6.033 / Preparation for MapReduce recitation

6.033: Computer Systems
Engineering

Home / News
Schedule

Submissions

General Information
Staff List
Recitations

TA Office Hours

Discussion / feedback
FAQ
Class Notes Errata

Excellent Writing
Examples

2011 Home

1 of2

http://web.mit.edu/6.033/www/assignments/prep-mapreduce.shtml

Spring
2012

Preparation for MapReduce
recitation

e Read MapReduce.
e Skip sections 4 and 7.

This paper was published at the biennial Usenix Symposium on
Operating Systems Design and Implementation (OSDI) U@e of
the premier conferences in computer systems. (OSDI alternates with
the equally prestigious ACM Symposium on Operating Systems

Principles (SOSP), at which appeared Eraser, the paper you already
read in a previous recitation.)

As you read the paper, keep the following questions in mind:

e At first glance, the map/reduce model of computation seems
limited. Did the paper persuade you that their model of
computation has practical use?

e Are the authors trying to solve a technological problem (one that
will be solved with faster computation), or an intrinsic problem?

e What assumptions do the authors make about how machines fail
what machines fail, and what they do when they fail? What
happens to the system when a given machine fails?

e What exactly would happen if one block of one hard drive got
erased during a map/reduce computation? What parts of the
system would fix the error (if any), and what parts of the system
would be oblivious (if any)?

e How do the authors evaluate the performance of their system?
What are "Input," "Output," and "Shuffle?"

e How do "stragglers" impact performance?

2

Here are some points to keep in mind as you read:

e In the functional programming notation used in Section 2.2, the
function takes the arguments shown to the left of the arrow and
returns the type shown to the right of the arrow.

e After you read Section 3.1, you should be able to instantly recall
the following terms: "split," "map worker," "reduce worker,"
"master."

—

5/3/2012 2:23 PM

6.033 / Preparation for MapReduce recitation http://web.mit.edw6.033/www/assignments/prep-mapreduce.shtml

Questions or comments regarding 6.033? Send e-mail to the 6.033 staff at 6.033-staff{@mit.edu
or to the 6.033 TAs at 6.033-tas@mit.edu.

Top // 6.033 home //

20f2 ‘ 3/3/2012 2:23 PM

MapReduce: Simplified Data Processing on Large Clusters

Reat, 1

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a mmg;
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources oI a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day. e

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process largé amounts of Taw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
larggand the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize tiie computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

fon G.LOT

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of oufput key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.

Map, written by the user, takes an input pair and pro-
duccs%s-emmwdiate key/value pairs. The MapRe-
duce library groups together all iniermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.

The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges togeth'e? these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invmamte val-
ues are supplied to the user’s reduce function via an iter-

ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example

Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-

. - - .-—'_'-—‘-\
ments. The user would write code similar to the follow-
ing pseudo-code:

map (String key, String wvalue):
// key: document name
// value: document contents
for each word w in wvalue:
EmitIntermediate(w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.

In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

To appear in OSDI 2004 |

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
user have a
types:
map (k1l,vl) — list (k2,v2)
reduce (k2,1list(v2)) — list (v2)

Le., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.

Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
(URL, 1). The reduce function adds together all values
for the same URL_and emits a (URL,total count)
pair.

Reverse Web-Link Graph: The map function outputs
(target, source) pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
(target,list(source))

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of {word, frequency) pairs. The
map function emits a (hostname,term vector)
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
{(hostname,term vector) pair.

User
Progmm

(0 fork (l) fork
3 @ nwgn
. assign reduce.,
split 0
; output
split1 (5) remote read _ file 0
split2 | () read @ {4) local write :I:
split 3 - (;_1’1]2:;[:&
split 4 .
Come) Il
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of (word, document ID)
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
(word, list(document ID)) pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a (key, record) pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
tcrfacﬁr_/uau‘ ¢ possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for

a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.

This section describes an implementation targeted
to the computing environment in wide use at Google:

To appear in OSDI 2{]07|

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used — typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

Notimy

@

ity

e

into a set of M splits. The input splits can be pro-
cessed in parallel By differentmachines. Reduce invoca-
tions are distributed by partitioning the intermediate key
space into R pieces using a partitioning function (e.g.,
hash(key) mod R). The number of partitions (1) and
the partitioning function are specified by the user.

Figure 1 shows the overall flow of a MapReduce op-
eration in our implementation. When the user program
calls the MapReduce function, the following sequence
of actions occurs (the numbered labels in Figure 1 corre-
spond to the numbers in the list below):

1. The MapReduce library in the user program first
splits the input files into Aj__gii:ﬂa_s of typically 16
megabytes to 64 megahytes (MB) per piece (con-
trollable by the user via an optional parameter). It
then starts up many copies of the program on a clus-
ter of machines.

2. One of the copies of the program is special — the
master. The rest are workers that are assigned work
by the master. There are M map tasks and R reduce
tasks to assign. The master picks idle workers and
assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the
contents of the corresponding input split. It parses
key/value pairs out of the input data and passes each
pair to the uscr—deﬁm. The interme-
diate key/value pairs produced by the Map function
are buffered in memory.

4. Periodically, the buffered pairs are written to local
disk, partitioned into R regions by the partitioning
function. The locations of these buffered pairs on
the local disk are passed back to the master, who
is responsible for forwarding these locations to the
reduce workers.

5. When a reduce worker is notified by the master
about these locations, it uses remote procedure calls
to read the buffered data from the local disks of the
map workers. When a reduce worker has read all in-
termediate data, it sorts it by the intermediate keys
so that all occurrences of the same key are grouped
together. The sorting is needed because typically
many different keys map to the same reduce task. If
the amount of intermediate data is too large to fit in
memory, an external sort is used.

6. The reduce worker iterates over the sorted interme-
diate data and for each unique intermediate key en-
countered, it passes the key and the corresponding
set of intermediate values to the user’s Reduce func-
tion. The output of the Reduce function is appended
to a final output file for this reduce partition.

To appear in OSDI 2004

7. When all map tasks and reduce tasks have been
completed, the master wakes up the user program.
At this point, the MapReduce call in the user pro-
gram returns back to the user code.

After successful completion, the output of the mapre-
duce execution is available in the R output files (one per
reduce task, with file names as specified by the user).
Typically, users do not need to combine these R output
files into one file — they often pass these files as input to
another MapReduce call, or use them from another dis-
tributed application that is able to deal with input that is
partitioned into multiple files.

3.2 Master Data Structures

The master keeps several dat tures. For each map
task and reduce task, it stores the state (idle, in-progress,
or completed), and the identity of the worker machine
(for non-idle tasks).

The master is the conduit through which the location
of intermediate file regions is propagated from map tasks
to reduce tasks. Therefore, for each completed map task,
the master stores the locations and sizes of the R inter-
mediate file regions produced by the map task. Updates
to this location and size information are received as map
tasks are completed. The information is pushed incre-
mentally to workers that have in-progress reduce tasks.

3.3 Fault Tolerance

Since the MapReduce library is designed to help process
very large amounts of data using hundreds or thousands
of machines, the library must tolerate machine failures
gracefully.

Worker Failure

The master pings every worker periodically. If no re-
sponse is received from a worker in a certain amount of
time, the master marks the worker as failed. Any map
tasks completed by the worker are reset back to their ini-
tial idle state, and therefore become eligible for schedul-
ing on other workers. Similarly, any map task or reduce
task in progress on a failed worker is also reset to idle
and becomes eligible for rescheduling.

Completed map tasks are re-executed on a failure be-
cause their output is stored on the local disk(s) of the
failed machine and is therefore inaccessible. Completed
reduce tasks do not need to be re-executed since their
output is stored in a global file system.

When a map task is executed first by worker A and
then later executed by worker B (because A failed), all

I ﬁfg&lﬁ

he eumple
from, .05

workers executing reduce tasks are notified of the re-
execution. Any reduce task that has not already read the
data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures.
For example, during one MapReduce operation, network
maintenance on a running cluster was causing groups of
80 machines at a time to become unreachable for sev-
eral minutes. The MapReduce master simply re-executed
the work done by the unreachable worker machines, and
continued to make forward progress, eventually complet-
ing the MapReduce operation.

Master Failure

It is easy to make the master write periodic checkpoints
of the master data structures described above. If the mas-
ter task dies, a new copy can-be_started from the last
checkpointed state. However, given that there is only a
single master, its failure is unlikely; therefore our cur-
rent implementation aborts the MapReduce computation
if the master fails. Clients can check for this condition
and retry the MapReduce operation if they desire.

Semantics in the Presence of Failures

When the user-supplied map and reduce operators are de-
terministic functions of their input values, our distributed
implementation produces the same output as would have
been produced by a non-faulting sequential execution of
the entire program.

‘We rely on atomic commits of map and reduce task
outputs to achieve this property. Each in-progress task
writes its output to private temporary files. A reduce task
produces one such file, and a map task produces R such
files (one per reduce task). When a map task completes,
the worker sends a message to the master and includes
the names of the R temporary files in the message. If
the master receives a completion message for an already
completed map task, it ignores the message. Otherwise,
it records the names of R files in a master data structure.

When a reduce task completes, the reduce worker
atomically renames its temporary output file to the final
output file. If the same reduce task is executed on multi-
ple machines, multiple rename calls will be executed for
the same final output file. We rely on the atomic rename
operation provided by the underlying file system to guar-
antee that the final file system state contains just the data
produced by one execution of the reduce task.

The vast majority of our map and reduce operators are
deterministic, and the fact that our semantics are equiv-
alent to a sequential execution in this case makes it very

To appear in OSDI 2004

easy for programmers to reason about their program’s be-
havior. When the map and/or reduce operators are non-
deterministic, we provide weaker but still reasonable se-
mantics. In the presence of non-deterministic operators,
the output of a particular reduce task R; is equivalent to
the output for R; produced by a sequential execution of
the non-deterministic program. However, the output for
a different reduce task R may correspond to the output
for Ry produced by a different sequential execution of
the non-deterministic program.

Consider map task M and reduce tasks R; and Rs.
Let e(R;) be the execution of R; that committed (there
is exactly one such execution). The weaker semantics
arise because e(R;) may have read the output produced
by one execution of M and e(R2) may have read the
output produced by a different execution of M.

3.4 Locality

Network bandwidth is a relatively scarce resource in our
computing environment. We conserve network band-
width by taking advantage of the fact that the input data_
(managed by GFS [8]) is stored on the local disks of the

machines that make up our cluster. GFS divides each

file into 64 MB blocks, and stores several copies of each
block (typically-3 copies) on different machines. The
MapReduce master takes the location information of the
input files into account and attempts to schedule a map
task on a machine that contains a replica of the corre-
sponding input data. Failing that, it attempts to schedule
amap task near a replica of that task’s input data (e.g., on
a worker machine that is on the same network switch as
the machine containing the data). When running large
MapReduce operations on a significant fraction of the
workers in a cluster, most input data is read locally and
consumes no network bandwidth.

3.5 Task Granularity

We subdivide the map phase into M pieces and the re-
duce phase into R pieces, as described above. Ideally, M

and 12 should be much larger than.the number of worker
machines. Having each worker perform many différent
tasks improves dynamic load balancing, and also speeds
up recovery whelmm—lm%asks
it has completed can be Spread out across all the other
worker machines.

There are practical bounds on how large M and R can
be in our implementation, since the master must make
O(M + R) scheduling decisions and keeps O(M * R)
state in memory as described above. (The constant fac-
tors for menTory usage are small however: the O(M * R)

piece of the state consists of approximately one byte of
data per map task/reduce task pair.)

Furthermore, R is often constrained by users because
the output of each reduce task ends up in a separate out-
put file. In practice, we tend to choose M so that each
individual task is roughly 16 MB to 64 MB of input data
(so that the locality optimization described above is most
effective), and we make R a small multiple of the num-
ber of worker machines we expect to use. We often per-
form MapReduce computations with M = 200, 000 and

SR
R = 5,000, using 2,000 worker machines.

3.6 Backup Tasks

One of the common causes that lengthens the total time
taken for a MapReduce operation is a “straggler”: a ma-
chine that takes an unusually long time to complete one
of the last few map or reduce tasks in the computation.
Stragglers can arise for a whole host of reasons. For ex-
ample, a machine with a bad disk may experience fre-
quent correctable errors that slow its read performance
from 30 MB/s to 1 MB/s. The cluster scheduling sys-
tem may have scheduled other tasks on the machine,
causing it to execute the MapReduce code more slowly
due to competition for CPU, memory, local disk, or net-
work bandwidth. A recent problem we experienced was
a bug in machine initialization code that caused proces-
sor caches to be disabled: computations on affected ma-
chines slowed down by over a factor of one hundred.

We have a general mechanism to alleviate the prob-
lem of stragglers. When a MapReduce operation is close
to completion, the master schedules backup executions
of the remaining in-progress tasks. The task is marked
as completed whenever either the primary or the backup
execution completes. We have tuned this mechanism so
that it typically increases the computational resources
used by the operation by no more than a few percent.
We have found that this significantly reduces the time
to complete large MapReduce operations. As an exam-
ple, the sort program described in Section 5.3 takes 44%
longer to complete when the backup task mechanism is
disabled.

4 Refinements

Although the basic functionality provided by simply
writing Map and Reduce functions is sufficient for most
needs, we have found a few extensions useful. These are

described in this section. BT,

4.1 Partitioning Function

The users of MapReduce specify the number of reduce
tasks/output files that they desire (R). Data gets parti-
tioned across these tasks using a partitioning function on

To appear in OSDI 2004]

the intermediate key. A default partitioning function is
provided that uses hashing (e.g. “hash(key) mod R").
This tends to result in fairly well-balanced partitions. In
some cases, however, it is useful to partition data by
some other function of the key. For example, sometimes
the output keys are URLs, and we want all entries for a
single host to end up in the same output file. To support
situations like this, the user of the MapReduce library
can provide a special partitioning function. For example,
using “hash(Hostname(urlkey)) mod R” as the par-
titioning function causes all URLs from the same host to
end up in the same output file.

4.2 Ordering Guarantees

We guarantee that within a given partition, the interme-
diate key/value pairs are processed in increasing key or-
der. This ordering guarantee makes it easy to generate
a sorted output file per partition, which is useful when
the output file format needs to support efficient random
access lookups by key, or users of the output find it con-
venient to have the data sorted.

4.3 Combiner Function

In some cases, there is significant repetition in the inter-
mediate keys produced by each map task, and the user-
specified Reduce function is commutative and associa-
tive. A good example of this is the word counting exam-
ple in Section 2.1. Since word frequencies tend to follow
a Zipf distribution, each map task will produce hundreds
or thousands of records of the form <the, 1>. All of
these counts will be sent over the network to a single re-
duce task and then added together by the Reduce function
to produce one number. We allow the user to specify an
optional Combiner function that does partial merging of
this data before it is sent over the network.

The Combiner function is executed on each machine
that performs a map task. Typically the same code is used
to implement both the combiner and the reduce func-
tions. The only difference between a reduce function and
a combiner function is how the MapReduce library han-
dles the output of the function. The output of a reduce
function is written to the final output file. The output of
a combiner function is written to an intermediate file that
will be sent to a reduce task.

Partial combining significantly speeds up certain
classes of MapReduce operations. Appendix A contains
an example that uses a combiner.

4.4 Input and Output Types

The MapReduce library provides support for reading in-
put data in several different formats. For example, “text”

mode input treats each line as a key/value pair: the key
is the offset in the file and the value is the contents of
the line. Another common supported format stores a
sequence of key/value pairs sorted by key. Each input
type implementation knows how to split itself into mean-
ingful ranges for processing as separate map tasks (e.g.
text mode’s range splitting ensures that range splits oc-
cur only at line boundaries). Users can add support for a
new input type by providing an implementation of a sim-
ple reader interface, though most users just use one of a
small number of predefined input types.

A reader does not necessarily need to provide data
read from a file. For example, it is easy to define a reader
that reads records from a database, or from data struc-
tures mapped in memory.

In a similar fashion, we support a set of output types
for producing data in different formats and it is easy for
user code to add support for new output types.

4.5 Side-effects

In some cases, users of MapReduce have found it con-
venient to produce auxiliary files as additional outputs
from their map and/or reduce operators. We rely on the
application writer to make such side-effects atomic and
idempotent. Typically the application writes to a tempo-
rary file and atomically renames this file once it has been
fully generated.

‘We do not provide support for atomic two-phase com-
mits of multiple output files produced by a single task.
Therefore, tasks that produce multiple output files with
cross-file consistency requirements should be determin-
istic. This restriction has never been an issue in practice.

4.6 Skipping Bad Records

Sometimes there are bugs in user code that cause the Map
or Reduce functions to crash deterministically on certain
records. Such bugs prevent a MapReduce operation from
completing. The usual course of action is to fix the bug,
but sometimes this is not feasible; perhaps the bug is in
a third-party library for which source code is unavail-
able. Also, sometimes it is acceptable to ignore a few
records, for example when doing statistical analysis on
a large data set. We provide an optional mode of execu-
tion where the MapReduce library detects which records
cause deterministic crashes and skips these records in or-
der to make forward progress.

Each worker process installs a signal handler that
catches segmentation violations and bus errors. Before
invoking a user Map or Reduce operation, the MapRe-
duce library stores the sequence number of the argument
in a global variable. If the user code generates a signal,

To appear in OSDI 2004

the signal handler sends a “last gasp” UDP packet that
contains the sequence number to the MapReduce mas-
ter. When the master has seen more than one failure on
a particular record, it indicates that the record should be
skipped when it issues the next re-execution of the corre-
sponding Map or Reduce task.

4.7 Local Execution

Debugging problems in Map or Reduce functions can be
tricky, since the actual computation happens in a dis-
tributed system, often on several thousand machines,
with work assignment decisions made dynamically by
the master. To help facilitate debugging, profiling, and
small-scale testing, we have developed an alternative im-
plementation of the MapReduce library that sequentially
executes all of the work for a MapReduce operation on
the local machine. Controls are provided to the user so
that the computation can be limited to particular map
tasks. Users invoke their program with a special flag and
can then easily use any debugging or testing tools they
find useful (e.g. gdb).

4.8 Status Information

The master runs an internal HTTP server and exports
a set of status pages for human consumption. The sta-
tus pages show the progress of the computation, such as
how many tasks have been completed, how many are in
progress, bytes of input, bytes of intermediate data, bytes
of output, processing rates, etc. The pages also contain
links to the standard error and standard output files gen-
erated by each task. The user can use this data to pre-
dict how long the computation will take, and whether or
not more resources should be added to the computation.
These pages can also be used to figure out when the com-
putation is much slower than expected.

In addition, the top-level status page shows which
workers have failed, and which map and reduce tasks
they were processing when they failed. This informa-
tion is useful when attempting to diagnose bugs in the
user code.

4.9 Counters

The MapReduce library provides a counter facility to
count occurrences of various events. For example, user
code may want to count total number of words processed
or the number of German documents indexed, etc.

To use this facility, user code creates a named counter
object and then increments the counter appropriately in
the Map and/or Reduce function. For example:

Counter* uppercase;
uppercase = GetCounter ("uppercase");

map (String name, String contents):
for each word w in contents:
if (IsCapitalized(w)):
uppercase->Increment () ;
EmitIntermediate(w, "1");

The counter values from individual worker machines
are periodically propagated to the master (piggybacked
on the ping response). The master aggregates the counter
values from successful map and reduce tasks and returns
them to the user code when the MapReduce operation
is completed. The current counter values are also dis-
played on the master status page so that a human can
watch the progress of the live computation. When aggre-
gating counter values, the master eliminates the effects of
duplicate executions of the same map or reduce task to
avoid double counting. (Duplicate executions can arise
from our use of backup tasks and from re-execution of
tasks due to failures.)

Some counter values are automatically maintained
by the MapReduce library, such as the number of in-
put key/value pairs processed and the number of output
key/value pairs produced.

Users have found the counter facility useful for san-
ity checking the behavior of MapReduce operations. For
example, in some MapReduce operations, the user code
may want to ensure that the number of output pairs
produced exactly equals the number of input pairs pro-
cessed, or that the fraction of German documents pro-
cessed is within some tolerable fraction of the total num-
ber of documents processed.

5 Performance

il
In this section we measure the performance of MapRe-
duce on two computations running on a large cluster of
machines. One computation searches through approxi-
mately one terabyte of data looking for a particular pat-
tern. The other computation sorts approximately one ter-
abyte of data.

These two programs are representative of a large sub-
set of the real programs written by users of MapReduce —
one class of programs shuffles data from one representa-
tion to another, and another class extracts a small amount
of interesting data from a large data set.

5.1 Cluster Configuration

All of the programs were executed on a cluster that
consisted of approximately 1800 machines. Each ma-
chine had two 2GHz Intel Xeon processors with Hyper-
Threading enabled, 4GB of memory, two 160GB IDE

To appear in OSDI 2004

Input (MB/s)
[\ (%]
[=]
g &

o 8

20 40 60 80 100
Seconds

Figure 2: Data transfer rate over time

disks, and a gigabit Ethernet link. The machines were
arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate band-
width available at the root. All of the machines were
in the same hosting facility and therefore the round-trip
time between any pair of machines was less than a mil-
lisecond.

Out of the 4GB of memory, approximately 1-1.5GB
was reserved by other tasks running on the cluster. The
programs were executed on a weekend afternoon, when
the CPUs, disks, and network were mostly idle.

52 Grep

The grep program scans through 10'° 100-byte records,
searching for a relatively rare three-character pattern (the
pattern occurs in 92,337 records). The input is split into
approximately 64MB pieces (M = 15000), and the en-
tire output is placed in one file (R = 1).

Figure 2 shows the progress of the computation over
time. The Y-axis shows the rate at which the input data is
scanned. The rate gradually picks up as more machines
are assigned to this MapReduce computation, and peaks
at over 30 GB/s when 1764 workers have been assigned.
As the map tasks finish, the rate starts dropping and hits
zero about 80 seconds into the computation. The entire
computation takes approximately 150 seconds from start
to finish. This includes about a minute of startup over-
head. The overhead is due to the propagation of the pro-
gram to all worker machines, and delays interacting with
GFS to open the set of 1000 input files and to get the
information needed for the locality optimization.

5.3 Sort

The sort program sorts 101 100-byte records (approxi-
mately 1 terabyte of data). This program is modeled after
the TeraSort benchmark [10].

The sorting program consists of less than 50 lines of
user code. A three-line Map function extracts a 10-byte
sorting key from a text line and emits the key and the

= 20000 -

i Done 20000 fong Done

‘é 15000 15000 - 15000

€ 10000 10000 4 10000 -

=

.E' 5000 — 5000 - 5000 -

0 T 17 0 T ——T 0"}lvl'|"'l'—ﬁ

500 1000 500 1000 500 1000

20000 20000 20000

=

E 15000 15000 15000

=~ 10000 | 10000 — 10000 -

E

3 5000 5000 5000 -

=

“ 0/’\/\7\”.' OA/\’."\ ; oA,WM ,
500 1000 500 1000 500 1000

20000 200001 20000 -

é 15000 15000 4 15000 |

< 10000 10000 10000 |

g 5000 %007 [%009

e M 0 /_f\"w\

0 —— S S P T FR 0l ey >
500 1000 200 1000 500 1000
Seconds Seconds Seconds
(2) Normal execution (b) No backup tasks (c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).

As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.

Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.

Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.

The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

To appear in OSDI 2004

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.

The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].

A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization — most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

5.4 Effect of Backup Tasks

In Figure 3 (b), we show an execution of the sort pro-
gram with backup tasks disabled. The execution flow is
similar to that shown in Figure 3 (a), except that there is
a very long tail where hardly any write activity occurs.
After 960 seconds, all except 5 of the reduce tasks are
completed. However these last few stragglers don’t fin-
ish until 300 seconds later. The entire computation takes
1283 seconds, an increase of 44% in elapsed time.

5.5 Machine Failures

In Figure 3 (c), we show an execution of the sort program
where we intentionally killed 200 out of 1746 worker
processes several minutes into the computation. The
underlying cluster scheduler immediately restarted new
worker processes on these machines (since only the pro-
cesses were killéd; the machines were still functioning
properly).

The worker deaths show up as a negative input rate
since some previously completed map work disappears
(since the corresponding map workers were killed) and
needs to be redone. The re-execution of this map work
happens relatively quickly. The entire computation fin-
ishes in 933 seconds including startup overhead (just an
increase of 5% over the normal execution time).

6 Experience

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker
machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:

e large-scale machine learning problems,

e clustering problems for the Google News and
Froogle products,

e extraction of data used to produce reports of popular
queries (e.g. Google Zeitgeist),

e extraction of properties of web pages for new exper-
iments and products (e.g. extraction of geographi-
cal locations from a large corpus of web pages for
localized search), and

e large-scale graph computations.

To appear in OSDI 2004 |

1000 5

-+

5

@]

B 5

2 800 /

= ;|

(=} E

w

=

=600

$

g]

g, /

g 400+ d

s /'

=]

£l .i/

2 2004 g

E e

= 0 il

i T T T T]

208 B B B OB OB
S =] =] = S S S
= 2 2 9 & £ &
(=] o (=] — (=] (=] (=]
LI (=21 (V=] L3S) o =]

Figure 4: MapReduce instances over time

i

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Table 1: MapReduce jobs run in August 2004

Figure 4 shows the significant growth in the number of
separate MapReduce programs checked into our primary
source code management system over time, from 0 in
early 2003 to almost 900 separate instances as of late
September 2004. MapReduce has been so successful be-
cause it makes it possible to write a simple program and
run it efficiently on a thousand machines in the course
of half an fmmevelopmem and
prototyping cycle. Furthermore, it allows programmers
who have no experience with distributed and/or parallel
systems to exploit large amounts of resources easily.

At the end of each job, the MapReduce library logs
statistics about the computational resources used by the
job. In Table 1, we show some statistics for a subset of
MapReduce jobs run at Google in August 2004.

6.1 Large-Scale Indexing

One of our most significant uses of MapReduce to date

has been a complete rewrite of the production index-

10

T 0005

Ligmles
Wi |
\llaa

By ey

the execution of jobs across a wide-area network. How-
ever, there are two fundamental similarities. (1) Both
systems use redundant execution to recover from data
loss caused by failures. (2) Both use locality-aware
scheduling to reduce the amount of data sent across con-
gested network links.

TACC [7] is a system designed to simplify con-
struction of highly-available networked services. Like
MapReduce, it relies on re-execution as a mechanism for
implementing fault-tolerance.

8 Conclusions

The MapReduce programming model has been success-
fully used at Google for many_different purposes. We
attribute this success to scvcralx'rmms't, the model
is easy to use, even for programmers without experience
with parallel and distributed systems, since it hides the
details of parallelization, fault-tolerance, locality opti-
mization, and load balancing—Second;a Jarge variety
of probléms are easily expressible as MapReduce com-
putations. For example, MapReduce is used for the gen-
eration of data for Google’s production web search ser-
vice, for sorting, for data mining, for machine learning,
and many other systems. Third, we have developed an
implementation of MapReduce that scales to large clus-
ters of machines comprising thousands of machines. The
implementation makes efficient use of these machine re-
sources and therefore is suitable for use on many of the
large computational problems encountered at Google.

We have learned several things from this work. First,
restricting the programming model makes it easy to par-
allelize and distribute computations and to make such
computations fault-tolerant. Second, network bandwidth
is a scarce resource. A number of optimizations-in-our
system are therefore targeted at reducing the amount of
data sent across the network: the locality optimization al-
lows us to read data from local disks, and writing a single
copy of the intermediate data to local disk saves network
bandwidth. Third, redundant execution can be used to
reduce the impact of slow machines, and to handle ma-
chine failures and data loss.

Acknowledgements

Josh Levenberg has been instrumental in revising and
extending the user-level MapReduce API with a num-
ber of new features based on his experience with using
MapReduce and other people’s suggestions for enhance-
ments. MapReduce reads its input from and writes its
output to the Google File System [8]. We would like to
thank Mohit Aron, Howard Gobioff, Markus Gutschke,

To appear in OSDI 2004 |

David Kramer, Shun-Tak Leung, and Josh Redstone for
their work in developing GFS. We would also like to
thank Percy Liang and Olcan Sercinoglu for their work
in developing the cluster management system used by
MapReduce. Mike Burrows, Wilson Hsieh, Josh Leven-
berg, Sharon Perl, Rob Pike, and Debby Wallach pro-
vided helpful comments on earlier drafts of this pa-
per. The anonymous OSDI reviewers, and our shepherd,
Eric Brewer, provided many useful suggestions of areas
where the paper could be improved. Finally, we thank all
the users of MapReduce within Google’s engineering or-
ganization for providing helpful feedback, suggestions,
and bug reports.

References

[1] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and David A. Pat-
terson., High-performance sorting on networks of work-
stations. In Proceedings of the 1997 ACM SIGMOD In-
ternational Conference on Management of Data, Tucson,
Arizona, May 1997.

[2

'

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah
Treuhaft, David E. Culler, Joseph M. Hellerstein, David
Patterson, and Kathy Yelick. Cluster I/O with River:
Making the fast case common. In Proceedings of the Sixth
Workshop on Input/Output in Parallel and Distributed
Systems (IOPADS '99), pages 10-22, Atlanta, Georgia,
May 1999. :

13

—_—

Arash Baratloo, Mehmet Karaul, Zvi Kedem, and Peter
Wyckoff. Charlotte: Metacomputing on the web. In Pro-
ceedings of the 9th International Conference on Parallel
and Distributed Computing Systems, 1996.

[4

—

Luiz A. Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The Google cluster architecture. IEEE
Micro, 23(2):22-28, April 2003.

[5] John Bent, Douglas Thain, Andrea C.Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Miron Livny. Explicit
control in a batch-aware distributed file system. In Pro-
ceedings of the Ist USENIX Symposium on Networked
Systems Design and Implementation NSDI, March 2004.

[6] Guy E. Blelloch. Scans as primitive parallel operations.
IEEE Transactions on Computers, C-38(11), November
1989.

[7] Armando Fox, Steven D. Gribble, Yatin Chawathe,
Eric A. Brewer, and Paul Gauthier. Cluster-based scal-
able network services. In Proceedings of the 16th ACM
Symposium on Operating System Principles, pages 78—
91, Saint-Malo, France, 1997.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In 19th Symposium on Op-
erating Systems Principles, pages 29-43, Lake George,
New York, 2003.

12

ing system that produces the data structures used for the
Google web search service. The indexing system takes
as input a large set of documents that have been retrieved
by our crawling system, stored as a set of GFS files. The
raw contents for these documents are more than 20 ter-
abytes of data. The indexing process runs as a sequence
of five to ten MapReduce operations. Using MapReduce
(instead of the ad-hoc distributed passes in the prior ver-
sion of the indexing system) has provided scveral bene-
fits:

e The indexing code is simpler, smaller, and easier to
understand, because the code that deals with fault
tolerance, distribution and parallelization is hidden
withi ibrary: ample, the
size of one phase of the computation dropped from
approximately 3800 lines of C++ code to approx-
imately 700 lines when expressed using MapRe-
duce.

e The performance of the MapReduce library is good
enough that we can keep conceptually unrelated
computations separate, instead of mixing them to-
gether to avoid extra passes over the data. This
makes it easy to change the indexing process. For
example, one change that took a few months to
make in our old indexing system took only a few
days to implement in the new system.

aibinila s
e The indexing process has become much easier to
operate, because most of the problems caused by
machine failures, slow machines, and networking
hiccups are dealt with automatically by the MapRe-
duce library without W. Further-
more, it is easy to improve the performance of the

indexing process by adding new machines to the in-
dexing cluster.

7 Related Work

Many systems have provided restricted programming
models and used the restrictions to parallelize the com-
putation automatically. For example, an associative func-
tion can be computed over all prefixes of an /N element
array in log N time on IV processors using parallel prefix
computations [6, 9, 13]. MapReduce can be considered
a simplification and distillation of some of these models
based on our experience with large real-world compu-
tations. More significantly, we provide a fault-tolerant
implementation that scales to thousands of processors.
In contrast, most of the parallel processing systems have
only been implemented on smaller scales and leave the
details of handling machine failures to the programmer.
Bulk Synchronous Programming [17] and some MPI
primitives [11] provide higher-level abstractions that

To appear in OSDI 2004 |

make it easier for programmers to write parallel pro-
grams. A key difference between these systems and
MapReduce is that MapReduce exploits a restricted pro-
gramming model to parallelize the user program auto-
matically and to provide transparent fault-tolerance.

Our locality optimization draws its inspiration from
techniques such as active disks [12, 15], where compu-
tation is pushed into processing elements that are close
to local disks, to reduce the amount of data sent across
I/O subsystems or the network. We run on commodity
processors to which a small number of disks are directly
connected instead of running directly on disk controller
processors, but the general approach is similar.

Our backup task mechanism is similar to the eager
scheduling mechanism employed in the_Charlotte Sys-
tem [3]. One of the shortcomings of simple eager
scheduling is that if a given task causes repeated failures,
the entire computation fails to complete. We fix some in-
stances of this problem with our mechanism for skipping
bad records.

The MapReduce implementation relies on an in-house
cluster management system that is responsible for dis-
tributing and running user tasks on a large collection of
shared machines. Though not the focus of this paper, the
cluster management system is similar in spirit to other
systems such as Condor [16].

The sorting facility that is a part of the MapReduce
library is similar in operation to NOW-Sort [1]. Source
machines (map workers) partition the data to be sorted
and send it to one of R reduce workers. Each reduce
worker sorts its data locally (in memory if possible). Of
course NOW-Sort does not have the user-definable Map
and Reduce functions that make our library widely appli-
cable.

River [2] provides a programming model where pro-
cesses communicate with each other by sending data
over distributed queues. Like MapReduce, the River
system tries to provide good average case performance
even in the presence of non-uniformities introduced by
heterogeneous hardware or system perturbations. River
achieves this by careful scheduling of disk and network
transfers to achieve balanced completion times. MapRe-
duce has a different approach. By restricting the pro-
gramming model, the MapReduce framework is able
to partition the problem into a large number of fine-
grained tasks. These tasks aremm
on available workers so that faster workers process more
tasks. The restricted programming model also allows
us to schedule redundant executions of tasks near the
end of the job which greatly reduces completion time in
the presence of non-uniformities (such as slow or stuck
workers).

BAD-FS [5] has a very different programming model
from MapReduce, and unlike MapReduce, is targeted to

11

9

S. Gorlatch. Systematic efficient parallelization of scan
and other list homomorphisms. In L. Bouge, P. Fraigni-
aud, A. Mignotte, and Y. Robert, editors, Euro-Par’96.
Parallel Processing, Lecture Notes in Computer Science

if (start < 1)
Emit (text.substr (start, i-start),"1");

}

1124, pages 401-408. Springer-Verlag, 1996.

[10] Jim Gray. Sort benchmark home

page.

i
REGISTER_MAPPER (WordCounter) ;

// User’s reduce function

[

[12]

(13]

[14]

[15]

(16]

[17]

(18]

A

http://research.microsoft.com/barc/SortBenchmark/.

William Gropp, Ewing Lusk, and Anthony Skjellum.
Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge, MA,
1999.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. R. Ganger, E. Riedel, and A. Ailamaki. Di-
amond: A storage architecture for early discard in inter-
active search. In Proceedings of the 2004 USENIX File
and Storage Technologies FAST Conference, April 2004,

Richard E. Ladner and Michael J. Fischer. Parallel prefix
computation. Journal of the ACM, 27(4):831-838, 1980.

Michael O. Rabin. Efficient dispersal of information for
security, load balancing and fault tolerance. Journal of
the ACM, 36(2):335-348, 1989.

Erik Riedel, Christos Faloutsos, Garth A. Gibson, and
David Nagle. Active disks for large-scale data process-
ing. IEEE Computer, pages 68-74, June 2001.

Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: The Condor experi-
ence. Concurrency and Computation: Practice and Ex-
perience, 2004.

L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, 1997.

Jim Wyllie. Spsort: How to sort a terabyte quickly.
http://alme].almaden.ibm.com/cs/spsort.pdf.

Word Frequency

This section contains a program that counts the number
of occurrences of each unique word in a set of input files
specified on the command line.

#include "mapreduce/mapreduce.h"

// User’s map function

class WordCounter :

public Mapper {

public:
virtual void Map (const MapInputé& input) {

const string& text =
const int n = text.size();
for (int 1 = 0; i < n;) {
// Skip past leading whitespace
while ((i < n) && isspace(text[i]))
L++3

input.valuel();

// Find word end

int start = i;

while ((i < n) &&
it++;

!isspace (text(1]))

To appear in OSDI 2004

class Adder

int main(int argc,

: public Reducer {
virtual void Reduce (ReduceInput* input) {
// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringTolnt (input->value());
input->NextValue () ;

}

// Emit sum for input->key ()
Emit (IntToString(value));
}

REGISTER_REDUCER (Adder) ;

char** argv) {
ParseCommandLineFlags (argc, argv);

MapReduceSpecification spec;

// Store list of input files into "spec"

for (int i = 1; i < argc; i++) {
MapReduceInput* input = spec.add_input();
input->set_format ("text");
input->set_filepattern(argv[i]);
input->set_mapper_class ("WordCounter");

}

// Specify the output files:

// /gfs/test/freq-00000-0£-00100
1/ /gfs/test/freq-00001-0£-00100
1/ s

MapReduceOutput* out = spec.output();
out->set_filebase ("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format ("text");
out->set_reducer_class ("Adder");

// Optional: do partial sums within map
// tasks to save network bandwidth
out->set_combiner_class ("Adder");

// Tuning parameters: use at most 2000

// machines and 100 MB of memory per task
spec.set_machines (2000) ;
spec.set_map_megabytes (100) ;
spec.set_reduce_megabytes (100) ;

// Now run it

MapReduceResult result;

if (!MapReduce (spec, &result)) abort();
// Done: ’‘result’ structure contains info
// about counters, time taken, number of
// machines used, etc.

return 0;

13

1033 Qe 7

iz R
MP@‘@&/‘“ 6 H@Joop

Copen gpurce.

TMQOf Mare (/nierff?r/&c%
- Many CMFM@ v —patty nah all of Do

M‘ I(WJ/ p{OplE (/v/ 5(01:0(M*Wgﬁ
[« X Peopk de infeest ed ﬂoﬁwzde

s P%ﬂmg o Twitte
Me % Folfguer
fhlan Fnd he ;/th?reaF of b

Dl % P €1

%WW L’L kH, n ﬁfoti 5(/[4@0/
Hﬂ woYNC VS of The

gPW WL hae A L@ L@ as ..

Ao

(ot 4,

Ootdl tdn
do t k| Fdr FAD

b
(%
g
iy N
Aq) ——

O « %u((\(ﬂz el(c[wm@g /Mﬂ%f"

o pecfed shoitte

O—=

8 g s pulten g
0 0 ~— flwe

0 0 9 o

§ % fre paudbl prefix
0

Mon by g el pls op vy
- Can f\(m a/l

S

Ga ﬁm L5 Lot of wodk fuek verk
5 0 -3 Ve o

[sorks of St &ﬂ?fwh'%

g)ﬂ/@ﬂ"@ﬁ M (Q({/b(, ‘(‘J MOE erppagine

Md@p@(do% $0/'ll\f/\q A sz /Dfa((@}’

HQ{Q mqppv 6pms ras b W) sos
b ek gt

Uﬂb ch gk b A f@a\,«%"
&t&w soks e }YL?’M ;q dede
)9 Z/Li u\%\

Vo we hee 4 sorfed | ot
N # 1Q

70\% a5k H/Lw l\% Lﬁl@ LMOHL Ia
Of (N‘fLO)/w) EQ A/L/ ZO‘%O

M; M\@F 24 an,b(Tfﬁ
‘*W«q lﬁ(.[ad vale
“huh nave 00 fon gl b cht gayp

T vt 4 b ash bbb Nawer
Magper adds ihy nause o fle e vabe /47

@6003]*? Wy ‘; WL\(O[/L pogc M; Nixon 09
(oks st o TR/

lemgl site 5 SRV qvery for Wixoy
G@ﬁ)‘{ﬂﬂ alfs for & fo, hanled Seond
“h 1@/ A W pw[e search o
;Q/kj/} 1151\/‘0((1/ yﬁt/f ,/\(Lq’()}ﬁe(M(me/ }W({t?[ﬂ Ay I/ fff“ﬁ‘h/
J’O ({@J/U(f/ " ﬁv/‘q/) llcq, 4 530”9;1, eé c&[ﬂhaéeﬁ
Bf i/lb f cq}/e,é% fo @F/({/((f[
A@W/ ((ao\u, l/p a /eaL/IJL "f\ov /"lm/ P4t)
W {very s 01
Than magper gtb et bal

Maar | kg por queg

ok (ks o/oe/; }<-b llqdw
~f %w& Gn‘lb]@i /QWHS on /Q@(ch/

[\Mﬂf]l{; W i Quezé@
—Mppf o Sud q Quiry for Cah ¢ b /Q@LA@)

‘_.h\m l«\/L@/] (g\L/m? (\o /quﬂg/ —'V‘(ay/xr [“/Ld)
mﬁrse,oﬂaq

; \ [\
T)m Ly 91£ Oursg 0wty (e g?mp/zf(gg oM. A5y

()009[{ Only @\Lif@p [0()0 (Qw”s {0/ 6(&(/& Cl(/af/

Lﬁw\(% — hﬂ/“f‘ﬂ J‘ML (%H ﬁ— 0IC M appcﬁ f/g‘?({ﬂ@//
Mt Gl - bl e MY onpy 1o,

(Y
~harg muH‘/p[@ ol e Guen

b
My Robee ver bl b bandy Cases
6 not wid b splmbitic compting

-1t s‘mdlw% o 1 Cap (d
~looh for heghbors
=0 whn g negls land b JYC

’"éfmﬂ @(@L@ /‘lk Cazpeﬁod Qln wary

6.033: Hands-on Assignment (Traceroute) http://web.mit.edw6.033/www/assignments/hands-on-traceroute.html

M.I.T. DEPARTMENT OF EECS

6.033 - Computer System Engineering Traceroute Hands-On Assignment

Hands-on 3: Internet Routes and Measuring Round Trip Times

Note:
Some students have reported having problems with running the traceroute command on the Debathena cluster machines.
If you get the error 'traceroute: Command not found.', run the command

sudo aptitude install traceroute

to install it for the duration of a login session. Another option is ssh'ing into linux.mit.edu and then running the traceroute
command. T e

Complete the following hands-on assignment. Do the activities described, and hand in the answers to the numbered

questions at the beginning of recitation. As usual, submit your solutions using the online submission site before
recitation.

In this assignment you will get a chance to experiment with two very useful and widely-used network diagnostic tools,
traceroute and ping, to expose you to some of the interesting quirks in network routing and packet round trip times.

We recommend, but do not require, that you perform this assignment on Athena. Part of this assignment cannot be
4 completed on athena.dialup.mit.edu due to security restrictions. Please note that the TAs cannot guarantee tech
support if you do not use an Athena workstation. In either case, please make sure you use a workstation on the MIT
network. Some results may be quite d ffer(:nt if you use an off-campus network.

0. gﬁgsum(é I%ou{i][Trl?g]L Tlmegs/] Vélth l(’/lbneg]L M UTb/ VW{/W’P v l

In the first two exercises, you will use the ping utility to send echo requests to a number of different hosts. The ping
utility is one of the more useful utilities for testing a network. It allows you to measure the time that it takes for a packet
to travel through the Internet to a remote host and back. The ping utility works by sending a short message, called an
echo-request, to a host using the Internet Control Message Protocol (ICMP). A host that supports ICMP (and most do)
and receives an echo-request message simply replies by sending an echo-response back to the originating host.

—

In many of the exercises, you will be referring to hosts via their DNS names rather than their IP addresses. (For more

information about Internet hostnames and DNS, and how these relate to IP addresses, please see Section 4.4 of the
course notes.)

For more information about ping, look at the man page on ping and the specifications for ICMP, located in RFC 792.
Section 7.13.4 of the course notes describes ICMP as well.

athena% man ping

To use the ping command on Athena, run a command such as:

athena% ping www.google.com

If you run ping from a Sun workstation, you may have to use the -s option to get it to display the results that you want.

Type machtype to determine the type of machine you are using. If you have any more questions, see the man pages for
more details on how to use ping.

A. Round Trip Times:

In the following two questions, you are asked to use the ping utility to measure the round trip times to several hosts on

1 of 4 3/12/2012 12:47 AM

6.033: Hands-on Assignment (Traceroute) http://web.mit.edw6.033/www/assignments/hands-on-traceroute.html

2 of 4

the Internet.

For the following hosts, send 10 packets, each with a length of 56 data bytes. Note: You may find that the packet
responses are 64 bytes instead of 56 bytes. Look at RFC 792 to find out the reason.

The hosts are:

www.csail.mit.edu
www.berkeley.edu
www.usyd.edu.au

www. kyoto-u.ac.jp

Question 1: Indicate what percentage of packets sent resulted in a successful response. For the packets
from which you received a response, write down the minimum, average, and maximum round trip times in
milliseconds. Note that ping reports these times to you if you tell it how many packets to send on the
command line.

Question 2: Explain the differences in minimum round trip time to each of these hosts.

Question 3: Now send pings with 56, 512 and 1024 byte packets to the 4 hosts above. Write down the
minimum, average, and maximum round trip times in milliseconds for each of the 12 pings. Why are the
minimum round-trip times to the same hosts different when using 56, 512, and 1024 byte packets?

B. Unanswered Pings:

For the following hosts, send 100 packets that have a length of 56 data bytes. Indicate what percentage of the packets
resulted in a successful response.

www.wits.ac.za (University of the Witwatersrand, Johannesburg)
www.microsoft.com

Question 4: For some of the hosts, you may not have received any responses for the packets you sent.
What are some reasons as to why you might have not gotten a response? (Be sure to check the hosts in a
web browser.)

1. Understanding Internet routes using traceroute

As the name implies, traceroute essentially allows you to trace the entire route from your machine to a remote
machine. The remote machine can be specified either as a name or as an IP address.

We include a sample output of an execution of traceroute and explain the salient features. The command:

$ traceroute www.google.com

tries to determine the path from the source machine (vinegar-pot.mit.edu) t0 www.google.com. The machine
encountered on the path after the first hop is NW12-RTR-2-SIPB.MIT.EDU, the next is EXTERNAL-RTR-1-BACKBONE-
2.MIT.EDU, and so on. In all, it takes 13 hops to reach py-in-£99.google.com. The man page for traceroute (
athena% man traceroute)contains explanations for the remaining fields on each line.

% traceroute www.google.com

traceroute: Warning: www.google.com has multiple addresses; using 64.233.167.99

traceroute to www.l.google.com (64.233.167.99), 30 hops max, 40 byte packets
NW12-RTR-2-SIPB.MIT.EDU (18.181.0.1) 0.476 ms 0.318 ms 0.237 ms
EXTERNAL-RTR-1-BACKBONE-2.MIT.EDU (18.168.1.18) 0.827 ms 0.624 ms 0.753 ms
EXTERNAL-RTR-2-BACKBONE.MIT.EDU (18.168.0.27) 1.097 ms 0.772 ms 0.887 ms

207.210.142.233 (207.210.142.233) 0.578 ms 0.549 ms 0.713 ms

207.210.142.1 (207.210.142.1) 0.750 ms 2.530 ms 1.178 ms

207.210.142.2 (207.210.142.2) 5.886 ms 15.387 ms 5.762 ms

64.57.29.21 (64.57.29.21) 24.732 ms 24.693 ms 24.695 ms

72.14.236.215 (72.14.236.215) 31.733 ms 27.588 ms 216.239.49.34 (216.239.49.34) 27.810 ms
66.2490.94.235 (66.249.94.235) 12.495 ms 209.85.252.166 (209.85.252.166) 36.961 ms 26.459 ms
216.239.46.224 (216.239.46.224) 33.736 ms 33.396 ms 209.85.248.221 (209.85.248.221) 26.130

oOWwoJdo s W

=

3/12/2012 12:47 AM

6.033: Hands-on Assignment (Traceroute) http://web.mit.edw/6.033/www/assignments/hands-on-traceroute.html

3 of4

11 66.249.94.133 (66.249.94.133) 26.126 ms 72.14.232.53 (72.14.232.53) 25.744 ms 25.611 ms
12 66.249.94.133 (66.249.94.133) 26.183 ms 27.460 ms 72.14.232.70 (72.14.232.70) 37.800 ms
13 py-in-f99.google.com (64.233.167.99) 28.249 ms 26.050 ms 26.398 ms

A. Basics:

Question 5:

In at most 50 words, explain how traceroute discovers a path to a remote host. The man page might be
useful in answering this question.

i ries: ; ;
B JROULIHE 2SS IELEIES CMM glne 6{/55‘cgy1nemL c%“ed

For this exercise, you need to use the traceroute server at http:/www.slac.stanford.edu/cgi-bin/nph-traceroute.pl. When
you view this web page, execute a traceroute (trace) to your machine (run /sbin/ifconfig to find the IP Address of
your machine). Run your local traceroute to whatever server Stanford tells you it is running traceroute from for this
question. Note: It is important to run this on an Athena machine. If the Stanford traceroute does not work, or if you get
no reply after 2--3 minutes, you should try one of the other looking glass servers on this page: http://www.traceroute.org
/#Looking%20Glass If you use a different server, make sure that you note in your hands-on that you used a different
server than the question asked for.

Now run this on your machine:
athena% traceroute wwwl.slac.stanford.edu
Question 6: Show the output of traceroute from each direction above.

Question 7: Describe anything unusual about the output. Are the same routers traversed in both directions?
If not, why might this happen?

C. Blackholes:

At the command prompt, type:

athena% traceroute 18.31.0.200

Question 8: Show the output of the above command. Describe what is strange about the observed output,
and why traceroute gives you such an output. Refer to the traceroute man page for useful hints.

2. Border Gateway Protocol (BGP)

For this last question on the topic of Internet routing, you need to refer to the BGP routing table data below. This table
shows all of the BGP routing entries that a particular router (near the University of Oregon) refers to when forwarding
any packets to MIT (IP Address 18.% * *), P/QF(A

As described in the Internet routing paper, recall that BGP is a path vector protocol. Each line of this table lists a distinct
path from this router to MIT, from which it will choose one to use. The Next Hop field is the IP address of the router
that forwards packets for each path listed in the table. The path field is the list of autonomous systems the path
traverses on its way to MIT. The other fields (Metric, LocPrf, Weight)may be used by the router to decide which
one of the possible paths to use.

BGP table version is 9993576, local router ID is 198.32.162.100

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path (l'{}ﬂﬁ]
¥ . 18.0,0.0 216.140.8.59 413 0 6395 3356 3 1
x 216.140.2.59 982 0 6395 3356 3 i
* 141, 142+12.1 0 1224. 22335111537 10578 3 i

?dt"r(’d ﬁnl\

3/12/2012 12:47 AM

6.033: Hands-on Assignment (Traceroute)

209.249.254.19
202.232.0:.2
209;10:12.125
208.51.113.253
209.123.12.51
209.10.12.156
195.66.224.82
209.10.12.28
203.181.248.233
64.50.230.2
195.66.232.254
195.66.232.239
64.50.230.1
194.85.4.55
207.172.6.227
207.172.6.162
129.250.0.85
206.220.240.95
217.75.96.60
66.185.128.48
206.24.210.26
216.191.65.118
216.191.65.126
209.161.175.4
202.249.2.86
208.186.154.35
167.142.3.6
64.200.151.12
195.218.96.239
208.186.154.36
203.194.0.12
213.200.87.254
216.218.252.145
216.18.63.137
216.218.252.152
195.249.0.135
65.106.7.139
207.45.223.244
207.246.129.14
207.46.32.32
129.250.0.11
134.55.200.1
193.0.0.56
216.140.14.186
198.32.8.196
64.200.95.239
196.7.106.245
154.11.63.86
134.222.85.45
213.140.32.146
164:128.32.11
213.248.83.240
154.11.98.18

> 4.68.0.243
204.42.253.253
206.186.255.223
193.251.128.22
203.62.252.26
12:0:1.63
144.228.241.81

:o-*n-a—t—)(-**a-n-**x-i-:e:e-***:{»:{-x-:e‘+***=+n-a-a-:(»a»*:rx-*:-*1»1-1-:&:-*:-***********a-*:(-

125

8204

8203

83
62
11

514

40

960

4294967294

http://web.mit.edw6.033/www/assignments/hands-on-traceroute.html

OOOOOOOOOOOOOOOOOOOOODOOOODOODOOODOOOOODOOOOOOODOOOOOOODOOOO

6461 3356 3 i

2497 3356 3 i

4513 3356 3 i

3549 174 16631 3 3 3 i

8001 1784 10578 3 i

4513 3356 3 i

4513 3356 3 i

4513 3356 3 i

7660 11537 10578 3 i

4181 174 174 174 16631 3 3 3 i
5459 2649 174 174 174 16631 3 3 3
5459 2649 174 174 174 16631 3 3 3
4181 174 174 174 16631 3 3 3 i
3277 8482 29281 702 701 3356 3 i
6079 10578 3 i

6079 10578 3 i

2914 174 16631 3 3 3 i

10764 11537 10578 3 i

16150 8434 3257 3356 3 i

1668 3356 3 i

3561 3356 3 i

15290 174 16631 3 3
15290 174 16631 3 3
14608 19029 3356 3 i
7500 2497 3356 3 i :
5650 3356 3 i Th {26

5056 1239 3356 3C;—-‘9 3] best-
7911 3356 3 i Or } Wil

6453 3356 3 i Yiny (

5650 3356 3 i
9942 16631 174 174 174 16631 3 3 3 i
3257 3356 3 i

6939 3356 3 i

6539 174 16631 3 3 3 i

6939 3356 3 i

3292 3356 3 i

2828 174 16631 3 3 3 i

6453 3356 3 i

11608 6461 3356 3 i
8075 174 16631 3 3 3
2914 174 16631 3 3 3
293 11537 10578 3 i
3333 3356 3 i

6395 3356 3 i

11537 10578 3 i

7911 3356 3 i

2905 701 3356 3 i

852 174 16631 3 3 3 i
286 209 3356 3 i
12956 174 16631 3 3 3 i
3303 3356 3 i

1299 3356 3 i

852 174 16631 3 3 3 i

3356 3 i

267 2914 174 16631 3 3 3 i
2493 3602 174 16631 3 3 3 i
5511 3356 3 i

1221 4637 3356 3 i

7018 3356 3 i

1239 3356 3 i

i
i

3
3

i
i

H- b

Question 9: From the path entry data, which Autonomous System (AS) number corresponds to MIT?

Question 10: What are the Autonomous System (AS) numbers of each AS which advertises a direct link to

MIT?

_—

If you'd like to explore BGP and Internet routing in more depth, you may wish to take take 6.829 Computer Networks.

4 of 4

o T
ohar(d e 4e4f e 60/@?[0\

3/12/2012 12:47 AM

Hoads 0u.3
by
_/ﬁ/@h@& bl
Lemp

0]’1 (,002 W&) {\,“o@
Uty Soms ot

- (=
; &6 = 61&

bty 4 all o duke
Wit & be pae paded <la

L
(i vt Ptk M1 dzg,(,aué’/7

e

e ok
EM’MM hot, /'[* Woftkj

A b/o/d,&‘(
\’Jﬂ«‘mL fut i o\
Bew?

poxt- t\apé

bete o 4 i pef
(Ub A M‘/ﬁ “’1[chpice)

43 Jede 10

A)

&,ut% \

Nodun 20 e won <7

M‘tﬂ Y\@M\ég
Béﬁve]z (Mﬂlm’\f
mQ Q./al‘tb’
Clle,,,L/ Go(As
AWidd
’\/‘M\‘l’\ﬂ
On 1 PCo ()8

p(?/ \C@f many

‘ leat - Cone c/o’fftp Moo,

~mor pokoced
“leb » e o e e

Vetwals ae & Ay ol
“ M @ o Pl

@ 1, Ty (]tks; A M S ystoms Ja
Ui ?(Q\ol{?w@ ﬂq,, (.00

L (oronal

~9L\w}/\ﬂ t \ﬁt‘cgfﬁwf
(e %(“’\ihptm’

,-&Ov'Hnj

hw&
“Spegd &I

Mt s Tl wlofae b th etk
VOK'{WLI] L\(S p/6ﬂ7 weal« CJVQ(@#}"E’@J

Vabe of | rehok. y

C) vae/sq,ﬁ,fg
rmwmtfue T ;We [Ngfuor)
Vake of nefuol 0(n*)

“Vabe D oag my, gl jol

v
‘\/@wh % lﬂfg & blmk \OO)L 7Lo qppﬂcqﬁw)
ULt gholl it be”)
6W.J1L Vs \J\fﬁlb ‘
(
le\ o The Tt

L'Ui] CL\“”QAQ% f 57qulo(&1a¢1?on Of P-/UJWVIE

) 1
HO\N ¢ Tka nehf‘@’t\ 0 ganied %pa gfq-p/wfce///ﬁ
“ o comediony

"L]VIO /J“MO%W ("@()’ut@ fg n (o,mcoﬁ/,t)
~ bt cifial b celuhifly tPefmang

-

o

Nod h & af Tt cale
(lobe Doy p{m’h 0

268 — locggton W)
’_—éll(f/;«) K “nt\
R s

Yoo molipley a 1k ot Congm
O QW ub o Timehd T W

i,
T N5 oo
’m 25 haw /0}10/@ MJ/%
IRLY hal 4 3Varmfeec[M
- ATTT Mady Sue rogh bund wifs

Bt o0 dube ook - g & by =) 5, honcs
S0 multiplex

- B el (e 1 o)

- 1@ PGWP!\W '1 }f)iz%@/ /Jqlh /@(éu(//e((

N Mlm 4(/”& : LjO yov écqc{ L ressige budk Jﬁ; Sender

g */'“f?{ o[ro,o A packue!
féﬁdelw 0P dou mot hotk DraF wngfl 4, wirfess

| JEE—

a S)\OHL “om ; IQ(/F&/ Pac{w'}ﬁ

~ Cakle Mhclons z»a/e [a(ge, boffers
- A‘(/M ‘z ZNF(W élﬁ(ﬁl
s (afery rlden

@

5 4 vsaq, 2 ng

50 mﬂl@ff‘{ /’{Q’l On (S@Af/;

)’)%4 Sy
. 2/6(! 5%/&5%&@ My ///J/FX //0/
e J

e ALl 5)0/@4(1 dond Tle lnsh

CQQ Q00 ool 9&:,05 hs of NTT! rotuork
L lﬁ(mt on gaff/ S o iy kdy

\’JM , 710 lun ml« qf

wO 9{0 '"et‘(m l, 0550/
ot Iy of Bt
1 {J/B %7

\ ’,
o)/(Jf
‘
(

R
T

| Tg" g a(ml hese
MIT -¢0%

0

_ W\ Ca M’Lﬂ :
bk oo (J‘L JM(
N §w;11/|« dles
~0pe whac e/a

~ Viung B pobel oty

5 ﬂﬂkve, il het JQ@/ n/ sl of 7‘!1)
Cped of Ligh
“th ok ol (’,mﬁh (1 v

1

- l lq/ Aao Second
—east b wat Gubt T me

- £ yWobadd for o (e (edepjr

CCWL\; 1 Lyfas/f,et
~o \}mpfwt Complex fannjssin (ol P(@h(sb
\éml’\} \our 5':4}3 Wiafo

_ 5 ‘
(g J 3((0p€%7 (n Hpee(Of hﬁfww(’\

d Tiwg

e BTt s o Dot k- g twarl

Toenle —a Shous &4 ’ég

Ifﬂlmf z’ bad ¢ ffort-
oste adf besl -offrt prhils o0 fop of (Tc)

Quiz 1 histogram

Quiz 1 Grades

FT) ~ 40 ~ 80
Mean: 67.97, Median: 70.00, StDev: 14.26

L10: Network Systems

Frans Kaashoek
6.033 Spring 2012
http://web.mit.edu/6.033
Some slides are from lectures by
Nick Mckeown, lon Stoica, Dina
Katabi, Hari Balakrishnan, Sam
Madden, and Robert Morris

i

N passaowsins
ST oF
fradiiadd

What have you seen so far?

Systems Complexity Hierarchy
Modularity Therac-25
Dtechnology/dt
Client/service |Enforced X windows
design modularity
Naming systems |Gluing systems |File system
name space/DNS
Operating Client/service |Eraser and Unix
systems withina
computer
Performance Coping with MapReduce

bottlenecks

Client/service using network

« Sharing irrespective of geography
« Strong modularity through geographic separation

Network is a system too!

+ Network consists of many networks, many links,
many switches

« Internet is a case study of successful network
system

Today’ s topic: problems and approach

+ Economical:

» Universality

= Topology, Sharing, Utilization
« Organizational

= Routing, Addressing, Packets, Delay

= Best-effort contract
+ Physical

« Errors, speed of light, wide-range of parameters
Design challenge: what does the network
do and what do hosts do?

« Internet: best-effort

Asynchronous Multiplexing/
Demultiplexing

« Multiplex using a queue
« Switch need memory/buffer

« Demultiplex using information in packet header
« Header has destination

« Switch has a forwarding table that contains
information about which link to use to reach a
destination

Queue

length

§ ® B e vo wE We e s Km 8 M W Ne 3D W m a0 em

10 seconds scale

Statistical multiplexing Aggregate Internet Traffic Smooths

i . : '53"_'!3:--_:_- 5-min average traffic rate at an MIT-CSAIL router
o | 1 B2H T
i ’ § 9.9 H t‘ ;
6.6 M prebent ;
‘g 0F g 33H N , l 1 e
“® oon

10 8 6 4 2 0 22 2 18 16 14 12 10 8 & 4

Max In:12.2Mb/s Avg. In: 2.5Mb/s
Max Out 12, 8bes Avg. Out: 3.4 Mb/s

01 N " FE

- i it edu/mrtg/dmzertr--osof, 16,
Networks are heterogeneous d(technology)/dt for networks
o 1000000
@ e
Bits/ 2 BT et ///
o 100000
Internet hosts,
P
£ ! Aggregate Internet Troffic
% 2x/ 12 months / %
'E 1,000 !
Moore’ s Low
o // 2x /18 menths
...": 100 +-girsys per-datiar
S 2x /79 mont Speed of light
| E 1o (e BﬂW 0x / 18 tenthe]
;‘;‘ﬁéf"’f‘ff’,a o dff;f éf‘:;ffff 2 , l’—’//
a{;‘ 1980 1983 1986 1989 1992 1995 1998 2001
Link ted]nology Thanks to Nick Mckeown @ Stanford for some of these data points

Internet: Best Effort

No Guarantees:

« Variable Delay (jitter)
« Variable rate

« Packet loss

« Duplicates

» Reordering

End hosts implement everything else

Email addresses, To, Cc, etc.
suTP - . suTP
S — Reliable, flow-controlled connection C_ B v

1P: best-effort/g

()

1 of4

http://web.mit.edw/6.033/www/lec/110.txt

6.033 2011 Lecture 10: Networking Intro (6.02 in a single lecture)

First of 4 lectures on data networks.
Overview today: identify the problems and approach
Dig into details over next 3 lectures.
* Build on 6.02
* network are a useful systems building block
* internal workings are a good case study of system design.
Internet in particular an example of a very successful system.
complex enough to be a subject of science, like the weather

What is the goal of data networking?
Allow us to build systems out of multiple computers.
Your problem may be too big for one computer.
You may want multiple computers for structural reasons: client/server.
more fundamental reason:
A key use of computers is for communication between people, orgs.
People are geographically distributed, along with their computers.
So we're forced to deal with inter-computer comms.

System picture:
Hosts. Maybe millions of them. All over the world.
[No cloud yet, but leave room. circular hosts.]

What are the key design problems to be solved?
I'1l classify into three types:
O0: Organizational, to help human designers cope.
E: Economic, to save operators money.
P: Physics.

E: universality.
Want one net, many uses
Rather than lots of small incompatible/disconnected network worlds.
e.g. Fedex builds its own data net for its customers to track packages
private nets sometimes good for reliability, predictable service, security
The more people that use a network, the more useful it is for everybody.
Value to me is proportional to N people using the same net.
Value to society is proportional to N*2.
What technical tools help us achieve universality?
Standard protocols make it easy to build systems.
But don't want to prevent evolution by freezing design w/ standards.
Hard: standardize just what's required to make net generally useful,
but not the things that might need to be changed later.
"Dumb" wversus "smart" network?
One universal net means it's *not* part of each system design.
It's a black box; simplifies design of systems that use it.
Symbolically, a cloud that hides internal workings.
[draw network cloud]

E: topology.

[three new pictures; circular hosts, square switches]

Loock inside the cloud.

Wire between every pair?
pro: network (wires) is transparent, passes analog signals.

It's never busy. Never any question of how to reach someone.

con: host electronics. laying wires expensive.

Star network. "switch". Federal Express in Memphis.
pro: less wire cost. easy to find a path.
con: load and cost and unreliability of hub.

Mesh topology. Routers and links.
pro: low wire cost. limited router fan-out. some path redundancy.
con: shared links, higher load. complex routing.

0: routing.
Find paths given dst "address".
Harder in mesh than in star or hierarchy.
[diagram: two available paths]

Y

3/18/2012 4:25 PM

2 of4

http://web.mit.edw/6.033/www/lec/110.txt

change far away may require re-routing

-> has a global element, thus scaling problems
many goals:

Efficiency: low delay, fast links

Spread load

Adapt to failures

Minimize payments

Cope w/ huge scale
Routing is a key problem.

0: addressing.
Hosts need to be able to specify destination to network.
specifically, the address you give to the routing system
18.7.22.69, not web.mit.edu
ideal:
every host has a unique ID, perhaps 128 bits assigned at random
routing system can find address, wherever it is
so i can connect to my PDA, whether i left it at home or in the office
no-one knows how to build a routing system for large #s of flat addresses!
maybe can layer on top of something else, but not directly
In practice, encode location hints in addresses.
hierarcical addresses, e.g. 18.7.whatever
[diagram: 18 area, 18.7 area, ...]
rest of inet knows only 18, not every host in 18
Trouble if hosts move or topology changes.
hard to exploit non-hierarchical links (rest of Inet can't use MIT-Harvard)
routing and addressing often very intertwined

E: sharing.
Must multiplex many conversations on each physical wire.
1. how to multiplex?

A.

isochronous.

[input links, routerl, router2, link, repeating cycle]
reserved b/w, predictable delay, originally designed for voice
called TDM

asynchronous
data traffic tends to be bursty - not evenly spaced
you think, then click on a link that loads lots of big images

wasteful to reserve b/w for a conversation

so send and forward whenever data is ready

[diagram: input links, routerl, link, router2, output links]
divide data into packets, each with header w/ info abt dst

2. how to keep track of conversations?

A.

connections

like phone system

you tell network who you want to talk to

figures out path in advance, then you talk

reqgqired for isochronous traffic

can allow control of load balance for async traffic

maybe allow smaller packet headers (just small connection ID)
connection setup complex, forwarding simpler

connectionless / datagrams

many apps don't match net-level connections, e.g. DNS lookups
each packet self-contained, treated separately

packet contains full src and dst addresses

each may take a different route through network!

shifts burden from network to end hosts (connection abstraction)

E: Overload
more demand than capacity
consequence of sharing and growth and bursty sources
how does it appear?
isochronous net: -
new calls blocked, existing calls undisturbed
makes sense if apps have constant unchangeable b/w requirements
async net:
[diagram: router with many inputs]
overload is inside the net, not apparent to sending hosts.

3/18/2012 4:25 PM

http://web.mit.edw/6.033/www/lec/110.txt

net must do something with excess traffic
depends on time scale of demand > capacity
very long: buy faster links
short: tell senders to slow down
feedback
elastic applications (file xfer, video with parameterized compression)
can always add more users, just gets slower for everyone
often better than blocking calls
very short: don't drop -- buffer packets -- "queuing"
demand fluctuates over time
[graph: varying demand, line for fixed link capacityl
buffers allow you to delay peaks into valleys
but only works if valley comes along pretty quick!
adds complexity. must drop if overload too much. source of most Inet loss.
Behavior with overload is key.
[Graph of in rate vs out rate, knee, collapse.]
Collapse: resources consumed coping with overload.
This is an important and hard topic: congestion control

E: high utilization.
How much expensive capacity do we have to pay for?
Capacity >= peak demand would keep users happy.
What would that mean?
single-user traffic is bursty!
[typical user time vs load graph -- avg low, peak high]
Worst case is 100x average, so network would be 99% wasted!
e.g. my one-megabit DSL line is almost entirely idle
too expensive in core to buy Nusers * peak
But when you aggregate async users -- peaks and valleys cancel.
[a few graphs, w/ more and more users, smoother and smoother]
peak gets closer and closer to average
100 users in << 100x capacity needed for 1 user.
less and less idle capacity, lower cost per bit transmitted
"Statistical multiplexing."
Hugely important to economics of Internet
Assumes independent users
mostly true -- but day/night, flash crowds
https://mrtg.mit.edu/mrtg/dmz-rtr-1l-ospf.16.html (MIT DMZ router to campus backbone)
50% average daytime utilization maybe typical on core links

Once you buy capacity, you want to get as close to 100% as possible.
fixed cost, want to maximize revenue/work
may need feedback to tell senders to speed up!
want to stay at first knee of in/out graph.
Or maybe less to limit delay
[graph: load vs queuing delay]

P: errors and failures.
Communication wires are analog, suffer from noise.
Backhoes, unreliable control computers.
General fix: detect, send redundant info (rxmt), or re-route.
How to divide responsibility?
You pay your telecommunications provider, so they better be perfect?
Leads to complex, expensive networks: each piece 100% reliable.
You don't trust the network, so you detect and fix problems yourself.
Leads to complex host software.
Decision of smart network vs smart hosts turns out to be very important.
Locus of complexity pays costs but also has power.
"Best design" depends on whether you are operator or user.

P: speed of light.

foot per nanosecond.

14 ms coast to coast, maybe 40 ms w/ electronics.

Request/response delay. Byte per rtt -> 36 bytes/second.
[picture of pkt going over wire -- and idle wire]

Need to be more efficient.

Worse: delay hurts control algorithms. Change during delay.
Example: Slow down / speed up.

3 of 4 3/18/2012 4:25 PM

4 of4

http://web.mit.edu/6.033/www/lec/110.txt

Result: Oscillation between overload and wastefully idle.

0: wide range of adaptability.
One design, many situations.
Applications: file xfer, games, voice, video.
Delay: machine room vs satellite.
Link bit rate: modem vs fiber optics.
Management: a few users, whole Internet.
Solution: Adaptive mechanisms.

Internet in design space
Asynchronous (no reservations)
Packets (no connections)
No b/w or delay guarantees
May drop, duplicate, re-order, or corrupt packets -- and often does
Not of much direct use! End hosts must fix
but gives host flexibility, room for innovation
"best effort"

demo: ping -f
Flood ping. Outputs packets as fast as they come back or one

hundred times per second, whichever is more. For every
ECHO_REQUEST sent a period “".'' is printed, while for every
ECHO_REPLY received a backspace is printed. This provides a
rapid display of how many packets are being dropped.

ssh amsterdam

su

ping -f localhost

ping -f web.mit.edu

ping -f yahoo.com

demo: traceroute -a yahoo.com

3/18/2012 4:25 PM

6.033 / Preparation for Recitation 10

6.033: Computer Systems
Engineering

Home / News
Schedule

Submissions

General Information
Staff List
Recitations

TA Office Hours

Discussion / feedback
FAQ
Class Notes Errata

Excellent Writing
Examples

2011 Home

1ofl

Preparation for Recitation 10
o apostd o bt effod’

http://web.mit.edu/6.033/www/assignments/e2e-arg.shtml

Spring
2012

Read End-to-end Arguments in System Design. As you read this paper,

think about the following questions:

e How does the end-to-end argument apply to other systems you

know about, for example, the X windows system?

e How does the packet voice example make use of the end-to-end

argument?

e [sit OK for lower levels to do a bad job? Why should they do

error detection and correction?

Also read:

e The introduction and section 1 of the Wikipedia article on
Network Address Translators.

e The Speak Freely End of Life Announcement. Speak Freely was

an early voice chat program for the Internet.

After reading these articles, think about the relationship between the

end-to-end argument and NATs.

led 3]

Questions or comments regarding 6.0337 Send e-mail to the 6.033 staff at 6.033-staff@mit.edu

or to the 6.033 TAs at 6.033-tas@mit.edu.

Top // 6.033 home /

3/10/2012 6:31 PM

End-to-end principle - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/End-to-end_principle

End-to-end principle
From Wikipedia, the free encyclopedia

The end-to-end principle is one of the classic design principles of computer networking.["b U Pirst

explicitly articulated in a 1981 conference paper by Saltzer, Reed, and Clark,[Ref TIb 215 has inspired and
informed many subsequent debates on the proper distribution of functions in the Internet and

communication networks more generally. | I

P Oh @”}g o eal gt mgt —nddle g
The end-to-end principle states that aw;@migjught to reside in the end hosts of'a
network rather than in intermediary nodes — provided they can be implemented "completely and correctly”
in the end hosts. Going back to Baran's work on obtaining reliability from unreliable parts in the early 1960s,

the basic intuition behind the original principle is that the payoffs from adding functions to the network
quickly diminish, especially in those cases where the end hosts will have to implement functions for reasons

of "completeWyway (regardless of the efforts of the network).[“b 3l

The canonical example for the end-to-end principle is that of arbitrarily reliable data transfer between two
communication end points in a distributed network of nontrivial size, for the only way two end points can
obtain perfect reliability is by positive end-to-end acknowledgments plus retransmissions in their absence. In
debates about network neutrality a common interpretation of the end-to-end principle is that it implies a

neutral or "dumm‘?

Contents

= | Basic content of the principle

2 History
= 2.1 The basic notion: reliability from unreliable parts
s 2.2 Early trade-offs: experiences in the Arpanet
» 2.3 The canonical case: TCP/IP

3 Limitations of the principle

4 Notes

5 References

6 External links

Basic content of the principle

The fundamental notion behind the end-to-end principle is that for two processes communicating with each
other via some communication means the reliability obtained from that means cannot be expected to be
perfectly aligned with the reliability requirements of the processes. In particular, meeting or exceeding very
high reliability requirements of communicating proccs?sz:g separated by networks of nontrivial size is more
costly than obtaining the required degree of reliability by positive end-to-end acknowledgements and
retransmissions (referred to as PAR or ARQ).["b U put differently, it is far easier and more tractable to
obtain reliability beyond a certain margin by mechanisms in the end hosts of a network rather than in the

intermediary nodes,[nb Al

especially when the latter are beyond the control of and accountability to the

1 of 7 3/11/2012 5:34 PM

End-to-end principle - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/End-to-end_principle

[nb 6]

former. An end-to-end PAR protocol with infinite retries can obtain arbitrarily high reliability from any

network with a higher than zero probability of successfully transmitting data from one end to another. [tiZ]

The end-to-end principle does not trivially extend to functions beyond end-to-end error control and
correction. E.g., no straightforward end-to-end arguments can be made for communication parameters such

asTatency and throughput. Based on a personal communication with Saltzer (lead author of the original
[Ref2 [Ref 6]

end-to-end paper]) Blumenthal and Clark in a 2001 paper note:
[F]rom the beginning, the end-to-end arguments revolved around requirements that could be
implemented correctly at the end-points; if implementation inside the network is the only way
to‘accomplish the requirement, then an end-to-end argument isn't appropriate in the first place.
®»8 ———-v--n—r-o-—— _ OO O S

History

The meaning of the end-to-end principle has been continuously reinterpreted ever since its initial
articulation. Also, noteworthy formulations of the end-to-end principle can be found prior to the seminal

altzer, Reed, and Clark paper. [Ref2]

The basic notion: reliability from unreliable parts

In the 1960s Paul Baran and Donald Davies in their pre-Arpanet elaborations of networking made brief

comments about reliability that capture the essence of the later end-to-end principle. To quote from a 1964
[Ref 7]

Baran paper:
Reliability and raw error rates are secondary. The network must be built with the expectation of
heavy damage anyway. Powerful error removal methods exist. (p. 5) S e—————

11 rely on Taesftetuoy

Similarly, Davies notes on end-to-end errof contro

It is thought that all users of the network will provide themselves with some kind of error
control and that without difficulty this could be made to show up a missing packet. Because of
this, loss of packets, if it is sufficiently rare, can be tolerated. (p. 2.3)

Early trade-offs: experiences in the Arpanet

The Arpanet was the first large-scale general-purpose packet switching network — implementing several of
the basic notions previously touched on by Baran and Davies, and demonstrating a number of important
aspects to the end-to-end principle:

Packet switching pushes some logical functions toward the communication end points
If the basic premise of a distributed network is packet switching, then functions such as reordering and
duplicate detection inevitably have to be implemented at the logical end points of such network.
Consequently, the Arpanet featured two distinct levels of functionality — (1) a lower level concerned
with transporting data packets between neighboring network nodes (called IMPs), and (2) a higher

level concerned with various end-to-end aspects of the data transmission.!"? 8] Dave Clark, one of the

[Ref11]

authors of the end-to-end principle paper, concludes: "The discovery of packets is not a

e

2 of 7 3/11/2012 5:34 PM

End-to-end principle - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/End-to-end_principle

consequence of the end-to-end argument. It is the success of packets that make the end-to-end
argument relevant" (slide 31).

No arbitrarily reliable data transfer without end-to-end acknowledgment and retransmission mechanisms
The Arpanet was designed to provide reliable data transport between any two end points of the

network — much like a simple I/0 channel between a computer and a near y--pempherarLdevice.[nb 4l
In order to remedy any potential failures of packet transmission normal Arpanet messages were
handed from one node to the next node with a positive acknowledgment and retransmission scheme:

after a successful handover they were then discarded,["b 107 1o source to destination retransmission in
case of packet loss was catered for. However, in spite of significant efforts, perfect reliability as

envisaged in the initial Arpanet specification turned out to be impossible to provide — a reality that

became increasingly obvious once the Arpanet grew well beyond its initial four node topoiogy.["b L]

The Arpanet thus provided a strong case for the inherent limits of network based hop-by-hop

[nb 12] /(7}"0/?- V{)fwa/L /:%f)%/% {gf

reliability mechanisms in pursuit of true end-to-end reliability.

Trade-off between reliability, latency, and throughput A
The pursuit of perfect reliability may hurt other relevant parameters of a data transmission — most ”/) .
importantly latency and throughput. This is particularly important for applications that require no
perfect reliability, but rather value predictable throughput and low latency — the classic example being
interactive real-time voice applications. ThisTse case was catered for in the Arpanet by providing a

\(‘L(ARL —raw message service that dispensed with various reliability measures so as to provide faster and lower

. . . s -“_A—_—__—F—_'—w"————
latency data transmission service to the end hosts.mﬂ_ﬂ

The canonical case: TCP/IP

To this day the Internet is characterized mainly by the primacy of the IP protocol — providing a
connectionless datagram service with no delivery guarantees and effectively no QoS parameters — at the
narrow waist-of the iourglass abstraction of the Internet architecture. Arbitrary protocols may sit on top of
IP; however, TCP has been the one most widely used, given that it provides a reliable end-to-end transport
service to end points thus communicating. The functional separation between IP and TCP serves at the
canonical exemplification of the end-to-end principle and is often used in a normative sense when lamenting
violations of network neutrality.

Limitations of the principle

The most important limitation of the end-to-end principle is that its basic conclusion — put functions in the
application end points rather than the intermediary nodes — is not trivial to operationalize. Specifically:

= it assumes a notion of distinct application end points as opposed to intermediary nodes that makes
little sense when considering the structure of distributed applications;
= it assumes a dichotomy between non-application-specific and application-specific functions (the
former to be part of the operations between application end points and the latter to be implemented by
the application end points themselves) while arguably no function to be performed in a network is
\)\\16{ Wy » fully orthogonal to all possible application needs; y@qﬁ vk’/e /6 ﬁt { [l’
t L ® it remains silent on functions that may not be implemented "completely and correctly" in the
h‘ 00 application end points and places no upper bound on the amount of application specific functions that
may be placed with intermediary nodes on grounds of performancy considerations, economic
trade-offs, etc.

3of7 3/11/2012 5:34 PM

End-to-end principle - Wikipedia, the free encyclopedia

4 of 7

Notes

1. ~ See Denning's Great Principles of Computing.

2. ~ The 1981 paper[Re“] was published in ACM's TOCS in an updated version in 1984. 1121 A 150, there is a
1980 predecessor version with the same title, published as an internal note at MIT's Laboratory for Computer
Science.[Ref3]

3. A The full quote from the Saltzer, Reed, Clark paper reads:[Rer?]

In a system that includes communications, one usually draws a modular boundary around the
communication subsystem and defines a firm interface between it and the rest of the system.
When doing so, it becomes apparent that there is a list of functions each of which might be
implemented in any of several ways: by the communication subsystem, by its client, as a joint
venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for the following class of arguments: The
function in question can completely and correctly be implemented only with the knowledge and
help of the application standing at the endpoints of the communication system. Therefore,
providing that questioned function as a feature of the communication system itself is not possible.
(Sometimes an incomplete version of the function provided by the communication system may be
useful as a performance enhancement.) We call this line of reasoning against low-level function
implementation the end-to-end argument. (p. 278)

4. ~ Tn fact, even in local area networks there is a non-zero probability of communication failure — "attention to
reliability at higher levels is required regardless of the control strategy of the network". [Ref4]

5. ~ Put in economics terms, the marginal cost of additional reliability in the network exceeds the marginal cost of
obtaining the same additional reliability by measures in the end hosts. The economically efficient level of
reliability improvement inside the network depends on the specific circumstances; however, it is certainly
nowhere near zero:(R¢f2]

Clearly, some effort at the lower levels to improve network reliability can have a significant effect
on application performance. (p. 281)

6. ~ The possibility of enforceable contractual remedies notwithstanding, it is impossible for any network in which
intermediary resources are shared in a non-deterministic fashion to guarantee perfect reliability. At most, it may
quote statistical performance averages.

7. A More precisely:R¢f?]

A correctly functioning PAR protocol with infinite retry count never loses or duplicates messages.

[Corollary:] A correctly functioning PAR protocol with finite retry count never loses or duplicates

messages, and the probability of failing to deliver a message can be made arbitrarily small by the

sender. (p. 3)

8. ” Inaccordance with the Arpanet RI Q[Rerg] (pp. 47 f.) the Arpanet conceptually separated certain functions.
As BBN point out ina 1977 paper[RCIC 101,

[T]he ARPA Network implementation uses the technique of breaking messages into packets to
minimize the delay seen for long transmissions over many hops. The ARPA Network

implementation also allows several messages to be in transit simultaneously between a given pair

of Hosts. However, the several messages and the packets within the messages may arrive at the
destination IMP out of order, and in the event of a broken IMP or line, there may be duplicates.

The task of the ARPA Network source-to-destination transmission procedure is to reorder packets
and messages at their destination, to cull duplicates, and after all the packets of a message have

arrived, pass the message on to the destination Host and return an end-to-end acknowledgment. (p.
284)

9. * This requirement was spelled out in the Arpanet RFQIReM),
From the point of view of the ARPA contractors as users of the network, the communication

3/11/2012 5:34 PM

http://en.wikipedia.org/wiki/End-to-end_principle

End-to-end principle - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/End-to-end_principle

subnet is a self-contained facility whose software and hardware is maintained by the network
contractor. In designing Interconnection Software we should only need to use the I/0 conventions
for moving data into and out of the subnet and not otherwise be involved in the details of subnet
operation. Specifically, error checking, fault detection, message switching, fault recovery, line
switching, carrier failures and carrier quality assessment, as required to guarantee reliable network
performance, are the sole responsibility of the network contractor. (p. 25)

10. ”* Notes Walden ina 1972 paper:[Re“z]
Each IMP holds on to a packet until it gets a positive acknowledgment from the next IMP down
the line that the packet has been properly received. It is gets the acknowledgment, all is well; the
IMP knows that the next IMP now has responsibility for the packet and the transmitting IMP can
discard its copy of the packet. (p. 11)

11. ~ By 1973, BBN acknowledged that the initial aim of perfect reliability inside the Arpanet was not
achievable:[R¢13]
Initially, it was thought that the only components in the network design that were prone to errors
were the communications circuits, and the modem interfaces in the IMPs are equipped with a CRC
checksum to detect "almost all" such errors. The rest of the system, including Host interfaces,
IMP processors, memories, and interfaces, were all considered to be error-free. We have had to
re-evaluate this position in the light of our experience. (p. 1)

In fact, as Metcalfe summarizes by 1973,ReM 14T nihere have been enough bits in error in the Arpanet to fill this
quota [one undetected transmission bit error per year] for centuries" (p. 7-28). See also BBN Report 2816 (pp.
10 f"f.)[R':f 151 for additional elaboration about the experiences gained in the first years of operating the Arpanet.

12. * Incidentally, the Arpanet also provides a good case for the trade-offs between the cost of end-to-end
reliability mechanisms versus the benefits to be obtained thusly. Note that true end-to-end reliability
mechanisms would have been prohibitively costly at the time, given that the specification held that there could
be up to 8 host level messages in flight at the same time between two end points, each having a maximum of
more than 8000 bits. The amount of memory that would have been required to keep copies of all those data for
possible retransmission in case no acknowledgment came from the destination IMP was too expensive to be
worthwhile. As for host based end-to-end reliability mechanisms — those would have added considerable
complexity to the common host level protocol (Host-Host Protocol). While the desirability of host-host
reliability mechanisms was articulated in RFC 1, after some discussion they were dispensed with (although
higher level protocols or applications were, of course, free to implement such mechanisms themselves). For a
recount of the debate at the time see Biirwolff 2010,[Rer 6] pp. 56-58 and the notes therein, especially notes 151
and 163.

13. ” Early experiments with packet voice date back to 1971, and by 1972 more formal ARPA research on the
subject commenced. As documented in RFC 660 (p. 2),[Ref '"Vin 1974 BBN introduced the raw message
service (Raw Message Interface, RMI) to the Arpanet, primarily in order to allow hosts to experiment with
packet voice applications, but also acknowledging the use of such facility in view of possibly internetwork
communication (cf. a BBN Report 2913(¢" 18] 4t pp. 55 £). See also Barwolff 2010, 18] . 80-84 and the
copious notes therein.

References

] Aab Saltzer, J. H.,, D. P. Reed, and D. D. Clark (1981) "End-to-End Arguments in System Design". In:
Proceedings of the Second International Conference on Distributed Computing Systems. Paris, France. April
8-10, 1981. IEEE Computer Society, pp. 509-512.

2. ~@bedegalizer, J. H., D. P. Reed, and D. D. Clark (1984) "End-to-End Arguments in System Design". In:
ACM Transactions on Computer Systems 2.4, pp. 277-288. (See also here (http://web.mit.edu/Saltzer
/wwwipublications/endtoend/endtoend. pdf) for a version from Saltzer's MIT homepage.)

3. 7 Saltzer, J. H. (1980). End-to-End Arguments in System Design. Request for Comments No. 185, MIT

50f7 3/11/2012 5:34 PM

End-to-end principle - Wikipedia, the free encyclopedia

60f7

12.

16.

17.
18.

http://en.wikipedia.org/wiki/End-to-end_principle

Laboratory for Computer Science, Computer Systems Research Division. (Online copy (http://web.mit.edu
/Saltzer/www/publications/rfc/csr-rfc-185.pdf)).

A Clark, D. D., K. T. Pogran, and D. P. Reed (1978). “An Introduction to Local Area Networks”. In:
Proceedings of the IEEE 66.11, pp. 1497-1517.

A Sunshine, C. A. (1975). Issues in Communication Protocol Design — Formal Correctness. Draft. INWG
Protocol Note 5. IFIP WG 6.1 (INWG). (Copy from CBI (http://xn--brwolff-5wa.de/public/Sunshine-
1975-Issues-in-Communication-Protocol-Design--Formal-Correctness--IN WG-Note-5. pdf)).

A Blumenthal, M. S. and D. D. Clark (2001). "Rethinking the Design of the Internet: The End-to-End Arguments
vs. the Brave New World". In: ACM Transactions on Internet Technology 1.1, pp. 70-109. (Online
pre-publication version (http://mia.ece.uic.edu/~papers/Networking/pdf00002.pdf)).

A Baran, P. (1964). "On Distributed Communications Networks". In: IEEE Transactions on Communications
12.1, pp. 1-9.

A Davies, D. W., K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson (1967). "A Digital Communication
Network for Computers Giving Rapid Response at Remote Terminals". In: SOSP'67: Proceedings of the First
ACM Symposium on Operating System Principles. Gatlinburg, TN. October 1-4, 1967. New York, NY: ACM,
pp. 2.1-2.17.

A4 b geheblik, T, J., D. B. Dawkins, and Advanced Research Projects Agency (1968). RFQ for ARPA
Computer Network. Request for Quotations. Advanced Research Projects Agency (ARPA), Department of
Defense (DoD). (Online copy (http://www.cs.utexas.edu/users/chris/DIGITAL_ARCHIVE/ARPANET
/RFQ-ARPA-IMP.pdf)).

A McQuillan, J. M. and D. C. Walden (1977). "The ARPA Network Design Decisions". In: Computer Networks
1.5, pp. 243-289. (Online copy (http://www.walden-family.com/public/whole-paper.pdf)). Based on a Crowther

et al. (1975) paper, which is based on BBN Report 2918, which in turn is an extract from BBN Report 2913,
both from 1974.

. " Clark, D. D. (2007). Application Design and the End-to-End Arguments. MIT Communications Futures

Program Bi-Annual Meeting. Philadelphia, PA. May 30-31, 2007. Presentation slides. (Online copy
(http://cfp.mit.edu/events/may07/presentations/CLARK%20Application%20Design.ppt)).

A Walden, D. C. (1972). "The Interface Message Processor, Its Algorithms, and Their Implementation”. In:
AFCET Journées d’FEtudes: Réseaux de Calculateurs (AFCET Workshop on Computer Networks). Paris,
France. May 25-26, 1972. Association Frangaise pour la Cybernétique Economique et Technique (AFCET).
(Online copy (http://www.walden-family.com/public/1972-afcet-paris.pdf)).

. A McQuillan, J. M. (1973). Software Checksumming in the IMP and Network Reliability. RFC 528. Historic.

NWG.

A Metcalfe, R. M. (1973). "Packet Communication”. PhD thesis. Cambridge, MA: Harvard University. Online
copy (http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-114.pdf) (revised edition, published as MIT
Laboratory for Computer Science Technical Report 114). Mostly written at MIT Project MAC and Xerox
PARC.

. A Bolt, Beranek and Newman Inc. (1974). Interface Message Processors for the Arpa Computer Network. BBN

Report 2816. Quarterly Technical Report No.5, 1 January 1974 to 31 March 1974. Bolt, Beranek and Newman
Inc. (BBN). (Private copy, courtesy of BBN (http:/xn--brwolff-5wa.de/public/BBN-1974--Interface-Message-
Processors-for-the-ARPA-Computer-Network--Report-28 1 6--Quarterly-Technical-Report-5. pdf)).

A4 Biirwolff, M. (2010). "End-to-End Arguments in the Internet: Principles, Practices, and Theory".
Self-published online and via Createspace/Amazon (PDF, errata, etc. (http://xn--brwolff-5wa.de/publications
/2010-10-PhD-thesis.html))

A Walden, D. C. (1974) Some Changes to the IMP and the IMP/Host Interface. RFC 660. Historic. NWG.

A BBN (1974). Interface Message Processors for the Arpa Computer Network. BBN Report 2913. Quarterly
Technical Report No. 7, 1 July 1974 to 30 September 1974. Bolt, Beranek and Newman Inc. (BBN).

External links

= MIT homepage of Jerome H. Saltzer (http://web.mit.edu/Saltzer/) featuring publication list, working

papers, biography, etc.

3/11/2012 5:34 PM

End-to-end principle - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/End-to-end_principle

= Personal homepage of David P. Reed (http://reed.conV/) featuring publication list, blog, biography, etc.
= MIT homepage of David D. Clark (http://groups.csail.mit.edu/ana/People/Clark.html) featuring
publication list, working papers, biography, etc.

Retrieved from "http://en.wikipedia.org/w/index.php?title=End-to-end principle&oldid=480321632"
Categories: Internet architecture Network architecture TCP/IP Programming paradigms

= This page was last modified on 5 March 2012 at 14:01.

= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

7of7 3/11/2012 5:34 PM

SALTZER ET AL. End-to-End Arguments in System Design 1

END-TO-END ARGUMENTS IN SYSTEM DESIGN
J.H. Saltzer, D.P. Reed and D.D. Clark®

M.L.T. Laboratory for Computer Science

This paper presents a design principle that helps guide placement of functions among the

modules of a distributed computer system. The principle, called the end-to-end argument,
suggests that ﬁfflmﬂmevels of a system may be redundant or of little
value when compared with the cost of providing them at that Tow level. Examples
discussed in the paper include bit error recovery, security usingencryption, duplicate
message suppression, recovery from system crashes, and delivery acknowledgement. Low

level mechanisms to support these functions are justified only as performance
enhancements. (

i &

Introduction

Choosing the proper boundaries between functions is perhaps the primary activity of the
computer system designer. Design principles that provide guidance in this choice of function
placement are among the most important tools of a system designer. This paper discusses one
class of function placement argument that has been used for many years with neither explicit
recognition nor much conviction. However, the emergence of the data communication network as
a computer system component has sharpened this line of function placement argument by making
more apparent the situations in which and reasons why it applies. This paper articulates the
argument explicitly, so as to examine its nature and to see how general it really is. The argument
appeals to application requirements, and provides a rationale for moving function upward in a

layered system, closer to the application that uses the function. We begin by considering the
communication network version of the argument.

In a system that includes communications, one usually draws a modular boundary around the
communication subsystem and defines a firm interface between it and the rest of the system.
When doing so, it becomes apparent that there is a list of functions each of which might be
implemented in any of several ways: by the communication subsystem, by its client, as a joint

Authors' addresses: J.H. Saltzer and D.D. Clark, M.L.T. Laboratory for Computer Science, 545 Technology

Square, Cambridge, Massachusetts 02139.: D.P. Reed, Software Arts, Inc., 27 Mica Lane, Wellesley,
Massachusetts 02181.

This research was supported in part by the Advanced Research Projects Agency of the U.S. Department of
Defense and monitored by the Office of Naval Research under contract number N00014-75-C-0661.

Revised version of a papey
France, April 8-1¢
Engineers, Inc. Rep

eq the Second International Conference on Distributed Computing Systems, Paris,

pp. 509-512.: Copyright 1981 by The Institute of Electrical and Electronics
ed with permission.

Published in ACM Transactions in Computer Systems 2, 4, Novembkf, 1984, paggs 277-288.
Reprinted in Craig Partridge, editor Innovations in internetworking. A ouse, Norwood,
networks. Artech House, Boston, 1991, ISBN 0-89006-483-0.

Scribe/FinalWord source: http://web.mit.edu/Saltzer/www/publications/

ML ’\’wv@l’lt SALTZER ET AL. End-to-End Arguments in System Design 2

i venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

] The function in question can completely and correctly be implemented only with the

0/’] v TlQ QPD knowledge and help of the application standing at the end points of the communication

, system. Therefore, providing that questioned function as a feature of the communication

Ca(,r\ d{) ,'}“ e system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

69 (Ml"{ We call this line of reasoning against low-level function implementation the "end-to-end

A - argument." The following sections examine the end-to-end argument in detail, first with a case

CWP 5}]0‘[study of a typical example in which it is used — the function in question is reliable data

| transmission — and then by exhibiting the range of functions to which the same argument can be

JO []L applied. For the case of the data communication system, this range includes encryption, duplicate

message detection, message sequencing, guaranteed message delivery; detecting host crashes,

and (Wrm‘tﬁmis to apply to many other functions

H \ 7 of a_mating system, including its file system. Examination of this broader context
etrfﬂ(éhq_, will be easier if we first consider the more specific data communication context, however.

Y\ML 9# {'“ y End-to-end caretaking

Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:

1. At host A the file transfer program calls upon the file system to read the file from the disk,
where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.

At host B a data communication program removes the packets from the data communication
protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. Athost B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:

!
{761L)k 1. The file, though originally written correctly onto the disk at host A, if read now may contain
pg incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system
e(a) (5 might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability — low
enough that the system allows useful work to be accomplished — brute force countermeasures
such as doing everything three times appear uneconomical. £—

The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction

committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted. S e

If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.

Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.

The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file:And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.

Thus the argument: in order to achieve careful file transfer, gie ’a’ﬁf}l,i-c_étﬁn program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee — in this case, a

checksum to detect failures and a refry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example

An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum

on each hop from one gate@&the next, on the assumption that the primary threat to correct
communication was corruption of bifs during fransmission. Application programmers, aware of
sl OF Bue BUERS ENATSSION

T}y\ts do(;gnlql 5€¢n]LO}w”)r’ P-FW*LW ~ e mQ 7 _]igo//

705
el ol
o hie
do 1}

SALTZER ET AL. End-to-End Arguments in System Design 4

this checksum, assumed that the network was providing reliable transmission, without realizing
that the transmitted data was unprotected while stored in each gateway. One gateway computer
developed a transient error in which while copying data from an input to an output buffer a byte
pair was interchanged, with a frequency of about one such interchange in every million bytes
passed. Over a period of time many of the source files of an operating system were repeatedly
transferred through the defective gateway. Some of these source files were corrupted by byte
exchanges, and their owners were forced to the ultimate end-to-end error check: manual
comparison with and correction from old listings.

Performance aspects

It would be too simplistic to conclude that the lower levels should play no part in obtaining
reliability, however. Consider a network that is somewhat unreliable, dropping one message of
each hundred messages sent. The simple strategy outlined above, transmitting the file and then
checking to see that the file arrived correctly, would perform more poorly as the length of the file
increases. The probability that all packets of a file arrive correctly decreases exponentially with
the file length, and thus the expected time to transmit the file grows exponentially with file
length. Clearly, some effort at the lower levels to improve network reliability can have a
significant effect on application performance. But the key idea here is that the lower levels need
not provide "perfect” reliability.

Thus the amount of effort to put into reliability measures within the data communication system
is seen to be an engineering tradeoff based on performance, rather than a requirement for
correctness. Note that performance has several aspects here. If the communication system is too
unreliable, the file transfer application performance will suffer because of frequent retries
following failures of its end-to-end checksum. If the communication system is bmh
internal reliability measures, those measures have a performance cost, too, in the form of
bandwidth lost to redundant data and delay added by waiting for internal consistency checks to
complete before delivering the data. There is little reason to push in this direction very far, when

a@: is considered that the end-to-end check of the file transfer application must still be implemented

o matter_how reli ication system becomes. The "propmequires
careful thought; for example one might start by designing the communication system to provide
just the reliability that comes with little cost and engineering effort, and then evaluate the residual
error level to insure that it is consistent with an acceptable retry frequency at the file transfer
level. It is probably not importanw striv%for a negligible el}ror rate at any point below the

[

application level. Ca i &]Lt ” o P pe/(o MRAUp,
Using performance to justify placing functions in‘a low-level subsystem must be done carefully.
Sometimes, by examining the problem thoroughly, the same or better performance enhancement

can be achieved at the high level. Performing a function at a low level may be more efficient, if

the function can be performed with a minimum perturbation of the machinery already included in
the low-level subsystem, but just the opposite situation can occur — that is, performing the
function at the lower level may cost more — for two reasons. First, since the lower level
subsystem is common to many applmmat do not need the function will
pay for it anyway. Second, the low-level subsystem may not have as much information as the

higher levels, so it cannot do the job as efficiently. ﬁf/ﬁ/‘#ﬂ] @ (OM 0 z EW(01,(]((9?1 Plns

Frequently, the performance tradeoff is quite complex. Consider again the careful file transfer on
an unreliable network. The usual technique for increasing packet reliability is some sort of per-
packet error check with a retry protocol. This mechanism can be implemented either in the
coM&?ﬁe careful file transfer application. For example, the receiver in
the careful file transfer can periodically compute the checksum of the portion of the file thus far

received and transmit this back to the sender. The sender can then restart by retransmitting any

portion that arrived in error.
e

b cot

more

SALTZER ET AL. End-to-End Arguments in System Design 5

The end-to-end argument does not tell us where to put the early checks, since either layer can do
this performance-enhancement job. Placing the early retry protocol in the file transfer application
simplifies the communication system, but may increase overall cost, since the communication
system is shared by other applications and each application must now provide its own reliability
enhancement. Placing the early retry protocol in the communication system may be more
efficient, since it may be performed inside the network on a hop-by-hop basis, reducing the delay
involved in correcting a failure. At the same time, there may be some application that finds the
cost of the enhancement is not worth the result but it now has no choice in the matter* . A great
deal of information about system implementation is needed fo mmake this choice intelligently.

!
Other examples of the end-to-end argument L/V5% }mt ¢y C/&a:(p

Delivery guarantees

The basic argument that a lower-level subsystem that supports a distributed application may be
wasting its effort providing a function that must by nature be implemented at the application
level anyway can be applied to a variety of functions in addition to reliable data transmission.
Perhaps the oldest and most widely known form of the argument concerns acknowledgement of
delivery. A data communication network can easily return an acknowledgement to the sender for
every message delivered to a recipient. The ARPANET, for example, returns a packet known as
"Rqu%l(ﬁf_I\L@[l] whenever it delivers a message. Although this
acknowledgement may be useful within the network as a form of congestion control (originally
the ARPANET refused to accept another message to the same target until the previous RFNM
had returned) it was never w%mm_%ﬂNET The
reason is that knowing for sure that the message was delivered to the target host is not very
important. What the application wants to know is whether or not the target host acted on the
message; all manner of disaster might have struck after message delivery but before completion

of the action requested by the message. The acknowledgement that is really desired is an end-to- . M
end one, which can be originated only by the target application — "I did it", or "I didn't." 6{ [9 p %

Another strategy for obtaining immediate acknowledgements is to make the target host&nl y 010
sophisticated enough that when it accepts delivery of a message it also accepts responsibility for
guaranteeing that the message is acted upon by the target application. This approach can V/ 7
eliminate the need for an end-to-end acknowledgement in some, but not all applications. An end-)
to-end acknowledgement is still required for applications in which the action requested of the (Oﬂ{t//n
target host should be done only if similar actions requested of other hosts are successful. This

kind of application requires a two-phase commit protocol[5,10,15], which is a sophisticated end-

to-end acknowledgement. Also, if the target application may either fail or refuse to do the

requested action, and thus a negative acknowledgement is a possible outcome, an end-to-end
acknowledgement may still be a requirement.

Secure transmission of data

Another area in which an end-to-end argument can be applied is that of data_encryption. The
argument here is threefold. First, if the data transmission system performs encryption and
decryption, it must be trusted to manage securely the required encryption keys. Second, the data
will be in the clear and thus vulnerable as it passes into the target node and is fanned out to the
target application. Third, the authenticity of the message must still be checked by the applicatjon.
If the application performs end-to-end encryption, it obtains its required authentication check, it

c'ne,‘-([e ﬁe (OMM’PK T[/éhz]476 //W[u/ﬂfl(é)ld/{

For example, real time transmission of speech has tighter constraints on message delay than on bit-error rate.
Most retry schemes significantly increase the variability of delay.

\0(, ye fll“k 5

(040

Can quswer

C{U]t% @U

SALTZER ET AL. End-to-End Arguments in System Design 6

can handle key management to its satisfaction, and the data is never exposed outside the
application.

Thus, to satisfy the requirements of the application, there is no need for the communication
subsystem to provide for automatic encryption of all traffic. Automatic encryption of all traffic
by the communication subsystem may be called for, however, to ensure something else — that a
misbehaving user or application program does not deliberately transmit information that should
not be exposedhmafm\ryptmn of all data as it is put into the network is one more
firewall the system designer can use to ensure that information does not escape outside the
system. Note however, that this is a different requirement from authenticating access rights of a
system user to specific parts of the data. This network-level encryption can be quite
unsophisticated — the same key can be used by all hosts, with frequent changes of the key. No
per-user keys complicate the key management problem. The use of encryption for application-

level authentication and protection is complementary. Neither mechanism can satisfy both
requirements completely. L’L a l?”f{;

(
Duplicate message suppression
A more sophisticated argument can be applied to duplicate message suppression. A property of

some communication network designs is that a message or a part of a message may be delivered
twice, typically as a result of time-out-triggered failure detection and retry mechanisms operating
within the network. The network can provide the function of watching for and suppressing any
such duplicate messages, or it can simply deliver them. One might expect that an application
would find it very troublesome to cope with a network that may deliver the same message twice;
indeed it is troublesome. Unfortunately, even if the network suppresses duplicates, the
application itself may accidenmuwnligme_‘__’Mwm_in its own failure/retry
procedures. These application level duplications look like different messages to the
communication system, so it cannot suppress them; suppression must be accomplished by the
application itself with knowledge of how to detect its own duplicates.

A common example of duplicate suppression that must be handled at a high level is when a
remote system user, puzzled by lack of response, initiates a new login to a time-sharing system.
For another example, most communication applications involve a provision for coping with a
system crash at one end of a multi-site transaction: reestablish the transaction when the crashed
system comes up again. Unfortunately, reliable detection of a sysw: the
problem may just be a lost or long-delayed acknowledgement. If so, the refried request is now a
duplicate, which only the application can discover. Thus the end-to-end argument again: if the
application level has to have a duplicate-suppressing mechanism anyway, that mechanism can
also suppress any duplicates generatedmm%li so the function can be
omitted from that lower level. The same basic reasoning applies to completely omitted messages
as well as to duplicated ones.

Guaranteeing FIFO message delivery

Ensuring that messages arrive at the receiver in the same order they are sent is another function
usually assigned to the communication subsystem. The mechanism usually used to achieve such
first-in, first-out (FIFO) behavior guarantees FIFO ordering among messages sent on the same
virtual circuif. Messages—sent along independent virtual circuits, or through intermediate
processes outside the communication subsystem may arrive in an order different from the order
sent. A distributed application in which one node can originate requests that initiate actions at
several sites cannot take advantage of the FIFO or@ering property to guarantee that the actions

requested occur in the correct order. Instead, an independent mechanism at a higher level than the

communication subsystem must control the ordering of actions.

QPP 5/44’0“ p(0d;4e c’f dlf

SALTZER ET AL. End-to-End Arguments in System Design 7

Transaction management

We have now applied the end-to-end argument in the construction of the SWALLOW distributed
data storage system[15], where it leads to significant reduction in overhead. SWALLOW
provides data storage servers called repositories that can be used remotely to store and retrieve
data. Accessing data at a repository is done by sending it a message specifying the object to be
accessed, the version, and type of access (read/write), plus a value to be written if the access is a
write. The underlying message communication system does not suppress duplicate messages,
since a) the object identifier plus the version information suffices to detect duplicate writes, and
b) the effect of a duplicate read request message is only to genemwhmh is
easily discarded by the originator. Consequently, the low-level message communication protocol
is significantly simplified.

The underlying message communication system does not provide delivery acknowledgement
either. The acknowledgement that the originator of a write request needs is that the data was
stored safely. This acknowledgement can be provided only by high levels of the SWALLOW
system. For read requests, a delivery acknowledgement is redundant, since the response
containing the value read is sufficient acknowledgement. By eliminating delivery
acknowledgements, the number of messages transmitted is halved. This message reduction can
have a significant effect on both host load and network load, improving performance. This same
line of reasoning has also been used in development of an experimental protocol for remote
access to disk records[6]. The resulting reduction in path length in lower-level protocols was
important in maintaining good performance on remote disk access.

Identifying the ends o whats Jécoi foc p@ Q’/Jﬂ

Using the end-to-end argument sometimes requires subtlety of analyis of application
requirements. For example, consider a computer communication network that carries some
packet voice connections, conversations between digital telephone instruments. For those
connections that carry voice packets, an unusually strong version of the end-to-end argument
applies: if low levels of the communication system try to accomplish bit-perfect communication,
they will probably introduce uncontrolled delays in i for example, by requesting
retransmission of damaged packets and holding up delivery of later packets until earlier ones
have been correctly retransmitted. Such delays are disruptive to the voice application, which
needs to feed data at a constant rate to the listener. It is better to accept slightly damaged packets
as they are, or even to replace timfhsﬂnﬁce, a duplicate of the previous packet, or a noise
burst. The natural redundancy of voice, together with the high-level error correction procedure in
which one participant says "excuse me, someone dropped a glass. Would you please say that
again?" will handle such dropouts, if they are relatively infrequent. m },1 ymads (e /1?

However, this strong version of the end-to-end argument is a property of the specific application
— two people in real-time conversation — rather than a property, say, of speech in general. If one
considers instead a speech message system, in which the voice packets are stored in a file for
later listening by the recipient, the arguments suddenly change their nature. Short delays in
delivery of packets to the storage medium are not particularly disruptive so there is no longer any
objection to low-level reliability measures that might introduce delay in order to achieve
reliability. More important, it is actually helpful to this application to get as much accuracy as
possible in the recorded message, since the recipient, at the time of listening to the recording, is
not going to be able to ask the sender to repeat a sentence. On the other hand, with a storage
system acting as the receiving end of the voice communication, an end-to-end argument does
apply to packet ordering and duplicate suppression. Thus the end-to-end argument is not an
absolute rule, but rather a guideline that helps in application and protocol design analysis; one
must use some care to identify the end points to which the argument should be applied.

Wl e g ol dudp

o 1

(on?uﬁz/

SALTZER ET AL. End-to-End Arguments in System Design 8

History, and application to other system areas

The individual examples of end-to-end arguments cited in this paper are not original; they have
accumulated over the years. The first example of questionable intermediate delivery
acknowledgements noticed by the authors was the "wait" message of the M.L.T. Compatible
Time-Sharing System, which the system printed on the user's terminal whenever the user entered
a command[3]. (The message had some value in the early days of the system, when crashes and
communication failures were so frequent that intermediate acknowledgements provided some
needed reassurance that all was well.) l\ CL{fL

The end-to-end argument relating to encryption was first publicly discussed by Branstad in a
1973 paper[2]; presumably the military security community held classified discussions before
that time. Diffie and Hellman[4] and Kent[8] develop the arguments in more depth, and
Needham and Schroeder[11] devised improved protocols for the purpose.

The two-phase-commit data update protocols of Gray[5], Lampson and Sturgis[10] and Reed[13]
all use a form of end-to-end argument to justify their existence; they are end-to-end protocols that
do not depend for correctness on reliability, FIFO sequencing, or duplicate suppression within
the communication system, since all of these problems may also be introduced by other system
component failures as well. Reed makes this argument explicitly in the second chapter of his
Ph.D. thesis on decentralized atomic actions[14].

End-to-end arguments are often applied to error control and correctness in application systems.
For example, a banking system usually provides high-level auditing procedures as a matter of
policy and legal requirement. Those high-level auditing procedures will uncover not only high-
level mistakes such as performing a withdrawal against the wrong account, it will also detect
low-level mistakes such as coordination errors in the underlying data management system.
Therefore a costly algorithm that absolutely eliminates such coordination errors may be arguably
less appropriate than a less costly algorithm that just makes such errors very rare. In airline
reservation systems, an agent can be relied upon to keep trying, through system crashes and
delays, until a reservation is either confirmed or refused. Lower level recovery procedures to
guarantee that an unconfirmed request for a reservation will survive a system crash are thus not
vital. In telephone exchanges, a failure that could cause a single call to be lost is considered not
worth providing explicit recovery for, since the caller will probably replace the call if it
matters[7]: All of these design approaches are examples of the end-to-end argument being
applied to automatic recovery.

Much of the debate in the network protocol community over datagrams, virtual circuits, and
connectionless protocols is a debate about end-to-end arguments. A modularity argument prizes a
reliable, FIFO sequenced, duplicate-suppressed stream of data as a system component that is easy
to build on, and that argument favors virtual circuits. The end-to-end argument claims that
centrally-provided versions of each of those functions will be incomplete for some applications,
and those applications will find it easier to build their own version of the functions starting with
datagrams.

A version of the end-to-end argument in a non-communication application was developed in the
1950's by system analysts whose responsibility included reading and writing files on large
numbers of magnetic tape reels. Repeated attempts to define and implement a "reliable tape
subsystem" repeatedly foundered, as flaky tape drives, undependable system operators, and
system crashes conspired against all narrowly focused reliability measures. Eventually, it became
standard practice for every application to provide its own application-dependent checks and
recovery strategy; and to assume that lower-level error detection mechanisms at best reduced the
frequency with which the higher-level checks failed. As an example, the Multics file backup
system[17], even though it is built on a foundation of a magnetic tape subsystem format that

SALTZER ET AL. End-to-End Arguments in System Design 9

provides very powerful error detection and correction features, provides its own error control in
the form of record labels and multiple copies of every file.

The arguments that are used in support of reduced instruction set computer (RISC) architecture
are similar to end-to-end arguments. The RISC argument is that the client of the architecture will
get better performance by implementing exactly the instructions needed from primitive tools; any
attempt by the computer designer to anticipate the client's requirements for an esoteric feature
will probably miss the target slightly and the client will end up reimplementing that feature
anyway. (We are indebted to M. Satyanarayanan for pointing out this example.)

Lampson, in his arguments supporting the "open operating system,"[9] uses an argument similar
to the end-to-end argument as a justification. Lampson argues against making any function a
permanent fixture of lower-level modules; the function may be provided by a lower-level module
but it should always be replaceable by an application's special version of the function. The
reasoning is that for any function you can think of, at least some applications will find that by
necessity they must implement the function themselves in order to meet correctly their own
requirements. This line of reasoning leads Lampson to propose an "open" system in which the
entire operating system consists of replaceable routines from a library. Such an approach has only
recently become feasible in the context of computers dedicated to a single application. It may be
the case that the large quantity of fixed supervisor function typical of large-scale operating
systems is only an artifact of economic pressures that demanded multiplexing of expensive
hardware and therefore a protected supervisor. Most recent system "kernelization" projects, in
fact, have focused at least in part on getting function out of low system levels[16,12]. Though
this function movement is inspired by a different kind of correctness argument, it has the side
effect of producing an operating system that is more flexible for applications, which is exactly
the main thrust of the end-to-end argument,

Conclusions

End-to-end arguments are a kind of "Occam's razor" when it comes to choosing the functions to
be provided in a communication subsystem. Because the communication subsystem is frequently
specified before applications that use the subsystem are known, the designer may be tempted to
"help" the users by taking on more function than necessary. Awareness of end-to-end arguments
can help to reduce such temptations.

It is fashionable these days to talk about "layered" communication protocols, but without clearly
defined criteria for assigning functions to layers. Such layerings are desirable to enhance
modularity. End-to-end arguments may be viewed as part of a set of rational principles for
organizing such layered systems. We hope that our discussion will help to add substance to
arguments about the "proper" layering.

Acknowledgements

Many people have read and commented on an earlier draft of this paper, including David
Cheriton, F.B. Schneider, and Liba Svobodova. The subject was also discussed at the ACM
Workshop in Fundamentals of Distributed Computing, in Fallbrook, California during December
1980. Those comments and discussions were quite helpful in clarifying the arguments.

SALTZER ET AL. End-to-End Arguments in System Design 10

References

a

10.

1L

12.
13;

14.

15.

16.

17.

Bolt Beranek and Newman Inc. Specifications for the interconnection of a host and an IMP.
Technical Report No. 1822, Cambridge, Mass., December, 1981.

Branstad, D.K. Security aspects of computer networks. AIAA Paper No. 73-427, AIAA
Computer Network Systems Conference, Huntsville, Alabama, April, 1973.

Corbato, F.I., et al. The Compatible Time-Sharing System, A Programmer's Guide. M.1.T.
Press, Cambridge, Massachusetts, 1963, p.10.

Diffie, W., and Hellman, M.E. New directions in cryptography. I[EEE Trans. on Info.
Theory, IT-22, 6, (November, 1976), pp.644-654.

Gray, J.N. Notes on database operating systems. In Operating System: An Advanced Course.
Volume 60 of Lecture Notes in Computer Science, Springer-Verlag, 1978, pp.393-481.

Greenwald, M. Remote virtual disk protocol specifications. M.1.T. Laboratory for Computer
Science Technical Memorandum, in preparation. Expected publication, 1984.

Keister, W., Ketchledge, R.W., and Vaughan, H.E.: No. 1 ESS: System organization and
objectives. Bell System Technical Journal 53, 5 (part 1), (September, 1964) p. 1841.

Kent, S.T.: Encryption-based protection protocols for interactive user-computer
communication.: S.M. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976. Also available as M.LT.
Laboratory for Computer Science Technical Report, TR-162, May, 1976.

Lampson, B.W., and Sproull, R.F. An open operating system for a single-user machine.
Proc. Seventh Symposium on Operating Systems Principles, Operating Systems Review 13,
Special issue (December, 1979), pp.98-105.

Lampson, B., and Sturgis, H: Crash recovery in a distributed data storage system. Working
paper, Xerox PARC, November, 1976 and April, 1979. Submitted to CACM.

Needham, R.M., and Schroeder, M.D.: Using encryption for authentication in large networks
of computers. CACM 21, 12, (December, 1978), pp.993-999.

Popek, G.J., et al.: UCLA data secure unix. Proc. 1979 NCC, AFIPS Press, pp.355-364.

Reed, D.P.: Implementing atomic actions on decentralized data. ACM Transactions on
Computer Systems 1, 1 (February, 1983), pp.3-23.

Reed, D.P.: Naming and synchronization in a decentralized computer system. Ph.D. thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, September 1978. Also available as M.I.T. Laboratory for Computer Science
Technical Report, TR-205, September, 1978.

Reed, D.P., and Svobodova, L.: SWALLOW: A distributed data storage system for a local
network. In West, A., and Janson, P., ed. Local Networks for Computer Communications,
Proc. IFIP Working Group 6.4 International Workshop on Local Networks. North-Holland,
Amsterdam, 1981, pp.355-373.

Schroeder, M.D., Clark, D.D., and Saltzer, J.H.: The Multics kernel design project. Proc.
Sixth Symposium on Operating Systems Principles, Operating Systems Review 11,5
(November, 1977,) pp.43-56.

Stern, J.A.: Backup and recovery of on-line information in a computer utility. S.M. thesis,
M.LT. Department of Electrical Engineering and Computer Science, August 1973. Available
as M.L.T. Project MAC Technical Report TR-116, January, 1974.

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

(pAma

5 v r‘l Ej

1 of 13

I L(aaw a lo q,M Th‘tgx.. pb/&d&‘» f/ld ~t 'éfb/

Network address translation e o e Feaf

From Wikipedia, the free encyclopedia

In computer networking, network address translation (NAT) is the process of modifying IP address
information in IP packet headers while in transit across a traffic routing device.

The simplest type of NAT provides a one to one translation of IP addresses. RFC 2663 refers to this type
of NAT as basic NAT. It is often also referred to a$ one-to-one NAT. In this type of NAT only the IP
addresses, IP header checksum and any higher level checksums that include the IP address need to be
changed. The rest of the packet can be left untouched (at least for basic TCP/UDP functionality, some
higher level protocols may need further translation). Basic NATs can be used when there is a

requirement to interconnect two IP networks with incompatible addressing.
pealamssnaiees. ssealico i

However it is common to hide an entire IP address space, usually consisting of private IP addresses,
behind a single IP address (or in some cases a small group of IP addresses) in another (usually public)
address space. To avoid ambiguity in the handling of returned packets, a one-to-many NAT must alter
higher level information such as TCP/UDP ports in outgoing communications and must maintain a
translation table so that return packets can becorrectly translated back. RFC 2663 uses the term NAPT
(networmss and port translation) for this type of NAT. Other names include PAT (port address
translation), IP masquerading, NAT Overload and many-to-one NAT. Since this is th€most commo
type of NAT it is often referred to simply as NAT.

As described, the method enables communication through the router only when the conversation
originates in the masqueraded network, since this establishes the translation tables. For example, a web
browser in the masqueraded network can browse a website outside, but a web browser outside could not
browse a web site in the masqueraded network. However, most NAT devices today allow the network
administrator to configure translation table entries for permanent use. This feature is often referred to as
"static NAT" or port forwarding and allows traffic originating in the "outside" network to reach

designated hosts in the masqueraded network. : f
O/WOIJ/Q

In the mid-1990s NAT became a popular tool for alleviating the conseq'c\ches of IPv4 address

exhaustion.[!] Tt has become a common, indispensable feature in routers for home and small-office
Internet connections. Most systems using NAT do so in order to enable multiple hosts on a private
network to access the Internet using a single public IP address.

/"_'__'__-—'—‘_‘——-——-ﬁ-—__‘.;
Network address translation has serious drawbacks on the quality of Internet connectivity and requires
careful attention to the details of its implementation. In particular all types of NAT break the originally
envisioned model of IP end-to-end connectivity across the Internet and NAPT makes it difficult for
systems behind a NAT tmmTCﬁfibﬁs. As a result, NAT traversal methods have
been devised to alleviate the issues encountered.

T ity “Lle

| e
Contents

=] One to many NATs
= 1.1 Methods of Port translation

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

= 1.2 Type of NAT and NAT Traversal
2 Implementation
= 2.1 Establishing Two-Way Communication
= 2.2 An Analogy
» 2.3 Translation of the Endpoint
= 2.4 Visibility of Operation
3 NAT and TCP/UDP
4 Destination network address translation (DNAT)
5 SNAT
= 5.1 Secure network address translation
6 Dynamic network address translation
7 Applications affected by NAT
8 Advantages of PAT
9 Drawbacks
10 Specifications
11 Examples of NAT software
12 See also
13 References
14 External links

One to many NATSs

The majority of NATs map multiple private hosts to one publicly exposed IP address. In a typical
configuration, a local network uses one of the designated "private" IP address subnets (RFC 1918). A
router on that network has a private address in mmrouter is also connected to the
Internet with a "public" address assigned by an Internet service provider. As traffic passes from the local
network to the Internet, the source address in each packet is translated on the fly: rivate address
to the public address. The router tracks basic data about each active connection (particularly the
destination address and port). When a reply returns to the router, it uses the connection tracking data it
stored during the outbound phase to determine the private address on the internal network to which to
forward the reply.

All Internet packets have a source IP address and a destination IP address. Typically packets passing
from the private network to the public network will have their source address modified while packets
passing from the public network back to the private network will have their destination address modified.
More complex configurations are also possible. M e,

To avoid ambiguity in how to translate returned packets, further modifications to the packets are
required. The vast bulk of Internet traffic is TCP and UDP packets and for these protocols the port
numbers are changed so that the combination of IP and port information on the returned packet can be
unambiguously mapped to the corresponding private address and port information. Protocols not based
on TCP or UDP require other translation techniques. ICMP packets typically relate to an existing
connection and need to be mapped using the same IP and port mappings as that connection.

Methods of Port translation

20f13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network _address_translation

There are several ways of implementing network address and port translation. In some application
protocols that use IP address information, the application running on a node in the masqueraded network
needs to determine the external address of the NAT, i.e., the address that its communication peers detect,
and, furthermore, often needs to examine and categorize the type of mapping in use. Usually this is done
because it is desired to set up a direct communications path (either to save the cost of taking the data via
a server or to improve performance) between two clients both of which are behind separate NATSs. For
this purpose, the Simple traversal of UDP over NATs (STUN) protocol was developed (RFC 3489, March
2003). It classified NAT implementation as full cone NAT, (address) restricted cone NAT, port restricted
cone NAT or symmetric NAT and proposed a methodology for testing a device accordingly. However,
these procedures have since been deprecated from standards status, as the methods have proven faulty
and inadequate to correctly assess many devices. New methods have been standardized in RFC 5389
(October 2008) and the STUN acronym now represents the new title of the specification: Session
Traversal Utilities for NAT.

éFull—cone NAT, also known as
one-to-one NAT

= Once an internal address Full Conem NAT
(iAddr:iPort) is mapped to NAT
an external address S L
(eAddr:ePort), any packets | Ctint p—>4
from iAddr:iPort will be | he——4
sent through eAddr:ePort.

= Any external host can send |
packets to iAddr:iPort by
sending packets to
eAddr:ePort.

é(Address) restricted cone NAT |

= Once an internal address
(iAddr:iPort) is mapped to
an _@c_tgr_n_zil__a_gdress
(eAddr:ePort), any packets
from iAddr:iPort will be NAT
sent through eAddr:ePort.

= An external host Slent p—>4
(hAddr :any) can send pe—-—yg
packets to iAddr:iPort by
sending packets to
eAddr:ePort only if
iAddr:iPort has previously
sent a packet to hAddr:any.
"Any" means the port
number doesn't matter.

"Restricted Cone”™ NAT

éPort—restricted cone NAT

Like an address restricted cone |

30f13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

40f13

NAT, but the restriction includes
port numbers.

= Once an internal address
(iAddr:iPort) is mapped to |
an external address é
(eAddr:ePort), any packets NAT
from iAddr:iPort will be
sent through eAddr:ePort. fhant P

= An external host - p d
(hAddr:hPort) can send
packets to iAddr:iPort by
sending packets to
eAddr:ePort only if
1Addr:iPort has previously |
sent a packet to
hAddr:hPort.

"Port Restricted Cone"” NAT

Symmetric NAT

= Each request from the
same internal IP address
and port to a specific ‘
destination IP address and | "Symmetric” NAT
port is mapped to a unique
external source IP address |
and port, if the same l -
internal host sends a packet i j el
even with the same source | |
address and port buttoa |
different destination, a
different mapping is used.

= Only an external host that
receives a packet from an
internal host can send a
packet back. ;

This terminology has been the source of much confusion, as it has proven inadequate at describing

real-life NAT behavior.””] Many NAT implementations combine these types, and it is therefore better to
refer to specific individual NAT behaviors instead of using the Cone/Symmetric terminology. Especially,
most NAT translators combine symmetric NAT for outgoing connections with static port mapping, where
incoming packets to the external address and port are redirected to a specific internal address and port.
Some products can redirect packets to several internal hosts, e.g. to divide the load between a few
servers. However, this introduces problems with more sophisticated communications that have many
interconnected packets, and thus is rarely used.

Type of NAT and NAT Traversal

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

5 B Toweat

The NAT traversal problem arises when twgmbehmd C(lStlIlCt NAT try to communicate. One way to
solve this problem is to use port forwarding, another way is to use various NAT traversal techniques. The
most popular technique for TCP NAT traversal is TCP hole punching, which requires the NAT to follow
the port preservation design for TCP, as explained below.

Many NAT implementations follow the port preservation design especially for TCP, which is to say that
they use the same values as internal and external port numbers. NAT port preservation for outgoing TCP
connections is especially important for TCP NAT traversal, because programs usually bind distinct TCP
sockets to ephemeral ports for distinct TCP connections, rendering NAT port prediction impossible for
TCP. s

On the other hand, for UDP, NATs do not need to have port preservation because applications usually

reuse the same UDP socket to send packets to distinct hosts, making port prediction straightforward, as it
is the samesource port for each packet.
’_——_—‘—‘\-___—~_-‘—

Furthermore, port preservation in NAT for TCP allows P2P protocols to offer less complexity and less
latency because there is no need to use a third party to discover the NAT port since the application

already knows the NAT port.m
However, if two internal hosts attempt to communicate with the same external host using the same port
number, the external port number used by the second host will be chosen at random. Such NAT will be

sometimes perceived as (address) restricted cone NAT and other times as symmetric NAT.

Recent studies have shown that roughly 10% of clients in P2P networks employ some form of NAT.[4]

Implementation

Establishing Two-Way Communication

Every TCP and UDP packet contains both a source IP address and source port number as well as a
destination IP address and destination port number. The port address/IP address pair forms a socket. In
particular, the source port address and source IP address form the source socket.

For publicly accessible services such as web servers and mail servers the port number is important. For
example, port 80 connects to the web server software and port 25 to a mail server's SMTP daemon. The
IP address of a public server is also important, similar in global uniqueness to a postal address or

telephone number. Both IP address and port must be correctly known by all hosts wishing to successfully
communicate.

Private IP addresses as described in RFC 1918 are significant only on private networks where they are
used, which is also true for host ports. Ports are unique endpoints of communication on a host, so a
connection through the NAT device is maintained by the combined mapping of port and IP address.

PAT resolves conflicts that would arise through two different hosts using the same source port number to
establish unique connections at the same time.

An Analogy

50f13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

6of 13

ANAT device is similar to a phone system at an office that has one public telephone number and
multiple extensions. Outbound phone calls made from the office all appear to come from the same

telephone number. However, an incoming call that does not specify an extension cannot be transferred to
an individual inside the office. In this scenario, the office is a private LAN, the main phone number is the

public IP address, and the individual extensions are unique port numbers.P]

Translation of the Endpoint

With NAT, all communication sent to external hosts actually contain the external IP address and port
information of the NAT device instead of internal host IPs or port numbers.

= When a computer on the private (internal) network sends a packet to the external network, the
NAT device replaces the internal IP address in the source field of the packet header (sender's
address) with the external IP address of the NAT device. PAT may then assign the connection a
port number from a pool of available ports, inserting this port number in the source port field
(much like the post m forwards the packet to the external network. The
NAT device then makes an entry in a translation table containing the internal IP address, original

source port, and the translated source port. Subsequent packets from the same connection are
translated to the same port number.

= The computer receiving a packet that has undergone NAT establishes a connection to the port and
IP address specified in the altered packet, oblivious to the fact that the supplied address is being
translated (analogous to using a post office box number).

= A packet coming from the external network is mapped to a corresponding internal IP address and
port number from the translation table, replacing the external IP address and port number in the
incoming packet header (similar to the translation from post office box number to street address).
The packet is then forwarded over the inside network. Otherwise, if the destination port number of

the incoming packet is not found in the translation table, the packet is dropped or rejected because

the PAT device doesn't know where to send it.

NAT will only translate IP addresses and ports of its internal hosts, hiding the true endpoint of an internal
- ’-._——.-‘“'———_
host on a private network.

Visibility of Operation

NAT operation is typically transparent to both the internal and external hosts.
hspatens o

Typically the internal host is aware of the true IP address and TCP or UDP port of the external host.
Typically the NAT device may function as the default gateway for the internal host. However the
external host is only aware of the public IP address for the NAT device and the E.rticular port being used

to communicate on behalf of a specific internal host. Q)d@/ ‘/l ﬁ’/ % (o [ﬂdﬂ
73 "

NAT and TCP/UDP

"Pure NAT", operating on IP alone, may or may not correctly parse protocols that are totally concerned
with [P information, such as ICMP, depending on whether the payload is interpreted by a host on the
"inside" or "outside" of translation. As soon as the protocol stack is traversed, even with such basic

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia hitp://en.wikipedia.org/wiki/Network_address_translation

8of 13

NAT provides a one-to-one internal to public static IP address mapping, dynamic NAT doesn't make the
mapping to the public IP address static and usually uses a group of available public IP addresses.

Applications affected by NAT

Some Application Layer protocols (such as FTP and SIP) send explicit network addresses within their
application data. FTP in active mode, for example, uses separate connections for control it
(commands) and for data traffic (file contents). When requesting a file transfer, the host making the
request identifies the corresponding data connection by its network layer and transport layer addresses.
If the host making the request lies behind a simple NAT firewall, the translation of the IP address and/or
TCP port number makes the information received by the server invalid. The Session Initiation Protocol
(SIP) controls many Voice over IP (VoIP) calls, and suffers the same problem. SIP and SDP may use
fultiple Ports to set up a connection and transmit voice stream via RTP. IP addresses and port numbers
are encoded in the payload data and must be known prior to the traversal of NATs. Without special
techniques, such as STUN, NAT behavior is unpredictable and communications may fail.

(st (0w ﬁéml YT
Application layer gateway (ALG) software or ardwa?g)rggy correct these problems. An ALG software
module running on a NAT firewall device updates any payload data made invalid by address translation.
ALGs obviously need to understand the higher-layer protocol that they need to fix, and so each protocol
with this problem requires a separate ALG. For example, on many Linux systems, there are kernel
modules called connection trackers which serve to implement ALGs. However, ALG does not work if
the control channel is encrypted (e.g. FTPS).

Another possible solution to this problem is to use NAT traversal techniques using protocols such as
STUN or ICE, or proprietary approaches in a session border controller. NAT traversal is possible in both
TCP- and UDP-based applications, but the UDP-based technique is simpler, more widely understood,

and more compatible with legacy NATs.L¢//ation needed] 1 either case, the high level protocol must be
designed with NAT traversal in mind, and it does not work reliably across symmetric NATs or other
poorly-behaved legacy NATs.

Other possibilities are UPnP (Universal Plug and Play) or NAT-PMP (NAT Port Mapping Protocol), but

these require the cooperation of the NAT device. e

Most traditional client-server protocols (FTP being the main exception), however, do not send layer 3 ‘
contact information and therefore do not require any special treatment by NATS. In fact, avoiding NAT

complications is practically a requirement when designing new higher-layer protocols today (e.g. the use
. -_'—_'__-—-—_-—-—‘—‘—-&_
of SFTP instead of FTP).

NATSs can also cause problems where IPsec encryption is applied and in cases where multiple devices
such as SIP phones are located behind a NAT. Phones which encrypt their signaling with IPsec
encapsulate the port information within an encrypted packet, meaning that NA(P)T devices cannot
access and translate the port. In these cases the NA(P)T devices revert to simple NAT operation. This
meanmEmeing to the NAT will be mapped onto one client causing service to more than
one client "behind" the NAT to fail. There are a couple of solutions to this problem: one is to use TLS,
which operates at level 4 in the OSI Reference Model and therefore does not mask the port number;

another is to encapsulate the IPsec within UDP - the latter being the solution chosen by TISPAN to
achieve secure NAT traversal. hﬂ L()
GRS

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network _address_translation

70f13

protocols as TCP and UDP, the protocols will break unless NAT takes action beyond the network layer.

IP packets have a checksum in each packet header, which provides error detection only for the header.
IP datagrams may become fragmented and it is necessary for a NAT to reassemble these fragments to
allow correct recalculation of higher-level checksums and correct tracking of which packets belong to
which connection.

The major transport layer protocols, TCP and UDP, have a checksum that covers all the data they carry,
as well as the TCP/UDP header, plus a "pseudo-header" that contains the source and destination IP
addresses of the packet carrying the TCP/UDP header. For an originating NAT to pass TCP or UDP
successfully, it must recompute the TCP/UDP header checksum based on the translated IP addresses, not
the original ones, and put that checksum into the TCP/UDP header of the first packet of the fragmented
set of packets. The receiving NAT must recompute the IP checksum on every packet it passes to the
destination host, and also recognize and recompute the TCP/UDP header using the retranslated
addresses and pseudo-header. This is not a completely solved problem. One solution is for the receiving
NAT to reassemble the entire segment and then recompute a checksum calculated across all packets.

The originating host may perform Maximum transmission unit (MTU) path discovery to determine the
packet size that can be transmitted without fragmentation, and then set the don't fragment (DF) bit in the
appropriate packet header field.

Destination network address translation (DNAT)

DNAT is a technique for transparently changing the destination IP address of an en-route packet and
performing the inverse function for any replies. Any router situated between two endpoints can perform
this transformation of the packet.

DNAT is commonly used to publish a service located in a private network on a publicly accessible IP

address. This use of DNAT is also called port forwarding, or DMZ when used on an entire server, which
becomes exposed to the WAN, becoming analogous to an undefended military demilitarised zone

(DMZ).
SNAT

The meaning of the term SNAT varies by vendor. Many vendors have proprietary definitions for SNAT. A
common expansion is source NAT, the counterpart of destination NAT (DNAT). Microsoft uses the
acronym for Secure NAT, in regard to the ISA Server. For Cisco Systems, SNAT means stateful NAT.

Secure network address translation

In computer networking, the process of network address translation done in a secure way involves
rewriting the source and/or destination addresses of IP packets as they pass through a router or firewall.

Dynamic network address translation

Dynamic NAT, just like static NAT, is not common in smaller networks but is found within larger
corporations with complex networks. The way dynamic NAT differs from static NAT is that where static

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network address translation

90of13

The DNS protocol vulnerability announced by Dan Kaminsky on July 8, 2008 is indirectly affected by
NAT port mapping. To avoid DNS server cache poisoning, it is highly desirable to not translate UDP
source port numbers of outgoing DNS requests from a DNS server which is behind a firewall which
implements NAT. The recommended work-around for the DNS vulnerability is to make all caching DNS

servers use randomized UDP source ports. If the NAT function de-randomizes the UDP source ports, the
DNS server will be made vulnerable.

Advantages of PAT

In addition to the advantages provided by NAT:

= PAT (Port Address Translation) allows many internal hosts to share a single external IP address.
m Users who do not require support for inbound connections do not consume public IP addresses.

Drawbacks

The primary purpose of IP-masquerading NAT is that it has been a practical solution to the impending
exhaustion of IPv4 address space. Even large networks can be connected to the Internet with as little as
a single IP address. The more common arrangement is having machines that require end-to-end
connectivity supplied with a routable IP address, while having machines that do not provide services to
outside users behind NAT with only a few I[P addresses used to enable Internet access, however, this
brings some problems, outlined below.

Some!® have also called this exact feature a major drawback, since it delays the need for the

implementation of IPv6: I’)?\,',,L Pu} r{ Oﬁ»(ZKOKWQ/
) {

"[...] it is possible that its [NAT's] widespread use will significantly delay the need to deploy

IPv6. [...] It is probably safe to say that networks would be better off w1th0ut NAT [.. | :

uriehs e 7k att it b Ma/bu LU{'@
Hosts behind NAT-enabled routers do not have end-to-end cormectmty nd cannot participate 1n somebe in quk

Internet protocols. Services that require the initiation of TCP connections from the outside network, or

stateless protocols such as those using UDP, can be disrupted. Unless the NAT router makes a specific {D f‘\aki
effort to support such protocols, incoming packets cannot reach their destination. Some protocols can M Wt\
accommodate one instance of NAT between participating hosts ("passive mode" FTP, for example),

sometimes with the assistance of an application-level gateway (see below), but fail when both systems

are separated from the Internet by NAT. Use of NAT also complicates tunneling protocols such as IPsec

because NAT modifies values in the headers which interfere with the integrity checks done by IPsec and

other tunneling protocols.

End-to-end connectivity has been a core principle of the Internet, supported for example by the Internet
Architecture Board. Current Internet architectural documents observe that NAT is a violation of the

End-to-End Principle, but that NAT does have a valid role in careful design.[7] There is considerably
more concern with the use of IPv6 NAT, and many IPv6 architects believe IPv6 was intended to remove

the need for NAT.[S]

Because of the short-lived nature of the stateful translation tables in NAT routers, devices on the internal
network lose IP connectivity typically within a very short period of time unless they implement NAT

3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network address_translation

keep-alive mechanisms by frequently accessing outside hosts. This dramatically shortens the power

reserves on battery-operated hand-held devices and has thwarted more widespread deployment of such

IP-native Internet-enabled devices, [¢//@tion needed)

Some Internet service providers (ISPs), especially in India, Russia, parts of Asia and other "developing"
regions provide their customers only with "local" IP addresses, due-to-a-limited-number-ofexternal-HP-
addresses allocated to those entities[¢/79/70n needed] Ty, these customers must access services external
to the ISP's network through NAT. As a result, the customers cannot achieve true end-to-end
connectivity, in violation of the core principles of the Internet as laid out by the Internet Architecture
Boar d[citation needed]'

—_—

= Scalability - An implementation that only tracks ports can be quickly depleted by internal
applications that use multiple simultaneous connections (such as an HTTP request for a web page
with many embedded objects). This problem can be mitigated by tracking the destination IP
address in addition to the port (thus sharing a single local port with many remote hosts), at the
expense of implementation complexity and CPU/memory resources of the translation device.

= Firewall complexity - Because the internal addresses are all disguised behind one publicly-
accessible address, it is impossible for external hosts to initiate a connection to a particular internal
host without special configuration on the firewall to forward connections to a particular port.
Applications such as VOIP, videoconferencing, and other peer-to-peer applications must use NAT
tfg‘ff—s—a-l techniques to function.

Specifications

IEEE] Reverse Address and Port Translation (RAPT, or RAT) allows a host whose real IP address is
changing from time to time to remain reachable as a server via a fixed home IP address. In principle, this
should allow setting up servers on DHCP-run networks. While not a perfect mobility solution, RAPT
together with upcoming protocols like DHCP-DDNS, it may end up becoming another useful tool in the
network admin's arsenal.

IETF [10] RAPT (IP Reachability Using Twice Network Address and Port Translation) The RAT device
maps an IP datagram to its associated CN and OMN by using three additional fields: the IP protocol type

number and the transport layer source and destination connection identifiers (e.g. TCP port number or
ICMP echo request/reply ID field).

Cisco RAPT implementation is PAT (Port Address Translation) or overloading , and maps multiple
private IP addresses to a single public IP address. Multiple addresses can be mapped to a single address
because each private address is tracked by a port number. PAT uses unique source port numbers on the
inside global IP address to distinguish between translations. The port number is encoded in 16 bits. The
total number of internal addresses that can be translated to one external address could theoretically be as
high as 65,536 per IP address. Realistically, the number of ports that can be assigned a single IP address
is around 4000. PAT will attempt to preserve the original source port. If this source port is already used,
PAT will assign the first available port number starting from the beginning of the appropriate port group
0-511, 512-1023, or 1024-65535. When there are no more ports available and there is more than one
external IP address configured, PAT moves to the next IP address to try to allocate the original source
port again. This process continues until it runs out of available ports and external IP addresses.

3COM U.S. Patent 6,055,236 (http://www.google.com/patents?vid=6055236) (Method and system for

10 of 13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

locating network services with distributed network address translation) Methods and system for locating
network services with distributed network address translation. Digital certificates are created that allow
an external network device on an external network, such as the Internet, to request a service from an
internal network device on an internal distributed network address translation network, such as a stub
local area network. The digital certificates include information obtained with a Port Allocation Protocol
used for distributed network address translation. The digital certificates are published on the internal
network so they are accessible to external network devices. An external network device retrieves a
digital certificate, extracts appropriate information, and sends a service request packet to an internal
network device on an internal distributed network address translation network. The external network
device is able to locate and request a service from an internal network device. An external network
device can also request a security service, such as an Internet Protocol security ("IPsec") service from
an internal network device. The external network device and the internal network device can establish a
security service (e.g., Internet Key Exchange protocol service). The internal network device and external
network device can then establish a Security Association using Security Parameter Indexes ("SPI")
obtained using a distributed network address translation protocol. External network devices can request
services, and security services on internal network devices on an internal distribute network address
translation network that were previously unknown and unavailable to the external network devices.

Examples of NAT software

Internet Connection Sharing (ICS): Windows NAT+DHCP since W98SE
WinGate: like ICS plus lots of control

iptables: the Linux packet filter and NAT (interface for NetFilter)
IPFilter: Solaris, NetBSD, FreeBSD, xMach.

PF (firewall): The OpenBSD Packet Filter.

» Netfilter Linux packet filter framework

See also

= AYIYA (IPv6 over IPv4 UDP thus working IPv6 tunneling over most NATS)
= Carrier Grade NAT

» Firewall

» Gateway

= Internet Gateway Device (IGD) Protocol: UPnP NAT-traversal method
= Middlebox

= Internet Protocol version 4

= NAT-PT

Port forwarding

Port triggering

Private IP address

Proxy server

Routing

Subnet

port

Teredo tunneling: NAT traversal using IPv6

References

11 0f 13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

1. ~ www.tcpipguide.com/free/t_IPNetworkAddressTranslationNATProtocol.htm (http://www.tcpipguide.com
/free/t_IPNetworkAddressTranslationNATProtocol.htm)

2. * Frangois Audet; and Cullen Jennings (January 2007) (text). RFC 4787 Network Address Translation
(NAT) Behavioral Requirements for Unicast UDP (http://www.ietf.org/rfc/rfc4787.txt) . IETF.
http://www.ietf.org/rfc/rfc4787.txt. Retrieved 2007-08-29.

3. A "Characterization and Measurement of TCP Traversal through NATs and Firewalls"

(http://nutss. gforge.cis.cornell.edu/pub/imc05-tcpnat/) . December 2006. http://nutss.gforge.cis.cornell.edu
/pub/imc05-tcpnat/.

4. ~ "Illuminating the shadows: Opportunistic network and web measurement" (http://illuminati.coralcdn.org
/stats/) . December 2006. http://illuminati.coralcdn.org/stats/.

5. ™ "The Audio over IP Instant Expert Guide" (http://www.tieline.com/Downloads/Audio-over-IP-Instant-
Expert-Guide-v1.pdf) . Tieline. January 2010. http:/www.tieline.com/Downloads/Audio-over-IP-Instant-
Expert-Guide-v1.pdf. Retrieved 2011-08-19.

6. ~ Larry L. Peterson; and Bruce S. Davie; Computer Networks: A Systems Approach, Morgan Kaufmann,
2003, pp. 328-330, ISBN 1-55860-832-X

7. ~ R. Bush; and D. Meyer; RFC 3439, Some Internet Architectural Guidelines and Philosophy
(http://www.ietf.org/rfc/rfc3439.txt) , December 2002

8. ~ G. Van de Velde et al.; RFC 4864, Local Network Protection for IPv6 (http://tools.ietf.org
Irfc/rfc4864.txt) , May 2007

9. ~ http://ieeexplore.ieee.org/ield/6056/16183/00749275.pdf
10. ~ http://www3.ietf.org/proceedings/99nov/I-D/draft-ietf-nat-rnat-00.txt

External links

= NAT-Traversal Test and results (http://nattest.net.in.tum.de)
= Characterization of different TCP NATs (http://nutss.net/pub/imc05-tcpnat/) — Paper discussing
the different types of NAT
= Anatomy: A Look Inside Network Address Translators — Volume 7, Issue 3, September 2004
(http//www.cisco.com/en/US/about/ac123/ac147/archived_issues/ipj 7-3/anatomy.html)
m Jeff Tyson, HowStuftWorks: How Network Address Translation Works
(http://computer.howstuffworks.com/nat.htm/printable)
= NAT traversal techniques in multimedia Networks (http://www.newport-networks.com
/whitepapers/nat-traversall.html) — White Paper from Newport Networks
= NAT traversal for IP Communications (http://www.voiptraversal.com
/EyeballAnyfirewallWhitePaper.pdf) — White Paper from Eyeball Networks
= Peer-to-Peer Communication Across Network Address Translators (http://www.brynosaurus.com
/pub/net/p2pnat/) (PDF) (http://www.brynosaurus.com/pub/net/p2pnat.pdf) — NAT traversal
techniques for UDP and TCP '
= http://www.zdnetasia.com/insight/network/0,39044847,39050002,00.htm
= RFCs
= RFC 1631 (Status: Obsolete) - The IP Network Address Translator (NAT)
= RFC 1918 - Address Allocation for Private Internets
= RFC 3022 (Status: Informational) — Traditional IP Network Address Translator (Traditional
NAT)
= RFC 4008 (Status: Standards Track) — Definitions of Managed Objects for Network Address
Translators (NAT)
= RFC 5128 (Status: Informational) - State of Peer-to-Peer (P2P) Communications across
Network Address Translators (NATS)

= RFC 4966 (Status: Informational) - Reasons to Move the Network Address Translator -
Protocol Translator (NAT-PT) to Historic Status

12 0f 13 3/10/2012 6:32 PM

Network address translation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Network_address_translation

Speak Freely End of Life Announcement (http://www.fourmilab.ch/speakfree/unix/) — John
Walker's discussion of why he stopped developing a famous program for free Internet
communication, part of which is directly related to NAT
natd (http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-natd.html)
SNAT, DNAT and OCS2007R2 (http://www.cainetworks.com/support/training/snat-dnat-ocs.html)
— discussing the SNAT in Microsoft OCS 2007R2
Alternative Taxonomy (Part of the documentation for the IBM iSeries)
= Static NAT (http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzajw
/rzajwstatic.htm)
= Dynamic NAT (http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index jsp?topic=/rzajw
/rzajwdynamic.htm)
= Masquerade NAT (http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=
/rzajw/rzajwaddmasq.htm)
Network Address Translation - NAT (http://blog.ipexpert.com/2009/09/07/network-address-
translation-nat/)
Cisco Systems
= Document ID 6450: How NAT Works (http://www.cisco.com/en/US/tech/tk648/tk361
/technologies tech note09186a0080094831.shtml)
= Document ID 26704: Network Address Translation (NAT) FAQ (http://www.cisco.com
/en/US/tech/tk648/tk361/technologies q and a item09186a00800e523b.shtml)
= White Paper: Cisco IOS Network Address Translation Overview (http://www.cisco.com
/en/US/technologies/tk648/tk361/tk438/technologies_white paper09186a0080091cb9.html)
= Cisco IOS NAT Commands Cisco I0S commands (http://www.cisco.com/univercd/cc/td
/doc/product/software/ios113ed/cs/csprtd/csprtd11/csnat.htm)
= Animation Cisco NAT sample (http://www.cisco.com/image/gif/paws/6450/nat.swf)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Network_address_translation&
oldid=481168651"
Categories: Network address translation | Internet architecture

= This page was last modified on 10 March 2012 at 14:58.

= Text is available under the Creative Commons Attribution-Share Alike License; additional terms
may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit
organization.

13 of 13 3/10/2012 6:32 PM

Speak Freely: End of Life Announcement http://www.fourmilab.ch/speakfree/unix/

¥ Speak Freely
End of Life Announcement

by John Walker
January 15th, 2004

The time has come to lower the curtain on Speak Freely. As of August 1st,
ﬂ‘ I 2003, version 7.6a of Speak Freely (Unix and Windows) was declared the
N a&’ ‘/ final release of the program, and a banner was added to the general Speak
| Freely page and those specific to the Unix and Windows versions on the
[/0 (e CM]l www.fourmilab.ch site announcing the end of life. No further development
or maintenance will be done, and no subsequent releases will be

P(Q@/‘{’w\ forthcoming.

On January 15th, 2004 all Speak Freely documentation and program
downloads, along with links to them on the site navigation pages, were
removed from the www.fourmilab.ch site, and accesses to these files
redirected to this document. On that date the speak-freely and speak-
freely-digest mailing lists were closed and their archives copied to off-line
storage and deleted from the site. In addition, the Speak Freely Forum will
cease operation, along with the Echo and Look Who's Listening servers
previously running at www.fourmilab.ch. Ports 2074 through 2076 will be
firewall blocked for the fourmilab.ch domain, with incoming packets
silently discarded. As of January 15th, 2004, all queries, in whatever form,
regarding Speak Freely will be ignored. An historical retrospective on the
program may eventually be published on the site.

Questions and Answers

Why did you do this?
The time has come. Speak Freely is the direct descendant of a
program I originally developed and posted to Usenet i@ The bulk
of Speak Freely development was done in 1995 and 1996, with the
Windows version designed around the constraints of 16-bit Windows
3.1. Like many programs of comparable age which have migrated
from platform to platform and grown to encompass capabilities far
beyond anything envisioned in their original design, Speak Freely
shows its age. The code is messy, difficult to understand. and very
easy to break when making even small modifications. The Windows
and Unix versions, although interoperable, have diverged in design
purely due to their differing histories, almost doubling the work
involved in making any change which affects them both.

To continue development and maintenance of Speak Freely, the
program requires a top to bottom rewrite, basing the Unix and

1 of 6 3/10/2012 6:33 PM

Speak Freely: End of Life Announcement

2of6

hahq

http://www.fourmilab.ch/speakfree/unix/

Windows version on an identical "engine," and providing an
application programming interface (API) which permits other
programs to be built upon it. I estimate the work involved in this task,
simply to reach the point where a program built with the new
architecture is 100% compatible with the existing Speak Freely,
would require between 6 and 12 man-months. There is no prospect
whatsoever that I will have time of that magnitude to devote to Speak
Freely in the foreseeable future, and no indication that any other
developer qualified to do the job and sufficiently self-motivated and
-djsciplined to get it done exists. In fact, the history of Speak Freely
constitutes what amounts to a non-existence proof of candidate
developers.

Even if I had the time to invest in Speak Freely, or another developer
or group of developers volunteered to undertake the task, the
prospects for such a program would not justify the investment of time.

What do you mean--isn't the Internet still in its infancy?

If you say so. The Internet, regardless of its state of development, is in
the process of metamorphosing into something very different from the
Internet we've known over the lifetime of Speak Freely. The Internet
of the near future will be something never contemplated when Speak
Freely was designed, inherently hostile to such peer-to-peer
applications.

I am not using the phrase "peer to peer" as a euphemism for "file
sharing" or other related activities, but in its original architectural
sense, where all hosts on the Internet were fundamentally equal. ~ <—
Certainly, Internet connections differed in bandwidth, latency, and
reliability, but apart from those physical properties any machine
connected to the Internet could act as a client, server, or (in the case
of datagram traffic such as Speak Freely audio) neither--simply a peer
of those with which it communicated. Any Internet host could provide
any service to any other and access services provided by them. New
kinds of services could be invented as required, subject only to
compatibility with the higher level transport protocols (such as TCP
and UDP). Unfortunately, this era is coming to an end.

One need only read discussions on the Speak Freely mailing list and
Forum over the last year to see how many users, after switching from
slow, unreliable dial-up Internet connections to broadband, persistent
access via DSL or cable television modems discover, to their dismay,
that they can no longer receive calls from other Speak Freely users.
The vast majority of such connections use Network Address
Translation (NAT) in the router connected to the broadband link,
which allows multiple machines on a local network to share the
broadband Internet access. But NAT does a lot more than that.

A user behind a NAT box is no longer a peer to other sites on the
Internet. Since the user no longer has an externally visible Internet

3/10/2012 6:33 PM

Speak Freely: End of Life Announcement

‘ h@@t[, tr \tdﬁu

Mim[r Cezﬁfop l
0%

http://www.fourmilab.ch/speakfree/unix/

Protocol (IP) address (fixed or variable), there is no way (in the
general case--there may be "workarounds” for specific NAT boxes,
but they're basically exploiting bugs which will probably eventually be
fixed) for sites to open connections or address packets to his machine.
The user is demoted to acting exclusively as a client. While the user
can contact and freely exchange packets with sites not behind NAT
boxes, he cannot be reached by connections which originate at other
sites. In economic terms, the NATted user has become a consumer of
services provided by a higher-ranking class of sites, producers or
publishers, not subject to NAT.

There are powerful forces, including government, large media
organisations, and music publishers who think this situation is just fine.
In essence, every time a user--they /ove the word "consumer"--goes
behind a NAT box, a site which was formerly a peer to their own sites
goes dark, no longer accessible to others on the Internet, while their
privileged sites remain. The lights are going out all over the Internet.

/ M)7 paper, The Digital Imprimatur, discusses the technical
background, economic motivations, and social consequences of this in
much more (some will say tedious) detail. Suffice it to say that, as the
current migration of individual Internet users to broadband
connections with NAT proceeds, the population of users who can use
a peer to peer telephony product like Speak Freely will shrink apace.
It is irresponsible to encourage people to buy into a technology which
will soon cease to work.

But isn't the problem really the lack of static port mapping, not NAT?

hgs woto wWO€

hackers { f‘“d\,ﬁﬂ

(If you don't understand this question, please skip to the next.)
Correct, but experience has shown that a large number of installed
NAT boxes either cannot map an externally accessible port to an
internal IP address and port, or those who install the boxes do not
provide their customers adequate information to permit thenrto do
this. Given the trend, discussed in the last question, toward confining
individual Internet users to a consumer role, I believe fewer and fewer
users will have the ability to statically map ports as time goes on.

Isn't there some clever way to work around these limitations?

So why don't you just set up such a server?

3of6

inbound port to a local IP address when an outbound connection is
established, I know of no way an Internet user can initiate a
connection to a user behind a NAT box. With sufficient cleverness, (.
such as the "NAT fix" in the 7.6a Unix version of Speak Freely, a user » (}’N:‘l (64l
behind a NAT box can connect to one who isn't, but if both users are /
NATted (and that's the way things are going), the only way they could ;
communicate would be through a non—NATt to which Q‘@J& ().t bsoﬂ %

both connected, which would then forward packetgrhetween them.
b NAT

Not as far as I can figure out. As long as a NAT box only maps an UW) P
P

Because no non-commercial site like mine could possibly afford the
unlimited demands on bandwidth that would require. It's one thing to

3/10/2012 6:33 PM

Speak Freely: End of Life Announcement http://www.fourmilab.cl/speakfree/unix/

4 0f 6

provide a central meeting point like a Look Who's Listening server,
which handles a packet every five minutes or so from connected sites,

\
A UJN/ J\/ﬁ+ ~ but a server that's required to forward audio in real-time between

i,
Conrection ¢

potentially any number of simultaneously connected users is a
bandwidth killer. The www.fourmilab.ch site has 2 Mbit/sec
bidirectional bandwidth, about 50-75% of which (outbound) is
typically in use serving Web pages. If we assume 1 Mbit/sec free
bandwidth, then fewer than 70 simultaneous Speak Freely half-duplex

O'r (l» l,{W {\eﬂ/t{ GSM conversations would saturate this bandwidth, half that number if
' {

they're full-duplex. Besides, as soon as you set up such a server,

o' ik : ; .
0 PF/\ (E[1 within hours it would come under denial of serv1%5;20{umed

by malicious children and their moral and intellectual adu

Mkpquivalents which would render the server unusable to legitimate

{a,l users. Further, the existence of such server(s) would represent a
single-point vulnerability which is the very antithesis of the design of
the Internet and Speak Freely. Anybody who thinks through the
economics and logistics of operating such a server on a pro bono basis
will, I am confident, reject it on the same grounds I have. If you
disagree, go prove me wrong!

But won't NAT go away once we migrate to IPv6?
(If you don't know what IPv6 is, please skip ahead to the next
question.) First of all, any bets on when IPv6 will actually be
implemented end-to-end for a substantial percentage of individual f\0+ i
Internet users? And even if it were, don't bet on NAT going away.
Certainly it will change, but once the powers that be have demoted
Internet users from peers to consumers, I don't think they're likely to
turn around and re-empower them just because the address space is
now big enough. Besides, the fraction of users who care about such
issues, while high among those interested in programs such as Speak
Freely, is minuscule among the general public.

Why January 15th, 2004?
January Ist would have made more sense, but I was out of town then,
and I don't like to make major changes to the site while I'm on the
road. There's no special significance to the date.

Can I go on using Speak Freely?
Certainly, Speak Freely is in the public domain; you can do anything

you like with it. But as of that date Mything more to do
with it.

Can I distribute copies of Speak Freely to other people?
Certainly; see the previous answer. You're free to distribute Speak
Freely in source or binary form to anybody you like, post it on your
Web site, etc. subject only to whatever governmental restrictions may

apply to distribution of the encryption technology Speak Freely
employs.

How will I be able to find people once your Look Who's Listening

3/10/2012 6:33 PM

Speak Freely: End of Life Announcement http://www.fourmilab.ch/speakfree/unix/

No. While I cannot in good conscience encourage people to become
new users of Speak Freely nor developers to invest time in working on
it, the entire state of the program as of the final release will remain
available indefinitely on SourceForge as separate CVS archives for the
Unix and Windows versions. I will make no further additions to these
archives, but others are free to download them for their own private
development purposes and/or create new projects on SourceForge to
develop derivative programs in whatever form they like.

Anything more to add?
It's been fun. Take care.

Speak Freely Afterlife Development Project

A development project has been registered on SourceForge with the goal of
continuing development of Speak Freely. Anshuman Aggarwal and
Johannes P&hlmann, creators of this project, hope to attract developers to
continue to adapt Speak Freely to the challenges it will face in the future. I
am not involved in this project, but if you're interested in contributing to
Speak Freely, please visit the project home page and volunteer for the
effort.

The Digital Imprimatur

Fourmilab Home Page

6 of 6 3/10/2012 6:33 PM

Speak Freely: End of Life Announcement http://www.fourmilab.ch/speakfree/unix/

server shuts down?
You can exchange IP addresses with people you wish to call via ICQ,
instant messages, E-mail, chat systems, etc. If somebody wants to start
a public Look Who's Listening server they're welcome, but history is
not encouraging. While the Fourmilab LWL server has run
continuously for 8 years, no other public server has lasted more than a
year before disappearing.

How can I test without a public echo server?
Beats me. If the need is sufficient, perhaps somebody will set one up,
but, as with LWL servers, they never seem to last very long.

Why all the dramatics of an ""end of life"" announcement?
The fate of most free software projects is "abandonware"--the
developer loses interest, burns out, or becMed with other
projects and simply leaves the software as-is. In fact, this happened
with Speak Freely a few years ago, and the consequences were
distasteful. Unix workstation vendors routinely issue end of life
announcements to inform customers that as of a given date, or
software release, or new hardware platform, an existing product will
no longer be supported. This gives those using that product time to
weigh the alternatives and decide how best to proceed. Given that the
Internet is in the midst of a structural change (widespread adoption of
broadband with NAT) which destroys the 30 year old Internet
architecture on which Speak Freely (and other true peer to peer
programs) relies, I thought it more responsible to withdraw the
program in this manner (while, as with a workstation end of life
announcement, permitting satisfied users to continue to use it
indefinitely) rather than let it wilt and die as the dark pall of NAT falls
upon the Internet.

Don't you have an obligation to whatever?
Nope. Writing software and giving it away doesn't incur any obligation
of any kind to any person. I've been working on this program off and
on for more than 12 years. At my age (don't ask, but if I live as long as
Bob Hope did, I'm more than half way to the checkered flag), the
prospect of spending another five or ten years dreaming up clever
countermeasures to an Internet that's evolving to make programs like
Speak Freely impossible, in a climate where creating a tool some
people find useful and giving it away only invites incessant malicious
attacks upon it motivated solely by nihilism, for a shrinking user
community forced to master the ever-growing complexity all of this
requires does not appeal to me. Programs, like people, are born, grow
rapidly, mature, and then eventually age and die. So it goes. If
somebody disagrees and wants to step in, they're more than welcome,
but such a person has yet to appear over the entire history of Speak

Freely.
By taking down the Speak Freely site, aren't you throwing away all the
work invested in the program?

50f6 3/10/2012 6:33 PM

Skype protocol - Wikipedia, the free encyclopedia

Skype protocol :Q%}w . fm

From Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Skype protocol

The Skype protocol is a proprietary Internet telephony network based on peer-to-peer architecture, used by Skype.

The protocol's specifications have not been made publicly available by Skype and official applications using the
protocol are closed-source.

The Sk.ype network is not interoperable with most other VoIP networks without proper licensing from Skype. Digium
the main sponsor of Asterisk PBX released a driver licensed by Skype dubhed 'Sk for Asterisk' to interface as a
client to the Skype network, however this still remains closed source.l'! Numerous attempts to study and/or reverse
engineer the protocol have been undertaken to reveal the protocol, investigate security or to allow unofficial clients.

2

Contents

= | Peer-to-peer architecture
= 2 Protocol
= 2.1 Protocol detection
= 2.1.1 Preliminaries
= 2.1.2 Skype client
= 2.2 Login

= 3 UDP % | /
= 4 Obfuscation Layer W Qb‘“/\ (1 Z-Z ZOLO
= 5TCP
= 6 Low-level datagrams !
= 6.1 Object Lists Y

= 6.2 Packet compression

. b Ry o ol
10 Ext;r:ZI Tinks Tlo f@if(»[Czd/té/ Q/Lc/z,pk{
Calls

Peer-to-peer architecture

Skype was the first peer-to-peer IP telephony network,?) requiring minimal centralized infrastructure,[¢7fation needed]

The Skype user directory is decentralized and distributed among the cliepts, or nodes, in the network.

The network contains three types of entities: sypernodes, ordinary nodes, and the login server. Each client maintains a
host cache with the TP address and port numbers of reachable supernodgs.

Any client with good bandwidth, no restriction due to firewall or NAT,
supernode. This puts an extra burden on those who connect to the In : ay use their
computers and Internet connections as third party for UDP _hole punchinig (to directly connect two clients both behind
NAT) or to completely relay other users' calls. Skype does not choose to supply server power with associated
bandwidth required to provide the relay service for every client who needs it, instead it uses the resource of Skype

clients. I O\k Yes U3 }Vfaefhﬂéf

Supernodes relay communications on behalf of two other clients, both of which are behind firewalls or "one to many"
Network address translation. The reason that relaying is required is that without relaying clients with firewall or NAT
difficulties, the two clients would be unable to make or receive calls from other. Skype tries to get the two ends to

d adequate processing power can become a

| of 6 3/11/2012 6:25 PM

Skype protocol - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Skype_protocol

negotiate the connection details directly, but what can happen is that the sum of problems at both ends can mean that
two cannot establish direct conversation.

The problems with firewalls and NAT can be

= The external port numbers or IP address are not derivable, because NAT rewrites them,

The firewall and NAT in use prevents the session being received

UDP is not usable due to NAT issues , such as timeout

firewalls block many ports

TCP through many to one NAT is always "outward only" by default - Adding Port Forwarding settings to the

NAT router can allow receiving TCP sessions

Supernodes are grouped into slots (9-10 supernodes), and slots are grouped into blocks (8 slots).

Protocol

Signaling is encrypted using RC4; however, the method only obfuscates the traffic as the key can be recovered from
the packet. Voice data is encrypted with AES.[

The Skype client's application programming interface (APT) opens the network to software developers. The Skype API
allows other programs to use the Skype network to get "white pages" information and manage calls.

The Skype code is closed source, and the protocol is not standardized.’] Parts of the client use Internet Direct (Indy),

an open source socket communication library,[citation needed)

Protocol detection

Many networking and security companies claim to detect and control Skype's protocol for enterprise and carrier
applications. While the specific detection methods used by these companies are often proprietary, Pearson's
chi-squared test and stochastic characterization with Naive Bayes classifiers are two approaches that were published
i 6]

in 2007

Preliminaries

Abbreviations that are used:

= SN: Skype network
= SC: Skype client
= HC: host cache

Skype client

The main functions of a Skype client are:

= Jogin

= user search

= gtart and end calls
= media transfer

m presence messages
= video conference

Login

E
20f6 3/11/2012 6:25 PM

Skype protocol - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Skype protocol

A Skype client authenticates the user with the login server, advertises its presence to other peers, determines the type
of NAT and firewall it is behind and discovers nodes that have public IP addresses.

To connect to the Skype network, the host cache must contain a valid entry. A TCP connection must be established
(i.e. to a supernode) otherwise the login will fail.

BT start i

152 send UDP packet(s) to HC

v 3. if no response within 5 seconds then |

yid attempt TCP connection with HC i

:5 if not connected then

y 6 attempt TCP connection with HC on port 80 (HTTP) :

L7 if not connected then

B attempt TCP connection with HC on port 443 (HTTPS) :

'8, if not connected then
1
1
1
1
1
1
1
1
1
1
1

110, attempts++

11 if attempts==5 then
112, fail

3. else

94. wait 6 seconds
15, goto step 2

After a Skype client is connected it must authenticate the username and password with the Skype login server. There
are many different Skype login servers using different ports. An obfuscated list of servers is hardcoded in the Skype
executable.

Skype servers are:

= dirl.sd.skype.net:9010 = dir5.sd.skype.net:9010 = hitpl.sd.skype.net:80 = http5.sd.skype.net:80
s dir2.sd.skype.net:9010 = dir6.sd.skype.net:9010 = http2.sd.skype.net:80 = http6.sd.skype.net:80
s dir3.sd.skype.net:9010 = dir7.sd.skype.net:9010 = http3.sd.skype.net:80 = http7.sd.skype.net:80
m dird.sd.skype.net:9010 = dir8.sd.skype.net:9010 = http4.sd.skype.net:80 = http8.sd.skype.net:80

Skype-SW connects randomly to 1-8.

On each login session, Skype generates a session key from 192 random bits. The session key is encrypted with the
hard-coded login server's 1536-bit RSA key to form an encrypted session key. Skype also generates a 1024-bit
private/public RSA key pair. An MD5 hash of a concatenation of the user name, constant string ("\nSkyper\n") and
password is used as a shared secret with the login server. The plain session key is hashed into a 256-bit AES key that
is used to encrypt the session's public RSA key and the shared secret. The encrypted session key and the AES
encrypted value are sent to the login server.

On the login server side, the plain session key is obtained by decrypting the encrypted session key using the login
server's private RSA key. The plain session key is then used to decrypt the session's public RSA key and the shared
secret. If the shared secret match, the login server will sign the user's public RSA key with its private key. The signed
data is dispatched to the super nodes.

Upon searching for a buddy, a super node will return the buddy's public key signed by Skype. The SC will authenticate
the buddy and agree on a session key by using the mentioned RSA key.

UDP
UDP packets:

1
1P :
JDP 1
ISkype SoF

:Skype Crypted DataOl !

30f6 3/11/2012 6:25 PM

Skype protocol - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Skype_protocol

The Start of Frame (SoF) consists of’

1. frame ID number (2 bytes)

2. payload type (1 byte)
obfuscated payload
Ack/NAck packet

payload forwarding packet
payload resending packet
other

Obfuscation Layer

The RC4 encryption algorithm is used to obfuscate the payload of datagrams.

I. The CRC32 of public source and destination IP, Skype's packet ID are taken
2. Skype obfuscation layer's initialization vector (IV).

The XOR of these two 32-bit values is transformed to a 80-byte RC4 key using an unknown key engine.

A notable misuse of RC4 in Skype can be found on TCP streams (UDP is unaffected). The first 14 bytes (10 of which

are known) are xored with the RC4 stream. Then, the cipher is reinitialized to encrypt the rest of the TCP stream.[”)
TCP
TCP packets:
o = e e o e e S e = 1
'rcp |
:Si:ype Init TCP packet :
0 0 e e o 5 A i i 65 o
The Skype Init TCP packet contains

= the seed (4 bytes)

= init_str string 00 01 00 00 01 00 00 00 01/03
Low-level datagrams
Almost all traffic is ciphered. Each command has its parameters appended in an object list. The object list can be
compressed.
:' "" 1
: / Object List 2 v = |
1 Enc -> Cmd -> Encod .
: 5 \ Compressed List ... -| :
] Frag | | :
. | == mmmmmmmmmmmme oo Cmmmm e | '
: Ack :
S USSR
:" """ I
! NAck ;
e B S S R R S R e R SRS SR e e a4
:‘ """ 1
: Forward =-> Forwarded..Message :
e e T e L e A
Object Lists

4 of 6 3/11/2012 6:25 PM

Skype protocol - Wikipedia, the free encyclopedia

5of6

http://en.wikipedia.org/wiki/Skype_protocol

An‘object can be a number, string, an IP:port, or even another object list. Each object has an ID. This ID identifies
which command parameter the object is.

Number

IP:Port

List of numbers
String

RSA key

Object List

List Size (n)
Object 1

Object n

Packet compression

Packets can be compressed. The algorithm is a variation of arithmetic compression that uses reals instead of bits.

Legal issues

Reverse engineering of the Skype protocol by inspecting/disassembling binaries is prohibited by the terms and
conditions of Skype's license agreement. However there are legal precedents when the reverse-engineering is aimed at

interoperability of file formats and protocols.[g][9 19T 1 the United States, the Digital Millennium Copyright Act
grants a safe harbor to reverse engineer software for the purposes of interoperability with other software. 111121

addition, many countries specifically permit a program to be copied for the purposes of reverse engineering.

Notes

1.

o

~ Skype for Asterisk — Production Released!
(http://blogs.digium.com/2009/08/3 1 /skype-for-asterisk-
production-released/) , By pengler, August 31st, 2009,
Digium - The Asterisk Company

A Page 11 in Salman A. Baset; Henning Schulzrinne
(2004). "An analysis of the Skype peer-to-peer Internet
telephony protocol”. arXiv:cs/0412017v]
(http://arxiv.org/abs/cs/0412017v1) [es.NI
(http://arxiv.org/archive/cs.Nl)].

.~ Skype "3.3 Utilization of Your Computer"

(http://www.skype.convintl/en/legal/eula/#you_expect) ,
End User License Agreement, August 2010

A Introduction Skype analysis Enforcing anti-Skype
policies (http://www.ossir.org/windows/supports
/2005/2005-11-07/EADS-CCR_Fabrice Skype.pdf) ,
Skype uncovered Security study of Skype, Desclaux
Fabrice, 7/11/2005, EADS CCR/STV/C

.~ http://support.skype.com/en_US/faq/FA153/Which-

protocols-does-Skype-use

. * Dario Bonfiglio et al. “Revealing Skype Traffic: When

Randomness Plays with You,” ACM SIGCOMM
Computer Communication Review, Volume 37:4
(SIGCOMM 2007), p. 37-48 (https://www.dpacket.org
/articles/revealing-skype-traffic-when-randomness-

plays-you)

1.

12

[13]

~ Fabrice Desclaux, Kostya Kortchinsky (2006-06-17).
"Vanilla Skype part 2" (http://www.recon.cx
len/f/vskype-part2.pdf) . RECON2006.
http://www.recon.cx/en/flvskype-part2.pdf.

~ Sega vs Accolade, 1992

~ Sony vs Connectix, 2000

A Pamela Samuelson and Suzanne Scotchmer, "The Law
and Economics of Reverse Engineering", 111 Yale Law
Journal 1575-1663 (May 2002) [1]
(http://www.yalelawjournal.org/pdf/111-7
/SamuelsonFINAL.pdf)

A 17 U.S.C. Sec. 1201(f).

A WIPO Copyright and Performances and Phonograms
Treaties Implementation Act

.~ In the French "intellectual property" law set, there is

an exception that allows any software user to reverse
engineer it. See code de la propriété intellectuelle
(http://legifrance.gouv. fi
{affichCodeArticle.do?cidTexte=LEGITEXT0000060694
idArticle=LEGIARTI1000006278920&
dateTexte=20080329&categorieLien=cid) (French).
This law is the national implementation of a piece of EU
legislation: Council Directive 91/250/EEC (http://eur-
lex.europa.eu/LexUriServ
/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT) ,

3/11/2012 6:25 PM

Skype protocol - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Skype_protocol

since then repealed by Directive 2009/24/EC of the which also has a very similar provision allowing reverse
European Parliament and of the Council of 23 April engineering/decompilation for the purposes of

2009 on the legal protection of computer programs development and testing of independent but inter-
(http://eur-lex.europa.eu/LexUriServ operating programs).

/LexUriServ.do?uri=CELEX:32009L0024:EN:NOT)

References

= Salman A. Baset; Henning Schulzrinne (2004). "An analysis of the Skype peer-to-peer Internet telephony protocol”.
arXiv:cs/0412017v1 (http://arxiv.org/abs/cs/0412017v1) [cs.NI (http://arxiv.org/archive/cs.NI)].

= P. Biondi and F. Desclaux (March 3, 2006). "Silver Needle in the Skype" (http://www.blackhat.com/presentations
/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf) . http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-
biondi/bh-eu-06-biondi-up.pdf.

= F Desclaux and K. Kortchinsky (June 6, 2006). "Vanilla Skype - part 1" (http://www.recon.cx/en/f/vskype-part1.pdf) .
http://www.recon.cx/en/fivskype-part|.pdf.

= F. Desclaux and K. Kortchinsky (June 17, 2006). "Vanilla Skype - part 2" (http://www.recon.cx/en/f/vskype-part2.pdf) .
http:/fwww.recon.cx/en/fivskype-part2.pdf.

= L. De Cicco, S. Mascolo, V. Palmisano (May 2007). "An Experimental Investigation of the Congestion Control Used by

Skype VoIP." (http://c3lab.poliba.it/images/d/d2/Skype_wwic07.pdf) . WIWIC 07. Springer. http://c31ab.poliba.it/images
/d/d2/Skype _wwic07.pdf.

= L. De Cicco, S. Mascolo, V. Palmisano (December 911, 2008). "A Mathematical Model of the Skype VoIP Congestion
Control Algorithm." (http://c3lab.poliba.it/images/2/22/Skype_voip_model.pdf) . Proc. of IEEE Conference on Decision
and Control 2008. http://c31ab.poliba.it/images/2/22/Skype _voip _model.pdf.

= Dario Bonfiglio, Marco Melia, Michela Meo, Dario Rossi, Paolo Tofanelli (August 27-31, 2007). "Revealing Skype
Traffic: When Randomness Plays With You" (https://www.dpacket.org/articles/revealing-skype-traffic-when-randomness-

plays-you) . ACM SIGCOMM Computer Communication Review. https://www.dpacket.org/articles/revealing-skype-
traffic-when-randomness-plays-you.

External links

= Repository of articles on Skype analysis (http://www]1.cs.columbia.edu/~salman/skype/)
= Reversed skype protocol, this torrent contain sources in c++ (http://thepiratebay.org/torrent/6442887)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Skype protocol&oldid=479339395"
Categories: Skype VoIP protocols Instant messaging protocols

= This page was last modified on 28 February 2012 at 19:04.

= Text is available under the Creative Commons Attribution-ShareAlike License: additional terms may apply. See
Terms of use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

6 of6 3/11/2012 6:25 PM

6 ‘ 0‘33 @edh o

—— S

(O”’\Y Feaky b 90t udese{ & Clas . Lulw)
H{ M«(‘\S WY (OW ﬂ% ,ﬂasir

Lo, 1 e haid

lélr ﬂ/ulf' 5 T &w&ﬂ

__./_\

Ww }/mis on Es M%”M
\hea W Gy dé’[ﬂ%?

g@t (r/l T?C(,(B /(]\//—6

Teboi Bd b By /it

N C[«{% / (9500
Rﬁmembe/ what WhS 0{4""{9@
Mt b dah

SUW/HM@ zfq @] }2{@
“he PUson gt (o z(s A}M@q

N

pro{ ’ [V/J[T NJ}‘ (/“74’ 65'1(6 [um}/uj 9u}~) CC 4%/@»@)
I® 5@%2\[7 as

Yo gei Ct/[?gne V‘fk’/l YO‘/ Cq/// A,CMP([-\),

Kl

0

Hﬁ Noks will fe Some smller tede will ke guy 1w

H\Oﬂt MQVW{c WWHL 7Lo mwz\/ntwlq ((Jn)l/ﬁ
“Hee o L} of fp)

B 'Don ‘Jr wqat pGOﬂ)ﬁ }9 {05 ik il P)“W)

I\(TCP/UDP vt e w[,lq/f /an[%f [a@l‘s (Ue
-0 gt et Lddia
e 0 Jp H oot v \/l\r'?!%{,/ CZMW/

VAT ranleles hack

Clan vy pocts (pa/f of rcﬁ
PJML}M '!’D) Iomlg

e J((Wlé{qv}cg h\L Po/{_j

VAT 4 AT
. Cé’n{’m l S0/
b P of 1[‘é(m d,}"«j

B)

H No POrJr ﬁ:
) SOWWM_*) O flolod]
\—Dla} roJ}w (Anows G/EM

Fn& i fo ”Ead

—

e

b oyl
Qj 30 veas age

Lfe & a Bl Jess leor

Nlsl ondes k. whee | whin @ sze)

\/\/)\M b u]L Ft/nd(m)
[HPPS MH 0o all e wolk e

. NPT

o f‘qtitmnedv /p foul 4y paper
Bt cequesedhs e i Dy ol poi
by loms et e qp needs

Y

T o, It ek %mmwf]ZOL be)115/»// (4] able
Lk AT L phoe Conjiy Al
e peopl /wt"d;f;ﬁ w e midile

Wall kil ke collable

T)\L Tobanet s frat!
an €Cmm?c HLeahnz'cc/ PV

Amz%a fom
g& io end - 1o _end C(’Laok Sns
= D\LH’e{en} hm g;ml)ﬂ Papg/f

it Mg et Gl dpact

B (WH tlﬂ s le Pt{e(@)
~on {ile

‘"hfl d'@ckéjn If/tﬁ“ [vas bagec/ g f)mé
ot Files pot m‘t@
- ot “(@uw@}f}f
b podilty et shee

g

w_ﬂ\ouﬂ\a (OJ& ol cat aufs %9 My w/'ﬁ @/ﬂ#

o \om\h Voo P preces online

[eats
ot Y nod mel T g
~ Yo [‘Wg lo o Vst ‘
-1+ destd, on Ay
“2‘(’W\Mj 1 Smeon 6{55 " Dol tshold

be ¥ Tyt

Bl‘/“m%\)Lf,d/l%‘iL 64(/7/”@@
~fp Suds noma| pad]
A le for 46960/2}7
~ P Lusy f Meak — ginge éim,da P”Of?)@)
B i sl b ks of B é@’@
”“acﬂéﬁ‘vd él\ov[l Conneat w/ Mr&s to IOF ot

\

(pw v Qv W

= (- %L/ on th b Caresdis) on calls

é |
(/ Q;f &”“\W 5\‘9/‘0-7

hic i ﬁxo’ﬁ)cw{ T Vs
(
Nua)’ Conpress M DAUY,OILV@

Bd § ead 7 bpﬁl{ (E ot e (lﬁw fot |

@C vs (T9C

= Workg Simt’}a/

N@+ wor{Ls
"()}0"71 MWL fs L?, dumb P:;%
IWCM}‘ +9 a d ({ Wf/i # "COMI’MJL&

6053
MW

}\/@ﬁ/p/\\ P/ojfowl;
Db rebad > M
ﬂLf\tebJ((MW

— Wn -L 6\/&(€Mﬁ'€€ "
r\b@ ”/

TN seb o A olubl gva/eme

PQ@" ‘r %L 6(agr@@MﬂL} T(o J@H«a 6%@? QZL @WM//@

(o ok af Vado of TP pecloh

~otfsek of whiy {ragedt o ¢
=T

“bovig [et 1
@Q,Q%i (d”] (m an QFC

j

p@}@(ds are VL%P‘W; Zaye/ed

[P

\//Hl&/dﬁ H‘ Q//am//l |
U\/@+WO/LK qu@f /\\/b}b 9005 HL As G No)ﬂ o#(zc(//‘(

Z—QM T juu(@ftk??
W U Hed o
LM\ laW

—

Dfm Lqe@ Nmm@l 4y H@m MIves V}M/L!é

L(X\/@.\ e (]/e,@‘udw@d ‘(m{(‘a%dﬂﬂ'ﬂ]
NAT Jolates B cwle Jlﬂ‘“/

How Mlay @Z(At{% i Vv neol’
/}015 Jvhale
“T60 7 logs s bl
= il | a(ﬁ/dﬂy 1 layen

WO(({ Jik N }ww@l‘@

Mfﬁé Mk

/——/;;)@ aL*}vd}[/Oﬂ(/%

TQL\(q/MVL an €mwl/
[ffe Jm M /)@75/3 m/

N fe Yedes 9ong Togh By |
U/\L IIC{YQ(—Sung Y QLUZ
,,h(/w',lﬂ

~ Qtor 1{\“"“’7 |
~ Mebtun, Aragss (@"}ml

Ctze"/)

0

Vb Lo

R
Lravase e hops g (pgs btk

(ﬁ/ﬂag ﬁqdf«j }’Jf’,p?({mﬂ]
M_"j Q’\,({ 6{,[0/\6 }9 /(,?ZC/ [{"Ik

l[z)rwi"lg Mﬂg Ceuted ‘;1 (0\/)[243 PG

e ' 0{7
\o)ﬁ A7 % = Ecgi&)
3 =

AY
L\/On[{-)(“&\\L\ (MDOU\L Qﬂuj{' f\/lb:(/b ({(Z!“él (56 (Wh’ﬁ
,Q)&;uu.\l W | '
ook vp Oﬁ (A 40/»&/4/4143 W@
) DWQWM* TTL

=

Re calc chulnym
kT ni pml& {un Ll

5

o b ey
Z(M@C /LCL(L {m‘fc@ Lé() Wﬁ/ 6é/966

Q ﬂ“
Y3 Qv@rdf}ﬂ o0 éwa/o/mf/ }@/J/

bant shott Pl
()JJF /]o /0%

/q'L fust ws dom by hao
GO‘L iy 4'00 Cmﬂ Ox 7[9 7[4(592

NDW l\gg,\er(,Ml ~ Cagh (s ”5 0 wa fm)aca/
6P
| b@@{ o beﬂx ¢€a{7@r PFO}MZ 1L
QCU/L\ m&ﬂ mal (v hL P/obwl

'f feqe/ej adverl JWO#& fpm HLS N(@Mw

WOW I)L &Mw; 0(@ (s /\QWL Jooc /\@(Uz'vb@
m’\ Wlyon, 4onds [LN(‘/ /ouﬂnﬁ ﬁbb}ﬂ
Mo,

M« s n Gl of (idon Tisy

B} Long 1'55@
? “loﬂ)

Z} - f mu/H//ﬂ/C fﬂﬂ‘)
)—F hragh Chawnges

) A noe ateh plb e o 6 n e uh
21) Some dasim Jeydon — [owt hop
2} Nt “n p@m (ol sh

‘Jfof ;fi’[" i hae woF bod bud i whilp

¥ ehoh vt by hor bl might § o by
gO }\/u/e U Sents 91[(mew'g / Dt (bromgss S ZVL@

- QﬂULI 5 !f\ C{\Wg(l of /Ou,[/\j %
]\\tb M‘s \jom étfﬁ O‘F (ou '13 ﬁvl’ /ﬂiuﬂ({(&rﬂnfs dm}, (0

@
Demo of B p (om;@/ /Ouﬁvl‘%m/j
~Caa ool af ifs fible

a0l e glze of e fablt
N (O‘h ?l[‘Oﬂll")

s oot o D ot fably eafies
.

96 D ysilizatim sile
_,CWI S0 L\ow wam/Ls dm@@) 0Ar .‘('M(/
(p@ﬂ1 &ﬂq
Wiy we g Red T podd At fo g

it JoopS |
mh} QOJ!(Hy

e 5 (wl;rv

s DW&@T(MM
bt ebill, 5 Jpuh
Pats an be. ¢ ypfial

@ \

Bff whal s &pf M”
/A oy
fastes]

an)iL BZ% celution
Can't mae tomd e ot w[Came LI adds

MWL(OPM 255(/65 ‘m (W)W
B (f‘]U (oa{lﬂu dlind
“élmt Md ity dd gl
(o U\ﬂ m mvu& \\/{{“l /\dwﬂ/b
. (Ou}/\g n P2/ ool
" (gn P(M ﬂtﬁﬂhfr {{a@)/ W@laz,
(OUH’Lf) ol Co) 6@«/@

L11: Protocols and Network layer

Frans Kaashoek
6.033 Spring 2012
http://web.mit.edu/6.033
Some slides are from lectures by
Nick Mckeown, lon Stoica,Dina
Katabi, Hari Balakrishnan, Sam
Madden, and Robert Morris

.
L [pem—

INSTITUTE OF
TECHHLTAY

Internet: Best Effort

No Guarantees:

« Variable Delay (jitter)
= Variable rate

» Packet loss

e Duplicates

» Reordering

» Maximum length

End hosts implement everything else

Email addresses, To, Cc, etc.

- - suTP
Reliable, flow-controlled oonnecnop T3 s

sure [amail]
e

SR

Protocol

Defines the structure of a conversation

Typical a sequence of messages, each with its own header
Examples: DHCP, DNS, UDP, SMTP, TCP, IP, ...

Internet protocols defined in text documents (RFCs)

-

TTL | Protocol checksum

SRC IP Address

DST IP Address

s i FAD)

Layering of protocols

Each layer adds/strips off its own header

« Each layer may split up higher-level data

Each layer multiplexes multiple higher layers
Each layer is (mostly) transparent to higher layers

The Internet Stack

Protocol Stack

App

Trossport | TGP/ UDP EIE' TCP pecket

P [Com o] wrecer
Link '
 —| Email [data
| 1] e e 1
1@ B e e : [
|| i = {3 i "":F [Ethemed]
[]
The Internet “Hour glass” Link Layer
App |Email | Web | VoIP | P2P | RTSP|
t : : + . : =3 (=3
Transport _I'_'E?__L UDP_'_I_EE'?_EI Problem:
| 1P | Deliver data from one end of the link to the
Network e i ¢ 5 other
|Ether |Sonet | ATM |
Link : ; : : ; Need to address (6.02):

|Fiber | TP | CATS | WiFi | GSM |

"Everything over IP, and IP over everything”

= Bits=> Analog - Bits

« Framing

= Errors

« Medium Access Control

Network Laver:
finds a path to the destination and forwards

« Each router
has a

Forwarding

/A

&)

c

forwardi 2
packets along that path tabils . e (re)—
< 3
| . . « Forwarding @
« Difference between routing and forwarding tables are
« Routing is finding the path created by a Forwarding table at R
« Forwarding is the action of sending the packet to routing Dst. Addr Link
the next-hop toward its destination protocol A 1
B 2
c 1
E 3
Inside a router
The IP Header

TTL l Protocol

checksum

SRC IP Address

DST IP Address

Forwarding an IP Packet

- Lookup packet’s DST in forwarding table
- If known, find the corresponding outgoing link
= If unknown, drop packet

- Decrement TTL and drop packet if TTL is
zero; update header Checksum

+ Forward packet to outgoing port

* Transmit packet onto link

And switches today...

Alcatel 7670 RSP

Cisco GSR 12416
6ft x 2ft x 1.5f

4.2 kW power
160 Gb/s cap.

The Routing Problem:
« Generate forwarding tables

Goals: No loops, short paths, etc.

THE AMA pErases

bie e

Tmarm

A L1 (g 6 4 N Mt
iy of dins b Rasnl

ARSANET LDGIL MR, MARCH 87T

s el
ey [m

(0 g et o g o o s 3 o i o, W A B
ik bt pealup ettt Sl

i im0 e e p s

Path Vector Routing Protocol
= Initialization
« Each node knows the path to itself

DST| Link | Path

Path Vector

Step 1: Advertisement
« Each node tells its neighbors its path to each node in the
graph

.

For example, D receives:

From A: From C: From E:
To | Path To | Path To | Path
A | nutt c [put E |m|l

Path Vector

« Step 2: Update Route Info
« Each node use the advertisements to update its paths

D received: From A; From C: From E:
To | Path To | Path To | Path
Al c

null E h nll

D updates its paths:
DST| Link | Path
D [End layer| null

DST| Link | Path

o
g
t
L

n
-
@

Note: At the end of first round, each node has learned all
one-hop paths

Path Vector
+ Periodically repeat Steps 1 & 2
Inround 2, D receives:

From A: From C: From E:
To | Path To | Path To| Path
A | oull c | E | null
o 1k K

g8l &

D updates its paths:

Note: At the end of round 2, each node has learned all
two-hop paths

Questions About Path Vector
« How do we avoid permanent loops?

« What happens when a node hears
multiple paths to the same destination?

« What happens if the graph changes?

Questions About Path Vector

» How do we ensure no loops?
+ When a node updates its paths, it never accepts a
path that has itself
» What happens when a node hears multiple
paths to the same destination?
« It picks the better path (e.g., the shorter number
of hops)
« What happens if the graph changes?
« Algorithm deals well with new links
« To deal with links that go down, each router

should discard any path that a neighbor stops
advertising

Hierarchical Routing

-
i “"""‘-T--;H Border router
. dom‘ni/

= Internet: collection of domains/networks

» Inside a domain: Route over a graph of routers

« Between domains: Route over a graph of domains
« Address consists of “Domain Id”, “Node Id”

Hierarchical Routing
Advantage
« Scalable s
« Smaller tables
« Smaller messages

« Delegation Er‘

« Each domain can run its o~
own routing protocol

Disadvantage
« Mobility is difficult
« Address depends on geographic location
« Sup-optimal paths
« E.g., in the figure, the shortest path between the two
machines should traverse the yellow domain.

Routing: many open issues
= Misconfigurations between domains?
= Flat addresses and scalable?
= Routing in multihop WiFi networks?

« Routing in peer-to-peer networks?

Summary

« Protocols

« Layering of protocols

« Network layer: forwarding & Routing
« Path-vector routing protocol

http://web.mit.edw/6.033/www/lec/11.txt

6.033 2011 Lecture 11: Layers and Network layer

Plan:
Protocol and Layers
Link layer: 6.02
Net layer: today
E/E layer: Monday

How to solve problems from previous lecture?
Protocols
Layers

Protocol
Examples: DHCP, DNS, UDP, SMTP, TCP, ...
Two entities (peers) are talking.
Protocol formally defines structure of conversation.
Typically sequence of messages -- packets.
Format :

Specific set of message types.

what does each bit of the message mean?

[example: ethernet paper, dst, src, data, checksum]
Rules for what happens next, state machines.
Semantics: what does it mean?

Often you can learn all you need from the formats...

Layers:
Intuition: protocols nest.
Inner protocols building blocks for outer ones.
Let's formalize that way of organizing multiple protos.
Choose and define a useful protocol. [box <--> box]
Define s/w interface so other layers can use it. [stack up]
It may in turn use more primitive layers. (stack down]
Can build up functionality this way.
But use modules, abstraction to control complexity.
Hard part: choosing useful layer boundaries.

6.033 layer model:
[draw stacks for host, switch, host]
Physical: analog waveforms -> bits.
Link: bits -> packets, single wire.
Network: packet on wire -> packet to destination.
End-to-end: packets -> connections or streams.
Application.
physical almost always tightly bound te Link.
And application isn't a generally useful tool.
Note: layer may have many clients
multiple apps using e2e, multiple e2e using net
need a way to multiplex them
Note: net layer may use multiple links
So the real picture in one host
appl app2 app3
TCP UDP
IP
Eth WiFi
Layers == outline of data networking topic.

Stack of layers:

Repeated scheme for layer interaction

Each layer adds/strips off its own header.
Encapsulates higher layer's data as "payload".
[add to pkt diagram; interior header &c]

Each layer may split up higher layer's data.
[stream split into payloads of packets]

Each layer multiplexes multiple higher layers.
[put protocol # field into packet]

EBach layer is (mostly) transparent to higher layers.
data delivered up on far side == data in

Demo: layers in action
wireshark
select interface wifi
capture all packets
send email
stop capture
filter traffic by srec: ip.sre == 192.168.1.108
look at trace
SMPT, TCP, etc.

Network layer
Forwarding -- sending data over links according to a routing table
Routing -- process whereby routing tables are built
Forwarding -- mechanical. Just perform a lookup in a table.
Pseudocode:
forwarding_table t
net_send(payload, dest, eZeprot):
pkt = new packet (payload,dest,e2eprot)
net_handle(pkt)
net_handle (pkt) :
if (pkt.dest == LOCAL_ADDR) :
e2e_handle(pkt.payload, pkt.e2eprot)
else:
link_send (t [p.dest] .link, pkt) // table lookup
Routing -- compute the forwarding table
How to compute forwarding table? Manually -- not scalable.
Centrally -- not a good idea (why?)

- need a routing algorithm to collect
- collection requires many messages

1of2 3/18/2012 4:25 PM

http://web.mit.edw/6.033/www/lec/111.txt

- hard to adapt to changes
Path Vector Algorithm -- Distributed
Each node maintains a forwarding table T , with:
Dest Link Path
Two steps:
advertise (periodic)

send T to neighbors

integrate(N,neighbor, link) -- on receipt of advertisement from neighbor
merge neighbor table N heard from neighbor on link into T

Merging:
for each dest d w/ path r in N:
if d not in T, add (d, link, neighbor ++ r) to T
if d is in T, replace if (neighbor ++ r) is shorter than old path
Example:

(If everybody picks best path to every dest, you can see that for a network with most distant nodes separated by N hops, in N rounds everyon
Q: what is the purpose of keeping the path in the table?
Problems:

- permanent loops?
- won't arise if we add a rule that we don't pick paths with ourselves
in them; this is what we need the path for!

- temporary loops -- arise because two nodes may be slightly out of date
example
- soln: add send count -- "TTL" -- to packet

- failures / changes -- repeat advertisements periodically,
remove paths in your table that aren't re-advertised
{e.g., a path P that begins with router R should be in the
next advertisement from R.)

- graph changes -- same as failures

How does this work on the Internet:
At first, internet was a small network like this
Show evolution slides
What is the problem with using path vector here?
Network is huge
> 1 B nodes on network

Even if we assume most of those are compters that connect to only
their local router (soc den't really need to run the path vector protocol), there are

Each router needs to know how to reach of these billions of computers

With pure path vector, each node has a multi-billion entry table (requiring
gigabytes of storage)

Each router has to send these gigabyte tables to each of its neighbors;
millions of advertisements propagating around. Disaster.

Solution: hierarchical routing
Subdivide net into areas; with multiple levels of routing

One node representative of each area; perform path vector at area level. Within each area, free to do whatever. (For example, use more hi

Demo: http://www.routeviews.org/
telnet route-views.routeviews.org
legged into a router, running view
show bgp 18.0.0.1
area.name
E.g., 18.7.22.69 -- this is mit.edu, area 18, which corresponds to AS 3 in BGP
http://bgp.potaroco.net/cidr/autnums.html list all AS
Internet routers running -- BGP -- advertise prefixes of these address
Show advertisements (e.g., "18.*.% *"_) 17.1%.% %
show bgp 18.26.4.9
same table (only knows about 18).
show ip bgp sum
size of table
http://bgplay.routeviews.org/
query: 18..0.0.0/8
start 2/2/2011
end 3/8/2011
174: cognet
1239: sprint
3356: level
10578 (gigapop-NE, harvard)

2of2 3/18/2012 4:25 PM

6.033 / Preparation for Recitation 12

6.033: Computer Systems
Engineering

Home / News
Schedule

Submissions

General Information
Staff List
Recitations

TA Office Hours

Discussion / feedback
FAQ
Class Notes Errata

Excellent Writing
Examples

2011 Home

1of2

http://web.mit.edw6.033/www/assignments/internet-routing.shtml

Spring
2012

Led AN

Preparation for Recitation 12

Update: A new version of the Wide-Area Internet Routing notes is
available here. This is an update to the notes in the course packet. It is
similar in content to the previous notes, so it's okay if you've already

read the old version. You may skip the appendices in these notes, and
skip or skim sections 3.3 through 3.5.

Read An Introduction to Wide-Area Internet Routing (reading #11 in
course packet)

Make sure you've read Section 7.4 of the textbook. For the paper,
you'll specifically want a very good understanding of Section 7.4.2 (the
path vector protocol).

——

This paper was written specifically for 6.033, so ought to go down
easier than some of the research papers we've been giving you.
Nonetheless, some of the standard reading tactics apply.

¢ Notice that the paper is full of acronyms and technical terms like
"route reflectors" and "confederations." Which if any do you
ach to remember or understand in order to get the main
idea of the paper? Ignore the others. For starters, you might keep
an eye out for BGP, IP, AS, customer, provider, peering, transit.

e Start by reading the abstract and conclusion (section 3.6). The
"take home points" may not make complete sense at first, but
they will tell you what to look out for as you read the paper.

e Next go through the introduction. And take another look at 3.6:
its points should make more sense now.

e Section two can be thought of as specifying the "requirements”
for wide area routing: it discusses the kind of things network
providers want to be able to do. This requirements discussion
spills over to the beginning of Section 3 (up to but not including
3.1) and is relatively understandable.

e Sections 3.1 and on get into the details of how the requirements
are met. Many of those details are less important; you might
ignore them until you've had a chance to mull over the higher
level issues for a while.

As you finish, consider the obvious general question:

3/10/2012 6:32 PM

6.033 / Preparation for Recitation 12 http://web.mit.edw/'6.033/www/assignments/internet-routing.shtml

e Why was this paper assigned? What useful information does it
convey beyond that given in the text section 7.4.2?

And here are some specific ones:

e What are peering and transit relationships, and how are they
different?

e Why do providers so dislike carrying other providers' packets?
How does it hurt the provider to do so?

e What is a path-vector protocol? Why does the path-vector
protocol in 7.4.2 look at hops over links, while BGP looks at
hops through ASs?

e How much fault isolation do you get from BGP? What happens
to the routing in the rest of the network, short and long term, if
some router turns off? What is the worst that can happen if some
router starts misbehaving (sending incorrect information)?

e Does routing have to be this complicated? Is it complex because
of complex requirements, or because of bad design choices?

e Routers use the BGP protocol to set up routes by talking to each
other. But they talk to each other using TCP, which relies on the
presence of routes. Doesn't this create a chicken and egg
problem?

Some students have found the Cisco technology handbook useful for
understanding BGP.

Questions or comments regarding 6.033? Send e-mail to the 6.033 staff at 6.033-staff@mit.edu
or to the 6.033 TAs at 6.033-tas@mit.edu.

Top // 6.033 home //

20of2 3/10/2012 6:32 PM

457 e

[5 Min (q/la}
T Tt qov ol of AV

- pavld ot hee E Shackd ’/" v

VF rel stted oo redwl
- llwc‘th

Rofe [7. %% x e wilt

/—%\ / 1\\ Q\
%
Nt A, 4 vals oy

A MBWL@ it ol apenton: ompae, (om ol
“ P
Ty |
« 92
(1 3

Hvﬁ: @M’ﬂd ‘[/'//‘L’

(T&{@({ a,bouql (QP {] T fgok o
UOMM m\oo.;} NE ’{fa,ﬁ I y ‘ﬂ ~0nly businssy sgnse
(s ek ey 11wl

((Jn\mg 'm% @GGUMJ
(Irv: Wi ansieiny all e qvs <.)
I\Z (Joe& nt L(rww Mm;b)‘ky zflt 9ot o

ko

W o | A
a2 Sl

(0091
@({Q&Q& Ktm)

Dyranedy deides .
\fr\amtudlv(Je,odogé w)@fc fo otad pelis

3
B(}p MOP(’(&U’}@ n ﬂp of T(P

Iﬁﬂﬂw‘ B()P -) ;BGP

| ip/wzavj B‘P 5}241(0’?
|

\/\/)\4} ‘t(Yoo (U 661) Oa)’Wr J&Hﬂ/

pmk‘(dﬁd Voﬁuba @}C&jh%)(‘us ’”‘%57

/

| - |
E%lﬂn;:fz)?) M"Jfl {"lﬁpe(/H‘M) el/gﬁ}tgnq (A/[// Q/L(/‘?p?t

Padbet-) be |, by

Db o bl v e B rh

6.033 Tutorial
Design Reports and Other Advice
Attendees

Travis Grusecki, TA for 6.033 Sections 1 and 2
Section 1 students and their writing instructor: Dave Custer

Section 2 students and their writing instructor, Linda Sutliff

Friday, March 16, 2012, 1:00 p.m. to 2:00 p.m. and 2:00 p.m. to 3:00 p.m., Room 36-153

Agenda

A. Design analysis and discussion Students for first five minutes
B. Pebriefing on PP-1 Custer, Grusecki and Sutliff
C. Cowplete draft design analysis form Students

D. Context/primary objective Custer

(033 Moig Kt

[0719 of Of@ﬁ
lf\/l’\{/\,'h’ }mpo(fafﬂ' /OF O/eor(
—Peaple o {Jiﬂlf oat fop ¢ boffon
“&M% ML ;A%icf}oq
info
lo{;“f) (f 7L09§ﬁ?/

“@61(@ bcul« FD QH, (//Lo
A\m N 241(?

»%‘nﬂ Vi)]Lo e
\t P/O b)em - C@fwlf)UL
& Design > Pef b o + ﬁ@sc/z‘bﬁ FM9 puke
TM@({ b{ /7,) and 57%@/0/(
j /(Cft//e
= lon | thyp sne worll finL

O T/owo
Fe@(UQM(@/] “ﬂ N

TUJM Lw @f%t(ﬂ L (n a,({uz&f)/f g/@‘lf’.

IlC (omwex&s sy mc/uda b'b
Lsi n(/lv&ﬂ :7L

)D@n\wt V[({w Tt as A 6/000/6
6{@\0\%5 ar QWJ\(

DA wore 7h3
Loy il glade YM{M{
DdﬂL L stuhe | (npo Fask

-—(Qw”y Speotﬁ7 Wht g m %
L\()W é)(g ﬁxuf g/@w

ﬂ\m{ CWJ‘M!L 5 0 G (Mglw Thaany ¢
oot bt ol il b s
“@{ntng VP @ow‘oazge/ [@”Qémf’
N il ars b gholl i

3
Negds 4o supf)M ol ﬁ'mgs bk doey

Lt b
TN o 1 b)owﬁﬂ hard

Foute Comntals befl?
begie b bl dely

\
”'f(?u Mhingr ’/‘L/m[j.,j

5&%014 he ovecllont exwf@; 2 igm Z@
T 100-Wo wells ok

YW ae h‘é QZ(PP/')l]/]ff’bvc m pfoum 1/5 Cﬂno[ﬁrzs/',{j
b B gl e g dide
(MW W L‘“’f\ 1L0)(w”L @Idav?t

B o Wit 1 iake
%/][‘V 3/d [f“{

Tawe a5 cepart
- \/OV(ZJQ, b@em QWJ,@({, lﬂf}{&qt “Nob/ ({E"o(lﬂ'l ;L

(0
Oome e o0tska i 4
Bb ot ook ph for ailly cewtns
-’“LQ 5}"4{!6’ \6()&
~ (over Page

® - (&/c{w 4 ‘{Plfl\(Cj P/afeaé}ml[f
- l,ﬂc(ﬂtt . Pzﬁwre ' w @ Caplio
'6\&\0[&/(’« Your /aofnfs " A Caplioy
Yo foll T whet g wlll fell o
Y, Tl e
VY, ol Thn ket 7z Told fhom

, ek 14 ,,@L,p@f—’,

L«[{ ;rl oM
Tooody b o] e o

| \
ly [M\PVr deubej 0\ désf@‘? ¢ 4t end

6 p ‘}M},Eﬂ& éOf* M

@

FIU T o ot 3 - oall rabimal

ke W
SO0 b sl sl 1

)(Mll« Pfo\/mmog V/ /H(,r)(’fk(,t{ :#awff?m
T S yshesy

N I !hﬂzw(t ,MH7 M((Jen}’a% Zia /56
ASstghant

Ef\@\”@g}\ @ \(5 a‘lw‘}' '(’/%(fe 066
hod o (ot whih B mile g Fadeoff;
m@ CW# a5 not wlr}@d o St of a/g%

(@”Yl“’b} ("‘/ta WA I o aﬂem/;

e ~ ,
%iw?j% “(omte V) bv/ hose for « a’es%

whale qtmleo(g dre MﬂWﬁ fr a a%;yy,

/4{(0
| k l (
@ UJM/ ?@ap Zoﬁp‘ﬂl“/ %fﬁ{vtma

f erbi/l&
ant i%&dzu "
i)

(om pl(ﬂmeaa

b 94
g J(O 9
Upp A

Describe your APl implementation

3. Design Analysis and Discussion What is the overall rationale for your design?

Workload Analysis: Describe how your system performs on the workloads given in

Section I11.2 of the assignment.

List tradeoffs and their consequences

Design Tradeoff Impact

Benefit

Explain the reasoning behind your system design. How do elements of your design

provide good performance on your workloads? Do you see any limitations to your design that might crop

up, perhaps as the system scales?

4, Conclusion: Does your solution solve the design problem? How? Is there any other

work necessary in order to implement the design?

Part 2 — DP1 Instant Paper
Use this form as a way to organize the information you have been working with on DP1.
You may want to complete these sections out of order. For example, many students find

it easiest to complete sections 3 and 4 first, then return to section 1.

(Title Page) Describe the subject and scope of your design (aim for 15 words or fewer)

1, Introduction and Overview

What technical problem are you solving? What challenges do you face as a systems
designer. (Answer in 2-3 sentences)

What is your overall strategy? (What were the major choices you made in this design?)

What are the chief characteristics of the resulting system? Complete the following
sentences: "The goal of this design is to provide...We accomplish this goal by..."

2. Design Description How does your solution satisfy the constraints of the design
problem?

6.033, Spring 2012
16 March, 1:00/2:00 (circle one)

Design Proposal 1(DP1) Report

Please leave this with your TA. Neither your name nor any other identifying information should be written

on this sheet. Circle one of the options below:
I DO have a clear idea of how to write the DP1 Report
I DO NOT have a clear idea of how to write the DP1 Report

Is there any additional information you could have used in this session?

Tear Here ---vcmmmemm e Tear Here-----someommc e el Tear Here -

KEEP THIS INFORMATION ON WHERE TO GET ADDITIONAL HELP
The links to IEEE standards:

1. Citations: http://www.ieee.org/documents/ieeecitationref.pdf
2. Style Manual: http://www.ieee.org/documents/stylemanual.pdf

If you have additional questions about this assignment:

----Tear Here

1. E-mail the Writing Program lecturer running your tutorial section: All writing program lecturers will

have office hours to address DP1 issues.
* Section 1 (Except Varley and Wong): Dave Custer (custerspiral@gmail.com)
* Section 2 (plus Varley and Wong): Linda Sutliff (Isutliff@mit.edu)

2. Feelfree to e-mail your TA as well:
* Travis Grusecki: (travisrge@MIT.EDU)

3. Contact the CI-M co-coordinators for the class: Jessie Stickgold-Sarah, Jessie@mit.edu or Don

Unger, donunger@ mit.edu

UZ Pr fo .
,ﬂgﬁf G

Pagr Jro Doar $7stems S 1 (ol S rer

Fﬁvﬂf lc(/ m(odel

"+rea+ tagek oo @ il (o0
for oy ot
- M”P /o(ob

B ‘UM " ety al

/—l

/"_“\\
/7 — \tay
net
T,

};NQ ofation DWJ

leﬂagw
s
BOM‘OIL@
“ e b ot e
= {0 have Mul l(’[ﬂ &ng . /ML 0 uw
ok of gl oo hoal Ao

~ho obvies caqtal Get

@
"_)M C&MH{ 7LO J(%/ego{h o/?;%/)

Godvfs
- N 0 cen)r(otl Socser
~ by Muchive 15 o v

FE/G({ Padh g P(azé Qv L\ | {
7 thaohlnes /ole
N HOW +0 1[[Ul Oﬁ@/ n@dc)/ olﬂbf‘f
-’Hmv ds V- d‘l“;tlﬂ dabe g /"ach;n%
’”Hov« JLo A &b fyolF foleayy

- Mgmla/{\d (ﬁoﬂ(f(, m}}/e

al CEnJF/d,l (Lu/ﬂw/;]%

Q|

@ | [
bl | Qi by {ilg
O fuion vty = pst donload fon g

New_xar
ﬁd@ 65 A pute o Fayle
T/Mqr Mf’wfw(l% iy L\u Wwﬁ /D‘(ces of £
Tl ot b Jy N8 plagy
Whi, few {lshes L eanes o Geof
C/jp% hih of cak Prl@({
o st gor et da

Mg,

Whidh pias 1o Ypuglad
[mLﬁM\
" n 0(&9/ ‘)ML ﬁm Qaryone M@ o ggf /)/fg(e /

T g Qi iy g of
G Mo Gl s ket Cusler 7
= g C{’\dmﬂ]
Cﬂ’l 5\/&) Su'ld& P\MC@

B Cow\t damml/)wl Sang, Mnolts '{Oﬂl m_{/fﬂ(’ /Opp,;
Liinder o how map cede doals « Ghade

/6)

N,

G BT de
“l,q/\&om ISS!
Z%f\ ragest

1, For g b(oult - '0(/4”6[

HQ &Jw{wf!@& ‘Q‘(]LTO”((’(H(
LbVL WA {tauW/

—

IS .h]Zb J\ldom % t%”z aisﬁM tb/lf
jh “frqvbef 0 “Lt 53 Se//efl,)
(qrx AWQ muH/{PIt‘Z][md@(p i [{/le -

V}ﬁ (all « fady é(; e h/mi{;
bDHT
“]LM‘W {\/adfmhlﬂ Jis}rlbwleé I peess
P (RL, TP) o Jiikd hesh b
(a0 T gk gg}(m)

DO”JV § U‘vuy WML pacy - peer fo lio abof e
6 e peer
Tl mde e

g() @adf\ mcwhlg@ (rﬁ N’SPMS\IH& @ A P
Pt of dy fabk

U’\Of& Pw%‘”(‘”\

Efﬁth () { oy IV) 55ty /Jef looh-7
Saldbe gllegn) heke pr o
&Ob\/b‘\ (c{q Curl (Vﬂ mq N0 ({eg gomj dﬂw’l

AL by @l D wdes (sl
CQ"\&O(LM l\ﬂb/ﬂ/’\ﬁ

Hole

C/ffd(ﬂ[7%&* |
?d 5P

A Lkz{ - u al (b swestor

[beod ik Prs bfoc)
(/dﬂ 0 hasie molt/d)

@ OLSZ\ L\}b {5 nt ho&e; Scessor

i

\y \L ” l/:b(‘al’ D (;\./j)
jt/ﬂt gilfa Qauﬁ Wﬂ(}(pace 6}101/6‘ - I[Ifftjw ‘fcﬁfﬂ/{
(Ol ~)
‘/7,
l/u
L/j fond e anlt
l [{(
L
]
//Jm\‘{ -*

FM” ; {ao’wb To uess - hfZ‘l
lﬂOL“ Eo’ lﬁ;%eﬁ fnde. ﬁfﬂl ?m(eed,j
ooy hop 1 hall of prekins by
D bylv) fop

oo Vil U st
hov b add tns”

N\ VI
O
140\ e

(/?dﬂ{’ﬁ ﬁa@(f fm/mid% (!/L éj
(0(“ d/(waw l[\mcj hl& VM@)
I el b abeh b poto

Immf} |11k

/\

NZG mc'ah}' 1101* lﬂfwu /WLB S0 gaep ‘}0 /l//?d

bo mshed Tk RET A Guenos

S dm'W st

.
Jdow m«/»y Cule4605% YL‘D mmﬂ’mqf
/)V’abw"?, l/z ﬂ"d@ fu

Pl svfevso/b "y _¢/2 j

& P(mo Wd@" B ((_/2,

(WN, W[Mw (/VQLL c((md /{'nj w / /S Ues00)

toall gy e dop

\ \

Loy M’/O O(VL:' 5({(./93

u !)
égmu Mo VAU u)ebtgh (5%

“ (on(ireat jo’@;

- {ocwbiff

— helorgems wolt
‘_&'@wm& Ml&

T

(Q%quu\l thord MOIB\

I - -
I Il' MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

A torrent file

{
Peer—to-peer SyStemS ‘announce': 'http://bttracker.debian.org:6969/announce’,
'info":
{
6.033 Lecture 12, 2012 'name': 'debian-503-amd64-CD-1.iso',
'piece length': 262144,
Frans Kaashoek length'’: 678301696,
'pieces":
'841ae846bc5b6d7bd6e9aa3dd9e551559c82abcl...d14f1631d
DP1: deadline Thursday 5p 776}5008f83772ee170c42411618190a4
b

A DHT in Operation: Peers

A DHT in Operation: Overlay

. B o
jm} ” Jul::
og & Jl=
= y
2 g% Q'% 0=

A DHT in Operation: put() A DHT in Operation: put()

A DHT in Operation: put() A DHT in Operation: get()

Simple lookup algorithm
Basic lookup

N10 l “Where is key 80?” Lookup(my-id, key-id)

n = my successor
if my-id < n < key-id
call Lookup(id) on node n // next hop

else
return my successor // done

K e » Correctness depends only on successors

“Finger table” allows log(N)-time
lookups

Finger i points to successor of n+2

A DHT in Operation: get()

Challenge: nodes join and leave

Chord IDs

 Key identifier = SHA-1(key)

 Node identifier = SHA-1(IP address)
 Both are uniformly distributed

e Both exist in the same ID space

e How to map key IDs to node IDs?

Chord properties

o Efficient: O(log(N)) messages per lookup
N is the total nhumber of servers

» Scalable: O(log(N)) state per node
e Robust: survives massive failures

Consistent hashing

Circular 7-bit
ID space

K80
A key is stored at its successor: node with next higher ID

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for
highest node n s.t. my-id < n < key-id
if n exists
call Lookup(id) on node n // next hop
else
return my successor // done

Joining: linked list insert

1. Lookup(36)

Lookups take O(log(N)) hops

Lookup(K19)

K19
Join (2)

2. N36 sets its own

successor pointer

Join (3) Join (4)

\

4, Set N25’ s succesdor K30
pointer

3. Copy keys 26..36

from N40 to N36

Update finger pointers in the background
Correct successors produce correct lookups

' . i Solution: successor lists
Failures might cause incorrect lookup

Each node knows » immediate successors
After failure, will know first live successor
Correct successors guarantee correct lookups

Guarantee is with some probability

N80 doesn’ t know correct successor, so incorrect lookup

Choosing the successor list length

e Assume 1/2 of nodes fail
e P(successor list all dead) = (1/2)"

o |l.e. P(this node breaks the Chord ring)
 Depends on independent failure

« P(no broken nodes) = (1 — (1/2))N

» r = 2log(N) makes prob. = 1 — I/N

Other design issues

Concurrent joins
Locality
Heterogeneous node
Dishonest nodes

Lookup with fault tolerance

Lookup(my-id, key-id)
look in local finger table and successor-list
for highest node n s.t. my-id < n < key-id
if n exists
call Lookup(id) on node n // next hop
if call failed,
remove n from finger table
return Lookup(my-id, key-id)
else return my successor // done

Summary

o Peer-to-peer: server-less systems
» Example: bittorrent
 Peer-to-peer lookup
» Example: Chord

1 of 4

http://web.mit.edw/'6.033/www/lec/112.txt

-*- mode: org -*- ’b]9

#+STARTUP: indent rL
6.033 2011 Lecture a“: peer-to-peer systems

* Today:

Peer-to-peer systems
hard problem: lookup

Overlay network

* Layer network model
E2E (e.g., TCP)
Network (e.g., IP)
Link (e.g., ethernet)

* Application using these stack have been client/server
Server in Machine room: well maintained, centrally located, perhaps replicated
Examples: X, DNS, master in MapReduce

* What is wrong with centralized infrastructure?

Centralized point of failure

High management costs if one org has to host millions of files, conversations, etc.
Machines owned perhaps by you and me: no obvious central authority.

* Goal: peer-to-peer system (serverless, or every client is a server)
How do you track nodes and objects in the system?

How do you find other nodes in the system (efficiently)?

How should data be split up between nodes?

How to prevent data from being lost? How to keep it available?

How to provide consistency?

How to provide security? anonymity?

* Example: bittorrent
Usages: static bulk content (Songs and videos, Linux distributions)
Other examples: Skype, etc.

** Usage model: cooperative
user downloads file from someone using simple user interface
while downloding, bittorrent serves file also to others
bittorrent keeps running for a little while after download completes

** Goal: get file out to many users quickly
Encourage everyone to upload file

** Challenges:
Tracking which peer has what
Handling high churn rates
Download rate proportional to upload rate

** Approach:
Publisher a .torrent file on a Web server (e.g., suprnova.org)
URL of tracker
file name, length
SHAls of data blocks (64-512Kbyte)
Tracker
Organizes a swarm of peers (who has what block?)
Seed posts the URL for .torrent with tracker
Seed must have complete copy of file
Every peer that is online and has copy of a file becomes a seed
Peer asks tracker for list of peers to download from
Tracker returns list with random selection of peers
Peers contact peers to learn what parts of the file they have etc.

3/23/2012 4:38 PM

2 of4

http://web.mit.edw6.033/www/lec/112.txt

Download from other peers

** Transport
Peers pipeline on top of TCP
divide a block further in 1l6Kbyte subpieces
keep typically 5 requests in flight (to different peers)

** Which pieces to download

strict?

rarest first?
ensures that every piece is widely available
also helps with the seed and bootstrapping rapidly
won't retrieve the same piece multiple times from the seed

random?
avoid overloading seed when starting download
if peer has no piece, get as quickly as possible a piece so that it can upload
don't use rarest because it is likely only one peer has it
--> use random, can download subpieces in parallel

parallel download of same pieces?
avoid waiting on slowest

final algorithm
random for first piece, then rarest-first, parallel for last piece

** Fairness (see paper for tomorrow)

** demo: transmission with ubuntu .torrent
use inspector to look at the square of pieces, the clients, note DHTs

** Bittorrent relies on one central component: tracker.
Can we get rid off it?
Scale to large number of torrents

* Scalable lookup:

Provide an abstract interface to store and find data

Typical DHT interface:
put (key, value)
get (key) -> value

loose guarantees about keeping data alive

For bittorrent trackers: :
announce tracker: put(SHA(URL), my-ip-address)
find tracker: get(SHA(url)) -> IP address of tracker

Some DHT-based trackers exist.

Many other usages of DHTs

* Goal: peer-to-peer implementation of DHT
An overlay network
partition hash table over n nodes
not every node knows about all other n nodes
rout to find right hash table
Goals:
log(n) hops
Guarantees about load balance

* Example: Chord

** ID-space topology
Ring: All IDs are 160-bit numbers, viewed in a ring.
Everyone agrees on how the ring is divided between nodes
Just based on ID bits

** Agsignment of key IDs to node IDs?

Key stored on first node whose ID is equal to or greater than key ID.
Closeness is defined as the "clockwise distance"

3/23/2012 4:38 PM

http://web.mit.edw/6.033/www/lec/112.txt

If node and key IDs are uniform, we get reasonable load balance.
Node IDs can be assigned, chosen randomly, SHA-1 hash of IP address...
Key IDs can be drived from data, or chosen by user

** Routing?
Query is at some node.
Node needs to forward the query to a node "closer" to key.
Simplest system: either you are the "closest" or your neighbor is closer.
Hand-off queries in a clockwise direction until done
Only state necessary is "successor'.

n.find successor (k):
if k in (n,successor]: return successor
else: return successor.find_successor (k)

** Slow but steady; how can we make this faster?
This looks like a linked list: O(n)
Can we make it more like a binary search?
Need to be able to halve the distance at each step.

** Finger table routing:
Keep track of nodes exponentially further away:
New state: succ(n + 27i)
Many of these entries will be the same in full system: expect O(lg N)
n.find successor (k):
if k in (n, successor]: return successor
else:
n' = closest preceding node (k)
return n'.find successor (k)

Maybe node 8's looks like this:

1: 14
2: 14
4: 14
8- 21
16: 32
32: 42

** There's a complete tree rooted at every node
Starts at that node's row 0
Threaded through other nodes' row 1, &c
Every node acts as a root, so there's no root hotspot
This is *better* than simply arranging the nodes in one tree

** How does a new node acquire correct tables?

General approach:
Assume system starts out w/ correct routing tables.
Use routing tables to help the new node find information.
Add new node in a way that maintains correctness.

Issues a lookup for its own key to any existing node.
Finds new node's successor.
Ask that node for its finger table.

At this point the new node can forward queries correctly:
Tweak its own finger table as necessary.

*% Does routing *to* us now work?

If new node doesn't do anything,
query will go to where it would have gone before we joined.
I.e. to the existing node numerically closest to us.

So, for correctness, we need to let people know that we are here.
Each node keeps track of its current predecessor.
When you join, tell your successor that its predecessor has changed.
Periodically ask your successor who its predecessor is:

3of4 3/23/2012 4:38 PM

4 of4

http://web.mit.edu/6.033/www/lec/112.txt

If that node is closer to you, switch to that guy.
Is that enough?

** Everyone must also continue to update their finger tables:
Periodically lookup your n + 2%i-th key

** What about concurrent joins?
E.g. two new nodes with very close ids, might have same successor.
e.g. 44 and 46.
Both may find node 48... spiky tree!
Good news: periodic stabilization takes care of this.

** What about node failures?
Assume nodes fail w/o warning. Strictly harder than graceful departure.
Two issues:
Other nodes' routing tables refer to dead node.
Dead nodes predecessor has no successor.
If you try to route via dead node, detect timeout, treat as empty table entry.
I.e. route to numerically closer entry instead.
Repair: ask any node on same row for a copy of its corresponding entry.
Or any node on rows below.
All these share the right prefix.
For missing successor
Failed node might have been closest to key ID!
Need to know next-closest.
Maintain a _list_ of successors: r successors.
If you expect really bad luck, maintain O0(log N) successors.
We can route around failure.
The system is effectively self-correcting.

* Summary

** Peer-to-peer systems
** Bittorrent
peer-to-peer downloads
** Chord

An overlay network

Log N tables

Log N lookups

3/23/2012 4:38 PM

6.033 / Preparation for Recitation 13 http://web.mit.edw/6.033/www/papers/indirect-bittyrant.shtml

6.033: Computer Systems Spring
Engineering 2012

Home / News

Preparation for Recitation 13 ,
Schedule COol dé)af\' (4(%{(/@

——— Reaﬁo incentives build robustness in BitTorrenl®” by Michael
Piatek, sdal; a n ishnamurthy, and

Arun Venkataramani. (This paper requires an MIT personal certificate
General Information ~ foraccess.)

Staff List Read sections 1, 2, 3.2, 4, 5 and 7. The other sections are optional.
Recitations The BitTorrent protocol is based on the tit-for-tat strategy for the
prisoner's dilemma game. You may wish to read The Triumph of the
TA Office Hours Golden Rule for an interesting introduction to both the prisoner's

dilemma and tit-for-tat.

Discussion / feedback Think about the fO]lOWlng questions:

FAQ e Why does tit-for-tat seem like a good idea for BitTorrent?
e Why is BitTorrent "better” than HTTP for content providers and
Class Notes Errata users?
e Why do network providers not like BitTorrent?
Excellent Writing e [s BitTyrant cheating? i W.d{
Examples P (’y
2011 Home

Questions or comments regarding 6.033? Send e-mail to the 6.033 staff at 6.033-staff@mit.edu
or to the 6.033 TAs at 6.033-tas@mit.edu.

Top // 6.033 home //

I of 1 3/17/2012 2:06 AM

)5\/"1 W /0‘(7

[JJOU\

Kty
(}l r\

Q \

wd A\

Do incentives build robustness in BitTorrent?

Michael Piatek* Tomas Isdal* Thomas Anderson* Arvind Krishnamurthy* Arun Venkataramanit

Abstract
A fundamental problem with many peer-to-peer systems
is the tendency for users to “free ride”—to consume re-
sources without contributing to The system. The popular
file distribution tool BitTorrent was explicitly designed to
address this problem, using a tit-for-tat reciprocity strat-
egy to provide positive ince@;mw
resources to the swarm. While BitTorrent has been ex-
tremely successful, we show that its incentive mecha-
nism is n:éﬁh@MThmugh perfor-
mance modeling parameterized by real world traces, we
demonstrate that all peers contribute resources that do
not directly improve their performance. We use these re-
sults to drive the design and implementation o

a strategic BitTorrent client that provides a median 70%

performance gain for a 1 Mbit client on live Internet

swarms. We further show that when applied universally,
strategic clients can hurt average per-swarm performance
compared to today’s BitTorrent client implementations.

1 Introduction

A fundamental problem with many peer-to-peer systems
is the tendency of users to “free ride”—consume re-
sources without contributing to the system. In early peer-
to-peer systems such as Napster, the novelty factor suf-
ficed to draw plentiful participation from peers. Sub-
sequent pWthempted
to address the free riding problem; however, their fixes
proved to be unsatisfactory, e.g., “incentive priorities” in
Kazaa could be spoofed; currency in MojoNation was
cumbersome; and the AudioGalaxy Satellite model of
“always-on” clients has not been taken up. More re-
cently, BitTorrent, a popular file distribution tool based
on a swarming protocol, proposed a tit-for-tat (TFT)
strategy aimed at incenting peers to contribute resources
to the system and discouraging free riders.

The tremendous success of BitTorrent suggests that
TFT is successful at inducing contributions from ratio-
nal peers. Moreover, the bilateral nature of TFT allows
for enforcement without a centralized trusted infrastruc-
ture. The consensus appears to be that “incentives build
robustness in BitTorrent” [3, 17, 2, 11].

In this paper, we question this widely held belief. To
this end, we first conduct a large measurement study of
real BitTorrent swarms to understand the diversity of Bit-

*Dept. of Computer Science and Engineering, Univ. of Washington
TDept. of Computer Science, Univ. of Massachusetts Amherst

Torrent clients in use today, realistic distributions of peer
upload capacities, and possible avenues of strategic peer
behavior in popular clients. Based on these measure-
ments, we develop a simple model of BitTorrent to corre-
late upload and download rates of peers. We parametrize
this model with the measured distribution of peer upload

capacities and discover the presence of significant altri-

ism in BitTorrent, i.e., all peers regularly make contribu-
tions to the system that do not directly improve their per-
formance. Intrigued by this observation, we revisit the
following question: can a strategic peer game BitTor-
rent to significantly improve its download performance

for the same level of u load contribution?

Our primary contribution is to settle this question in
the affirmative. Based on the insights gained from our
model, we design and implemen@a modified
BitTorrent client designed to benefit strategic peers. The
key idea is to carefully select peers and contribution rates
so as to maximize download per unit of upload band-
width. The strategic behavior of BitTyrant is executed
simply through policy modifications to existing clients
without any change to the BitTorrent protocol. We eval-
uate BitTyrant performance on real swarms, establish-
ing that all peers, regardless of upload capacity, can sig-
nificantly improve download performance while reduc-
ing upload contributions. For example, a client with
1 Mb/s upload capacity receives a median 70% perfor-
mance gain from using BitTyrant.

How does use of BitTyrant by many peers in a swarm
affect performance? We find that peers individually ben-
efit from BitTyrant’s strategic behavior, irrespective of
whether or not other peers are using BifTyrant. Peers not
using BitTyrant can experence degraded—performance
due to the abs: f altruisitic contributions. Taken to-
gether, tﬁﬁlﬁM&s do not build

robustness in BitTorrent”.

Robustness requires that performance does not de-
grade if peers attempt to strategically manipulate the sys-
tem, a condition BitTorrent does—not-meet-today. Al-
though BitTorrent peers ostensibly make contributions to
improve performance, we show that much of this contri-

bution is unnecessary and can be reallocated or withheld
while still improving performance for Strategic users.
Averagédownload times currently depend on significant
altruism from high capacity peers that, when withheld,
reduces performance for all users.

In addition to our primary contribution, BitTyrant, our

efforts to measure and model altruism in BitTorrent are
independently noteworthy. First, although modeling Bit-
Torrent has seen a large body of work (see Section 6),
our model is simpler and still suffices to capture the
correlati5a between upload and download rates for real
swarms. Second, existing studies recognizing altruism
in BitTorrent consider small simulated settings or few
swarms that poorly capture the diversity of deployed Bit-
Torrent clients, peer capacities, churn, and network con-
ditions. Our evaluation is more comprehensive. We use
trace driven modeling to drive the design of BitTyrant,
which we then evaluate on more than 100 popular, real
world swarms as well as synthetic swarms on PlanetLab.
Finally, we make BitTyrant available publicly as well as
source code and anonymized traces gathered in our large-
scale measurement study.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the BitTor-
rent protocol and our measurement data, which we use
to parametrize our model. Section 3 develops a simple
model illustrating the sources and extent of altruism in
BitTorrent. Section 4 presents BitTyrant, a modified Bit-
Torrent client for strategic peers, which we evaluate in
Section 5. In Section 6, we discuss related work and
conclude in Section 7.

2 BitTorrent overview

This section presents an overview of the BitTorrent pro-
tocol, its implementation parameters, and the measure-
ment data we use to seed our model.

2.1 Protocol

BitTorrent focuses on bulk data transfer. All users in a
particular swarm ar&interested in obtaining the same file
or set of files. In order to initially connect to a swarm,
peers download a metadata file, called a _torrent, from
a content provider, usually via a normal HTTP request.
This metadata specifies the name and size of the file to
be downloaded, as well as SHA-1 fingerprints of the data
blocks (typically 64-512 KB) that comprise the content
to Be downloaded. These fingerprints are used to verify
data integrity. The metadata file also specifies the address
of a tracker server for the torrent, which coordinates
interactions between peers participating in the swarm.
Peers contact the tracker upon startup and departure as
well as periodically as the download progresses, usually
with a frequency of 15 minutes. The tracker maintains a
list of currently active peers and delivers a random subset
of these to clients, upon request.

Users in possession of the complete file, called seeds,
redistribute small blocks to other participants in the
swarm. Peers exchange blocks and control information

with a set of directly connected peers we call the lo-

cal neighborhood. This set of peers, obtained from the
S s e B3

09 | Al o
= 08| ; i
5 o7f i .
€ 06 - -t .
o 05 H J
E, 04 4t -
g 03 ! 4
6 02 |- 14 Reference equal split ===== -

0.1 - 'l‘ Measured capacity ————

0 fl T T

1000
Upload capacity (KB/s)

10000

=
g

Figure 1: Cumulative distribution of raw bandwidth ca-
pacity for BitTorrent peers as well as the “equal split” ca-
pacity distribution for active set peers, assuming clients
use the reference implementation of BitTorrent.

tracker, is unstructured and requiring no special
join or recovery operations when new peers arrive or ex-
isting peers depart. The control traffic required for data
exchange is minimal: each peer transmits messages in-
dicating the data blocks they currently possess and mes-
sages signaling their interest in the blocks of other peers.

We refer to the set of peers to which a BitTorrent client
is currently sending data as its active set. BitTorrent uses
arate-based TFT strategy to determine which peers to in-
clude in the active set. Each round, a peer sends data to

nchokedbpeers from which it received data most rapidly &y, 1" M p)

in the recent past. This strategy is intended to provide
positive incentives for contributing to the system and in-
hibit free-riding. However, clients also send data to a
small number of randomly chosen peers who have not

& hala T

$7]
t/v/ jﬂaa/
pateo

“earned” such status. Such peers are said to he optimisti-

cally unchoked. Optimistic unchokes serve to bootstrap

6w peers into the TET game as well as to facilitate dis-

covery of new, potentially better sources of data. Peers
that do not send data quickly enough to earn reciproca-
tion are removed from the active set during a TFT round
and are said to be choked.

Modulo TCP effects and assuming last-hop bottleneck
links, each peer provides an equal share of its available
upload capacity to peers to which it is actively sending
data. We refer to this rate throughout the paper as a peer’s
equal split rate. This rate is determined by the upload
capacity of a particular peer and the size of its active
set. In the official reference implementation of BitTor-
rent, active set size is proportional to \/upload capacity
(details in Appendix); although in other popular BitTor-
rent clients, this size is static.

2.2 Measurement

BitTorrent’s behavior depends on a large number of pa-
rameters: topology, bandwidth, block size, chumn, data
availability, number of directly connected peers, active
TFT transfers, and number of optimistic unchokes. Fur-
thermore, many of these parameters are a matter of pol-

:f\& J\idﬂb\
(o

(Vin\

hﬁir {dn diH)’uz/{ er ! [@(uhlfly{’
C!LM‘{*; ’
— 50 ﬂ” buse l@aodm; Cu{?’ﬂ(“ pu,# im0 /*gﬁ/p/hf‘

Implementation Percentage share

Azureus 47%

BitComet 20%

ptorrent 15%
BitLord 6%
Unknown 3%
Reference 2%
Remaining 7%

Table 1: BitTorrent implementation usage as drawn from
measurement data.

icy unspecified by the BitTorrent protocol itself. These
policies may vary among different client implementa-
tions, and defaults may be overridden by explicit user
configuration. To gain an understanding of BitTorrent’s
behavior and the diversity of implementations in the
wild, we first conducted a measurement study of live Bit-
Torrent swarms to ascertain client characteristics.

By making use of the opportunistic measurement tech-
niques presented by Madhyastha et al. [14], we gather
empirical measurements of BitTorrent swarms and hosts.
Our measurement client connected to a large number of
swarms and waited for an optimistic unchoke from each
unique peer. We then estimated the upload capacity of
that client using the multiQ tool [10]. Previous char-
acterizations of end-host capacities of peer-to-peer par-
ticipants were conducted by Saroiu, et al. [18]. We up-
date these results using more recent capacity estimation
tools. We observed 301,595 unique BitTorrent IP ad-
dresses over a 48 hour period during April, 2006 from
3,591 distinct ASes across 160 countries. The upload ca-
pacity distribution for typical BitTorrent peers is given in
Figure 1 along with the distribution of equal split rates
that would arise from peers using the reference BitTor-
rent implementation with no limit on upload rates.

3 Modeling altruism in BitTorrent

In this section, we examine two questions relevant to un-
derstanding how incentives impact performance in Bit-
Torrent: how much altruism is present, and what are the
sources of mlﬁ_h;_ﬁ?thFStim suggests whether
or not strategizing is likely to improve performance while
the second informs design. Answering these questions
for real world swarms is complicated by the diversity of
implementations and a myriad of configuration parame-
ters. Here, we take a restricted view and develop a model
of altruism arising from our observed capacity distribu-
tion and the default parameter settings of the reference
implementation of BitTorrent.

‘We make several assumptions to simplify our analysis
and provide a conservative bound on altruism. Because
our assumptions are not realistic for all swarms, our mod-
eling results are not intended to be predictive. Rather, our
results simply suggest potential sources of altruism and

the reasons they emerge in BitTorrent swarms today. We
exploit these sources of altruism in the design of our real
world strategic client, discussed in Section 4.

e Representative distribution: The CDF shown in Fig-
ure 1 is for the bandwidth capacity of observed IP ad-
dresses over many swarms. The distribution of a typ-
ical swarm may not be identical. For instance, high
capacity peers tend i quickly than low
capacity peers, but they may also join more swarms
simultaneously. If they join only a single swarm and
leave shortly after completion, the relative proportion
of low capacity peers would increase over the lifetime
of a swarm.

e Uniform sizing: Peers, other than the modified client,
use the active set sizing recommended by the reference
BitTorrent implementation. In practice, other BitTor-
rent implementations are more popular (see Table 1)
and have different active set sizes. As we will show,
aggressive active set sizes tend to decrease altruism,
and the reference implementation uses the most ag-
gressive strategy among the popular implementations
we inspected. As a result, our model provides a con-
servative estimate of altruism.

e No steady state: Active sets are comprised of peers
with random draws from the overall upload capacity
distribution. If churn is low, over time TFT may match
peers with similar equal split rates, biasing active set
draws. We argue in the next section that BitTorrent is
slow to reach steady-state, particularly for high capac-
ity peers.

e High block availability: Swarm performance is lim-
ited by upload capacity, i.e., peers will always be able

to find interesting data to download. We find that al-
though the reference BitTorrent implementation is de-
signed to ensure high availability of interesting blocks,
in practice, static active set sizing in some clients may
degrade block availability for high capacity peers.

These assumptions allow us to model altruism in Bit-
Torrent in terms of the upload capacity distribution only.
The model is built on expressions for the probability
of TET reciprocation, expected download rate, and ex-
pected upload rate. In this section, we focus on the main
insights provided by our model. The precise expressions
are listed in detail in the Appendix.

3.1 Tit-for-tat matching time

Since our subsequent modeling results assume that
swarms do not reach steady state, we first examine the
convergence properties of the TFT strategy used to match
peers of similar capacity. By default, the reference Bit-
Torrent client optimistically unchokes two peers every
30 seconds in an attempt to explore the local neighbor-
hood for better reciprocation pairings. Since all peers are

[ety

Expected TFT matching time (s)
«EBEEEBE -2
T
1

I L I 1 1 I 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Upload capacity (KB/s)

Figure 2: Assuming a peer set of infinite size, the ex-
pected time required for a new peer to discover enough
peers of equal or greater equal split capacity to fill its
active set,

performing this exploration concurrently, every 30 sec-
onds a peer can expect to explore two candidate peers
and be explored by two candidate peers. Since we know
the equal split capacity distribution, we can express the
probability of finding a peer with equal or greater equal
split capacity—in a given number of 30 second rounds.
Taking the expectation and multiplying it by the size of
the active set gives an estimate of how long a new peer
will have to wait before filling its active set with such
peers.

Figure 2 shows this expected time for our observed
bandwidth distribution. These results suggest that TFT
as implemented does not quickly find good matches for
high capacity peers, even in the absence of churn. For
cx;mp‘\ﬁ:;a/pcgw\ilh 6,400 KB/s upload capacity would
transfer more than 4 GB of data before reaching steady
state. In practice, convergence time is likely to be even
longer. We consider a peer as being “content” with a
matching once its equal split is matched or exceeded by a
peer. However, one of the two peers in any matching that
is not exact will be searching for alternates and switching
when they are discovered, causing the other to renew its
search. The long convergence time suggests a potential
source of altruism: high capacity clients are forced to
peer with those of low capacity while searching for better
peers via optimistic unchokes.

3.2 Probability of reciprocation

A node) sends data only to those peers in its active
transfer set, reevaluated every 10 seconds. If a peer P
sends data to (@ at a rate fast enough to merit inclusion
in)’s active transfer set, P will receive data during the
next TFT round, and we say () reciprocates with P.

Reciprocation from @ to P is determined by two fac-
tors: the rate at which P sends data to Q and the rates
at which other peers send data to Q. If all other peers in
(’s current active set send at rates greater than P, @ will
not reciprocate with P.

Figure 3 gives the probability of reciprocation in terms

09
08
07
06
05
04
03
02
0.1

Equal split capacity
Raw upload capacity ——+—rvu
. s —t

| B B L L L L
{ i S T Y O, (N O

Expectation of reciprocation probability

S

100 1000 10000
Bandwidth (KB/s)

Figure 3: Reciprocation probability for a peer as a func-
tion of raw upload capacity as well as reference BitTor-
rent equal split bandwidth. Reciprocation probability is
not strictly increasing in raw rate due to the sawtooth in-
crease in active set size (see Table 2 in Appendix).

of both raw upload capacity and, more significantly, the
equal split rate. The sharp jump in reciprocation prob-
ability suggests a potential source of altruism in BitTor-
rent: equal split bandwidth allocation among peers in the
active set. Beyond a certain equal split rate (~14 KB/s in
Figure 3), reciprocation is essentially assured, suggesting
that further contribution may be altruistic.

3.3 Expected download rate

Each TFT round, a peer P receives data from both TFT
reciprocation and optimistic unchokes. Reciprocation is
possible onty-fromrthose peers in P’s active set and de-
pends on P’s upload rate, while optimistic unchokes may
be received from any peer in P’s local neighborhood, re-
gardless of upload rate. In the reference BitTorrent client,
the number of optimistic unchoke slots defaults to 2 and
is rotated randomly. As each peer unchokes two peers
per round, the expected number of optimistic unchokes
P will receive is also two for a fixed local neighborhood
size.

Figure 4 gives the expected download throughput for
peers as a function of upload rate for our observed band-
width distribution. The sub-linear growth suggests sig-
nificant unfairness in BitTorrent, particularly for high ca-
pacity peers. This unfairness improves performance for
the majority of low capacity peers, suggesting that high
capacity peers may be able to better allocate their upload
capacity to improve their own performance.

3.4 Expected upload rate

Having considered download performance, we turn next
to upload contribution. Two factors can control the up-
load rate of a peer: data availability and capacity limit.
When a peer is constrained by data availability, it does
not have enough data of interest to its local neighborhood
to saturate its capacity. In this case, the peer’s upload ca-
pacity is wasted and utilization suffers. Because of the
dependence of upload utilization on data availability, it
is crucial that a client downloads new data at a rate fast

T
=z Expected performance
@ 400 H Perfect faimess
= T
3
[
9 300
i
£

200
3 7
9 ~
3 o
3 100 e
=% -
* -
= -

0 L. 1 1
0 100 200 300 400 500

Upload capacity (KB/s)

Figure 4: Expectation of download performance as a
function of upload capacity. Although this represents a
small portion of the spectrum of observed bandwidth ca-
pacities, ~80% of samples are of capacity < 200 KB/s.

enough, so that the client can redistribute the downloaded
data and saturate its upload capacity. We have found that
indeed this is the case in the reference BitTorrent client
because of the square root growth rate of its active set
size.

In practice, most popular clients do not follow this dy-
namic strategy and instead make active set size a config-
urable, but static, parameter. For instance, the most pop-
ular BitTorrent client in our traces, Azureus, suggests a
default active set size of four—appropriate for many ca-
ble and DSL hosts, but far lower than is required for high

capacity peers. We explore the impact of active set sizing

further in Section 4.1.

3.5 Modeling altruism

Given upload and download throughput, we have all the
tools required to compute altruism. We consider two def-
initions of altruism intended to reflect two perspectives
on what constitutes strategic behavior. We first consider
altruism to be simply the difference between expected
upload rate and download rate. Figure 5 shows altruism
as a percentage of upload capacity under this definition
and reflects the asymmetry of upload contribution and
download rate discussed in Section 3.3. The second def-
inition is any upload contribution that can be withdrawn
without loss in download performance. This is shown in
Figure 6.

In contrast to the original definition, Figure 6 suggests
that all peers make altruistic contributions that could
be eliminated. Sufficiently low bandwidth peers almost
never earn reciprocation, while high capacity peers send
much faster than the minimal rate required for recipro-
cation. Both of these effects can be exploited. Note
that low bandwidth peers, despite not being reciprocated,
still receive data in aggregate faster than they send data.
This is because they receive indiscriminate optimistic un-
chokes from other users in spite of their low upload ca-
pacity.

20 -

Expected percent altruism
&
T

Upload capacity (KB/s)

Figure 5: Expected percentage of upload capacity which
is altruistic as defined by Equation 5 as a function of rate.
The sawtooth increase is due to the sawtooth growth of
active set sizing and equal split rates arising from integer
rounding (see Table 2).

100

Total
80 | J OPUMISHC UnChOES = m =

Percent altruism

[}
Y |

20 |- | ! - W 5
i i

Upload capacity (KB/s)

Figure 6: Expected percentage of upload capacity which
is altruistic when defined as upload capacity not resulting
in direct reciprocation.

3.6 Validation

Our modeling results suggest that at least part of the al-
truism in BitTorrent arises from the sub-linear growth
of download throughput as a function of upload rate.
‘We validate this key result using our measurement data.
Each time a BitTorrent client receives a complete data
block from another peer, it broadcasts a ‘have’ mes-
sage indicating that it can redistribute that block to other
peers. By averaging the rate of have messages over the
duration our measurement client observes a peer, we can
infer the peer’s download rate. Figure 7 shows this in-
ferred download rate as a function of equal split rate, i.e.,
the throughput seen by the measurement client when op-
timistically unchoked. This data is drawn from our mea-
surements and includes 63,482 peers.

These results indicate an even higher level of altruism
than that predicted by our model (Figure 4). Note that
equal split rate, the parameter of Figure 7, is a conserva-
tive lower bound on total upload capacity, shown in Fig-
ure 4, since each client sends data to many peers simulta-
neously. For instance, peers contributing ~250 KB/s to
our measurement client had an observed download rate
of 150 KB/s. Our model suggests that such contribution,
even when split among multiple peers, should induce a

Observed download rate (KB/s)
g
T
1

1 1 I I L 1 L
0 50 100 150 200 250 300 350 400
Measured equal split capacity (KB/s)

Figure 7: Measured validation of sub-linear growth in
download throughput as a function of rate. Each point
represents an average taken over all peers with measured
equal split capacity in the intervals between points.

download rate of more than 200 KB/s. We believe this
underestimate is due to more conservative active set sizes
in practice than those assumed in our model.

4 Building BitTyrant: A strategic client

The modeling results of Section 3 suggest that altruism
in BitTorrent serves as a_kind of progressive tax. As
contribution increases, performance improves, but not
in direct proportion. In is section, wedescribe the
design and implementation of BitTyrant, a client opti-
mized for strategic users. We chose to base BitTyrant
on the Azureus client in an attempt to foster adoption, as
Azureus is the most popular client in our traces.

If performance for low capacity peers is disproportion-
ately high, a strategic user can simply exploit this unfair-
ness by masquerading as many low capacity clients to
improve performance [4]. Also, by flooding the local
neighborl of hightapacity peers, low capacity peers
can inflate their chances of TFT reciprocation by domi-
nating the active transfer set om In
practice, these attacks are mitigated by a common client
option to refuse multiple connections from a single IP
address. Resourceful peers might be able to coordinate
multiple IP addresses, but such an attack is beyond the
capabilities of most users. We focus instead on practical
strategies that can be employed by typical users.

The unfairness of BitTorrent has been noted in previ-
ous studies [2, 5, 7], many of which include protocol re-
designs intended to promote fairness. However, a clean-
slate redesign of the BitTorrent protocol ignores a differ-
ent but important incentives question: how to get users
to adopt it? As shown in Section 3, the majority of Bit-
Torrent users benefit from its unfairness today. Designs
intended to promote fairness globally at the expense of
the majority of users seem unlikely to be adopted. Rather
than focus on a redesign at the protocol level, we focus
on BitTorrent’s robustness to strategic behavior and find
that strategizing can improve performance in isolation
while promoting fairness at scale.

4.1 Maximizing reciprocation

The modeling results of Section 3 and the operational
behavior of BitTorrent clients suggest the following three
strategies to improve performance.

e Maximize reciprocation bandwidth per connection:
All things being equal, a node can improve its per-
formance by finding peers that reciprocate with high
bandwidth for a low offered rate, dependent only on
the other peers of the high capacity node. The recipro-
cation bandwidth of a peer is dependent on its upload
capacity and its active set size. By discovering which
peers have large reciprocation bandwidth, a client can
optimize for a higher reciprocation bandwidth per con-
nection.

e Maximize number of reciprocating peers: A client can
expand its active set to maximize the number of peers
that reciprocate until the marginal benefit of an addi-
tional peer is outweighed by the cost of reduced recip-
rocation probability from other peers.

e Deviate from equal split: On a per-connection basis, a
client can lower its upload contribution to a particular
peer as long as that peer continues fo reciprocate. The
bandwidth savings could then be reallocated to new
connections, resulting in an increase in the overall re-

- A—
ciprocation throughput.

The modeling results indicate that these strategies are

likely to be effective. The largest source of altruism
in our model is unnecessary contribution to peers in a
node’s active set. The reciprocation probability shown in
Figure 3 indicates that strategically choosing equal split
bandwidth can reduce contribution significantly for high
capacity peers with only a marginal reduction in recip-
rocation probability. A peer with equal split capacity of
100 KB/s, for instance, could reduce its rate to 15 KB/s
with a reduction in expected probability of reciprocation
of only 1%. However, reducing from 15 KB/5To 10KB/s
would result in a decrease of roughly 40%.

The reciprocation behavior points to a performance
trade-off. If the active set size is large, equal split
capacity is reduced, reducing reciprocation probability.
However, an additional active set connection is an addi-
tional opportunity for reciprocation. To maximize per-
formance, a peer should increase its active set size un-
til an additional connection would cause a reduction in
reciprocation across all connections sufficient to reduce
overall download performance.

If the equal split capacity distribution of the swarm is
known, we can derive the active set size that maximizes
the expected download rate. For our observed bandwidth
distribution, Figure 8 shows the download rate as a func-
tion of the active set size for a peer with 300 KB/s upload
capacity as well as the active set size that maximizes it.
The graph also implicitly reflects the sensitivity of recip-

“what s W/ pfommé) ‘};sﬁ[h(Mﬁta} pvlj{(c(/(:
Oc v @ndon. Elond!

Expected download throughput (KB/s)

Active set size

180 T r

T
160 L Rate maximizing =---- X I =]
140 || Reference BitTorrent default ol ‘,"' N
4 120 | .. o -
k2 ae
g 100 ' ’_’.,-' .
g wof .
3 60 L _,_/_‘f 2
40 e .
20 ,"" T]
a 1 I L
0 500 1000 1500 2000

Upload capacity (KB/s)

Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active
set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear
in upload capacity, while the reference implementation of BitTorrent suggests active size ~ /rate. Although several
hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.

Figure 8 is for a single strategic peer and suggests that
strategic high capacity peers can benefit much more by
manipulating their active set size. Our example peer with
upload capacity 300 KB/s realizes a maximum down-
load throughput of roughly 450 KB/s. However, increas-
ing reciprocation probability via active set sizing is ex-
tremely sensitive—throughput falls off quickly after the
maximum is reached. Further, it is unclear if active set
sizing alone would be sufficient to maximize reciproca-
tion in an environment with several strategic clients.

These challenges suggest that any a priori active set
sizing function may not suffice to maximize download
rate for strategic clients. Instead, they motivate the dy-
namic algorithm used in BitTyrant that adaptively mod-
ifies the size and membership of the active set and the
upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that

will receive data during the next TFT round is decided | by
differs from BitTorrent as1 ¥ sizes its active
set and varies the sending rate per connection. For each
peer p, Bitlyrant maintains estimates of the upload rate
required for reciprocation, u,, as well as the download
throughput, dp, received when p reciprocates. Peers are
ranked by the ratio dj, /u,, and unchoked in order until the
sum of u, terms for unchoked peers exceeds the upload
capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is
that the best peers are those that reciprocate most for the
least number of bytes contributed to them, given accurate

information regarding u, and d,,. Implicit in the strategy
are the following assumptions and characteristics:

e The strategy attempts to maximize the download rate
for a given upload budget. The ranking strategy cor-
responds to the value-density heuristic for the knap-
sack problem. In practice, the download benefit (dy)
and upload cost (u,) are not known a priori. The up-

For each peer p, maintain estimates of expected download
performance dp, and upload required for reciprocation u.

Initialize up and dp, assuming the bandwidth
distribution in Figure 2.

dp is initially the expected equal split capacity of p.

Up is initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp, /u,, and unchoke
those of top rank until the upload capacity is reached.

do di dz2 d3z da

choose k | =F_o u; < cap
At the end of each round for each unchoked peer:
If peer p does not unchoke us: up — (1 + §)up
If peer p unchokes us: d, «— observed rate.

If peer p has unchoked us for the last r rounds:
up — (1 —y)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,
in conjunction with the ranking strategy, optimizes
download rate over time.

e BitTyrant is designed to tap into the latent altrmism in
most swarms by unchoking the most altruistic peers.
However, it will continue to unchoke peers until it ex-
hausts its upload capacity even if the marginal utility

is sub-linear. This potentially opens BitTyrant itself to
being cheated, a topic we return to later.

e The strategy can be easily generalized to handle con-
current downloads from multiple swarms. A client can
optimize the aggregate download rate by ordering the
dp/up, ratios of all connections across swarms, thereby

dynamically allocating upload capacity to all peers.
User-defined priorities can be implemented by using
scaling weights for the d,/u;, ratios.

The algorithm is based on the ideal assumption
that peer capacities and reciprocation requirements are
known. We discuss how to predict them next.

Determining upload contributions: The BitTyrant
unchoke algorithm must estimate u,, the upload contri-
bution to p that induces reciprocation. We initialize u,
based on the distribution of equal split capacities seen
in our measurements, and then periodically update it de-
pending on whether p reciprocates for an offered rate.
In our implementation, u,, is decreased by v = 10% if
the peer reciprocates for 7 = 3 rounds, and increased by
& = 20% if the peer fails to reciprocate after being un-
choked during the previous round. We use small multi-
plicative factors since the spread of equal split capacities
is typically small in current swarms. Although a natu-
ral first choice, we do not use a binary search algorithm,
which maintains upper and lower bounds for upload con-
tributions that induce reciprocation, because peer recip-
rocation changes rapidly under churn and bounds on
reciprocation-inducing uploads would eventually be vi-
olated.

Estimating reciprocation bandwidths: For peers that
unchoke the BitTyrant client, dy, is simply the rate at
which data was obtained from p. Note that we do not
use a packet-pair based bandwidth estimation technique
as suggested by Bharambe [2], but rather consider the
average download rate over a TFT round. Based on our
measurements, not presented here due to space limita-
tions, we find that packet-pair based bandwidth estimates
do not accurately predict peers’ equal split capacities due
to variability in active set sizes and end-host traffic shap-
ing. The observed rate over a longer period is the only
accurate estimate, a sentiment shared by Cohen [3].

Of course, this estimate is not available for peers that
have not uploaded any data to the BitTyrant client. In
such cases, BitTyrant approximates d, for a given peer
p by measuring the frequency of block announcements
from p. The rate at which new blocks arrive at p provides
an estimate of p’s download rate, which we use as an es-
timate of p’s total upload capacity. We then divide the
estimated capacity by the Azureus recommended active
set size for that rate to estimate p’s equal split rate. This
strategy is likely to overestimate the upload capacities
of unobserved peers, serving to encourage their selection
from the ranking of dp,/u, ratios. At present, this pref-
erence for exploration may be advantageous due to the
high end skew in altruism. Discovering high end peers
is rewarding: between the 95™ and 98" percentiles, re-
ciprocation throughput doubles. Of course, this strategy
may open BitTyrant itself to exploitation, e.g., if a peer

rapidly announces false blocks. We discuss how to make
BitTyrant robust in Sections 4.3 and 5.

4.2 Sizing the local neighborhood

Existing BitTorrent clients maintain a pool of typically
50-100 directly connected peers. The set is sized to be
large enough to provide a diverse set of data so peers can
exchange blocks without data availability constraints.
However, the modeling results of Section 4.1 suggest
that these typical local neighborhood sizes will not be
large enough to maximize performance for high capacity
pee(wgmmWn—
dred peers to maximize download throughput. Maintain-
ing a Targer Tocal neighborhood alio increases the num-
ber of optimistic unchokes received.

To increase the local neighborhood size in BitTyrant,
we rely on existing BitTorrent protocol mechanisms and
third party extensions implemented by Azureus. We re-
quest as many peers as possible from the centralized
mem
the BitTorrent protocol has incorporate -based
distributed tracker that provides peer information and is
indexed by a hash of the torrent. We have increased the
query rate of this as well. Finally, the Azureus imple-

mentation includes a BitTorrent protocol extension for
. — e
gossip among peers. Unfortunately, the protocol exten-

-sion is push-based; it allows for a client to gossip to its

peerstheidentity of its other peers but cannot induce
those peers to gossip in return. As a result, we cannot
exploit the gossip mechanism to extract extra peers.

A concern when increasing the size of the local neigh-
borhood is the corresponding increase in protocol over-
head. Peers need to exchange block availability infor-
mation, messages indicating interest in blocks, and peer
lists. Fortunately, the overhead imposed by maintaining
additional connections is modest. In comparisons of Bit-
Tyrant and the existing Azureus client described in Sec-
tion 5, we find that average protocol overhead as a per-
centage of total file data received increases from 0.9% to
1.9%. This suggests that scaling the local neighborhood
size does not impose a significant overhead on BitTyrant.

4.3 Additional cheating strategies

We now discuss more strategies to improve download
performance. We do not implement these in BitTyrant
as they can be thwarted by simple fixes to clients. We
mention them here for completeness.

Exploiting optimistic unchokes: The reference Bit-
Torrent client optimistically unchokes peers randomly.
Azureus, on the other hand, makes a weighted random
choice that takes into account the number of bytes ex-
changed with a peer. If a peer has built up a deficit in
the number of traded bytes, it is less likely to be picked
for optimistic unchokes. In BitTorrent today, we observe

that high capacity peers are likely to have trading deficits
with most peers. A cheating client can exploit this by dis-
connecting and reconnecting with a different client iden-
tifier, thereby wiping out the past history and increasing
its chances of receiving optimistic unchokes, particularly
from high capacity peers. This exploit becomes ineffec-
tive if clients maintain the IP addresses for all peers en-
countered during the download and keep peer statistics
across disconnections.

Downloading from seeds: Early versions of BitTor-
rent clients used a seeding algorithm wherein seeds up-
load to peers that are the f: downloaders, an algo-
rithm that is prone to exploit::lmmf:rs or clients
that falsify download rate by emitting ‘have’ messages.
More recent versions use a seeding algorithm that per-

forms unchokes randomly, spreading data in a uniform
manner that is more robust to manipulation.

Falsifying block availability: A client would prefer
to unchoke those peers that have blocks that it needs.
Thus, peers can appear to be more attractive by Talsi-
fying block announcements to incréase the chances of
being unchoked. In practice, this exploit is not very ef-
fective. First, a client is likely to consider most of its
peers interesting given the large number of blocks in a
typical swarm. Second, false announcements could lead
to only short-term benefit as a client is unlikely to con-
tinue transferring once the cheating peer does not satisfy
issued block requests.

5 Evaluation

To evaluate BitTyrant, we explore the performance im-
provement possible for a single strategic peer in synthetic
and current real world swarms as well as the behavior
of BitTyrant when used by all participants in synthetic
swarms.

Evaluating altruism in BitTorrent experimentally and
at scale is challenging. Traditional wide-area testbeds
such as PlanetLab do not exhibit the highly skewed band-
width distribution we observe in our measurements, a
crucial factor in determining the amount of altruism.
Alternatively, fully configurable local network testbeds
such as Emulab are limited in scale and do not incorpo-
rate the myriad of performance events typical of opera-
tion in the wide-area. Further, BitTorrent implementa-
tions are diverse, as shown in Table 1.

To address these issues, we perform two separate eval-
uations. First, we evaluate BitTyrant on real swarms
drawn from popular aggregation sites to measure real
world performance for a single strategic client. This pro-
vides a concrete measure of the performance gains a user
can achieve today. To provide more insight into how Bit-
Tyrant functions, we then revisit these results on Planet-
Lab where we evaluate sensitivity to various upload rates

09 L
08
07 |
06
05 -
04 |-
03 frremeie: :
02 |-
0.l
0 | gpen®| 1 L 1 L I

0 05 1 15 2 25 3 35

Ratio of original download time and BitTyrant download time

Cumulative fraction

| I T T N [T

'S

Figure 10: CDF of download performance for 114 real
world swarms. Shown is the ratio between download
times for an existing Azureus client and BitTyrant. Both
clients were started simultaneously on machines at UW
and were capped at 128 KB/s upload capacity.

and evaluate what would happen if BitTyrant is univer-
sally deployed.

5.1 Single strategic peer

To evaluate performance under the full diversity of real-
istic conditions, we crawled popular BitTorrent aggrega-
tion websites to find candidate swarms. We ranked these
by popularity in terms of number of active participants,
ignoring swarms distributing files larger than 1 GB. The
resulting swarms are typically for recently released files
and have sizes ranging from 300-800 peers, with some
swarms having as many as 2,000 peers.

‘We then simultaneously joined each swarm with a Bit-
Tyrant client and an unmodified Azureus client with rec-
ommended default settings. We imposed a 128 KB/s up-
load capacity limit on each client and compared comple-
tion times. This represents a relatively well provisioned
peer for which Azureus has a recommended active set
size. A CDF of the ratio of original client completion
time to BitTyrant completion time is given in Figure 10.
These results demonstrate the significant, real world per-
formance boost that users can realize by behaving strate-
gically. The median performance gain for BitTyrant is a
factor 0f__1._7_2_ with 25% of downloads finishing at least
twice as fast with BitTyrant. We expect relative perfor-
mance gains to be even greater for clients with greater
upload capacity.

These results provide insight into the performance
properties of real BitTorrent swarms, some of which limit
BitTyrant’s effectiveness. Because of the random set of
peers that BitTorrent trackers return and the high skew
of real world equal split capacities, BitTyrant cannot al-
ways improve performance. For instance, in BitTyrant’s
worst-performing swarm, only three peers had average
equal split capacities greater than 10 KB/s. In contrast,
the unmodified client received eight such peers. Total
download time was roughly 15 minutes, the typical min-
imum request interval for peers from the tracker. As a re-

T I
Original +—=—yi

700

% £00. |- BitTyrant t—su—y B
g 500 |- : o
% 400 |] ™
£
13 [
2 5 t &
8 100 L] I % -

o L 1 1 I 1 L

0 200 400 600 800 1000 1200
Upload cap (KB/s)

Figure 11: Download times and sample standard devia-
tion comparing performance of a single BitTyrant client
and an unmodified Azureus client on a synthetic Planet-
Lab swarm.

sult, BitTyrant did not recover from its initial set of com-
paratively poor peers. To some extent, performance can
be based on luck with respect to the set of initial peers
returned. More often than not, BitTyrant benefits from
this, as it always requests a comparatively large set of
peers from the tracker.

Another circumstance for which BitTyrant cannot sig-
nificantly improve performance is a swarm whose ag-
gregate performance is controlled by data availability
rather than the upload capacity distribution. In the wild,
swarms are often hamstrung by the number of peers seed-
ing the file—i.e., those with a complete copy. If the ca-
pacity of these peers is low or if the torrent was only
recently made available, there may simply not be enough
available data for peers to saturate their upload capac-
ities. In other words, if a seed with 128 KB/s capac-
ity is providing data to a swarm of newly joined users,
those peers will be able to download at a rate of at most
128 KB/s regardless of their capacity. Because many
of the swarms we joined were recent, this effect may
account for the 12 swarms for which download perfor-
mance differed by less than 10%.

These scenarios can hinder the performance of Bit-
Tyrant, but they account for a small percentage of our
observed swarms overall. For most real swarms today,
users can realize significant performance benefits from
the strategic behavior of BitTyrant.

Although the performance improvements gained from
using BitTyrant in the real world are encouraging, they
provide little insight into the operation of the system at
scale. We next evaluate BitTyrant in synthetic scenar-
ios on PlanetLab to shed light on the interplay between
swarm properties, strategic behavior, and performance.
Because PlanetLab does not exhibit the highly skewed
bandwidth distribution observed in our traces, we rely on
application level bandwidth caps to artificially constrain
the bandwidth capacity of PlanetLab nodes in accor-
dance with our observed distribution. However, because
PlanetLab is often oversubscribed and shares bandwidth

equally among competing experiments, not all nodes are
capable of matching the highest values from the observed
distribution. To cope with this, we scaled by 1/10" both
the upload capacity draws from the distribution as well as
relevant experimental parameters such as file size, initial
unchoke bandwidth, and block size. This was sufficient
to provide overall fidelity to our intended distribution.

Figure 11 shows the download performance for a sin-
gle BitTyrant client as a function of rate averaged over six
trials with sample standard deviation. This experiment
was hosted on 350 PlanetLab nodes with bandwidth ca-
pacities drawn from our scaled distribution. Three seeds
with combined capacity of 128 KB/s were located at UW
serving a 5 MB file. We did not change the default seed-
ing behavior, and varying the combined seed capacity
had little impact on overall swarm performance after ex-
ceeding the average upload capacity limit. To provide
synthetic churn with constant capacity, each node’s Bit-
Tyrant client disconnected immediately upon completion
and reconnected immediately.

The results of Figure 11 provide several insights into
the operation of BitTyrant.

e BitTyrant does not simply improve performance, it
also provides more consistent performance across
multiple trials. By dynamically sizing the active set
and preferentially selecting peers to optimistically un-
choke, BitTyrant avoids the randomization present
in existing TFT implementations, which causes slow
convergence for high capacity peers (Section 3.1).

e There is a point of diminishing returns for high ca-
pacity peers, and BitTyrant can discover it. For clients
with high capacity, the number of peers and their avail-
able bandwidth distribution are significant factors in
determining performance. Our modeling results from
Section 4.1 suggest that the highest capacity peers may
require several hundred available peers to fully max-
imize throughput due to reciprocation. Real world
swarms are rarely this large. In these circumstances,
BitTyrant performance is consistent, allowing peers to
detect and reallocate excess capacity for other uses.

e Low capacity peers can bencfit from BitTyrant. Al-
though the most significant performance benefit comes
from intelligently sizing the active set for high capac-
ity peers (see Figure 8), low capacity peers can still im-
prove performance with strategic peer selection, pro-
viding them with an incentive to adopt BitTyrant.

e Fidelity to our specified capacity distribution is con-
sistent across multiple trials. Comparability of exper-
iments is often a concern on PlanetLab, but our re-
sults suggest a minimum download time determined
by the capacity distribution that is consistent across
trials spanning several hours. Further, the consistent
performance of BitTyrant in comparison to unmodi-

fied Azureus suggests that the variability observed is
due to policy and strategy differences and not Planet-
Lab variability.

5.2 Many BitTyrant peers

Given that all users have an individual incentive to be
strategic in current swarms, we next examine the perfor-
mance of BitTyrant when used by all peers in a swarm.
We consider two types of BitTyrant peers: strategic and
selfish. Any peer that uses the BitTyrant inchoking al-
gorithm (Figure 9) is strategic. If such a peer also with-
holds contributing excess capacity that does not improve
performance, wesay it is both strategic and selfish. Bit-
Tyrant can operate in either mode. Selfish behavior may
arise when users participate in multiple swarms, as dis-
cussed below, or simply when users want to use their up-
load capacity for services other than BitTorrent.

We first examine performance when all peers are
strategic, i.e., use BitTyrant while still contributing ex-
cess capacity. Our experimental setup included 350
PlanetLab nodes with upload capacities drawn from our
scaled distribution simultaneously joining a swarm dis-
tributing a 5 MB file with combined seed capacity of
128 KB/s. All peers departed immediately upon down-
load completion. Initially, we expected overall perfor-
mance to degrade since high capacity peers would finish
quickly and leave, reducing capacity in the system. Sur-
prisingly, performance improved and altruism increased.
These results are summarized by the CDFs of completion
times comparing BitTyrant and the unmodified Azureus
client in Figure 12. These results are consistent with
our model. In a swarm where the upload capacity distri-
bution has significant skew, high capacity peers require
many connections to maximize reciprocation. BitTyrant
reduces bootstrapping time and results in high capacity
peers having higher utilization earlier, increasing swarm
capacity.

Although BitTyrant can improve performance, such
improvement is due only to more effective use of altruis-
tic contribution. Because BitTyrant can detect the point
of diminishing returns for performance, these contribu-
tions can be withheld or rezﬂl—(;c'ﬁ—,’_dbyselﬁsh clients.
Users may MW to services other
than BitTorrent or to other swarms, as most peers par-
ticipate in several swarms simultaneously [7]. While
all popular BitTorrent implementations support down-
loading from multiple swarms simultaneously, few make
any attempt to intelligently allocate bandwidth among
them. Those that do so typically allocate some amount
of a global upload capacity to each swarm individu-
ally, which is then split equally among peers in statically
sized active sets. Existing implementations cannot accu-
rately detect when bandwidth allocated to a given swarm
should be reallocated to another to improve performance.

In contrast, BitTyrant’s unchoking algorithm transitions
naturally from single to multiple swarms. Rather than al-
locate bandwidth among swarms, as existing clients do,
BitTyrant allocates bandwidth among connections, opti-
mizing aggregate download throughput over all connec-
tions for all swarms. This allows high capacity BitTyrant
clients to effectively participate in more swarms simul-
taneously, lowering per-swarm performance for low ca-
pacity peers that cannot.

To model the effect of selfish BitTyrant users, we re-
peated our PlanetLab experiment with the upload capac-
ity of all high capacity peers capped at 100 KB/s, the
point of diminishing returns observed in Figure 11. A
CDF of performance under the capped distribution is
shown in Figure 12. As expected, aggregate performance
decreases. More interesting is the stable rate of diminish-
ing returns BitTyrant identifies. As a result of the skewed
bandwidth distribution, beyond a certain point peers that
contribute significantly more data do not see significantly
faster download rates. If peers reallocate this altruis-
tic contribution, aggregate capacity and average perfor-
mance are reduced, particularly for low capacity peers.
This is reflected in comparing the performance of sin-
gle clients under the scaled distribution (Figure 11) and
single client performance under the scaled distribution
when constrained (Figure 12). The average completion
time for a low capacity peer moves from 314 to 733 sec-
onds. Average completion time for a peer with 100 KB/s
of upload capacity increases from 108 seconds to 190.

While BitTyrant can improve performance for a single
swarm, there are several circumstances for which its use
causes performance to degrade.

e If high capacity peers participate in many swarms or
otherwise limit altruism, total capacity per swarm de-
creases. This reduction in capacity lengthens down-
load times for all users of a single swarm regardless
of contribution. Although high capacity peers will see
an increase in aggregate download rate across many
swarms, low capacity peers that cannot successfully
compete in multiple swarms simultaneously will see a
large reduction in download rates. Still, each individ-
ual peer has an incentive to be strategic as their per-
formance improves relative to that of standard clients,
even when everyone is strategic or selfish.

e New users experience a lengthy bootstrapping period.
To maximize throughput, BitTyrant unchokes peers
that send fast. New users without data are boot-
strapped by the excess capacity of the Systemronly.
Bootsnappingmmmﬁcing
optimistic unchokes, but it is not clear that selfish
peers have any incentive to do so.

o Peering relationships are not stable. BitTyrant was de-
signed to exploit the significant altruism that exists in

09 |)
- 08 - 4
£ 07 |- .
& os |- =
2 o5 3
.g 04 L oo S 2
é 03 BiTyrant «-s-v--- |
02 |t Original - -
0.1 nig BitTyrant, capped ===== -

0 ' 1 I T T
0 500 1000 1500 2000 2500

Time (scconds)

Download time (seconds)
«-BEHES8EBEE
™1

L

0 200 400 600 800 1000 1200
Upload cap (KB/s)

Figure 12: Left: CDFs of completion times for a 350 node PlanetLab experiment. BitTyrant and the original,
unmodified client assume all users contribute all of their capacity. Capped BitTyrant shows performance when high
capacity, selfish peers limit their contribution to the point of diminishing returns for performance. Right: The impact
of selfish BitTyrant caps on performance. Download times at all bandwidth levels increase (cf. Figure 11) and high
capacity peers gain little from increased contribution. Error bars give sample standard deviation over six trials.

BitTorrent swarms today. As such, it continually re-
duces send rates for peers that reciprocate, attempt-
ing to find the minimum rAfe required: Rather than
attempting to ramp up send rates between high capac-

ity peers, BitTyrant tends to spread available capacity
/ among many low capacity peers','mausing

inefficiency due to TCP effects [16].

To work around this last effect, BitTyrant advertises
itself at connection time using the Peer ID hash. With-
out protocol modification, BitTyrant peers recognize one
another and switch to a block-based TFT strategy that
ramps up send rates until capacity is reached. BitTyrant
clients choke other BitTyrant peers whose block request
rates exceeds their send rates. By gradually increasing
send and request rates to other BitTyrant clients, fairness
is preserved while maximizing reciprocation rate with
fewer connections. In this way, BitTyrant provides a de-
ployment path leading to the conceptually simple strat-
egy of block-based TFT by providing a short-term in-
centive for adoption by all users—even those that stand
to lose from a shift to block-based reciprocation.

We do not claim that BitTyrant is strategyproof, even
when extended with block-based TFT, and leave open for
future work the question of whether further strategizing
can be effective. However, a switch to block-based TFT
among mutually agreeing peers would place a hard limit
on altruism and limit the range of possible strategies.

6 Related work

Modeling and analysis of BitTorrent’s current incentive
mechanism and its effect on performance has seen a
large body of work since Cohen’s [3] seminal paper.
Our effort differs from existing work in two fundamental
ways. First is the conclusion: we refute popular wis-
dom that BitTorrent’s incentive mechanism makes it ro-
bust to strategic peer behavior. Second is the method-
ology: most existing studies consider small or simulated

settings that poorly capture the diversity of deployed Bit-
Torrent clients, strategic peer behavior, peer capacities,
and network conditions. In contrast, we explore BitTor-
rent’s strategy space with our implementation of a strate-
gic client and evaluate it using analytical modeling, ex-
periments under realistic network conditions, and testing
in the wild.

The canonical TFT strategy was first evaluated by Ax-
elrod [1], who showed using a competition that the strat-
egy performs better than other submissions when there
are many repeated games, persistent identities, and no
collusion. Qiu and Srikant [17] specifically study Bit-
Torrent’s rate-based TFT strategy. They show that if
peers strategically limit their upload bandwidth (but split
it equally) while trying to maximize download, then, un-
der some bandwidth distributions, the system converges
to a Nash equilibrium where all peers upload at their ca-
pacity. These results might lead one to believe that Bit-
Torrent’s incentive mechanism is robust as it incentivizes
users to contribute their entire upload capacities. Unfor-
tunately, our work shows that BitTorrent fails to attain
such an equilibrium for typical file sizes in swarms with
realistic bandwidth distributions and churn, which Bit-
Tyrant exploits through strategic peer and rate selection.

Bharambe et al. [2] simulate BitTorrent using a syn-
thetically generated distribution of peer upload capaci-
ties. They show the presence of significant altruism in
BitTorrent and propose two alternate peer selection al-
gorithms based on (i) matching peers with similar band-
width, and (ii) enforcing TFT at the block level, a strat-
egy also proposed by [9]. Fan et al. propose strate-
gies for assigning rates to connections [5], which when
adopted by all members of a swarm would lead to fair-
ness and minimal altruism. The robustness of these
mechanisms to strategic peer behavior is unclear. More
importantly, these proposals appear to lack a convinc-
ing evolution path—a peer adopting these strategies to-

day would severely hurt its download throughput as the
majority of deployed conformant clients will find such a
peer unattractive. In contrast, we demonstrate that Bir-
Tyrant can drastically reduce altruism while improving
performance for a single strategic client today, incenting
its adoption.

Shneidman et al. [19] identify two forms of strategic
manipulation based on Sybil attacks [4] and a third based
on uploading garbage data. Liogkas et al. [12] propose
downloading only from seeds and also identify an ex-
ploit based on uploading garbage data. Locher et al.
investigate similar techniques, i.e., ignoring rate limits
of tracker requests to increase the number of available
peers and connecting to as many peers as possible [13].
However, there exist straightforward fixes to minimize
the impact of such “byzantine” behavior. A third exploit
by Liogkas et al. involves downloading only from the
fastest peers, but the strategy does not take into account
the upload contribution required to induce reciprocation.
In contrast, BitTyrant maximizes download per unit of
upload bandwidth and can drastically reduce its upload
contribution by varying the active set size and not shar-
ing its upload bandwidth uniformly with active peers.

Hales and Patarin [8] argue that BitTorrent’s robust-
ness is not so much due to its TFT mechanism, but more
due to human or sociological factors that cause swarms
with a high concentration of altruistic peers to be pre-
served over selfish ones. They further claim that releas-
ing selfish clients into the wild may therefore not degrade
performance due to the underlying natural selection. Val-
idating this hypothesis requires building and releasing a
strategic and selfish client—one of our contributions.

Massoulie and Vojnovic [15] model BitTorrent as a
“coupon replication” system with a particular focus on
efficiently locating the last few coupons. One of their
conclusions is that altruism is not necessary for BitTor-
rent to be efficient. However, their study does not ac-
count for strategic behavior on the part of peers.

Other studies [2, 7, 11] have pointed out the presence
of significant altruism in BitTorrent or suggest preserv-
ing it [11]. In contrast, we show that the altruism is not
a consequence of BitTorrent’s incentive mechanism and
can in fact be easily circumvented by a strategic client.

7 Conclusion

We have revisited the issue of incentive compatibility
in BitTorrent and arrived at a surprising conclusion: al-
though TFT discourages free riding, the bulk of BitTor-
rent’s performance has little to do with TFT. The dom-
inant performance effect in practice is altruistic contri-
bution on the part of a small minority of high capac-
ity peers. More importantly, this altruism is not a con-
sequence of TFT; selfish peers—even those with mod-
est resources—can significantly reduce their contribution

and yet improve their download performance. BitTorrent
works well today simply because most people use client
software as-is without trying to cheat the system.

Although we have shown that selfishness can hurt
swarm performance, whether or not it will do so in prac-
tice remains unclear. The public release of BitTyrant
provides a test. Perhaps users will continue to donate
their excess bandwidth, even after ensuring the maxi-
mum yield for that bandwidth. Perhaps users will be-
have selfishly, causing a shift to a completely different
design with centrally enforced incentives. Perhaps strate-
gic behavior will induce low bandwidth users to invest
in higher bandwidth connections to compensate for their
worse performance, yielding better overall swarm perfor-
mance in the long run. Time will tell. These uncertainties
leave us with the still open question: do incentives build
robustness in BitTorrent?

The BitTyrant source code and distribution are pub-
licly available at:

http://BitTyrant.cs.washington.edu/

Acknowledgments

‘We thank our shepherd, Jinyang Li, and the anonymous
reviewers for their comments. This work was supported
by NSF CNS-0519696 and the ARCS Foundation.

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books,
1985.

[2] A. Bharambe, C. Herley, and V. Padmanabhan. Analyz-
ing and Improving a BitTorrent Network’s Performance
Mechanisms. In Proc. of INFOCOM, 2006.

[3] B. Cohen. Incentives build robustness in BitTorrent. In
Proc. of IPTPS, 2003.

[4] J.R. Douceur. The Sybil attack. In Proc. of IPTPS, 2002.

[5] B.Fan, D.-M. Chiu, and J. Liu. The Delicate Tradeoffs in
BitTorrent-like File Sharing Protocol Design. In Proc. of
ICNP, 2006.

[6] GNU Scientific Library.
software/gsl/.

[7] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like
systems. In Proc. of IMC, 2005.

[8] D. Hales and S. Patarin. How to Cheat BitTorrent and
Why Nobody Does. Technical Report UBLCS 2005-12,
Computer Science, University of Bologna, 2005.

http://www.gnu.org/

[9] S. Jun and M. Ahamad. Incentives in BitTorrent induce
free riding. In Proc. of P2PECON, 2005.

[10] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss.
MultiQ: Automated detection of multiple bottleneck ca-
pacities along a path. In Proc. of IMC, 2004,

[11] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
First and Choke Algorithms are Enough. In Proc. of IMC,
2006.

[12] N.Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploit-
ing BitTorrent for fun (but not profit). In Proc. of IPTPS,
2006.

Label Definition Meaning

w 2 Number of simultaneous optimistic unchokes per peer

A 80 Local neighborhood size (directly connected peers)

b(r) Figure 1 Probability of upload capacity rate

B(r) for b(r)dr Cumulative probability of a upload capacity rate r

active(r) |v0.6r] —w Size (in peers) of the active transfer set for upload capacity rate r
split(r) m Per-connection upload capacity for upload capacity rate 7

s(r) Figure 1 Probability of an equal split rate r using mainline active(r) sizing
S(r) Iy s(r)dr Cumulative probability of an equal-split rate 7

Table 2: Functions used in our model and their default settings in the official BitTorrent client.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. of HotNets, 2006.

[14] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-
derson, A. Krishnamurthy, and A. Venkataramani. iPlane:
An information plane for distributed services. In Proc. of
0SDI, 2006.

[15] L. Massoulié; and M. Vojnovi¢. Coupon replication sys-
tems. SIGMETRICS Perform. Eval. Rev., 33(1):2-13,
2005.

[16] R. Morris. TCP behavior with many flows. In Proc. of
ICNP, 1997.

[17] D. Qiu and R. Srikant. Modeling and performance anal-
ysis of BitTorrent-like peer-to-peer networks. In Proc. of
SIGCOMM, 2004.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proc.
of Multimedia Computing and Networking, 2002.

[19] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness
in internet algorithms. In Proc. of PINS, 2004.

A Modeling notes

All numerical evaluation was performed with the GSL
numerics package [6]. Refer to Section 3 for assump-
tions and Table 2 for definitions.

Upload / download: Probability of reciprocation for a
peer P with upload capacity rp from @ with rg:

precip(rp,7g) = 1 — (1 — S(rp))*tivetra) (1)

Expected reciprocation probability for capacity r:
recip(r) = f b(z)precip(r, z)dz 2

Expected download and upload rate for capacity r:

D(r) = active(r) [f b(z)p-recip(r, :v)split(:t:)d:u] +

w [[b(z)split(m)dx] 3

U(r) = min (r, (active(r) + w) D(r)) 4

Altruism: Altruism when defined as the difference be-
tween upload contribution and download reward

altruism_gap(r) = max (0, U(r) — D(r)) (5)

Altruism per connection when defined as upload contri-
bution not resulting in direct reciprocation.

altruism_conn(r) =
f (b(z) ((1 — precip(r, z))split(r)+ ©)
p-recip(r, r) max(0, split(r) — split(z)))) dz
Total altruism not resulting in direct reciprocation.
altruism(r) = (active(r) + w)altruism_conn(r) (7)

Convergence: Probability of a peer with rate r discover-
ing matched TFT peer in n iterations:

e(ryn) =1-8(r)" 2 ®

Time to populate active set with matched peers given up-
load capacity . Note, s = split(r), and T = 30s is the
period after which optimistic unchokes are switched.

convergence._time(r) =)

T - active(r) (c(s, 1)+ Z n c(s,n) 1:1 (1- c(s,z’)))

i=1

Unchoke probability: The distribution of number of op-
timistic unchokes is binomial with success probability 5.
Because overhead is low, A >> active(r) in BitTyrant, we
approximate A — active(r) by A. The expected number
of optimistic unchokes per round is w.

Pr{unchokes = z] = (2) (t—;—)z (1 - ;)u_x) (10)

.". E[unchokes] = /\% =w

bt Tyad FAQ

: Isn't BitTyrant just another leeching client?
J J 8

FAQ

No. BitTyrant does not change the amount of data uploaded, just which peers receive that data.
Specifically, peers which upload more to you get more of your bandwidth. When all peers use
the BitTyrant client as released, performance improves for the entire swarm. The details of this
are explained further below. In our paper, we consider situations in which peers use clients
which attempt to both maximize performance and conserve upload contribution, but BitTyrant,
as released, attempts only to maximize performance.

Q: How is BitTyrant different from existing BitTorrent clients?

BitTyrant differs from existing clients in its selection of which peers to unchoke and send rates
to unchoked peers. Suppose your upload capacity is 50 KBps. If you’ve unchoked 5 peers,
existing clients will send each peer 10 KBps, independent of the rate each is sending to you. In
contrast, BitTyrant will rank all peers by their receive / sent ratios, preferentially unchoking
those peers with high ratios. For example, a peer sending data to you at 20 KBps and receiving
data from you at 10 KBps will have a ratio of 2, and would be unchoked before unchoking
someone uploading at 10 KBps (ratio 1). Further, BitTyrant dynamically adjusts its send rate,
giving more data to peers that can and do upload quickly and reducing send rates to others.

Q: Will BitTyrant work for cable / DSL users?

Yes. Although the evaluation in our paper focuses on users with slightly higher upload capacity
than is typically available from US cable / DSL providers today, BitTyrant’s intelligent
unchoking and rate selection still improves performance for users with less capacity. All users,
regardless of capacity, benefit from using BitTyrant.

Q: Won’t BitTyrant hurt overall BitTorrent performance if everyone uses it?

This is a subtle question and is treated most thoroughly in the paper. The short answer is: maybe.
A big difference between BitTyrant and existing BitTorrent clients is that BitTyrant can detect
when additional upload contribution is unlikely to improve performance. If a client were truly
selfish, it might opt to withhold excess capacity, reducing performance for other users that would
have received it. However, our current BitTyrant implementation always contributes excess
capacity, even when it might not improve performance. Our goal is to improve performance, not
minimize upload contribution.

Do incentives build robustness in BitTorrent?

Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, Thomas Anderson

Overview

A fundamental problem with many peer-to-peer systems is the tendency
of users to "free ride"—consume resources without contributing to the
system. The popular file distribution tool BitTorrent was explicitly de-
signed to address this problem, using a tit-for-tat reciprocity strategy to
provide positive incentives for users to contribute resources to the system.
We show that although BitTorrent has been fantastically successful, its in-

centive mechanism can be cheated by selfish clients.
pai it A i i

How BitTorrent works today

A — =
",‘.,i}"l{.

A big file

Broken

into pieces

.. Content provider

Internet

Pieces are redistributed %=
by peers downloading
the file, sharing load

The upload capacity of a given
host is split equally by TCP
among all reciprocating peers.

Peer

cient [- 20 Decisions about which peers
. B to send data are made by each
reciprocates< . i !
withopili— e peer individually following a
tit-for-tat policy:

| send data to you if you have
been sending data to me
faster than others have.

Fairness

400 T T

Ideally, tit-for-tat provides

o

=

; ¥ 2

fairness: each person re- 3 - |
ceives data as quickly as & T
they contrilsute. Tn prac- 2 200 |
i y 2 : P £ '""/ 70% o capacury comes |
tice, high capacity users £ iz lfrom high capacity users
contribute much more 3 100 = T Expected performance
than t ey receive: i Ry ’ Perfect tuimess ===~

g v :

0 100 200 300 400

Upload capacity (KB/s)

Cheating with BitTyrant

The unfairness of BitTorrent suggests that tit-for-tat does not work as in-
tended and might be exploited by selfish users to improve performance.
We have built BitTyrant, a selfish client designed to do exactly this.

—
Key idea: BitTyrant dynamically chooses how many and which peers to
send data. In contrast, existing BitTorrent clients send data to a fixed
number of peers each tit-for-tat round, regardless of upload capacity.

Our dynamic adjustment algorithm maintains estimates of the rate at
which peers will provide data, ¢, and the rate required to earn reciproca-
tion, u. Using these estimates, we select the highest capacity peers and
send them data at the minimum rate that will cause them to reciprocate.

Each round, rank order cach peer p by the ratio “'p/”p and
choose those of top rank until the local upload capacity is

—
reached.

choose k| 28wy < capacity
At the end of each round for each unchoked peer:
If peer p does not send data: increase cost estimate, w,,.

If peer p has unchoked us for the last minute:
reduce cost estimate, w,.

In our example at left, an existing BitTorrent client might unchoke two
peers based on observed received rate only. If the client had 25 KB/s of
available capacity, each peer would receive data at 12.5 KB/s. In contrast,
BitTyrant can determine which peers are best to exchange with and how
many can be supported.

Received Required Benefit/cost

Suppose peer has Peer rate sendrate ratio
capacity 25 Lk 5 2.50
il 2 -
Peer reciprocates - 20 16 1.25
with top 3 b
e 7 7 1.00
e 16 16 1.00
Results

We have compared performance of BitTyrant and existing BitTorrent
implementations on more than 100 real-world swarms as well as synthetic
swarms on the PlanetLab testbed.

©On real swarms, BitTyrant improves download performance by 70%
compared to existing BitTorrent clients. Some downloads finish more
than 3 times as quickly. Regardless of capacity, using BitTyrant is in the
selfish interest of every peer individually.

@ However, when all peers behave selfishly, average performance de-

grades for all peers, even those with high capschty.
\-_——-_-'-__—-‘_‘—-_‘" _

BitTyrant - Wikipedia, the free encyclopedia

| of3

BitTyrant

From Wikipedia, the free encyclopedia

BitTyrant is a BitTorrent client
modified from the Java-based
Azureus 2.5 code base. BitTyrant
is designed to give preference to
clients uploading to it fastest and
limiting slower uploaders. It is
free software and cross-platform,
currently available for Windows,

0S X. and Linux.?

BitTyrant is a result of research
projects at University of
Washington and University of
Massachusetts Amherst,
developed and supported by
Professors Tom Anderson,
Arvind Krishnamurthy, Arun
Venkataramani and students

Developer{(s)

Stable release

Operating system
Platform

Type

License

Website

http://en.wikipedia.org/wiki/BitTyrant

BitTyrant

University of Washington, University of Massachusetts
Amherst

1.1.1 (//en.wikipedia.org
/w/index.php?title=Template:Latest _stable software release

/BitTyrant&action=edit) (September 7,2007!") 1

(//fen.wikipedia.org
/w/index.phpMitle=Template:Latest_stable_software_release/BitTyrant&
action=edit&preload=Template: LSR/syntax)]

Cross-platform

Java

BitTorrent client

GNU General Public License

http://bittyrant.cs.washington.edu/

Michael Piatek, Jarret Falkner, and Tomas Isdal. The paper describing how it works, Do Incentives Build

Robustness in BifTorrem?[J], sought to challenge the common belief that BitTorrent's "must upload to
download" transfer protocol prevents strategic clients from gaming the system. It won a Best Student Paper
award at the 2007 Networked Systems Design and Implementation conference.

As a strategic client, it has demonstrated an average increase in download speed by 70% over a standard

BitTorrent client. Non-BitTyrant leechers in the swarm may receive a decrease in download speed.["] Even
so, if all clients are BitTyrant, high capacity peers are more effectively utilized, allowing for an overall
increase in download speed. However, there is a caveat: If high capacity peers are involved in many swarms,

low capacity peers lose some performance.[

Contents

2 Plugins

3 Versions

4 References

5 External links

3]

1 Strategic peer selection - an analogy

Strategic peer selection - an analogy

Imagine your city's central water source (the peer with data to be shared). Everyone needs water, but only a
few pipes (we will suggest 10) can actually access the central source simultaneously. There are a few models

3/20/2012 1:39 AM

BitTyrant - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/BitTyrant

of distribution that could be adopted, two of which follow.

10 randomly selected houses might have a small hose or pipe connected to the water source. These houses,
similarly, pump out 1/10 of what they receive to 10 other randomly selected houses, and so on and so forth.
There is a rapid decrease in the amount of data that can be shared as one gets farther away from the central
source.

A better model is to let the houses with the 10 largest pipes be connected directly to the central source.

While the data is being transferred to these higher bandwidth nodes (houses), each of these in turn connec

with the 10 houses that have the highest bandwidth. This accelerates the establishment of viable seeds in a

rrent, and more closely corresponds to our present model, using water mains. l/
T 2t o

This example, although imperfect and somewhat exaggerated, corresponds to BitTorrent clients; the first to a
standard client, and the second to BitTyrant's strategic peer selection algorithm. Clarifications of the actual
algorithms used by BitTyrant follow.

When selecting which nodes have the highest bandwidth, a node uses the amount of data being received in
return. Simply relying on a leecher's reported total bandwidth could easily be gamed. The seeding behavior is

not modified from Azureus's standard algorithm. \ (
S0 gt beeff
[
(OWMF(;

Like Azureus, BitTyrant also supports the use of plugins. Plugins from Azureus such as 3D View and
Safepeer can be used.

Plugins

Versions

Initial release date: January 2, 2007
Version 1.1 - released January 8, 2007

Version 1.1.1 - released September 7, 2007

References

1. ~ "BitTyrant" (http://bittyrant.cs.washington.edu/) . University of Washington (http://www.washington.edu/) -
Computer Science & Engineering (http://www.cs.washington.edu/) . 2007-09-07.
http://bittyrant.cs.washington.edu/. Retrieved 2010-01-21.

2. A~ "Researchers Create Selfish BitTorrent Client" (http://slashdot.org/article.pl?sid=07/01/03/1434259&
from=rss) . Slashdot. http://slashdot.org/article.pl?sid=07/01/03/1434259& from=rss. Retrieved 2007-01-03.

3. ~®b ¢ \ichael Piatek, Tomas Isdal, Thomas Anderson, and Arvind Krishnamurthy, University of Washington;
Arun Venkataramani, University of Massachusetts. Do Incentives Build Robustness in BitTorrent? Proceedings
of 4th USENIX Symposium on Networked Systems Design & Implementation. 2007.
http://www.cs.washington.edu/homes/piatek/papers/Bit Tyrant. pdf

External links

» BitTyrant homepage (http:/bittyrant.cs.washington.edu/)

2 of 3 3/20/2012 1:39 AM

BitTorrent peers use_m—_ta:-tet\s"grategy to optimize their download speed.” More specifically, most
BitTorrent peers use a variant of Tit for two Tats which is called regular unchoking in BitTorrent
terminology. BitTorrent peers have a limited number of upload slots to allocate to other peers.
Consequently, when a peer's upload bandwidth is saturated, it will use a tit-for-tat strategy. Cooperation
is achieved when upload bandwidth is exchanged for download bandwidth. Therefore, when a peer is
not uploading in return to our own peer uploading, the BitTorrent program will choke the connection
with the uncooperative peer and allocate this upload slot to a hopefully more cooperating peer. reguigr
unchoking corresponds very strongly to always cooperating on the first move in prisoner’s dilemma.

ioically, a peer will allocate an upload slot to a randomly chosempeer (unchoke). This
is called optimistic unchoking. This behavior allows searching for more cooperating peers and gives a
second cm non-cooperating peers. The optimal threshold values of this strategy are
still the subject of research.

d\ﬂLQ = @ CL(J% CfarWCf}ﬂfl

Triumph of the Golden Rule | gmilburn.ca http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

1of12

gmilburn.ca

Essays, Projects, and Distractions of Geoff Milburn

e Subscribe

Browse: Home / Numbers & Nature / Triumph of the Golden Rule

Triumph of the Golden Rule

By Geoff » February 24, 2010 & d 3[Z 9

We live in a world with other people. Almost every decision we make involves someone else
in one way or another, and-weface a constant choice regarding just how much we’re going
to trust the person on the other side of this decision. Should we take advantage of them, go
for the quick score and hope we never see them again — or should we settle for a more
reasonable reward, co-operating in the hope that this peaceful relationship will continue long
into the future?

We see decisions of this type everywhere, but what is less obvious is the best strategy for us
to use to determine how we should act. The Golden Rule states that one should “do unto
others as you would have them do unto you”. While it seems rather naive at first glance, if
we run the numbers, we find something quite amazing.

A Dilemma

In order to study these types of decisions, we have to define what exactly we’re talking

about. Let’s define just what a “dilemma” is. Let’s say it has two people — and they can

individually decide to work together for a shared reward, or screw the other one over and
takeWMWﬁéto WorK together, you both get a medium-sized

reward. If you decide to take advantage of someone but they trust you, you’ll get a big g Qe er/
reward (and the other person gets nothing). If you’re both jerks and decide to try to take

advantage of each other, you both get a tiny fraction of what you could have. Let’s call
these two people Alice and Bob — here’s a table to make things a bit more clear. l D ‘.l
Prunay Dilewq

3/17/2012 2:07 AM

Triumph of the Golden Rule | gmilburn.ca http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

Alice cooperates Alice defects

Poor Bob. He decided to trust Alice,
who screwed him and got a big
reward. Bob gets nothing.

Bob Everyone wins! A medium-sized
cooperates reward to both for mutual co-operation

No honour among thieves... both
Poor Alice. She decided to trust Bob, Bob and Alice take the low road, and
Bob defects who took advantage of her and gota fight over the scraps of a small
big reward. Alice gets nothing. reward.

This specific order of rewards is referred to as th@’ﬁih@ﬂﬁfé‘m, and was formalized
and studied by Melvin Dresher and Merrill Flood im$950-while werking for the RAND

Corporation.

.-
Sale, One Day Only! (o t

—

Now of course the question is — if you’re in this situation, what is the best thing to do? First
suppose that we’re never, ever going to see this other person again. This is a one time deal.
Absent any moral consideration, your best option for the most profit is to attempt to take
advantage of the other person and hope that they are clueless enough to let you, capitalism
at its finest. You could attempt to cooperate, but that leaves you open to the other party
screwing you. If each person acts in their own interest and is rational, they will attempt to
one-up the other.

1(‘? MVHEPlQ (&/ﬂd;

But there’s just one problem — if both people act in this way, they both get much less than
they would if they simply cooperated. This seems very strange, as the economic models
banks and other institutions use to model human behavior assume this type of logic — the
model of the rational consumer. But this leads to nearly the worst possible option if both
parties take this approach.

20f 12 3/17/2012 2:07 AM

Triumph of the Golden Rule | gmilburn.ca http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

It seems that there is no clear ideal strategy for a one time deal. Each choice leaves you
open to possible losses in different ways. At this point it’s easy to toss up your hands, leave
logic behind, and take a moral stance. You’ll cooperate because you’re a good person — or
you’ll take advantage of the suckers because life just isn’t fair.

And this appears to leave us where we are today — some good people, some bad people, and
the mythical invisible hand of the market to sort them all out. But there’s just one little issue.
We live in a world with reputations, with friends, and with foes — there are no true “one
time” deals. The world is small, and people remember.

In it for the Long Run

So instead of thinking of a single dilemma, let’s think about what we should do if we get to
play this game more than once. If someone screws you in the first round, you’ll remember —

and probably won’t cooperate the next time. If you find someone who always cooperates,
you can join them and work together for your mutual benefit — or decide that they’re an

easy mark and take them for everything they’ve got.

But what is the best strategy? In an attempt to figure this out, in 1980 Robert Axelrod
decided to have a contest. He sent the word out, and game theorists, scientists, and
mathematicians all submitted entries for a battle royale to determine which strategy was the
best.

Each entry was a computer program designed with a specific strategy for playing this
dilemma multiple times against other clever entries. The programs would play this simple
dilemma, deciding whether to cooperate or defect against each other, for 200 rounds. Five
points for a successful deception (you defect, they cooperate), three points each for mutual
cooperation, one point each if you both tried to screw each other (mutual defection), and no
points if you were taken advantage of (you cooperate, they defect). Each program would
play every other program as well as a copy of itself, and the program with the largest total

score over all the rounds would win.

So what would some very simple programs be?

ALL-C (always cooperate) is just like it sounds. Cooperation is the only way, and this
program never gets tired of being an upstanding guy.

ALL-D (always defect) is the counterpoint to this, and has one singular goal. No matter
what happens, always, always, always try to screw the other person over.

RAND is the lucky dunce — don’t worry too much, just decide to cooperate or defect at
s

3o0f12 3/17/2012 2:07 AM

Triumph of the Golden Rule | gmilburn.ca http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

random.

You can predict how these strategies might do if they played against each other. Two ALL-C
strategies would endlessly cooperate in a wonderful dance of mutual benefit. Two ALL-D
strategies would continually fight, endlessly grinding against each other and gaining little.
ALL-C pitted against ALL-D would fare about as well as a fluffy bunny in a den of wolves
— eternally cooperating and hoping for reciprocation, but always getting the shaft with
ALL-D profiting.

So an environment of ALL-C would be a cooperative utopia — unless a single ALL-D
strategy came in, and started bleeding them dry. But an environment entirely made of
ALL-D would be a wasteland — no one would have any success due to constant fighting.
And the RAND strategy is literally no better than a coin flip.

(
Time to Think Cpare Complyattd

So what should we do? Those simple strategies don’t seem to be very good at all. If we think
about it however, there’s a reason they do so poorly — they don’t remember. No matter what
the other side does, they’ve already made up their minds. Intelligent strategies remember
previous actions of their opponents, and act accordingly. The majority of programs
submitted to Axelrod’s competition incorporated some sort of memory. For instance, if you
can figure out you’re playing against ALL-C, it’s time to defect. Just like in the real world,
these programs tried to figure out some concept of “reputation” that would allow them to act
in the most productive manner.

And so Axelrod’s competition was on. Programs from all over the world competed against
each other, each trying to maximize their personal benefit. A wide variety of strategies were
implemented from some of the top minds in this new field. Disk drives chattered, monitors
flickered, and eventually a champion was crowned.

And the Winner Is...

40f 12 3/17/2012 2:07 AM

Triumph of the Golden Rule | gmilburn.ca

50f12

When the dust settled, the winner was clear — and the victory was both surprising and
inspiring. The eventual champion seemed to be a 90 Ib weakling at first glance, a mere four
lines of code submitted by Anatol Rapoport, a mathematical psychologist from the
University of Toronto. It was called ‘ and it did exactly that. It started every
game by cooperating — and then doing exactly what the other player did in their last turn. It
cooperated with the “nice ™ strategies, butted heads with the “mean” strategies, and managed
to come out on top ahead of far more complex approaches.

The simplest and shortest strategy won, a program that precisely enforced the Golden Rule.
But what precisely made Tit-for-Tat so successful? Axelrod analyzed the results of the
tournament and came up with a few principles of success.

e Don’t get greedy. Tit-for-Tat can never beat another strategy. But it never allows
itself to take a beating, ensuring it skips the brutal losses of two “evil” strategies
fighting against each other. It actively seeks out win-win situations instead of gambling
for the higher payoff.

e Be nice. The single best predictor of whether a strategy would do well was if they
were never the first to defect. Some tried to emulate Tit-for-Tat but with a twist —
throwing in the occasional defection to up the score. It didn’t work.

¢ Reciprocate, and forgive. Other programs tended to cooperate with Tit-for-Tat since
it consistently rewarded cooperation and punished defection. And Tit-for-Tat easily
forgives — no matter how many defections it has seen, if a program decides to
cooperate, it will join them and reap the rewards.

e Don’t get too clever. Tit-for-Tat is perfectly transparent, and it becomes obvious that
it is very, very difficult to beat. There are no secrets, and no hypocrisy — Tit-for-Tat
gets ak)ngvmyl\mmﬁélﬁ unlike strategies biased toward deception.

The contest attracted so much attention that a second one was organized, and this time
every single entry was aware of the strategy and success of Tit-for-Tat. Sixty-three new
entries arrived, all gunning for the top spot. And once again, Tit-for-Tat rose to the top.
Axelrod used the results of these tournaments to develop ideas about how cooperative
behaviour could evolve naturally, and eventually wrote a bestselling book called The

Evolution of Cooperation. But his biggest accomplishment may be showing us that being
nice does pay off — and giving us the numbers to prove it.

e Bookmark
on

* Bl&ious
this

° mmend

on
* #har o0k

via
* Rhargit
with

wit
* Iwekblers
about

° §u§scribe

to

http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

oo

/

f

3/17/2012 2:07 AM

Triumph of the Golden Rule | gmilburn.ca http://www.gmilburn.ca/2010/02/24/triumph-of-the-golden-rule/

6of 12

e Bwokmark
opmments
Wser

#his
Cate g@%\mmbers & Nature
Tags: cooperation, evolution, Featured, mathematics

About the Author

Geoff

lives and works in Ontario, Canada.

Related Posts

The Golden Rule in the Wild In the previous post, we discussed the Prisoner’s Dilemma and saw
how a simple strategy called Tit-for-Tat enforced the Golden Rule and won a very interesting contest.
But does Tit-for-Tat always come out on top? The most confounding thing about the strategy is that it can
never win — at best, it can only tie [...]......

19 Responses to “Triumph of the Golden Rule”

TP 3

V"’"

(SO
1. »

Arthur Low
February 26, 2010 at 1:36 pm | Permalink | Reply

The outcome of the contest is quite inspiring indeed.

Definitely an interesting article! Thanks for this!

=== popuris.com === popular today
February 26, 2010 at 1:40 pm | Permalink | Reply

=== popurls.com === popular today...

3/17/2012 2:07 AM

GO% &@}Wm 3/20
M Qe T GO

Gﬂ;’ﬁ{mw]r R
—‘‘/g(@mpﬁww
ot STtwlp‘?, ;i@q
— Ty ot (@

”@@fﬁfer p4pec §lmce, pP)

N_@Q_f Eﬂ/}‘z p ZP j}/glefﬂ

(@ﬂjrﬁf[(l%ﬁi 07
Qead ol digal | ohof fo s
C Od@}w% i 25 a0

TH vord 4 g fotth o}
?@qﬂ{ wartd 5%@) 3

NI had o del on T fubl

tls JML(/MW g%bnﬂj Mol vaiated 7, éf
Wx ﬁﬂ/ 56'[a8

i

{\XM W 6@1[\/f ‘lLO P(W@"”L]wU@ {fﬂm cﬁmf}/@ 0 Sqles G
(W‘\? ol A Mw[b}ag ﬂ QAYMY‘

ch,\)b}f@f e Eoy fo &M o,

Uy o b gl o D prnr
WS d/mf@c{ 4 Vis
jet fon o Gur 7&@((/* papers.,

j\/o(ml DOWA (MC{
G@@d _ (1
@ =5 5€/Q§ CWTVQ 1[;/ ¢

\/P\oﬂd@/

)

N@fWoles ae S g },(‘ (
g(‘) szg“’d} Slowes

bthrat 4 £ o poble
‘Ot iy hay i vnlad pact

Y
@s_V%B
\ \

M
()
T‘L for TWJ(lile Lyt é Cyp
Makh ot oah Jpf

Pl 4)
'\ y‘l 6

\QC M

»)

ot dab 4 W, o s
Te ons why g M b st dafy
OIE)LW(M i 7[%{ Ocd/[[eéqL

E wf[[VP(‘D/((J]L"jtﬁgae ‘06’41,0{5

Hﬂ‘ﬁ V\fﬁ 6L\m/t'f\3"§o 1\\,4(0/:'1L Shae W/)41'4{

@M\% }Wp, She pedrs [,V{AO acg. b{/ﬂe/ —

heed b Ve - ommieﬁf. (/nvobf{:i

%‘JLT\/NMC)‘ 75{/% m& mare 51%,05
Leﬂt M v‘plm& 7‘)* m‘ln}mm M)L That Q@f)’
Yople T oh| UP\M?@ b

BitTyad & owl fo ld

&B‘(JJ]:D[@/')[\g{, 6@0& FW b\b -]OP‘HI;;M?ME),

@HTWJ’ has ng glop
“ ek hgde f 4of shfed

S
,h\oms s RIAR

P20 Madigl - so0 Wb/ what P2P progts
(e aa ‘f]{ &Olmﬂ‘/f@/

Qed‘t@\t b o |50k fer b ﬁ
%1 b0)d ahmot 1o oy quﬁro(904?5

Hoe @ ot of W Twitter (ollaass (it
donlouds bt net t/,o?ao{/i;

of)ly J/J /T(/NZ,) “5@”1/1 ”[
" B V\fu
ﬂY MAZ%0n C(Q(J@/ @MW}‘ t z'Cc ‘W("j

e v allned to @pr Samgs fo he clad ©
“Near proved

(QPY +@ (‘POJ/(;
Bk HD 4o Cochamibe)

QTM\(Clailm\mg) 6049 ;5 (0‘07,@ |
LM% 54!4 '{mns-icéf 9’“95 ‘9” 67 bt"

go /lo+ CQ)OY@ |
(gat kew L cof® of onte

50 ZAbwlg,q/l a pp‘tmte/

ot lona ot
al ald row o

5@[1‘(«9 Copy
TE v PMMM a bl o t/s@cf loaohgmfg
lade.

Up) 0%&3 Qe v)/\mm,p]r@é
G an Gee 5 ot spywart

j}*l sd T Gry W hoe L5 wot Pe Ofdllflfc/

Apde

\FTP
Imppee/ @ w/)gwl file 5;49/64
D Wit df dich 60&5 b b Pﬂ%egg &£ /QJW

C@fs o oaded

Tt % on of T 10 dowaloads

bty Lot pay mekalal right
M hﬂ[ﬁ ﬂ\W wb‘ﬁ o AL befte hum CVM/”LZ
\@80@[h'(’k

R\tw of st ¢ole
f%(;{ "(th“}/z‘m;oq)Oﬂlt[thﬂt,fé 7(9 p%ﬁé@/ 904]
(esale st qpp?; S fo Jﬂfé)
ua7)

6(1033 L 3 3 /L/
QohablE ¢ (g

(00]%!

[: l}nwl {&W/ On V\ofwo/wﬁ

e Heot Sl

k@#ﬁ/ﬁ’m“ thes 1w (Wf}f"j \LVC/
[eats T/WW lager @ fualy

Yoo oy & o il b Fhoat

I

l;t,w% ﬂ
v

“’7\
g,,, 5@{\ 'ﬂft@r ﬁ)b\@({ 0N Qﬂ\
(ooL J e ak

oA RTT gl be bigly voriale
6w Tf

ENPOMFMI]’\/@'L%M@d‘t Mpﬂ'nj Al/j
KEQ@, 5,'“]@)

ﬁulr \d\ ‘ﬂlep s foo 5{01,,,
bk s l'd’t

’ \
mdwad; e 4 Window

_(9‘% L\Q{ a LC}\L@([windpw
- C“J"l]L Sead 7 fe(/:gye/ii, bofte

B ohll om il tisg
&J ;aﬁjfud 6”(1/1’4,\3 W}n aﬂv
oy Wi dne

~ttch [l we WEa ade, D e wdage
/’LM de éenl‘M{j P&MB &” Sting_ fc'n,&

"\OA what ha || M e qze bﬂf/

”(}ﬂm'lﬂmﬁoq O(6//!(%13 W;A&MJ
= E %

— ol Tkt e /00}4/
TP i ol p;}oﬂ |
Ubes ath o odo ot Jul (aaly

@fwgeéjf;@o
%7{(’, Ghe Qo /3/06{157585 e ssede,

G
(// Gt s

> Ads

@ S/n
B dus inde 45y pudeh (teged] sl
]LW/ %]f‘f"tp =50 Can (ompf.
Ih il deb @1 g0 aofwc&/ dufy sre
1ep songfiogy Glo, —Shit

\ w{n&vmww
bﬂt 6”” iwea,ye) WW/

é)u'f TC‘D 7 W("I-(}"W 6}3({ C(/(/(iou/

e g2
loons

QQU!UUW (,4:460,/ {/ll Phl N P“}”‘L

2 e /b@a /Jreﬁz 3@@/

- Qﬁ%\ PEENAYRL se

9
Qdda{ Cﬂvl(l/ })Q [@o:ﬁid \'L/\(Ce
_\ﬂt @%‘J 206} **(ova ZOE re}@nsm\tﬂ_e \
~0d # ol s Dox copud

T(/P Fod Tansmit
LB wLm 'nL me)0713 of P"w""”L> los)
m{ whir mall by from bty shilioy
TeP doewn @Pe p @ lon g O Gume priclef

—_—

e [{6{ CW,J
@ﬂ@é@[\m [y

ﬂo‘“ (0”%) ~ twhat Ve 4w & 7[4/
W\mdwé (éofm évw
Oc @(bt (eo\)w G/Wli J(WP P(L(/L@b

Contn

@0,@4 Sond (Iu/wb {%f?/ feq
i an @uler,
T\Z (Q}'f\e_é @om{nwk Capos

1 H
- W
Tx Rl AT

60 \/\/’\héow —L— MLQ(Q@\WQ[ﬂf&cﬁfj QOH[QMQ(,(\/(QM,/QX ﬁ'/{ﬁ)

—

= { l
C(Jngeb‘l W\ dow - €nsuey 66[(!(m, +fy 5//695

N @(w\mdaw 5%’7
‘{ qv dmﬂﬁ = 1y cm@(bf["m u’“;“clw +

it e | G
- By |)
1/\7 \ Sl oy, {},,6
s (k'lm{,jj Ugﬁf;l
" B, &gﬁ (11417 /(L(
Voo)
(wingey

9(0.,« fowadds @fﬁw’lv] %{W’”% /’1‘.’
Lun Thogh dont o ahel O ¢ hua

—\’/‘\

§me1 T e = ({%

W = i (‘"60}@/{/ Mﬂ’,{w/}na{j
Cwiﬁdfaw MM’JP}}

&:s/zfg

Reliability & Congestion Control

6.033 Lecture 13
Dina Katabi & Frans Kaashoek

3/21/12

Internet: Best Effort

No Guarantees:

* Variable Delay (jitter)
» Variable rate

» Packet loss

» Duplicates

» Reordering

« Maximum length

“At Least Once” (Take 1): Lock-Step

Sender. Receiver Sender Receiver

g

Timeout and
retransmit

RTT = round trip time

= Each data packet has a sequence number set by sender
* Receiver: upon receipt of packet k, sends acknowledgment (ack)
for k (“I got k*)

+ Sender: Upon ack k, sends k+1. If no ack within timeout, then
retransmit k (until acked)

The Internet Stack
Protocol Stack
App
Transport TCP / UDP Dute : Ha TCP packet
Network g = v | 1P packer
Link !
E2E Transport
=) « Reliability: “At Least Once Delivery”
— Lock-step
— Sliding Window
* Congestion Control
— Flow Control
— Additive Increase Multiplicative Decrease
How Long to Set Timeout?
Sender, Receiver]|
* Fixed timeouts don’t work well
— Too big = delay too long \\‘“—-J{
— Too small = unnecessary
retransmission
* Solution Timeout
— Timeout should depend on RTT
— Sender measures the time between
transmitting a packet and receiving Sender, Receiver|
its ack, which gives one sample of %
the RTT j[
Timeout \I"—’

Jl

But RTT Could Be Highly Variable

500
450
b 4
A0 A 4
L1 _,’
*0 I
4 F
N S /3
e Y -\
E \ / \\ v
R /
E wl\/ \ !
wol N M‘
|
ol ; -
1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample index

Example from a TCP connection over a wide-area wireless link
Mean RTT = 0.25 seconds; 5td deviation = 0.11 seconds!

Can't set timeout to an RTT samale; need to consider variations

3/21/12

Calculating RTT and Timeout: (as in TCP)
Exponentially Weighted Moving Average (EWMA)

+ Estimate both the average rtt_avg and the deviation rtt_dev

* Procedure calc_rtt(rtt_sample)
rit_avg € a*rtt_sample + (1-a)*rtt_avg; /*a=1/8"*/
dev € absolute(rtt_sample — rtt_avg);
rtt_dev € b*dev + (1-b)*rtt_dev; /*b=1/4*/
* Procedure calc_timeout(rtt_avg, rit_dev)
Timeout € rit_avg + 4*rtt_dev

Improving Performance

* Lock-step protocol is too slow: send, wait
for ack, send, wait for ack, ...

* Throughput is just one packet per RTT
* Solution: Use a window

once
— overlap data with acks

— Keep multiple packets in the network at

At Least Once (Take 2): Fixed Window

Receiver tells the sender a

Sender Receiver window size
\“’%‘ + Sender sends window
* Receiver acks each packet as
LYo before
wet3 | O

* Window advances when all pkts
in previous window are acked
— E.g., packets 4-6 sent, after 1-3 ack’d
A * If a packet times out = rxmit pkt
L

Still much idle time

At Least Once (Take 3): Sliding Window

= Sender advances the window

Sender Receiver by 1 for each in-sequence ack

\‘“1% it receives
s — Reduces idle periods
W13 ,Qbuw— — Pipelining idea!

But what’s the correct value
for the window?
— We'll revisit this question

— First, we need to understand
windows

W= 2-4 - -
wW=35 [S=Il_--" Ildiu

Wb \—.’\

Sliding Window in Action

Example: W = 5; We show how the window slides with ack arrivals

windewndaina= 2-6

Sndr

Revr

Sliding Window in Action

Example: W = 5; We show how the window slides with ack arrivals

wingtmdow2=63-7

3/21/12

Sliding Window in Action

Example: W = 5; We show how the window slides with ack arrivals

windedndds7= 4-8

d1 d2d3

Handling Packet Loss

winddndow-5 2-6

Sndr

Sender advances the window on arrivals of in-sequence acks

= Can’t advance on a3’s arrival

Handling Packet Loss

window = 2-6

d2 times out
2
Ea
B ;
¥ 2ghagag! A
LA
£ oy 4 ’
’
’
’
r
di d3 ddds de dz

Sender advances the window on arrivals of in-sequence acks

-> Can’t advance on 23's arrival

Handling Packet Loss

\rindc.vw =26 d2 times out

Sndr

d1 d3 d4ads dé d2
Sender advances the window on arrivals of in-sequence acks

-> Can't advance on a3's arrival

What is the Right Window Size?

* Window is too small Sender Receiver
- long Idle time \”"‘Y%‘
—> Underutilized Network d_}_‘,w--'
v ‘_\
& v—;zndow tcTo large - %:[
ongestion w=3s5 [T=S o7 || e
A

Case study: TCP

* TCP: reliable pipe to send bytes

* Uses acknowledgements to adopt to:
—link capacity
—rate at which server processes
—congestion in the network
—lost packets

* Explicit setup and tear-down

3/21/12

E2E Transport

Reliability: “At Least Once Delivery”
— Lock-step
— Sliding Window

¥

Congestion Control
— Flow Control
— Additive Increase Multiplicative Decrease

Setting Window Size: Flow Control

Infinite Infinite
Capaci !

. Pachets "PP\-

Window < Receiver Buffer
— Otherwise receiver drops packets

Setting Window Size: Congestion

Infinite city = 10
® Cap'acliry N c“,’f.?’c;?is,rs

» Sender transmits faster than o :[I]]IF_’E

bottleneck capacity

->Queue builds up

-> Router drops packets
* Tx Rate < Bottleneck Capacity
* Tx Rate = Window / RTT

Window < min{Receiver Buffer, Bottleneck_Cap * RTT)

Setting Window Size: Congestion

Infinite Capacity = 10
@ Capacity @ p«:k:¥s/s @
Ll S

@/ &5 ““W’i
, :
Bottleneck may be shared '

Window < min(Receiver Buffer, cwnd)

Congestion Control Protocol adapts the congestion
window (cwnd) to ensure efficiency and fairness

Congestion Control

* Basic Idea:

— Increase cwnd slowly; if no drops = no congestion yet
—If a drop occurs - decrease cwnd quickly

* Use the idea in a distributed protocol that achieves

— Efficiency, i.e., uses the bottleneck capacity efficiently

= Fairness, i.e., senders sharing a bottleneck get equal
throughput (if they have demands)

Additive Increase Multiplicative Decrease

e Every RTT:
No drop: cwnd=cwnd +1
Adrop: cwnd=cwnd/2

3/21/12

Additive Increase

cwnd= cwnd+1
cwnd =1 cwnd=2
o]

Sndr

Revr

AIMD Leads to Efficiency and Fairness
Consider two users who have the same RTT

MD = move on

h - cwnd,,cwnd
lines through origin (o)

Fairness line
// cwndl = cwnd2

~ /
-
c
Al = move on %
lines parallel to - N
fairness line b
i Efficiency line
cwndlecwnd2 =
RTT™bottleneck_cap

User 1: cwnd,

Summary of E2E Transport

* Reliability Using Sliding Window
— Tx Rate = W/ RTT

* Congestion Control
— W = min(Receiver_buffer, cwnd)

—cwnd is adapted by the congestion control protocol
to ensure efficiency and fairness

— TCP congestion control uses AIMD which provides
fairness and efficiency in a distributed way

http://web.mit.edw/6.033/www/lec/I13.txt

-*- mode: org -*- 2 Z
#+STARTUP: indent

Demo: wireshark trace of ttcp traffic from home to amsterdam

* TCP: reliable pipe to send bytes

** Few mechansims:

TCP adopts to link capacity, rate at which server processes packets, congestion:
all with one mechanism: the pacing of acks

TCP handles packet loss too using acks

** Semantics
3 hand-shake to set up connection (defined by src,dst ip and src, dst tcp)

server and client keep state per connection for detecting duplicate,
retransmission etc.

TCP doesn't guarantee at-most-once delivery, but in most cases it will. By
default connections hang-around for 2 min after termination, and clients pick a

random port, so it is unlikely that packets from an old connection are accepted
as new packets.

* Some observation about trace:
** connection setup: 3 packets, agree on sequence numbers, etc.

** connection starts with slow start: 1 outstanding, 2, 4, etc.
- slow start: increase the congestion window by number of packets acknowledged
first ack increase window 2
second ack increases window 4
etc. until something happens (see below)
- first ack comes back roughly in ~112 msec (what is the cable modem doing!?)
luckily we won't be sending 1448 data bytes per 112 msec (which is ~12Kbyte/s)
- after first ack sender sends 2 packets, receive ack for next packet (4345)
acknowledging 2 packets.
ack received after ~16 msec (~181 Kbyte/s)
- send 4 packets
we get ack for first packet
- mix of burst of packets, followed by receiving acks, window grows
e.g. ack for 14481 acknowledges packet send 803180-786613 usec earlier = ~16 msec
at this point we have 27513-14481 bytes in flight = 13032
so if were stable now, we would be sending at 814Kbyte/s

** TSval to compute RTT

** when sending byte 127425 connection reaches server capacity, maybe we could send faster.
- we can compute the rate at which we are sending:

byte 65161 was sent at time 66834969

it was acked at time 66916306

at that time: sender sends byte 125977

so the bytes in flight are: 125977-65161

and we are clocking at: 66834969-66916306 = -81337 (81 msec)

tcp is running at: 60816/0.081337 = 747703.99695095712898189016 bytes/sec

which make sense for uploading on a cable modem

** moved away from base station around event 9747
duplicate acks: so data got lost
several dup acks so don't wait for timeout resend: 7031633
4 dup acks, again resend 7031633
next acks says receiver send it, and retransmits two outstanding packets
my wifi link is bad so many dropped packets (i am far away from base station)
tcp retransmits and doesn't give up (client does receive some responses)

** at event 9940, i am closer to my base station
TCP is back at self-clocking itself, without drops

* Second trace: multiple TCP connections from home to am:

** First start one connection, and let it come up to speed

** At event 7143, 2 more connections

they enter slow start, reach full speed of server (tcp window is full)

** At event 9111, the combined connections are creating congestion, packet loss
many of the connection experience packet loss

connections back off aggressively:

1 of2 3/23/2012 4:38 PM

http://web.mit.edw/6.033/www/lec/113.txt

e.g., 10672, window is 406889-367793
e.g., 10639, window is 363449-325901
** They slowly speed up again

at 14712, packet loss again

at 1572, window is: 961473-931065

** and so on

39096
37548 (next ack 12 msec later, so ~37548/0.012=312Kb/s)

2
2 of2 3/23/2012 4:38 PM

D@\truo @p]

—

Nod chil elafiony

b F W/Hf‘&g ZW) ls)
SCW\(OHM lov 7l 0

\’)0 (@@r(’(?th my 56{ W/ 0/@5({7')

Ho e ol ot osig
o oy @t {0 - fud 4l Gk
W éw@, Z*fp /?v/f)
T conbe il abot D)
(o\/ M Slin ’l[cr Ao
@\/% 0ﬂjf?oaw} do\/lobé'
A (opie

Abh <l 8 T3 T g, oy
At e ‘/SW

e T nectiond 1 4]

i

Y

Y

0 ks b & Gt of by laser oot
oy Lo Joble @l oA g
" Slng ﬂf«j
m WWU (s —’77
)@Mlcfv hg .
&dwﬂf (N

! we ol bofy
Zidle

ol ("9 [age bl @t of i s), Z,
b g s ol oy E:

T 0 0 & b pd 4

g @m&&g (oonls

S bk J

/QmJ€ 205 (“W Yo
i+ ian'{q : ((f\,(ﬂm('rly
Y. by LM,

A

ds A

4 aﬁ/éaz

0

s
150 z's Kn(es for ?Afﬂ SM%C

oo {ud cwm)‘flr'
UL 6" See bk 5o 1o

ne Aacestor
I 0w
[boe abistha b

(/ Up}\lofw[ML'[LO((/NAQ/HL o g

\{ef; ms%%ﬁ va(} *'m

@
go l@ltb (JO ;A(nm'm) I;ﬂ[«ﬂ[[a@

(D

}%(w‘/‘j (g loow /03 713(/5/(?
oo bt 4 doied

o C
V%!Oﬂ ‘
CCay 800[/&@!

lebﬂmp "’Onti wwq cLO]LV‘t/ Jooﬁ(C@//ea(éc(¢
"Rt on (op, Frodily

Tl K log Jeve|

9

@chmaf loax b (lp adll be qppdtt
- /[\/b\t clw@a [adﬁm O (,/27(
/ AL Y

%‘MJF@(& ‘}O (6 C(MO“}W ;s }n ﬁL /I/ule]l@“@

L&"‘U% n | ‘/la/un cdwjrfz
RQ\/\(‘;@ &@(@&/lj
',nod@ ["Q’) (/we/
/'4wm;nj # ‘MCOM@
(965 ”fvﬂ/)
Deretid
ks can be dololyd
\NLM ho \Won(mo ((’,vﬂ? - i
Wbe to9 Joarr (w tlle St pur—
ML Con | epct D6/

7@?&;@(A o sy N0 Je[@ﬁ/j/\ﬂ)

ég l,Jlen, O ;/lLMé@
KIHI(U (an 6@ M ducestor

M vard sy B is husd 6 4
Lvin —})’Mvo)'\ /Jl d‘laj ’W)+ Cxt @L/MWK

O(ZQ(JAMY j: Q]WLN (Mf) @/It{/aé(/ T éﬁ/(’(?ﬁ

Ve 4 | ol

“WPCM((0 W’L}
4 Hm@ Gy

-_—

(/[Hf— (Jevfzgn {W{)
T liphy polion /ﬂ/rpm

/ﬁd& o v Tuelf @
@4’((}“@& Cﬂm)ﬂ@d 50t fuart

Y

%‘:P/Tar
: Read Pl«%«((%3/
6@/\@@4' b mdlﬁ; TotTe b ol
b@ m{wmwmﬂ o % foad por_

BA O\OW doé’b z‘\(L/a//k(‘f MTL pa/ﬁ(/b{{f

WWL ‘J(“’) O(ngq A T[[(ML {mq}
XML

é)lg” kqu@ (»/(;l(t P(m/ = WLM: ,’7L Cane {/4,7

T/\ao(ui»«g O,{Wl 1 MHJ&r gl

“Hn Py g 4 ey faf
- p M;LM Ml\c//f |

— N0 i/{LW \\ éf

0
(}\t/q At
"“‘ donir tﬂ(m :’/c@

-t g

M %u]LW\ mmmj c& Q’lCL(yO()
—Jdf e s
- ﬁ\/av@“ﬂwl / [q](m7 y ﬁ[(&/(_eﬁ
— by b

T hded o all b ol
bk A b pa g

C/‘M Clm‘f ;ﬂ/\
~ Summ Mﬁ C{
—’—P (OMQ ms

‘Af(/l"\ ‘}’ R@{e/ﬂm@) G(c[I p
W@(&, (/\ " V;mb;\l

€6L@1

@Md S0 To Pefoimpie
%(/j(COCVej
T Mﬂe or Mg e Mf:f@?

(e des | P (ag@/ il

al '
\/E“ Tdd patty safl e
//5@%1((«, BW“’” (436
e

Conduson J/pmqj@ 4 ‘Wf vinae
_/51,(/e £ éféf'd{

In T/(/'fdfﬂ ok ng -ny W)b(m’

“N(¢ ﬁ) MA @({/ /\(L(/\b/
/ (\ /
(QW% QL’- J/‘/\M i o'

()
e s Ll b net

The Plaz Provenance File System (PPFS)

Michael Plasmeier
theplaz@mit.edu
Rudolph 10AM
March 22, 2012

Introduction

A provenance file system is a file system which stores the history and source of files edited on a local
computer system. For example, when one is editing a slide deck, one might want to know from which
slide deck a slide was copied from. This paper builds upon the basic file system in the early versions of
Unix and introduces a provenance file system known as the Plaz Provenance File System (PPFS). In
particular, the PPFS introduces another layer, called the log layer, which maintains pointers to past
versions and ancestors of the file.

The PPFS stores a full, verbose set of provenance information. The PPFS also stores the complete data
of old versions of files, giving it many of the features of a versioning file system. The PPFS also supports
seeing which files are based off a specific file. This is called reverse lookup. These characteristics make
the PPFS well suited for businesses that face regulatory or legal requirements to log all changes to files.
The PPFS is also well suited to businesses which frequently create derivative works from previous works.
For example, a consulting company may what to know which project a slide in a slide deck was copied
from.

The system aims for a simple design and it attempts to use a minimal amount of disk space for
maintaining provenance information and a de minimis amount of Random Access Memory (RAM) space
for the tracking of provenance information. However, it currently uses up a lot of disk space to store old
versions of files. Additional disk space could be saved by de-duplication algorithms. Data is laid out so
that lookups from both directions (the ancestors of a file and the children of a file) can be performed
relatively quickly. As part of the operating system, the PPFS extends the usual (read(), write())
operations. For more complicated or novel functionality, new API calls are introduced.

At the moment, the PPFS operates only on one computer. It is not optimized to work over a network,

nor does not track provenance information from files copied from other computers, such as web
servers,

The Log Layer

The PPFS introduces a new layer into the Unix file system called the log layer. This layer is inserted
between the file name layer and the inode layer, as shown in Figure 1. The file name layer is modified
by redefining the inode number in the directory table to the log entry number.

Inode

2
File &

Name -Jf5312i> Log Layer Inode
Layer

Inode

Figure 1 The Log Layer is inserted between the file name layer and the inode layer

The log layer contains a table of information about the history of each file. Each file has its own table,
which is stored on disk in the same way as the inode layer. The log layer table is stored at the beginning
of the disk, in a fixed position on the disk, after the inode table. The table consists of a list of log entries,
each pointing to the inode number of a version of the file, as shown in Figure 2. A version is created
automatically each time the file is saved. The last entry in the log layer entry contains a reference to the
log layer entry that the file was created from (the ancestor). A bit in each entry designates a row as a
version/inode pointer or an ancestor /log layer pointer. If a file was created from scratch (ie using
touch) then the last entry in the log layer table will be 8. Although the inode stores the time the file

was modified, that information would not be changed if the file was copied, so PPFS also stores that

information in the log table. Additional log information, such as the current user’s username and the
application that made the change could is also stored here.

The number of incoming links that was stored in the inode in the original Unix file system is redefined to
count the number of log layer entries pointing to the inode. The log layer table includes a count of the
number of incoming links that was traditionally found in the inode. These counts are manifested in the
reverse tables, described below.

Directories are ignored by the PPFS and function as usual. This may differ from certain versioning file
systems.

File name Log Entry #

Inode: 123457 —>{ | [[1] 1
Inode 123457
Inode: 123456 EACEEEEEER

Inode 123456

987654

Ancestor: 000000

Directory / Log entry 987654

Figure 2 File A is created with content and is then edited.

Inode: 123457 ke Inode: 123458
"'-.._'..Same
'Ia-,.......

Inode: 123456 DTSN Inode: 123457
Ancestor: 000000 / Ancestor: 987654
Log entry 987654 €~ Log entry 987665

(File A) (File B)

Figure 3 File A, from above, is then copied to be File B. File B is then edited. Notice that File B rev 0 shares an inode or
version with file Arev 1.

When provenance information is queried (via read_prov()) for File B, the log entry for File B will be
retrieved. Provenance information will then be recursively queried (to A in this example) until an

ancestor of @ is reached.

Reverse Lookup

One requirement of a provenance file system is to know all of the files which originated from a
particular file. This information can be accessed using the search_prov() system call. In order to
support the reverse search case, the log entry and inode tables are modified. A reverse inode table is
added for each inode, which contains the list of log entry tables which point to that inode. A reverse log
entry table is added to each leg entry o retrieve the files names which each log entry represents.

Deleted? Deleted?

Log Entry: 987665

Log Entry: 987654 File: /A 0 File: /B 0
Reverse Inode 123457 Reverse LOB\ Reverse Log
(File Arev 1 and File B rev 0) 987654 987665

Figure 4 The Reverse Lookup Inode table for Inode 123457 shows that the File A and File B shared the same data at some
point in time (i.e. one must be the ancestor of another)

Ina search_prov() query, the system first looks up the log layer table for a particular file. For every
inode mentioned in the log layer table, the system retrieves the reverse inode table. The system then
retrieves the reverse log tables for each file. The system then outputs the list of files referenced. If
needed, the system could also lookup the log tables themselves to find the revision number and
timestamp for each file.

Parts of a File

Provenance information can be stored about the parts of a file (for example, the slides in a slide deck).
This information is stored by having multiple ancestors in the log layer, as shown in Figure 5. In this
example, the difference between Slide Deck E version 2 and version 1 came from Slide Deck D. The
pointer to Slide Deck D and a name for this piece would be set by the write_prov() call. The data
that is different would be inferred by looking at the difference between the inode before and after the
ancestor entry. The name data is stored in a separate table, as seen in Figure 6.

Applications wishing to take advantage of the provenance by parts functionality would need to
implement this API call.

Inode: 126269 Version 2 & Copy in a Slide from D.ppt (4 slides)

Ancestor: 987640 “Slide 7°
from Slide Deck D
Inode: 126268 Version 1 < Edit E.ppt to add a Slide (3 slides)
Inode: 126267 Version 0 & cp C.ppt E.ppt (2 slides)
Ancestor: 9587352 Slide Deck C

Log entry 987636
(Slide Deck E)

Figure 5 Slide Deck E was copied from Slide Deck C with 2 slides; a slide was added from scratch; and then a fourth slide was
copied in from Slide Deck D (which was previously called slide 7 in Slide Deck D)

Log entry # Name

4 ol 7

Piece names 987636
(Slide Deck E)

Figure 6 Piece names for the various pieces for Slide Deck E. In this example, the g™ entry (from bottom) of the log entry for
Slide Deck E were previously called “Slide 7” by the application.

Compilations of Files

Information about the source in compiled binary files can be stored in in a similar way. Multiple
ancestor entries are stored at the bottom of the table between the first ancestor and the inode of the
newly compiled file, as shown in Figure 7. The first entry will be @, since the file was created new.
Normal log entries will accumulate on top of this information, as before.

Inode: 126269

Compiled

Ancestor: 875884

Source G

Ancestor: 875883

Source F

Ancestor: 000000

File Created

Log entry 875855
(Binary H)

Figure 7 Binary H is compiled from Source F and Source G

File Archives

File archives present a particular challenge. File archives read information off the disk and then store it
in their own proprietary format. In order to be truly portable, this requires all of the provenance
information, along with all of the past versions and ancestors of a file to be stored in the file archive.
This information would be retrieved using a special call, such as read_full provenance(), which

would store the provenance information and past versions in a flat format. This format is a XML format

which mirrors the tables in the file system, as shown in Figure 8. The file would then be compressed

using normal ZIP or TAR algorithms.

<xml schema="ppfs-portable”>
<log-entries>
<log-entry i1d="875855">

<ancestor>000000</ancestor>
<ancestor>875883</ancestor>
<ancestor>875884</ancestor>
<inode>126269</inode>
<reverse>

<file>/H</file>
</reverse>
//Additional metadata (i.e. name, date) removed

</log-entry>
<log-entry id="875883">

<ancestor>000000</ancestor>
<inode>126267</inode>
<reverse>

<file>/F</file>
</reverse>
</log-entry>
<log-entry id="875884">
<ancestor>000000</ancestor>
<inode>126268</inode>
<reverse>
<file>/G¢/file>
</reverse>
</log-entry>
</log-entries>
<inodes>
<inode 1d="126269">
<data>(Binary data)</data>
<reverse>
<log-entry>875855</log-entry>
</reverse>
<inode>
<inode id="126268">
<data>(Binary data)</data>
<reverse>
<log-entry>875883</log-entry>
</reverse>»
<inode>
<inode id="126267">
<data>(Binary data)</data>
<reverse>
<log-entry>875884</log-entry>
</reverse>
<inode>
</inodes>
</xml>

Figure 8 The flat file XML for the scenario in Figure 6

When the file archive is extracted, the provenance information is recreated using a special
write_full_provenance() call. The inode and table entry numbers will change, but the same
structure will be created. Those that are interested in preserving the authenticity of the provenance
information should disable this feature, because it allows anyone to write provenance information
(including old time stamps) to disk.

Deletion and Thinning

When unlink(filename) is called, the filename to log entry link is removed, and the deleted bit in
the reverse log table is flipped (decrementing the traditional link count in the log layer entry). When the
count of incoming links in the log entry table reaches @, the file is no longer accessible. However, the log
table and versions are kept in order to preserve provenance information.

In order to save space some intermediate versions can be removed according to a thinning schedule.
This schedule is user-settable, but the default values are shown in Table 1. The thinning process is
accomplished by a “garbage collection”-style program. A revision will be kept if more than one log entry
is present in the reverse inode table —i.e. when a file was copied and is now provenance information for
a different file. When versions are thinned, the actual inode/data is removed from the disk, and all
references to that version are removed from the log layer.

< 7 days 1/ minute
> 7 days and < 30 days 1/ hour

> 30 days and < 1 year 1/ day

> 1year 1/ week

Table 1 Intermediate revisions can be thinned after a certain amount of time after their creation. These are the default
values

Performance

PPFS should be not appreciably slower when adding many files to the disk. Principally, the disk must
make one additional write (the log layer table) in addition to its other writes. Generally, the non-
sequential disk accesses slow a hard drive down. PPFS adds one additional non-sequential access. Thus
the system should be no more than 33% slower (adding the log layer to the file system pointer, inode,
and file data). Thus the system should be able to easily handle writing 10 files to disk per second. PPFS
scales with the size of the disk and is linear with regard to the number of items added to disk per

second. The garbage collection process is optional, and can be postponed until the system is relatively
idle.

In addition, the system can quickly search for the children of a file (files that are based on that file) by
using the reverse inode table. Such lookups should not depend on the number of files on the disk.
PPFS scales well with regard to the number of files on disk.

For a file with many ancestors, PPFS handles reads and writes to a file the same as a file without an
ancestor. Retrieving the full list of provenance information scales with the number of ancestors. Itis
envisioned that this will not be a large bottleneck, since the number of ancestors is envisioned to be
relatively low and pulling a full list of provenance information is an infrequent operation. Caching could
be added to the system to improve this time, but the additional step to update or invalidate the cache
would slow the copying of files.

One of the most significant performance impacts is the time to update a file. PPFS rewrites the entire
file each time it is saved, in order to maintain a version history of the file. PPFS is not optimized for large
files, such as media files, and is likely unsuitable for those use cases.

PPFS uses a significant amount of disk space. PPFS is designed to provide verbosity and maintain
provenance information at the expense of disk space. Thus PPFS is best suited to organizations that
require comprehensive and persistent logging.

Conclusion

PPFS is a provenance file system designed to provide a comprehensive and reliable log of the history of
each file. PPFS modifies the basic Unix file system to add a log layer that preserves the provenance and
version history of each file on the disk. PPFS should add minimal overheard, beyond the keeping of
multiple versions. PPFS should be able to easily handle lookups from both directions (the ancestors of a
file and the children of a file) in a short amount of time. PPFS should scale well to the size of the disk,
the number of files on disk, the number of ancestors of a file. PPFS can do additional work to reduce the
disk space that old versions take up.

Implementation Issues
Modern file systems have advanced beyond the basic Unix file system that PPFS is based on. Care
should be taken to maintain the current features of file systems while implementing PPFS.

Where additional API calls have been added, developers must be recruited to update their applications
to support the new APIs.

Future Work
PPFS suffers from a number of limitations, which could be addressed by modifications to the system.

PPFS currently rewrites each file when it is edited, using a lot of disk space. A de-duplication algorithm
which, for example, only stored the changes to a file, could save a significant amount of disk space.

PPFS currently only works on a local computer. PPFS could be expanded to work across a network.
Provenance information is particularly helpful when there are multiple people working on a group of
documents.

PPFS is currently designed to operate on a single disk. Because of the large amount of disk space used
by PPFS, it could be expanded to work across multiple disks. For example, the RAID system allows
multiple disks to be seen as one disk by a computer. This would allow users to add storage to the
system as needed.

Acknowledgements

Reviewers
e Dave Custer
e Travis Grusecki

References

[1] J. Saltzer, M. F. Kaashoek, Principles of Computer System Design: An Introduction. Burlington, MA:

Morgan Kaufmann, 2009.

Word Count

2,358 words, including captions

6.033: Hands-on Assignment (DNS)

1 of4

http://web.mit.edw6.033/www/assignments/handson-dns. html

M.I.T. DEPARTMENT OF EECS

6.033 - Computer System Engineering DNS Hands-On Assignment

Hands-on 4: Internet Domain Name System

Complete the following hands-on assignment. Do the activities described, and hand in the answers to

the numbered questions at the beginning of recitation. As usual, submit your solutions using the
online submission site before recitation.

This hands-on exercise is designed to introduce you to the Internet's Domain Name System (DNS).
You probably use DNS every day --- you used it to get to this page. To prepare for this assignment,
please read Section 4.4 of the class textbook, titled "Case study: The Internet Domain Name System
(DNS)".

Introduction

A good tool for exploring DNS is dig, short for Domain Information Groper. dig should be available
on all recent Athena workstations. It should work by default, but if it does not, please try running add
watchmaker first. If that still does not work, try an Athena Sun workstation.

Here is an example use of dig:

athena% dig slashdot.org

; <<>> DiG 9.3.1 <<>> slashdot.org

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 997

;; flags: gqr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;slashdot.org. IN A

; 7 ANSWER SECTION:

slashdot.oxg. 3600 IN A 216.34.181.45 (*)
; ; AUTHORITY SECTION:

slashdot.org. 86399 IN NS ns-2.ch3.sourceforge.com.
slashdot.org. 86399 IN NS ns-1.ch3.sourceforge.com.
slashdot.org. 86399 IN NS ns-1.sourceforge.com.

;; ADDITIONAL SECTION:

ns-1.ch3.sourceforge.com. 172800 IN
ns-1.sourceforge.com. 172800 IN
ns-2.ch3.sourceforge.com. 172800 IN

216.34.181.21
208,122 .22.23
216.34.181.22

PP

;7 Query time: 69 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Mar 11 17:32:51 2009
;; MSG SIZE rcvd: 170

dig performs a DNS lookup and prints information about the request and the response it received. If

3/17/2012 2:07 AM

6.033: Hands-on Assignment (DNS)

2 of 4

you run dig, you may see results that differ from those presented here. At the bottom, we can see that
the query was sent to our default server (127.0.0.1), and that it took roughly 69 msecs to respond.
Most of the information we are interested in is in the ANSWER section, marked with a (*) above. Let's
examine that section more closely:

; ; ANSWER SECTION:
slashdot.org. 3600 IN A 216.34.181.45
name expire class type data (IP)

We can see that this result is of type &, an address record: it is telling us that the IP address for the
name "slashdot.org" is 216.34.181.45. The expiry time field "3600" indicates that this
record/entry is valid for 3600 seconds (1 hour). You can ignore the "class" field; this is nearly always
1~ for Internet.

The AUTHORITY section contains records of type Ns, indicating the names of DNS servers that have
name records for a particular domain. Here, we can see that three DNS servers
(ns-1.ch3.sourceforge.com., ns-1.sourceforge.com. and ns-2.ch3.sourceforge.com.) are
responsible for answering requests for names in the slashdot.org domain.

We can ask a specific server (instead of the default) for information about a host by using the
following syntax: -

athena% dig @amsterdam.lcs.mit.edu slashdot.org

; <<>> DiG 9.3.1 <<>> @amsterdam.lcs.mit.edu slashdot.org

; (1 server found)

;i global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1988

;i; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;slashdot.org. IN A

; ;+ ANSWER SECTION:
slashdot.oxg. 3600 IN A 216.34.181.45

... [output truncated]

The rd (recursion desired) flag indicates that dig requested a recursive lookup, and the ra (recursion
available) flag indicates that the server permits recursive lookups (some do not).

dig only prints the final result of the recursive search. You can mimic the individual steps of a
recursive search by sending a request to a particular DNS server and asking for no recursion, using the
+norecurs flag. For example, to send a non-recursive query to one of the root servers:

athena% dig @a.ROOT-SERVERS.NET www.slashdot.org +norecurs

;i <<>> DiG 9.3.1 <<>> @a.ROOT-SERVERS.NET www.slashdot.org +norecurs
;; (1 server found)

;7 global options: printcmd

;i Got answer:

;i ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1888

;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 12

;; QUESTION SECTION:
jwww.slashdot.org. IN A

3/17/2012 2:07 AM

http://web.mit.edw6.033/www/assignments/handson-dns.html

6.033: Hands-on Assignment (DNS) http://web.mit.edw/6.033/www/assignments/handson-dns.html

; 7 AUTHORITY SECTION:

Oty 172800 1IN NS BO.ORG.AFILIAS-NST.org.
org. 172800 1IN NS AQ0.ORG.AFILIAS-NST.INFO.
org. 172800 1IN NS A2 .ORG.AFILIAS-NST.INFO.
org. 172800 1IN NS DO.ORG.AFILIAS-NST.oxg.
org. 172800 1IN NS CO0.ORG.AFILIAS-NST.INFO.
org. 172800 1IN NS B2.0ORG.AFILIAS-NST.org.
; 7 ADDITIONAL SECTION:

AQ.ORG.AFILIAS-NST.INFO. 172800 IN A 199.19.56..1
AQ.ORG.AFILIAS-NST.INFO. 172800 IN AARR 2001:500:e::1

A2 .ORG.AFILIAS-NST.INFO. 172800 IN A 199.249.112.1

A2 .ORG.AFILIAS-NST.INFO. 172800 IN AARR 2001:500:40::1
BO.ORG.AFILIAS-NST.org. 172800 IN A 199.19.54.1
BO.ORG.AFILIAS-NST.org. 172800 IN AARR 2001:500:c::1
B2.0ORG.AFILIAS-NST.org. 172800 1IN A 199.249.120.1
B2.0ORG.AFILIAS-NST.org. 172800 IN AAAR 2001:500:48::1
C0.ORG.AFILIAS-NST.INFO. 172800 IN A 199.19.53.1
C0.ORG.AFILIAS-NST.INFO. 172800 IN AARA 2001:500:b::1

D0 .ORG.AFILIAS-NST.org. 172800 IN A 199.19.57:1
D0.ORG.AFILIAS-NST.org. 172800 IN AARA 2001:500:f::1

; Query time: 84 msec

; SERVER: 198.41.0.4#53(198.41.0.4)
; WHEN: Wed Mar 11 17:45:41 2009

; MSG SIZE rcvd: 436

~s me we e

As you can see, the server does not know the answer and instead provides information about the
servers most likely to be able to provide authoritative information. In this case, the best the root server
knows is the identities of the servers for the org. domain.

Here are some exercises. You should submit answers only to the questions asked. In particular, please
do not include pages of output from dig unless specifically requested. As usual, submit your solutions
using the online submission site, before recitation.

I. Getting started

e (1) Using dig, find the IP address for thyme.lcs.mit.edu. What is the IP address?

e (2) The dig answer for thyme includes a record of type cnaMe. In the terminology of chapter 4,
what does cNAME mean?

e (3) What is the expiration time for the thyme cNAME record?

e (4) Note that a previous version of this hands-on had you run different commands for this
question. If you already answered questions 4 and 5 with the older version, you don't need
to redo this part of the assignment.

Run these commands to find what the computer you're using gets when it looks up "ai" and
- P

dig +domain=mit.edu ai

dig +domain=mit.edu ai.

What are the two resulting IP addresses?

e (5) Why are the results different? Look at the man page for dig to see what the +domain=
parameter does. Based on the output of the two commands, what is the difference between the
DNS searches being performed for ai and ai.?

3 of4 3/17/2012 2:07 AM

6.033: Hands-on Assignment (DNS) http://web.mit.edw/'6.033/www/assignments/handson-dns.html

II. Understanding hierarchy

For this problem, you will go through the steps of resolving a particular hostname, mimicing a standard
recursive query. Assuming it knows nothing else about a name, a DNS resolver will ask a well-known
root server. The root servers on the Internet are in the domain root -servers.net. One way to get a
list of them is with the command:

athena% dig . ns

e (6) Use dig to ask one of the root servers the address of 1irone.csail.mit.edu, without
recursion. What command do you use to do this?

e (7) It is unlikely that these servers actually know the answer so they will refer you to a server
(or list of servers) that might know more. Go through the hierarchy from the root without
recursion, following the referrals manually, until you have found the address of

lirone.csail.mit.edu. What commands did you use to do this? What IP address did you find
for 1irone?

III. Understanding caching

These queries will show you how your local machine's DNS cache works.

¢ (8) Ask your default server for information, without recursion, about the host www.dmoz . org.
What command did you use? Did your default server have the answer in its cache? How do you
know? How long did this query take? If this information was cached, please find some other
host name that is not cached and do this section with that other host.

e (9) Now, ask your default server this same query but with recursion. It should return an answer
for you. How long did this take?

e (10) Finally, ask your default server again without recursion. How long does this request take?
Has the cache served its purpose?

4 of4 3/17/2012 2:07 AM

D% fludi 0y ¢ Aot

I

—_—

M ~ Lok) for VS
(a0 ak @ et Sover w/ @

i nf worlk for v
—

Lood [0 g fon 0l

L

’{TVO ! St 4]«»@ 90 Loeah fic
N tor T ol fao gy

[Qfﬂ' =GOl nd L
b by
»h@(e Vo Maf (Ammavzd éefﬂfe{

—_—

P
‘50 6({)/ [100\L Sewns Al q,lbo "{A«)‘C
Lweﬁl . i quev o T TR

Hands-on 4: DNS

Michael Plasmeier

1. 18.26.0.122
2. CNAME means go ask this server about the DNS records for the given domain.

3. 1627 seconds from the time the info was retrieved. So for the query run at Thu Mar 29
00:16:00 2012 then 1627 seconds is today at 00:43:07.
If you rerun the query, you notice that the number of seconds decreases.

4. aiis128.52.32.80
ai. 1s 209.59.119.34

5. The domain parameter appears to set the context for which the search is performed in. |
believe that the . at the end of ai. makes the computer treat it as a fully qualified domain
name, which causes it to look up the domain name directly, instead of appending the domain
search context.

6. dig @a.root-servers.net lirone.csail.mit.edu +norecurs

7. dig . ns
> a.root-servers.net. 247505 1IN A 198.41.0.4
dig @a.root-servers.net lirone.csail.mit.edu +norecurs
> a.edu-servers.net. 172800 1IN A 192.5.6.30
dig @a.edu-servers.net lirone.csail.mit.edu +norecurs
> strawb.mit.edu. 172800 1IN A 18.71.0.151
dig @strawb.mit.edu lirone.csail.mit.edu +norecurs
> AUTH-NS@.csail.mit.edu. 5336 IN A 128.30.2.123

dig @AUTH-NS@.csail.mit.edu lirone.csail.mit.edu +norecurs
>CNAME lirone.lcs.mit.edu.

dig @AUTH-NS@.csail.mit.edu lirone.lcs.mit.edu +norecurs

> lirone.lcs.mit.edu. 1800 IN A 18.26.1.36

8. dig www.dmoz.org +norecurs
The default server did not have the answer; instead it knew the servers for the org domain and
it pointed me there. | knew because it did not give me an answer directly.
>org. 44498 1IN NS de.org.afilias-nst.org.
The answer was returned in 0 seconds.

9. dig www.dmoz.org
The site’s IP address was returned in 415 milliseconds.

18. dig www.dmoz.org +norecurs
The CNAME record is now returned, but not the site’s IP address for some reason, in 0

milliseconds. The cache has served its purpose.

Hands-on Assignment (WAL) http://web.mit.edw/6.033/www/assignments/handson-logging html

M.ILT. DEPARTMENT OF EECS

6.033 - Computer System Engineering WAL Hands-On Assignment

Hands-on S: Write Ahead Log System

Intro to wal-sys

Complete the following hands-on assignment. Do the activities described, and submit your solutions
using the online submission site before the beginning of recitation.

This hands-on assignment will give you some experience using a Write Ahead Log (WAL) system. This
system corresponds to the WAL scheme described in Section 9.3 of the course notes. You should
carefully read that section before attempting this assignment. You can do this hands-on on any
computer that has a Perl language interpreter, but we will be able to answer your questions more easily
if you run this on an Athena workstation. You can download the WAL system from here (if your
browser displays the file in a window instead of saving it, use "File -> Save As" to save the file). The
downloaded file is a Perl script named wal-sys. Before trying to run it, change its permissions to make
it executable, for example by typing:

athena% chmod +x wal-sys

The wal-sys script can be run as follows:

athena% wal-sys [-reset]

Alternatively, you can run the script as:

athena% perl ./wal-sys [-reset]

Wal-sys is a simple WAL system that models a bank's central database, implementing redo logging for
error-recovery. Wal-sys creates and uses two files, named LOG and DB, in the current working
directory. The "LOG" file contains the log entries, and the "DB" file contains all of the installed
changes to the database.

After you start wal-sys, you can enter commands to manage recoverable actions and accounts. There
are also commands to simulate a system crash and to print the contents of the "LOG" and "DB" files.
All the commands to wal-sys are case sensitive. Since wal-sys uses the standard input stream, you can
use the system in batch mode. To do this, place your commands in a file ("cmd.in" for example) and
redirect the file to wal-sys's standard input:

athena% wal-sys -reset < cmd.in.

When using batch mode, make sure that each command is followed by a newline character (including
the last one).

When you restart wal-sys, it will perform a log-based recovery of the "DB" file using the "LOG" file it

finds in the current working directory. The -reset option tells wal-sys to discard the contents of any
previous "DB" and "LOG" files so that it can start with a clean initial state.

1 of 4 3/23/2012 4:41 PM

Hands-on Assignment (WAL) http://web.mit.edw6.033/www/assignments/handson-logging.html

Commands interpreted by wal-sys

The following commands are used for managing recoverable actions and accounts:

® begin action_id
Begin a recoverable action denoted by action_id. The action_id is a positive integer
that uniquely identifies a given recoverable action.

® create account action_id account name starting balance
Create a new account with the given account_name and starting balance. The first
argument specifies that this operation is part of recoverable action action_id. The
account_name can be any character string with no white spaces.

® credit account action_id account name credit amount
Add credit_amount to account_name's balance. This command logs the credit and
holds it in a buffer until an end command is executed for recoverable action
action_id.

® debit account action_id account name debit amount
Reduce account_name's balance by debit_amount. Like credit, this command logs

the debit and holds it in a buffer until an end command is executed for recoverable
action action_id.

® commit action id
Commit the recoverable action action_id. This command logs a commit record.

® checkpoint
Log a checkpoint record.

® end action_id
End recoverable action action_id. This command installs the results of recoverable
action action_id to the "DB". It also logs an end record.

The following commands help us understand the dynamics of the WAL system:

® show_state

Print out the current state of the database. This command displays the contents of
the "DB" and "LOG" files.

® crash

Crash the system. In this hands-on, we are only concerned about crash TECOVETY, SO
this is the only command we will use to exit the program.

Using wal-sys
Start wal-sys with a reset:
athena% wal-sys -reset

and run the following commands (sequence 1):

begin 1
create_account 1 studentA 1000

2 of4 3/23/2012 4:41 PM

Hands-on Assignment (WAL)

3 of 4

http://web.mit.edw6.033/www/assignments/handson-logging.html

commit 1

end 1

begin 2

create account 2 studentB 2000
begin 3

create account 3 studentC 3000
credit account 3 studentC 100
debit account 3 studentA 100
commit 3

show_state

crash

Wal-sys should print out the contents of the "DB" and "LOG" files, and then exit.

Use a text editor to examine the "DB" and "LOG" files and answer the following questions (do not run
wal-sys again until you have answered these questions):

Question 1: Wal-sys displays the current state of the database contents after you type
show_state. Why doesn't the database show studentB?

Question 2: When the database recovers, which accounts should be active, and what
values should they contain?

Question 3: Can you explain why the "DB" file does not contain a record for studentC
and contains the pre-debit balance for studentA?

Recovering the database

When you run wal-sys without the -reset option it recovers the database "DB" using the "LOG" file.
'_“‘-'
To recover the database and then look at the results, type:

athena% wal-sys
> show_state
> crash

Question 4: What do you expect the state of "DB" to be after wal-sys recovers? Why?

Question 5: Run wal-sys again to recover the database. Examine the "DB" file. Does the
state of the database match your expectations? Why or why not?

Question 6: During recovery, wal-sys reports the action_ids of those recoverable actions
that are "Losers", "Winners", and "Done". What is the meaning of these categories?

Checkpoints

Start wal-sys with a reset:

athena% wal-sys -reset

and run the following commands (sequence 2):

begin 1
create account 1 studentA 1000
commit 1

3/23/2012 4:41 PM

Hands-on Assignment (WAL) http://web.mit.edw6.033/www/assignments/handson-logging.html

end 1

begin 2

create_account 2 studentB 2000
checkpoint

begin 3

create_account 3 studentC 3000
credit account 3 studentC 100
debit account 2 studentB 100
commit 3

show_state

crash

Note: the remainder of this assignment is only concerned with sequence 2. We will ask you to crash
and recover the system a few times, but you should not run the sequence commands again. (Also note

that in sequence 2, the command debit_account 2 studentB 100 refers to action_id 2, not action_id 3!
This is not a typo).

Question 7: Why are the results of recoverable action 2's create account 2 studentB
2000 command not installed in "DB" by the checkpoint command on the following line?

Examine the "LOG" output file. In particular, inspect the CHECKPOINT entry. Also, count the
number of entries in the "LOG" file. Run wal-sys again to recover the database.

Question 8: How many lines were rolled back? What is the advantage of using
checkpoints?

Note down the action_ids of "Winners", "Losers", and "Done". Use the show_state command to look
at the recovered database and verify that the database recovered correctly. Crash the system, and then
run wal-sys again to recover the database a second time.

Question 9: Does the second run of the recovery procedure (for sequence 2) restore
"DB" to the same state as the first run? What is this property called?

Question 10: Compare the action_ids of "Winners", "Losers", and "Done" from the
second recovery with those from the first. The lists are different. How does the recovery

procedure guarantee the property from Question 9 even though the recovery procedure
can change? (Hint: Examine the "LOG" file).

Optional: Wal-sys has a hitherto unmentioned option: if you type wal-sys -undo it will

perform undo logging and undo recovery. Try the above sequences again with undo
logging to see what changes.

Go to 6.033 Home Page

4 of 4 3/23/2012 4:41 PM

g Heods On & 32

i,
Whifyede Aed Loy St @Ac)

e A L
USIWJ P&\
L g P(?({
| e GJS%JM
Tt mdeb q buk soe
CC{/L L)éwto(/\ (t/\

A N R

(Eﬂ\ \ZW (an Vl‘Q-V ﬁlﬂl 6@90/777 — Ay f:rfg
()rﬂ '6}lovu 6710%[{7, 0/2(6

_—

\/J\’U/LL éﬂev (omm((l- olofr
Em& Qomy o u,ﬂtlodc

Y
g I goae Jitaatl, (1

Lis a qu *® M CL);EM,ML

Ut W i F oge

Iu\/m M«d(ﬂ/&j M hml ong ,

L/W% p Lo&% on l[/(f 05 not- }éf (f"’"’l)

JESN

ﬂepﬁ/L
(\"Q(/ILP‘)(’VL Wkt ey dgq

(’f Shot{ T ht el mop g ot M‘Uor’y

‘; ND erﬁq‘i(aa@/]Lg d/mﬁfo/,/vlg 7

il 3 7/
Re (oor - / 7 / ({3

[/ Oﬂlomi(v/»
NV (eddfrftj

UAAO ({@@ /WL ‘@ b e dﬂrb'y
Ve Q(,f) e wd / OH @b
b) b iy

Aoy e Db g ne b

W37 tedd it
A *Omaczwtz (/L\({P

@n/\lm OW)

@“ Or M\Lh(tfj - mag(\ {W/ﬁ &u/ﬁt"e /Iftf(fi”ﬁ’\j P/"&f%

be{ore v Kfler Coozdl,wﬁ,(j (b - abiite

ﬂ\\% d«qpl(of £> Ao { bo\th

Jonl st (ard 7LQ d\o/g{, vt//p 5/440
MU& ﬂtfaamf(m

5 W@ﬂp(ﬂj Eémpllﬁwﬁm ~ Sy 5t M/%e@ %
’For Ceor T[fw'r\j 2 (ﬂofd(447(ﬂrw
T uissed 751547‘ Chap
qn b h«oh';’lj chare v Gt
h 7| (otords Ve e,
()Q 5 ‘/PF/V‘LW all P/('/ML ([V@/e

-l el o 1o el o G > 4 adi

(I thMUh\L ﬂ]zﬁ (,Q‘(P G/o\/(([‘JQ d/é)o/‘} lﬂﬁg(‘,\g“\)

(@ (fock wss \N/ (9aWitGasy — W/ frwﬂL 5(S4n. CAS jm(c(

ajyom‘(g ""\Mﬂl"ﬂf Lcwef c(oe; l’lo% Am.\, (l,,,(;t%mﬁa?

[b T S ysten ﬁc/f
Undowble

% MQ‘/Q{ f’"\odiﬁ,]Ll\L dﬂly (0‘07(‘
"% ny
q o,

“’(0‘55 0[/“ '(,\ ((}0\//{\%/

sl g, Cll - shag,

PUQQ&) "4,{0 ctf
*Wo(m? (Crash (e(werﬁ
~fedorme (G vk

— v }i;{7 (Oq Wit shhage V“ﬁ«(u""l)

)

e]>’1?

‘ M/l

5

(" h{ d)
o ée{ﬁ/ﬁ T‘) uh(l(’fb 1
U(dej(e enonol\

\99(,

'hf‘ |
loﬁ yms
Q (0)‘. (

N

Write-ahead logging - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Write-ahead logging

Write-ahead logging

A stub-class article from Wikipedia, the free encyclopedia

In computer science, write-ahead logging (WAL) is a family of techniques for providing atomicity and
durability (two of the ACID properties) in database systems. S

In a system using WAL, all modifications are written to a log before they are applied. Usually both redo and
undo information is stored in the log. e

The purpose of this can be illustrated by an example. Imagine a program that is in the middle of performing
some operation when the machine it is running on loses power. Upon restart, that program might well need to
know whether the operation it was performing succeeded, half-succeeded, or failed. If a write-ahead log
were used, the program could check this log and compare what it was supposed to be doing when it
unexpectedly lost power to what was actially done. On the basis of this comparison, the program could
decidetoundo what it had started, complete what it had started, or keep things as they are.

WAL allows updates of a database to be done nolher way to implement atomic updates is with
shadow paging, which is not in-place. The main advantage of doing updates in-place is that it reduces the
need to modify indexes and block lists.

ARIES is a popular algorithm in the WAL family.
File systems typically use a variant of WAL for at least file system metadata called journaling.

The PostgreSQL database system also uses WAL to provide point-in-time recovery and database replication
features! '],

References

1. ~ "Reliability and the Write-Ahead Log" (http://www.postgresql.org/docs/9.0/static/wal.html) .
www.postgresql.org. http://www.postgresql.org/docs/9.0/static/wal.html. Retrieved 2011-04-15.
Retrieved from "http://en.wikipedia.org/w/index.php?title=Write-ahead_logging&oldid=479454774"

Categories: Database algorithms & Database stubs

» This page was last modified on February 29, 2012 at 07:29.

m Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

1ofl 3/29/2012 5:07 PM

1 of 4

http://mit.edw6.033/2011/wwwdocs/lec/l17.txt
- Lok yer
6.033 (2011 Lecture 17: Logging & * h 6‘. d
(w\H 0 f,(p aqly ¢"

Recall from last time:
Two kinds of atomicity: all-or-nothing, before-or-after
Shadow copy can provide all-or-nothing atomicity
[slide: shadow copy]
Golden rule of atomicity: never modify the only copy!
Typical way to achieve all-or-nothing atomicity.
Works because you can fall back to the old copy in case of failure.
Software can also use all-or-nothing atomicity to abort in case of error.
[slide: shadow copy abort/commit]
Drawbacks of shadow file approach:
- only works for single file (annoying but maybe fixable with shadow dirs)
- copy the entire file for every all-or-nothing action (harder to avoid)
Still, shadow copy is a simple aHH'E?EEEEEEE_EEE%EH“WHéh it suffices.
Many Unix applications (e.g., text editors) use it, owing to rename.

Today, more general techniques for achieving all-or-nothing atomicity.
[slide: transaction syntax] i
Idea: keep a log of all changes, and whether each change commits or aborts.
We will stdaTt out with @ simple scheme that's all-or-nothing but slow.
Then, we will optimize its performance while préserving atomicity.

Consider our bank account example again.
Two accounts: A and B.
Accounts start out empty.
Run these all-or-nothing actions:
begin
A = 100
B = 50
commit

begin
A=A - 20
B =B + 20
commit

begin
A=A+ 30
--CRASH--

What goes into the log?
We assign every all-or-nothing action a unique transaction ID.
Need to distinguish multiple actions in DTOGIEss at the same time.
Two kinds of records in the log:
UPDATE records: both new and old value of some variable.
(we'll see in a bit why we need the old values..)
COMMIT/ABORT records: specify whether that action committed or aborted.

fomm - S et b fom - S btatat Fommmm——— fomm - +
oIDp | Il | « BE | Tl | T2 . = | T2 | T3~ |
OLD | A=0 | B=0 | | A=100 | B=50 | | A=80 |
NEW | A=100 | B=50 | COMMIT | A=80 | B=70 | COMMIT | A=110 |

tmmmm——— fmm———- fmm— S ittt S fmmmm fommm +

What happens when a program runs now?
begin: allocate a new transaction ID.
write variable: append an entry to the log.
read variable: scan the log looking for last committed value.
[slide: read with a log]

3/29/2012 5:25 PM

http://mit.edw6.033/2011/wwwdocs/lec/117.txt

As an aside: how to see your own updates?

Read uncommitted values from your own tid.
commit: write a commit record.

Expectedly, writing a commit record is the "commit point" for action,

because of the way read works (looks for commit record).

However, writing log records better be all-or-nothing.

One approach, from last time: make each record fit within one sector.
abort: do nothing (could write an abort record, but not strictly needed).
recover from a crash: do nothing.

Quick demo:
rm DB LOG
cat 1ll7-demo.txt
./wal-sys < 1ll17-demo.txt
cat LOG

What's the performance of this log-only approach?
Write performance is probably good: sequential writes, instead of random.
(Since we aren't using the old values yet, we could have skipped the read.)
Read performance is terrible: scan the log for every read!
Crash recovery is instantaneous: nothing to do.

How can we optimize read performance?
Keep both a log and '"cell storage".
Log is just as bef6f€?¢ggg;gngzlive, provides all-or-nothing atomicity.
Cell storage: provides fast reads, but cannot provide all-or-nothing.
[board: log, cell torage;’hpdates going to both, read from cell storage]
We will say we an update when it's written to the log. (»
ol

We will say we an update when it's written to cell storage.
[slide: read/write with cell storage]

Two questions we have to answer now:
- how to update both the log and cell storage when an update happens?
- how to recover cell storage from the authoritative log after crash?

Let's look at the above example in our situation.
Log still contains the same things.
As we're running, maintain cell storage for A and B.
Except one problem: after crash, A's_value in cell storage is wrong.
Last action aborted (due to crash), but its changes to A are vigible.
We're going to have to repair this in our recovery function.
Good thing we have the log to provide authoritative information.

Ordering of logging and installing.
Why does this matter?
Because the two together don't have all-or-nothing atomicity.

Can crash infétween, so just one of the two might have taken place.
What happens if we install first and then 1og?

If we crash, no idea what happened to cell storage, or how to fix it.
Bad idea, violates the golden rule—t‘Mever modify the only copy").
The correspondlng rule for logging is the "Write-ahead-log ngtocol" (WAL) .

=> Log the update before installing it. <==
If we cras log is authoritative an tact, can repair cell storage.

(You can think of it as not being the only copy, once it's in the log.)

Recovering cell storage.

What happens if we log an update, install it, but then abort/crash?
_—

Need to undo that installed updat

Plan: scan log, determine what &Eﬁ:ggs aborted (:EEEEEEEI} undo them.
[slide: recover cell storage from log |
Why do we have to scan backwards?

2of4 3/29/2012 5:25 PM

4 of 4

http://mit.edu/6.033/2011/wwwdocs/lec/117.txt

We must know the outcome of every action in that part of log.

Cell storage must reflect all of those log records (commits, aborts).
Truncating mechanism (assuming no pending actions):

Write a checkpoint record, to save our place in the log.

Flush all cached updates to cell storage.

Truncate log prior to checkpoint record.

(Often log implemented as a series of files, so can delete old log files.)
With pending actions, delete before checkpoint & earliest undecided record.

Back to the log records: why do we need all of those parts?
ID: might need to distinguish between multiple actions at the same time.
Undo: roll back losers, in case we wrote to cell storage before abort/crash.
Redo: apply commits, in case we didn't write to cell storage before commit.

Summary.
Logging is a general technique for achieving all-or-nothing atomicity.
Widely used: databases, file systems,
Can achieve reasonable performance with logging.
Writes are always fast: sequential.
Reads can be fast with cell storage.
Key idea 1: write-ahead logging, makes it safe to update cell storage.
Key idea 2: recovery protocol, undo losers / redo winners.
e, S [
What's coming? Ql"‘MN[‘; nAr d@é@d
Next Monday: dealing with concurrent actions, before-or-after atomicity.
Cannot deal with external actions as part of an all-or-nothing action.
E.g., dispensing money from an ATM: cannot undo or redo during recovery.
Some hope: we'll talk about distributed transactions next Wednesday.

iy

LS

WA,
CoMm/ \L

Ao

3/29/2012 5:25 PM

3of4

http://mit.edw/6.033/2011/wwwdocs/lec/17.txt

Need to undo newest to _oldest
Also need to find outcome of action before we decide whether to undo.
In our example: done will be {1, 2}, we will set cellStorage[A] to 80.

Quick demo: J /L (“7(; /
rm DB LOG 0 (74 ,L /
cat 117-demo.txt OH 7 MW/ (15 of/{,;é
./wal-sys —-undo < ll7-demo.txt
cat LOG
cat DB
./wal-sys -undo

show_state

What if the programmer decides to abort explicitly, without crashing?
Use the log to find all update records that were part of this action.
Reset cell storage to old values from those records.

Do we need to write an abort record, or can we skip & pretend we crashed?
What if our example had a software abort instead of a crash?
We might access A again later, and write an update record for it.
After a crash, A will be undone to value before aborted action!
So, need an abort record, to indicate that no undo is necessary.
For the same reason, we need to record abort records after recovery.
[slide: recover with abort logging]
Otherwise, will keep rolling back to point before crashed action.

What if we crash during recovery?
Idempotent: can keep recovering over and over again.
Crash during the undo phase: restarting is OK, will perform same undo.
Crash during logging aborts: restarting is OK, duplicate aborts.

What's the performance going to be like now?
Writes might still be OK (but we do write twice: log & install).
Reads are fast: just look up in cell storage.
Recovery requires scanning the entire log, twice, and performing undo/redo.

Remaining performance problems:
We have to write to disk twice.
Scanning the log will take longer and longer, as the log grows.

Optimization 1: defer installing updates, by storing them in a cache.
[slide: read/write with a cache]
writes can now be fast: just one write, instead of two.
the hope is that variable is modified several times in cache before flush.
reads go through the cache, since cache may contain more up-to-date values.
atomicity problem: cell storage (on disk) may be out-of-date.
is it possible to have changes that should be in cell storage, but aren't?
yes: might not have flushed the latest commits.
is it possible to have changes that shouldn't be in cell storage, but are?
yes: flushed some changes that then aborted (same as before).
during recovery, need to go through and re-apply changes to cell storage.
undo every abort (even if it had an explicit record).
redo every commit.
[slide: recovery for caching]
Don't treat actions with an abort record as "done".
-> there might be leftover changes from them in cell storage.
Re-do any actions that are committed (in the "done" set now).

Optimization 2: truncate the log.

Current design requires log to grow without bound: not practical.
What part of the log can be discarded?

3/29/2012 5:25 PM

HW 210

P opd 0 oy dmts
phit 5 Gl v od |
Chdlpaiab "
m Wims 15 4 0 ok
i gt

WM /Qauﬂg : /O@ crs c(/?‘ﬂoa’f{«e
Dg é 6/ ﬁb% /dﬂAJtﬂ

.__mm O/UV? d[//[(/0/7’/*(Mf%ﬁ/r
- (ol staaye

_/cw [r/l /()/0(9/@) 6{0?1/;9/1)
VZ Prsses
| Qachoard (L1 Fo)

ZOOL% @Jr L‘d"ﬂ{'t’/ :"Cofvﬂ{f/’/—(m 5/\0(/IL1/3 4/(
Qt/ff‘{/ C(/M "1 nomﬂj ad((m m/ dn a/fcp@/ /860(7’

Y
\ mﬂ dﬁéﬁm; *@mm;{ﬁ[@r at}éﬂ/{&f — WI:I@/)
1 Puad stan

~thes al of P (el ddions vile 0/ftona =cormitty

G0 ks oall bl b oll sty
fg@ OD“ CO”M[IH@({. OU/H‘J@ (o

gonﬁz{m coll ﬁ[@aao s noq ol it rmd
Lpls @ ik (b @b aly g)

T QR ERPRY N VI

be Al ondive
Gy Oding Wdewrls gan ook Fhings
([n Progess = !%J_fz
Lactle That Commied and nyl
= basteall, lat cead 7 END

Gy bashind M Tk Sess « CW;WE s
U/L(J;) L/@(/Q
50 l(fé /;L(ﬁwae CIOHW R ﬁlzf/f%

Yy

A/fﬁ fornar Sa ({Wftj ed> of- whaf- C&A,,,/L/\,/(

ﬁh "@5 i EN) fo 4 (050

S tutie o 9 e o qid
Lok 1 oo = fo
o i g

Qa Wm@/ﬁ " W@mm‘lﬁ% M’ Mf‘ﬂrrlq{
s = By e L
00~ /409 e 64’ Oé Jr (9"1('{:;{!”@(A%/C‘ //‘/”

(£ &l bt el got 41

R{uiw 0[65('5%44%

What & én EN(

ENO &’ij M 6{,[/ w[(fﬂng (04/{61(6(/

BI%GT/V
CHGE ’
OU/TWN:J o aabie

END

A\ BoAT Can (0l ((TL bk ~onds dotons?f
N

Lqn (beiw

CHWL/M}#/'
—To Pl P /&’“Zj

~ e e Wb B whle phrtys

% 1[0(' b&bftw d}

?ﬁfr{y S@an Wb

/1(fachgatat = Gpow ol /ae-e/b/ how Gy
/ Py il e
e of (2 b fcm(//f% ke
Oreatly speyds p oy
(onatT s

- m; e ((4+/a((/6&é (:1 Stﬁ’ﬂﬁrwf(& Sd}f/rmf,w\
Go our Susten. oaly Jakes ackion 00 MO

Mej (!VL Q{/J T/}uls WA(}/(J_ /6(0/@({ 61’47 O/é%ff’/l)[/f{
wg/ (l" t'Q(MchJffF}‘

Michael E Plasmeier

e
From: Michael E Plasmeier
Sent: Thursday, March 29, 2012 6:24 PM
To: Travis R Grusecki
Subject: Hands on 5
Attachments: Hands On 5 Logging.docx

Travis,

I'm doing hands on 5, but | am pretty confused. | read the book 9.3 and some of the notes from other years, but | am
still not 100% sure.

| understand the general operation of a WAL, but | am confused on some of the specifics of this implementation.
I've attached my answers so far. | have some questions:

e Why is there a difference between committed and end?
e Why does the system enforce such a distinction?
o Why does the WAL recovery process treat processes that are committed but not ended (“winners”) any
differently from a normal process?
o Meta question: Why do we have an assignment that focuses on that distinction?
e What purpose does a distinction serve?
e (Canyou give a real life example of the importance of a distinction?

e Why does the system have this “winner” and “loser” language? Based on my Googling, this language does not
seem to be used much beyond 6.033

o But this language seems connected to the distinction between committed and end.

Thanks! -Michael

NG

Michael Plasmeier

Hands-on 5: Logging QM‘l(Q/(\- *f) T[‘%U\L}

10.

The database only shows studentA since that was the only transaction that ended with end.

With or without the logging system?

Without the logging, only studentA would be there, since that is the only entry in the DB.
With the logging system, all of the actions should be there, including studentA with 900,
studentB with 2000, and studentC with 3100.

Again, those changes were never ended. This implementation of a WAL only records the values
into the DB when end is reached.

| would expect that the DB file would stay the same.

When it actually runs, we have studentA with 900 and studentC with 3100. This is not what |
expected. For some reason, the 3" transaction has been ended and committed. You can see
that in the log.

From reading the textbook, transaction 3 is a “winner” —a committed, but not ended,
transaction. The WAL recovery process treats these transactions as ended for some reason.

(I was going to ask you that....) Done are transactions committed and ended. Winners
transactions that were committed, but never ended. Losers are transactions that are neither
committed nor ended. These are undone as the log is read backwards.

Checkpoint does not write things to DB. It is a step that speeds recovery. (see below)
Transactions 1 and 3 were rolled back. Checkpoint writes all of the currently open “losers” at
that point in time. When the backwards scan reaches a checkpoint, it only has to scan up to
those losers that are listed and no further. This can greatly increase recovery time.

The DB is recovered to the same state. This is called idempotent.

The old one was winners: 3, losers: 2, done: 1. The re-recovery had winners: (nil), losers: 2,

done: 1, 3. The log file is updated when the file is recovered to clarify that an action was taken
(with END). Losers are ENDed so that future recoveries ignore it and don’t try to roll it back..

Michael E Plasmeier

From: Travis R Grusecki

Sent: Thursday, March 29, 2012 9:39 PM
To: Michael E Plasmeier

Subject: RE: Hands on 5

Follow Up Flag: FollowUp

Flag Status: Completed

Michael,

I am a little confused which assignment you are working on, since | don’t think we have a hands-on 5 posted online. |
think you might be looking at last year’s assignment. Either way, | want to answer your questions.

While I can’t look at your responses quite yet (I am sitting at an airport), | wanted to give you a quick answer that | think
will clarify a lot of your questions. Remember that in a WAL system, entries are made in the log before the associated
action occurs, so a COMMIT record doesn’t mean that the action has actually been committed to permanent storage. It
only means that a decision has been made to commit; the book chooses to call these “winners” — 1 do think this is mostly
only MIT terminology. The END record is written once the commit is complete. At this point, it is safe to remove any
record of the transaction from the log because it is entirely finished (on disk). In most situations, a recovery manager
will make the following choices depending on the current state:

Recovery:

Before COMMIT: Abort

After COMMIT written: Replay

After END: Do nothing — it has already been stored

I hope this answers some of your questions. | will take a look at your attachment later and try to answer the rest of your
questions. Feel free to send more questions. Also, make sure you are working on a current assignment.

\
-Travis \N\u(C@ /L.Quéﬂﬂ‘ W&b O(é)elﬁé
From: Michael E Plasmeier \X "l t-}u\.* %V\«& g N ¢/ 74

Sent: Thursday, March 29, 2012 6:23 PM .
To: Travis R Grusecki — J(- \Vl N
Subject: Hands on 5 k DQ‘L)

Travis,

I'm doing hands on 5, but | am pretty confused. | read the book 9.3 and some of the notes from other years, but | am
still not 100% sure.

| understand the general operation of a WAL, but | am confused on some of the specifics of this implementation.
I've attached my answers so far. | have some questions:

e Why is there a difference between committed and end?
e Why does the system enforce such a distinction?
o Why does the WAL recovery process treat processes that are committed but not ended (“winners”) any
differently from a normal process?
o Meta question: Why do we have an assignment that focuses on that distinction?

1

hd T

Hands-on 5: Logging

Michael Plasmeier

10.

The database only shows studentA since that was the only transaction that ended with end
which means the transaction was written to disk.

With or without the logging system?

Without the logging, only studentA would be there, since that is the only entry in the DB.
With the logging system, all of the actions should be there, including studentA with 900,
studentB with 2000, and studentC with 3100.

Again, those changes were never ended (written to disk). This implementation of a WAL only
records the values into the DB when end is reached.

I would expect that the DB file would stay the same.

When it actually runs, we have studentA with 900 and studentC with 3100. This is not what |
expected. For some reason, the 3" transaction has been ended and committed. You can see
that in the log.

From reading the textbook, transaction 3 is a “winner” — it has been ordered committed, but has

not yet been written to the disk. The WAL recovery process goes ahead and writes these to disk
for us.

Done are transactions committed and ended/written to disk. Winners transactions that were
ordered committed, but never ended/written to disk. Losers are transactions that are not
ordered committed or aborted. These are undone as the log is read backwards.

Checkpoint does not write things to DB. It is a step that speeds recovery. (see below)

Transactions 1 and 3 were rolled back. Checkpoint writes all of the currently open
transactions (“losers”) at that point in time. When the backwards scan reaches a checkpoint, it
only has to scan up to those losers that are listed and no further. This can greatly increase
recovery time when most transactions have been ended/written to disk.

The DB is recovered to the same state. This is called idempotent.

The old one was winners: 3, losers: 2, done: 1. The re-recovery had winners: (nil), losers: 2,
done: 1, 3. The log file is updated when the file is recovered to clarify that an action was taken
(with END). Losers are ENDed so that future recoveries ignore it and don’t try to roll it back
again in the future.

(083 LY

m(%@/
e

ﬂ“}é W’“g gl 7 . Cligh /Wf
N };m'wl) ffaymf @
T ;a /l C@V'\/}/ll"@‘ > /,’-V{g,d
_gf_E 1/50[0}04 ml7)9(24:&31 mz’o%@
m Wt 5 b o %wfy /o)a %

~ /
CG*\, MR ({9 L‘ﬂﬂ'g ‘bW] i Q]LL///L n 9 an C
(Qq (L J@&n& ﬂﬂu\mjfj o uo ilf) V) a/ﬁm //

M/ Qecimle%/ @U@v@/«[/ /M]z(it 1'07

Ng)c@ ﬁL (,{ /«}fﬂ’a ; Jf(aws cwf“;og
L Ly D(Qpl‘té{qj(;ﬂ" 5}4/{@ M(Jal,q

O ol of Culons | l/\/f@/ W S0

Tope_of fulos
— ot

— hawnal/05
"VWILM/‘{, OUVL"»JQ
B \)/65}@’\
wOPg/me(/
\LBO P oy st g
— (v onpantdl
| Lfafﬂctuwl»e 5 ol

%WH bt Sysfery
Lleldble Sedems bl ot of Callble s

Huld ’}o Onsure P?'{Cﬂ(r(av,?

#“C?‘ mal vl gfl

—~—~

¢ opec (fﬁhfc
R Y

3
Frads DS

-‘_ég (W)][SO/"(T 6{/(‘/5/ (Z //}{0/6

BC“P@/W@ Wl@q a/

T
o oy, ol deliag

~ be (aref/l
— by 9%{5 f qppﬂ?&OL@)

My Al il ol
el ol b el "‘/
~ o dohel
~ o 1y e

"}\OW TLo AAM“Q/’

“{aﬂ églé _@('1/(; an G//@// (/fM‘L (Mﬂ@/@ Z
“I[m[§1op

;m‘(ﬂh‘* hot e ceue 1(9 Cor;f'z‘rn% 09 % Ghia ta on/

,’4{,\ goes cﬁ?vq

Y
sk —Cong Y W/My z e

.
& e
i

ke Tporh

br\trplm (/44)/6'72 -\A% é{cwl(\00):
- 66*/1 z!{; C(écGZQ)
_;’99/5) bu}}:ﬁ(45 ')LO /W(L CZ([/((JF 5/L«/{(

——

f\lo&U)6)

—

i,
(-

zwﬁ '(Q.M not ’f/lgg%c{ . [97’@4/)" &W}IL
v I ~d ﬁdf‘/{ LQWZIL

,‘h\[g Qs {1y)'Offwl otor

2€ M'L Cq/\ dbﬁ(/\go(——j ‘M(_/g

M@

o Tk g
Ghat e il fullie gm%w
qulsbilt, & _ITTE

PHTE» MITA

HITE TR ab AMITE

T bohwees &epw

(0 hA dh 5 of G,
ARV mzi@aw?

- f’_,___/’/_
Q l,ublm/l OT(f' DD
_///
(OV“MOALL é/uf
{)% bgwﬂl ﬂlomge /Lee/é@& Nz ﬁﬁz/L//C

l«/e, a0)remp 5!1 ule m mw//
Le (. ceccae b, ol

©
Moy 56 g owite Nl g Ll
l/ﬁ '}DG 6{/‘()?& fo feaewf{ hew 07 stuk(

HDV Cw(c NTTF‘T
Ik Slpo m Yeys did TL7 a(,ﬁ@/@ “ g "

Toded Hle 1000 Jisks
fn fo 3,000 s

It s) fuiluo
T)‘M Lon 4’“7 i - Lfs

300,00
fTF= |
](‘*’;[“/E (a/L{

@,,jj ‘(“’,*l"f&) not ::l7 \LL‘“/Y
t oath g

e
ol
by n o

@

Dl&l" a‘dg“‘ﬁ T blfﬂ) (5
Cm Comt B of gétf/u/f) ;4]oiy dafq (Ll

4 Wf% Ssbw Db gy deal w/ hse kad of
'(cwlu/%

P(Dgramb Nt ook of heolle of (/é4
Gpvart (1]

“tulls fo Jsk Gntalle

“Goks shls

LM,\ hs o bt of sedle g

~ gt (eta[a/bff(/\te b /6#7

Ofoes I dr Iﬂltd]m 1L0m‘0

An See how /My b)ao[/u "canl ‘ «/{ E‘(L

Y

wak L/MJ, ek chak l
(bl iy sold by W fig
T wd ek el YR b

(olh e all bt
U neet dable f dids

UAT) s & mwch belle Jab o

LOJE) of WWP/HI/@ o 7[fw/7 Xt’yl, 2l cble
e

U oo n G

H_MVS‘F (A/(He V,/ @’Qvﬂt (we
__g"}f;ngw} CJW p{}“ﬁ‘*@
— vl - Jeflod e
) mode“‘ﬂ/ 52!\/ a4 ‘L(:[G&Hﬂy
HN “V%Eh P@ﬂ{mm;% i; J/Lsz
lﬂ}b 9{ GKJTOL LvofL\ '}D (Ecbuy ggf ‘M) r{yhl/

Rued ¢ g
Lll“‘t b‘f\u) bep Pliﬂ(Qg ()1ﬁ S

BQL nC t/%”] h% pfﬂgfwwzj oﬁm mak W'ﬂf@te)

gdno, for i sewi
Lﬁ@f‘“&ﬁ ﬁaafeé Comp/{ !@)ma@ Cortt

lof2

http://web.mit.edw/6.033/www/lec/114.txt

-*- mode: org -*- %G/Z:
#+STARTUP:

indent
6.033 2012 Lecture 14: Fault-tolerant computing

* 6.033 so far: client/server
fault isolation by avoiding propagation
only benign mistakes (programming errors)
no recovery plan
** rest of semester:
keep running despite failures
broaden class of failures to include malicious ones

* Threats:

software faults (e.g., blue screen)

hardware (e.g., disk failed)

design (e.g., UI, typo in airport code results in crash, therac-25)
operation (e.g., AT&T outage)

environment (e.g., tsunami)

* Fault-tolerant systems

Reliable systems form unreliable components

Redundancy (replication, error code, multiple paths)

latence fault -> active fault -> error -> failure -> fault -> etc.

failure = a component fails to produce the intended result at its interface

* Examples of fault-tolerant systems:
DNS: replicate NS

Internet: packet network

BGP: alternate path

TCP: resend packet

* Approach to designing fault tolerant systems:
1 Identify possible faults
2 Detect & contain (client/server, checksum, etc.)
3 Decide a plan for handling fault:
nothing
fail=fast
fail-safe

mask (through redundancy space or time)
Difficult process, because you must identify *all possible* faults
Easy to miss some possibilities, which then bite you later
Iterative process

* Metric: MTTF and MTBF

MTTF = mean time to failure

MTTR = mean time to repair

MTBF = mean time between failure (MTTEF + MTTR)
availability = MTTF / MTBF

* Examples of availability
See slide

* Let's look at MTTF of disk and how we can recover

** Tt allows to store state across power failure

** Building block for fault-tolerant systems:

Store the state that is necessary for recovery on disk
--> All important state stored persistently on disk
Disk better work well

* MTTF of disk is high!

4/7/2012 7:44 PM

http://web.mit.edw6.033/www/lec/l14.txt

** larger than the existence of the manufacturer

how is it possible?

** run: 1,000 disks for 3,000 hours

10 fail -> 1 failure per 300,000 hours

failure rate = 0.0000033

assume: MTTF 1/failure rate, then MTTF = 300,000

** is the assumption reasonable? is the failure rate memory less?

* Bathtub graph

Nope; it is not memory less.

Failure rate is compute for bottom part of tub

Is aging a real issue? Yes, see graph.

Has real impact on reliability of system. See graph

* How do we make a fault-tolerant disk
** demo:
ssh root@udO.csail.mit.edu

smartctl -A /dev/sda > /tmp/smartctl.out
diff /tmp/smartctl.base <(smartctl -A /dev/sda)

.. do something disk-intensive, like du -ks /usr

diff /tmp/smartctl.base <(smartctl -A /dev/sda)

** techniques

1. fail-fast disk (discover faults)

2. retry to handle intermittent failures

3. replication

costs us two disks (see tomorrow)

need to replicate interconnect between disks, controllers, etc. (see HP slide)

* Software complicated -> bugs!
==> Fault-tolerant software systems rely on correctness of software inside disk!
how to write bug-free software
split up in code matter and doesn't mater
most software on computer doesn't matter; code in disk controller does
for code that does matter, stringent development process
hard part: bug in specification

20f2 4/7/2012 7:44 PM

Where are we in 6.033?

Fault-tolerance Strong form of modularity: client/server
 Limits propagation of effects
« In a single computer using OS

6.033 Lecture 14 - In a network using Internet
Frans Kaashoek o Two limitations:
With slides from Sam Madden « Isolates only benign mistakes (e.g.,

programming errors)
« No recovery plan

Extending C/S to handling failures Plan for fault-tolerant computing

« Can we do better than returning an error? « General introduction: today
« Keep computing despite failures?

« Defend against malicious failures (attacks)? * Redundancy/Recovery/Replication

e Transactions: next 4 lectures

» updating permanent data in the presence
« Rest of semester: handle these “failures” of concurrent actions and failures

. t- ti ¢ & .
; Eﬁpi?gf‘;&i?{;pu e « Replication state machines: 2 more
« Keep computing despite failures

3

Availability in practice

A fatal exception OE has occurred at 0028:CO00068F8 in PPT.EXE<01> +
000059F8. The current application will be terminated.

Carrier airlines (2002 FAA fact book)
* Press any key to terminate the application. « 41 accidents, 6.7M departures
* Prass CTRLAALTHDEL to restart your computer. You will v~ 99.9993% availability
lose any unsaved information in all applications. 911 Phone service (1993 NRIC report)
« 29 minutes per line per year
Press any key to continue _ v 99.994%
: Standard phone service (various sources)
« 53+ minutes per line per year
v 99.99+%

End-to-end Internet Availability
v 95% - 99.6%

- Contact Start-Stops 50,000

Nonrecoverable Read Errors per Bits Read | 1 per 10™
- - "

Mean Time Between Failrl{rles (MTBF, hours)l\zoo,ooo J

Annualized Failure Rate (AFR) 0.34%

Disk failure conditional probability distribution

Barracuda® ES.2 Infant Birt

_ High-capacity, business-critical : L morta]ity out
_Tier 2 enterprisa drives :
= Stable failure penod
0.012 |
E I 1/ (reported MTTF)
1 TB, 750 GB, 500 GB and 250 GB » 7200 RPM -« =
SATA 3Gb/s, SATA 1.5Gb/s and SAS 3Gb/s g
i
Reliability/Data Integrity | = r
Mean Time Between Failures (MTBF, hours) ' 1.2 million : Expected operatjng lifetime
Reliability Rating at Full 24x7 Operation (AFR) \075%,/, 0.003+ .
Nonrecoverable Read Errors per Bits Read 1 sector per 10E1 5
Error Control/Correction (ECC) | 10 bit - ﬁ a -~
Interface Ports ' Time
SATA Single
SAS lowm i Bathtub curve
Disk Age vs. Pr(z 1 Reported Read Failure)
0.25

ol - Human Mortality 5 02
- Rates 5
& (US, 1999) &
2 o001 - © 0.15
S ! 9
'é o
z ®
S 0.0l ‘E 0.1
&
" Normal workin £
aooor - &9 | . 14 : ' . 2 0.05
20 60 00
Age, years

0 6 12 18 24

" Disk Age (Months)
From: L. Gavrilov & N. Gavrilova, *Why We Fall Apart,” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org

Bairavasundaram et al., SIGMETRICS 2007

Relative frequency of hardware replacement

COM1
Component %
Power supply 348 10,000
Memory 20.1 machines
Hard drive 18.1
Case 11.4 Pr(failure in
Fan 80 1 year) ~.3
CPL 2.0
SCSI Board 0.6
NIC Card 12
LV Power Board | 0.6
CPU heatsink 0.6

Schroeder and Gibson, FAST 2008

Careful disk

careful_get (data, sn) {

r — 0;

while (r < 10) {
r < failfast_get (data, sn);
if (r = OK) return OK;
r++;

¥

return BAD;

Fail-fast disk

failfast_get (data, sn) {
get (s, sn);
if (checksum(s.data) = s.cksum) {
data < s.data;
return OK;
}else {
return BAD;

Replicated Disks

write (sector, data):
write(disk1, sector, data)
write(disk2, sector, data)

read (sector, data):
data = careful_get(disk1, sector)
if error
data = careful_get(disk2, sector)
if error
return error
return data

Technical specifications

Processors 2-16 per node

e Banium processar v!f'Os.cu.s precesson, l.e GH. zsmgc: e pracesson
Coche L
RAM stondard/maximum finimom: 4 G2

Maximum: 16 G3 (32 GB)
RAM type/spoed C2100 ECC rogisered DDR26SA/E
ServerNet /O M

1/0 udomers supparted
Fibre Chonnel disk modules
Disk drives supported

isk drives
2000, und XP 100D disk arays)

Standord features

") f"" GFL‘G

I__J o

How about an error in software?

» Big problem!
 Software for fault tolerant systems must
be written with great care
» Stringent development practices
» Well-defined stable specification
» Modeling, simulation, verification, etc.
« N-version programming is tricky
« Will also be a problem for secure
software
» Good design: small fraction is critical

Ak)

Appeared in 7th USENIX Symposium on Network
Design and Implementation (NSDI ’10)

Experiences with CoralCDN: A Five-Year Operational View

Michael J. Freedman
Princeton University

Abstract

CoralCDN is a self-organizing web content distribution
networl Publishing through CoralCDN is as sim-
ple as maKing a small change to a URL’s hostname; a
decentralized DNS layer transparently directs browsers to
nearby participating cache nodes, which in turii tooperate
to minimize load on the origin webserver. CoralCDN has
been publicly available on PlanetLab since March 2004,
accounting for the majority of its bandwidth and serving
requests for several million users (client IPs) per day. This
paper describes CoralCDN’s usage scenarios and a num-
ber of experiences drawn from its multi-year deployment.
These lessons range from the specific to the general, touch-
ing on the Web (APIs, naming, and security), CDNs (ro-
bustness and resource management), and virtualized host-
ing (visibility and control). We identify design aspects and
changes that helped CoralCDN succeed, yet also those that
proved wrong for its current environment.

1 Introduction

The goal of CoralCDN was to make desired web content
available to everybody, regardless of the publisher’s own
resources or dedicated hosting services. To do so, Coral-
CDN provides an open, self-organizing web content distri-
bution network (CDN) that any publisher is free to use,
without any prior registration, authorization, or special
configuration. Publishing through CoralCDN is as simple
as appending a suffix to a URL’s hostname, e.g., http:/
/example.com.nyud. net/. This URL modification
may be done by clients, origin servers, or third parties that
link to these domains. Clients accessing such Coralized
URLs are transparently directed by CoralCDN'’s network
of DNS servers to nearby participating proxies. These
proxies, in turn, coordinate to serve content and thus min-
imize load on origin servers.

CoralCDN was designed to automatically and scalably
handle sudden spikes in traffic for new content [14]. It
can efficiently discover cached content anywhere in its net-
work, and it dynamically replicates content in proportion
to its popularity. Both techniques help minimize origin re-
quests and satisfy changing traffic demands.

While originally designed for decentralized and unman-
aged settings, CoralCDN was deployed on the PlanetLab
research network [27] in March 2004, given PlanetLab’s

Crhat i P(Q«e”‘lb 1

convenience and availability. CoralCDN has since re-
mained publicly available for more than five years at hun-
dreds of PlanetLab sites world-wide. Accounting for a ma-
jority of public PlanetLab traffic and users, CoralCDN typ-
ically serves several terabytes of data per day, in response
to tens of millions of HTTP requests from around two mil-
lion users (unique client IP addresses).

Over the course of its deployment, we have come to
acknowledge several realities. On a positive note, Coral-
CDN'’s notably simple interface led to widespread and in-
novative uses. Sites began using CoralCDN as an elas-
tic infrastructure, dynamically redirecting traffic to Coral-
CDN-at times of high resource contention and pulling back
as traffic levels abated. On tlie flip side; fundamental parts
of CoralCDN’s design were ill-suited for its deployment
and the majority of its use. If one were to consider the var-
ious reasons for its use—for resurrecting long-unavailable
sites, supporting random surfing, distributing popular con-
tent, and mitigating flash crowds—CoralCDN’s design is
insufficient for the first, unnecessary for the second, and
overkill for the third, at least given its current deployment.
But diverse and unanticipated use is unavoidable for an
open system, yet openness is a necessary design choice for
handling the final flash-crowd scenario.

This paper provides a retrospective of our experience
building and operating Coral CDN over the past five years.
Our purpose is threefold. First, after summarizing Coral-
CDN'’s published design [14] in Section §2, we present
data collected over the system’s production deployment
and consider its implications. Second, we discuss various
deployment challenges we encountered and describe our
preferred solutions. Some of these changes we have im-
plemented and incorporated into CoralCDN; others require
adoption by third-parties. Third, given these insights, we
revisit the problem of building a secure, open, and scalable
content distribution network. More specifically, this paper
addresses the following topics:

* The success of CoralCDN'’s design given observed us-
age patterns (§3). Our verdict is mixed: A large ma-
jority of its traffic does not require any coeperative
caching at all, yet its handling of flash crowds relies
on such cooperation.

» Web security implications of CoralCDN’s open API
(§4). Through its open API, sites began leveraging

CoralCDN as an elastic resource for content distri-
- ———

-
o i

Opea \
Py

bution. Yet this very openness exposed a number of
web security challenges. Many can be attributed to
a lack of explicitness for specifying appropriate pro-
tection domains, and they arise due to violations of
traditional security principles (such as least privilege,
complete mediation, and fail-safe defaults [33]).

* Resource management in CDNs (§5). CoralCDN
commonly faced the challenge of interacting with
oversubscribed and ill-behaved resources, both re-
mote origin servers and itSown deployment platform.
Various aspects of its design react conservatively to
change and perform admission control for resources.

» Desired properties for deployment platforms (§6).
Application deployments could benefit from greater
visibility into and control over lower layers of their
platforms. Some challenges are again confounded
when information and policies cannot be expressed
explicitly between layers.

* Directions for building large-scale, cooperative
CDNs (§7). While using decentralized algo-
rithms, CoralCDN currently operates on a centrally-
administered, smaller-scale testbed of trusted servers.
‘We revisit the challenge of escaping this setting.

Rather than focus on CoralCDN'’s self-organizing algo-
rithms, the majority of this paper analyzes Coral CDN as an
example of an open web service on a virtualized platform.

As such, the experiences we detail may have implications
to a wider audience, including those developing distributed
hash tables (DHTs) for key-value storage, CDNs or web
services fof elastic provisioning, virtualized network fa-
cilities for programmable networks, or cloud computing
platforms for virtualized hosting. While many of the ob-
servations we report are neither new nor surprising in hind-
sight, many relate to mistakes, oversights, or limitations of
CoralCDN’s original design that only became apparent to
us from its deployment.

‘We next review CoralCDN’s architecture and protocols;
a more complete description can be found in [14]. All sys-
tem details presented after §2 were developed subsequent
to that publication. We discuss related work throughout
the paper as we touch on different aspects of CoralCDN.

2 Original CoralCDN Design

The Coral Content Distribution Network is composed of
three main parts: (1) a network of cooperative HTTP prox-
ies that handle client requests from users, (2) a network
of DNS nameservers for nyud.net that map clients to
nearby CoralCDN HTTP proxics, and (3) the underlying
Coral indexing infrastructure an achinery on
which the first two applications are built. This paper con-
sistently refers to the system’s indexing layer as Coral, and
the entire content distribution system as CoralCDN.

EnraK:DN ILfmlCDN

Coral ind xnode |
TR TR A

CoralCDN |5==

Figure 1: The steps involved in serving a Coralized URL.

2.1 System overview

At a high level, the following steps occur when a client
issues a request to CoralCDN, as shown in Figure 1.

1. Resolving DNS. A client resolves a “Coralized”
domain name (e.g., of the form example.com.
nyud.net) using CoralCDN nameservers. A Coral-
CDN nameserver probes the client to determine its
round-trip-time and uses This information to deter-
mine appropriate nameservers and proxies to return.

2. Processing HTTP client requests. The client sends
an HTTP reqticst for a Coralized URL to one of the
returned proxies. If the proxy is caching the web ob-
ject locally, it returns the object and the client is fin-
ished. Otherwise, the proxy attempts to find the ob-
ject on another CoralCDN proxy.

3. Dismhed content. The proxy

looks up the object’s URL in the Coral indexing layer.

4. Retrieving content. If Coral returns the address of a
node caching the object, the proxy fetches the object
from this node. Otherwise, the proxy downloads the
object from the origin server example . com.

5. Serving content to clients. The proxy stores the web
object to disk and returns it to the client browser.

— —
6. Announcing cached content. The proxy stores a ref-
erence to itself in Coral, recording the fact that is now
caching the URL.

This section reviews the design of the Coral indexing layer
and the CDN's proxies, as proposed in [14].

2.2 Coral indexing layer

The Coral indexing layer is closely related to the structure
and organization of distributed hash tables like Chord [34]
and Kademlia [23], with the latter serving as the basis for
its underlying algorithm. The system maps opaque keys
onto nodes by hashing their value onto a flat, sémantic-free
identifier ace, nodes are assigned identifiers in the
same ID space. It allows scalable key lookup (in O(log(n))
overlay hops for n-node systems), reorganizes itself upon
network membership changes, and provides robust behav-
ior against failure.

ok

o &

Compared to “traditional” DHTs, Coral introduced a
few novel techniques that were well-suited for its partic-
ular application [13]. Its key-valmr was
designed with weaker consistency requirements in mind,
and its lookup structure self-organized into a locality-
optimized hierarchy of clusters of peers. Afier all, a client
need not discover A proxies—caching a particular file, it
only needs to find sgyeral such proxies, preferably ones
nearby. Like most D?m_em put and get oper-
ations, to announce one’s address as caching a web object,
and to discover other proxies caching the object associated
with a particular URL, respectively. Inserted addresses are
soft-state mappings with a time-to-live (TTL) value.

Coral’s put and get operations are designed to spread
load, both within the DHT and across CoralCDN proxies.
To get the proxy dddresses assoctatedwith-a-key k, a node
traverses the ID space withiterative and it stops
upon finding any remote pee ues for k. This
peer need not be the one closest to & (in terms of DHT
identifier space distance). To put a key/value pair, Coral
routes to nodes successively closer to k and stops when
finding either (1) the nodes closest to k or (2) one that is
experiencing high request rates for k and already is caching
several corresponding values (with longer-lived TTLs). It
stores the_pair at the node closest to k that it managed to
reach. These processes prevent tree saturation in the DHT.

—

To improve locality, these routing operations are not
initially performed across the entire global overlay. In-
stead, each Coral node belongs to several distinct routing
structures called clusters. Each cluster is characterized by
a maximum desired network round-trip-time (RTT). The
system 1s parameterized by a fixed hierarchy of clusters
with different expected RTT thresholds. Coral’s deploy-
ment uses a three-level hierarchy, with level-0 denoting the
glopal cluster and level-2 the most local one. Coral em-
ploys distributed algorithms to form localized, stable clus-
ters, which we briefly return to in §5.3.

Every node belongs to one cluster at each level, as in
Figure 2. Coral queries nodes in fast clusters before those
in slower clusters. This both rcmm‘kup-}mency and
increases the chance of retafiung values siored at nearby
nodes, which correspond to addresses of nearby proxies.

2.3 The CoralCDN HTTP proxy

CoralCDN seeks to aggressively minimize load on origin
servers. This section summarizes how its proxies use Coral
for inter-proxy cooperation and adaptation to flash crowds.

2.3.1 Locality-optimized inter-proxy transfers

Each CoralCDN proxy keeps a local cache from which it
can immediately fulfill client requests. When a client re-
quests a non-resident URL, CoralCDN proxies attempt to
fetch web content from each other, using the Coral index-
ing layer for discovery. A proxy only contacts a URL’s

000... 4—— Distance to key = 111...
‘/’—\ hresholds
None
i3
—e 0O—e0 o—e @O <80ms

<30ms

&) O e o

Figure 2: Coral’s three-level hierarchical overlay structure. A node
first queries others in its level-2 cluster (the dotted rings), where
pointers reference other caching proxies within the same cluster. If a
node finds a mapping in its local cluster (after step 2), its gef finishes.
Otherwise, it continues among its level-1 cluster (the solid rings), and
finally, if needed, to any node within the global level-0 system.

origin server after the Coral indexing layer provides no re-
ferrals or none of its referrals return the data.

CoralCDN’s inter-proxy transfers are optimized for lo-
cality, both from their use of parallel connections to other
proxies and by the order in which neighboring proxies are
contacted. The properties of Coral’s hierarchical index-
ing ensures that the list of proxies returned by get will be
sorted based on their cluster distance to the request initia-
tor. Thus, proxies will attempt to contact level-2 neighbors
before level-1 and level-0 proxies, respectively.

2.3.2 Rapid adaptation to flash crowds

Unlike many web proxies, CoralCDN is explicitly de-
signed for flash-crowd scenarios. If a flash crowd suddenly
arrives for a web object, proxies self-organizm
of multicast tree for retrieving the object. Data sireams
frofi the proxies that started to fetch the object from the
origin server to those arriving later. This limits concurrent
object requests to the origin server upon a flash crowd.
CoralCDN provides such behavior by cut-through rout-
ing and optimistic references. First, CoralCDN’s use of
:Mrouting at each proxy helps reduce transmis-
sion time for larger files. That is, a proxy will upload por-
tions of a object as soon as they are downloaded, not wait-
ing until it receives the entire object. Second, proxies opti-
mistically announce themselves as sources of content—As
soon as a CoralCDN proxy begins receiving the first bytes
of a web object—either from the origin or another proxy—
it inserts a reference to itself into Coral with a short TTL
(30 seconds). It continually renews this short-lived refer-
ence until either it completes the download (at which time
it inserts a longer-lived reference!) or the download fails.

'The deployed system uses 2-hour TTLs for successful results (status
codes of 200, 301, 302, etc.), and 15-minute TTLs for 403, 404, and other
unsuccessful, non-transient results.

T T
|« From Clients)

2100 F © 7o Upstream Proxy/Origin
2 : x
= ¥
> 10k *
a E
3 s i L s
a b i f A g
S R P e oAF
g fxi- g
& i
i o+
0.1 X 1
Jan'05 Jan'06 Jan'07 Jan'08 Jan'09 Jan'10

Figure 3: Total HTTP requests per day during Coral CDN’s deploy-
ment. Grayed regions correspond to missing or incomplete data.

1.5

#IPs per Day (Millions)

[
2007

o

200!

2009
Figure 4: CoralCDN usage: number of unique clients (left) and
upload volume (right) for each day during August 9-18.

2.4 Implementation and deployment

CoralCDN is composed of three stand-alone applications.
The Coral daemon provides the
accessed over UNIX domain sockets from a simple client
library linked into applications such as Coral CDN’s HTTP
proxy and DNS server. All three are written from scratch.
Coral network communication uses Sun RPC over UDP,
while CoralCDN proxies transfer confent via standard-
HTTP connections. At initial publication [14], the Coral
daemon was about 14,000 lines of C++, the DNS server
2,000 LOC, and the proxy 4,000 LOC. CoralCDN’s im-
plementation has since grown to around 50,000 LOC. The
changes we later discuss help account for this increase.
CoralCDN typically runs on 300400 PlanetLab servers
(about 70-100 of which run its DNS server), spread over
100-200 sites worldwide. It avoids Internet2-only and
commercial sites, the Mtter due to policy decisions that re-
strict their use for open services. CoralCDN uses no spe-
cial knowledge of these machines’ locations or connectiv-
ity (e.g., GPS coordinates, routing information, etc.). Even
though CoralCDN runs on a centrally-managed testbed,
its mechanisms remain decentralized and self-organizing.
The only use of centralization is for managing software
and configuration updates and for controlling run status.

3 Analyzing CoralCDN’s Usage

This section presents some HTTP-level data from Coral-
CDN’s deployment and considers its implications.

3.1 System traces and traffic patterns

To understand some of the HTTP traffic patterns that
CoralCDN sees, we analyzed several datasets in increasing

Unique | Unique | % URLs | Reqgs to most
Year || domains | URLs | with 1 req | popular URL
2005 7881 | 577K 54% 697K
2007 21555 | 588K 59% 410K
2009 20680 | 1787K 77% 1578K

Figure 5: CoralCDN traffic statistics for an arbitrary day (Aug 9).

depth. Figure 3 plots the total number of HTTP requests
that the system received each day from mid-2004 through
early 2010, showing both the number of HTTP requests
from clients, as well as the number of requests issued to
upstream CoralCDN peers or origin sites. The traces show
common request rates for much of CoralCDN’s deploy-
ment between 5 and 20 million HTTP requests per day,
with more recent rates of 40-50 million daily requests.>

We examined three time periods from these logs in more
depth, each consisting of HTTP traffic over the same nine-
day period (August 9-18) in 2005, 2007, and 2009. Coral-
CDN received 15-25M requests during each day of these
periods. Figure 4 pﬁs—ﬁlﬁmmﬂunique client IP
addresses from which these requests originated (left) and
the aggregate amount of bandwidth uploaded (right). The
traces showed 1-2 million clients per day, resulting in a
few terabytes of content transferred. We will primarily use
the 2009 trace, consisting of 209M requests, in later anal-
ysis. Figure 5 provides more information about the traffic
patterns, focusing on the first day of each trace.

Figure 6 plots the distribution of requests per unique
URL. We see that the number of requests per URL follows
a Zipf-like distribution, as common among web caching
and proxy networks [5]. Certain URLSs are very popular—
the so-called “head” of the distribution—such as the most
popular one in the Aug-9-2009 trace, which received al-
most 1.6M requests itself. A large number of URLs—the
distribution’s “heavy tail”—receive only a single request.

The datasets also show stability in the most popular
URLs and domains over time. In all three datasets, the
most popular URL retained that ranking across all nine
days. In fact, this URL in the 2007 and 2009 traces be-
longed to the same domain: a site that uses CoralCDN to
distribute rule-set updates for the popular Firefox AdBlock
browser extension. Exploring this further, Figure 7 uses
the 2009 trace to plot the request rate per day for the most
popular domains (taking the union of each day’s most pop-
ular five domains resulted in nine unique domains). We see
that six of the nine domains had stable traffic patterns—
they wereTong-term CoralCDN “customers”—while three
varied between two and six orders of magnitude per day.
The traffic patterns that we see in these two figures have
design implications, which we discuss next.

2The peak of 120M requests on August 21, 2008 corresponds to a
short-lived experiment of an academic research project using Coral CDN
as a key-value store [15].

Wel e
0w oy
rot Jane

X ot

g AE8 5 T : Aug-9-2005 ——
= ug-9-
% 100000 e Aug-9-2007 3
5 10000 F = Aug-9-2009 rereerer 4
2 1000 f \]
g 100 | L. 3
Q 10 r e -3
@ i ; ; . \ \T"‘h...l..
1 10 100 1000 10000 100000 1e+06
Unique URLs by Popularity
Figure 6: Total requests per unique URL.
£ 1e+07 e T e et]
£ 1e+06 ; tatsomi e
S 100000 E
& 10000]
= 1000 3
g 100 3
o 10 a
g 1 1 1 1 1 1 1 i

Time (Days)
Figure 7: Requests per top-5 domain over time (Aug 9-18, 2009).

3.2 Implications of usage scenarios

For CoralCDN to help under-provisioned websites survive
unexpected traffic spikes, it does not require any prior reg-
istration or authorization. Yet while such openness is nec-
essary to enable even unmanaged websites to survive flash
crowds, it comes at a cost: CoralCDN is used in a variety
of ways that differ from this more narrow goal. This sec-
tion considers how well CoralCDN’s design is suited for
its four main usage scenarios:

1. Resurrecting old content: Anecdotally, some clients
attempt to use CoralCDN for long-term durability.
One can download browser plugins thal tink-to_both
CoralCDN and archive.org as potential sources
of content when origin servers are unavailable.

L
2. Accessing unpopular content: CoralCDN’s request
distribution shows a heavy tail of unpopular URLs.

Servers may Coralize URLs that few visit. And some
client oralCDN as a more traditional proxy,
for (presumed) anonymity, censorship or filtering cir-

cumvention [32], or automated crawling.

3. Serving long-term popular content: Most requests
are for a small set of popular objects. These objects,
already widely cached acress-theTetwork, belong to
the stable set of customer domains that effectively use
CoralCDN as a free, long-term CDN provider.

. Surviving flash crowds to content: Finally, Coral-
CDN is used for its stated goal of enabling underpro-
visioned websites to withstand transient load spikes.
Popular portals regularly link to Coralized URLs, and
usWWsten adopt
dynamic and programmatic mechanisms to redirect
requests to CoralCDN, based on observed load and
request referrers. We discuss this further in §4.1.

Unfortunately, CoralCDN’s design is not well-suited for
the first three use cases.
—

Top URLs || Total Size (MB) | % of Total Reqs
0.01% 14 49.1%
0.1% 157 71.8%

1% 3744 84.8%

10% 28734 92.2%

Figure 8: CoralCDN’s working set size for its most popular URLs
on Aug 9, 2009: A small percentage of URLs account for a large
fraction of requests, yet they require relatively little storage to cache.

Insufficient for resurrecting old content. CoralCDN is
not designed for archival storage. Proxies do not proac-
tively Teplicate comtentfordurability, and unpopular con-
tent is@?g@ Further, if
content has an expiry ime (default is 12 hours), a proxy
will serve expired content for at most 24 hours after the
origin fails. Still, some clients attempt to use Coral-
CDN for this purpose. This underscores a design trade-
off: In stressing support for flash crowds rather than long-
term durability, CoralCDN devotes its resources to provide
availability for content being actively requested. On the
other hand, by serving expired content for a timited dura-

tion, CoralCDN can mask the temporary unavailability of
an origin, at least for content already cached in its network.

Unnecessary for unpopular content. While proxies
can discover even rare cached content, CoralCDN does not
provide any benefit by serving such unpopular content: It
does not reduce servers’ load meaningfully, and it often
results in higher client latency. As such, clients that use
CoralCDN to avoid local filtering, circumvent geographic
restrictions, or provide (minimal) anonymity may be better
served by standard open proxies (that vanilla browsers can
be configured to use) or through specialized tools such as
Tor [12]. Yet, this type of usage persists—the long tail of
Figure 6—and CoralCDN might then be better served with
a different design for such traffic, i.e., one that doesn’t re-
quire a multi- hop, wide-area DHT lookup to complete be-
fore fetching content from the origin. For example, for its

modest deployment on PlanetLab, each Coral node could

maintain connectivity to all others and simply use consis-

tent hashing for a global, one-hop DHT [17, 37]. Alter- ‘;\

natively, Coral could only maintain connections with re-
gional peers and eschew global lookups, a design which
we evaluate further in §7.

Overkill for stably popular content, so far. For most
of Coral CDN’s traffic, cooperation is not needed: Figure 6
shows that a small number of URLs accounts for a large
fraction of requests. We now measure their working set
size in Figure 8, in order to determine how much storage is
required to handle this traffic. We find that the most popu-
lar 0.0 URLs account for more than 49% of the total
requests to CoralCDN, yet require only 14 MB of storage.
Each proxy has a 3.0 GB disk cache, managed using an
LRU eviction policy. This is sufficient for serving nearly
85% of all requests from local cache.

C 59 ;ha"&(n’

lﬁ)f Ipi

C%ﬂaf
J,i&f/7

6d)’]_Q il Kifd«,

boews Ik
ot mvbl'\

| or Of'@q 5
6094‘) Clﬂ""\

0

70.4% hit in local cache
12.6% returned 4xx or 5xx error code
9.9% fetched from origin site
7.1% fetched from other CoralCDN proxy
|— 1.7% from level-0 cluster (global)
|- 1.9% from level-1 cluster (regional)
|— 3.6% from level-2 cluster (local)

Figure 9: CoralCDN access ratios for content during Aug 9, 2009.

These workload distributions support one aspect of
CoralCDN’s design: Content should be locally cached
by the “forward” CoralCDN proxy directly serving end-
clients, given that small to moderate size caches in these
proxies can serve a very large fraction of requests. This
differs from the traditional DHT approach of just storing
data on a small number of globally-selected proxies, so-
called “server surrogates” [8, 37].

If Coral CDN’s working set can be fully cached by each
node, we should understand how much cooperation is ac-
tually needed. Figure 9 summarizes the extent to which
proxies cooperate when handling requests. 70% of re-
quests to proxies are satisfied locally, while only 7% result
in cooperative transfers. (The high rate of error messages
is due to admission control as a means of bandwidth man-
agement, which we discuss in §5.2.) In short, at least for its
current workload and environment, only a small fraction of
CoralCDN'’s traffic uses its cooperation mechanisms.

A related result about the limits of cooperative caching
had been observed earlier [38], but from the perspective of
limited improvements in client-side hit rates. This is a sig-
nificantly different goal from reducing server-side request
rates, however: Non-cooperating groups of nodes would
each individually request content from the origin.

This design trade-off comes down to the question of
how much_trafﬁc is too much for origin servers. For
moderately-provisioned origins, such as the customers of
commercial CDNs, a caching system might only rely on
local or regional cooperation. In fact, Akamai’s network
is designed precisely so: Nodes_wirthin each of its ap-
proximately 1000 clusters cooperate, but each clusler typi-.
cally fetches content independently from origin sites [22].
To replicate such scenarios, Coral’s clustering algorithms
could be used to self-organize a network into local or re-
gional clusters. Tt could thus avoid the manual configura-
tion of Harvest [7] or colocated deployments of Akamai.

On the other hand, while cooperation is not needed for
most traffic, CoralCDN’s ability to react quickly to flash
crowds—to offload traffic from a failing or oversubscribed
origin—is precisely the scenario for which it was designed
(and commercial CDNs are not). We consider these next.

Useful for mitigating flash crowds. CoralCDN’s traces
regularly show spikes in requests to different URLs. We

\ R
L]Lj’ U\(qv@yﬁnd, however, that these flash crowds grow in popularity

o
%

on the order of minutes, not seconds. There is a sufficiently
_—

hat \b Jﬂe AQ;‘W @@0& é/;

18000 —
6000 | i
14000 |-
12000 |-

I.rxlasl'uﬂ.lcvmrg Irefererl

{ 10-May-05 i
£09:15 EST

$11:56

Requests per minute

120 150
Time (minutes)

Figure 10: Flash crowd to a Coralized URL linked to by Slashdot.

180

T T T T

600 -moon'buggy.t‘)rg

redditmirror.cc moonbuggy reddit
500 ° 1000 —

A M'f’d»,
400 &, 100 |

Requests per minute

120

96
Time (Hours)

72 144 168
Figure 11: Mini-flash crowds during August 2009 trace. Each dat-
apoint represents a one-minute duration; embedded subfigures show

request rates for the tens of minutes around the onset of flash crowds.

long leading edge before traffic rises by several orders of
magnitude, which has interesting implications.

Figures T0 amd 11 show the request patterns of several
flash crowds that Coral CDN experienced. The former was
to a site linked to in a Slashdot article in May 2005. After
rising, the Slashdot flash crowd lasted less than three hours
in duration and came to an abmm as
the story dropped off the website’s main page). The latter,
covering our August 2009 trace, shows spikes to the im-
age cache of a less popular portal (moonbuggy .org), as
well as to a well-publicized mirror for the collaboratively-
filtered reddit.com, with another attenuated spike 24
hours later. The embedded graphs in Figure 11 depict the
request rates around the onset of the traffic spike for a nar-
rower range of time. All three flash crowds show that the
initial rise took minutes

For a more quantitative analysis of the frequency of flash
crowds, we examined the prevalence of domains that ex-
perience a large increase in their request rates from one
time period to the next. In particular, Figure 12 consid-
ers all five-second periods across the August 2009 ten-
day trace. The left graph plots a complementary cumu-
lative distribution function (CCDF) of the percentage of
domains requested in each period that experience a 10- or
100-fold rate increase. The right graph plots the percent-
age of requests accounted for by these domains that ex-
perience orders-of-magnitude (OOM) increases. Sudden

.28

5s epochs
2100M — 1
22 00M

o
g f
i

Percantage of Epochs
=)
"

o
8

Percentage of Epochs

" "
1 10
% Requests that changed by OOM

100

% Domains that changed by OOM

Figure 12: CCDF of extent of flash-crowd dynamics in August
2009 trace. Left graph shows percentage of domains experiencing or-
ders of magnitude (OOM) changes in request rates across five-second
epochs. Right shows % requests for which these domains account.

100 et 3 @400 oG e TR T s
o} { 3wl
w w
S 60} - S 60 |
2
§ 40 30s epochs - L] 40 -
z
Baof z200M -~ 4 8 20
g, i 2igM—| £ |
0.01 0.1 1 10 100 0.01
% Requests thal changed by OOM
100 T 5100 F
Fof =
w ot w
S 60 T 60
3
g'm r 2400M —1 £ 40
>3 00M -
g2 z200M { S
4 8 2100M — [" 5
0.01 0.1 1 10 100 0.01 0.1 1 10 100
% Requests that changed by OOM % Requests that changed by OOM

Figure 13: CDFs of percentage of requests accounted for by do-
mains experiencing order(s)-of-magnitude rate increases. Rate in-
creases computed across epochs of 30 seconds (top left), 10 minutes
(top right), six hours (bottom left), and one day (bottom right). Plots
start on the y-axis with zero domains having such an increase, e.g.,
28% of 30s epochs have no domains with a > 1 OOM rate increase.

increases do exist, but they are rare. In 76% of 5s epochs,
no domains experienced any 10-fold incre: hil

of epochs, 1.7% of domains (accounting for 12.9% of re-
quests) increased by one order-of-magnitude. Larger dy-
namism was even more rare: only in 0.006% of epochs did
there exist a domain that experienced a 100-fold increase
in request rate. No three OOM increase occurred.

To further understand the precipitousness of “flash”
crowds, Figure 13 extends this analysis across longer du-
rations.> Among 30s epochs, 50% of epochs have at most
0.4% of domains experience a 10-fold increase in their
rates (not shown), which account for a total of 1.0% of
requests (top left). Only 0.29% of 30s epochs have any
domains with more than a 100-fold rate increase. At 10-
minute epochs, 28% of epochs have at least one domain
that experiences a two OOM rate increase, while 0.21%
have a domain with a three OOM increase. Still, these
flash crowds account for a small fraction of total requests:
Domains experiencing 100-fold increases accounted for at
least 1% of all requests in only 3.8% of 10m epochs, and
10% of requests in 0.05% of epochs.

*To avoid overcounting unpopular domains, we do not count changes
when the absolute number of requests to a domain in a given time period
is less than some minimum amount, .e., 10 requests for 5s, 30s, and 10m
periods, and 100 requests for 6h and 1d periods.

In short, this data shows that (1) only a small fraction
of CoralCDN’s domains experience large rate increases
within short time periods, (2) those domai traffic ac-

counts fora Ws, and (3) any

rate increases very rarely occur on the order of seconds.
This moderate adoption rate avoids the need to introduce
even more aggressive content discovery algorithms. Sim-
ulated workloads in early experiments (Figure 4 of [14])
showed that under high concurrency, CoralCDN might is-

sue several redundant fetches to an origin server due to.
a Or:wmmp protocol. If multiple
nodes concurrently get the same key which does not yet ex-
ist in the index, all concurrent lookups can fail and multiple
nodes can contact the origin. This race condition is shared
by most-applications which use a distributed hash table
(both peer-to-peer and datacenter services). But because
these traces show that the arrival of user requests happens
over a much longer time-scale than a DHT lookup, this
race condition does not pose a significant problem.

Note that it is possible to mitigate this condition. While
designing a network file system for PlanetLab that sup-
ported cooperative caching [2]—meant to quickly dis-
tribute a file in preparation for a new experiment—we
sought to minimize redundant fetches to the file server. We
extended Coral’s insert operation to proviMr_n__s_t_a_ms_
information, like test-and-set in shared-memory systems.
A single putd-get both returns the first values it encoun-
tered in the DHT, as well as inserts its own values at an
appropriate location (for a neW K&y, This would be at its
closest node). This optimization comes at a subtle cost,
however, as it now optimistically inserts a node’s i it
even before that proxy begins downloading the file! If the
origin fetch fails—a greater possibility in CoralCDN’s en-
vironment than with a managed file server—then the use of
these index entries degrad ce. Thus, after us-
ing this put+-get protocol in CoralCDN for several months
during 2005, we discontinued its use.

CoralCDN’s openness permits users to quickly leverage
its resources under load, and its more complex coordina-
tion helps mitigate these flash crowds and mask temporary
server unavailability. Yet this vepyopenness led®to varied
usage, the majority of which does notrequire CoralCDN’s
more complex design. As we will see, this openness also
introduces other problems.

4 Lessons for the Web

CoralCDN’s naming technique provides an open API for
CDN services that can transparently work for almost any
website. Over the course of its deployment, clients and
servers have used this API to adopt CoralCDN as an elas-
tic resource for content distribution. Through completely
automated means, work can be dynamically expanded out
to use CoralCDN when websites require additional band-

55“4(1*/ eﬁpeﬂéa

&0 (1/44//'
g

width resources, and it can be contracted back when flash
crowds abate. In doing so, its use presaged the notion of
“surge computing” with public cloud platforms. But these
naming i and CoralCDN’s open design introduce
a number of ms, many of which are en-
gendered by a lack of explicitness for specifying protection
domains. We discuss these issues here.

—_—

4.1 An API for elastic CDN services

We believe that the central reason for CoralCDN’s adop-
tion has been its simple user interface and open design.

Interface design. While superficially obvious, Coral-
CDN'’s interface design achieves several important goals:

* Transparency: Work with unmodified, unconfigured,
and unaware web clients and webservers.

* Deep caching: Retrieve embedded images or links
automatically through CoralCDN when appropriate.

* Server control: Not interfere with sites’ ability to per-
form usage logging or otherwise control how their
content 15 served (e.g., via CoralCDN or directly).

* Ad-friendly: Not interfere with third-party advertis-
ing, analytics, or other tools incorporated into a site.

end security mechanisms for content integrity or other
end-host deployed mechanisms.

Consider an alternative and even simpler interface de-
sign [11, 25, 29], in which one embeds origin URLSs into
the HTTP path, e.g., http://nyud.net/example.
com/. Not only is HTTP parsing simpler, but nameservers
would not need to synthesize DNSTecords on the 1y (un-
like our DNS servers for .nyud.net). Unfortunately,
while this interface can be used to distribute individual ob-
jects, it fails on entire webpages. Any relative links would
lack the example . com prefix that a proxy needs to-iden-
tify its origin. One alternative might be to try to rewrite
pages to add such links, although active cont uchas
javascript makes this notoriously difficult. Further, such
aclive rewriting impedes a site’s control over its content,
and it can interfere with analytics and advertisements.

CoralCDN’s appr%h, however, interprets relative links
with respect to a page’s Coralized hostname, and thus
transparently requests these objects through it as well.
But all absolute URLs continue to point to their origin
sites, and third-party advertisements a i
largely unaffected. Further, as CoralCDNtoesnot-med-
ify content, content also may be amenable to verification
through end-to-end content signatures [30, 35].

In short, it was important for adoption that site owners
retain sufficient control over how W!a}'ed
and accessed. In fact, our predicted usage scenario of sites
publishing Coralized URLSs proved to be less popular than
that of dynamic redirection (which we did not foresee).

An API for dynamic adoption. CoralCDN was envi-
sioned with manual URL manipulation in mind, whether
by publishers editing HTML, users typing Coralized
URLs, or third-parties posting links. After deployment,
however, users soon began treating CoralCDN’s interface
as an API for accessing CDN services.

On the client side, these techniques included simple
brawser extensions that offer “right-click” options to Cor-
alize links or that provide a link when a page appears un-
available. They ranged to more complex integration into
frameworks like Firefox’s Greasemonkey [21]. Grease-
monkey allows third-party developers to write site-specific
javascript code that, once installed by users, manipulates a
site’s HTML content (usually through the DOM interface)
whenever the user accesses it. Greasemonkey scripts for
CoralCDN include those that automatically rewrite links
on popular portals, or modify articles to include tooltips or
additional links to Coralized URLs. CoralCDN also has
been integrated directly into a number of client-side soft-
ware packages for podcasting.

The more interesting cases of CoralCDN integration are
on the server-side. One common strategy is for the origin
to receive the initial request, but respond with a 302 redi-
rect to a Coralized URL. This can work well even for flash
crowds, as the overhead of generating redirects is modest
compared to that of actually serving the content.

Generating such redirects can be done by installing a
server plugin and writing a few lines of configuration code.
For example, the complete dynamic redirection rule using
Apache’s mod_rewrite plugin is as follows.

RewriteEngine on

RewriteCond % (HTTP_USER_AGENT)} !“CoralWebPrx

RewriteCond %{QUERY_STRING} ! ("]&)coral-no-serve$

RewriteRule ~(.#*)$ http://%{HTTP_HOST} .nyud.net
% (REQUEST_URI} [R,L]

Still, redirection rules must be crafted carefully. In this
example, the second line checks whether the client is a
CoralCDN proxy and thus should be served directly. Oth-
erwise, a redirection loop potentially could be formed (al-
though proxies prevent this from happening by checking
for potential loops and returning errors if one is found).

Amusingly, some early users during CoralCDN’s de-
ployment caused recursion in a different way—and a form
of amplification attack—by submitting URLs with a long
string of nyud.net’s appended to a domain. Before
proxies checked for such conditions, this single request
caused a proxy to issue a number of requests, stripping
the last instance of nyud . net off in each iteration.

While the above rewriting rule applies for all requests,
other sites incorporate redirection in more inventive ways,
such as only redirecting clients arriving from particular

. —
high-traffic referrers:
——————————
RewriteCond %{HTTP_REFERER} slashdot\.org [NC,OR]
RewriteCond $%{HTTP_REFERER} digg\.com [NC,OR]
RewriteCond %{HTTP_REFERER} blogspot\.com [NC]

59 U +

bg

V\(ﬂ'
h
qnom [

h

And most interestingly, some sites have even combined
such tools with server plugins that monitor server load and
bandwidth use, so that their servers only mmg re-
quests under high load conditions.

Websites therefore used Coral CDN’s naming technique
to leverage its CDN resources in an elastic fashion. Based
on feedback from users, we expanded this “API"” to give
sites some simple control over how CoralCDN should han-
dle their requests. For example, webservers can include
X-Coral-Control response headers, which are saved
as cache meta-data, to specify whether CoralCDN proxies
should “redirect home” domains that exceed their band-
width limits (per §5.2) or just return an error as is standard.

4.2 Security and resource protection

A number of security mechanisms curtailed the misuse of
CoralCDN. We highlight the design principle for each.

4.2.1 Limiting functionality

CoralCDN proxies have only ever supported GET and
HEAD requests. Many of the attacks for which “open”
proxies are infamous [24] are simply not feasible. For ex-
ample, clients cannot use CoralCDN to POST passwords
for brute-force cracking. Proxies do nt support CON-
NECT requests, and thus they cannot be used to send spam
as SMTP relays or to forge “From” addresses in web mail.
Proxies do not support HTTPS and they delete all HTTP
cookies sent in lieaders. These proxies this provide mini-
madT application funciionality needed to achieve their goals,
which is cooperatively serving cacheable content.

CoralCDN’s design had several unexpected conse-
quences. Perhaps most interestingly, given CoralCDN’s
multi-layer caching architecture, attempting to crawl or
brute-force attack a website via CoralCDN is quite slow.
New or randomly-selected URLs first require a DHT
lookup to fail, which serves to delay requests against an
origin website, in much the same way that ssh “tarpits” de-
lay responses to failed login attempts. In addition, because
CoralCDN only handles explicit Coralized URLs, it cannot
be used by simply configuring a vanilla browser’s proxy
settings. Further, CoralCDN cannot be used to anony-
mously launch attacks, as it eschews anonymity. Proxies
use unique User—Agent strings (“CoralWebPrx”) and
include their identity in Via headers, and they report an
instigating client’s IP addréssto the origin server (in an
X—Forwarded—mheader} We can only sur-
fhise whether the combination of these properties played
some role, but CoralCDN has seen little abuse as a plat-
form for proxying server attacks.

4.2.2 Curtailing excessive resource use

CoralCDN'’s major limiting resource is aggregate band-
width. The system employs fair-sharing mechanisms to
balance bandwidth consumption between origin domains,

which we discuss further in §5.2. In addition to monitoring
server-side consumption, proxies keep a sliding window of
client-side usage. Not only do we seek to prevent exces-
sive bandwidth consumption by clients, bu n exces-
sive nquts. These are caused
typically by server misconfigurations that result in HTTP
redirection loops (per §4.1) or by “bot” misuse as part of
a brute-force attack. While CoralCDN'’s limited function-
ality mitigates such attacks, one notable brute-force login
attempt took advantage of poor security mbsite,
which used cleartext passwords over GET requests.

Given both its storage and bandwidth limitations, Coral-
CDN enforces a maximum file size of 50 MB. This
has generally prevented clients from using CoralCDN for
video distribution, a pragmatic goal when deploying prox-
ies on university-hosted PlanetLab servers. We found
that sites attempted to circumvent these limits by omit-
ting Content-Length head tions marked
as persistent and without chunked encoding). To ensure
compliance, proxies now monitor ongoing transfers and
halt (and blacklist) any ones that exceed their limits. This
skepticism is needed as proxies interact with potentially
untrusted servers, and thus must enforce complete media-
tion [33] to their resources (in this case, bandwidth).

4.2.3 Blacklisting domains and offloading security

We maintain a global blacklist for blocking access to spec-
ified origin domain names. Each proxy regularly fetches
and reloads the blacklist. This is a practical, but not fun-
damental, necessity, employed to prevent CoralCDN’s de-
ployment sites from restricting its use. Parties that request
blacklisting typically cite one of the following reasons.

Suspected phishing. Websites have been concerned that
CoralCDN is—or will be confused with—a phishing site.
After all, both appear to be “scraping” content and publish
a simulacrum under an alternate domain. The difference,
of course, is that CoralCDN is serving the site’s content
unmmedified, yet the web lacks any protocol to authenticate
the integrity of content (as in S-HTTP [30]) in order to ver-
ify thitgm]y authenticates identity, websites must
typically include CDNs in their trusted computing base.

Potential copyright violation. Typically following a
DMCA take-down notice, third-parties report that copy-
righlédTmaterial may be found on a Coralized domain and
want it blocked. This scenario is mitigated by CoralCDN’s
explicit naming—which preserves the name of the actual
origin in question—and by its caching design. Once con-
tent is removed from an origin server, it is evicted auto-
matically from CoralCDN in at most 24 hours. This is a
natural implication of its goal of handling flash crowds,
rather than providing long-term availability.

Circumventing access-control restrictions. Some do-
mains mediate access to their website via IP-based authen-

hahy

nL

\ e

)

tication, whereby requests from particular TP prefixes are
granted access. This practice is especially common for on-
line academic journals, in order to provide easy access for
university subscribers. But open proxies within whitelisted
prefixes would enable external clients to circumvent these
access-control restrictions.

By offloading policing to their customers, sites unnec-
essarily enlarge their security perimeter to include their
cusromm is common yet unnec-
essary. Reca oralCDN proxies do not hide their
identities, and they include the originating client’s IP ad-
dress in standard request headers. Thus, origin sites can re-
tain IP-based authentication while verifying that a request
does not originate from outside allowed prefixes.* Sites
are just not making use of this information, and thus fail to
properly mediate access to their protected resources.®

We did encounter some interesting attacks on our
domain-based blacklists, akin to fast-flux networks. An
adversary created dynamic DNS records for a random do-
main that pointed to the IP address of a target domain (an
online academic journal). The random domain naturally
was not blacklisted by CoralCDN, and the content was
successfully downloaded from the origin target. Such a
circumvention technique would not have worked if the ori-
gin site checked either proxy headers (as above) or even
just the Host field of the HTTP request. The Host cor-
responded to the fast-flux attack domain, not that of the
journal. Again, this security hole demonstrates a lack of
explicit verification and fail-safe defaults [33].

4.3 Security and naming conflation

We argued that CoralCDN’s naming provided a powerful
API for accessing CDN services. Unfortunately, its tech-
nique has serious implications as the Web’s Same Origin
Policy (SOP) conflates naming with security.

Browsers use domain names T oses. (1) Do-
mains specify where to retrieve content after they are re-
solved to IP addresses, precisely how CoralCDN enacts
its layer of indirection. (2) Domains provide a human-
readable name for whar ﬂm’in_f&mﬂ_ue_emity a client is
interacting with (e.g., thé “common name” identified in
SSL server certificates). (3) DSmains specify what security
policies to enforce on web objects and their interactions.

The Same Origin Policy specifies how scripts and in-
structions from an origin domain can access and modify

“This does not address the corner case in which the original request
comes from an IP address within that prefix, while subsequent ones that
access the then-cached content do not. This can be handled typically by
marking content as not cacheable, or by having a proxy include headers
that explicitly specify its client population (i.e., as “open” or by IP prefix).

SOne might argue that sites use a pure TP-based filtering approach
given its ability to be implemented in layer-3 front-end load balancers.
But this is not a simple firewall problem, as sites also permit access for
individual users that login with the appropriate credentials. The sites with
which we communicated implemented such authorization logic either di-
rectly in webservers or in complex, layer-7 front-end appliances.

browser state. This policy applies to manipulating cookies,
browser windows, frames, and documents, as well as to
accessing other URLs via an XmlHttpRequest. At its sim-
plest level, all of these behaviors are only allowed between
resources that belong to an identical origin domain. This
provides security against sites accessing each others’ pri-
vate information kept in cookies, for example. It also pre-
vents websites that run advertisements (such as Google’s
AdSense) from easily performing click fraud to pay them-
selves advertising dollars by programmatically “clicking”
on their site’s advertisements.

One caveat to the strict definition of an identical ori-
gin [18] is that it provides an exception for domains
that share the same domain.tld suffix, in that www.
example.com can read and set cookies for example.
com. This has bad implications for CoralCDN’s naming
strategy. When example.com is accessed via Coral-
CDN, it can mmiplwﬂw_;}ft just
those restricted to example.com.nyud.net.” Con-
cerned with the potential privacy violations from this sce-
nario, CoralCDN deletes all cookies from headers. ./

Unfortunately, many websites now manage cookies vi
javascript, so cookie information can still “leak™ between
Coralized domains on the browser. This happens of-
ten without a site’s knowledge, as sites commonly use a
URL's domain.t1d without verifying its name. Thus,
if the Coralized example . com writes nyud . net cook-
ies, these will be sent to evil.com.nyud.net if the
client visits that webpage. Honest CoralCDN proxies will
delete these cookies in transit, but attackers can still cir-
cumvent this problem. For example, when a client vis-
itsevil.com.nyud.net, javascript from that page can
access nyud.net cookies, then issue a X
back to evil.com.nyud.net with cookie information
embedded in the URL. Similar attacks are possible against
other uses of the SOP, especially as it relates to the abil-
ity to access and manipulate the DOM. Note that these at-
tack vectors exist even while CoralCDN operates on fully-
trusted nodes, let alone more = ts!

Rather than conclude that Coral CDN’s domain manipu-
lation is fundamentally flawed, we argue that better adher-
ence to security principles is needed. Websites are partially
at fault because they default access to domain.t1d suf-
fixes too readily, as opposed to stripping the minimal num-
ber of domain prefixes: a violation of the principle of least
information. An alternative solution that embraces least

SThis is prevented because advertisements like AdSense load in an
iframe that the parent document—the third-party website that stands to
gain mvenUHanno%%mhmhann_ﬁWn.

TCommercial CDNs like Akamai are typically not susceptiblé to such
attacks, as they generally use a separate top-level domains for each cus-
tomer, as opposed to CoralCDN's suffix-based approach. Unlike Coral-
CDN’s zero configuration, however, such designs require that origins
preestablish an operational relationship with their CDN provider and

point their domain to the CDN service (e.g., by aliasing their domain
to the CDN through CNAME records in DNS).

10

privilege (and has much better incremental deployability)
would be to allow sources of content to explicitly constrain
default security policies. As one simple example, when
serving content for some origin.t1d, proxies could use
HTTP response headers to specify that the most permis-
sive domain shouldbe origin.tld.domain.t1ld, not
their own domain.t1ld. Interestingly, HTML 5, Flash,
and various javascript hacks [6] are all exploring methods
to expand explicit cross-domain communication.® Both
proposals avow that the SOP is insufficient and should be
adapted to support more flexible control through explicit
rules; ours just views its corner cases as too permissive,
while the other views its implications as too restrictive.

5 Lessons for CDNs

their networks based on expected use (and hence revenue),
the CoralCDN deployment is comprised of volunteer sites
with fixed, limited bandwidth. This section describes how
we-adapted CoralCDN to satisfy these realities.

5.1 Designing for faulty origins

Given its design goals, CoralCDN needs to react to non-
crash failures at origin servers as the rule, not the excep-
tion. Thus, one design philosophy that has come to govern
CoralCDN’s behavior is that proxies should accept content
conservati rve results liberally.

Consider the following, fairly common, situation. A
portal runs a story that links to a third-party website, driv-
ing a sudden influx of readers to this previously unpopular
site. A user then posts a Coralized link to the third-party
site as a “comment” to the portal’s story, providing an al-
ternate means to fetch the content.

Several scenarios are possible. (1) The website’s origin
server becomes unavailable before any proxy downloads
its content. (2) CoralCDN already has a copy of the con-
tent, but requests arrive to it after the content’s expiry time
has passed. Unfortunately, subsequent HTTP requests to
the origin webserver result in failures or errors. (3) Or,
CoralCDN’s content is again expired, but subsequent re-
quests to the origin yield only partigl transfers. CoralCDN
employs different mechanisms to handle these failures.

Cache negative service results (#1). CoralCDN may
be hit with a flood of requests for an inaccessible URL,
e.g., DNS resolution fails, TCP connections timeout, etc.
For these situations, proxies maintain a lgcal negative re-
sult cache about repeated failures. Otherwise, both prox-
ies and their local DNS resolvers have experienced re-

8This is in reaction to the common practice of inserting third-party ob-
jects into a document’s namespace via <script>—and thus sacrificing
security protections—as the SOP does not permit a middle ground.

11

source exhaustion, given flash crowds to apparently dead
sites. (While negative result caching has also long been
part of some DNS implementations [19], it is not universal
and does not extend to TCP or application-level failures.)
While more a usability issue, CoralCDN still receives re-
quests for some Coralized URLs several years after their
origins became unavailable.

Serve stale content if origin faulty (#2). CoralCDN
seeks to avoid replacing good content with bad. As its
proxies mostly obey content expiry times specified in
HTTP headers,’ if cached content expires, proxies perform
a conditional request (If-Modified-Since) to revali-
date or update expired content. Overloaded origin servers

might fail to respond or might return some tempor or
condition (data in §7 shows this to occur in about 0.5% df
origin requests). Rather than retransmit this error, Coral-

CDN proxies return the stale content and continue to retain
it for future use (for up to 24 hours after it expires).
e .

Prevent truncations through whole-file overwrites (#3).
Rather than not responding or returning an error, what if a
revalidation yields a truncated transfer? This is not uncom-
mon during a flash crowd, as a€oralCDN proxy will be
competing for a webserver’s resources. Rather than have
proxies lose stale yet complete versions of objects, proxies
implement whole-file overwrites in the spirit of AFS [16].
Namely, if a valid web object is already cached, the new
version is written to a temporary file. Only after the new
version completes downloading and appears valid (based
on Content-Length) will a proxy replace the old one.
-—_— —

These approaches are not fail-proof, limited by both se-
mantic ambiguity in status directives and inaccuracies with
their use. In terms of ambiguity, does a 403 (Forbidden)
response code signify that a publisher seeks to make the
content unavailable (permanent), or is it caused by a web-
site surpassThg jts daily bandwidth Timits and Having re-
quests m (temporary)? Does a 404 (File Not Found)
code indicate whether the condition is permanent (due to
a DMCA take-down notice) or temporary (from a PHP or
database error)? On the other hand, the application of sta-
tus directives can be flawed. We often found websites to

report human-rﬁ(&h&@l}figﬂﬂdl.hﬂdy_mntcnt, but
with ap HTTP status code of 200 (Success). This scenario
leads ém‘zll(lm'\ﬂmlid content with less useful
information. We hypothesize that bad defaults in scripting
languages such as PHP are partially to blame. Instead of
being fail-safe, the response code defaults to success.

Even if transient errors were properly identified, for how
long should CoralCDN serve expired content? HTTP lacks

Proxies in our deployment are configured with a minimum ex-
piry time of some duration (five minutes), and thus do not recognize
No-Cache directives as such. Because CoralCDN does not support
cookies, SSL bridging, or POSTs, however, many of the privacy concerns
associated with caching such content are alleviated.

$

4

5%

> dh

gl

ép ,
/7 ;
¢S /(/

0/0,6

(an St
&f\& 4N

the ability to specify explicit policy for handling expired
content. Akamai defaults to a fail-safe scenario by not re-
turning stale content [22], while CoralCDN seeks to bal-
ance this goal with availability under server failures. As
opposed to only using the system-wide default of 24 hours,
CoralCDN recently enabled its users to explicitly specify
their policy through max-stale response headers.'?

These examples all point to another lesson that governs
CoralCDN’s proxy design: Maintain the status quo unless
improvements are possible.

Decoupling service dependencies. A similar theme of
only improving the status quo governs CoralCDN’s man-
agement system. CoralCDN servers query a centralized
management point for a number of tasks: to update their
overall run status, to start or stop individual service compo-
nents (HTTP, DNS, DHT), to reinstall or updare toa-new
software version, or to learn shared secrets that provide
admission control to its DHT. Although designed for inter-
mittent connectivity, one of CoralCDN’s significant out-
ages came when the management server began misbehav-
ing and returnj i ion. In response, we
adopted what one might call fail-same behavior that ac-
cepts updates conservatively, anﬁfﬁa‘u‘dﬁf decoupling
techniques from fault-tolerant systems. Management in-
formation is stored durably on servers, maintaining their
status-quo operation (even across local crashes) until well-
formed new instructions are received.

5.2 Managing oversubscribed bandwidth

While commercial CDNs and computing platforms often
respond to oversubscription by acquiring more capacity,
CoralCDN’s deployment on PlanetLab does not have that
lpxury, Instead, the service must manage its bandwidth
consumption within prescribed limits. This adoption of
bandwidth limits was spurred on by administrative de-
mands from its_deployment sites. Following the Asian
tsunami of Dcfm, and with YouTube yet to be
created, CoralCDN distributed large quantities of amateur
videos of the natural disaster. With no bandwidth restric-
tions on PlanetLab at the time, CoralCDN’s network traf-
fic to the public Internet quickly spiked. PlanetLab sites
threatened to pull their Servers off the network if such
use could not be curtailed. It was agreed that CoralCDN
shouTd Testrict its usage to approximately 10 GB per day
per server (i.e., per PlanetLab sliver). e
Several design options exist for limiting bandwidth con-
sumption. A proxy could simply shut down after exceed-
ing a configured daily capacity (as supported by Tor [12]).
Or it could rate-limit its traffic to prevent transient conges-
e ————
tion (as done by BitTorrent and Tor).” But as CoralCDN

1OHTTP/1.1 supports max-stale request headers, although we are not
aware of their use by any HTTP clients. Further, as proxies often evict
expired content from their caches, it is unclear whether such request di-
rectives can be typically satisfied.

1e+06 ¥ " All ReSponses memm -
100000 Forbidden Responses %
10000 f %
1000 F ' *
100 F *
10 F

1 " " 1 PR | "
1 10 100 1000 10000

Unique Domains Ordered by Decreasing Popularity

Requests per Domain

Figure 14: Requests per domain and number of 403 rejections.

primarily provides a servige for websites, as opposed to
clients, we chose to allocate its limited bandwidth in a way

that both preserves some notion of fairness across its cus-
tomer domains and maintains its central goal of handling
flash crowds. The technique we developed is more broadly
applicable than just PlanetLab and federated testbeds: to
P2P deployments where users run peers within resource
containers, to multi-tenant datacenters sharing resources
between their own services, or to commercial hosting en-
vironments using billing models such as 95th-%ile usage.

Providing per-domain fairness might be resource inten-
sive or difficult in the general case, given that CoralCDN
interacts with 10,000s of domains each day, but our highly-
skewed workloads greafly simplify the necessary account-
ing. Figure 14 shows the total number of requests per
domain that CoralCDN received over one day (the solid
top line). The distribution clearly has some very pop-
ular domains—the most popular one (a Tamil clone of
YouTube) received 2.6M requests—while the remaining
distribution fell off in a Zipf-like manner. (Note that Fig-
ure 6 was in terms of unique URLs, not unique domains.)
Given that CoralCDN’s traffic is dominated by a limited
number of domains, its mechanisms can serve mainly to
reject requests for (ie., perform admission control on)
these bandwidth hogs. Still, CoralCDN should differenti-
ate between peak limits and steady-state behavior to allow
for flash crowds or changing traffic patterns.

To achieve these aims, each CoralCDN proxy imple-
ments an algorithm that attempts to simultaneously (1)
provide a hard-upper limit on peak traffic per hour (con-
figured to 1000 MB per hour per proxy), (2) bound the
expected total traffic per_epoch-i ate (400 MB
per hour per proxy), and (3) bound the steady-state limit
per domain. As setting this last limit statically—such as
1/k-th of the total traffic if there are k popular domains—
would lead to good fairness but poor utilization (given the
non-uniform distribution across domains), we dynamically
adjust this last traffic limit to balance this trade-off.

During each hour-long epoch, a proxy records the total
number of bytes transmitted for each domain. It also cal-
culates domains’ average bandwidth as an exponentially-
weighted moving average (attenuated over one week), as
well as the total average consumption across all domains.
This long attenuation period provides long-term fairness—

12

and most consumption is long-term, as shown in Fig-
ure 7—but also emphasizes support for short-term flash
crowds. Across epochs, bandwidth usage is only tracked,
and durably stored, for the top-100 domains. If a domain
is not currently one of the top-100 bandwidth consumers,
its historical average bandwidth is set to zero (providing
additional leeway to sites experiencing flash crowds).

When a requested domain is over its hourly budget (case
3 above), CoralCDN proxies respond with 403 (Forbidden)
messages. If instead the proxy is over its pe steady-
state limit calculated over all domains (cases 1 or 2 above),
then the proxy redirects the client back to the origin site,
and the proxy temporarily makes itself unavailable for new
client requests, which would be rejected anyway.!!

By applying these mechanisms, CoralCDN reduces its
bandwidth consumption to manageable levels. While its
demand sometimes exceeds 10 TBs per day (aggregate
across all proxies), its actual HTTP traffic remains steady
at about 2 TB per day after rejecting a significant number
of requests. The scatter plot in Figure 14 shows the num-
ber of requests resulting in 403 responses per domain, most
due to these admission control mechanisms. We see how
variances in domains’ object sizes yield different rejection
rates. The second-most popular domain serves mostly im-
ages smaller than 10 KB and experiences a rejection rate of
3.3%. Yet the videos of the third-most popular domain—
user-contributed screensavers of fractal flames—are typi-
cally 5 MB in size, leading to an 89% rejection rate.

Note that we could significantly curtail the use of Coral-
CDN as a long-term CDN provider (see §3.2) through sim-
ple changcsm settings. A low steady-
state limit per domain, coupled with a greater weight on
a ‘demain’s-historic averages, devotes resources to flash-
crowd relief at the exclusion of long-term consumption.

Admittedly, CoralCDN’s approach penalizes an origin
site with more regional access patterns. Bandwidth ac-
counting and admission control is performed indepen-
dently on each node, reflecting CoralCDN’s lack of cen-
tralization. By not sharing information between nodes
(provided that DNS resolution preserves locality), a site
with regional interest can be throttled before it reaches its
fair share of global capacity. While this does not pose
an operational problem for CoralCDN, it is an interest-
ing research problem to perform (approximate) accounting
across the network that is both decentralized and scalable.
Distributed Rate Limiting [28] considered a related prob-
lem, but focused on instantaneous limits (e.g., Mbps) in-
stead of long-term aggregate volumes and gossiped state
that is linear in both the number of domains and nodes.

M1 clients are redirected back to the origin, a proxy appends the query-
string coere on the location URL returned to the client.
Origins that use redirection scripts with CoralCDN check for this string to
prevent loops, per §4.1. Although not the default, operators of some sites
preferred this redirection home even if their domain was to blame (a pol-
icy they can specify through a X-Coral~-Control response header).

1
09 -
0.8 -
0.7 |
06
05
04
03
02
0.1

— \'Iia 1eve||2
Vialevel 1 :
«e+= Vialevel 0

CDF of RPC RTTs

00101 1 10
i P - a

Il aal
0.01 0.1 1 10
Time (seconds)

Figure 15: RPC RTTs to various levels of Coral’s DHT hierarchy.

0
0.0001 0.001

5.3 Managing performance jitter

Running on an oversubscribed deployment platform,
CoralCDN developed several techniques to better han-
dle latency variations. With PlanetLab services facing
high disk, memory, and CPU contention, and sometimes
additional traffic shaping in the kernel, applications can
face both performance jitter and prolonged delays. These
performance variations are not unique to PlanetLab, and
they have been well documented across a variety of set-
tings. For example, Google’s MapReduce [10] took run-
time adaption of cluster query processing [3] to the large-
scale, where performance variations even among homo-
geneous components required speculative re-execution of
work. More recently, studies of a MapReduce clone on
Amazon’s EC2 underscored how shared and virtualized
platforms provide new performance challenges [39].

CoralCDN saw the implications of performance vari-
ations most strikingly with its latency-sensitive self-
organization. For example, Coral’s DHT hierarchy was
based on nodes clustering by network RTTs. A node would
join a cluster provided some minimum fraction (85%) of
its members were below the specified threshold (30 ms for
level 2, 80 ms for level 1). Figure 15 shows the RTTs for
RPC between Coral nodes, broken down by levels (with
vertical lines added at 30ms, 80ms, and 1s). While the
clustering algorithms achieve their goals and local clusters
have lower RTTs, the heavy tail in all CDFs is rather strik-
ing. Fully 1% of RPCs took longer than 1 second, even
within local clusters. Coral’s use of concurrent RPCs dur-
ing DHT operations helped mask this effect.

Another lesson from CoralCDN’s deployment was the
need for stability in the face of performance variations.
This translated to the following rule in Coral. A node
would switch to a smaller (and hence less attractive) cluster
only if fewer than 70% of a cluster’s members now satisfy
its threshold, and form a singleton only if fewer than 50%
of neighbors are satisfactory. In other words, the barrier to
enter a cluster is high (85%), but once a member, it’s eas-
ier to remain. Before leveraging this form of hysteresis,
cluster oscillations were much more common, which led

13

& 4000 : i .
O 3500 4]
> 3000 | &
Q 2500 sl
g 2000 % u B, et e
B =0 PlanetLab: All Dests —— |
ﬁ 1000 |- PlanetLab: Non-PL Dests S
% H0r CoralCDN: HTTP «+ates:
(=] 0 1 1 1 H

916 917 918 9-19 920 921

Day
Figure 16: Comparison of PlanetLab’s accounting of all upstream
traffic, PlanetLab’s count to non-PlanetLab destinations, and Coral-
CDN'’s accounting through HTTP logs.

to many stale DHT references. A related use of hystere-
sis within self-organizing systems helped improve virtual
network coordinate systems for both PlanetLab [26] and
Azureus [20], as well as failure recovery in Bamboo [31].

6 Lessons for Platforms

With the growth of virtualized hosting and cloud deploy-
ments, Internet services are increasingly running on third-
party infrastructure. Motivated by CoralCDN’s deploy-
ment on PlanetLab, we discuss some benefits from im-
proving an application’s visibility into and control over its
lower layers. We first revisit CoralCDN’s bandwidth man-
agement from the perspective of fine-grained service dif-
ferentiation, then describe tackling its fault-tolerance chal-
lenge with adequate network support.

6.1 Exposing information and expressing
preferences across layers

We described CoralCDN’s bandwidth management as self-
regulating, which works well in trusted environments. But
many resource providers would rather enforce restrictions
than assume applications behave well™ Tmiteed; 72606,
PlanetLdb began enforcing average daily bandwidth limits
per node per service (i.e., per PlanetLab “sliver’”). When
a sliver hits 80% of-its limit—17.2 GB/day from each
server to the public Internet—the kernel begins enforcing
bandwidth caps (using Linux’s Hierarchical Token Bucket
scheduler) as calculated over Tive-minute epochs.

We now have the possibility of two levels of bandwidth
management: admission control by CoralCDN proxies and
rate limiting by the underlying hosting platform. Interest-
ingly, even though CoralCDN uses a relatively conserva-
tive limit for itself (10 GB/day per sliver), it still surpasses
the 80% mark (13.8 GB) on 5-10 servers per day (out of its
300-400 servers). The main cause of this overage is that,
while CoralCDN counts only successful HTTP responses,
its hosting E)_lfltform accounts for all tralfic—HTTP, DNS,
DHT RPCs, log transfers, packet headers, retransmissions,
etc.—generated by mmr er-
ence in these recorded values for the week of Sept 16,
2009. We see that kernel statistics were 50%-90% higher

————

lhwdwlﬂﬁng. This problem of accurate
accounting is a general one, as it is difficult or expensive
to collect such data in user-space.'> And even accurate in-
formation does not prevent CoralCDN’s managed HTTP
traffic from competing for network resources with the rest
of its sliver’s unmanaged traffic.

We argue that hosting platforms should provide better
visibility and control. First, these platforms should export
greater information-to higher levels, such as their current
measured resource consumption in a machine-readable
format and in real time. Second, these platforms should
allow applications to push policies into lower levels, i.e.,
an application’s explicit preferences for handling differ-
ent classes of resources. For the specific case of network
resources, the platform kernel could apply priorities on a
granularity finer that just per-sliver, akin to a form of end-
host DiffServ; CoralCDN would prioritize DNS and DHT
traffic over HTTP traffic, in turn over log maintenance.

Note that we are concerned with a different type of re-
source management than that provided by VM hypervisors
or kernel resource containers [4]. Those systems focus
on short-term resource isolation or prioritized scheduling
between applications, and typically reason about coarse-
grain VM-level resources. Our focus instead is on long-
term resource accounting. PlanetLab is not unique here;
commercial cloud-computing providers such as Amazon
and Rackspace use long-term resource accounting for
billing purposes. (In fact, Amazon just launched its Cloud-
Watch service in June 2009 to expose real-time resource
monitoring on a coarser-grain per-VM basis [1].) Thus,
providing greater visibility and control would be useful
not only for deploying applications on platforms with hard
constraints (e.g., PlanetLab), but also for managing appli-
cations on commercial platforms so as to minimize costs
(e.g., in both metered and 95th-%ile billing scenarios).

6.2 Providing support for fault-tolerance

A central reliability issue in CoralCDN is due to its boot-
strapping problem: To initially resolve a Coralized URL
with no prior knowledge of system participants, a client’s
resolver must contact one of only 10-12 CoralCDN name-
servers registered with’fﬁﬁm If one
of these nameservers Tails—each IP address represents
a static PlanetLab server—clients experience long DNS
timeouts. Thus, while CoralCDN internally detects and
reacts quickly to failure, the same rapid recovery is not
enjoyed by its primary namese'r?é—l%fregistercd externally.
And once legacy clients bind 1o a particular proxy’s IP
address—e.g., web browsers cache name-to-IP mapping
to prevent certain types of “rebinding” attacks on the
/-—-—_-—‘—‘_‘_‘

121n fact, even Akamai servers only use an estimate of bandwidth con-
sumption (their so-called “fully-weighted bits”) when calculating server
load [22]. Only more recently did PlanetLab expose kernel accounting.

Same Origin Policy [9]—CoralCDN cannot recover for
this client if that proxy fails.

While certainly observed before, CoralCDN’s reliabil-
ity challenge underscores the limits of purely application-
layer recovery, especially as it relates to bootstrapping. In
the context of DNS-based bootstrapping, several possibil-
ities exist, including (1) dynamically updating root name-
servers to reflect changes, e.g., via the rarely-supported
RFC2136 [36], (2) announcing IP anycast addresses via
BGP or OSPF, or (3) using transparent network-layer
failover between colocated nameservers (e.g., ARP spoof-
ing or VIP/DIP load balancers). IP-level recovery between
proxies has its own solutions, but most commonly rely on
colocated servers in LAN environments. None of these
suggestions are new ones, but they still present a higher
barrier to entry; Planet.kz_lp did not have any available to it.

Deployment platforms should strive to provide or ex-
pose such network functionality to their services. Ama-
zon EC2’s launch of Elastic IP Addresses in March 2008,
for example, hid the complexity of ARP spoofing for VM
environments. The further development of such support
should be an explicit goal for future deployment platforms.

7 Conclusions and Looking Forward

Our retrospective on CoralCDN’s deployment has a rather
mixed message. We view the adoption of CoralCDN as
a successful proof-of-concept of how users can and will
leverage open APIs for CDN services. ButTmany of itsar-
chi[or its current en-
vironment and with its current workload: A much sim-
pler design could have sufficed with probably better per-
formance to boot.

e

That said, it is a entirely different question as to whether
CoralCDN provides a good basis for designing an Internet-
scale cooperative CDN. The service remained tied to Plan-
etLab because we desired a solution that was backwards
compatible with both unmodified clients and servers. Run-
ning on untrusted nodes seemed imprudent at best given
our inability to provide end-to-end security checks. We
have shown, however, that even running CoralCDN on
fully trusted nodes introduces some security concerns. So,
if we dropped the goal of full backwards compatibility,
what minimal changes could better support more open,
flexible infrastructure?

Naming. CoralCDN’s naming provided a layer of in-
direction for composing two loosely-coupled Internet ser-
vices. In fact, one could compose longer series of services
that each offer different functionality by simply chaining
together their domain names. While this technique would
not be safe under today’s Same Origin Policy, we showed
in §4.3 how a trusted proxy could constrain the default se-
curity policy. For a participating origin server with an un-

100

" Level 1 -
Level 0 ~ &

Origin —
Level 2

.‘ ;]
K " .“a " "\ ;‘lj.t ,,In‘s ‘h“
O R L iR S
;i‘ﬁ' @,g‘}_f W BT W WG

80)
1 A il
A A4
680 %

I
£t

L

40

0 50 100 150
Time (hour-long epochs)

20

Percentage from Level / Origin

0

200

Figure 17: Percentage of a proxy’s upstream requests satisfied by
origin and by peers at various clustering levels when regional coop-
eration is used, i.e., level-0 peers only serve as a failover from a faulty
origin. Dataset covers 10-day period from December 9-19, 2009.

16 [Ongin"—— TLevel1 e]
° a L?»'Ez Level 0 —8-
g y Foal
8 Ly 5 8 ‘——*-—-.-..._‘__‘/“—?‘"_"’"
o 3]
% g, § [F R L i OOl TR
g : 8
y s
H / P & 90-Oeog 4 poeg-a
-] =16
3 I CR N N, I J J
0 5 100 150 200 0 1 2 3 4 5 6 7 8B 9
Time (hour-dong epochs) Tima (day-long epochs)

Figure 18: Change in percentage between regional cooperation pol-
icy (Figure 17) and CoralCDN’s traditional global peering. Positive
values correspond to increased hit rates in regional peering.

trusted CDN, the origin should specify (and sign) its min-
imally required domain suffix of origin.tld.*.

Content Integrity. Today’s CDNs are full-fledged mem-
bers of a website’s trusted computing base. They have free
reign to return modified content. Often, they can even pro-
grammatically read and modify any content served directly
from a customer website to its clients (either by serving
embedded <script>’s or by playing SOP tricks while
masquerading as their customer behind a DNS alias). To
provide content delivery via untrusted nodes, the natural
solution is an HTTP protocol that supports end-to-end sig-
natures for content integrity [30]. In fact, even a browser
extension would suffice to deploy such security [35].

Fine-Grain Origin Control. A tension in this paper
is between client latency and server load, underscored by
our varied usage scenarios. An appropriate strategy for
interacting with a well-provisioned server is a minimal at-
tempt at cooperation before contacting the origin. Yet, an
oversubscribed server wants its clients to make a maximal
effort at cooperation. So far, proxies have used a “one-
size-fits-all” approach, treating all origins as if they were
oversubscribed. Instead, much as they have adopted dy-
namic URL rewriting, origin domains can signal a Coral-
CDN proxy about their desired policy in-band. At a high-
level, this argues for a richer API for elastic CDN services.

To explore the effect of regional cooperation, we
changed the default lookup policy on about half the de-
ployed CoralCDN proxies since September 2009. If re-

a — Region-50% el
2 80 Global-50% - 3 4
2 s Region-90% “.“ |
3 60 [Global-90% £ 5 R
o Region-99% § ¢
& 40 Global-99% i .
= W J
8 a0l 1
e < s
0 " e nhmsri?
10 100 1000 10000
Latency (ms)

Figure 19: CDF of median, 90th percentile, and 99th percentile
lookup latency (over all hour-long epochs of Dec 9-19, 2009), com-
paring regional and global cooperation policies. Individual lookups
were configured with a five-second timeout.

quested content is not already cached locally, these prox-
ies only perform lookups within local and regional clusters
(level 2 and 1) before contacting the origin. For proxies
operating under such a policy, Figure 17 shows the per-
centage of upstream requests that were satisfied by the
origin and at different levels of clusters. Figure 18 de-
picts the change in behavior compared to the traditional
global lookup strategy, showing that the 10~12% of re-
quests that had been satisfied by level-0 proxies shifted to
higher hit rates at both the origin and local proxies.'? This
change was associated with an order-of-magnitude latency
improvement for the Coral lookup, shown in Figure 19.
The global index still provides some benefit to the system,
however, as per Figure 17, it satisfies an average of 0.56%
of requests (stddev 0.51%) that failed over from origin
servers. In summary, system architectures like CoralCDN
can support different policies that trade-off server load for
latency, yet still mask temporary failures at origins.

While perhaps imperfectly suited for a smaller-scale
platform like PlanetLab, CoralCDN’s architecture pro-
vides interesting self-organizational and hierarchical prop-
erties. This paper discussed many of the challenges—in
security, availability, fault-tolerance, robustness, and, per-
haps most significantly, resource management—that we
needed to address during its five-year deployment. We
believe that its lessons may have wider and more lasting
implications for other systems as well.

Acknowledgments. We are grateful to David Maziéres
for his significant contributions and support during the de-
sign and operation of CoralCDN. We also thank Larry Pe-
terson and the entire PlanetLab team for providing a de-
ployment platform for CoralCDN. CoralCDN was origi-
nally funded as part of Project IRIS (supported by the NSF
under Coop. Agreement #ANI-0225660) and recently un-
der NSF Award #0904860. Freedman was also supported
by an NDSEG Fellowship. More information about Coral-
CDN can be found at www.coralcdn.org.

BThese graphs also show interesting diurnal patterns, related to a de-
fault expiry time of 12 hours for content.

References

(1
[2]

3
14]
[5]
6]
(7]
(8]
9
(10}

[11]
(12

[13]
[14)

[15]

[16]

[17)

(18]
(19}
[20
[21]

(22]
[23]

[24)
[25)
[26)

[27)
(28]

(29
[30)

[31)

(32)

133

(34)

[35]
(36)
(37)

[38]

- [39]

Amazon CloudWatch. http://aws.amazon.com/cloudwatch/, 2009.

S. Annapureddy, M. J. Freedman, and D. Mazigres. Shark: Scaling file servers
via cooperative caching. In NSDI, 2005.

R. H. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans. Computer
Systems, 21(1), 2003.

G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for
resource management in server systems. In OSDI, 1999.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
Zipf-like distributions: Evidence and implications. In INFOCOM, 1999,

J. Burke. Cross domain frame communication with fragment identifiers.
http:/ftagneto.blogspot.com/, June 6, 2006.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A
hierarchical Internet object cache. In USENIX Annual, 1996.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. In SOSP, 2001.

D. Dean, E. W. Felten, and D. S. Wallach. Java security: from hotjava to
netscape and beyond. In Symp. Security and Privacy, 1996.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In OSDI, 2004.

Dijjer. http://code.google.com/p/dijjer/, 2010.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In USENIX Security, 2004.

M. J. Freedman and D. Maziéres. Sloppy hashing and self-organizing clusters.
In IPTPS, 2003.

M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratizing content
publication with Coral. In NSDI, 2004.

E. Freudenthal, D. Herrera, S. Gutstein, R. Spring, and L. Longpre. Fern: An
updatable authenticated dictionary suitable for distributed caching. In MMM-
ACNS, 2007,

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed file
system. ACM Trans. Computer Systems, 6(1):51-81, 1988.

D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web. In STOC, 1997,

D. Kristol and L. Montulli. RFC 2965: HTTP state management mechanism,
2000.

A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. RFC 1536: Com-
mon DNS errors and suggested fixes, 1993.

J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates in the wild. In
NSDI, 2007.

A. Lieuallen, A. Boodman, and J. Sundstrom.
hitps:/faddons.mozilla.org/en-US/firefox/addon/748, 2010.
B. Maggs. Personal communication, 2009.

P. Maymounkov and D, Mazitres. Kademlia: A peer-to-peer information
system based on the xor metric. In /PTPS, 2002,

V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web:
An open proxy's view. In HorNets, 2003. .

K. Park and V. S. Pai. Scale and performance in the CoBlitz large-file distri-
bution service. In NSDI, 2006.

P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordinates on
planetlab. In WORLDS, 2005.

PlanetLab. http://www.planet-lab.org/, 2010.

B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. Snoeren.
Cloud control with distributed rate limiting. In SIGCOMM, 2007.
RedSwoosh. hup:/fwww.akamai.com/redswoosh, 2009.

E. Rescorla and A. Schiffman. RFC 2660: The secure hypertext transfer
protocol, 1999.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.
In USENIX Annual, 2004,

H. Robents, E. Zuckerman, and J. Palfrey. 2007 circumvention landscape re-
port: Methods, uses, and tools. Technical report, Berkman Center for Internet
& Society, Harvard, 2009.

J. H. Saltzer and M, D. Schroeder. The protection of information in computer
systems. Proc. IEEE, 93(9), 1975.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup proto-
col for Internet applications. IEEE/ACM Trans. Network., 11(1):17-32, 2003.
J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freedman. Bringing P2P
to the Web: Security and privacy in the Firecoral network. In IPTPS, 2009.
P. Vixie, 8. Thomson, Y. Rekhter, and J. Bound. RFC 2136: Dynamic Updates
in the Domain Name System, 1997.

L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on
CDN robustness. In OSDI, Dec 2002.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On
the scale and performance of cooperative web proxy caching. In SOSP, 1999.
M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
map-reduce performance in heterogeneous environments. In OSDI, 2008.

Greasemonkey.

(0N Mj

IHT

/__/

Jotp s (b tul) 6 diibded syl
d‘(’/y / ‘/QIVE’/}

oy nﬂé&

50 (an yliile Sl
(o l/\undk déb(«/f H"/‘)

Uﬁeml th“']\offe'bb (ol CONV

W%Pé}&f hid bl Comer

()@UJfE“q] 0t chCJ&;f o Qlyi
F reont W}

il heys gn (afﬁvjn yode,
Uly oxack o Saycl
lwz oparg
l“‘t 5p e P oy
O‘/Q(L“l ngtunl, *(U‘Meoh fk ow{@

e e localit, ~ Py [\aslx@
Lbinl R

D%«\ £o soncly qfeedf S6md o mgkéw
\f’L‘“@ 10t clogst ey “hused Mf/ty

Wt l/w\ej low

Worst (ase OOL;M \

Coral Content Distribution Network - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Coral_Content Distribution Network

Coral Content Distribution Network

From Wikipedia, the free encyclopedia

The Coral Content Distribution Network, sometimes

called Coral Cache or Coral, is a free peer-to-peer Lo Eoatent Distribubion Network .

content distribution network designed and operated by - >TSS ayYel

Michael Freedman. Coral uses the bandwidth of a AW t g !y
p . e W N N 1 B3P

world-wide network of web proxies and nameservers to N

mirror web content, often to avoid the Slashdot Effect or Developer(s) Michael Freedman

to reduce the general load on websites servers in general. il rekaye 2004

Development status Active

C ontents Operating system Cross-platform (web-based
application)

= | Operation Type P2P Web cache
= 2 Usage
L8 Hist?)ry Website www.coralcdn.org
= 4. 856 glss (http://www.coralcdn.org/)
= 5 External links

Operation

One of Coral's key goals is to avoid ever creating 'hot spots' of very high traffic, as these might dissuade
volunteers from running the software out of a fear that spikes in server load may occur. It achieves this
through an indexing abstraction called a distributed sloppy hash table (DSHT); DSHTs create self-organizing
clusters of nodes that fetch information from each other to avoid communicating with more distant or
heavily-loaded servers.

The sloppy hash table refers to the fact that coral is made up of concentric rings of distributed hash tables
(DHTs), each ring representing a wider and wider geographic range (or rather, ping range). The DHTs are
composed of nodes all within some latency of each other (for example, a ring of nodes within 20
milliseconds of each other). It avoids hot spots (the 'sloppy’ part) by only continuing to query progressively
larger sized rings if they are not overburdened. In other words, if the two top-most rings are experiencing too
much traffic, a node will just ping closer ones: when a node that is overloaded is reached, upward
progression stops. This minimises the occurrence of hot spots, with the disadvantage that knowledge of the
system as a whole is reduced.

Requests from users are directed to a relatively close node, which then finds the file on the coral DSHT and
forwards it to the user.

Usage

A website can be accessed through the Coral Cache by adding . nyud.net to the hostname in the site's URL,
resulting in what is known as a 'coralized link'. So, for example,

1 of3 4/8/2012 7:37 PM

Coral Content Distribution Network - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Coral_Content_Distribution_Network

http://example.com
becomes
http://example.com.nyud.net
Any additional address component after the hostname remains after .nyud.net; hence
http://example.com/folder/page.html
becomes
http://example.com.nyud.net/folder/page.html
For websites that use a non-standard port, for example,
http://example.com:8080
becomes

http://example.com.8080.nyud.net
History

The project has been deployed since March 2004, during which it has been hosted on PlanetLab, a
large-scale distributed research network of several hundred servers deployed at universities world wide. It
has not, as originally intended, been deployed by third-party volunteer systems. About 300-400 PlanetLab

servers are currently running CoralCDN. The source code is freely available under the terms of the GNU
GRL:

Coral Cache gained widespread recognition in the aftermath of the 2004 Indian Ocean earthquake, when it

was used to allow access to otherwise inaccessible videos of the resulting tsunami.l/f@ion needed]

See also

= CoDeeN
= Globule (CDN)
= Content Delivery Network

External links

CoralCDN Project (http://www.coralcdn.org/)

Academic paper (NSDI 04) describing CoralCDN (http://www.coraledn.org/docs/coral-nsdi04.pdf)
Design of CoralCDN (http://sns.cs.princeton.edu/2009/04/the-design-of-coralcdn/)

Michael Freedman's academic homepage (http://www.cs.princeton.edu/~mfreed/)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Coral Content Distribution Network&
oldid=480543324"

20f3 4/8/2012 7:37 PM

Distributed hash table - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Distributed_hash_table

Distributed hash table

From Wikipedia, the free encyclopedia

A distributed hash table (DHT) is a class of a decentralized distributed system that provides a lookup service similar to a hash table; (key, value) pairs are stored in a
DHT, and any participating node can efficiently retrieve the value associated with a given key. Responsibility for maintaining the mapping from keys to values is
distributed among the nodes, in such a way that a change in the set of participants causes a minimal amount of disruption. This allows a DHT to scale to extremely large
numbers of nodes and to handle continual node arrivals, departures, and failures.

DHTs form an infrastructure that can be used to build more complex services, such as anycast, cooperative Web caching, distributed file systems, domain name services,
instant messaging, multicast, and also peer-to-peer file sharing and content distribution systems. Notable distributed networks that use DHTs include BitTorrent's
distributed tracker, the Coral Content Distribution Network, the Kad network, the Storm botnet, and YaCy.

Content Data Key Distributed
BN Eirashani . Network
: | function r—“i::ﬂ:m: 3454
= 2 Properties
= 3 Structure

= 3.1 Keyspace partitioning
= 3.2 Overlay network
= 3.3 Algorithms for overlay networks
= 4 DHT implementations
= 5 Examples !
= 5.1 DHT protocols and implementations : Distributed hash tables
= 52 Applications employing DHTs
= 6 See also
= 7 References
= § External links

History

DHT research was originally motivated, in part, by peer-to-peer systems such as Freenet, gnutella, and Napster, which took advantage of resources distributed across the
Internet to provide a single useful application. In particular, they took advantage of increased bandwidth and hard disk capacity to provide a file-sharing service.

These systems differed in how they found the data their peers contained:

= Napster, the first large-scale P2P content delivery system to exist, had a central index server: each node, upon joining, would send a list of locally held files to the

server, which would perform searches and refer the querier to the nodes that held the results. This central component left the system vulnerable to attacks and
lawsuits.

= Gnutella and similar networks moved to a flooding query model—in essence, each search would result in a message being broadcast to every other machine in the
network. While avoiding a single point of failure, this method was significantly less efficient than Napster,
= Finally, Freenet is fully distributed, but employs a heuristic key-based routing in which each file is associated with a key, and files with similar keys tend to cluster

on a similar set of nodes. Queries are likely to be routed through the network to such a cluster without needing to visit many peers.“] However, Freenet does not
guarantee that data will be found.

Distributed hash tables use a more structured key-based routing in order to attain both the decentralization of Freenet and gnutella, and the efficiency and guaranteed
results of Napster. One drawback is that, like Freenet, DHTs only directly support exact-match search, rather than keyword search, although Freenet's routing algorithm
can be generalized to any key type where a closeness operation can be defined.!?)

In 2001, four systems—CAN, Chord,?! Pastry, and Tapestry—ignited DHTs as a popular research topic, and this area of research remains active. Outside academia, DHT
technology has been adopted as a component of BitTorrent and in the Coral Content Distribution Network.

Properties

DHTs characteristically emphasize the following properties:
= Decentralization: the nodes collectively form the system without any central coordination.
= Fault tolerance: the system should be reliable (in some sense) even with nodes continuously joining, leaving, and failing,
= Scalability: the system should function efficiently even with thousands or millions of nodes.

A key technique used to achieve these goals is that any one node needs to coordinate with only a few other nodes in the system — most commonly, O(log n) of the 12
participants (see below) — so that only a limited amount of work needs to be done for each change in membership.

Some DHT designs seek to be secure against malicious participa.nts['” and to allow participants to remain anonymous, though this is less common than in many other
peer-to-peer (especially file sharing) systems; see anonymous P2P.

Finally, DHTs must deal with more traditional distributed systems issues such as load balancing, data integrity, and performance (in particular, ensuring that operations
such as routing and data storage or retrieval complete quickly).

Structure

The structure of a DHT can be decomposed into several main componenls.[s 1] The foundation is an abstract keyspace, such as the set of 160-bit strings. A keyspace

partitioning scheme splits ownership of this keyspace among the participating nodes. An overlay network then connects the nodes, allowing them to find the owner of
any given key in the keyspace.

1 of 4 4/8/2012 7:38 PM

Distributed hash table - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Distributed hash_table

Once these components are in place, a typical use of the DHT for storage and retrieval might proceed as follows. Suppose the keyspace is the set of 160-bit strings. To
store a file with given filename and datg in the DHT, the SHA-1 hash of filename is generated, producing a 160-bi key [, and a message put(k. data) is sent
to any node participating in the DHT. The message is forwarded from node to node through the overlay network until it reaches the single node responsible for key f: as
specified by the keyspace partitioning That node then stores the key and the data. Any other client can then retrieve the contents of the file by again hashing filename
to produce J: and asking any DHT node to find the data associated with f: with a message gct(ﬁ:). The message will again be routed through the overlay to the node
responsible for f;, which will reply with the stored data.

The keyspace partitioning and overlay network components are described below with the goal of capturing the principal ideas common to most DHTs; many designs differ
in the details.

Keyspace partitioning

Most DHTS use some variant of consistent hashing to map keys to nodes. This technique employs a function §(&, , k5) that defines an abstract notion of the distance
between the keys % and ko, which is unrelated to geographical distance or network latency. Each node is assigned a single key called its identifier (ID). A node with ID
i, owns all the keys k,y, for which i, is the closest ID, measured according to & (ki 7.)-

Example. The Chord DHT treats keys as points on a circle, and §(&y, k) is the distance traveling clockwise around the circle from Ay to k. Thus, the
circular keyspace is split into contiguous segments whose endpoints are the node identifiers. If {; and 7, are two adjacent IDs, then the node with ID 7, owns
all the keys that fall between #, and i,.

Consistent hashing has the essential property that removal or addition of one node changes only the set of keys owned by the nodes with adjcent IDs, and leaves all other
nodes unaffected. Contrast this with a traditional hash table in which addition or removal of one bucket causes nearly the entire keyspace to be remapped. Since any
change in ownership typically corresponds to bandwidth-intensive movement of objects stored in the DHT from one node to another, minimizing such reorganization is
required to efficiently support high rates of churn (nede arrival and failure).

Locality-preserving hashing ensures that similar keys are assigned to similar objects. This can enable a more efficient execution of range queries. Self-Chord (7 decouples
object keys from peer IDs and sorts keys along the ring with a statistical approach based on the swarm intelligence paradigm. Sorting ensures that similar keys are stored
by neighbour nodes and that discovery procedures, including range queries, can be performed in logarithmic time.

Overlay network

Each node maintains a set of links to other nodes (its neighbors or routing table). Together, these links form the overlay network. A node picks its neighbors according to
a certain structure, called the network's topology.

All DHT topologies share some variant of the most essential property: for any key };, each node either has a node ID that owns j or has a link to a node whose node ID is
closer to [, in terms of the keyspace distance defined above. It is then easy to route a message to the owner of any key /£ using the following greedy algorithm (that is not
necessarily globally optimal): at each step, forward the message to the neighbor whose ID is closest to k. When there is no such neighbor, then we must have arrived at
the closest node, which is the owner of }: as defined above. This style of routing is sometimes called key-based routing

Beyond basic routing comrectness, two important constraints on the topology are to guarantee that the maximum number of hops in any route (route length) is low, so that
requests complete quickly; and that the maximum number of neighbors of any node (maximum node degree) is low, so that maintenance overhead is not excessive. Of
course, having shorter routes requires higher maximum degree. Some common choices for maximum degree and route length are as follows, where 12 is the number of
nodes in the DHT, using Big O notation:

Degree | Routelength | ~ Notice
o(1) |0 ,
'O('logn)g O(logn/log(logn)) ‘
O(Vl()é n) O(k)g n) most common, but notoplimﬁl (degrec."roulelcnglh)

0(1) O(logn)
O(v/n) O(1)

The most commeon choice, O(log n.) degree/route length, is not optimal in terms of degree/route length tradeofT, as such topologies typically allow more flexibility in
choice of neighbors. Many DHTs use that flexibility to pick neighbors that are close in terms of latency in the physical underlying network.

Maximum route length is closely related to diameter: the maximum number of hops in any shortest path between nodes. Clearly, the network's worst case route length is
at least as large as its diameter, so DHTs are limited by the degree/diameter tradeofil®] that is fundamental in graph theory. Route length can be greater than diameter,
since the greedy routing algorithm may not find shortest par.hs,m

Algorithms for overlay networks

Aside from routing, there exist many algorithms that exploit the structure of the overlay network for sending a message to all nodes, or a subset of nodes, ina DHT.[?
These algorithms are used by applications to do overlay multicast, range queries, or to collect statistics. Two systems that are based on this approach are Structella,['"]
which implements flooding and random walks on a Pastry overlay, and DQ-DHT,“Z] which implements a dynamic querying search algorithm over a Chord network.

DHT implementations

Most notable differences encountered in practical instances of DHT implementations include at least the following:

= The address space is a parameter of DHT. Several real world DHTSs use 128-bit or 160-bit key space

= Some real-world DHTs use hash functions other than SHA-1.

= In the real world the key £ could be a hash of a file's content rather than a hash of a file's name to provide content-addressable storage, so that renaming of the file
does not prevent users from finding it.

= Some DHTs may also publish objects of different types. For example, key } could be the node [[and associated data could describe how to contact this node.
This allows publication-of-presence information and often used in IM applications, etc. In the simplest case, J) is just a random number that is directly used as

2 of4 4/8/2012 7:38 PM

Distributed hash table - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Distributed_hash_table

key k (so ina 160-bit DHT [[} will be a 160-bit number, usually randomly chosen). In some DHTS, publishing of nodes 1Ds is also used to optimize DHT

operations.

Redundancy can be added to improve reliability. The (&, dafa) key pair can be stored in more than one node corresponding to the key. Usually, rather than

selecting just one node, real world DHT algorithms select 7 suitable nodes, with ; being an implementation-specific parameter of the DHT. In some DHT designs,
nodes agree to handke a certain keyspace range, the size of which may be chosen dynamically, rather than hard-coded.

Some advanced DHTs like Kademlia perform iterative lookups through the DHT first in order to select a set of suitable nodes and send put(k, data) messages

only to those nodes, thus drastically reducing useless traffic, since published messages are only sent to nodes that seem suitable for storing the key J; and iterative
lookups cover just a small set of nodes rather than the entire DHT, reducing useless forwarding. In such DHTs, forwarding ofput(k, data) messages may only
occur as part of a self-healing algorithm: if a target node receives a put(k, da.‘,a) message, but believes that £ is out of its handled range and a closer node (in
terms of DHT keyspace) is known, the message is forwarded to that node. Otherwise, data are indexed locally. This leads to a somewhat self-balancing DHT
behavior. Of course, such an algorithm requires nodes to publish their presence data in the DHT so the iterative lookups can be performed.

Examples

DHT protocols and implementations

= Apache Cassandra

= BitTorrent DHT (based on Kademlia as provided by Khashnﬁrm])
» CAN (Content Addressable Network)

» Chord

= Kademlia

= Pastry

= P-Grid

» Tapestry

= TomP2P

Applications employing DHT

= BTDigg: BitTorrent DHT search engine

» CloudSNAP: a decentralized web application deployment platform
= Codeen: Web caching

= Coral Content Distribution Network

= Dijjer: Freenet-like distribution network

= FARQO: Peer-to-peer Web search engine

= Freenet: A censorship-resistant anonymous network

= GNUnet: Freenet-like distribution network including a DHT implementation

= JXTA: Opensource P2P platform

= maidsafe: C++ implementation of Kademlia, with NAT traversal and crypto libraries. On its home page listed as " Available as a technology licence and a software

solution written in cross platform C+"14]

= Oracle Coherence: An In Memory Data Grid built on a Java DHT implementation

= Retroshare: a Friend-to-friend network(1%]

= WebSphere eXtreme Scale: proprietary DHT implementation by IBM,['G] used for object caching

= YaCy: distributed search engine

See also

membase: a persistent, replicated, clustered distributed object storage system compatible with memcached protocol

n

= memcached: a high-performance, distributed memory object caching system
= NCache: a high-performance, distributed in-memory object caching system
L
n

prefix hash tree: sophisticated querying over DHTs
most distributed data stores employ some form of DHT for lookup.

References

1. * Searching in a Small World Chapters I & 2 (https://freenetproject.org/papers
Nic.pdf) , https://freenetproject.org/papers/lic.pdf, retrieved 2012-01-10
2. ~ "Section 5.2.2" (https://freenetproject.org/papers/ddisrs.pdf) , A Distributed

Decentralized Information Storage and Retrieval System, hups://freenetproject.org

/papers/ddisrs.pdf, retrieved 2012-01-10
3. ~ Han Balakrishnan, M. Frans Kaashoek, David Karger, Robert Moris, and lon

Stoica. Looking up data in P2P systems (http://www.cs.berkeley.edu/~istoica/papers

12003/cacm03.pdf) . In Communications of the ACM, February 2003,
4. * Guido Urdaneta, Guillaume Pierre and Maarten van Steen. A Survey of DHT

Security Techniques (http://www.globule.org/publi/SDST _acmes2009.html) . ACM

Computing Surveys 43(2), January 2011.
5. ~ Moni Naor and Udi Wieder. Novel Architectures for P2P Applications: the

Continuous-Discrete Approach (http://www. wisdom.weizmann.ac.il/~naor/PAPERS

/dh.pdf) . Proc. SPAA, 2003,

6. ™ Gurmeet Singh Manku. Dipsea: A Modular Distributed Hash Table (http:/www-

db.stanford.eduw/~manku/phd/index.html) . Ph. D. Thesis (Stanford University),
August 2004,
7. ~ Agostino Forestiero, Emilio Leonardi, Carlo Mastroianni and Michela Meo.

Self-Chord: a Bio-Inspired P2P Framework for Self-Organizing Distributed Systems

(http://dx.doi.org/10.1109/TNET.2010.2046745) . IEEE/ACM Transactions on
Networking, 2010.

8. ~ The (Degree,Diameter) Problem for Graphs (http://maite71.upc.es/grup_de_grafs

3 of4

/table_g.html) , Maite71.upc.es, http://maite7 1.upc.es/grup_de_grafs/table_g.html,
retrieved 2012-01-10

. Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy Neighbor's

Neighbor: the Power of Lookahead in Randomized P2P Networks
(http://citeseer.ist.psu.edwnaor04know.html) . Proc. STOC, 2004.

. ™ Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables

(http://www.sics.se/~ali/thesis/) . KTH-Royal Institute of Technology, 2006.

. ™ Miguel Castro, Manuel Costa, and Antony Rowstron. Should we build Gnutella on

a structured overlay? (http://dx.doi.org/10.1145/972374.972397) . Computer
Communication Review, 2004,

. " Domenico Talia and Paolo Trunfio. Enabling Dynamic Querying over Distributed

Hash Tables (http://dx.doi.org/10.1016/j.jpdc.2010.08.012) . Journal of Parallel and
Distributed Computing, 2010,

. * Tribler wiki (http://www.tribler.org/trac/wiki/Khashmir) retrieved January 2010.
. ™ maidsafe-dht (http://code.google.com/p/maidsafe-dht/) , Code.google.com,

http://code.google.com/p/maidsafe-dht/, retrieved 2012-01-10

. " Retroshare FAQ (http://retroshare.sourceforge.net/wiki/index.php

/Frequently_Asked_Questions#4-1_How_does_RetroShare_know_my _friend.27s_IP.
retrieved December 2011

.~ Billy Newport, IBM Distinguished Engineer (http://www.devwebsphere.com

/devwebsphere/2010/01/implementing-global-indexes-on-websphere-extreme-
scale.html) retrieved October 2010.

4/8/2012 7:38 PM

Distributed hash table - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Distributed_hash_table

External links

= Distributed Hash Tables, Part 1 (http:/linuxjournal.com/article/6797) by Brandon Wiley.
= Distributed Hash Tables links (http2//deim.urv.cat/~cpairot/dhts.html) Carles Pairot's Page on DHT and P2P research
= kademlia.scs.cs.nyu.edu (http://web.archive.org/web/*/http://kademlia.scs.cs.nyu.edu/) Archive.org snapshots of kademlia.scs.cs.nyu.edu
Hazelcast (http//code.google.com/p/hazelcast/) open source DHT implementation
scaledj (http//code.google.com/p/scaled;) highly scalable domain oriented data-distributed platform for java
IEEE Survey on overlay network schemes (http://citeseerx.ist.psu.edwviewdoc/download?do10.1.1.111.4197 &rep=rep1 &type=pdf) covering unstructured and

structured decentralized overlay networks including DHTs (Chord, Pastry, Tapestry and others) by Eng-Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma and
Steve Lim.

Retrieved from "http//en.wikipedia.org/w/index phpMitle=Distributed_hash_table&oldid=485134116"
Categories: Distributed data storage | File sharing

= This page was last modified on 2 April 2012 at 09:49.

= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

4 of 4 4/8/2012 7:38 PM

(1033 Rakithn 1

Dpl o

(dn ?(Uj{m(l,J/ dqyo% vd/ Qudgp}lﬁ [Qo&hﬂﬂ"l
)
pt(,L\ L/W[pwm (L\(ﬁ L o Ted o7 Tang)

oal OV

i s =
(ontert Jifeybobi hefwall
Alama
Sfoe £l W"/

DHT "fL Muzm(% W*’/”

/
B‘j 6%‘044 Cam wlr\ﬁf] \/Lcﬁfu geC(WL;] /, 7[(U\/@/}IL L/Dw’l

%/K%L%L '!foo Mn7 PGGP{(’_ h(@i fn 5€7L In

W { dll POl il
lW‘dﬂ ‘FF {an Wpuidr 6)‘&7

Gt gt Slush Doied
MNJN\NS N P(fme} L@

~on MV(’/SL7 Cqm o

oaddey Gntilfe 5 machwe
% 6ty ‘w}m-[/ TTL ok

59 (/nh/(fﬁlJ[G; (q ﬂw*(/k {9:9 CoS

?[0.(; ‘Dqt‘-‘]]és.ﬁ h{lz pGlP@f ;} at,/l /"l()dﬂ/’flj r 9/94,”’/7

- (el 4 on Afuchre
)@rlﬁam{(CJM(S@ on ()8@&5

Ut ahot Joca] il st
ket i o+ by DS f man 57
b ol Chungg, UM
Wit 5 saag b, o el DS s

HL Pm,dé YO\/ ”kngw} (ovom;r /wn/][a!
{c ¢ ‘Mdaw\
0 o £0biy

}Jﬁ{o& \i\d l%} /9 m@(‘

G
)i s Tobl
loy \abe)
(N,
it ks f e s bal
[k tgs o affe 20 4e

ﬁ nb el otaage, 99 Ml/m[0
7L“’ beg of Ty hed it

I S
L\/m, Q{Q{MHA?]’\a,f;nj N ,ﬂ/@ Annonte Thaf-
Visithg 0 (i

Papﬂ’ %lt({ Many 01[N Use, e T wal'/y
Te Spbow % b paim‘ﬂ‘oc(

AAA o\/arllv\c'” {or f [a@h (/WJ&

Wi ddet haw all Pl (T
as by JqH B of gl Contel

0 ne(e

M dg Do [YAB on each govl
D[it 4" Uéei A A g @&p@of@d

St] 15 b Wloe Ta sttt

I&} [/er m ;}ﬂ hﬂfﬂ
B b wodly, dge b fosh

Tk fble o)
DHT 0(g rv)

e

MOHOPOIV ZMﬂ;AO by /0/’((0?6{\ /rf) Xﬂd){ g(W(,ce,

