for “17), on, “fk{ﬂbw
a noise-free channel with no ISI, the samples at the receiver i1 54

are either OV or 1V. Assuming that 0’s and 1’s are equally ﬁ\ﬂ/\ H)
probable in the transmit stream, the number of OV samples is
approximately the same as the number of 1V samples. So the

mean and power of the noise-free received signal are

1 1
Mgy Hoe ™ Eyﬂf“ "¥ET3
poer A, =—

1Y Sl 1
S(t-5) 5 3(5) w53
&.02 Spring 2011 Lechure 7, Slide %2

Bt mare

P(mue fk] £ X, )
ISI) vs. SNR

Bt Error Rate vi. SNR

1 30

— BCR
" Cinn

3odf v
s

noise-free signal to be 0.25 and
the power of the Gaussian noise
is its variance, so

10|

P 10*
sngna!J 1010 (0 25)
Rmu: U

10!

10

Given an SNR, we can use the
formula above to compute g2

and then plug that into the i

formula on the previous slide

to compute p(bit error) = BER. o
-————'-_-_—"-_.—-

The BER result is plotted to the
right for various SNR values.

6.07 Spring 2011
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Intersymbol Interference

BER

Consider transmitting a digital signal a@samp es/bit over a

channel whose h[n] is shown on the left below.

hUT Loy

ot T

=
S RIS | 2

Exa.mp{é‘ )

~
i[n],
Nty LT

x|nfw 0,0

177
R |
ol

el

Clgh

X :1 YI8]=0.7V

y[5]=1.0V

 Comletioq

The figure on the right shows that at end of transmitfing each
bit, the voltage y[n] corresponding to the last sampl¢ in the bit
will have one of 4 values and depends only on the durrent bit

and

previous bit.

" 6.02 Spring 2011

volfat QO@
\}? /RN

gt 4

e st

Q

The first twa
the test bit.

transmitted
6.02 Spring 2011

The E}_gm: Cases

Lecture 7, Slide 45

St &t aboe

10, 0.01 1.0, 1
19 ? 10 T H
o8 OBf = - —_—
08 as
o4 ol - ¢ S = d
0] a2 ! :
00 a9 —~—

45 %0 33y sc &3 20 75 @0 .

W3 410 A3 420 45 43D 418 R0 B

16,9 Y 11.0.1
10 e 10 .
o8 o i
04 oGl - ~ b ]
as 04 -
a2 02 —_— L
00

NI WO WS Bo 133 10 183 119 12

o 1 i
M3 306 W3 50 515 320 825 510 338

10,1.0) 19,1, 31
10fT o Lo
onf - RS ! as [
08 L e — i s . . - L
04 \_ 04
22| - 02
on

NnITHA NS MO HS R0 WS Mo e

o B oty ety : : . .
w3590 P8 woe i a0 w3 a2l

iL1a nLn
10 —_— H 1 10
08 1 asf
O e 08
0.4 o4
0z i a2
. a0 i
ns no 25 MO N3 MO M3 Bo By W3 G0 W3 80 3 o s L0 NS

at 3 samples/bit.

bits determine the starting voltage, the third bit is
The plots show the response to the test bit. All bits

Lecture 7, Slide )

) 1ol of (W oy loft from Previs

bt

[ Wt T had - uestions )

: (omba
e b

{y[5]=0.3V

TL{‘\”\A{& (oren |

&

Test Seque{me to Generate Eye Diagram
e A Mot (o

If we want to explore every possible transition over

lex Cos

e channel,

we’ll need to consider transitions that start at each of the four

voltages from the previous siide; Tollowed by The transmission of

a “0” and a “1”, i.e., all patterns of 3 bits.

a[n] =[000,100,...,011,111]

.

|
4
i

e
CEF

3l

a0

6.02 Spring 2011

G stil on o

Plot the Eye

To make an eye diagram,
overlay the eight plots in a
single diagram.

We can label the plot with
the bit sequence that
generated each line.

The widest part of the eye
comes at the first sample in
each bit.

Using the convolution sum
we can compute the width
of the eye = 0.8-0.2 = 0.6V

" 09
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Lechne 7,

of each Q/?ef

iagram

Eye diagram for y[n]

111
g
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[T} S

0.0

100
001

¥[0]=0.2°1 + 0.2¢0 + 0.3°0 + 0.3*0

= 0.2V

i —
000 .

05

Jlnd r

YIRJ=0.2°0 + 0.241 + 0.3°1 + 0.5*1 \,//
SN\ =08V Counl
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Whag “CBER ‘and IS] g

From the diagram on the previous slide, if we sample at the
widest point in the eye, the noise-free signal will produce one
of four possible samples:

1. 1.0V if last two bits are “11”
2. 0.8V if last two bits are “10”
3. 0.2V if last two bits are “01”
4. 0.0V if last two bits are “00”

Since all the sequences are equally likely, the probability of
observing a particular voltage is 0.25.

Let’s repeat the calculation of p(bit error), this time on a
channel with ISI, assuming Gaussian noise with a variance of
o2 (from now on we’ll assume that Gaussian noise has a mean
of 0). Again, we’ll use a digitization threshold of 0.5V.

6.02 Spring 2011 Lecture 7, Slide #9

p(bit error) with ISI cont’d.

5 Cye
p(bit error) = p(11)*p(error | 11) + p(10)*p(error | 10) + C ok~ TZL
p(01)*p(error | 01) + p(00)*p(error | 00) \
= 0.25*d(-0.5/0) + 0.25*B(-0.3/a) + ﬁo“ﬁ e
0.25%0(-0.3/0) + 0.25*0(-0.5/0) U{}Lt
= 0.5*®(-0.5/0) + 0.5*®(-0.3/0) if G(TUF

Suppose 0=0.25. Compare the formula above to the formula on b‘b f&d 0(5
slide #3 to deteTmine what ISI has cost us in terms of BER: FD{L{) bl{‘

p(bit error, no ISI) = ®(-0.5/0.25) = ®(-2) = 0.023

bit error, with ISI) = 0.5*®(-2) + 0.5*®(-1.2) = 0.069'& )
p( ) (-2) (-1.2) / { -

Bottom line: a factor of 3 increase in BER’S
£ Wl (me,t

.02 Spring 2011 Lectare 7, Slide #11

p(bit error) with ISI

'
POF for afljs 1.0

plerror | 11) = &((0.5-1.0)/0) ;
= 0(-0.5/0) i d

plerror | 10) = &((0.5-0.8)/0) ;
= 9(-0.3/0)

plerror | 01) = 1-®((0.5-0.2)/0)
= 9(-0.3/0)

p(error | 00) = ®((0.5-1)/0)
= ®(-0.5/0)

'
6.07 Spring 2011 Lecture 7, Slide 210

i .
\JMT Mhhs (L 10 wWAME e st
Choosing Vy,
We've been using 0.5V as the digitization threshold - it’s the
voltage half-way between the two signaling voltages of OV and

1V. Assuming that the probability of transmitting O’s and 1’s is
the same, this choice minimizes the BER. Let’s see why...

Suppose noise has a triangular distribution from -0.6V to 0.6V:

--PDE -of regeiv

PDF of received 0’s |

6.02 Spring 2011 Lecture 7, Slide 512



_ Q.Q%Cgé‘wl] mo\i«,ﬂ ’hlfqu ‘h(/ ('Dfmu)tﬂ
Eyal b P ot = P
- Minimizing BER, Minimizing BER when p(0)=p(1)

=-P(bitletpor) gith Vi 5 078Y, s Suppose p(1) 52/3 and p(0)i= 1/3: |-

S S P S

0.278  ----smmcccomsidies e e d s LT

= 0.4 ﬁ Uﬁj :
If we leave V,;, at 0.5V, we can see that p(bit error) will be larger
{7 H than if we moved the threshold to a lower voltage. p(bit error)
Sl 5 i = e will be minimized when threshold is set at intersection of the two
‘ PDFs.

Now move V,, slightly. What happens to BERP'

: ...__'__.{_-...__-_

Question: with triangular noise PDF, can you devise a signaling

[= 1y I BRI I

iy ; e protocol that has p(bit error) = 0?
6.02 Spring 2011 0.5-4 Lectixe 7, Slide 513 r>.(32[ﬂ?;:g 201 Legture 7, Slide #14
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S et af- fechiy |

Coull mae 1 brlagh 40 7 Pt lies wlee P Tirgs” sty
Channel Model Summary bl ook O eaor

~ Could 40 nah fy

6 I s }‘ /hf‘f * Noise-free channels modeled as LTI systems
x[n]—» ] y[n] Assd 1y herr v * LTI systems are completely characterized by their unit

- ’ ks ¢ HP/ sample response h[n]
Prﬂb ! Vbld ?)Q b e * Series LTI: h)[n]*h,[n], parallel LTI: h,[n]+h,[n]

/fXZ/TYPicallyi Gaussian * Use convolution sum to compute y[n]=x[n]*h[n]

4 A P
WAl variance 0% 120 * Intersymbol interference when number of samples per bit is
—_ smaller than number of non-zero elements in h[n]

L\J‘ “ [on @ ?‘Pe{}"“ 4}5 * In a noise-free context, deconvolution can recover x[n] given
1

The Good News: Using this model we can predict ISI and y[n] and h[n]. Potentially infinite information rate!
compute the BER given the SNR or 0. Often N lab + With noise y[n] = y,{n]+noise[n], noise described by Gaussian
referred to as the AWGN (additive white ew‘“‘tﬂh v | | distribution with zero mean and a specified variance
L

Gaussian noise) model. : \ * Bit Error Rate = p(bit error), depends on SNR
{req {id ey N\ Slightly wakd

e BEA N e st b = Ll 2 (_g BER = ¢(—=0.5/ 0) when no ISI
e Bad News: Unbounded noise means , L.e., we . ' : s ;
have bit errors in our received message, Ho MadL BER increases quick with increasing ISI (narrower eye)

do we fix this? Our next topic! * Choose Vy, to minimize BER

€.02 Spring 2011 Lecture 7, Slide 515 6.G2 Spring 2011 Lectur -’u- 516
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Lecture #8 | 05 Crihele
* Coping with errors using packets
* Detecting errors: checksums, CRC
« Hamming distance & single error correction
* (n,k) block codes
6.02 Spring 2011 tecture 8, Slide 71
. van'd
Bit Errors K K

Crunpte

Assuming a Gaussian PDF for noise and only 1-bit of inter-
symbol interference, samples at tg,ypg have the following PDF:

—

£(0) = 0.5 p(1}: 0.5
=0 p=
2 = Opaise O = Onoise

p(L)*p(rev O | xmit 1) p(0)*

We can estimate the bit-error rate (BER) using ®, the unit
normal cumulative distribution functjdn:
¢[-wz]
Onoise

A 1
For a smaller BER, you need a sma][%‘r Onoise OF a larger V!

i T | |
Vi2-v 1_¢[wz—0]
Ovoise
6.02 5peing 2611 i L
’Y ( W\ £ /‘rrancw\'m

]+(0.5)
Qo‘r 0

e/ M# o/ la

iyt
Gmuj\e,d

p(rev 1 | xmit 0)

i
BER = (0.5)¢[

Opoise

ectce 8, Slide #3

) | ) W/Z/ZX

There’s good news and bad news...

Eye diaghhm

The good news: Our digital
signaling scheme usually allows
us to recover the original signal
despite small amplitude errors
infroduced by inter-symbol
interference and noise. An
example of the digital abstraction

d_ping its job!

e
UsamPLE

The bad news: larger amplitude errors (hopefully infrequent)
that change the signal irretrievably. These show up as bit

errors in our digital data stream.
—._,_-——‘__'—-—'-'-

6.02 Spring 2011 Lecture 8, Stide 22

Dealing With EL,LQ;S: Packets

I i message { —l
7

To deal with errors, d1v1de message into fixed-sized packets,

whlch are transmitted one after another.
o ,:[VE d Pd.( g chns
I message, | chk, ' 2 I message, chk, I 3 l message; ’ chk, ]
P P"v‘f fub%d, I J /\f
Packet = {#, message, chk} Check bits are redundant

information that lets recéiver
verify # and message. Failure?

Ask for packet to be resent. :
Cot dm 't b &8~ PezE )
Packet size: Too small — #/chk overhead is large  (({n Lf ‘fﬂ,gf é{lil}b
To"blg — p(error) is larger, more to resend

6.GL Spnirsg 2011

Sequence number provides
unique identifier for each
packet.

an{ qolk

’ Pigsn
dves i‘; letigd



Check bits

Transmitter Receiver

Lseq I message l chk] l seq ’ message | chkl

] Ar 1 : J

l | ve

“many bits Simg
to fewer f f {.}n{ ]‘}{l ~
bits”

i haSh b

Check bits computed from #
and message. Goal: change a
bit in message — many bits

; 3 True: no errors
change in check bits.

False: errors

6.02 Spring 2011 Lecture 8, Slide #5

Checksums

+ Simple checksum
—~ Add up all the message units, send along sum

— Easy for two errors to mask one anotherJ{{gg( e —A Oﬁ't e

* Some O bit changed to 5’171 bit in same position in another
message unit changed to a 0... sum is unchanged

+ Weighted checksum

— Add up all the message units, each weighted by its index
in the message, send along sum

— Still too easy for two errors to offset one another
+ Both! Adler-32 /i 4
— A = (1 + sum of message units) mod 65521
— B = (sum of A; after each message unit) mod 65521
— Send 32-bit quantity (B<<16) + A
— Good in software, not good for short messages

6.02 Sprina 2011 Lecture 8, Slide #7

)

/‘u le w f”’"
[fp (}hcsg-{

Detecting Errors ©% PH{K

EE| lvmessage | c!hk |

1 | J : A J

J, ‘Mrd%j = l
Coro” F(f"éb

Likely

| seq ‘ message ]chkl

Likely errors:
True * Random bits (BER) False
* Error bursts

Lecture 8, Slide %6

-e/‘f on (ec{ﬂ f’i[@ﬂ(j (jati fadgils de

Cyclical Redundancy Check
Pgl}tnﬂ“’ttd{/a fC

Inpat

Example: CRC-16 {'\J[t )€ JJ

http://www.erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html @
8

* gl _
Sending: Initialize all D elements to 0. Set switch to position A, send
message bit-by-bit. When complete, set switch to position B and send
16 more bits.

Receiving: Initialize all D elements to 0. Set switch to position A,
receive message and CRC bit-by-bit. If correct, all D elements should
be O after last bit has been processed.

CRC-16 detects all single- and double-bit errors, all odd numbers of
errors, all errors with burst lengths < 16, and a large fraction (1-2-16) of

all other bursts. \ (
Mg 4 {Mw’toy

Lect= 2 Side 43

butlumﬁ N4 )

6.02 Spning 2011
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Approximate BER for common channels

Channel type = =
Telephone Landline
Twisted pair (differential)

Coaxial cable
Fib_er Optigs

Infrared

3G cellular

| Bandwidth = ) : :
2 Mbits/sec 10" to 10
1 Gbits/sec <107 Eﬂ{r&\{
100 Mbits/sec <10-©
10 Thits/sec <109
2 Mbits/sec 10 to 106
1 Mbits/sec 10

Source: Rahmani, et al, Error Detection Capabilities of
Automotive Technologies and Ethernet — A Comparative Study,
2007 IEEE Intelligent Vehicles Symposium, p 674-679

Implement Single Error Correction?

Virg (wg\\ Q\Mu

6.02 Spring 2011

Lectire 8, Slide 59

To reduce retransmission rate, suppose we invent a scheme that

can

data packet (effectively reducing k). Does that help?

@)r more errors)

6.02 Spring 2011

Packet errors vs. BER and packet length

1 - p(no errors) — p(exactly one error)
1 - (1 - BER)* - k*BER*(1-BER)*!

nou

—ber=le-12 — ber=led|:
— ber=le-9 —— ber=le-3| :

— berale-6 — ber=le-2| "
- ber=le-5

¥

PR 2t it il g1 QU i

packet length (bits)

ect single-bit errors and apply it to sub-blocks of the

e e ?\q?’
TQ ‘\L!J 3(713/(15

' EC( —Q(rof CO‘(HJ'

=y
Vs o bit

i l"t;. (O(ff,(/['

Lectre 8, Slide #11

)

How Frequent is Packet Retransmission?

p(1 or more errors) = 1 — p(no errors) = 1 — (1 - BER)

"-———-—-;"""'__'_Pa'cket errors vs. BER and packet length
10 I po— T i
10?
10?7
- 107?
g
Y 107
a
£
e
¢
5
E
5
- :
k-1 10% . p
: —— ber=le-12 —— ber=le-4| : .
1w .- | — ber=1e-9 — ber=le:3|-:----%..- .
si| | — ber=le:6 — ber=le:2| :
10 i
: — ber=1e-5
1 I - ; I - I I i
10 23 ;,l 2! 25 2? rll 2' -‘eIU 2” 212 21! 211

packet length (bits)

With lkbyte packets and BER=1e-6, retransmit 1 every 100.

6,02 Spring 2011

Lechure 3, Slide A0

Digital Transmission using SECC

5. Compute Checksum

l # | message

|

chk |

Q, Partition

Jy
[(x T xTx]x] wb,
§ amptysecc Loty

Lke | ko [ ko [ ko |

3. ﬂunsn% errors

Lifp | kep [Jien | op |

@ Correct errors

Lol x [ w ] x]

§ Check Checksum

[ #] message

chk |

.02 Spring 2011

\

Start with original message

Add checksum to enable verification
of error-free transmission

Apply SECC, adding parity bits to
each k-bit block of the message.
NuUmber of parity bits (p) depends
on code:

— Replication: p grows as O(k)

— Rectangular: p grows as O(Vk)

— Hamming: p grows as O(log k)
After xmit, correct errors
Verify checksum, fails if

undetected /uncorrecta or
Deliver or discard-message

Lecture 3, Slide #12
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Channel coding Error detection and correction

Our p]a_n to deal with bit errors: Suppose we wanted to reliably transmit the result of a single coin
flip:

redundant bit

stream possibly

with errors

This is a prototype of the “bit”
coin for the new information
economy. Value = 12.5¢

Bit stream with redundant
information used for dealing

with errors _
Channel Digital Digital Error [ : ~
\/\ Coding Transmitter Receiver Correction |—» Heads: “0" Tails: “1”
HAGEaEEE RiLEteca Recovered message bit stream + Further suppose that during transmission a single-bit error
uncorrectable error indicator oceurs, i.e., a single “0" is turned into a “1” or a “1” is turned

We' 1l add redundant information to the transmitted bit stream (a into a “0".
process called channel coding) so that we can detect errors at the
receiver. Ideally we'd like to correct commonly occurring errors,
e.g., error bursts of bounded length. Otherwise, we should
detect uncorrectable errors and use, say, retransmission to deal
with the problem.

6.02 Spring 2011 Lecnxe 8, Slide 513 .02 5pring 2001 '
: Jush
L hed Hamming Distance ;
increase his
Py A (Richard Hamming, 1950) <5 Error Detectlon
rl (-—-.__—‘_-__--.
e ) What we need is an éncoding where a single-bit
b i s error doesn’ t p{_roduc,e another valid code word.
number o digit positions in mj- 78 (md 'J 2C 0
which the co.rrespondlng digits Y single- it e%r /0/
of two encodings of the same - —
length are different If D is the minimum
Hamming distance
i e “tails” between code words,
we can detect up to
The Hamming distance between a valid binary code word and the (D-1)-bit errors
same code word with single-bit error is 1.
The problem with our simple encoding is that the two valid code . g
words (“0” and “1”) also have a Hamming distance of 1. So a We can add s‘mgk.: error detection to any length code word by
single error changes a valid code word into another valid code adding a parity-bit chosen to guarantee the Hamming
word... distance between any two valid code words is at least 2. In
StAglebit oy the diagram above, we' re using “even parity” where the

added bit is chosen to make the total number of 1’ s in the
code word even.

6.02 Sprine 2011
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Error Corre

@

Parity check

* A parity bit can be added to any length message
and is chosen to make the total number of “1” bits
even (aka “even parity”).

* To check for a single-bit error (actually any odd
number of errors), count the number of “1”s in the
received message and if it’ s odd, there’ s been an
error.

If D is the minimum
Hamming distance

between code words,
we can correct up to

D-1
I 2 I bit errors

“heads”

e : ; By increasing the Hamming distance between valid code
g i i 88 (1) g } g 8 i i 2 ggggl;i:: g;;lo‘:'}i&iﬁ% words to 3, we guarantee that the sets of words produced by
0110001100 11— 2-bit error (not detected) single-bit errors don’ t ov_erlap. So if we detect an error, we
can perform error correction since we can tell what the valid
code was before the error happened.
* Can we safely detect double-bit errors while correcting
1-bit errors?

* One can “count” by summing the bits in the word
modulo 2 (which is equivalent to XOR’ ing the bits

together). * Do we always need to triple the number of bits?
$.02 Spring 2011 1 Lectmre 8, Stide #17 5.02 Spring 2011 Lecture 8, Slide 513
liwna, <
I (o “y g l«@k‘
Single Error Correcting Codes (SECC) oror b epde Checking the parity
Basic idea: « Transmit: Compute the parity bits and send them

— Use multiple parity bits, each covering a subset along with the message bits
of the data bits. * Receive: After receiving the (possibly corrupted)

message, compute a syndrome bit (E;) for each
parity bit. For the code on previous slide:

E,=B,®B,®0B;0PF, ¢, £,
Sved | B 2B @ B,®B.® P, Cac )

— No two message bits belong to exactly the same
subsets, so a single error will generate a unique
set of parity check errors.

Suppose we check the : 0
Modulo-2 parity and discover that P1 L)”lj E2 = Bl @;EQ_@ B3 @ Pg Con ép ' i Vo
;d'z:.o- and P2 indicate an error? e g §’ﬂp ts M 550
g bit B2 must have flipped : - W K ,‘
aka XOR « If all the E, are zero: no errorsl #/4, ¥ o0 T {) Ta )] e
RS P indiontes * Otherwise the particular combination of the E; can
an error; i .
P, = B,®B,®B, _ P2 itself had the error! be used to figure out which bit to correct.

6.02 Spring 2011 Lecture 8, Stide 519 5.02 Spring 2011 Lecture 8, Slide 20
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Using the Syndrome to Correct Errors

Continuing example from previous slides: there are
three syndrome bits, giving us a total of 8 encodings.

I c‘sln‘)ie Encn Cm‘recnon
000 No errors

What happens if
001 POhas an error, ﬂxp to correct

. e 3 there is more than
00 P1 has an en‘or, ﬂlp to correct one error?

011 BOhas an error, flip to correct /
100 P2 has an error, flip to cdrrect
101 Blhasan eITor, flip to correct
110" :“B2 has an error, !Ilp to correct
111 B3 has an error, flip to correct

The 8 encodings indicate the 8 possible correction actions: no
errors, error in one of 4 data bits, error in one of 3 parity bits

£.02 Spring 2011 Lecture 8, Stide #21

A simple (8,4,3) code

P, is parity bit
. #1 o
Idea: start with rectangular fo; i
array of data bits, add parity B B P
checks for each row and c . 9 Fi
column. Single-bit error in
data will show up as parity B, | Bs : Py
errors in a particular row
and column, pinpointing the Py | Ps N® ~ p s parity bit
bit that has the error. for column #2
011 011 1
110 100 111
10 10 10
Parity for each row Parity check fails for Parity check only fails
and column is row #2 and column #2 for row #2
correct = no errors => bit B, is incorrect = bit P, is incorrect

Can you verify this code has a Hamming distance of 3?

Gm.ﬁjmwmj LU(’,U. WIM(* we te COiQ pars

i

)

(n,k,d) Systematic Block Codes

Split message into k-bit blocks
Add (n-k) parity bits to each block, making each block n blts
long. Kk n-k

AL Al
i T N

Message bits Panty bits

N— ' The entire block is called
N ‘ ” 2
w a “code word"” and this
n —
k is an (n,k) code.

Often we’ll use the notation (n,k,d) where d is the rmmrnum
Hamming distance between code words. 6,% .{/K de{

The ratio k/n is called the code rate and is a measure of the
code’s overhead (always < 1, larger is better).

6.02 Spring 2011 Lecture 3, Slide 522

How many parity bits to use?

Suppose we want to do single-bit error correction

— Need unique combination of syndrome bits for each
possible single bit error + no errors =

— n-bit blocks — n possible single bit errors
— Syndrome bits all zero — no errors i
Assume n-k parity bits (out of n total bits)

— Hence there are n-k syndrome bits

- 27k - 1 non-zero combinations of n-k syndrome bits
So, at a minimum, we need n < 2mk — |

— Given k, use constraint to determine minimum n needed
to ensure single error correction is possible for

- (n,k) Hamming SECC codes: (7,4) (15,11) (31,26)

The (7,4) Hamming SECC code is shown on slide 19, see the Notes for
details on constructing the Hamming codes. The clever construction

malees the syndrome bits into the index needing correc tmn
>.02 Spaing 2011
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+ 3 e b .
ingle Error Correcting Codes (SECC)

72 bib
INTRODUCTIOR TG BECS II Basic idea:
' — Use multiple parity bits, each covering a subset of the
DIGITAL data bits P —— -
 (freq, doman) TR Ry e iF: .
il f‘l 1l “";“E?’ COM MUNIC&TIOH - No two message bits belong to exactly the same subsets,
LALA LA | R e - so a Sinpte-errorwiltgererate a unique set of parity check
AT T H-\_!i M
i z errors.
. Su, heck the
6 . 02 Spl"l ng 20 1 1 Q + Moduio-2 paﬁf;ii:(:iicscoier that P1
e and P2 indicate an error?
Lecture #9 ~dm Tmp i‘iﬁ‘i‘é’fé bit B2 must have flipped
i i What if only P2 indicat
« How many parity bits? Jﬂulﬂlﬂ\ stdq’d % B, B an e,t.:ir,.‘;ny fnateates
« Dealing with burst errors C (‘lb 3%‘ P, = B,®B,®B; 2 P2 itself had the error!
+ Reed-Solomon codes P, = B(®B,®B;3
P, = B,®B,®B;
6.02 Spring 2011 Lecture 9, Slide 71 6.02 Spring 2011 Lechure 9, Slide 22

(L{( Yhore Than L Qrlor s
| IChiae t:@“;b
Const bac Using the Syndrome to Correct Errors

Checking the parity (et pw:Lr @{Cv[“f‘%

« Transmit: Compute the parity bits and send them along with Continuing example from previous slides: thére &re

the message bits three syndrome bits, giving us a total of 8 encodings.
. Receive: After receiving the (possibly corrupted) message, (Iég (l . "1\ Single Error Correction’
compute a syndrome bit (E;) for each parity bit. For the code i Yia /dng T I e
on previous slide: b‘f‘ = ’ 3 : What happens if
_ . 001 PO has an error, flip to correct there is more than
EO - Bo @ Bl ® Bs @ Po 010 Pl hasan error, flip to correct one error?
El = BO ® B2 ® Ba @ Pl 011 BO hasan error, flip to correct /
E,= B, ® B,® B;® P, 100 P2 has an error, flip to correct
101 Blh , flip t ct
« If all the E; are zero: no errors! L i

110 B2 has an error, flip to correct
111 B3 has an error, flip to correct

: \
——  Condde messag <> Gt
. Otherwise the particular combination of the E; can be used to

figure out which bit to correct. ) s : . .
The 8 encodings indicate the 8 possible correction actions: no
errors, error in one of 4 data bits, error in one of 3 parity bits

£.02 spring 2011 Lecture 9, Slide #3 6.02 Spring 2011 Lecture 9, Stide 24
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(n,k,d) Systematic Block Codes

* Split message into k-bit blocks
* Add (n-k) parity bits to each block, making each block n bits
long. Kk b

A Al
-~ Y )

Message bits | Parity bits
— -~ The entire block is called

= ¥ __ a “code word"” and this
s dnTcod

« Often we’ll use the notation (n,k,@)where d is the minimum

Hamming distance between code words. k o much ee (O[ffd‘t - n\f‘ Ca d Parity for each row
4]

* The rati:(— k/ nﬁg called the(code rate and is a measure of the
code’s@wg (always < 1, larger is better).

( o le M'}em ¢ l’\ﬂaﬁg bd_f)Q{[l.: cture 9, Slide 45

6.02 Spring 2011
on Whal if 991[ backs
TR for vy ik Fived
s .
T
How many parity bits are needed?
n * Suppose we want to do single-bit error correction
I4 — Need unique combmatiOnﬁaT?’i(s‘rRirome bits for each possible

single bit error + no errors
- n-mmgle bit errors \'JL‘“r weed E%OCL{’_
— Syndrome bits all zero — no errors
* Assume n-k parity bits (out of n total bits)
— Hence there are n-k syndrome bits
— 27k _ 1 non-zero combinations of n-k syndrome bits :
* So, at a minimum, we need n < 2"k~ 1 Move { ﬁ, Qh{( GILL
— Given k, use constraint to determine minimum n needed to
ensure single error correction is possible

- (n,k) Hamming SECC codes: (7,4) (15,11) (31,26)
The (7.4) Hamming SECC code is shown on slide 19, sce the

Notes for details on constructing the Haunining codes. The
clever construction makes the syndrome bits into the index

needing correction. \
6.02 Sprine 2011 h'm{» QMLH(« ﬂe # * b d?u!u:t' G, Slide #7
)

0[/5&

P, is parity bit

A simple (8,4,3) code
forrow #1

Idea: start with rectangular /
array of data bits, add parity B 5 P i
0 1 0

checks for each row and
column. Single-bit error in

data will show up as parity B, | Bs |Bid
errors in a particular row L by
and column, pinpointing the Py | Py NE P, is parity bit

bit that has the error.

hgn nat even th B of bs
1

011 011

Sfor column #2

=]

1

10

: L0 ity 7™ 10
Nogscl  =Hfl]

Parity check fails for
row #2 and column #2
= bit B; is incorrect

for row #2
= bit P, is incorrect

and column is
correct = no errors

Can you verify this code has a Hamming distance of 3?

6.0 Spning 2011 Lecture 9, Slide 26

" \
Error-Correcting Codea il M{f;mf .

* Parity is a (n+1,n,2) code

\‘ (,1& — Good code rate, but only 1-bit error detection
VAL Replicating each bit r times is a (r, 1,r) code
3(.! ()9 7 — Simple way to get great error correction; poor code rate

(\( (,g(\g > — Handy for solving quiz problems! 4 \%f (odg of HQFEM:{j i
o — Number of parity bits grows linearly with size of message

* “Rectangular” codes with row/column parity

— Easy to visualize how multiple parity bits can be used to
triangulate location of 1-bit error

- Number of parity bits grows as square root of message size
* Hamming single error correcting codes (SECC) are (n,n-p,3)
wheren =2p-1 forp > 1
— See Wikipedia article for details
— Number of parity bits grows as log, of message size

Pretty otfcont

4.02 Spring 2011 Lect o Slide 28
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A blocks a7/
Co: ing single-bit errors is nice, but

Noise models _' / in many situations errors come in Deali ng with

bursts many bits long (e.g., damage to
3 storage media, burst of interference on
« Gaussian noise wireless channel, ...). How does BurSt Errors

— Equal chance of noise at each sample single-bit error correction help with

L did i that?
— Gaussian PDF: low probability of large amplitude
— Good for modeling total effect of many small, random noise Well, can we think of a way to turn a B-bit error burst into B single-bit
sources errors?
1 -!, '
+ Impulse noise 916 AT @ SV'ﬂIQ eeralr e
- Infrequent bursts of high-amplitude noise, e.g., on a wireless AO L/ }—n J Bd
channel Row-by-row Col-by-_co!_
B transmission B fransmission
- Some number of consecutive bits lost, bounded by some burst w order order
length B 3 Ty
i . i i N r ) : (parity bits are
— Single-bit error correction seems like it’ s useless for dealing with shown shaded)
impulse noise...
oris it??? : ;
Problem: Bits from a particular Solution: interleave bits from B
code word are transmitted different code words. Now a B-bit
sequentially, so a B-bit burst burst produces 1-bit errors in B
produces multi-bit errors. different code words.
6.02 Spring 2011 Lectwre 9, Slide 59 6.02 Spning 2011 Lecture 9, Slide £10

7

What £ Ywsnat all o ) ook , Lol hik Lol /Itiﬂ e, "
N1 2227 8333 quyy 7
Can bt s up b0 B errors

Interleaving Thea || W42 21 Mr

o CTOr Coledhin wocks
5 ,

ﬁ—_m The receiver needs to know
e N@G«l ‘\-0 — the beginning of the B-way interleaved block in order to do
message \é . ./’/ arrors © \\ﬂdyé deinterleaving
& compute crc i 'U‘H — the beginning of each ECC block in order to do error correction.
e e [ B-way mte.ﬂea“‘e" b’°-:| [vw — Since the interleaved block is made up of B ECC blocks, knowing
§ Parciion f 4 Deinterleave i ;\A/ where the ?;il?a;re? bltrﬂ:kEbg%ug at;{tomancally supplies the
CE T T T+ OJ( {(l \} necessary start info for the ocks ’
Le x| x| x| . ncodmg provides what we need! Here’s what gets
§ appty Ecc ¥. Cged wore transmitted
\pPpiY
[ kp | kp [ kep | kep | L& [ k] k]k] — Prefix to help train clock recovery (alternating 0s/ 1s, ...)
§ intertcave § Checkcre — 8b10b sync symbol
| message | cre ] — Packet data: B ECC blocks recoded as 8b10b symbols

(after 8b10b decoding and error correction we get {#,data,chk})

— Suffix to ensure transmitter doesn’t cutoff prematurely, receiver
has time to process last packet before starting search for
beginning of next packet

QJ}' MQ(L {“D \b", Cd@ﬁ/) WJE_@ ok }\qppm — On some channel.s: idle time (no transmission)

6.02 Spring 2011 Lectre 5, Slide #11 6.0 Spring 2011

! B-way interleaved block

g Deliver or discard
@ Transmit

Lechire 9, Slide 12
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Our Recipe (so far)

*» Transmit * Receive

—Packetize: split message into —Perform clock recovery using
fixed-size blocks, add sequence transitions, derive bit stream
numbers, checksum from voltage samples

—SECC: split {#,data,chk} into k- —8b10b decoding: locate sync,
bit blocks, add parity bits to decode
create n-bit code words with —-SECC: deinterleave to spread
min Hamming distance of 3, B- out burst errors, perform error
way interleaving = correction on n-bit blocks

-8b10b encoding: provide producing k-bit blocks
synchronization info to locate — Packetize: verify checksum and
start of packet and sufficient discard faulty packets. Keep
transitions for clock recovery track of received sequence

—Convert each bit into numbers, ask for retransmit of
samples_per_bit voltage missing packets. Reassemble
samples packets into original message.

6.02 Spring 2011 Lectre 9, Slide 13

In search of a better code

* Problem: information about a particular message unit (bit,
byte, ..) is captured in just a few locations, i.e., the message
unit and some number of parity units. So a small but
unfortunate set of errors might wipe out all the locations
where that info resides, causing us to lose the original
message unit.

+ Potential Solution: figure out a way to spread the info in each
message unit throughout all the code words in a block.
Require only some fraction good code words to recover the
original message.

GP o LL(DM IM ot ﬂm«oi\ P@W
@9&&/‘{ ﬁ:lL &e)eﬂ; b whale ’W’Wﬂe

6.02 Spring 2011 Lectire G, Slide #15

)

bad “ho. fuay

Remaining agenda items

With B ECC blocks per message, we can correct somewhere
between 1 and B errors depending on where in the message
they occur.

— Can we make an ECC that corrects up to B errors without any

constraint Irors occur?
- YestReed-Solomon codes

Framing is necessary, but the sync itself can’t be protected by
an ECC scheme that requires framing.

— This makes life hard for ¢ nels with higher BERs
— Is there an error correction scheme that works on un-framed. bit
streams?

= YesKConvolutional codeSrencoding and the clever decoding
scheme scussed next week.

hext LegL\

.02 Spring 2011 Lecture 9, Slide 414

Thought experiment...

* Suppose you had two 8-bit values to communicate: A, B

We'd like an encoding scheme where each transmitted value
included information about both A and B

— How about sending y = Ax + B for various values of x?

— Standardize on a particular sequence for x, known to both the
transmitter and receiver. That way, we don’t have to actually
send the x’ s — the receiver will know what they are. For

example, x=1,2,3,4, .. (ppme In 4 f]{/‘lf\ttﬂv’kff %q/

— How many values do you need to solve fof A and B?
We'll send extra to provide for recovery from errors. ..

O_\/@f Soapled Po)y pamtals
oeffloents ae messug b
SE’Ad 11(, ( E’,SUH.'S “’LL \[5)

Z 5C{// Pz 'Mc)mj

5.02 Spring 2011 Leck Slicle 516
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6.4 )

)
Example

* Suppose you received four values from the transmitter y = 73,
249, 321, 393, corresponding tox =1, 2, 3 and 4
- 4 Eqns: A-1+B=73, A-2+B=249, A-3+B=321, A-4+B=393
« We need two of these equations to solve for A and B; there are
six possible choices for which two to use
* Take each pair and solve for A and B
Trt ol

A'1+B=T3 A'l+B=T3 A1+B=T3
A*2+B=249 A-3+B=321 A-4+B=393
A=175, B=-102 A=124, B=-51 A=106.6, B=-33.6
A2+ B =249 A-24 B =249 A-3+B=321
A-3+B=321 A 4+B 393 A-4+B=39 6‘90{“ 3
=72, B=104Y) =72, @ws A=72, B=105 ‘/‘ﬂ@/

h T mat,

0 VR it

* Majority rules: A=72, B=105
— The received value 73 had an error
— If no errors: all six solutions for A and B would have matched

.02 Spring 2011 ¢ 9, Slide 17
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Solving for the m,

+ Solving k linearly independent equations for the k unknown
(i.e., the m)):

S,[jolu@ 6/ M
3,06

1 v, Vo2 i voH Mo P(v,)

I v V12 e vlk'l m, P(v,)
2 k-1

LWy W e W My P(viy)

+ Solving a set of linear equations using Gaussian Elimination
(multiplying rows, switching rows, adding multiples of rows to
other rows) requires add, subtract, multiply and divide
operations.

* These operations (in particular division) are only well defined
over fields, e.g., rational numbers, real numbers, complex
numbers -- not at all convenient to implement in hardware.

6.02 Spring 2011 \E Uﬁf, :(ﬂ-e{acr - an l{- ([0 — la‘se ir/lfﬂ I.‘._i_ua:L»':}J Slidde 519
o must b akionl (eonlls

Spreading the wealth...

* Generalize this idea: oversampled polynomials. Let

P(x) = my + m;x + myx? + ... + my_ x*!

where m,, m,, ..., my_, are the k message units to be encoded.
Transmit value of polynomial at n different predetermined
points Vg, Vi, ..., Vg ¢

P(VO): P(vl}! P[V2): veey P(vn-l)

Use any k of the received values to construct a linear system
of k equations which can then be solved for k unknowns m,,
m,, ..., my ;. Each transmitted value contains info about all
m;.
Note that using integer arithmetic, the P(v) values are
numerically greater than the m; and so require more bits to
represent than the m;. In general the encoded message
would require a lot more bits to send than the original

message!

6.02 Spring 2011 Lecture 9, Slide #18

hig degree Pobynnf

Finite Fields to the Rescue

Reed’s & Solomon’s idea: do all the arithmetic using a finite
field (also called a Galois field). If the m; have B bits, then
use a finite field with order 2B so that there will be a field
element corresponding to each possible value for m;.

» For example with B = 2, here are the tables for the various
arithmetic operations for a finite field with 4 elements. Note
that every operation yields an element in the field, i.e., the
result is the same size as the operands.

+« oo 1 -2 3 *lo 1 g 3 A |-A a
0o 1 2 3 oo o o o o o o
1|1 0 3 2 116 gl @ B8 1|1 1
3 |3 .3 .6 .d 2. (028 1 2 |2 3
3 [8om2 e o gci o= 3 T 3 |32
A+(-A) = A*(AY) =1
5,02 Sprinig 2011 6\\1 9, Slick
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How many values to send?

* Note that in a Galois field of order 2B there are at most 2B
unique values v we can use to generate the P(v)

- if we send more than 2B values, some of the equations we might
use when solving for the m; will not be linearly independent and
we won' t have enough information to find a unique solution for
the m;.

— Sending P(0) isn't very interesting (only involves m,)

* Reed-Solomon codes use n = 2B-1 (n is the number of P(v)
values we generate and send).
— For many applications B = 8, so n = 255
— A popular R-S code is (255 223), i.e., a code block consisting of

223 8-bit data bytes + 7 bytcs
\
# ﬂq w"i N??’_

I———

o fal ngsaaC

Use for error correction

+ Ifone of the P(v)) is received incorrectly, if it' s used to solve
for the m;, we’ll get the wrong result.

* So try all possible (n choose k) subsets of values and use
each subset to solve for m;. Choose solution set that gets the
majority of votes.

— No winner? Uncorrectable error... throw away block.

* (n,k) code can correct up to (n-k)/2 errors since we need
enough good values to ensure that the correct solution set
gets a majority of the votes.

— R-5 (255,223) code can correct up to 16 symbol errors; good for
error bursts: 16 consecutive symbols = 128 bits!

0 fie math m‘w///

6.02 Spring 2011 Lecture 9, Slide 221

Peqok at ML

Jdée#e’b“;f

Jf'a acﬁ/« ly solre

Erasures are special

. If a partmular received value is known to be erroneous (an
erasure "), don’t use it all!

How to tell when received value is erroneous? Sometimes there’s
channel information, e.g., carrier disappears.

— See next slide for clever idea based on concatenated R-S codes

/%i—J%RE
from mahx
% can‘wL Wf’

Vot L"Lj

(n,k) R-S code can correct n-k erasures since we only need k
equations to solve for the k unknowns.

* Any combination of E errors and S erasures can be corrected
so long as 2E + S s n-k.

6.02 Sprine 2011 Lecture 9, Slide 523

) )

I
v

4.02 Spring 2011 Lecture ¢, Stics #2

Example: CD error correction

* On a CD: two concatenated R-S codes

€ITors

3_"2;byte block

| 32-byleblock | s2-byte block |
| 32-byteblock | Z32-bjle bipck | - ‘ [ a2-byle block_|
l Uncorrectable anor
| 28-byte block | [ 28 erasures | vo{»e | 28-byte block |
28-byte block D
24-byte block
24-byte block D

Result: correct up to 3500-bit error bursts (2.4mm on CD surface)

De-interleave

(32,28) code
Handles up to
2 byte errors

De-interleave

(28,24) code (g, (;l ael

Handles up to
4 byte erasures

[ 28-byte block | [ Z8-byte mac—l

I 24-byte block ] I&by!e block ’

|_24-byla block | E-byte block | Deinterlesve

65.02 Spring 20114 Lecr




Do We Need Better Channel Coding?

INTRODUCTIGR TO RECS I}
DIGITAL ! The graph shows how a rate 2
g O 9001 - g “rectangular” block code
COMMUNICATION —— experimentally improves over
1 SYSTEMS bt mt it coding e ol sspecially
As puh 2 af higher SNRs (lower overall
§ BER).
Em* o
. ¢ ® But in low SNR environments,
6-02 Spn ng 2011 &UI'Z' }01(,[1, T(/le, %w" o there’s considerable room for
Lecture #10 K improvement.
ol 1t P
* convolutional codes A \L —— uncoded | 4" | Can we find more effective rate
* state & trellis diagrams L L fec pary Bl g |, ¥ codes?
. i transmitted e T ¢ 3 4 s 6§ 1 !
most likely message to have been L;g {’ f'ﬂ EFIM _ b;\g 1 P Dot /_
fa of

4.02 Spring 2011 ) Lecture 16, Slide 1 6.0Z Spring 20\'-!], ‘_'“_ ) Lecture 10, Slide 22
be ther
N )
Aon Jinesr

M\p’wq

Convolutional Codes

» Like the block codes discussed earlier, send parity
bits computed from blocks of message bits
— Unlike block codes, don’t send message bits, only the

] parity bits!
\ﬁ;\ 50 USP _ — The code rate of a convolutional code tells you how many
('O("\‘! . Con u; { parity bits are sent for each message bit. We’ll be talking
0('{%" ' R LA about rate 1/p codes.
(ow® — Use a sliding window to select which message bits are
Q} Co{@ participating in the parity calculations. The width of the
\N] l}\ window (in bits) is called the code’s constraint 1-?gth.
== € 5eads ] Eeh 1[@/“‘ ey

el 40101100101100011....‘&{%%5&W
M(( y ’ _E@—>F’o[n] = x[n] @ x[n-1] ® x[n-2]

RS | Uee avalad L 3@——pinl = xinl ©xin-1]

: P]'l(]nil'l.i.’, l'l]C- leu_-’, ak=1 5‘ I'H.l(.‘ 1 /(3 (‘HT\'E)IL%iOI]l C‘.I(.i' o . -hi 4,02 Spririg 2011 wn@h‘f do fﬁ.v! ffple Pd{}][{ gﬁ Lecture 16, Slide 54 ~§
(. m ‘ t = Tokgs Manlhs : T J

Loruagsson L5 practica bely_ Gead {Jmlly ML/ Qﬂi‘ ess aof_ blﬁ =




jdn{, as moq,'\ﬂ Wt,/z(ﬂ»v Jpwxz ﬂlf‘{zj
Example: xmit 1011

Block diagram view
< wduae b Qo @nollos

* One often sees convolutional encoders described with a block Cq d es
diagram like the followmg
9!\ e Palnl cﬁi Jﬂd‘{ :
The x[n-i] values

are referred to
as the “state” of
the encoder.

Poln]

(gg)mrtb”\

* Think of this a “black box”: message in, parity out
— Input bits arrive one-at-a-time on the wire on the left

— The box computes the parity bits using the incoming bit and the
k-1 previous message bits i el :
— At the end of the bit time, all the saved message bits are shifted Processing x[2] . Processing x[3]
right one location and the incoming bit moves into the left locn.
6.02 Spring 2011

Lectnre 10, Slide #5 4.02 Spring 20114 Lecture 10, Slide &5

Sore pegle fmb Onﬂfdm\’l' a«ﬁﬁ} 3 n Thes s

Parity Bit Equations Convolutional Codes (cont’ d.)
* A convolutional code generates sequences of parity bits from + We'll transmit the parity sequences, not the message itself
sequences of message bits: a  [Tcan see why they call - As we'll see, we can recover the message sequences from the |
it a convolutional code parity sequences !M/G{ ?(0
; ; — Each message bit is “spread across” k elements of each parity
P:["] - Egt[l]x[” = f] mod?2 -sequence, so the parity sequences are better protection agains e (/ (g &
20 bit errors than the message sequence itself "la.?
* ks the constraint length of the code .
~ The larger k is, the more times a particular message bit is used * If we’re using multiple_ generators, construc.t the transmit
when calculating parity bits sequence by interleaving the bits of the parity sequences:
 Beter b o erton possitil e xmit = p[0], 9,101, po[11, pi[11, po[21, Py (2] .
ierley
* g isthe k-elemeor parity bit p;. * Code rate is 1/number_of_generators “ i
~ Each element g;[n]is either 0 or — 2 generator polynomials — rate =__}é_
— More than one parity sequéfice can be generated from the same — Engineering tradeoff: using more generator polynomials
message; a common choice is to use 2 generator polynomials improves bit-error correction but decreases the number of

message bits/sec that can be transmitted

6.02 Sprie "1 * Lecture 10, Slide 57 prirg 2011 Lectues *° Slide 43
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‘ Compak W of f(i g oaslida code
) (g e Y ong \ 9
L Example “Good” generator polynomials

) N
* Using two generator polynomials: LL ‘Ilm g bt"" bma(y #

- g91,1,1,0,0 abbreviated as 111 for k=3 code Table 1-Generator Polynomials found by Busgang for good rate ¥ codes
l i ’ b : B

- g41,1,0,/0,0, ... abbreviated as 110 for k=3 code
‘ ] k L@T gw Constraint Length G, G,

« Writing out the equations for the parity sequences: \N 3 110 111

- Poln] = (x[n] + x[n-1] + x[n-2]) mod 2 = Chooge 4 1101 1110

= py[n] = (x[n] + x[n-1]) mod 2 6&} A 5 11010 11101

6 110101 111011

+ Let x[n] = [1,0,1,1,...]; as usual x[n]=0 when n<0: g.elemtor‘ 7 110101 | 110101

- pl0]=(1+0+0)mod2=1, py[0] = (1 +0)mod 2 =1 CO({ 8 110111 1110011

- pl]=(0+1+0jmod2=1, pyfl]=(©+ mod2=1 1, ¢ 9 110111 111001101

- pl2]=(1+0+1)mod2=0, py[2] =(1 +0)mod2=1 L/I'H/&V‘C 10 110111001 1110011001

— pol3]=(1+1+0)mod2=0, py3]=(L+1)mod2=0
« Transmit: 1,1,1,1,0,1,0,0, ... WWICOIIEXOR Rzom
6.02 Spring 2011 Lecture 16, Slide #9 6,82 Spring 2011 Lecture 10, Stide #10

() Ry o Cepesa e encodbr
N M
Staz:)?%feﬁkafhl%ew}gew Plessage 101 State Machines & Trellisesgly- vay fo (it
m ‘ 6‘4 i x[n-1x/n-2} —>time
STATE: Yo Mg [ Fi ) STARTING STATE
biks Hping to ot "& —[l 'ﬁ}l Sk 00
The state machine is the same 01

Jor all k=3 codes. Only the p;
labels change depending on

8
(" Q%f( ( 9{4’-‘&

46{\\'('(,@3

0 0l 6l '7- Example: k=3, rate % convolutional code
- Gp=111: py = 1*x[n] @ 1*x[n-1] ® 1*x[n-2]

4 L0 00 - G, = 110: p, = 1*x[n] ® 1*x[n-1] @ 0*x[n-2]
States labeled with x/n-1] x[n-2] \/\

+ Arcs labeled with x/nJ/pap, aaduor mad.2

OO 0.0Z Spriny 2011 Lecture 16, Slide 512

« Example: k=3, rate % convolutional code
+ States w-l] x[n-2]

« Arcs labeled with x[n]/pyp;

* msg=101100; xmit=11 11010001 10
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ot Very  Cffafie gleatesy

Example
(losumid
{' Cwpr
Qi moe
li kl,

* Using k=3, rate %
" code from earlier

slides
Received:
111011000110

*+ Some errors have
occurred...

* What'’s the 4-bit
message?

* Look for message
whose xmit bits are
closest to rcvd bits

Most likely: 1011

6.02 Sprine "M

Using Convolutional Codes

* Transmitter
- Beginning at starting state, processes message bit-by-bit
— For each message bit: makes a state transition, sends p;

— Pad message with k-1 zeros to ensure return to starting state

* Receiver

— Doesn'’t have direct knowledge of transmitter’s state transitions;

only knows (possibly corrupted) received p,

— Must find most likely sequence of transmitter states that could

have generated the received p;
— If BER is small, prob(more errors) < prob(fewer errors)

* Most likely message sequence is the one that generated the

sequence of parity bits with the smal

ming distance

from the actual received p;, i.e., where we minimize the

number of bit errors

) Plaod) = (] -BEQ)

at explains how the transmit sequence

. Q\/ﬂ}w‘nm

P)QWUI/@WTA
fo Gpus’
Wl’\é{)“ i; g2

Lechure 7 :j‘? #145 H DD

time was corrupted to produce the received p;
Lecture 10, Slide #13 4.02 Spring 2011 Lechure 10, Slide 414
\ ) |
i, ‘) Df?fw _ ‘ Virterli =
g i £ Rovd a Finding the Most-likely Path
0000 | 000000000000 7 | P%ihoﬂ)
0001 | 000000111110 8 ||v (e dea
0010 | 000011111000 8 L{ b}( 3\
0011 | 000011010110 4 ))th {0" i‘
0100 | 001111100000 6
0101 | 001111011110 s | Malth
0110 | 001101001000 7 EAN
0111 | 001100100110 6 / /
111011000110 \‘}Y p %

1000 | 111110000000 4
1001 | 111110111110 5 QLOE’.‘? hﬂ’r 11 D D S
1010 | 111101111000 7
101 D : i e .
13 1 11]{;@1000110 g 2 SCQ’ \—p Given the received parity bits, the receiver must find the most-

20.1:,.110001100000 > likely sequence of transmitter states, i.e., the path through the
1101 | 110001011110 4 t{L(;behrellis that minimizes the Hamming distance between the
1110 | 110010011000 6 10;\5 MY received parity bits and the parity bits the transmitter would
1111 | 110010100110 3 have sent had it followed that state sequence.

“*Msg padded with 2 zeroes re xmit
Lecture 10, Slide 515 65.02 Spring 2
) ( as;um ‘5
% v h guceate
; AR A s mm&mr gt ipe
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6.02 Spring 2011: PS4 https://scripts.mit.edu:444/~6.02/currentsemester/pset.cgi? assignme...

1o0f12

To save your work, click the SAVE button at the bottom of this page. You can revisit this
page, revise your answers and SAVE as often as you like. 3 / ?

To submit the assignment, click the SUBMIT button at the bottom of this page. YOU
CAN SUBMIT ONLY ONCE. Once the assignment has been submitted, you can continue
to view this page but will no longer be able to make any changes to your answers.

6.02 Spring 2011: Plasmeier,Michael E.

PSet PS4

Dates & Deadlines
issued: Mar-02-2011 at 00:00
due: Mar-10-2011 at 06:00

checkoff due: Mar-15-2011 at 07:00

Help is available from the staff in the 6.02 lab (38-530) during lab hours -- for the staffing
schedule please see the Lab Hours page on the course website. We recommend coming to the
lab if you want help debugging your code.

For other questions, please try the 6.02 on-line Q&A forum at Piazzza.

Your answers will be graded by actual human beings, so your answers aren't limited to
machine-gradable responses. Some of the questions ask for explanations and it's always good
to provide a short explanation of your answer.

Problem 1.

For each of the following codes, indicate: (1) how many bit errors it is guaranteed to detect
assuming only error detection is wanted and (2) how many bit errors it is guaranteed to
correct assuming only error correction is wanted.

( i ‘
aaoni0eode 5o The T\ sl or

~fldlr e
Wl @l dotet D-l o y

(points: .33) i T ﬁw .l { / f; p (0 4 -

/
Coccof

|

e jut deled fat e s
[Tt A/ 5 of

Ao

b. (153,132,7) code
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i&dﬂmewwfwe ddled N-l = ¢

(points: 33)

c. (15,11,3) Hamming code

L

.(points: 34)

Problem 2. W )‘C{f (5 LC”’W ”9 (4 de s }‘W’]m,,q,j J/;g?-fw[
I//\pf "ﬂ C[C‘/ﬂ{} 5
Suppose management has decided to use 48-bit message blocks in the company s new -IL\/ /}F ¢ f 4 [{(

N l, 3 (n,48,3) error correcting code. What is the minimum value of n that will permit the code to be
I used for single bit error correction?

P - ‘éy {?f:"!l(/ .}7]//)‘3 0‘( 5{:1(( ; _
h,_)’ , ' & ': r’{_?{}/:.r.—,‘,{-'ﬂ;."/'i

C{’(}IMJ wf /’l;;j(,//,

ﬂ 71 m;nf!nw N L

[_n52WW~] |
i [ ;Ll |

(points: 1) |
HJ thM}dﬁwﬁmﬂﬂf mm
ri‘ —_— | . ¢ 7 = ! )
A i" of ; \
1 A set of five 4-bit data values has been encoded using the (8,4.3 /ectangular ;)arity code FO/" l por

| L= . . . . -
(W ‘0 7 discussed in lecture and then transmitted over a noisy channel. For each of the received code
~ d ( { words below indicate what single-bit error, if any, can be detected and corrected. The bits in
ot

the received code word are labeled as Tollows:

\ (
wl D2 P1 ga C@{( 5 dmng
D3 D4 P2 7
P3 P4 50 ‘ /
a. 0 O(’) OA C@'} dO \/'((Sf,c(./f

1

@

(points: 0.2)
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o e I o
000
@ 0
[T e
| pljf D W09 9 |
!(points: 0.2) Y .
}I]’]f’? f«‘ J.
ey i - 1
8
01
| (u{({’f
(points: 0.2) y 0/\‘ 7 =
Diti]ﬁe Cos }D‘)Pﬁ {] o h{ 2 _’
d. o 08 6aly €' 14
e AL Bl
11

goﬂ\ wiong, [6'}/an5m-“' j"

(points: 0.2)
e. 00

11

O

| ﬁ“ PUUJL/ Ljfgn_g/ ((Jf‘)/bg,,:;,qrr«f

(points: 0.2)

Problem 4.

As part of its efforts to automate mail delivery, the US Post Office often prints a bar code on
C each piece of mail as a way of encoding the destination zip code. The POSTNet code is based
"1 on a2-of-5/code: there are five binary digits, exactly two of which are "1". To make it easy to
read the code using an opticmnner, vertical lines of two different heights are used to
represent 0 (short line) and 1 (tall line). Here's the code:

3o0f12 3/5/2011 9:38 PM
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o5

correction is wanted.
0{ N (/thj

{O FO 5‘{) (mw -uQ J‘,{,uf 1/7 00 d

60 {{o.r
Mof

4 of 12

a. When printing a POSTNet bar code, two tall vertical lines are added, one at either end.

C.

10( r
17

d. Ben Bitdiddle, having just finished 6.02, has taken a VI-A internship at the Post Office.

What digits does the following bar code depict (it's not a zip code):

@..‘.ll’.g.l.}&l.%..l.ll@

Zip code Digit | Encoding | Printed |

1 00011 | .y %m Ot Qluays
D) 00101 49

R ' L T
4 01001 Al
5 100 ]

S 01100 4.
7 10001 | |,
8 10010 | ..
9 10100 | 4.
0 11000 ..

(points: 0.5)

4 i ‘e
. If we say that each zip code digit, encoded using 5 bits, is equivalent to 4 bits of

information, what's the code rate of the POSTNet code? Please enter as a decimal /' ]

fraction. : ‘
TN Codle cafe <neasue of ik

Y
N

\\rl_C‘

(points: 0.5)

For the POSTNet code (1) how many bit errors it can detect assuming only error
detection is wanted and (2) how many bit errors it can correct assuming only error

B9 7 ey

] })( 1 fruon [ ¢ ; Ol Wl 1y l‘ d’f} {7( 0{ ./
U ks b be g dorale ¢ ey a3y 019[ o mory's - hell fual
(points: 0.5) 1 e hpipoo—

After studying the POSTNet code for a while, Ben writes an urgent memo to his

https://scripts.mit.edu:444/~6.02/currentsemester/pset.cgi?_assignme...

I:(.n}’ G]d‘{,<,
{n uf:,{% {114

Sl hw g dibne | of et
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supervisor suggesting the adoption of "binary zip codes" where zip code digits are
constrained to be either "0" or "1". Ben acknowledges that the original 5-digit zip codes
would become 17-bit binary zip codes, but he argues that using only the "0" and "1"
encodings of the POSTNet code (the last and first entries of the above table,
respectively) would enable much better error detection and correction.

For Ben's revised POSTNet code, write down: (1) how many bit errors it can detect
assuming only error detection is wanted; and (2) how many bit errors it can be
guaranteed to correct, assuming error correction is wanted.

v Hamettag :
500[(( bl 0 ad | -Y

2

oints: 0.5 A/ ol o L. E 4 7

(p n ) ~‘ o :\,{Jw_\’ ,' LI! U/}'f (f"r-‘ '_-,{.“, . = “W, 5"' / &;} (7] }{,’

Python Task #1: Choosing the sampling point Mmore d ()1 s=mgrc ’ Uy g he eates 1+ Vg
Useful download links:

PS4 tests.py -- test jigs for this assignment
PS4 1.py -- template file for this task

Here's an eye diagram generated by transmitting a random sequence of bits across an
idealized channel that limits the speed of transitions and the inter-symbol interference
extends only only to the next bit. TMS 4 samples/bit and signaling voltages of
0.0V and 1.0V.

Eye diagram

Sample number

If we choose a digitization threshold of 0.5V, we can see that in this noiseless world we could
successfully sample this signal using any sample numbered 0 mod 4, 2—nmod 4 --
i.e., only if we tried to sample the signal at samples numbered 1 mod 4 would we make
mistakes in determmmg whlch bit the transmitter intended to send. But to make the

; ,'." 3 Il:

50f12 1\ ‘(rﬁbm”, y 3/5/2011 9:38 PM
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comparison with the digitization threshold as easy as possible, it would be best to choose the
sample where the eye is most "open" -- samples numberee{ 3 mcgiﬁ in this case.

In PSet #2, we used a clock and data recovery scheme that kept the sample point centered
between the transitions. In this task we'll explore another approach to determining which
receive sample to use.

As a first step in automating the process of determining where to sample, consider the

following diagram which shows how the sample voltages%??distributed at each of the four
sample times within a bit cell. In the histogram for each of the four sample times, the lgp;ghth
of the line indicates the fraction of samples that have the indicated voltage value.

15

%

L\ 1 (U
oV vV
v

0.5

0.0

03

;5 7‘}!:5 /[}/G"/Fd {La - /;g,nf Wt /,0;;;-,,_;.{;’/.:

|
l’ HO a A ;’) 1] I

10

0.5

0.0

15

15

10 10

0.5} 0.5}

0.0

0.0

.0

0.1 0.2

63 04 05 B0 01 0z 03 04 05 00

01 02 03

At sample times 0, 1 and 2 the samples are divided evenly among four possible intermediate
voltages; at sample 3 the samples are divided evenly between the two final voltages 0.0V and

1.0V.

Following the usual modus operandi, let's write a function to compute some statistics for each
possible sample time given a particular channel. PS4 1.py is the template file for this task:

............................................................................................................................................................

# this is the template for PSet #4,

import numpy
import PS4 tests

def sample stats(samples,samples per bit=4,vth=0.5):
mples per bit columns by as many

—%____

# reshape array into sa

# rows as we need.

# sample times in a bit cell.

bins = numpy.reshape (numpy.array{samples)

Python Task #1
¥

J/.

Each CQ‘gggmregrese§£§_on?70f_the

(-1,samples_per bit))

# now compute statistics each column

stats =

[l

for i in xrange(samples_per bit):
bins[:,1i]

column =
dist =
min_dist
avg_dist
std_dist

column

2272
227

w2

- vth #

# your
# your
# your

subtract vth from each sample
code here | |[. w LT g

| Nw o1 Tha
code here JVv e
code here

stats.append((min_dist,avg dist,std dist))

al

(" ﬁ,kcﬂ

i
o e dw] f

60 1(1[{
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)!‘_/ ¢

O J

41
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&
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gl A

Ol d
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return stats # return collected statistics

if name_ == "'_main_ ':
PS54 _tests.test sample stats(sample_ stats)

stats = sample_stats(PS4_tests.channel data)
for i in xrange{len(stats)):
min,avg,std = stats[i]
print "sample %d: min dist=%6.3f, avg dist=%6.3f, " \
"std dist=%6.3f" % (i,min,avg,std)

Finish the sample statistics function given in the template so that for each of the possible
sample times within a bit cell it prints the following:

min dist
For all the samples at this time, compute the voltage difference between each sample
and the digitization threshold vth. Take the abme"
from the threshold and mist be the minimum distance. | | i e
/3« whe® 00wt Takmg

avg_dist i i¢lq
For all the samples at this time, compute the voltage difference between each sample Con”
and the digitization threshold vth. Take the absolute value to measure the "distance" ¢ '
from the threshold and let avg_dist be the average of all the distances. A ”"PZ%

std dist

For all the samples at this time, compute the voltage difference between each sample
and the digitization threshold vth. Let std_dist be the standard deviation of all the

differences.
When you're ready, please submit the file with your code using the field below. O h ( “’[ ]LJ' (l ) 1
s v

File to upload for Task 1:  Browse.. ] 0 l’)‘ﬁ' " \ \
| ; \C
( — _ | e ﬁ‘lp N
points: T ‘ _ 3 i g 8

4(,{, 0‘4 / ﬁ\ )Q | (;‘{ ;f SA /J,!
What are the relative merits of using each of the statistics to determine which sample number 0 )} f('r: &
corresponds to the most open part of the eye? U ST
| YJ[{\ ? § l \ { ! .“ r (/OV ( ;‘”‘* ": A '1"[: J:r F 47 f
— Obr leget dd* g |

.(points: 1)

If we now add some noise to each channel (randomly chosen from a Gaussian distribution)
and plot the sample distribution, the figure from above now looks like

Tof 12 3/5/2011 9:38 PM
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With noise, at each sample time we no longer see a sample distribution that only has samples

at a small number of voltages -- each of the lines in the first histogram has been replaced by a
Gaussian distribution centered where the lines used to be.

Rerun your code, this time calling sample stats with the argument
PS4_tests.noisy channel data. Think about the results and select the statistic you'll use
to determine which sample number corresponds to the most open part of the eye.

Cut and paste the output of your Task #1 code running on the noisy channel data into the
answer box below. Then explain why the min_dist statistic is no longer a good choice for
determining optimal sample number when the channel adds rll?is/i to the channel.

Ol

A

[/f@ e ;/5%('@{(‘

(points: 1)

Python Task #2: Determining the bit error rate.

Useful download link:
PS4_2.py -- template file for this task

Using the results of your deliberations in Task #1, write a Python function receive that

returns the recovered sequence of message bits given a vector of voltage samples produced
by the channel:

message_bits = receive (samples, samples per bit=nsamples)
First apply the statistical measure you chose in Task #1 to the samples array to
determine which sample time in the bit cell should be used for determining the
transmitted message bit. Digitize that sample in each cell and return the resulting
sequence of message bits.

Now write a second Python function bit_error_ rate that compares two bit sequences and
- . . - -—__'__—_._-?—
returns the fraction of bit locations that don't match. For example, if two 1000-¢lement bit

sequences mismatch in two bit locations, the result would be 2/1000 = .002.

3/5/2011 9:38 PM
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b ( loa]

error_rate = bit f rate(seqgl, seq2)

Return t@f bit locations that don't match between the two locations.
Finally write a function compute_ber that returns an estimate of the bit error rate given a
digitization threshold of vth, assuming Gaussian noise with a mean of 0 and a variance of .

—_— —_—

ber = compute ber(sigma,vth=0.5,v0=0.0,v1=1.0,p0=0.5,p1=0.5)
Return estimate for bit error rate given the sigma of the Gaussian noise. Use the

supplied voltages for the digitization threshold and the means of the voltages for 0 bits
and 1 bits.

vth is the digitization threshold, defaults to 0.5V. vo0 is the mean of voltages received
for 0 bits, defaults to 0V. v1 is the mean of voltages received for 1 bits, defaults to 1V.

p0 and p1 are the probabilities of transmitting 0 bits and 1 bits respectively. You can . |
assume they sum to 1. y, w/ (G p e

You'll find it useful to call PS4 _tests.unit normal cdf (x) which returns the area Mol N
under the curve for the unit normal, integrating between -0 and x.

PS4 2.py is a template for testing your functions using a million-bit message:

i # this is the template for PSet #4, Python Task #2
' import matplotlib.pyplot as p

import math, numpy, random

import PS4 tests

def receive(samples,samples per bit=4,vth=0.5):
mnn
Apply a statistical measure to samples to determine which
sample in the bit cell should be used to determine the
transmitted message bit. vth is the digitization thresheld.
Return a sequence or array of received message bits.

mun

pass # your code here

def bit error_rate(seql,seg2):
mwmnn
Perform a bit-by-bit comparison of two message seguences,
returning the fraction of mismatches.

LLRIR 1

pass # your code here

def compute ber({sigma,vth=0.5,v0=0.0,v1=1.0,p0=0.5,p1=0.5):
Return an estimate of the bit error rate given the values
for the threshold voltage and the two received voltages
for 0 and 1. Use PS4 tests.unit normal cdf if you need
values of &(x).

LRI

pass # your code here

if name == ' main__':

9of 12 : 3/5/2011 9:38 PM
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# make sure functions pass some simple tests
PS4 tests.test bit error rate(bit_error rate)
PS4 tests.test_compute_ber (compute_ber)

# construct a test message
message = [random.randint(0,1l) for i in xrange(1000000)]

# try out different noise levels
ber values = []
snr_values = []
for sigma in (0.5,0.25,0.18,.05):
noisy data = PS4 tests.transmit(message,
samples per bit=4,
nsigma=sigma}
received message = receive(noisy data)
ber = bit_error_rate{message,received message)
ber values.append (ber)

# use 0.25 as power of signal (see lec. slides)
snr = 10*math.log(0.25/(sigma**2),10)
snr_values.append(snr)

print "For sigma = %g" % sigma,

print "(SNR = %g db):" % snr,

print "bit error rate = %g," % ber,

print "computed BER = %g" % compute_ ber(sigma)

numn

# plot BER vs SNR
p-figure()

ax = subplot(11l1)
p.plot(snr,ber, 'b-"', lw=2)
p.title('BER vs SNR')
ax.set_yscale('log')
ax.set _ylabel ("BER')
ax.set_xlabel ('SNR (db)"')
p-show()

mrn

When you're ready, please submit the file with your code using the field below.

' File to upload for Task 2: Bioliusl

(points: 4)

Please cut and paste the output of your Task #2 code in the answer box below. Explain why
would you would expect a small difference between the experimental BER and the computed
BER.

(\)d’m{m 65
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(points: 1)

Python Task #3: Error correction
Useful download link:
PS4 3.py -- template file for this task

In this task, your job is to take a received codeword which consists of a data block organized
into nrows rows and ncols columns, along with even parity bits for each row and column.
The c\:gvgord is represented as a binary sequence (i.e., a list of 0's and 1's) in the following

order:

(D(0,0), D(0,1), ..., D{0,ncols-1), 4 data bits, row 0 f[p 1[0 (/ 7’/'
G001 DT 5 # data bits, row 1 ( Fon o /Ma d
5
D(nrows-1,0), ..., D(nrows-1,ncols-1), # data bits, last row /,ha/r] {

R(0), ..., R(nrows-1), # row parity bits

c(0), ..., C(ncols-1)] # column parity bits

in other words, all the data bits in row 0 (column 0 first), followed all the data bits in row 1,
., followed by the row parity bits, followed by the column parity bits. The parity bits are

chosen so that all the bits in any row or column (data and parlty b1ts) will have an even

number of I's. e

Define a Python function correct_errors(g) as follows:

message_sequence = correct_errors(codeword, nrows,ncols)
, . :
codeword is a binary sequence'of length nrows*ncols + nrows + ncols whose { } b/
elements are in the order described above. sl ("q /

The returned value message sequence should have nrows*ncols binary elements OﬁC (ol (
consisting of the corrected data bits D(0,0), ..., D(nrows-1,ncols-1). If no correction is /3 } &
necessary, or if an uncorrectable error is detected, just return the raw data bits as they

appeared in the codeword.

True if the sequence contains an even number of 1's, otherwise it returns False. This parity

PS4 tests.even_parity(seq) is a function that takes a binary sequence seq and returns L\
% O (Ta. J
check will be useful when performmg the parity computatlons necessary to do error

correction. PS4 3.py is a template for testing your function: L? € 04 Of
# template for PSet #4, Task #3 sEerRT
import PS4 tests O( gJ _ﬁlfc m
g M
: g
# return data portion of codeword (nrows*ncols bits) with errors (_Og{ bi"’\ 'b/ ]
# corrected. If uncorrectable error, return raw bits. codeword P VO dae
# is a binary sequence that starts with the data row-by-row, (‘!.{}['. e o= b
# followed by row parity bits, followed by column parity bits. P ihad /SR b ‘;ﬁ(-‘ 4
def correct errors{codeword,nrows,ncols): |o— Nol TR
# the raw data bits YT Wi 1no
data = codeword[(0:nrows*ndatal ! (/ ‘rjf' (0n
‘ : A ;,
{ b TP B 7 a) OC J }) [ (.('\". 9 () (f\ {
C9 O/ LW F:’il';_( /\/I aq Ly \ '/‘/
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# do row & column parity checks, correct indicated error
# e YOUR CODE HERE...

# return the posibly corrected data
return data

if name_ == ' main_':
PS4_tests.test_correct_errors{correct_errors)

The PS4 _tests.test correct errors function will try a variety of test codewords and
check for the correct results. If it finds an error, it'll tell you which codeword failed; if your
code is working, it'll print out "Tests completed successfully."

When you're ready, please submit the file with your code using the field below.

 File to upload for Task 3: Browse.. \/

(points: 5)

You can save your work at any time by clicking the Save button below. You can revisit
this page, revise your answers and SAVE as often as you like.

Save

To submit the assignment, click on the Submit button below. YOU CAN SUBMIT ONLY
ONCE after which you will not be able to make any further changes to your answers.
Once an assignment is submitted, solutions will be visible after the due date and the
graders will have access to your answers. When the grading is complete, points and
grader comments will be shown on this page.

ESUbIDR

https://scripts.mit.edu:444/~6.02/currentsemester/pset.cgi?_assignme...
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