Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2010
Quiz I

There are 13 questions and 13 pages in this quiz booklet. Answer each question according to the
instructions given. You have 50 minutes to answer the questions.

Some questions are harder than others and some questions earn more points than others—you may
want to skim all questions before starting.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name in the space below. Write your initials at the bottom of each page.

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.
NO PHONES, NO COMPUTERS, NO LAPTOPS, NO PDAS, ETC.

CIRCLE your recitation section number:

10:00 1. Lampson/Kushman

11:00 2. Jones/Rieb 3. Rudolph/Kushman
12:00 4. Rudolph/Rieb
1:00 5. Gifford/Post 6. Jones/Spicer

2:00 7. Gifford/Spicer 8. Lampson/Post

Do not write in the boxes below

1-4 (xx/27) | 5 (xx/12) | 6-11 (xx/36) | 12-13 (xx/25) | Total (xx/100)

Name:

6.033 Spring 2010, Quiz 1 Page 2 of 13

I Reading Questions

1. [9 points]: Based on your deductions from the UNIX paper by Ritchie and Thompson (reading #5),
which of the following statements are true?
(Circle True or False for each choice.)

/ e If you follow a shell command with &, the shell will make a new process in which to run
the command while the shell goes on in parallel to read and execute the next command, but if you don’t,
the shell will not create a new process but rather run Te command to co letio &Hl ye shell process.

; 5 "‘WM/)
¢ / False A proccss can’t tell w}:kthc s standar nput isa ﬁIe ora p:pe
5e0k f 1;

e The execute kernel cail 18 convemen ut n ssentlal or the shell to invoke a command.
(an (elace (ale

2. [6 points]: According to the X-Windows paper by Sheifler and Gettys (reading #6), which of the
following statements are true?
(Circle True or False for each choice.)

True / False When two windows overlap and the bottom window is brought to the front, the server
immediately draws the window using a cached image.

. True / False Clients can send the server not just images for the server to draw, but also “higher level”

primitives such as lines, rectangles, and text.

True / False When the user clicks on a top-level window, the X Server brings the window to the front,
if it is not already the top-most window.

True / False A client can only communicate with and draw graphics on a single server.

3. [5 points]: Based on the description of the Therac-25 in the paper by Leveson and Turner (reading
#4), which of the following statements are true?
(Circle True or False for each choice.)

. True / False The hardware interlocks present in the Therac-20 were also present in the Therac-25.

B. True / False A detailed fault tree analysis of the Therac-25 estimated the probability of the wrong

mode being selected to be 4 x 1077, (160(1“ g,”

. True / False The Therac-25 software acquired locks in the wrong order, leading to disastrous conse-

quences.

Initials:

6.033 Spring 2010, Quiz 1 Page 3 of 13

4. [7 points]: Based on the description in the MapReduce paper by Dean and Ghemawat (reading #8),
which of the following statements are true?

(Circle True or False for each choice.)

A. True / @ MapReduce guarantees that each map task is executed only once to preserve functional
behavior.

B. True / False File renaming is used to ensure that only a single execution of a reduce task is represented
in the final output.

C. True / False MapReduce always schedules two instances of every task (corresponding to the GFS
replicas of the input data) to guard against worker failure and stragglers.

D. True / False Each map task is automatically distributed so its output is read only by a single reduce
task.

E. True / False Suppose that a programmer writes a map operator that has a bug that causes it to fail
non-deterministically. During execution, five map tasks fail. This MapReduce job will still execute to
completion.

F. True / False It is possible for the master to incorrectly conclude that a reduce task has failed, even
though it is still running (e.g., due to a temporary network connection failure). In this case, the mas-
ter will start another reduce task, and both tasks could complete execution of the same set of reduce
operations.

G. True / False No single machine failure will prevent a MapReduce computation from successfully
completing.

Initials:

6.033 Spring 2010, Quiz 1 Page 4 of 13

5. [12 points]: The following question refers to the Eraser system, by Savage et al. (reading #7).
Suppose you have a banking application with an Account object protected by a lock and a function
Change () to deposit funds into the account (a negative Change () is a withdrawal):

structure Account
int balance initially 0
lock acct_1 initially unlocked

Account allAccounts[] // array of all accounts

procedure Change (Account a, int amount) returns int
int newBal
acquire (a.acct_1)
a.balance = a.balance + amount
newBal = a.balance
release(a.acct_1)
return newBal

Change () is called by Transfer (), which moves funds from one account to another, leaving the
total balance in all of the accounts unchanged.

procedure Transfer (Account from, Account to, int amount)
Change (from, 0 - amount)
Change (to, amount)

More than one thread might be executing Transfex () at the same time. In addition, there is a thread
Total that periodically runs the following function to add up all the account balances:

procedure TotalBalance() returns int
int total = 0
for each a in allAccounts
total = total + Change(a,0)
return total

These are the only operations that touch an account. You should assume that the arithmetic oper-
ations do not overflow. Change () is never called directly; it is only called via Transfer () or
TotalBalance().

(Circle True or False for each choice.)

. True / False When run with the program above, Eraser will not issue any warnings.

True / False If one replaced the call to Change (a, 0) in TotalBalance () with a.balance,
Eraser would not issue any warnings.

. True / False If one or more threads call Transfer (), then after all the transfers have completed

the sum of the account balances is the same as before they started.

True / False If the Total thread runs while other threads are executing Transfer (), then each
call to TotalBalance () will return the same value.

True / False If no other thread calls Change () during the time that a single call of TotalBalance ()
is running, then any two calls of TotalBalance () will give the same result.

Initials:

6.033 Spring 2010, Quiz 1 Page 5 of 13
II Zed and Ned Wrestle With Threads

Zed is running a server on the Internet that keeps people informed of the latest known locations of important
entities such as Elvis, Bigfoot, and the Loch Ness monster. Zed’s server accepts one RPC:

whereis (entity)

The server uses a file system like the one described in the UNIX paper. It maintains one file per entity. Each
file contains the entity’s last reported location; Zed updates the files manually. Here’s what Zed’s server code
looks like:

procedure dispatch()
while true:
wait for an RPC request from any client
parse the request to extract the entity
result = whereis(entity)
send RPC reply containing result

procedure whereis(string entity)
fd = open(entity) // for reading
location = read(fd)
close (£d)
return location

Zed’s server computer initially has one CPU and one disk. His software is a single program with one thread.
The server’s operating system queues incoming RPC requests that arrive while dispatch () is busy with a
previous request. Zed’s system does not cache files or disk blocks. Each call to read () has to wait for the
disk to seek and rotate, which you should assume takes a fixed total time of 10 milliseconds. open () and
close () do not involve any disk activity. Parsing an RPC takes 10 milliseconds of CPU time; none of the
other activities in the server takes a significant amount of CPU time. The Internet delivers messages between
client and server in zero time, and has infinite throughput.

Initials:

6.033 Spring 2010, Quiz 1 Page 6 of 13

6. [6 points]: 4 clients send whereis () RPCs to the server at the same time. What is the average of
the latencies perceived by the four clients?
(Circle the best answer.)

A. 5 milliseconds

B. 10 milliseconds
C. 20 milliseconds
D. 30 milliseconds

E. 50 milliseconds

Zed’s friend Ned has taken 6.033 and advises him that using threads can help improve performance. Zed
changes his server to use a pre-emptive threading system that switches in round-robin among runnable threads
10,000 times per second. Zed’s only change is in dispatch (), which he modifies so that it starts a new
thread for each RPC request:

procedure dispatch ()
while true
wait for an RPC request from any client
allocate_thread (do_dispatch) // create and run thread

procedure do_dispatch()
parse the request to extract the entity
result = whereis(entity)
send RPC reply containing result
destroy this thread

The main loop of dispatch () does not wait for the thread that it creates for each request. Thus, if multiple
requests arrive in quick succession, dispatch () will create multiple threads.

7. [6 points]: Again, 4 clients send whereis () RPCs to the server at the same time. What is the
average of the latencies perceived by the four clients?
(Circle the best answer.)

12.5 milliseconds
20 milliseconds
35 milliseconds

65 milliseconds

= 2 0w »

100 milliseconds

Initials:

6.033 Spring 2010, Quiz 1 Page 7 of 13

Zed is still looking for ways to improve performance. He upgrades his server so that it has eight CPUs with
shared memory. His threading system will use multiple CPUs if there are multiple runnable threads.

8. [6 points]: Again, 4 clients send whereis () RPCs to the server at the same time. What is the
average of the latencies perceived by the four clients?

(Circle the best answer.)

A. 5 milliseconds
B. 12.5 milliseconds
C. 20 milliseconds
D. 35 milliseconds

E. 50 milliseconds

Zed decides to add a second disk to his 8-CPU server. He puts the file for Elvis on one disk, and the file for
Bigfoot on the other disk. Requests for each entity only use the one disk that the entity is stored on.

9. [6 points]: Four clients send whereis () RPCs to the server at the same time. One client sends
a request for Elvis; the other three send requests for Bigfoot. What is the average of the latencies per-
ceived by the four clients?

(Circle the best answer.)

A. 12.5 milliseconds
B. 17.5 milliseconds
C. 20 milliseconds

D. 27.5 milliseconds

E. 35 milliseconds

Initials:

6.033 Spring 2010, Quiz 1 Page 8 of 13

Zed adds a cache to his system. The cache keeps a copy of the information about the entity most recently read
by whereis (). The cache can only hold a single entity’s information. Zed’s caching code looks like this:

lock cache_lock
string cache_entity
string cache_content
int hits = 0

int misses = 0

procedure whereis (string entity)

acquire (cache_lock)

if cache_entity == entity
val = cache_content
hits = hits + 1

else
fd = open(entity) // for reading
location = read(fd)
close (£d)
val = location
cache_content = val
cache_entity = entity
misses = misses + 1

release (cache_lock)

return val

Zed’s code keeps track of the number of cache hits and misses to help him understand the performance of his
system. As before, the server has two disks with Elvis and Bigfoot on different disks, the server has 8 CPUs,
and dispatch () creates a new thread for each request.

10. [6 points]: Four clients send whereis () RPCs to the server at the same time. One client sends
a request for Elvis; the other three send requests for Bigfoot. Before these requests, the hits and
misses counters started with value zero, and cache.ent ity was neither Elvis nor Bigfoot. What
values for the hits counter are possible after the server has answered all four requests? Circle True
for each value of hits that is possible, and False for each value that is not possible.

. True / False 0O
. True / False 1
. True / False 2

. True / False 3

oD O ® P

. True / False 4

Initials:

6.033 Spring 2010, Quiz 1 Page 9 of 13

11. [6 points]: What is the shortest time that it could take for all four RPCs to finish in the previous
question’s scenario?
(Circle the best answer.)

. 10 ms
. 20 ms
30 ms

40 ms

MY QR P

50 ms

Initials:

6.033 Spring 2010, Quiz 1 Page 10 of 13
III Bank of Ben

Ben Bitdiddle is building a server to store and manipulate bank account balances. His server provides several
routines:

int balances[NUM_ACCOUNTS] // array of accounts

procedure get_balance (account) returns int
return balances[account]

procedure transfer (accountl, account2, amount)
balances[accountl] = balances[accountl] - amount
balances[account2] = balances[account2] + amcunt
return amount

Clients issue RPCs to the server to invoke get_balance () and transfer () . Ben uses the multi-
threaded RPC dispatch () routine used in Ned’s server above for processing these requests (page 6),
except that it calls get _balance () or transfer () rather than whereis ().

To demonstrate his server, Ben writes a graphical user interface (GUI) client that connects to the server and
performs get balance () or transfer () operations in response to user-supplied commands.

Ben’s server and GUI are written in a language like C that allows a buggy program to write anywhere in its
memory. Ben’s machine has one processor with one core.

Ben runs his GUI and server in separate address spaces on the same machine.

Initials:

6.033 Spring 2010, Quiz 1 Page 11 of 13

12. [15 points]: Ben is concerned that his code might be slow and incorrect, so he comes to you for
help. Below, Ben proposes several modifications to his banking application. For each choice, tell Ben
whether it would:

(a) Enforce modularity by making it less likely that bugs in the GUI affect the internal operation of
get balance () and transfer ().

(b) Improve throughput without introducing additional sources of incorrect results.

(c) Eliminate sources of incorrect results in the presence of multiple simultaneous client threads (e.g.,
GUI instances).

(d) None of the above

For each of the following proposed modifications, indicate which of the above effects (a—d) the modi-
fication would produce. Indicate only the one best answer.

A. Proposed modification: Cache the results of RPC calls to get balance () in the GUI, while still
running transfer () calls on the RPC server. This takes the form of a new client-side RPC stub for
get _balance():

procedure get_balance_stub(acct) returns int:

if (acct not in cache)

cache[acct] = result of sending get_balance (acct) to RPC server
return cachelacct]

Effect of modification:

B. Proposed modification: Modify the operating system kernel to maintain the account balances and add
system calls that the client makes to ask the kernel to perform the get balance () and transfer ()
operations. Assume that system calls take a significant amount of time, and that kernel routines may be
pre-empted (forced to yield).

Effect of modification:

C. Proposed modification: Place a lock around the reads and writes of balances in the server:

procedure transfer (accountl, account2, amount) returns int
acquire (balance-lock)
balances[accountl] = balances[accountl] - amount
balances[account2] = balances[account2] + amount
release (balance-1lock)
return amount

procedure get_balance (account) returns int
int bal
acquire (balance-lock)
bal = balances[account]
release (balance-lock)
return bal

Effect of modification:

D. Proposed modification: Run the account server on a separate machine from the client threads. Assume
that RPCs between machines take long enough that this doesn’t improve performance.

Effect of modification:

Initials:

6.033 Spring 2010, Quiz 1 Page 12 of 13

After running his server for a few days, Ben observes that sometimes clients (e.g., GUI instances) hang
because RPC requests are never responded to. He suspects the problem is with the custom RPC sending and

receiving code he added to the custom operating system he built for his banking application. His send/receive
code is as follows:

structure rpcRequest
string procedure // operation to perform in server
string args // arguments
string result

rpcRequest msgs[N] // array of up to N RPC requests that need to be processed
int numMsgs initially O

lock bufferLock initially unlocked

condition rpcDone // a condition variable, as described in lecture

procedure rpc_send (rpcRequest m)
m.result = null
acquire (bufferLock)
msgs [numMsgs] = m
numMsgs = numMsgs + 1
wait (rpcDone, bufferLock)
release (bufferLock)
return m.result

procedure rpc_handler ()
while (true) // repeat forever

acquire (bufferLock)

if (numMsgs > 0)
m = msgs [numMsgs-1]
m.result = execute m.procedure (m.args) in server
notify (rpcDone)
numMsgs = numMsgs-1

release (bufferLock)

rpc-handler runs in a separate thread inside the operating system kernel, looking for RPC messages to
dispatch. A client thread calls rpc_send to send an RPC request and wait for the server’s response. There is
a single instance of each of the variables msgs, numMsgs, buf ferLock, and rpcDone inside the kernel.

Initials:

6.033 Spring 2010, Quiz 1 Page 13 of 13

13. [10 points]: Which of the following statements about Ben’s RPC implementation are true?
(Circle True or False for each choice.)

A. True / False rpc_handler () will execute all RPCs as long as fewer than N RPC requests are
outstanding at a time.

B. True / False rpc_send () will correctly return results from all RPCs as long as fewer than N RPC
requests are outstanding at a time.

C. True / False rpc_send () will correctly return results from all RPCs as long as only one client has
an outstanding RPC request at a time.

D. True / False If only one call to rpc_send () is ever made, that call may wait forever because it may
miss the notify from rpc_handler ().

E. True / False The code is likely to deadlock because rpc_send () calls wait () while holding a
lock.

End of Quiz I

Please double check that you wrote your name on the front of the quiz,
and circled your recitation section number.

Initials:

6.033 Spring 2010, Quiz 1 Solutions Page 2 of 14
I Reading Questions

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1. [9 points]: Based on your deductions from the UNIX paper by Ritchie and Thompson (reading #5),
which of the following statements are true?

A. True / False If you follow a shell command with &, the shell will make a new process in which to run

6.033 Computer Systems Engineering: Spring 2010 the command while the shell goes on in parallel to read and execute the next command, but if you don’t,
. . the shell will not create a new process but rather run the command to completion in the shell process.
Quiz I Solutions | . ;
Answer: False. There’s always a new process created, so that each command can have its own address

space and be prevented from interfering with the shell.

B. True / False A process can’t tell whether its standard input is a file or a pipe.

Answer: False. You can't seek on a pipe.

C. True / False The execute kernel call is convenient but not essential for the shell to invoke a command.

Answer: True. The execute call replaces the memory of the process with the contents of a file and
then passes it the arguments. A process could do this to itself, by reserving a small amount of memory
to hold ordinary user mode code that does these things.

2. [6 points]: According to the X-Windows paper by Sheifler and Gettys (reading #6), which of the
following statements are true?

A. True / False When two windows overlap and the bottom window is brought to the front, the server
immediately draws the window using a cached image.
Answer: False. The client is responsible for redrawing.

B. True / False Clicnts can send the server not just images for the server to draw, but also “higher level”
primitives such as lines, rectangles, and text.
Answer; True.

C. True / False When the user clicks on a top-level window, the X Server brings the window to the front,
if it is not already the top-most window.
Answer: Fulse, This is the role of the window manager, which is a client of the X server.

D. True / False A client can only communicate with and draw graphics on a single server.

Answer: False.

6.033 Spring 2010, Quiz 1 Solutions

F.

Page3of 14

3. [5 points]: Based on the description of the Therac-25 in the paper by Leveson and Turner (reading
#4), which of the following statements are true?

. True / False The hardware interlocks present in the Therac-20 were also present in the Therac-25.

Answer: False.

. True / False A detailed fault tree analysis of the Therac-25 estimated the probability of the wrong

mode being selected to be 4 x 1072,
Answer: False. The paper does not mention that any such analysis generated that probability.

. True / False The Therac-25 software acquired locks in the wrong order, leading to disastrous consc-

quences.

Answer: False. The paper does not say that any disaster was caused by incorrect lock order.

4. [7 points]: Based on the description in the MapReduce paper by Dean and Ghemawat (reading #8),
which of the following statements are true?

True / False MapReduce guarantees that each map task is executed only once to preserve functional
behavior.

Answer: False. It may run a task more than once if there is a failure.

True / False File renaming is used to ensure that only a single execution of a reduce lask is represented
in the final output.

Answer: True.

True / False MapReduce always schedules two instances of every task (corresponding to the GFS
replicas of the input data) to guard against worker failure and stragglers.

Answer: False,

True / False Each map task is automatically distributed so its output is read only by a single reduce
task.

Answer: False.

True / False Suppose that a programmer writes a map operator that has a bug that causes it to fail

non-deterministically. During execution, five map tasks fail. This MapReduce job will still execute to
completion.

Answer: True.

True / False Itis possible for the master to incorrectly conclude that a reduce task has failed, even
though it is still running (e.g., due to a temporary network connection failure). In this case, the mas-
ter will start another reduce task, and both tasks could complete execution of the same sct of reduce
operations,

Answer: True, GFS will ensure that the output file is updated atomically, so that only one of the two
reduce tasks contributes to the final output.

6.033 Spring 2010, Quiz 1 Solutions

G.

Page 4 of 14

True / False No single machine failure will prevent a MapReduce computation from successfully
completing.

Answer: False. The master is not replicated, so if it fails the computation cannot continue.

5. [12 points]: The following question refers to the Eraser system, by Savage et al. (reading #7).
Suppose you have a banking application with an Account object protected by a lock and a function
Change () to deposit funds into the account (a negative Change () is a withdrawal):

structure Account
int balance initially 0
lock acct_l initially unlocked

Account allAccounts[) // array of all accounts

procedure Change (Account a,int amount) returns int
int newBal
acquire (a.acct_l)
a.balance = a.balance + amount
newBal = a.balance
release (a.acct_1)
return newBal

Change () is called by Transfer (), which moves funds from one account to another, leaving the
total balance in all of the accounts unchanged.

procedure Transfer (Account from, Account to, int amount)
Change (from, 0 - amount)
Change (to, amount)

More than one thread might be executing Transfexr () at the same time. In addition, there is a thread
Total that periodically runs the following function to add up all the account balances:

procedure TotalBalance() returns int
int total = 0
for each a in allAccounts
total = total + Change(a,0)
return total

These are the only operations that touch an account. You should assume that the arithmetic oper-
ations do not overflow. Change () is never called directly; it is only called via Transfer () or
TotalBalance ().

True / False When run with the program above, Eraser will not issue any warnings.

Answer: True. The code always protects each account’s balance with that account’s lock.

True / False If one replaced the call to Change (a, 0) in TotalBalance () with a.balance,
Eraser would not issue any warnings.

Answer: False, Eraser would complain because sometimes a balance variable would be protected by
a lock, and sometimes not.

6.033 Spring 2010, Quiz 1 Solutions Page 5 of 14

C. True / False If one or more threads call Transfer (), then after all the transfers have completed

=

the sum of the account balances is the same as before they started.

Answer: True. Each call of Transfer(from, to, amount) adds amount to from.balance and subtracts
amount from to.balance, leaving the total unchanged. Change() waits for a lock on the balance that it
updates, so no update will be lost even if multiple threads call Transfer() with the same account,

. True / False If the Total thread runs while other threads are executing Transfer (), then each

call to TotalBalance () will return the same value,

Answer: Falsc. There is no lock held for the entire work of Total, so for example, if Total looks at
“from" before a Transfer(from, to, amount) starts and at “to™ after the Transfer is done, it will see a
total balance that is too small by “amount.”

True / False If no other thread calls Change () during the time that asingle call of TotalBalance ()
is running, then any two calls of TotalBalance () will give the same result.

Answer: False. A call to Transfer() might make one of the calls to Change(), then a TotalBalance()
might run, and then the call to Transfer() might make the other call to Change().

6.033 Spring 2010, Quiz 1 Solutions Page 6 of 14
I Zed and Ned Wrestle With Threads

Zed is running a server on the Internet that keeps people informed of the latest known locations of important
entities such as Elvis, Bigfoot, and the Loch Ness monster. Zed's server accepts one RPC:

whereis(entity)

The server uses a file system like the one described in the UNIX paper. It maintains one file per entity. Each
file contains the entity's last reported location; Zed updates the files manually. Here's what Zed's server code
looks like:

procedure dispatch ()
while true:
wait for an RPC request from any client
parse the request to extract the entity
result = whereis(entity)
send RPC reply containing result

procedure whereis(string entity)
fd = open(entity) // for reading
location = read(fd)
close (fd)
return location

Zed's server compuler initially has one CPU and one disk. His software is a single program with one thread.
The server's operating system queues incoming RPC requests that arrive while dispatch () is busy with a
previous request. Zed's system does not cache files or disk blocks. Each call to read () has to wait for the
disk to seek and rotate, which you should assume lakes a fixed total time of 10 milliseconds. open () and
close () do not involve any disk activity. Parsing an RPC takes 10 milliseconds of CPU time; none of the
other activities in the server takes a significant amount of CPU time. The Internet delivers messages between
client and server in zero time, and has infinite throughput.

6. [6 points]: 4 clients send whereis () RPCs to the server at the same time, What is the average of
the latencies perceived by the four clients?
(Circle the best answer.)

-

. 5 milliseconds

=

. 10 milliseconds

C. 20 milliseconds

=]

. 30 milliseconds

6.033 Spring 2010, Quiz 1 Solutions Page 7 of 14

E. 50 milliseconds

Answer: 50 milliscconds. The four requests take 20, 40, 60, and 80 milliseconds, averaging 50,

Zed’s friend Ned has taken 6.033 and advises him that using threads can help improve performance. Zed
changes his server to use a pre-emptive threading system that switches in round-robin among runnable threads
10,000 times per second. Zed's only change is in dispatch (), which he modifies so that it starts a new
thread for each RPC request:

procedure dispatch()
while true
wait for an RPC request from any client
allocate_thread (do_dispatch) // create and run thread

procedure do_dispatch()
parse the request to extract the entity
result = whereis(entity)
send RPC reply containing result
destroy this thread

The main loop of dispatch () does not wail for the thread that it creates for each request. Thus, if multiple
requests arrive in quick succession, dispatch () will create multiple threads.

7. [6 points]: Again, 4 clients send whereis () RPCs to the server at the same time. What is the
average of the latencies perceived by the four clients?
(Circle the best answer.)

A. 12.5 milliscconds

=

. 20 milliseconds

e

. 35 milliseconds
D. 65 milliseconds

E. 100 milliseconds

Answer: 65 milliseconds. The pre-emptive thread system interleaves the four requests’ parsing, so that they
all finish at the same time, after 40 milliseconds. Thus the four requests complete after 50, 60, 70, and 80
millisconds, averaging 65.

Zed is still looking for ways to improve performance. He upgrades his server so that it has eight CPUs with
shared memory. His threading system will use multiple CPUs if there are mulliple runnable threads.

6.033 Spring 2010, Quiz 1 Solutions Page 8 of 14

8. [6 points]: Again, 4 clients send whereis () RPCs to the server at the same time. What is the
average of the latencies perceived by the four clients?
(Clircle the best answer.)

A. 5 milliseconds
B. 12.5 milliseconds
C. 20 milliseconds
D. 35 milliscconds

E. 50 milliseconds

Answer: 35 milliseconds. After 10 milliseconds, all of the requests have finished parsing. Then they must
take turns waiting for the disk, so they take 20, 30, 40, and 50 milliseconds, averaging 35.

Zed decides to add a second disk to his 8-CPU server. He puts the file for Elvis on one disk, and the file for
Bigfoot on the other disk. Requests for each entity only use the one disk that the entity is stored on.

9. [6 points]: Four clients send whereis () RPCs to the server at the same time. One client sends
a request for Elvis; the other three send requests for Bigfoot. What is the average of the latencics per-
ceived by the four clients?

(Circle the best answer.)

A. 12.5 milliseconds

=]

. 17.5 milliseconds

Q

. 20 milliseconds

=]

. 27.5 milliseconds

™

. 35 milliseconds

Answer: The Elvis request and one of the Bigfool requests run entirely in parallel, since each has its own
CPU and disk. The other two Bigfoot requests must wait for the disk. So the requests take 20, 20, 30, and 40
milliseconds, averaging 27.5.

Zed adds a cache 1o his system. The cache keeps a copy of the information about the entity most recently read
by whereis (). The cache can only hold a single entity’s information. Zed's caching code looks like this:

lock cache_lock
string cache_entity
string cache_content
int hits =0

6.033 Spring 2010, Quiz 1 Solutions Page 9 of 14

int misses = 0

procedure whereis(string entity)

acquire (cache_lock)

if cache_entity == entity
val = cache_content
hits = hits + 1

else
fd = open(entity) // for reading
location = read(fd)
close (£d)
val = location
cache_content = val
cache_entity = entity
misses = misses + 1

release (cache_lock)

return val

Zed's code keeps track of the number of cache hits and misses to help him understand the performance of his
system. As before, the server has two disks with Elvis and Bigfoot on different disks, the server has 8 CPUs,
and dispatch () creates a new thread for each request.

10. [6 points): Four clients send whereis () RPCs to the server at the same time. One client sends
a request for Elvis; the other three send requests for Bigfoot. Before these requests, the hits and
misses counters started with value zero, and cache_entity was neither Elvis nor Bigfoot. What
values for the hits counter are possible after the server has answered all four requests? Circle True
for each value of hits that is possible, and False for cach value that is not possible.

A. True / False 0
B. True / False |
C. True / False 2
D. True / False 3
E. True / False 4

Answer: 1 and 2. There are four possible orders in which Elvis and Bigfoot requests check the cache (EBBB,
BEBB, BBEB, and BBBE). These involve 2, 1, |, and 2 hits respectively.

11. [6 points]: What is the shortest time that it could take for all four RPCs to finish in the previous

question’s scenario?
(Circle the best answer.)

6.033 Spring 2010, Quiz 1 Solutions Page 10 of 14
A. 10 ms
B. 20 ms
C. 30ms
D. 40 ms
E. 50 ms
Answer: 30 milliseconds. All four requests finish parsing in 10 milliseconds. The minimum number of

misses is lwo (from the previous question). The lock in the caching code causes disk requests to proceed one
at a time even though there are two disks. So the minimum total time is 30 milliseconds.

6.033 Spring 2010, Quiz 1 Solutions Page 11 of 14
IIT Bank of Ben

Ben Bitdiddle is building a server Lo store and manipulate bank account balances. His server provides several
routines:

int balances[NUM_ACCOUNTS] // array of accounts

procedure get_balance(account) returns int
return balances|account]

procedure transfer (accountl, account2, amount)
balances [accountl] = balances[acccuntl] - amount
balances [account2] = balances|account2] + amount
return amount

Clients issue RPCs to the server to invoke get_balance () and transfer ()} . Ben uses the multi-
threaded RPC dispatch () routine used in Ned's server above for processing these requests (page 7),
except that it calls get balance () or transfer () rather than whereis ().

To demonstrate his server, Ben writes a graphical user interface (GUT) client that connects to the server and
performs get _balance () or transfer () operations in response to user-supplied commands.

Ben’s server and GUI are written in a language like C that allows a buggy program to write anywhere in its
memory. Ben's machine has one processor with one core.

Ben runs his GUT and server in separate address spaces on the same machine.

6.033 Spring 2010, Quiz 1 Solutions Page 12 of 14

12, [15 points]: Ben is concerned that his code might be slow and incorrect, so he comes to you for
help. Below, Ben propases several modifications to his banking application. For each choice, tell Ben
whether it would:

(a) Enforce modularity by making it less likely that bugs in the GUI affect the internal operation of
get_balance() and transfer ().

(b) Tmprove throughput without introducing additional sources of incorrect results.

(c) Eliminate sources of incorrect results in the presence of multiple simultancous client threads (e.g.,
GUI instances).

(d) None of the above

For each of the following proposed modifications, indicate which of the above effects (a—d) the modi-
fication would produce. Indicate only the one best answer.

Proposed modification: Cache the results of RPC calls to get balance () in the GUI, while still
running t ransfer () calls on the RPC server. This takes the form of a new client-side RPC stub for
get_balance():

procedure get_balance_stub(acct) returns int:
if (acct not in cache)
cache[acct] = result of sending get_balance(acct) to RPC server
return cache[acct]

Effect of modification: Answer: d. This modification might improve performance, but it adds a new
source of errors, because one client might cache a stale balance that another client subsequently asks
the server to update.

. Proposed modification: Modify the operating system kernel to maintain the account balances and add

system calls that the client makes to ask the kernel to perform the get balance () andtransfexr ()
operations, Assume that system calls take a significant amount of time. and that kernel routines may be
pre-empted (forced to yield).

Effect of modification: Answer: b. This modification will reduce the total number of system calls, and
thus increase throughput (each RPC requires at least two system calls to exchange messages).

Proposed modification: Place a lock around the reads and writes of balances in the server:

procedure transfer(accountl, account2, amount) returns int
acquire (balance-lock)
balances[accountl] = balances[accountl] - amount
balances(account2] = balances[accountZ] + amount
release (balance-lock)
return amount

procedure get_balance (account) returns int
int bal
acquire (balance-lock)
bal = balances|account]
release (balance-lock)
return bal

Effect of modification: Answer: c. These locks eliminate a race that might occur if two clients sent
transfer RPCs involving the same account,

6.033 Spring 2010, Quiz 1 Solutions Page 13 of 14

D. Proposed modification: Run the account server on a separate machine from the client threads. Assume
that RPCs between machines take long enough that this doesn't improve performance.

Effect of modification: Answer: a. Placing the client and server on separate computers might help
prevent some client bugs from affecting the server, for example if the client allocates too much memory
or consumes (0o much CPU time.

After running his server for a few days, Ben observes that sometimes clients (e.g., GUI inslances) hang
because RPC requests are never responded to. He suspects the problem is with the custom RPC sending and
receiving code he added to the custom operating system he built for his banking application. His send/receive
code is as follows:

structure rpcRequest
string procedure // operation to perform in server
string args // arguments
string result

rpcRequest msgs([N] // array of up to N RPC requests that need to be processed
int numMsgs initially 0

lock bufferlock initially unlocked

condition rpcDone // a condition variable, as described in lecture

procedure rpc_send(rpcRequest m)
m.result = null
acquire (bufferLock)
msgs [numMsgs] = m
numMsgs = numMsgs + 1
wait (rpcDone, bufferLock)
release (bufferLock)
return m.result

procedure rpc_handler()
while (true) // repeat forever

acquire (bufferLock)

if (numMsgs > 0)
m = msgs[numMsgs-1]
m.result = execute m.procedure(m.args) in server
notify (rpcDone)
numMsgs = numMsgs-1

release (bufferLock)

rpc-handler runs in a separate thread inside the operating system kernel, looking for RPC messages to
dispatch. A client thread calls rpc-send to send an RPC request and wait for the server’s response. There is
a single instance of each of the variables msgs, numMsgs, buf ferLock, and rpcDone inside the kernel.

6.033 Spring 2010, Quiz 1 Solutions Page 14 of 14

13. [10 points): Which of the following statements about Ben's RPC implementation are true?

True / False rpc.handler () will execute all RPCs as long as fewer than N RPC requests are
outstanding at a time.

Answer: True.

True / False rpc_send () will correctly return results from all RPCs as long as fewer than N RPC
requests are outstanding at a time.,

Answer: False. The notify() for any of the RPCs will wake up all the waiting rpc_send()s, causing all
but the intended one to incorrectly return null.

. True / False rpc.send () will correctly return results from all RPCs as long as only one client has

an outstanding RPC request at a time.

Answer: True.

True / False If only one call to rpc_send () is ever made, that call may wait forever because it may
miss the notify from rpc.handler ().

Answer: False. As explained in lecture, calling wait() and notify() while holding the lock avoids lost
notifies,

True / False The code is likely to deadlock because rpc_send () calls wait () while holding a
lock.

Answer: False. As explained in lecture, wait() releases the lock.

End of Quiz I Solutions

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2012

Quiz I

There are 13 questions and 8 pages in this quiz booklet. Answer each question according to the
instructions given. You have 50 minutes to answer the questions.

Some questions are harder than others and some questions earn more points than others—you may
want to skim all questions before starting.

For true/false and yes/no questions, you will receive 0 points for no answer, and negative points for
an incorrect answer. We will round up the score for everym question to 0 if it’s otherwise
negative (i.e., you cannot get less than O on a numbered question).

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name in the space below. Write your initials at the bottom of each page.

THIS IS AN OPEN BOOK, OPEN NOTES, OPEN LAPTOP QUIZ, BUT
DON’T USE YOUR LAPTOP FOR COMMUNICATION WITH OTHERS.

)u:-f_' gr A0 5/
v
CIRCLE your recitation section number:

10:00 <_1. Rudolph/Grusecki
11:00 2. Rudolph/Grusecki 3. Abelson/Gokce 4. Katabi/Joshi

12:00 5. Abelson/Gokce 6. Katabi/Joshi
1:00 7. Shavit/Moll 8. Szolovits/Fang
2:00 9. Shavit/Moll 10. Szolovits/Fang

Do not write in the boxes below

1-5 (xx/27) | 6-7 (xx/15) | 8-10 (xx/32) | 11-13 (xx/26) | Total (xx/100)

0 [[0er [22om [26 4, | 20,

6.033 Spring 2012, Quiz | Page 2 of 8
I Reading Questions

O 1. [4 points]: Simon, in “The architecture of complemty claims that hierarchical systems evolve
more quickly-than-nen-hierarchical systems of comparable size. Which of the following arguments

does he §: upport this claim.
W g (Circle True or False for each choice.)

X A. @l The observation that complex systems are more comprehensible if they are neatly de-
ab

\ GQ\}E composat

/ =B. / False The parable of the watchmakers.
e / (False) Thermodynamic considerations about entropy. ?0 L/ (CO / / ﬂ[ﬂ
-—____—-—‘_-—-
l alse | The distinction between state descriptions and process descriptions.

7 0 rf ”' { o | "k
(J{)(’;-i ()’,‘4 I,:’r lo laim aﬂ'

2. [5 points]: Answer the following questions based on the X Window System paper.
(Circle True or False for each choice.)

Z
A. True/ False When a Web browser runs on a Unix workstation and displays its pages on that work-
station using X, the browser is the client of both the web server and the X server.

- B. @ The window manager must be built into the core of the X server because it can operate

on the windows of multiple clients. L E,Oi ~) pd Geed gl

u !(E'//} The X server of the 1980’s has a complex management infrastructure for color map
gement because display controllers of that era could not provide enouoh memory to store the =
color of every pixel in each image. ' {00 /61 h ot - f (](*r /‘ p<

¢

—

.
D. @ @ The X server informs its clients when a region of one of their windows becomes ob-
scured So-that the clients can stop sending update requests for that region.

E/ ’I&‘u@ / False Synchronization errors could happen between the X server and its clients when network

latenc:1es delayed cllent responses (/jnocalle to NOY [ille ”<
________ : { T Vi

e ———

Initials: W” F

6.033 Spring 2012, Quiz 1 Page 3 of 8

3. [6 points]: Answer the following questions based on the Unix paper.
(Circle True or False for each choice.)

A. 3??;9 / False Checking the return value of the fork() function enables a child process to execute
ifferent instructions from its parent.

: 'lgf? / False Since a child process can write to all files that are open by its parent at the time of the
fork, these writes can create a race condition with writes from the parent. 0 L\ v gdt\

C. @ / False One of the advantages of multitasking is that it makes the system more responsive to
user inputs. N
E 0 }\ or ;’.Mu
v

4. [6 points]: This question is in the context of the Eraser paper. Assume a multi-threaded program
has three locks: mu, mug, and mul, as well as an array a with two locations, a[®] and a[1]. Whenever
a thread is about to modify the whole array (i.e., both a[8] and a[1]) it acquires the lock mu, but

@ whenever it is about to modify a[0] alone it acquires mu®, and whenever it is about to modify a[1]

alone it acquires mul.

A. (' @ Could Eraser’s lockset algorithm detect a race condition with respect to accesses to either
)

112 gy o N L
[(,)._ -hoa 4| w’ﬁ A / O\l L d ()1(, [' h ;.'(;’ ,l,/p w
"(_ a it J‘_ff' ! f-— e

5. [6 points]: This question continues the Eraser question. Assume a multi-threaded program has
one lock mu2 and an array a with two locations, a[0] and a[1]. Whenever a thread is about to modify
either a[0] or a[1] it acquires the same lock mu2. p

" A. Yes / @ Could Eraser’s lockset algorithm detect a race condition with respect to accesses to either
a[®@] ora[1]? l

/\j[) R (/5 a jﬂo(ﬂ/() JO C(,.'
@m) Pdp(" " 0\?4("‘ o H"&j(\ |¢ Ly

Initials: } /\ E]D

6.033 Spring 2012, Quiz 1 Page 4 of 8
II Complexity “ ;, mude d /"{//g/ {L

g . [10 points]: Chapter I of the text describes several techniques for coping with complexity: Modu-

["1

5

ey
J

\/@f he bash shell uses not only the current directory as its name mapping context but also some additional
h

lanty (M), {_b_siracuon (A), Layermg (L), Hierarchy (H), DesWﬂ (D), and Indlrecml)
“For each of the following advantages, mark the appropriate letter (M, A, L, H, D, I) or N for “none of
these” to say which techmqurowdes that advantage. For each question, there iS only one best
answer, but a given technique might be the best answer to more than one question.

/LA. MALH @I N Helps the @s incorporate g’eedpack in system implementations.

: what Ceed
M A L@D IN Helps simplify the task of debugging a complex system by letting imple-

menters deal with smaller components
i

MALHDI @ {Makes it easier for designers to take advantdge of delayed binding in system

implementations. leb. lo mofe soacutin

MOL H D I N Ensures that the implementation will obey the robustness pnnc1ple L
Ve ‘,m (_,‘,r}’ f g#r LJ/ /0 ﬂ f
E. M A'L/H DI N If this is done correctly, it can help reduce the number of inter-module inter-
actions in large systems.
A y !

A_‘il Mo Cl’f!f’ (b k.,c: (ﬂ){fh
Ostaglior : e fu
(0 "]“ U /| I ' -jf 7 "A‘_"“"T £

IIT Names

7. [5 points]: One of the examples in the first hands-on exercise asked you to notice that even though
your home directory might be /mit/YOU, the sequence cd /mit/6.033; cd ../YOU when executed
in the tcsh shell does not get you to your home directory. However, if you perform the same exper-
iment in bash, it works. From the viewpoint of our name resolution discussion, which statement is
correct in bash? : -

' (Circle the BEST answer)

s

]

A. When executing the cd .. command, bash determines if any shorter symbolic links exist to the result-
ing directory and displays the shortest one.

istory of how the current directory was reached. ,(Jff '//’ ! [' Ao es

(@’ﬁ/ 4 L‘f/laf;

C. Bash uses only Unix pathnames, notrmodes

way A |
D. None of the above. 10 \ ID(Q I/ 5“’(’

Initials: V\”\E P

@_(_ Oho 12

f 4
6.033 Spring 2012, Quiz 1 ~5 p{ﬂ v Lﬁ(’/'[/(ﬁf_‘{g},fg Page 5 of 8
IV Concurrency

J’((L{ (’(“a’ﬂm;, f"‘*’/*‘ ”‘0(f/‘(" 10005‘ 9 (”l/m

In this question, you can assume that loads and stores to variables-are-atomic, and neither the compiler nor‘f"’f&/
hardware will ever reorder instructions. continue transfers control flow to the beginning of the while loop. IJG(W

Consider the following lock implementation using a variable x for threads numbered 1 through n where
initially x = 0. Each thread’s number is stored in variable i. o
umber 13 stored in variable 1.

acquire():
while True: Y

if x 1= 0: 6‘“ (n(1gily

continue ## retry release():
x=1 & M}/}?/ﬁ?"i{_i ﬁ x=0
it =x 1= i:

continue ## retry
return

C /CJ”I];U J 1t

8. [10 points]: Which of the following is true for the above algorithm:
(Circle the BEST answer)

A. It does not guarantee mutual exclusion.

)(@Dguarantees mutual exclusion but not deadlock freedom.

C. it guarantees both mutual exclusion and dead}éck freedom.
P()i ’f;:)_j fl(.

Consider the following lock implementation using variables x and y for threads numbered 1 through n, where
each thread’s number is stored in variable i, and where initially y = 0:

acquire():
while True: | H
x =i Chead T
. ify 1= 0: i
» i release():
(l 551:'-4‘ 1}4;{3 continue ## retry { 0[y = 00

| 24 4
Aheud ‘H | 58 g I d

@5 s (0 F"Ia_ A continue ## retry
[9 o return
r W

-
] ,‘!:/}fﬂ{(.,

. [10 points]: Which of the following is true for the above algorithm:
(Circle the BEST answer)

A. Tt does not guarantee mutual exclusion. / p
| e
& Olt guarantees mutual exclusion but not deadlock freedom. &J L9

C. it guarantees both mutual exclusion and dea/!{ock freedom.

Initials: mposslle
MEP

6.033 Spring 2012, Quiz 1

VYV C(lient/Server and bounded buffers

Page 6 of 8

Noer QP Yy

Consider the following bounded buffer code (send and receive), assuming the variables bb.in and bb.out
are 64 bits, never overflow, can be read and written atomically,-and neither the compiler nor hardware will

ever reorder instructions: —
S ———
»
-
send(bb, m):

// each invocation of send has
// its own local variables:
// my_send_index (64-bit int)
while True:
acquire(bb.lock)
if bb.in - bb.out < N:
my_send_index = bb.in
e bb.in = bb.in + 1
(Eaﬂrelease(bb lock)

J;]"’"

\ ol -’{
l-(",r[’{

inLf

bb.buf[my_send_index mod N] = pruff

by return (‘*i“’/*
Uh,f)h- A D\h’ 0“‘ lﬂ r'
release(bb lock)
Wi l" I .r-}’r

oo | i
(Can -, z I ./
8 f‘ !r\ﬂ { I;;,f,'; neélop

receive(bb):

// each invocation of receive
// has its own local variables:
// my_rec_index (64-bit int)
// m (message)
while True:
acquire(bb.lock)
if bb.in > bb.out: 77
my_rec_index = bb.out
bb.out = bb.out + 1
release(bb.lock)

}
/‘Z\ _/’,\L.JJf("‘j_(
acquire(bb.rec_lock)

m = bb.buf[my_rec_index mod N]
release(bb.rec_lock)

return m
release(bb.lock)

Woo vie 10

10. [12 points]: Which of the following is true for the above implementation:
(Circle True or False for each choice.)

A. True / Fa
il iafe
[f{J
B. True ffggﬁ% Thecodc1sconectﬂﬂherelsonesenderan-
C. True 4
D. True”/ [Falve

time.

/\ p'/'g(,i" i :'7!/1_;:-

(nceta, - 4% s

Initials: rqf-{)

The code is correct if there is one sender and ane r ceiver executmg at same time.
gL II:

MJL Wov] (’)1’{{ f u/'m
many receivers executmg’ at same time.

e The code is correct if there are many senders and one receiver executing at same time.

The code is correct it there are many senders and many receivers executing at same

6.033 Spring 2012, Quiz | Page 7 of 8
VI Operating systems

11. [8 points]: Circle all of the function calls that directly correspond to system calls in a Unix system
(based on the Unix paper) in the following implementation of the cp program:

)

W void cp(charjsrcpath, char *dstpath) {

= int src £ oper(srcpath, O_RDONLY);

U int dst = ¢dstpath, O_WRONLY);

K

if (src < 0 || dst < 0)
CERLT(-1);
while (1) {

char buf[1024]; ,
ssize_t cc =@Src, buf, sizeof(buf));

if (cc <= ®)
break; o
ssize_t n = Lﬁjri/te»(dst, buf, cc);
assert(cc == n);
}
@Esg dst);
f:\lggﬁsrcx

}

R

int main(int argc, char **argv) {
cp(argv([l], argv[2]);
€exit(0);

}

1

6.

033 Spring 2012, Quiz 1 Page 8 of 8

12. [10 points]: Suppose we run two user-mode programs, A and B, which are independent (e.g.,
which do not access any common files), on a Unix OS, and we run the Unix OS in a virtual machine
(VM). What can fail if a bug (such as a divide-by-zero or a random memory write) appears in different

(' O componen ystem? Assume there are no other bugs Draw an X in the appropriate locations in
the table below i / i ()g,.c.., Jm /((o f
Program A fails | Program B fails | Kernel fails | VM monitor fails
? Bug in program A X
C ' Bug in program B X
\ 1(-{ A P Bug in the kernel X X X
O(Bug in the VM monitor X X ¥ N
! :

18 ‘/dw‘ VI

13. [8 points]: Suppose that you discover a bug in the implementation of read() that is invoked by
cp, and you want to fix this bug.

A. True I@D Fixing this bug will require modifying the cp program.
B.@ False Fixing this bug will require modifying the OS kernel.

End of Quiz I

Please double check that you wrote your name on the front of the quiz,
and circled your recitation section number.

Initials: r [E{) (’3 f z[

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2012
Quiz I Solutions

There are 13 questions and 9 pages in this quiz booklet. Answer each question according to the
instructions given. You have 50 minutes to answer the questions.

Grade distribution histogram:

Quiz 1 Grades

0 ' - | \w@ |

50 3 1

401 e 1

Count

- = : o iy : |

10

T

0 20 40 60 80 100
Mean: 67.46, Median: 68.00, StDev: 14.02

6.033 Spring 2012, Quiz 1 Page 2 of 9

I Reading Questions

B.

1. [4 points]: Simon, in “The architecture of complexity,” claims that hierarchical systems evolve
more quickly than non-hierarchical systems of comparable size. Which of the following arguments
does he say support this claim.

(Circle True or False for each choice.)

. True / False The observation that complex systems are more comprehensible if they are neatly de-

composable.

Answer: False.

. True / False The parable of the watchmakers.

Answer: True.

. True / False Thermodynamic considerations about entropy.

Answer: False.

. True / False The distinction between state descriptions and process descriptions.

Answer: False.

2. [5 points]: Answer the following questions based on the X Window System paper.
(Circle True or False for each choice.)

True / False When a Web browser runs on a Unix workstation and displays its pages on that work-
station using X, the browser is the client of both the web server and the X server.

Answer: True.

True / False The window manager must be built into the core of the X server because it can operate
on the windows of multiple clients.

Answer: False.

True / False The X server of the 1980’s has a complex management infrastructure for color map

management because display controllers of that era could not provide enough memory to store the
color of every pixel in each image.

Answer: True.

. True / False The X server informs its clients when a region of one of their windows becomes ob-

scured so that the clients can stop sending update requests for that region.

Answer: False.

True / False Synchronization errors could happen between the X server and its clients when network
latencies delayed client responses.

Answer: True. See section 9.3 in the paper.

Initials:

6.033 Spring 2012, Quiz 1

II

A,

Page 3 of 9

3. [6 points]: Answer the following questions based on the Unix paper.
(Circle True or False for each choice.)

True / False Checking the return value of the fork() function enables a child process to execute
different instructions from its parent.

Answer: True.
True / False Since a child process can write to all files that are open by its parent at the time of the
fork, these writes can create a race condition with writes from the parent.

Answer: True. The two processes can write to their respective file descriptors in any order, since there
is no file locking in the original version of Unix.

. True / False One of the advantages of multitasking is that it makes the system more responsive to

user inputs.

Answer: True.

4. [6 points]: This question is in the context of the Eraser paper. Assume a multi-threaded program
has three locks: mu, mu@, and mul, as well as an array a with two locations, a[8] and a[1]. Whenever
a thread is about to modify the whole array (i.e., both a[0] and a[1]) it acquires the lock mu, but
whenever it is about to modify a[®] alone it acquires mu®, and whenever it is about to modify a[1]
alone it acquires mul,

Yes / No Could Eraser’s lockset algorithm detect a race condition with respect to accesses to either
a[0®] oral1]?

Answer: Yes. The lockset for a[®] will be empty, because in some cases it is accessed with mu held,
and others with mu® held. Eraser’s algorithm reports a possible race condition when the lockset becomes
empty.

5. [6 points]: This question continues the Eraser question. Assume a multi-threaded program has
one lock mu2 and an array a with two locations, a[®] and a[1]. Whenever a thread is about to modify
either a[0] or a[1] it acquires the same lock mu2.

Yes / No Could Eraser’s lockset algorithm detect a race condition with respect to accesses to either
a[®@] orall]?

Answer: No. Eraser’s lockset for both a[®] and a[1] will contain mu2 and will never be empty for
Eraser to report a race.

Complexity

6. [10 points]: Chapter | of the text describes several techniques for coping with complexity: Modu-
larity (M), Abstraction (A), Layering (L), Hierarchy (H), Design for iteration (D), and Indirection (I).

Initials:

6.033 Spring 2012, Quiz | Page 4 of 9

I

B.

C.

For each of the following advantages, mark the appropriate letter (M, A, L, H, D, I) or N for “none of
these” to say which technique best provides that advantage. For each question, there is only one best
answer, but a given technique might be the best answer to more than one question.

M AL HDIN Helps the designers incorporate feedback in system implementations.
Answer: D.

MALHDIN Helps simplify the task of debugging a complex system by letting imple-
menters deal with smaller components
Answer: M.

M AL HDIN Makes it easier for designers to take advantage of delayed binding in system
implementations.

Answer: I,

M ALHDIN Ensures that the implementation will obey the robustness principle.

Answer: A.

M ALHDIN If this is done correctly, it can help reduce the number of inter-module inter-
actions in large systems.

Answer: H.

Names

7. [5 points]: One of the examples in the first hands-on exercise asked you to notice that even though
your home directory might be /mit/YOU, the sequence cd /mit/6.033; cd ../YOU when executed
in the tcsh shell does not get you to your home directory. However, if you perform the same exper-
iment in bash, it works. From the viewpoint of our name resolution discussion, which statement is
correct in bash?

(Circle the BEST answer)

. When executing the cd .. command, bash determines if any shorter symbolic links exist to the result-

ing directory and displays the shortest one.

The bash shell uses not only the current directory as its name mapping context but also some additional
history of how the current directory was reached.

Bash uses only Unix pathnames, not inodes.

None of the above.

Answer: B.

Initials:

6.033 Spring 2012, Quiz | Page 5 of 9
IV Concurrency

In this question, you can assume that loads and stores to variables are atomic, and neither the compiler nor
hardware will ever reorder instructions. continue transfers control flow to the beginning of the while loop.

Consider the following lock implementation using a variable x for threads numbered | through n where
initially x = 0. Each thread’s number is stored in variable i.

acquire():
while True:
if x 1= 0:
continue ## retry release():
X =1 x =0
if x l= i
continue ## retry
return

8. [10 points]: Which of the following is true for the above algorithm:
(Circle the BEST answer)

A. It does not guarantee mutual exclusion.
B. it guarantees mutual exclusion but not deadlock freedom.

C. it guarantees both mutual exclusion and deadlock freedom.

Answer: A. Two threads can both check x != 0 and succeed. Then, thread 1 will set x = 1 and verify
that x !'= 1is false. Then, thread 2 will set x = 2 and verify that x != 2 is false. Both then return
from acquire.

Consider the following lock implementation using variables x and y for threads numbered | through n, where
each thread’s number is stored in variable i, and where initially y = 0:

acquire():
while True:

x =1

Ly !? B release():
continue ## retry y =0

y=1

if x 1= i:
continue ## retry

return

9. [10 points]: Which of the following is true for the above algorithm:
(Circle the BEST answer)

Initials:

6.033 Spring 2012, Quiz | Page 6 of 9
A. Tt does not guarantee mutual exclusion.
B. it guarantees mutual exclusion but not deadlock freedom.

C. it guarantees both mutual exclusion and deadlock freedom.

Answer: B. The algorithm guarantees mutual exclusion but not deadlock freedom. On an intuitive
level, the algorithm guarantees mutual exclusion because once some thread passes y=1, all threads that
excute x=i later will get stuck at y!=0, and among any collection of threads that pass the y!=0 test
concurrently and race to get to x!=i, only the one that wrote last in x=i can get past x!=1i, and all
later threads will never get past y!=0 until this winning thread leaves the critical section and executes
release.

To give you a sense of what it takes to rigorously prove the correctness of this lock implementation, see
a complete proof at http://web.mit.edu/6.033/2012/wwwdocs/assignments/s12_1_9.pdf

V Client/Server and bounded buffers

Consider the following bounded buffer code (send and receive), assuming the variables bb.in and bb.out
are 64 bits, never overflow, can be read and written atomically, and neither the compiler nor hardware will
ever reorder instructions:

receive(bb):
// each invocation of receive
- // has its own local variables:

// my_rec_index (64-bit int)
it m (message)
while True:

// each invocation of send has
// its own local variables:
// my_send_index (64-bit int ;
e ?rue' () acquire(bb.lock)

e lbiiad if bb.in ? bb.out:

if bb.in - bb.out < N: iy TR ANRED = DhhouE
: bb.out = bb.out + 1

my_send_index = bb.in
release(bb.lock)

bb.in = bb.in + 1
release(bb.lock)
bb.buf[my_send_index mod N] = m
return

release(bb.lock)

acquire(bb.rec_lock)
m = bb.buf[my_rec_index mod N]
release(bb.rec_lock)

return m
release(bb.lock)

10. [12 points]: Which of the following is true for the above implementation:
(Circle True or False for each choice.)

A. True / False The code is correct if there is one sender and one receiver executing at same time.

Initials:

6.033 Spring 2012, Quiz 1 Page 7 of 9

Answer: False. This implementation of send and receive is broken in all cases. The send function
increments bb.in and releases the lock without placing the message in the buffer, which means a
concurrent receive can read an uninitialized message from the buffer at the bb. in location.

Since this code is not correct for a single sender and receiver, it is also incorrect for multiple senders or
receivers.
B. True / False The code is correct if there is one sender and many receivers executing at same time.

Answer: False.

C. True / False The code is correct if there are many senders and one receiver executing at same time.

Answer: False.

D. True / False The code is correct it there are many senders and many receivers executing at same
time.

Answer: False.

Initials:

6.033 Spring 2012, Quiz 1 Page 8 of 9

VI Operating systems

11. [8 points]: Circle all of the function calls that directly correspond to system calls in a Unix system
(based on the Unix paper) in the following implementation of the cp program:

void cp(char *srcpath, char *dstpath) {
int src = open(srcpath, O_RDONLY);
int dst = open(dstpath, O_WRONLY);

]

if (src < 0 || dst < @)
exit(-1);

while (1) {
char buf[1024];
ssize_t cc = read(src, buf, sizeof(buf));
if (cc <= 0)
break;
ssize_t n = write(dst, buf, cc);
assert(cc == n);

}

close(dst);
close(src);

}

e

int main(int argc, char **argv) {
cp(argv[l], argv[2]);
exit(®);

}

Answer: open, open, exit, read, write, close, close, exit.

Initials:

6.033 Spring 2012, Quiz 1

Page 9 of 9

12. [10 points]: Suppose we run two user-mode programs, A and B, which are independent (e.g.,
which do not access any common files), on a Unix OS, and we run the Unix OS as a guest in a virtual
machine (VM). What can fail if a bug (such as a divide-by-zero or a random memory write) appears
in different components of the system? Assume there are no other bugs. Draw an X in the appropriate

locations in the table below:

Program A fails | Program B fails | Guest OS kernel fails | VMM fails
Bug in program A X
Bug in program B X
Bug in the guest OS kernel X X X
Bug in the VM monitor X X X X

Answer: see above.

13. [8 points]: Suppose that you discover a bug in the implementation of read() that is invoked by
cp, and you want to fix this bug.

A. True / False Fixing this bug will require modifying the cp program.

Answer: False. The code for read is in the OS kernel.

B. True / False Fixing this bug will require modifying the OS kernel.

Answer: True. The code for read is in the OS kernel.

Initials:

