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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
0.034 Artificial Intelligence
Fall, 2011

Recitation 1, Thursday September 15

Rule-based systems: Forward and Backward Chaining Notes Prof. Bob Berwick, 32D-728

Forward Chaining

You can think of the forward chaining process as that of filtering a (finite) set of rules to find the one that is
applicable, then firing the rule, i.e., carrying out that rule's consequent, to change the state of the world. The state of
the world is represented as a set of database assertions (DB), which are statements about what is true in the world.
You might want to think about how ‘deeply’ the rules actually encode the state of knowledge about a particular
situation, for example, the grocery bagging rules. How robust or fragile are they? How could you improve them?

General Forward Chaining Pseudo-code

1. For all rules and assertions, find all marches, that is, Rule+Assertion combinations. (To do this, you check a a
rule’s variables against all assertions in the DB to find bindings that make all the antecedents of a rule match one or
more assertions in the database, thereby making the rule true).

2. Check if any of the matches are defunct. ’
A defunct match is one where the consequents from the match are already in the assertion database.

3. Fire the first non-defunct match & add its consequents to the assertion database. (Note that if there is more than
one non-defunct rule, one must have some conflict resolution method for picking a single rule to fire. Here we have
used the order in which rules have matched, following the way they are listed. But one might pick the last rule, or
the most recently used rule, or... what clse?)

4. Go to Step 1 and repeat until no more matches fire.

Note 1: If you always choose the first matched rule instance, it’s terribly inefficient to compute the entire set of
matched rule instances. (Suppose the system has many thousands of rules and assertions. Most of the time, only a
few of these will be in play.) If you use a different conflict resolution technique, however, you might very well need
to look at the entire list. Here we assume that all the matched rule instances are computed.

Note 2: If rules contain DELETE actions, then assertions may be removed from the DB, so matches in Step 2 may
become ‘un’-defuncted. This adds greatly to the power of such a system, as we remark below.

Deduction Rule Systems vs. Production Rule Systems
Note 3: A deduction system only adds assertions; a production system can both add and delete assertions. (So in
class Winston called production systems ‘general programming languages’ — meaning that they can do anything that
a general-purpose computer can do. Why do you think this is?)

A deduction rule system will always converge to the same result except in the case of STOP assertions and infinite
loop situations. (STOP assertions generally are not considered part of deduction systems.) What this means is that in
a deduction system, you could fire any number of matched rules before re-matching rules with assertions, as long as
you have a mechanism for making sure that the same assertion isn’t added to the database.

A production rule system will not always converge to the same result if the conflict resolution technique introduces
randomness into the order of rule execution. Production rule systems can add explicit STOP assertions, which stop
execution of the chainer, or DELETE assertions that would cause other rules to be matched.

A rule with a consequent that stops the chaining is an example of representing knowledge about the problem-solving
process itself, a kind of ‘meta-knowledge.” You might contrast this sort of rule with ones that represents knowledge
about the state of the world. How would you add learning to such systems?

14



Backward Chaining
For this class we will always assume that our backward chainers are trying to prove the truth of a conclusion, also
called a goal or hypothesis. In the process, they construct a so-called AND-OR goal-tree.

General Backward Chaining Pseudo-code
1. First try to find an assertion in the DB that matches the current goal; if one exists, exit with rrue.

2. Otherwise, we want to see what rules can produce the goal, by matching the consequents of those rules against the
goal. All the consequents that match are possible options, so we collect the results together in an OR node. If there
are no matches, the current goal is a leaf that is false. (We might have the system ask the user as to the truth or
falsity of the goal in this case, but we don’t do that here.)

3. For each matching consequent, keep track of the variables that are bound. Look up the antecedent of that rule, and
instantiate those same variables in the antecedent, resulting in a new goal. The antecedent may have AND or OR
expressions, and so form an AND-OR node subgoal tree as appropriate.

4. Recursively backward chain on each subtree. (Note that we can short-circuit the evaluation of AND or OR nodes:
if any AND subgoal is false, the entire tree of subgoals it is a part of must be false, and the other subgoals do not
need to be evaluated; we can return false immediately from this subgoal tree; conversely, if any OR subgoal is true,
the entire tree of subgoals 1t is a part of must be true, and the other subgoals do not need to be evaluated; we can
return true immediately from this subgoal tree.)

Note that:
e The backward chainer tries rules in the order they appear in the database of rules.

e  Antecedents are tried’in the order the antecedents appear in cach rule.

e When backward chaining, a NOT clause matches if and only if there is NO matching assertion in the list of
assertions, and rules that connect assertions in the list of assertions to the NOT clause. Question: what about
rule conflict resolution in this situation?

Forward vs. Backward Chaining
Many rule systems can chain either forward or backward, but which direction is better? There are several rules-of-
thumb.

Most importantly, you want to think about how the rules relate facts to conclusions. Whenever the rules are such
that a typical set of facts can lead to many conclusions. your rule system exhibits a high degree of “fan-out,” and
argues for backward chaining. Whenever the rules are such that a typical hypothesis (i.e., a goal to be proven) can
lead to many questions, your rule system exhibits a high degree of “fan-in” and argues for forward chaining.
However, there are other considerations:

1. If the facts that you have or may establish may lead to a large number of conclusions, but the number of ways to
reach the particular conclusion in which you are interested is small, then there is more fan-out than fan-in, and you
should typically use backward chaining.

2. If the number of ways to reach the particular conclusion in which you are interested in is large, but the number of
conclusions that you are likely to reach is small, then there is more fan-in than fan-out, and you should typically use
forward chaining.

These are just rules-of-thumb. In many situations, however, neither fan-out nor fan-in dominates, leading to other
considerations: ;

3. If you have not yet gathered any facts, and you are interested in only whether one of many possible conclusions
1s true, use backward chaining.

4. If you already have in hand all the facts you are ever going to get, and you want to know everything that can be
concluded from those facts, use forward chaining.

Archeology: the first modern production rule system (circa 1949):
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9/15/11 Rule systems

Duncan Structivist is a protégé of world-renown architect Frank O. Gehry. In order to
win over patrons, Duncan designed a rule-based system which takes descriptions of
ordinary buildings and generates new descriptions of similar buildings designed with
Gehry’s distinctive style. Through careful knowledge engineering, Duncan has provided
the system with a way to identify candidates for new Gehry masterpieces.

He created the following rule set:

PO:

(IF ((? X) has non-reflective surfaces)

THEN (Gehrys (? X) cooks pigeons on the sidewalk))
Pl:

(IF ((? X) has many straight lines)

THEN ((? X) is functional)

(Gehrys (? X) has twisted tortured forms))

P2:

(IF (AND ((? X) is functional)

((? X) is not inspiring))

THEN ((? X) is boring))
P3:

(IF ((? X) is functional)

THEN (Gehrys (? X) is inspiring))
P4:

(IF (Gehrys (? X) has twisted tortured forms)

THEN (Gehrys (? X} is inspiring))
PS5

(IF (AND (Gehrys (? X) is inspiring)

(Gehrys (? X) cooks pigeons on the sidewalk))
THEN (Gehrys (? X) 1is a masterpiece))

A potential patron approached Duncan anonymously with tentative plans for two new
structures. Duncan captured the essentials of the plans in the following data set:

Al: (Strata-Center has many straight lines)
A2: (Strata-Center has non-reflective surfaces)
A3: (Pickler-Institute has shiny surfaces)
Ad4: (Pickler-Institute has many straight lines)



Part A: Forward Chaining

Essential assumptions for forward chaining:
® Assume rule-ordering conflict resolution.
® New assertions are added to the bottom of the data set.

® [fa particular rule matches assertions in the database in more than one way, the
matches are considered in the order corresponding to the top-to-bottom order of the
matched assertions. Thus, if a particular rule’s has an antecedent that matches both
Al and A2, the match with Al is considered first.

Part A.1. Duncan runs a forward chainer on the rules and assertions for 4 steps. (Hand
simulation).

Part A.2 In order not to distract would-be patrons with unnecessary details, Duncan makes the
following change to rule P3:

P3:
(IF ((? x) is functional)
THEN (Gehrys (? x) is inspiring)
DELETE ((? x) is functional))

Duncan runs a forward chainer on the rules and data set for 1000 steps. In this part of
the problem, however, you consider only the first two steps.

The data set is repeated on the next page for your convenience.

In the first step, circle the rules whose antecedents match the initial database:

PO Pl P2 P P4 P35

Also in the first step, circle the rule or rules whose antecedents match the initial database
in more than one way.

PO Pl P2 P3 P4 P5

What new assertion(s) is first added to or deleted from the database in the first step:




In the second step, again circle the rules whose antecedents match the database:
PO PIL P2 P3 P4 P53

In the second step, circle the rule that actually adds an assertion or deletes an assertion
from the database.

PO Pl P2 P3 P4 P5

What new assertion(s) is added to or deleted from the database in the second step:

Part A.3

After the forward chaining process started in A.2 has finished, has the assertion:

(Gehrys (? x) is a masterpiece))

been added to the data set for any binding(s) of the variable x? Provide a brief
explanation for your answer. If your answer is yes, be sure to include the bindings(s) of
the variable x.

The initial data set (repeated for your convenience):

Al: (Strata-Center has many straight lines)

AZ: (Strata-Center has non-reflective surfaces)
A3: (Pickler-Institute has shiny surfaces)

A4: (Pickler-Institute has many straight lines)



Part B: Backward chaining

Essential assumptions for backward chaining:

e When working on a hypothesis, the backward chainer first tries to find a matching

assertion in the database. If no matching assertion is found, the backward chainer

tries to find a rule with a matching consequent. If neither a matching assertion nor a
matching consequent is found, the backward chainer assumes the hypothesis is false.

e The backward chainer never alters the database, so it can derive the same result
multiple times.

e Rules are tried in the order they appear.

e Antecedents are tried in the order they appear.

Simulate backward chaining with the hypothesis

(Gehrys Strata-Center is a masterpiece)

Write all the hypotheses the backward chainer looks for in the database in the order that
the hypotheses are looked for. The table has more lines than you need. We recommend

that you use the space provided on the next page to draw the goal tree that would be

created by backward chaining from this hypothesis. The goal tree will help us to assign

partial credit in the event you have mistakes in the list.

— O ||| |k~ || —

The data set (repeated for your convenience):

Al:
AZ:
A3:
Ad:

(Strata-Center has
(Strata-Center has
(Pickler-Institute
(Pickler-Institute

many straight lines)
non-reflective surfaces)
has shiny surfaces)
has many straight lines)




(Gehrys Strata-Center is a masterpiece)
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Labs

From 6.034 Fall 2011

Currently released labs

m Lab 0 -- due Friday, September 16 (at 11:59pm)

The online grader

You will be submitting all of your labs to an online grader. Every lab comes with a file, tester.py, that
contains the machinery to test your code and to submit it when you're done.

In order for this to work, you need to securely download a "key" that identifies who you are to the grader.

Make sure you have an MIT certificate (http://ca.mit.edu/) , and go to https://ai6034.mit.edu:444/falll1
/tester/ . This will give you a file called key.py. Keep this file secure; for example, don't put it in a publicly-
readable Athena directory. \/

The only thing the grader cares about is whether you pass the tests. It does not care if your code is pretty or
well-commented. However, commenting your code can still be important: if you want a TA to help you with
your lab, he will be able to give you more help if your code is understandable.

The grader also submits the code to your lab. so that it can be reviewed later by a human. It should go
without saying that you should not try to fool or work around the grader, and that the code you submit must
be the code you tested. See our grading and collaboration policy, which also explains how your problem set
grade is calculated.

Retrieved from "http://ai6034.mit.edu/falll 1/index.php?title=Labs"

m This page was last modified on 10 September 2011, at 20:36. C@Ln {‘Qg‘/bm ; )L
m [orsan et haec olim meminisse iuvabit. :
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Lab 0

From 6.034 Fall 2011

= Released: Saturday, September 10
= Due: Friday, September 16

Contents

= 1 Python
1.1 Getting the lab code
1.2 Getting the Submit Key
1.3 Answering questions
1.4 Run the tester

= 1.4.1 Using IDLE

m 1.4.2 Using the command line
2 Python programming

= 2.1 Warm-up stretch

= 2.2 Expression depth

= 2.3 Tree reference
3 Symbolic algebra
4 Survey
5 When you're done
6 Questions? Issues?

The purpose of this lab is to familiarize you with this term's lab system and to serve as a diagnostic for
programming ability and facility with Python. 6.034 use@h for all of its labs, and yourwill be called on
to understand the funclioning of farge systems, as well as to write significant pieces of code yourself.

While coding is not, in itself, a focus of this class, artificial intelligence is a hard subject full of subtleties. As
such, it is important that you be able to focus on the problems you are solving, rather than the mechanical
code necessary to implement the solution.

If Python doesn't come back to you by the end of this lab, we recommend that you seek extra help through
the Course 6/HKN tutoring program (http://hkn.mit.edu/tutor.php) , which matches students who want help
with students who've taken and done well in a class. The department pays the tutor, and the program comes
highly recommended.

Python resources
Some resources to help you knock the rust off of your Python:

= Any of the many good Python handbooks out there, such as:
= Dive Into Python (http://diveintopython.org) , for experienced programmers

1 of7 9/11/2011 2:01 PM
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= O'Reilly's Learning Python (http://proquest.safaribooksonline.com/9780596513986/)
= Think Python (http://www.greenteapress.com/thinkpython/) . for beginning programmers
» The standard Python documentation, at [1] (http://docs.python.org/) (the Library Reference and the
Language Reference are particularly useful, if you know what you're looking for)
» Course 6/HKN tutoring program (https://hkn.mit.edu/tutoring)

Python

There are a number of versions of Python available. This course will use standard Python ("CPython") from
http://www.python.org/. If you are running Python on your own computer, you should download and install
Python 2.5 or Python 2.6 from http://www.python.org/download/ . All the lab code will require at least
version 2.3.

Mac OS X comes with Python 2.3 pre-installed, but the version you can download from python.org has
better support for external libraries and a better version of IDLE.

You can run the Python interpreter on Athena like this:

idle &

add python
python filename.py

Getting the lab code

If you are working on Athena
The code for the labs is in the 6.034 locker. You can get lab 0 like this:

attach 6.034 b
mkdir -p ~/6.034-labs/lab0/
cp -R /mit/6.034/www/labs/lab0/* ~/6.034-1labs/lab0/

Then, you can edit the code in your ~/6.034-labs/lab0 directory. That way, you won't need to do
anything to submit the code - it will already be in the right place.
You can ssh into linux.mit.edu to work on Athena from a different computer (thank you SIPB)
If you are working on another computer with Python ¢ 7"&
Create a folder for the lab. 3 014 M 15 % /
& "%

Download this file and extract it: http://web.mit.edu www/labs/lab0/1ab0.zip

You can also view the code without downloading it: http://web.mit.edu/6.034/www/labs/lab0/

Getting the Submit Key

2 of 7 9/11/2011 2:01 PM
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In order to submit your labs, you must download a "key.py" file and place it in the same directory as your
labs. The "key.py" file contains login information used by the tester to identify you personally to the testing

server. e

You can download a key from https://ai6034.mit.edu/falll1/tester/ . Make sure that you have an up-to-date
MIT Certificate (http://ca.mit.edu) before going to this page. Note that the page doesn't currently work in
Apple's Safari Web browser (because of a bug in Safari regarding certificates); use Firefox/Chrome instead,
or download the file on Athena.

Answering questions

The main file of this lab is called 12ab0.py. Open that file in IDLE. The file contains a lot of incomplete
statements that you need to fill in with your solutions.

The first thing to fill in is a multiple choice question. The answer should be extremely easy. Many labs will
begin with some simple multiple choice questions to make sure you're on the right track.

Run the tester More +€&T‘Mﬂ (XMWMYC lq%/%

Every lab comes with a file called tester.py. This file checks your answers to the lab. For problems that
ask you to provide a function, the tester will test your function with several different inputs and see if the
output is correct. For multiple choice questions, the tester will tell you if your answer was right. Yes, that

means that you never need to submit wrong answers to multiple choice questions.
b

The tester has two modes: "offline" mode (the default), and "online" or "submit" mode. The former runs
some basic, self-contained internal tests on your code. It can be run as many times as you would like. The
latter runs some more tests, some of which may be randomly generated, and uploads your code to the 6.034
grader for grading.

You can run the online tester as many times as you want. If your code fails a test, you can submit it and try
again. Because you always have the opportunity to fix your bugs, you can only get a 5 on a problem set if it
passes all the tests. If your code fails a test, your grade will be 4 or below.

Using IDLE

If you are using IDLE, or if you do not have easy access to a command line (as on Windows), IDLE can run
the tester.

Open the tester.py file and run it using Run Module or F5. This will run the offline tests for you. When the
offline tests pass (or when you're up against a deadline, or when you have questions for the staff) you can

to submit your code and run the online tests.

In fact, it will run the submission and online test just as soon as you pass the offline tests, saving you a few
keystrokes.
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You should run the tester (and submit!) early and often. Think of it as being like the "Check" button from
6.01. It makes sure you're not losing points unnecessarily. Submitting your code makes it easy for the staff to
look at it and help you.

Using the command line

If you realize just how much emacs and/or the command line rock, then you can open your operating
system's Terminal or Command Prompt, and cd to the directory containing the files for Lab 0. Then, run:

to submit your code and run the online tester.

You should run the tester (and submit!) early and often. Think of it as being like the "Check" button from
6.01. It makes sure you're not losing points unnecessarily. Submitting your code makes it easy for the staff to
look at it and help you. "

Python programming
Now it's time to write some Python.

Warm-up stretch

\ ( 6?(4/5 n ﬂ{a
Write the following functions: I )‘k bg(fw bcwlc. on p yfh@ 1 e n(),( ( ml"l/o gmﬂié 7,
® cube (n) Wthh takes in a number and returns its cube. For example, cube(3) => 27. 1 6”{7%)
m factorial (n), which takes in a non-negative integer » and returns n/, which is the product of the Wg[/ [;’

i I =1by
integers from 1 to n. (0! = 1 by definition.) 6% /oé DJ‘

We suggest that you should write your functions so that they raise nice clean errors instead of /‘3(/ tluss
dwa when the input is invalid. For example, it would be nice if factorial rejected
ecawhl away otherwise, you might loop forever. You can signal an error like this: ¥

raise Exception, "factorial: input must not be negative"
Error handling doesn't affect your lab grade, but on later problems it might save you some angst

when you're trying to track down a bug. 6L H, dﬂeﬁ En, G 005 l/

" count_pattern(pattern,lst), which counts the number of times a certam pattern of symbols
appears ina llst 1ncludmoov011aps S0 count_pattern( ('a', 'b'), ey, b, e, wav;
'a! b, ctum’) and count, pattern ({'a’, (bl tat) gl @,
u b ) should return 3,

Expression depth ‘SO 60 m%h \bH‘Qf 4)\{ {-6#?/
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One way to measure the complexity of a mathematical expression is the depth of the expression describing it
in Python lists. Write a program that finds the depth of an expression.

For example:

® depth('x') => 0

B depth(('expt', 'x', 2)) =>1

®m depth(('+', ('expt', ' )

® depth( )
=> 4

(l/l, (lexptl’ |x|’

P

% J:Jg daw

expt! ) "y'yp2))) = 2
(rempt'y (Pelhd legplt o Bty o2 LY 0T 16, 2000

Note that you can use the built-in Python "isinstance()" function to determine whether a variable points to a
list of some sort. "isinstance()" takes two arguments: the variable to test, and the type (or list of types) to

compare it to. For example:

\ '
P> isins:;r!lce(x, (list, tuple)) (f 500&, A’\r‘«"l 6‘}/& E

P> %=1, 2, 3]

>y =

True

>>> isinstancel(y, (list, tuple))

False
1

Tree reference

Your job is to write a procedure that is

analogous to list referencing, but for trees.

This "tree_ref" procedure will take a tree
and an index, and return the part of the
tree (a leaf or a subtree) at that index. For
trees, indices will have to be lists of
integers. Consider the tree in Figure 1,
represented by this Python tuple: (( (1,
2), 3), (4, (5, 8)), 7, (8, 9,
10))

To select the element 9 out of it, we’d
normally need to do something like
tree[3] [1]. Instead, we’d prefer to do
tree ref (tree, (3, 1)) (note that
we’re using zero-based indexing, as in
list-ref, and that the indices come in

Figure 1: Example Tree

top-down order; so an index of (3, 1) means you should take the fourth branch of the main tree, and then the
second branch of that subtree). As another example, the element 6 could be selected by tree_ref (tree,

AT T N 1

Note that it’s okay for the result to be a subtree, rather than a leaf. So tree_ref (tree, (0,)) should

return ((1, 2), 3).

Sof7
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6 of 7

Symbolic algebra

Throughout the semester, you will need to understand, manipulate, and extend complex algorithms
implemented in Python. You may also want to wWrite more Tunctions than we provide in the skeleton file for a
lab. '

In this problem, you will complete a simple computer algebra system that reduces nested expressions made
of sums and products into a single sum of products. For example, it turns the expression (2 * (x + 1) *

(y + 3))into ((2 * x * y) + (2 * x * 3) + (2 * 1 *y) + (2 = 1 * 3)). Youcould choose to

3 o f ko K & a * = 11 2 -
simplify further, such as to (2 * x * y) + (6 * x) + (2 * y) + 6)). but it is not necessary. b s L

. , be did setg e This i (9l

This procedure would be one small part of a symbolic math system, such as the integrator presehted in
Wednesday's lecture. You may want to keep in mind the principle of reducing a complex problem to a
simpler one.

An algebraic expression can be simplified in this way by repeatedly applying the associative law and the

distributive law. ; + 68@.-1.5 ]Lo Le 6? ; }‘_;

Associative law ) \
(@+b)+c)=(a+(b+c)=(a+b+c) M e to lo Bt af- Wl’"i”v e

(@*b)*ec)=(@*(b*c))=(@*b*c)
Distributive law
(A+b)*e+d) =(@*c)+ @a*d)+i(b*c)+({H*d)

The code for this part of the lab is in algebra.py. It defines an abstract Expression class, Sum and
Product expressions, and a method called Expression.simplify (). This method starts by applying the
associative law for you, but it will fail to perform the distributive law. For that it delegates to a function
called do multiply that you need to write. Read the documentation in the code for more details.

This exercise is meant to get you familiar with Python and using it to solve an interesting problem. It is
intended to be algorithmically straightforward. You should try to reason out the logic that you need for this
function on your own. If you're having trouble expressing that logic in Python, though, don't hesitate to ask a
TA.

Some hints for solving the problem:

= How do you use recursion to make sure that your result is thorenghly simplified?

= In which case should you not recursively call simplify()?

Survey Olusys ved 4%

We are always working to improve the class. Most labs will have at least one survey question at the end to
help us with this. Your answers to these questions are purely informational, and will have no impact on your
grade.

Please fill in the answers to the following questions in the definitions at the end of lab0.py:
» When did you take 6.01?

= How many hours did 6.01 projects take you?

9/11/2011 2:01 PM
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= How well do you feel you learned the material in 6.01?
= How many hours did this lab take you?

When you're done

Remember to run the tester! The tester will automatically upload your code to the 6.034 server for grading
and collection.

Questions? Issues?

It's quite possible that this lab -- or, in particular, the grader system -- will have issues that need to be fixed
or things that need to be clarified.

[f you have a question or a bug report, send an e-mail to 6.034tas@csail.mit.edu
(mailto:6034tas@csail.mit.edu) .

Retrieved from "http://ai6034.mit.edu/falll 1/index.php?title=Lab 0"

= This page was last modified on 10 September 2011, at 20:41.
» Forsan et haec olim meminisse iuvabit.
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C:\Users\Michael\Documents\MIT Junior\6.034\lab0\algebra.py Friday, September 16, 2011 7:54 PM

==

Section 3: Algebraic simplification

This code implements z simple computer algebra system, which takes in an
expression made of nested sums and products, and simplifies it into a
single sum of products. The goal is described in more detail in the

problem set writeup. ?W‘\‘d/h (e,(e(‘(i " /\2/‘%!

Much of this code is already implemented. We provide you with a

H= o= == =

representation for sums and products, and a top-level simplify() function

= SHE SE

which applies the associative law in obviocus cases. For example, it
turns both (a + (b + ¢)) and ((a + b) + c) into the simpler expression
(a + b+ c). .

==

He

However, the code has a gap in it: it cannot simplify expressions that are

= oHE

multiplied together. In interesting cases of this, you will need to apply
the distributive law.

B

Your goal is to fill in the do multiply() function so that multiplication
can be simplified as intended.

== =k

-
Testing will be mathematical: 1If you return a flat list that ¢ /%h/

HH= =H=

evaluates to the same value as the original expression, you will

¥ get full credit. Ore vales /B]LWJ/

‘

We've already defined the data structures that you'll use to symbolically
represent these expressions, as two classes called Sum and Product,
defined below. These classes both descend from the abstract Expression class.

The top level function that will be called is the .simplify() method of an
Expression.

e oSE S Sk S S Sk S

>>> expr = Sum([1l, Sum([2, 3])])
>>> expr.simplify ()
Sum([1, 2, 3])

==

4=

### Expression classes

>>> isinstance(Sum([1,2,3]), Expression) # Sums and Products are both Expressions

# Expressions will be represented as "Sum()" and "Product ()" objects.
# These objects can be treated just like lists (they inherit from the
# "list" class), but you can test for their type using the "isinstance()"
# function. For example:

#

# >>> isinstance(Sum([1,2,3]), Sum)

# True

# >>> isinstance(Product([1,2,3]), Product)

# True

#

#

True

class Expression:
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"This abstract class does nothing on its own."
pass

class Sum(list, Expression):
A Sum acts just like a list in almost all regards, except that this code
can tell it is a Sum Egggg—isinstance(), and we add useful methods
such as simplify().

Because of this:
* You can index into a sum like a list, as in term = sum[O0].
* You can iterate over a sum With "for term in sum:".
* You can convert a sum to an ordinary list with the list() constructor:
the list = list(the_sum)
* You can convert an ordinary list to a sum with the Sum() constructor:
the sum = Sum(the_list)
LA s
def repr (self):
return "Sum(%s)" % list. repr (self)

def simplify(self):
mmn
This is the starting point for the task you need to perform. It
removes unnecessary nesting and applies the associative law.
terms = self.flatten()
if len(terms) ==
return simplify if possible(terms[0])
else:

return Sum([simplify if possible(term) for term in terms]) .flatten()

def flatten(self):
""mgimplifies nested sums."""
terms = []
for term in self:
if isinstance(term, Sum): ( ‘ ' 5
elseferms += list (term) /\ 5} (5 fﬁ(} dﬂ“@ {
terms.append(term)
return Sum(terms)

class Product(list, Expression):
man
See the documentation above for Sum. A Product acts almost exactly
like a list, and can be converted to and from a list when necessary.
mrn
def repr__ (self):
return "Product(%s)" % list._ repr_ (self)

def simplify(self):

muoin
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To simplify a product, we need to multiply all its factors together

while taking things like the distributive law into account. This
method calls multiply() repeatedly, leading to the code you will
need to write.
factors = []
for factor in self:
if isinstance(factor, Product):
factors += list (factor)
else:
factors.append(factor)
result = Product([1])
for factor in factors:
result = multiply(result, simplify if possible(factor))
return result.flatten()

def flatten(self):
"""Simplifies nested products."""
factors = []
for factor in self:
if isinstance(factor, Product):
factors += list(factor)
else:

factors.append(factor) \,JQ,[/[. }DW*')

return Product (factors)

def simplify if possible(expr):

mon

A helper function that guards against trying to simplify a non-Expression.

miren

if isinstance(expr, Expression):
return expr.simplify()

else:
return expr

You may find the following helper functions to be useful.
"multiply" is provided for you; but you will need to write "do multiply"
if you would like to use it. R

e sE s

def multiply(exprl, expr2):

mren

This function makes sure that its arguments are represented as either a

Sum or a Product, and then passes the hard work onto do multiply.

mmn

# Simple expressions that are not sums or products can be handled

# in exactly the same way as products -- they just have one thing in them.

if not isinstance(exprl, Expression): exprl = Product ([exprl])
if not isinstance(expr2, Expression): expr2 = Product ([expr2])
return do multiply(exprl, expr2)

p———_

def do multiply(exprl, expr2):
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nnn

You have two Expressions, and you need to make a simplified expression
e

representing their product. They are guaranteed to be of type Expression

-- that is, either Sums or Products -- by the multiply() function that

calls this one.

So, you have four cases to deal with:

* exprl is a Sum, and exprZ is a Sum

* exprl is a Sum, and exprZ is a Product

* exprl is a Product, and expr2 is a Sum

* exprl is a Product, and expr2 is a Product

You need to create Sums or Products that represent what you get by
applying the algebraic rules of multiplication to these expressions,

and simplifying.

Look above for details on the Sum and Product classes. The Python operator
'*' will not help you.

e

5um ¢ ﬁmfl
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raise NotImplementedError
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Quiz 1, Problem 1, Rules (50 points)

The administration, worried about the social habits of its students, agrees to finance cross-school-
mixers. The 034 TA's decide to fly to England and mix with the students at Hogwarts School of
Witchcraft and Wizardry. A merry old time ensues, but the morning after, due to an accidental
confundo charm (and perhaps also a large consumption of butterbeer), no one can remember the events
that transpired. The 034 staff, in an attempt to show off the power of Muggle logic, promise they can
piece together the important events with a rule based system.

Using their keen sense of logic, Matt, Erica, and Mark are able to piece together the following rules:

RULES:
RO : IF (?X) goes to MIT,
THEN (7X) is a muggle,
(7X) consumed butterbeer

R1: IF (?X) made math jokes AND
(?X) consumed butterbeer
THEN (?X) was transfigured into a porcupine

R2: IF (7Y) fancies (7X) AND
(?X) fancies (7Y) AND
(7Y) is a muggle
THEN (?X) snogged (7Y)

R3: IF (?X) fancies (7Y) AND
(?X) made math jokes,
THEN (?7Y) fancies (?7X)

R4: IF (7X) made math jokes
THEN (?X) goes to MIT

You start with the following list of assertions which is all you have to go on.

ASSERTIONS:

AO0: Olga made math jokes

Al: Yuan goes to MIT

A2: Jeremy made math jokes

A3: Hermione consumed butterbeer
A4: Jeremy fancies Hermione



Part A: Forward Chaining (24 points)

Run forward chaining on the rules and assertions provided for the first S iterations. For the first
two iterations, fill out the first two rows in the table below, noting the rules whose antecedents match
the data, the rule that fires, and the new assertions that are added by the rule. For the remainder, supply
only the fired rules and new assertions. As usual, break ties using the earliest rule on the list that
matches. If the earliest rule matches more than once, break ties by assertion order.

Matcheg e Fired New assertions added to database
1 il all /
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Part B: Backward Chaining (26 points)

Ron Weasley claims that Hermione snogged Jeremy. Use backward chaining to determine if this event

occurred. Draw the goal tree for this statement. Partial credit will be given for partial completion of
the goal tree.

Hermione snogged Jeremy

j{:z mz '{Q’W‘g Hg/m;' " I—‘Q/m’(/?’
ol fawies (s a mugyle

AY Te/m7 l

Is the claim that Hermione snogged Jeremy true?

AT




Lab 1 -6.034 Fall 2011 http://ai6034.mit.edw/fall11/index.php?title=Lab 1

1of6

Lab 1

From 6.034 Fall 2011

Wl g (ot

Contents

= | Forward chaining
= 1.1 Explanation
= |.1.1 Rule expressions
= ].1.2 Running the system
Multiple choice
Rule systems
= 1.3.1 Poker hands
= [.3.2 Family relations
= 2 Backward chaining and goal trees
= 2.1 Goal trees
= 2.2 Backward chaining
= 2.2.1 The backward chaining process
= 2.2.2 Some hints from production.py
= 3 Survey
= 4 Errata

= ]

2
m |3

This problem set is due Friday, Seplemb 11:59pm. If you have questions about it, ask the list 6034tas@csail.mit.edu.

—

To work on this problem set, you will need to get the code, much like you did for Lab 0.

= You can view it at: http://web.mit.edu/6.034/www/labs/labl/
= Download it as a ZIP file: http://web.mit.edu/6.034/www/labs/lab/lab1.zip
= Or, on Athena, attach 6.034 and copy it from /mit/6.034/www/labs/labl/.

Most of your answers belong in the main file 1ab1.py. However, the more involved coding problems in section 2 have their own
separate files. e

If you successfully submitted 1abo, then you should copy your key.py into the directory containing 1ab1 code. You should not need to
download a new key.py.

You will probably want to use the Python feature called "list comprehensions" at some point in this lab, to apply a function to
everything in a list. You can read about them in the official Python tutorial (http://docs.python.org/tutorial/datastructures.html#list-
comprehensions) .

Those who think recursively may also benefit from the Python function reduce (the equivalent of Scheme's "fold-left" or
"accumulate"), documented in the Python library reference (http://docs.python.org/lib/built-in-funcs.html#reduce) .

r
Forward chaining ¢ bbat o fre do

Explanation

This section is an explanation of the system you'll be working with. There aren't any problems to solve. Read it carefully anyway.
—_—

This problem set will make use of a production rule svstem. The system is given a list of rules and a list of data. The rules look for

certain things in the data -- these things are the antecedents of the rules -- and usually produce a new piece of data, called the

consequent. Rules can also delete existing data.

————a—

9/17/2011 4:56 PM
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Importantly, rules can contain variables. This allows a rule to match more than one possible datum. The consequent can contain
. . e ——
variables that were bound in the antecedent.

A rule is an expression that contains certain keywords, like IFF, THEN, AND, OR, and NOT. An example of a rule looks like this:

(Gt A Y g F L R Y T e PR T e L L E R TR R h R R R R e e R R e A
1 \
'+ IF( AND( 'parent (?x)} (2y)', 4
. 'parent (?x) (?z2)' ), |
' THEN( 'sibling (2y) (2z)' )) i
o S im0 555 5 e 1 5 A o J

This could be taken to mean:
If x is the parent of y, and x is the parent of z, then y is the sibling of =.

Given data that look like 'parent marge bart' and 'parent marge lisa', then, it will produce further data like 'sibling bart

lisa'. (It will also produce 'sibling bart bart', which is something that will need to be dealt with.)
—_————

Of course, the rule system doesn't know what these arbitrary words "parent” and "sibling" mean! It doesn't even care that they're at the
beginning of the expression. The rule could also be written like this:

___________________________________________________ e L LU g e
] . 0A 0
" IF (AND( '(?x) is a parent of (2y)', 50 Lg fme

i '(?x) “Ce—a parent of (2z}' ),

:

L

THEN( '(?y) is a sibling of (?z)' ))

Then it will expect its data to look like 'marge is a parent of lisa'.This gets wordy and involves some unnecessary matching of
symbols like *is' and 'a’, and it doesn't help anything for this problem, but we'll write some later rule systems in this English-like way
for clarity. e

Just remember that the English is for you to understand, not the computer.

m +
Rule expressions YUU (ov u— Wit ‘
Here's a more complete description of how the system works. d§§oﬁp }03
4 :

The rules are given in a specified order, and the system will check each rule in turn: for each rule, it will go through all the data 60
searching for matches to that rule's antecedent, before moving on to the next rule. (i

= _— @
A rule is an expression that can have an IF antecedent and a THEN consequent. Both of these parts are required. Optionally, a rule can
also have a DELETE clause, which specifies some data to delete. =S, "l

The IF antecedent can contain AND, OR, and NOT expressions. Kj@requires that multiple statements are matched in the dataset, OR[/ 6.
requires that one of multiple statements are matched in the dataset, and NOT requires that a statement is not matched in the dataset.

AND, OR, and NOT expressions can be nested within each other. When nested like this, these expressions form an AND/OR tree (or

really an AND/OR/NOT tree). At the boftom of this tree are strings, possibly with variables in them.

The data are searched for items that match the requirements of the antecedent. Data items that appear earlier in the data take 6065 4 O/Cé/
sl ol b
precedence. Each pattern in an AND clause will match the data in order, so that later ones haée the variables of the earlier ones.

i & ocder of

Malfir)
If there is a NOT clause in the antecedent, the data are searched to make sure that %ncms in the data mafch the pattern. A NOT
clause should not introduce new variables - the matcher won't know what to do with them. Generally, NOT clauses will appear inside
an AND clause, and earlier parts of the AND clause will introduce the variables. For example, this clause will match objects that are

asserted to be birds, but are not asserted to be penguins: C B
I /VD‘\/ & édﬂ]twa/:f Chﬂml

' A
y AND( '(?x) is a bird', '
! NOT( '(?x) is a penguin' )) i
B e ch oo o s . i s s 0 e St G o ot e iy i i s A A, B M ) Rl S
The other way around won't work

B e e o T . GO S ... .5~ . S . S OO A

)

'
AND ( NOT( '(?x%) is a penguin' ), # don't do this! 4
"(?x) is a bird' ) '

'

The terms match and fire are important. A rule matches if its antecedent matches the existing data. A rule that matches cas
—:-—-—-—'—_-"_—‘-&_—-——.______\ B —

20f6 ) 9/17/2011 4:56 PM
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TH}_S_N M clauses change the data. (Otherwise, it fails to fire.)

Only one rule can fire at a time. When a rule successfully fires, the system changes the data appropriately, and then starts again from
the first rule. This lets earlier rules take precedence over later ones. (In other syslems the precedence order of riIfes can be defined

differently.) b ceud e 0 bad] fo nle |
Running the system tead Nle f(ﬂd, MI’VA ﬂff

If you from production import forward_chain, you get a procedure forward chain(rules, data, verbose=False) that will
make inferences as described above. It returns the final state of its input data.

Here's an example of using it with a very simple rule system:

4
[}
l'from production import IF, AND, OR, NOT, THEN, DELETE, forward_chain

‘theft_rule = IF{ 'you Have (7x)',

: THEN( 'i have (?x)' ),

' DELETE( 'you have (7x)' ))
L}

data = ( 'you have apple',

1

i

: 'you have orange',
' 'vou have pear' )
i
1
I
v

_________________________________________________________________________________________________________________

We provide the system with a list containing a single rule, called theft rule, which replaces a datum like 'you have apple' with 'i
have apple'. Given the three items of data, it will replace each of them in turn,

Here is the output if you copy-and-pasted the code above and ran it as a python script:

Rule: IF(you have (?x), THEN('i have (2?x)'))
Added: i have pear

P
M C)’iﬁéﬁéfi‘igte“iééle‘“" et beve (291 € fore b y0v hae e ive 0]d

O( Rule: IF(you have (?x), THEN('i have (?x)'"))

\Added: i have arange
Ofée(i i (A o USSR | SRR NN | Siok W W

W('i have apple', 'i have orange', 'i have pear')
NOTE: The rule: and Added: lines come from the verbose printing. The final output is the set of assertions after applying the forward
chaining procedure.

You can look at a much larger example in zookeeper. py, which classifies animals based on their characteristics.

Multiple choice

Bear the following in mind as you answer the multiple choice questions in labl.py:

= that the computer doesn't know English, and anything that reads like English is for the user's benefit only
m the difference between a rule having an antecedent that matches, and a rule actually firing

4 ——_
Rule systems ? CF ¢ ‘D&W
Poker hands

We can use a production system to rank types of poker hands against each other. If we tell it the basic things like 'three-of-a-kind

beats two-pair'and 'two-pair beats pair’, it should be able to deduce by transitivity that ' three-of-a-kind beats pair’.
‘\__—_,‘_,._-_-.—

Write a one-rule system that ranks poker hands (or anything else, really) transitively, given some of the rankings already. The rankings

will all be provided in the form ' (2x) beats (2y)"

Call the one rule you write transitive-rule, so that your list of rules is [ transitive-rule ].

Just for this problem, it is okay if your transitive rule adds ' beats x', even though in real-life transitivity may not always imply
reflexivity.
vzﬂ!’#

Jof6 9/17/2011 4:56 PM
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Family relations

You will be given data that includes three kinds of statements:

® 'male x':Xis male
m 'female x':x isfemale
m 'parent x y':xisaparentofy

Every person in the data set will be defined to be either male or female.
Your task is to deduce, wherever you can, the following relations:

® 'brother x y':x isthe brother of y (sharing at least one parent)

m 'sister x y':x isthe sister of y (sharing at least one parent)

® 'mother x y':x isthe mother of y

m 'father x y':x isthe father of y

m 'son x y':xisthe sonofy

= 'daughter = y':x isthe daughter of y

® 'cousin x y':xand y are cousins (a parent of x and a parent of y are siblings)
m 'grandparent x y':X isthe grandparent of y

m '‘grandchild x y':x is the grandchild of y

You will probably run into the problem that the system wants to conclude that everyone is his or her own sibling. To avoid this, you will
probably want to write a rule that adds 'same-identity (2x) (2x)' for every person, and make sure that potential siblings don't
have same-identity. (Hint: You can assume that every person will be mentioned in a clause stalingr his gender (either male or

H 'l
female)). The order of the rules will matter, of course. T f na}. 8” (n

Some relationships are symmetrical, and you need to include them both ways. For example, if @ is a cousin of b, then b is a cousin of a.

As the answer to this problem, you should provide a list called family-rules that contains the rules you wrote in order, so it can be

plugged into the rule system. We've given you two sets of test data: one for the Simpsons family, and one for the Black family from
Harry Potter.

labl.py will automatically define black family cousins to include all the 'cousin = y' relationships you find in the Black family.
There should be 14 of them.

NOTE: Make sure you implement all the relationships defined above. In this lab, the online tester will be stricter, and will test some

relationships not tested offline. e RN SO
Backward chaining and goal trees

Goal trees

For the next problem, we're going to need a representation of goal trees. Specifically, we want to make trees out of AND and OR

nodes, much like the ones that can be in the antecedents of rules. (There won't be any NOT nodes.) They will be represented as AND()
and OR() objects. Note that both 'AND" and 'OR" inherit from the built-in Python type 'list', so you can treat them just like Iists.l 1& / IL‘
e las

Strings will be the leaves of the goal tree. For this problem, the leaf goals will simply be arbitrary symbols or numbers like g1 or 3. P/D&b‘.‘

An AND node represents a list of subgoals that are required to complete a particular goal. If all the branches of an AND node succeed,
the AND node succeeds. anD (g1, g2, g3) describes a goal that is completed by completing gl, g2, and g3 in order.

An OR node is a list of options for how to complete a goal. If any one of the branches of an OR node succeeds, the OR node succeeds.
OR(gl, g2, ¢3) isa goal that you complete by first trying gl, then g2, then g3.

Unconditional success is represented by an AND node with no requirements: anp (). Unconditional failure is represented by an OR
: - ~
node with no options: orR ().

A problem with goal trees is that you can end up with trees that are described differently but mean exactly the same thing. For
example, AND (g1, AND(g2, AND(AND(), g3, g4))) is more reasonably expressed as aAND (g1, g2, g3, g4).So, we've provided

you a function that reduces some of these cases to the same tree. We won't change the order of any nodes, but we will prune some
’-__-___.—"_-\
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nodes that it is fruitless to check.

We have provided this code for you. You should still understand what it's doing, because you can benefit from its effects. You may
want to write code that produces "messy", unsimplified goal trees, because it's easier, and then simplify them with the simp1ify
function. T

This is how we simplify goal trees:

L. Ifa node contains another node of the same type, absorb it into the parent node. So 0r (g1, OR(g2, g3), g4) becomes or (g1
g2 g3 g4).

Any AND node that contains an unconditional failure (OR) has no way to succeed, so replace it with unconditional failure.
Any OR node that contains an unconditional success (AND) will always succeed, so replace it with unconditional success.

If a node has only one branch, replace it with that branch. anp(g1), 08 (g1), and g1 all represent the same goal.

If a node has multiple instances of a variable, replace these with only one instance. 28D (g1, g1, g2) is the same as AND (gl,
g2).

o

We've provided an abstraction for AND and OR nodes, and a function that simplifies them, in production.py. There is nothing for

you to code in this section, but please make sure to understand this representation, because you're going to be building goal trees in the
next section. Some examples:

simplify(OR(1, 2, AND()))
simplify(OR(1l, 2, AND(3, AND(4)), AND(5)))

i > AND()
]

1

" simplify (AND('gl', AND('g2', AND{'g3', AND('g4', AND(})})))

1

1

1

1

1
L)
OR(1, 2, AND(3, 4), 5) ,
1
1
1
1
1

AND('gl', 'g2', 'g3', 'g4')

simplify (AND('g"))
simplify(AND('gl', 'gl', 'g2'))

g

Backward chaining

Backward chaining is running a production rule system in reverse. You start with a conclusion, and then you see what statements

would lead to it, and test to see if those statements are true,

In this problem, we will do backward chaining by starting from a conclusion, and generating a goal tree of a// the statements we may
need to test. The leaves of the goal tree will be statements like 'opus swims', meaning that at that point 3 ould need to find out
whether we know that Opus swims or not.

We'll run this backward chainer on the ZOOKEEPER system of rules, a simple set of production rules for classifying animals, which
you will find in zookeeper.py. As an example, here is the goal tree generated for the hypothesis 'opus is a penguin’:

|
'opus is a penguin’, !
AND ( :

OR('opus is a bird', 'opus has feathers',K AND('opus flies', 'opus lays eggs'))

'opus does not fly',

'opus swims',

'opus has black and white color' )) :

1

You will write a procedure, backchain_to_goal tree(rules, hypothesis), which outputs the goal tree.

b o PRI | e r i ; ; ; ;
The rules you work with will be limited in scope, because general-purpose backward chainers are difficult to write. In particular:

= You will never have to test a hypothesis with unknown variables. All variables that appear in the antecedent will also appear in
the consequent. ;{01\ [ ma L\l, {L’d deal

= All assertions are positive: no rules will have DELETE parts or NOT clauses.
= Antecedents are not nested. Something like (0r (AND = y) (AND z w)) will not appear in the antecedent parts of rules..

The backward chaining process

Here's the general idea of backward chaining:

= Given a hypothesis, you want to see what rules can produce it, by matching the consequents of those rules against your
hypothesis. All the consequents that match are possible options, so you'll collect their results together in an OR node. If there are
né matches, this statement is a leaf, so output it as a leaf of the goal tree. T

= Ifa consequent matches, keep track of the variables that are bound. Look up the antecedent of that rule, and instantiate those
same variables in the antecedent (that is, replace the variables with their values). ThisTinstantiated antecedent is a new

o —

50f6 9/17/2011 4:56 PM
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hypothesis. 'TIQA (/\JQJ"’ \0

= The antecedent may have AND or OR expressions. This means that the goal tree for the antecedent is already partially formed.
But you need to check the leaves of that AND-OR tree, and recursively backward chain on them.

Other requirements:

=~

= The branches of the goal tree should békin ordersrthe goal trees for earlier rules should appear before (to the left of) the goal trees
for later rules. Intermediate nodes should appear before their expansions. e

= The output should be simplified as in the previous problem (you can use the simplify function). This way, you can create the
goal trees using an unnecessary number of OR nodes, and they will be conglomerated together nicely in the end.

= [ftwo different rules tell you to check the same hypothesis, the goal tree for that hypothesis should be included both times, even
though it seems a bit redundant.

- M“\ &”‘W To Code

Some hints from production.py

® match(pattern, datum) - This attempts to assign values to variables so that pattern and datum are the same. You can
match(leaf a, leaf_b),and that returns either None if leat_a didn't match 1eaf b, or a set of bindings if it did (even empty
bindings: {}).
= Examples:

®m match("(?x) is a (?2y)", "John is a student") => { x: "John", y: "student" }

m match("foo", "bar") => None

® match("foo", "foo") => (}

= Note: {} and None are both false expressions in python, so you should explicitly check if match's return value is
None, T

® populate (eﬁindings) - given an expression with variables in it, look up the values of those variables in bindings and
replace the variables with their values. You can use the bindings from match (1eaf_a, leaf_b) with populate(leaf,
bindings), which will fill in any free variables using the bindings.
» Example: populate (" (?x) is a (?y)", { x: "John", y: "student" }) => "John is a student”
= rule.antecedent ():returns the IF part of a rule, which is either a leaf or a RuleExpression. RuleExpressions act like lists, so
you'll need to iterate over them.

m rule.consequent (): returns the THEN part of a rule, which is either a leaf or a RuleExpression.

Survey

Please answer these questions at the bottom of your 1ab1.py file:

= How many hours did this problem set take?
» Which parts of this problem set, if any, did you [ind interesting?
= Which parts of this problem set, if any, did you find boring or tedious?

(We'd ask which parts you find confusing, but if you're confused you should really ask a TA.)

When you're done, run the online tester to submit your code. T(«‘/e” PN&S vh“ﬂ( ‘\/e(e M((
Errata H evﬁlﬁ'/‘f’[)l' ﬁyﬂﬁd OU” @%}z O/

Retrieved from "http://ai6034.mit.edu/falll I/index.php?title=Lab 1"

= This page was last modified on 14 September 2011, at 15:44.
m Forsan et haec olim meminisse iuvabit.
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new 2
def backchain_to_goal_tree_4_getargs():
return [ [ IF( AND( '(?x) has (2y) "5
'(?x) has (?z)' ),

THEN( '(?x) has (?y) and (?z)' ) ),
IF( '(?x) has rhythm and music’',
THEN( '(?x) could not ask for anything more' ) ) 1,

g{'WL ~—>'gershwin could not ask for anything more' ]

result_bc_4 = OR('gershwin could not ask for anything more',
'gershwin has rhythm and music’,
AND ('gershwin has rhythm’,
'gershwin has music'))

F10:0:9:0:0.9.0.0.0:0:0:0:0:9.0.0.0.:0:9.0.4:9.0:0.0.9.0:9.0.0.0:0.0:0.0.0:00.9.0:0:0.0.0:0:0.0:9.99.9.9.0.0.9.0:0:9.0.0.0.0.0.0.0.0.0.0.9 0

let us expand:

gershwin could not ask for anything more
THEN('(?%) has (?y) and (?z)'")

THEN (' (?x) could not ask for anything more')
match

{'x': 'gershwin'}

(?%x) has rhythm and music

let us expand:

gershwin has rhythm and music

THEN(' (?x) has (?y) and (?z)"')

match
{'y': 'rhythm', 'x': 'gershwin', 'z': 'music'}
AND('(?x) has (?y)', '(?x) has (?z)')

let us expand:

'gershwin has rhythm'

THEN(' (?x) has (?y) and (?z)")

THEN('(?x) could not ask for anything more')

not found, returning

R et S

AND("'gershwin has rhythm'", "'(?x) has (?z)'")
RS

let us expand:

'gershwin has music’

THEN(' (?x) has (?y) and (?2z)'")

THEN (' (?x) could not ask for anything more')

not found, returning

R S

AND("'gershwin has rhythm'", "'gershwin has music'")
R

OR(AND ("'gershwin has rhythm'", "'gershwin has music'"))
THEN('(?x) could not ask for anything more')

not found, returning

simplify

OR(AND("'gershwin has rhythm'", "'gershwin has music'"))

A

Tuesday, September 20, 2011 12:45 AM
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Ftb bt

OR(AND("'gershwin has rhythm'", "'gershwin has music'"))
bt

OR(OR(OR(AND("'gershwin has rhythm'", "'gershwin has music'"))))
not found, returning

simplify

OR(OR (OR (AND (" 'gershwin has rhythm'", "'gershwin has music'"))))

Test 13/14: Incorrect.

backchain to_goal tree

Got: OR (OR(OR (AND (" 'gershwin has rhythm'", "'gershwin has music'"))))

Expected: OR('gershwin could not ask for anything more', 'gershwin has rhythm and music’',

AND('gershwin has rhythm', 'gershwin has music'))




| !
C:\Users\Michael\workspace\6.034\lab1\backchain.py ﬂy F ( Ad/ CO [l, ‘Q' Tuesday, September 27, 2011 1:24 AM

from production import AND, OR, NOT, PASS, FAIL, IF, THEN, match, populate, \
simplify, variables
from zookeeper import ZOOKEEPER RULES

# This function, which you need to write, takes in a hypothesis that can be

=t

determined using a set of rules, and outputs a goal tree of which statements
# it would need to test to prove that hypothesis. Refer to the problem set
# (section 2) for more detailed specifications and examples.

def backchain to goal tree(rules, hypothesis):
#print "-mmmmm e '

#print 'let us expand: '
fiprint hypothesis

#scan through rules for our hypothesis
newTreeNode = OR()
ftappend current hyp
newTreeNode. append (hypothesis)
for rule in rules:
#print rule.conseguent ()
for subrule in rule.consequent():
#print subrule
if (subrule == hypothesis or match(subrule, hypothesis)):
fiprint 'match’'
bindings = match(subrule, hypothesis)
#print bindings
ffiprint rule.antecedent ()
#for each rule antecedent, populate it
i = 0; #can't modify array from rulepart

#for some reason this is a string in an example
if (type(rule.antecedent()) == str):
ruleAntecedent = OR(rule.antecedent ())
treePart = OR(rule.antecedent())
else:
#duplicate so can modify
ruleAntecedent = rule.antecedent () .deepcopy()
treePart = rule.antecedent () .deepcopy() # each part will be replaced
later
for rulepart in ruleAntecedent:
ruleAntecedent[i] = populate(rulepart, bindings)
#try to get further

treePart[i] = backchain to goal tree(rules, ruleAntecedent([i])
fprint '++++++++7
#print 'original ' + str (hypothesis)

#print treePart

fprint '+4+dtde+!

i=1i4+1
newTreeNode.append(treePart)
#print newTreeNode



C:\Users\Michael\workspace\6.034\lab1\backchain.py Tuesday, September 27, 2011 1:24 AM

#if nothing matches, return hyp back or tree at end
#print 'not found, returning'’
ftest if just it or more of a node
justHypothesis = OR(hypothesis)
if newTreeNode != justHypothesis:
#print 'simplify'
newTreeNode = simplify(newTreeNode)

#print newTreeNode
return newTreeNode

else:
return hypothesis

4 Here's an example of running the backward chainer - uncomment it to see it

# work:
#print backchain to goal tree(ZOOKEEPER RULES, 'opus is a penguin')
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.034 Artificial Intelligence
Fall, 2011
Recitation 2, Thursday September 22
Search Me! Prof. Bob Berwick

0. Notation, algorithm, terminology

graph is a data structure containing node-to-node connectivity information
start is the starting node

goal is the target node

Here is a simple generic search algorithm:

function search(graph, start, goal)
0. Initialize
agenda = [ [start] ] # a list of paths
extended list = [ ] # a list of nodes
while agenda is not empty:
1. path = agenda.pop(0) # remove first element from agenda
2. if path is-a-path-to-goal then return path # we’ve reached the goal
3. otherwise extend the current path if last node in this path
is not in the extended list:
3a. add the last node of the current path to the extended list
3b. for each node connected to this last node # look-up using graph
3¢e. make a new path # don't add paths with loops!
4. add new paths from step 3c to agenda and reorganize agenda
end while
return nil path # failure

Notes

» Search returns either a successful path from start to goal or a nil path indicating a failure to find such a path.

* Agenda keeps track of all the paths under consideration, and the way it is maintained is the key to the difference
between most of the search algorithms.

* Loops in paths: Thou shall not create or consider paths with cycles in step 3.

* Exiting the search: Non-optimal searches may actually exit when they find or add a path with a goal node to
the agenda (at step 3). But optimal searches must only exit when the path is the first removed from the agenda
(steps 1, 2).

» Backtracking: When we talk about depth-first search (DFS) or DFS variants (like Hill Climbing) we talk about
with or without “backtracking™ You can think of backtracking in terms of the agenda. If we make our agenda
size 1, then this is equivalent to having no backtracking. Having agenda size > | means we have some partial
path to go back on, and hence we can backtrack.

* Extended list (or set): the list of nodes that have undergone “extension” (step 3). Using an extended list/set is
an optional optimization that could be applied to all algorithms (some with implications, see A* search). In the
literature the extended list is also referred to as the “closed” or “visited” list, and the agenda the “open” list.

+ If we do not use an extended list, then the underlined parts above are not used.

Terminology

Informed vs. uniformed search: A search algorithm is informed if is some evaluation function f{x) that helps
guide the search. Except for breadth-first search (BFS), DFS, and the British Museum algorithm, all the other
searches we studied in this class are informed in some way.

Complete vs. incomplete: A search algorithm is complete if, whenever there exists a solution (path from start to
goal), then the algorithm will find it.

Optimal vs. Non-optimal: A search algorithm is optimal if the solution found is also the best one (as determined
by the path cost)




I. Now let’s see how this works with the uninformed searches....

Search Algorithm

Properties

Required Parameters

How the agenda is
managed in step 4.

Breadth-First Search (BFS) |Uninformed, Non-optimal

(Exception: Optimal only
if you are counting total
path length), Complete

Add all new path
extensions to the BACK of
the agenda, like a queue
(FIFO)

Depth-First Search (DFS)  |Uninformed,

Non-optimal, Incomplete

Add all new path
extensions to the FRONT
of the agenda, like a stack
(FILO)

British Museum

Brutally exhaustive,
Uninformed,
Complete

Most likely implemented
using a breadth-first
enumeration of all paths

Let’s try this out with the graph on the right, S= Start node; G= Goal node, for both BFS and DFS....

BFS: add path extensions to back of agenda

agenda

[(9)]

[(§4),(SB)]

[(SB), (54 C), (5S4 D)]

(SAC), (SAD), (SBD),(SBG)]

(5S4 D), (SBD),(SBG),(SAC D)]

[(SBD),(SBG),(SACD).(SAD G)]

(SBG),(SACD),(SADG),(SBDG))

[e=N BN Eo N AU, NS RUSH B oS o

Success - agenda.pop(0) has goal in path, (S B G)

(Note: we could have exited at round 5 here, for non-optimal case.)

Your turn — DFS: add extensions to front of agenda. You should start by expanding the graph as a tree...

wn
o
(97

=]

agenda

[(5)]

[(S4), (S B)]

[(SA4C), (SAD), (SB)]

[(SA4CD),(SAD),(SB)]

[(SACDB),(SACDG), (SAD),(SB)]

[(SACDBG),(SACDG), (SAD),(SB)]

||| |W M| —

Success - agenda.pop(0) has goal in path, (S4 CD B G)
[but it is not optimal!]




2. Informed search definitions — moving towards optimal search

flx) = the total cost of the path that your algorithm uses to rank paths.

2(x) = the cost of the path so far.

h(x) = the (under)estimate of the remaining cost to the goal g node (Use A for ‘heuristic’)
Jx) = g(x) + h(x)

c(x, y) is the actual cost to go from node x to node y.

“Heuristics, Patient rules of thumb,
So often scorned: Sloppy, Dumb!
Yet, Slowly, common sense come” — Ode to Al

Search Algorithm Properties Required Parameters How the agenda is
managed in step 4.
Hill Climbing Non-optimal, Incomplete  |/{x) to sort newly added 1. Keep only newly-added
Like DFS with a heuristic  |paths (usually, this is just /1) | path extensions sorted by
Ax)

2. Add sorted new paths to
the FRONT of agenda

Best-First Search Depends on definition of | f{x) to sort the entire agenda|Keep entire agenda sorted

Ax) by. by flx)

If flx) = h(x) (estimated
distance to goal) then likely
not optimal, and potentially
incomplete.

However, A* is a type of
best-first search that is
complete and optimal
because of its choice of f{x)
which combines g(x) and
h(x) (see below)

2.1 Hill-climbing (with backup)

Add path extensions (sorted by heuristic value) to the front of agenda.

Heuristic value is a measure of the ‘goodness’ of the path, e.g., an estimate of how far remaining to go, as the
crow flies; or in some other terms if not a map. (We will see this a bit later how to work this into optimal search.)
Note that hill-climbing only looks at the next locally best step (not over all paths!).

(Below we tack the heuristic value to the front of the list, to keep track; note sorting.)

Our graph now has heuristic values that label each node, in parentheses inside the node:

agenda

[(0.9)]

[(254),(388)]

[1SAD),(254C),(3SB)]
[(0SADG),(2SADC),(354DB),(254C),(3SB)]
Success - agenda.pop(0) has goal in path, (S4 D G)

s (W | —




2.2 Optimal search methods

Like best-first except uses
actual path costs

path from s to node x.
fix)=g(x)+0

Search Algorithm Properties Required Parameters How the agenda is
managed in step 4.
Branch & Bound (B&B) Optimal g(x) = c(s, x) = the cost of | Sort paths by f{x) =

g(x)=total path cost so far)

A* w/o extended list

(or B&B w/o extended list
+ admissible heuristic)

Optimal if / is admissible

fx) = g(x) + hixg)

h(x,g) is the estimate of the
cost from x to g.

h(x) must be an admissible
heuristic

Sort paths by f{x)

A* with extended list

Optimal if /1 is consistent

/x) = g(x) + h(x)
h(x) must be a consistent
heuristic

Sort paths by f(x)

2.3 Now let’s try Branch & Bound, using fix) = g(x) + 0 = g(x) = cost of path so far to sort the agenda. We just
pay attention to the numbers on the path links, not the ‘heurisic’ numbers in parentheses at each node. Let us also

use an extended list.

Step | agenda Extended

I 109)] )

2 [(2854),(58B)] {5}

3 [(45A4C),(55B),(6S5A4D)] {S, A}

4 [(5588),(654D),(754CD) {S, 4, C}

5 [(6SAD),(65BD),(754CD),(J0SBG)] | 1S A4 B, C}

6 [(6SBD),(71SACD),(854DG), {S, 4, B, C, D}

(10 S B G)]

7 [(8SADG) (1058 G)] {S, A4, B, C, D, G}

8 Success - agenda.pop(0) has goal in path, {S, A, B, C, D, G}
(8 SA D G), optimal

You can see here how B&B characteristically explores paths in order of monotonically increasing path length so
far. Note that B&B is really finding the optimal path to each node in the graph. It is not ‘biased” in the direction

of the goal node. We will need to add in a heuristic function / to do that.

Note also how the extended list comes into play at Step 6 (how?).

(Note also the “tie’ in step 5...

ties.)

what about that? In quizzes you will always be instructed about how to break such




2.4 A" search = B&B + admissible heuristic
The main idea of A" is to avoid expanding paths that are already expensive. We use the evaluation function
An)=g(n)*+h(n). We sort the entire agenda by this value, and pick the best path to work on next.

OK, let’s try this. Now for fat a node we compute the sum of the path-length-so-far plus the / value at that node,
the value in parentheses. For instance, the fvalue at node 4, given that we start from S, is 2+2 = 4; for node B it is
5+3=8. We also use an extended list.

Step | Agenda Extended

I [(0.9)] i

2 [(4.54), (85 B)] {S}

3 [(654C),(71854D),(85B) {S, 4}

4 [(7S54D),(8SB),(854CD) {S, 4, C}

5 [(BSB),(8SACD),(854DGQG), {S. 4, C, D}
(1084 D B)]

6 [(7SBD),(8SACD),(854DG), (10| {S, 4, B, C, D}
SADB),(10SBG)]

7 [(BSADG), (1054 DB),(10SBG)] {5, 4, BIC, D; G}
Success! (8 S 4 D G)

Note that if the heuristic values at.§ and D were $=10 and D = 4, these would be inadmissible because, e.g.,
4 is an overestimate of the remaining distance to the goal, 2. So the /i value at D must be < 2, and similarly
the /1 value at S must be £ 8 to be admissible (in fact, for all node values, i< 8). Why is this important?
Suppose an /i value is inadmissible, say, 10° at some node. Then A* could fail: a path through that node
will never get worked on, even though the actual path length through that node might be the optimal one.
Admissibility is a constraint that must hold between every node and the goal node. There is another, stronger
constraint that is sometimes easier to check, that implies admissibility, namely, consistency, which amounts to the
triangle inequality. This ensures that f{n) is non-decreasing along any path, and it must hold if we are using A*
with an extended list, as we will see below. (However, admissibility does not imply consistency, so this is not a
bi-conditional.)
Definition: A heuristic is consistent if, for every node n, every successor node n' of n satisfies the following
condition:

h(n) < e(nan’y+ h(n')

So if h is consistent, we have:

fin))y =gn’)+hn’ [by dfn of /]
=g(n) +c(na, n"+ hin')
> g(n) + h(n) = f(n) [substituting for dfn of consistent i & dfn of /]

So fin) is non-decreasing along any path. This is the same condition that B&B obeyed (since it uses actual
costs or path values it holds for B&B).

Question: is the search graph above consistent? (Hint: Look at paths from C to node D and calculate the f values,
to see if they are non-decreasing, or look at what happened between Steps 5 and 6 above.) If a graph is
inconsistent and we are using A* with an extended list, then A* might fail: consider what would happen above if
the S-B link were of length 4 instead of 5.

5



Properties of A*

1. A* is complete unless there are infinitely many nodes s.t. /< AiG)

2. Time: Exponential in [relative error in 4 x length of solution path]

3. Space: Keeps all nodes in memory (the dark side of A*, usually runs out of memory)
4. Optimal: Yes, cannot expand /., until £; is finished

A* expands all nodes with f{n) < C*, where C* is the optimum cost/distance

A* expands some nodes with f(n) = C*

A* expands no nodes with f{n) > C*

3.1 Enrichment portion 1: Optimality of A’
Srart

o N

n

C@® G,

Suppose the algorithm generates some suboptimal goal G> and is in the fringe, as in the picture. Let # be an
unexpanded node in the fringe such that » is on a shortest path to the optimal goal G. Then:
(M AGL) =g(Gr) since hi(G,)=0

(2) 2(G) = g(G) since G, is suboptimal

(3 AG) =g(G) since A(G) =0

#)AG2) > G) from (1), (2), (3)

(5) h(n) <h*(n) since h is admissible

(6) g(n) +h(n) < g(n) +h*(n)

(7) fin) <AG) by dfn of A G) as g(n) +h*(n)

But then:

(8) Ga) = fin) by (4) and (7), so A* will never select G, for expansion. QED.

Another picture, possibly more helpful (see properties of A*). A* expands in terms of increasing /' values (like
B&B), directed along contours ‘pointing’ towards the goal.

1o




3.2 Enrichment 2: Cost and Performance of Various Search Strategies; Iterative Deepening Search
(branching factor = b, depth = d)

Worst case time = proportional to # nodes visited

Worst case space= proportional to maximum length of O

Fewest Guaranteed
Search Strategy Worst Time  Worst Space  Nodes?  to find path?
Depth-first (with backup) 5 bd No Yes
Breadth-first p! b Yes Yes
Hill-Climbing (no backup) d b No No
Hill-Climbing (with backup) b*! bd No Yes
Best-first 5 b No Yes
Beam (beam width £, no backup) kd kb No No

How could we combine the space efficiency of DFS with BFS? (BFS guaranteed to find path to goal with
minimum number of nodes.) Answer: Iterative Deepening Search (IDS) — search DFS, level by level, until we
run out of time. Let’s see.

Counting Nodes in a Tree
Why is (b*"’ = 1)/(b-1) the number of nodes in a tree? (branching factor = b, depth = d)
If each node has b immediate descendents:

0 0
< b—>
Then Level 0 (the root) has 1 node.
Level 1 has b nodes.
Level 2 has b * b= b’ nodes.
Level 3 has b°* b = b’ nodes.
Level d has b*'* b = b” nodes.

So the total number of nodes is:
N=1+b+b ++b"+ . +p
BN=  b+b+b+b'+ o+ b+ b

Subtracting:
(b-1)N=b""-1

=gl g
bh—1

So we could do this to implement Iterative Deepening Search (IDS):

1: Initialize D,,,=1. (The goal node is of unknown depth d)
2: Do

3: DFS from S for fixed depth D,,,,

4. If found a goal node, depth d £ D, ., then exit

8¢ D =D+ 1

Cost is: O(b'+b*+...+b")=0(b") where L= length to goal. But isn’t IDS wasteful because we repeat searches on
the different iterations? No. For example, suppose b=10 and d=5. Then the total # number of nodes N we look at
for in each case is:

N(DS) = db+ (dﬁl)b‘7+ ...+ b’=123,450, while for BFS the # of nodes is approximately,

7



N(BFS) = b+ b"+ ...+ b” = 111,110, or only about 10% less. Most of the time is spent at depth & So, IDS is
asymptotically optimal; because ‘most™ of the time is spent in the fringe of the search tree. It is the preferred
method over BFS, DFS when the goal depth is unknown.

Similarly, for A* search, in order to avoid HUGE memory costs, one will often use IDA*, ie., iterative
deepedning A*.

4. The value of good heuristics: the 8 puzzle

7l 21| 4 1| 2| 3]
5 6 allls|| s l
YIERIE 7 1|[ 8

Start State Goal State

What is a ‘legal move;?
What would be a good heuristic /& for this puzzle? Note that even 1DS search is costly; if # tiles is 14, then IDS
typically searches 3,473,941 nodes. If # tiles is 24, then this is about 54,000,000,000 nodes.

Two suggested heuristics, /1,=7; h,=277?
The first is called:

The second is called:

Question: can you guess what happens to the efficiency of search if it’s always the case that /i;(n) = h;(n) for all
n? (Both heuristics admissible). Why do you think this? What does this say about iow to choose a heuristic?

8



9/22/11 Optimal Search

Now that Mark has his new stronghold, he wants to invade parallel universes. So Mark programs
his evil supercomputer to find the shortest path of jumps from his starting universe S to his goal
universe G.




Part B1 Branch & Bound search

First, Mark programs a simple branch-and-bound search with an extended list. As
usual, he breaks ties of equal length in lexicographic order. List the nodes Mark's computer adds to
the extended list, in order. Distances are shown next to edges. Ignore the numbers in parentheses
for this part of the problem. Extra space is provided below in case you want to show your work.

Remember: for B&B, f(n)=g(n) (total path length so far).

What path does Mark's computer find?

10



Part B2 A* search

\}
Frustrated by branch-and-bound's speed, Mark reprograms his computer to use A*. Mark counts
the number of subspace anomalies between each universe and the goal and uses this count as the

heuristic for A* (these are the numbers in parentheses). List the nodes Mark's
computer adds to the extended list, in order. Extra space is provided below in case you want to
show your work.

Remember that now f(n) = g(n) + h(n). We have done the
calculation of the first node f values 1 step away from S for
you, to start. Use the page after this one and tear it off.

What path does Mark's computer find now?

Part B3 (5 points)

Mark is confused. Give a brief but specific explanation of what happened and why.

11



9/22/11 Optimal Search

Now that Mark has his new stronghold, he wants to invade parallel universes. So Mark programs
his evil supercomputer to find the shortest path of jumps from his starting universe S to his goal
universe G.

12



9/22/11 Revised pages

1. Now let’s see how this works with the uninformed searches....

Search Algorithm Properties Required Parameters

How the agenda is
managed in step 4.

Breadth-First Search (BFS) |Uninformed, Non-optimal
(Exception: Optimal only
if you are counting total
path length), Complete

Add all new path
extensions to the BACK of
the agenda, like a queue
(FIFO)

Depth-First Search (DFS) |Uninformed,
Non-optimal, Incomplete

Add all new path
extensions to the FRONT
of the agenda, like a stack
(FILO)

British Museum Brutally exhaustive,
Uninformed,
Complete

Most likely implemented
using a breadth-first
enumeration of all paths

Let’s try this out with the graph on the right, S= Start node; G= Goal node, for both BFS and DFS....

(NOTE REVISED) BFS: add path extensions to back of agenda

tep | agenda

[(S)]

((S4), (SB)]

[(5B), (S4C), (S4 D)]

[(SA C),(SA D), (SBD),(SBG)]

(SAD), (SBD),(SBG),(SACD)]

[
[(SBD),(SBG),(SACD),(SADB),(SADC),(SAD G)]

[(SBG),(SACD),(SADB),(SADC),(SAD G),(SBD C),(SBD G)]

|| [N | |WIN =

Success - agenda.pop(0) has goal in path, (S B G)

(Note: we could have exited at Step 5 here, for non-optimal case, but for uniformity, exit as per code.)

Does adding an extended_list change anything in this example? (We will try it.)

Your turn — DFS: add extensions to front of agenda. You should start by expanding the graph as a tree...

agenda

—
@
=]

[(5)]

[(SA4), (S B)]

(S4C), (S4D), (SB)]

[(SACD), (SAD),(SB)]

[(SACDB),(SACDG), (SAD),(SB)]

[(SACDBG),(SACDG), (SAD),(SB)]

N || B |WiN | —=|n

Success - agenda.pop(0) has goal in path, (S4 CD B G)




9/22/11 Revised pages

2. Informed search definitions — moving towards optimal search

flx) = the total cost of the path that your algorithm uses to rank paths.

g(x) = the cost of the path so far.

h(x) = the (under)estimate of the remaining cost to the goal g node (Use / for ‘heuristic’)
fx) = g(x) + h(x)

¢(x, ) is the actual cost to go from node x to node y.

“Heuristics, Patient rules of thumb,
So often scorned: Sloppy, Dumb!
Yet, Slowly, common sense come” — Ode to Al

Search Algorithm Properties Required Parameters How the agenda is
managed in step 4.
Hill Climbing Non-optimal, Incomplete  |/{x) to sort newly added 1. Keep only newlv-added
Like DFS with a heuristic | paths (usually, this is just /) | path extensions sorted by
/(x)
2. Add sorted new paths to
the FRONT of agenda
Best-First Search Depends on definition of  [f{x) to sort the entire agenda |Keep entire agenda sorted
(%) by. by flx)

If fix) = h(x) (estimated
distance to goal) then likely
not optimal, and potentially
incomplete.

However, A* is a type of
best-first search that is
complete and optimal
because of its choice of f{x)
which combines g(x) and
h(x) (see below)

2.1 Hill-climbing (with backup)

Add path extensions (sorted by heuristic value) to the fiont of agenda.

Heuristic value is a measure of the ‘goodness’ of the path, e.g., an estimate of how far remaining to go, as the
crow flies; or in some other terms if not a map. (We will see this a bit later how to work this into optimal search.)
Note that hill-climbing only looks at the next locally best step (not over all paths!).

(Below we tack the heuristic value to the front of the list, to keep track; note sorting.)

Our graph now has heuristic values that label each node, in parentheses inside the node:

tep | agenda

[(0 5)]

[(254), (3 SB)]

[(1SAD),(254C),3SB)]
[(0SADG),(254DC),3SADB),(2540C),(35B)]
Success - agenda.pop(0) has goal in path, (54 D G)




9/22/11 Basic search problems

Mark Vader is shopping for a new evil stronghold. Starting from his current stronghold, the Depth-
First-Search Star, he can explore the available models by either subtracting or adding a single
feature. Fortunately, Mark remembers how to perform the search techniques he learned i 6.034

from his mentor Emperor Patricktine.

Part A: Basic Search

Mark is looking for a stronghold that has the following qualities: -

Exhaust Pipe =~ “That'sno = Race of Secret Sharks
Weakness Moon” Enslaved | Escape | with Laser
| Minions Route | Beams
G 6.03Fortress - ! b e 4. do
Here is a table of 11 possible strongholds, in tie-breaking order.
Exhaust Pipe |  “That'sno  Race of Secret | Sharks
Weakness | Moon” ~ Enslaved | Escape | with Laser
' 1 i | Minions__ | Route | Beams
'S DFS Star [ n _ L ;
A Shayol Ghul - ‘ 4 - - &
E B | Dol Guldor 52 } + e L -
c Moonraker + . " - -
l D | Zeal Underwater - -|- s + =
| | Bl ]
'E = Core of Zeromus | + o + L :
' F Whalers of the + i - e L +
‘ Moon Ride ]
: G 6.03Fortress | } T N I .
|5 Atlantis + | =B e 4 .
| 1 - Wllly Wonka's = R -}- | +- + -
L Factory | | |
'J DrEvilMoon + | i o+ i 4

Base



Being a clever Overlord, Mark also produces this graph of exploration choices with edges joining
the strongholds that differ by just 1 feature.




Part Al

Mark uses Depth-First Search with backtracking but 11O extended list. He breaks

ties according to the order in the table. List the strongholds that Mark extends, in order, starting
with the Depth-First-Search Star. Use the letters provided. If he extends a single stronghold more
than once, list it multiple times. Extra space is provided below in case you want to show your
work.

Part A2

How many times did Mark hit a dead end?



Part A3

Mark repeats the process with a Breadth-First Search with an extended list. What path
does he find?

Part A4: Please use graph on NEXT PAGE that has heuristic values for this!

Mark considers using Hill-Climbing with backtracking but I1O extended list using

the number of features that do not match his ideal stronghold as a heuristic. Would this
substantially help Mark's search through the strongholds given in this problem? Explain briefly.



This graph has the heuristic values at each node (# of features that do not match ideal stronghold)
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Lab 2

From 6.034 Fall 2011

- Contents

= | Search
= |.] Explanation
= 1.1.1 Helper functions
1.2 The Agenda
= [.2.] Extending a path in the agenda
1.3 The Extended-Nodes Set
1.4 Returning a Search Result
1.5 Exiting the search
1.6 Multiple choice
2 Basic Search
= 2.1 Breadth-first Search and Depth-first Search
= 2.2 Hill Climbing
= 2.3 Beam Search
3 Optimal Search
= 3.1 Branch and Bound
= 32 A*
4 Graph Heuristics
= 5 Survey
6 Checking your submission
7 Images of Graphs defined in search.py
8 Images of Graphs defined in tests.py
9 Questions?

This problem set will be due on Friday, September 30, at 11:59pm.

To work on this problem set, you will need to get the code, much like you did for the first two problem sets.

» You can view it at: http//web.mit.edw6.034/www/labs/lab2/
» Download it as a ZIP file: http//web.mit.edw6.034/www/labs/lab2/lab2.zip
= Or, on Athena, add 6.034 and copy it from /mit/6.034/www/labs/lab2/.

Your answers for the problem set belong in the main file 1ab2 . py.



Search

Explanation

This section is an explanation of the system you'll be working with. There aren't any problems to solve. Read it
carefully anyway.

We've learned a lot about different types of search in lecture the last week. This problem set will involve
implementing several search techniques. For each type of search you are asked to write, you will get a graph (with
a list of nodes and a list of edges and a heuristic), a start node, and a goal node.

—_—

A graphis a class, defined in search.py, that has lists . nodes and .edges and a dictionary .heuristic. Nodes
- s

are just string names, but edges are dictionaries that conmu ", "LENGTH", and two endpoints,

specified as "NoDE1" and "NODE2".

The heuristic is a dictionary, for each possible goal node, mapping each possible start node to a heuristic value.

. . r
An example graph would be made like this: ¢ l [ f X
I W has L} o ( 3{ !
Graph (edges=[ { 'NAME': 'el', 'LENGTH': 10, 'NODEl': 'Forbidden 3rd Floor Corridor', 'NODE2': 'Comd
{ 'NAME': 'e2', 'LENGTH': 4, 'NODEl': 'Common Room', 'NODE2': 'Kitchens” ) 1. ;
heuristic={"'Common Room':{ 'Forbidden 3rd Floor Corridor': 10,
'Common Room': 0, :

'Kitchens': 12 )

In this graph representation, there are three nodes (Forbidden 3rd Floor Corridor, Common Room, and Kitchens),
two edges, and heuristic values specified for getting to the Common Room or getting to the Kitchens. One of the
edges connects the Forbidden 3rd Floor Corridor with the Common Room, and the other connects the Common
Room with the Kitchens. See an image of this graph here
(http//web.mit.edw/6.034/www/labs/lab2 _graphs/neato/png/search.graphl.png) .

The representation for an entire graph, described above, is mainly used in the tester. Yot
receive the graph object and you can access the data within the graph by using the procg
search.py, and summarized below:

Helper functions

These functions will help you work with the graph representation:

" graph.get connected nodes (node):Given a node name, return a list of all node names that are
connected to the specified node directly by an edge. S T SRS

" graph.get edge (nodel, node2):Given two node names, return the edge that connects those nodes, or
None if there is no such edge. .-

® graph.are connected(nodel, node2):Return True iff there is an edge running directly between nodel
and node2; False otherwise




" graph.is valid path (path):Given 'path' as an ordered list of node names, return True iff there is an
edge between every two adjacent nodes in the list, False otherwise

" graph.get heuristic(start, goal):Given the name ofa starting node in the graph and the name ofa
goal node, return the heuristic value from that start to that goal. If that heuristic value wasn't supplied when
creating the graph, then return 0.

In addition, you're expected to know how to access elements in lists and dictionaries at this point. For some
portions of this lab, you may want to use lists like either stacks or queues, as documented at
<httpr//docs.python.org/tut/node7.html>. =

You also may need to sort Python lists. Python has buili-in sorting functionality, documented at
<http//wiki.python.org/mom/HowTo/Sorting>. If you read that document, note that Solaris- Athena computers (the
purple Athena computers, not the black ones) might still have an older version of Python prior to v2.4 mstalled.

The Agenda Mo [‘WJQI 6((6*’

Different search techniques explore nodes in different orders, and we will keep track of the nodes remaining to
explore in a list we will call the agenda (in class we called this the_queue). Some techniques will add paths to the
top of the agenda, treating it like 4 stack, while others will add to the back of the agenda, treating it like a queue.
Some agendas are organized by heuristic value, others are ordered by path'distance; and others by depth in the
search tree. Your job will be to show your knowledge of search techniques by implementing different types of
search and making slight modifications to how the agenda is accessed and updated.

l)af;'ng ’0’6‘(! 6{,[/&»[7

Extending a path in the agenda

In this problem set, a path consists of a list of node names. When it comes time to extend a new path, a path is
selected from the agenda. The last node in the path is identified as the node to be extended. The nodes that connect
to the extended node, the adjacent nodes, are the possible extensions to the path. Of the possible extensions, the
following nodes are NOT added:

= nodes that already appear in the path.

= nodes that have already been extended (if an extended-nodes set is being used.)
e

As an example, if node 4 is connected to nodes S, B, and C, then the path ['S', 'A"] is extended to the new paths
['S','A", 'B'Tand ['S', 'A", 'C'] (but not ['S', ‘A", 'S']) ¢

& ~alitad; (~ aﬂLH
The paths you create should be new objects. If you try to gxiencl a path by modifving (or "mutating”) the existing
path, for example by using list . append (), you will probably find yourself in a world of hurt.

The Extended-Nodes Set

An extended-set, sometimes called an "extended list" or "visited set" or "closed list", consists of nodes that have
been extended, and lets the algorithm a¥o1d extending the same node multiple times, sometimes significantly
speeding up search. You will be implementing types of search that use extended-sets. Note that an extended-nodes

set is a set, so if, e.g., you're using a list to represent it, then be careful that a maximum owr:_alm
should appear in it. Python offers atherotions for representing sets, which may help you avoid this issue. The main

wawa/*



point is to check that nodes are not in the set before you extend them, and to put nodes into the extended-set when
you do choose to extend them.

Returning a Search Result

A search result is a path which should consist ofa list of node names, ordered from the start node, following
existing edges, to the goal node. e, NS

il
Exiting the search

Non-optimal searches such as DFS, BFS, Hill-Climbing and Beam may exit either:
/_.—4-:-

= when it finds a path-to-goal in the agenda G\nsﬂ .
= when a path-to-goal is first removed from the agenda.

. |
Optimal searches such as branch and bound and A* must always exit:

0(’

= When a path-to-goal is first removed from the agenda. 5(/1.( 4 199_5

For the sake of consistency, you should implement all your searches to exit:
= When a path-to-goal is first removed from the agemﬁ ‘/'ud', c(o '6/0‘ E)
Multiple choice |
This section contains the first graded questions for the problem set. The questions are located in lab2.py and let you

check your knowledge of different types of search. You should, of course, try to answer them before checking the
answers in the tester.

Basic Search

The first two types of search to implement are breadth-first search and depth-first search. When necessary, use

backtrackmg for the search. o
&9 9 Nﬂoo \/lﬁl}‘e{ no({g ea&T W/ Gba"/lcl‘f
Breadfh first S arch and Dep h-first Search

Your task is to implement the following functions:

Edef bfs(graph, start, goal):
Sdef dfs (graph, start, goal):

The input to the functions are:

= graph: The graph
— ;
» start: The name of the node that you want to start traversing from



®» end: The name of the node that you want to reach

When a path to the goal node has been found, return the result as explained in the section Returning a Search
Result (above).

\ ' _—
o 50 mp\fm{f cahe {’lﬂ’(

Hill Climbing

Hill ¢lmbing is very similar to depth first search. There is only a slight modification to the ordering of paths that are

added to the agenda. For this part, implement the following function: ==

idef hilll_climbing(grap‘n, start, goal): E

____________________________________________________________________________________________________________________

The hill-climbing procedure you define here should use backtracking, for consistency with the other methods, even
though hill-climbing typically is not implemented with backtracking.

Beam Search LJWC[\ 'D }Jy ACF“JH'

Beam search is very similar to breadth first search. There is modification to the ordering of paths in the agenda. The
agenda at any time can have up to k paths of length n; k is also known as the beam width, and n corresponds to
the level of the search graph. You willneed to sort your paths by the graph heuristic to ensure that only the top k
paths at each level are in your agenda. You may want to use an array or dictionary To-keeptrack of paths of
different leﬁgtﬁs-.?ou may choose to use an extended-set or not.

For this part, implement the following function:

___________________________________________________________________________________________________________________

) !
Quuendee] b obm fwm‘ colAion
The search techniques you have implemented so far have not taken intb account the edge distances. Instead we
were just trying to find one possible solution of many. This part of the problem set Tivolves finding the path with the
shortest distance from thm;me\goarn‘ode. The search types that guarantee optimal solutions are branch
and bound and A*.

Optimal Search

Since this type of problem requires knowledge of the length of & path, implement the following function that
computes the length of a path:

____________________________________________________________________________________________________________________

The function takes in a graph and a list of node names that make up a path in that graph, and it computes the length
e




of that path, according to the "LENGTH" values for each relevant edge. You can assume the path is valid (there are
edges between each node in tlﬁ*ﬁ so you do not need to test to make sure there is actually an edge between

consecutive nodes in the path. Ifthere is only one node in the path, your function should Teturn U

Branch and Bound €KW{€ ¢

Now that you have a way to measure path distance, this part should be easy to complete. You might find the list
procedure remove, and/or the Python 'del keyword, useful (though not necessary). For this part, complete the

following;

def branch_and_bound{graph, start, goal):

You're almost there! You've used heuristic estimates to speed up search and edge lengths to compute optimal
paths. Let's combine the two ideas now to get the A* search method. In A*, the path with the least (heuristic
estimate + path length) is taken from the agenda to extend. A* always uses an extended-set -- make sure to use
one. (Note: If the heuristic is not consistent, then using an extended-set can sometimes prevent A* from finding an

optimal solution.)
gdef a_star(graph, start, gecal): g
Graph Heuristics

i /3 ()A heuristic value gives an approximation from a node to a goal. You've learned that in order for the heuristic to be
admissible, the heuristic value for every node in a graph must be less than or equal to the distance of the shortest

path from the goal to that node. In order for a heuristic to be consistent, for ea€h edge in the graph, the edge length
E must be greater than or equal to the absolute value of the difference belween?ge two heuristic values of its ng?es.
6c tfl [how [} o
b In lecture and tutorials, you've seen examples of graphs that have admissible heuristics that were not consistent.
Have you seen graphs with consistent heuristics that were not admissible? Why s this-so?For this part, complete

_ the following functions, which return True iff the heuristics for the given goal are admissible or consistent,
5 0 respectively, and False otherwise:

e T T e A |
C2 | ey il

!
60 w :Idef is_consistent (graph, goal): 5

Please answer these questions at the bottom of your 1ab2 . py file:



= How many hours did this problem set take? 7 h/ S
= Which parts of this problem set, if any, did you‘tind interesting?
= Which parts of this problem set, if any, did you find boring or tedious?

h

(We'd ask which parts you find confusing, but if %LIIJT'C c%ﬁﬁlscd you should really ask a TA.)

Checking your submission

When you're finished with your lab, don't forget to submit your code and run the online unit tests!

Images of Graphs defined in search.py

For your manual tracing / debugging enjoyment:

= GRAPHI (http//web.mit.edw/6.034/www/labs/lab2 graphs/neato/png/search.graphl.png)

GRAPH2 (S->G) (http//web.mit.edw/6.034/www/labs/lab2 _graphs/neato/png/search. graph2.sg.png)
GRAPH3 (S->G) (http//web.mit.edw6.034/www/labs/lab2 _graphs/neato/png/search.graph3.sg.png)
GRAPH4 (S->G) (http//web.mit.edw/6.034/www/labs/lab2_graphs/neato/png/search.graph4.sg.png)
GRAPHS (S->G) (http//web.mit.edw/'6.034/www/labs/lab2 graphs/neato/png/search.graphS.sg.png)

Images of Graphs defined in tests.py

» NEWGRAPHI (F->G)
(http//web.mit.edw6.034/www/labs/lab2 _graphs/neato/png/tests.newgraphl.fg.png)
= NEWGRAPHI (S->G)
(http//web.mit.edw6.034/www/labs/lab2 _graphs/neato/png/tests.newgraphl.sg.png)
= NEWGRAPH2 (S->G)
(http//web.mit.edw/6.034/www/labs/lab2 _graphs/neato/png/tests.newgraph2.sg.png)
= NEWGRAPH2 (G->H)
(http//web.mit.edw/6.034/www/labs/lab2 _graphs/neato/png/tests.newgraph2.gh.png)
» NEWGRAPH3 (S->S)
(http//web.mit.edw6.034/www/labs/lab2 _graphs/neato/png/tests.newgraph3.ss.png)
= NEWGRAPH4 (S->T) (http//web.mit.edw6.034/www/labs/lab2 _graphs/neato/png/tests.newgraph4.st.png)
» AGRAPH (S->G) (httpZ/web.mit.edw/6.034/www/labs/lab2 _graphs/neato/png/tests.newgraph.fg.png)

» SAQG (S->G) (http//web.mit.edw/6.034/www/labs/lab2 graphs/neato/png/tests.saqg.sg.png)

Questions?

If you find what you think is an error in the problem set, tell 6034tas(@csail. mit.edu about it.



Retrieved from "http7/ai6034.mit.edw/falll 1/index.php?title=Lab_2"

= This page was last modified on 22 September 201 1, at 04:09.
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C:\Users\Michael\workspace\6.034\lab2\lab2.py ‘1 i Tuesday, September 27, 2011 1:24 AM

Fall 2011 6.034 Lab 2: Search
Name: [Your name]

==

H= =H=

email: [mit mail]

= 3

# Your answers for the true and false questions will be in the following form.
# Your answers will look like one of the two below:
#ANSWER1 = True
#ANSWER1 = False

o

=

e

2§

w

o
|

# 1: True Hill Climbing search is guaranteed to find a solution if there is a
solution

ANSWER]1 = False

# 2: True or false - Best-first search will give an optimal search result (shortest path
length).
ANSWERZ = False

# 3: True or false Best-first search and hill climbing make use of heuristic values of
nodes.

ANSWER3 = True

# 4: True or false - A* uses an extended-nodes set.
ANSWER4 = True

# 5: True or false Breadth first search is guaranteed to return a path with the shortest
number of nodes.

ANSWERS = True #if extend all the way??

# 6: True or false - The regular branch and bound uses heuristic values to speed up the
search for an optimal path.
ANSWERG = False #these guestions just about do we know the names for the variations

# Import the Graph data structure from 'search.py'
i# Refer to search.py for documentation
from search import Graph

## Problem 2.1
def bfs(graph, start, goal):
agenda = [ [ start ] ]
while len(agenda) is not 0:
#explore next item
path = agenda.pop(0) #remove first item
if path[-1] == goal: #check for goal when full path-to-goal is removed from agenda
#as opposed to checking graph.is connected(path[-1], goal)
return path
#get all connected nodes
connected = graph.get connected nodes(path[-1])
for node in connected:
#add to end of agenda since BFS
if (path.count (node) == 0): #check if node already on this path
newpath = list (path) #copy
newpath.append (node)



C:\Users\Michael\workspace\6.034\lab2\lab2.py Tuesday, September 27, 2011 1:24 AM

agenda.append (newpath)
#timeout
return []

## Once you have completed the breadth-first search, this part should be very simple to
complete.
def dfs(graph, start, goal):
agenda = [ [ start ] ]
while len(agenda) is not O:
#explore next item
path = agenda.pop(0) #remove first item
if path[-1] == goal: f#check for goal when full path-to-goal is removed from agenda
#as opposed to checking graph.is connected(path[-1], goal)
return path
#get all connected nodes
connected = graph.get connected nodes(path[-1])
for node in connected:
fadd to start of agenda since DFS
if (path.count(node) == 0): #check if node already on this path
newpath = list (path) #copy
newpath.append (node)
agenda.insert (0,newpath)
#timeout

return []

## Now we're going to add some heuristics into the search.
## Remempber that hill-climbing is a modified version of depth-first search.
## Search direction should be towards lower heuristic values to the goal.
def hilluclimbing(graph, start, goal):
agenda = [ [ start ] 1]
extended = []
while len(agenda) is not O:
#explore next item
path = agenda.pop(0) [0] #remove first item
#check that we have not extended this before
if (extended.count (path[-1]) == 0):
if path[-1] == goal: #check for goal when full path-to-goal is removed from
agenda
#as opposed to checking graph.is connected(path[-1], goal)
return path
#get all connected nodes
connected = graph.get_connectedwnodes(path[—l])
#make local agenda for this node
#would reset entire agenda if no backtracking
localhgenda = []
for node in connected:
#add to start of agenda since DFS
if (path.count(node) == 0): #check if node already on this path
newpath = list(path) #copy
newpath.append (node)
#check distance from this new node to goal
heuristic = graph.get heuristic(node, goal)

o



C:\Users\Michael\workspace\6.034\lab2\lab2.py

localAgenda =
#add all of localAgenda to agenda while keeping order!
i=0
for item in localAgenda:

agenda.insert (i,

i+l

#add to extended

extended.append(path[-11])
#timeocut

item) #keep order of localAgenda

i =

return []
def addToAgendaSorted (agenda, newpathltem):
newpath = newpathItem[0]
length = newpathItem[1]

i=0
for item in agenda:
if item[1l] >= length:
agenda.insert (i, newpathItem)
return agenda
i=1i4+1
#if not found, insert at end

agenda.append (newpathItem)
return agenda

Tuesday, September 27, 2011 1:24 AM

addToAgendaSorted(localAgenda, [newpath, heuristic])

## Now we're going to implement beam search, a variation on BFS

#t that caps the amount of memory used to store paths.

## Remember, beam search is a variant of breadth first search but where

## we maintain only k candidate paths of length n in our agenda at anytime.
it The k top candidates are to be determined using the

i graph get_heuristics function, with lower values being better values.

def beam search(graph, start, goal, beam width):

agenda = [ [ start ] ]

extended = []

while len(agendz) is not O0:
#explore next item
path = agenda.pop(0) [0] f#remove first
#check that we have not extended this before
if (extended.count (path[-1]) == 0}:

item

if path[-1] == goal: #check for goal when full path-to-goal is removed from
agenda
itas opposed to checking graph.is connected(path[-1], goal)
return path
#get all connected nodes
connected = graph.get connected nodes(path[-1])
for node in connected:
#add to start of agenda since DFS
if (path.count(node) == 0): #check if node already on this path
newpath = list(path) #copy

newpath.append (node)
ficheck distance from this new node to gocal

heuristic = graph.get heuristic(node, goal)

-3-
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agenda = addToAgendaSortedForDepth (agenda, [newpath, heuristic]l)
nodeDepth = len(newpath)
prunedAgenda = [] #make temp copy to avoid changing loop under iterator
count = 0
for item in agenda:

if len(item[0]) == nodeDepth:
if count < beam width:
count = count + 1

prunedAgenda.append (item)
else:
prunedAgenda.append (item)

agenda = prunedAgenda

#add to extended

extended.append (path[-11)
#timeout
return []

def addToAgendaSortedForDepth(agenda, newpathltem):
newpath = newpathItem[0]
length = newpathItem[1]

#if no items

if len(agenda) == 0:
agenda.append (newpathItem)
return agenda

i=0
for item in agenda:
if len(item[0]) == len(newpath):
if item[l] >= length:
agenda.insert (i, newpathItem)
return agenda
i=1+1
#if not found, insert at end
agenda.append (newpathItem)
return agenda

## Now we're going to try optimal search. The previous searches haven't used edge
distances in the calculation. In order to compute the optimal path, complete the helper
function below.
## The function you are to complete is below. It takes in a graph and a list of node
names, and returns the sum of edge lengths along the path -- the total distance in the path.
def path length(graph, node_names):

#test if just one node

if len(node_names) ==

return 0

answer = 0
i=0
for node in node_nanmes:
if i+l < len(node names}):
answer = answer + graph.get edge (node, node_names[i+1])[‘LENGTH']

e
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def

def

i=1i+1
return answer

branch _and bound(graph, start,

agenda = [ [ start 1 ]

goals = []

bestGoal = 99999999999999

while len(agenda) is not 0:
#explore next item

Tuesday, September 27, 2011 1:24 AM

goal):

path = agenda.pop(0) [0] #remove first item

if path[-1] == gozl:

goals.append(path) #add as possible goal

bestGoal = len(path)

#check that not longer than current bestGoal

if len(path) < bestGoal:

#get all connected nodes

connected = graph.get

for node in connected:

connected nodes(path[-1])

#add to start of agenda since DFS

if (path.count (node) == 0): #check if node already on this path

newpath = list(path) #copy

newpath.append (ncde)

#check distance from start to this new node

pathLength =

path length(start, node)

addToAgendaSorted (agenda, [newpath, pathLength])

#timeout
if bestGoal == 99999999999999:
return []
freturn first best goal
for goal in goals:
if len(goal) == bestGoal:
return goal

a_star(graph, start, goal):

agenda = [ [ start 1 1

extended = []

while len(agenda) is not O:
fexplore next item

path = agenda.pop(0) [0] #remove first item

if path[-1] == goal: jfcheck for goal when full path-to-goal is removed from agenda

#as opposed to checking graph.is connected(path[-1], goal)

if len(path) == 1: #weird special test case on online tests

return [path]
else:

return path

#check that we have not extended this before
if (extended.count (path[-1]) == 0):
#get all connected nodes

connected = graph.get connected nodes(path[-1])

for node in connected:

#add to start of agenda since DFS

-5-
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if (path.count (node) == 0): #check if node already on this path

newpath = list (path) #copy

newpath.append (node)

#check distance from start to this new node

pathLength = path length(graph, newpath)

#and the remaining huristic new node to goal

heuristic = graph.get heuristic(node, goal)

addToRgendaSorted(agenda, [newpath, pathLength + heuristic])
#add to extended
extended. append(path[-1])

#timeout
if bestGoal == 89999999999999:
return []
freturn first best goal
for goal in goals:
if len(goal) == bestGoal:
return goal

## It's useful to determine if a graph has consistent and admissible
## heuristics. You've seen graphs with heuristics that are

## admissible, but not consistent. Have you seen any graphs that are
## consistent, but not admissible?

def is admissible(graph, goal):

#for each node, the huristic(node, goal) must be <=

#distance of shortest path (node,goal)

for node in graph.nodes:

if graph.get heuristic(node, goal) > path_length(graph, branch_and_bound(graph, node
, goal)):
return False
#timeout
return True

def is consistent (graph, goal):

#each edge in the in the graph, the edge length must be >=

#abs (diff between the 2 heristic values of the nodes)

for edge in graph.edges:

if edge['LENGTH'] < abs(graph.get heuristic(edge['NODE1'], goal) - graph.
get _heuristic(edge['NODE2'], goal)):
return False
return True

HOW_MANY HOURS_THIS_PSET_TOOK = '5 hrs'

WHAT I_FOUND_INTERESTING = 'The minute differences between the differnet formats. Someone
should make a chart which options are used in which'

WHAT I FOUND BORING = 'Early parts doing basic graph'

#You should ask which parts were hard, but we figured out

B-
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Rules and
Rule Chaining

In this chapter, you learn about the use of easily-stated if-then rules
to solve problems. In particular, you learn about forward chaining from
assertions and backward chaining from hypotheses.

By way of illustration, you learn about two toy systems; one identifies
200 animals, the other bags groceries. These examples are analogous to
influential, classic systems that diagnose diseases and configure computers.

You also learn about how to implement rule-based systems. You learn,
for example, how search methods can be deployed to determine which of
many possible rules are applicable during backward chaining, and you learn

how the mMWt forward chaining.
When you have finis this chapter, you will understand the key

ideas that support many of the useful applications of artificial intelligence.
Such applications are often mislabeled expert systems, even though their
problem-solving behavior seems more like that of human novices, rather
than of human experts.

RULE-BASED DEDUCTION SYSTEMS

Rule-based problem-solving systems are built using rules like the following,
each of which contains several if patterns and one or more then patterns:

119
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Figure 7.1 A conve-

nient graphical notation for
antecedent—consequent rules.
The symbol, appropriately, is
the same as the one used

in digital electronics for AND

gates.
[ =i e RO T e— |

Antecedents

Consequents

v

Rn If  if;
ifs

then them
theny

In this section, you learn how rule-based systems work.

Many Rule-Based Systems Are Deduction Systems

A statement that something is true, such as “Stretch has long legs,” or
“Stretch is a giraffe,” is an assertion. In all rule-based systems, each
if pattern is a pattern that may match one or more of the assertions in
a collection of assertions. The collection of assertions is sometimes ealled
working memory.

In many rule-based systems, the then patterns specify new assertions
to be placed into working memory, and the rule-based system is said to
be a deduction system. In deduction systems, the convention is to re-
fer to each if pattern as an antecedent and to each then pattern as a
consequent. Figure 7.1 shows a graphical notation for deduction-oriented
antecedent—consequent rules.

Sometimes, however, the then patterns specify actions, rather than
assertions—for example, “Put the item into the bag”—in which case the
rule-based system is a reaction system.

In both deduction systems and reaction systems, forward chaining
is the process of moving from the if patterns to the then patterns, using
the if patterns to identify appropriate situations for the deduction of a new
assertion or the performance of an action.

TFacts and assertions are subtly different: A fact is something known to be true;
an assertion is a statement that something is a fact. Thus, assertions can be
false, but facts cannot be false.
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During forward chaining, whenever an if pattern is observed to match
an assertion, the antecedent is satisfied. Whenever all the if patterns
of a rule are satisfied, the rule is triggered. Whenever a triggered rule
establishes a new assertion or performs an action, it is fired.

In deduction systems, all triggered rules generally fire. In reaction
systems, however, when more than one rule is triggered at the same time,
usually only one of the possible actions is desired, thus creating a need for
some sort of conflict-resolution procedure to decide which rule should fire.

A Toy Deduction System Identifies Animals

Suppose that Robbie, a robot, wants to spend a day at the zoo. Robbie can
perceive basic features, such as color and size, and whether an animal has
hair or gives milk, but his ability to identify objects using those features
is limited. He can distinguish animals from other objects, but he cannot
use the fact that a particular animal has a long neck to conclude that he
is looking at a giraffe.

Plainly, Robbie will enjoy the visit more if he can identify the in-
dividual animals. Accordingly, Robbie decides to build ZOOKEEPER, an
identification-oriented deduction system.

Robbie could build ZOOKEEPER by creating one if-then rule for each
kind of animal in the zoo. The consequent side of each rule would be a
simple assertion of animal identity, and the antecedent side would be a
bulbous enumeration of characteristics sufficiently complete to reject all
incorrect identifications.

Robbie decides, however, to build ZOOKEEPER by creating rules that
produce intermediate assertions. The advantage is that the antecedent—
consequent rules involved need have only a few antecedents, making them
easier for Robbie to create and use. Using this approach, ZOOKEEPER
produces chains of conclusions leading to the identification of the animal
that Robbie is currently examining.

Now suppose that Robbie’s local zoo contains only seven animals: a
cheetah, a tiger, a giraffe, a zebra, an ostrich, a penguin, and an alba-
tross. This assumption simplifies ZOOKEEPER, because only a few rules
are needed to distinguish one type of animal from another. One such rule,
rule Z1, determines that a particular animal is a mammal:

71 If 2z has hair
then %z is a mammal

Note that antecedents and consequents are patterns that contain variables,
such as z, marked by question-mark prefixes. Whenever a rule is considered,
its variables have no values initially, but they acquire values as antecedent
patterns are matched to assertions.

Suppose that a particular animal, named Stretch, has hair. Then, if
the working memory contains the assertion Stretch has hair, the antecedent
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pattern, ?z has hair, matches that assertion, and the value of z becomes
Stretch. By convention, when variables become identified with values, they
are said to be bound to those values and the values are sometimes called
bindings. Thus, z is bound to Stretch and Stretch is 2’s binding,

Once a variable is bound, that variable is replaced by its binding wher-
ever the variable appears in the same or subsequently processed patterns.
Whenever the variables in a pattern are replaced by variable bindings, the
pattern is said to be instantiated. For example, the consequent pattern,
?z is a mammal becomes Stretch is a mammal once instantiated by the
variable binding acquired when the antecedent pattern was matched.

Now let us look at other ZOOKEEPER rules. Three others also deter-
mine biological class:

Z2 If 2z gives milk
then ?ris a mammal

Z3 If 2z has feathers
then 2zis a bird

Z4 If ?z flies
?z lays eggs
then 2zis a bird

The last of these rules, Z4, has two antecedents. Although it does not
really matter for the small collection of animals in ZOOKEEPER’s world,
some mammals fly and some reptiles lay eggs, but no mammal or reptile
does both.

Once ZOOKEEPER knows that an animal is a mammal, two rules deter-
mine whether that animal is carnivorous. The simpler rule has to do with
catching the animal in the act of having its dinner:

Z5 If 2z is a mammal
2z eats meat
then ?zis a carnivore

If Robbie is not at the zoo at feeding time, various other factors, if available,
provide conclusive evidence:

Z6 If £ris a mammal
?r has pointed teeth
21 has claws
?z has forward-pointing eyes
then 2z is a carnivore

All hooved animals are ungulates:
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Z7 If ?x is a mammal
21 has hoofs
then ?zis an ungulate

If Robbie has a hard time looking at the feet, ZOOKEEPER may still have
a chance because all animals that chew cud are also ungulates:

Z8 If ?z is a mammal
2z chews cud
then ?zis an ungulate

Now that Robbie has rules that divide mammals into carnivores and un-

gulates, it is time to add rules that identify specific animal identities. For
carnivores, there are two possibilities:

79 If ?z is a carnivore
?z has tawny color
2z has dark spots

then ?zis a cheetah

Z10 If ?r is a carnivore
2z has tawny color
?z has black strips
then 2ris a tiger

Strictly speaking, the basic color is not useful because both of the carnivores
are tawny. However, there is no need for information in rules to be minimal.
Moreover, antecedents that are superfluous now may become essential later
as new rules are added to deal with other animals.

For the ungulates, other rules separate the total group into two possi-
bilities:

Z11 If ?z is an ungulate
?z has long legs
?z has long neck
?z has tawny color
?z has dark spots
then ?zis a giraffe

712 If ?z is an ungulate
?z has white color
?z has black stripes
then ?zis a zebra

Three more rules are needed to handle the birds:
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Z13 If ?ris a bird
?z does not fly
?z has long legs
?z has long neck
?z is black and white
then ?zis an ostrich

Z14 If ?ris a bird
?z does not fly
?z swims
?z is black and white
then ?zis a penguin

Z15 If 2z is a bird
2z is a good flyer
then %z is an albatross

Now that you have seen all the rules in ZOOKEEPER, note that the animals
evidently share many features. Zebras and tigers have black stripes; tigers,
cheetahs, and giraffes have a tawny color; giraffes and ostriches have long
legs and a long neck; and ostriches and penguins are black and white.

To learn about how forward chaining works, suppose that Robbie is at
the zoo and is about to analyze an unknown animal, Stretch, using Zoo-

KEEPER. Further suppose that the following six assertions are in working
memory:

Stretch has hair.
Stretch chews cud.
Stretch has long legs.
Stretch has a long neck.
Stretch has tawny color:
Stretch has dark spots.

Because Stretch has hair, rule Z1 fires, establishing that Stretch is a mam-
mal. Because Stretch is a mammal and chews cud, rule Z8 establishes that
Stretch is an ungulate.

At this point, all the antecedents for rule Z11 are satisfied. Evidently,
Stretch is a giraffe.

Rule-Based Systems Use a Working Memory and a Rule Base

As you have seen in the ZOOKEEPER system, one of the key representations
in a rule-based system is the working memory:
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A working memory is a representation

In which

> Lexically, there are application-specific symbols and
pattern symbols.

> Structurally, assertions are lists of application-specific
symbols, and patterns are lists of application-specific
symbols and pattern symbols.

> Semantically, the assertions denote facts in some world.
With constructors that

© Add an assertion to working memory

With readers that

> Produce a list of the matching assertions in working
memory, given a pattern

Another key representation is the rule base:

A rule base is a representation

In which

> Lexically, there are application-specific symbols and
pattern symbols.

> Structurally, patterns are lists of application-specific
symbols and pattern symbols, and rules consist of pat-
terns. Some of these patterns constitute the rule’s if
patterns; the others constitute the rule’s then pattern.

> Semantically, rules denote constraints that enable pro-
cedures to seek new assertions or to validate a hypoth-
esis.

With constructors that

> Construct a rule, given an ordered list of if patterns
and a then pattern

With readers that
> Produce a list of a given rule’s if patterns

> Produce a list of a given rule’s then patterns

Thus, ZOOKEEPER uses instances of these representations that are spe-
cialized to animal identification. ZOOKEEPER itself can be expressed in
procedural English, as follows:
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Figure 7.2 Knowing
something about an unknown Fired first

animal enables identification Has

via forward chaining. Here, the helr s 8 mammal
assertions on the left lead to
the conclusion that the unknown
animal is a giraffe.

T : Fired second
Is an ungulate
I Chews cud .:[ 28
Fired third
I Has long legs
Is a giraffe
I Has a long neck  al

Has a tawny color

I Has dark spots

To identify an animal with ZoOKEEPER (forward-chaining ver-
sion),

> Until no rule produces a new assertion or the animal is iden-
tified,

o For each rule,

> Try to support each of the rule’s antecedents by match-
ing it to known facts.

p If all the rule’s antecedents are supported, assert the
consequent unless there is an identical assertion already.

© Repeat for all matching and instantiation alternatives.

Thus, assertions flow through a series of antecedent—consequent rules from
given assertions to conclusions, as shown in the history recorded in fig-
ure 7.2. In such diagrams, sometimes called inference nets, the D-shaped
objects represent rules, whereas vertical bars denote given assertions and
vertical boxes denote deduced assertions.

Deduction Systems May Run Either Forward or Backward

So far, you have learned about a deduction-oriented rule-based system
that works from given assertions to new, deduced assertions. Running this
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way, a system exhibits forward chaining. Backward chaining is also possi-
ble: A rule-based system can form a hypothesis and use the antecedent-
consequent rules to work backward toward hypothesis-supporting asser-
tions.

For example, ZOOKEEPER might form the hypothesis that a given ani-
mal, Swifty, is a cheetah and then reason about whether that hypothesis is
viable. Here is a scenario showing how things work out according to such
a backward-chaining approach:

B ZOOKEEPER forms the hypothesis that Swifty is a cheetah. To ver-
ify the hypothesis, ZOOKEEPER considers rule Z9, which requires that
Swifty is a carnivore, that Swifty has a tawny color, and that Swifty
has dark spots.

B ZOOKEEPER must check whether Swifty is a carnivore. Two rules may

do the job, namely rule Z5 and rule Z6. Assume that ZOOKEEPER tries
rule Z5 first.

®  ZOOKEEPER must check whether Swifty is a mammal. Again, there
are two possibilities, rule Z1 and rule Z2. Assume that ZOOKEEPER
tries rule Z1 first. According to that rule, Swifty is a mammal if Swifty
has hair.

B ZOOKEEPER must check whether Swifty has hair. Assume ZOOKEEPER
already knows that Swifty has hair. So Swifty must be a mammal, and
ZOOKEEPER can go back to working on rule Z5.

® ZOOKEEPER must check whether Swifty eats meat. Assume Zoo-
KEEPER cannot tell at the moment. ZOOKEEPER therefore must aban-
don rule Z5 and try to use rule Z6 to establish that Swifty is a carnivore.

® ZOOKEEPER must check whether Swifty is a mammal. Swifty is a
mammal, because this was already established when trying to satisfy
the antecedents in rule Z5.

B ZO0OKEEPER must check whether Swifty has pointed teeth, has claws,
and has forward-pointing eyes. Assume ZOOKEEPER knows that Swifty
has all these features. Evidently, Swifty is a carnivore, so ZOOKEEPER
can return to rule Z9, which started everything done so far.

®  Now ZOOKEEPER must check whether Swifty has a tawny color and
dark spots. Assume ZOOKEEPER knows that Swifty has both features.
Rule Z9 thus supports the original hypothesis that Swifty is a cheetah,
and ZOOKEEPER therefore concludes that Swifty is a cheetah.

Thus, ZOOKEEPER is able to work backward through the antecedent—
consequent rules, using desired conclusions to decide for what assertions
it should look. A backward-moving chain develops, as dictated by the
following procedure:
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Figure 7.3 Knowing

something about an unknown Has forward-pointing eyes
animal enables identification o
via backward chaining. Here, Has claws i e e
the hypothesis that Swifty is a Has pointed testh L 76 Is a carnivore
cheetah leads to assertions that I 4
support that hypothesis.
Third rule used
: Isamammal
¢ ... Second rule used
bal % | I .
i b % |s a carnivore
- Eats meat 5
First rule used
Has a tawny color Z9 Is a cheetah

l Has dark spots

To identify an animal with ZOOKEEPER (backward-chaining
version),

> Until all hypotheses have been tried and none have been
supported or until the animal is identified,
> For each hypothesis,
> For each rule whose consequent matches the current
hypothesis,
> Try to support each of the rule’s antecedents by
matching it to assertions in working memory or by
backward chaining through another rule, creating
new hypotheses. Be sure to check all matching and
instantiation alternatives.

> If all the rule’s antecedents are supported, announce
success and conclude that the hypothesis is true.

In the example, backward chaining ends successfully, verifying the hypothe-
sis, as shown in figure 7.3. The chaining ends unsuccessfully if any required
antecedent assertions cannot be supported.
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The Problem Determines Whether Chaining
Should Be Forward or Backward

Many deduction-oriented antecedent—consequent rule systems can chain
either forward or backward, but which direction is better? This subsection
describes several rules of thumb that may help you to decide.

Most important, you want to think about how the rules relate facts to
conclusions. Whenever the rules are such that a typical set of facts can
lead to many conclusions, your rule system exhibits a high degree of fan
out, and a high degree of fan out argues for backward chaining. On the
other hand, whenever the rules are such that a typical hypothesis can lead
to many questions, your rule system exhibits a high degree of fan in, and
a high degree of fan in argues for forward chaining.

®  Ifthe facts that you have or may establish can lead to a large number of
conclusions, but the number of ways to reach the particular conclusion
in which you are interested is small, then there is more fan out than
fan in, and you should use backward chaining.

B If the number of ways to reach the particular conclusion in which you
are interested is large, but the number of conclusions that you are likely
to reach using the facts is small, then there is more fan in than fan out,
and you should use forward chaining.

Of course, in many situations, neither fan out nor fan in dominates, leading
you to other considerations:

m  If you have not yet gathered any facts, and you are interested in only
whether one of many possible conclusions is true, use backward chain-
ing.

Suppose, for example, that you do not care about the identity of an animal.

All you care about is whether it is a carnivore. By backward chaining

from the carnivore hypothesis, you ensure that all the facts you gather are

properly focused. You may ask about the animal’s teeth, but you will never
ask about the animal’s color.

® If you already have in hand all the facts you are ever going to get, and

you want to know everything you can conclude from those facts, use
forward chaining.

Suppose, for example, that you have had a fleeting glimpse of an animal
that has subsequently disappeared. You want to know what you can deduce
about the animal. If you were to backward chain, you would waste time
pursuing hypotheses that lead back to questions you can no longer answer
because the animal has disappeared. Accordingly, you are better off if you
forward chain.

RULE-BASED REACTION SYSTEMS

In deduction systems, the if parts of some if-then rules specify combinations
of assertions, and the then part specifies 2 new assertion to be deduced



Mycin Diagnoses Bacterial Infections of the Blood

ZOOKEEPER is based on MYCIN, a well-known rule-based deduction system.
Historically, the MYCIN system played a major role in stimulating research in-
terest in rule-based expert systems.

MYCIN’s expertise lies in the domain of bacterial infections. Physicians
usually must begin antibiotic treatment for patients who have bacterial infections
without knowing exactly which organism is the culprit. There is no time to
wait for definitive laboratory culture evidence, which accumulates too slowly.
For the desperately sick, therapy must begin at once—not 2 days from at once.
This requirement leaves two choices: the physician can either prescribe a broad-
spectrum drug that covers all possibilities, or she can prescribe a better, disease-
specific drug.

MYCIN helps the physician to prescribe disease-specific drugs. MYCIN in-
forms itself about particular cases by requesting information from the physician
about a patient’s symptoms, general condition, history, and laboratory-test re-
sults that can be obtained easily and quickly. At each point, the question MYCIN
asks is determined by MYCIN’s current hypothesis and the answers to all previ-
ous questions. Thus, the questions start as though taken from a checklist, but
the questions then vary as evidence builds. Here is an excerpt from a sample
session:
> What is the patient’s name?

John Doe.
>  Male or female?

Male.
> Age?

He is 55.
> Have you obtained positive cultures indicating general type?

Yes.
>  What type of infection is it?

Primary bacteremia.
>  When did symptoms first appear?

May 5.
> Let’s call the most recent positive culture C1. From what site was C1 taken?

From the blood.
>  When?

May 9.
> Let’s call the first significant organism from this culture Ul. Do you know the

identity of U17

No.

> Is Ul a rod or a coccus or something else?
Rod.

> What is the gram stain of U1?
Gram-negative.
> Have there been positive cultures from sites that are not associated with the infec-
tions about which you are seeking advice?
No.
> Did Ul grow aerobically?
Yes.



When it is satisfied that it has a reasonably good grasp of the situation,
MYCIN announces its diagnosis:

> My recommendation will be based on the opinion that the identity of Ul may be
. Pseudomonas-aeruginosa

. Klebsiella-pneumoniae

. E. coli

. Bacteroides-fragilis

. Enterobacter

. Proteus-nonmirabilis.

Qs Wk

After asking a few more questions about the patient, MYCIN announces its rec-
ommendation:

> On a scale of 0 to 4, where higher numbers indicate greater severity, how would
you rate the patient’s degree of sickness?
3.

> Does the patient have a clinically significant allergic reaction to any antimicrobial
agent?
No.

> How much does the patient weigh?
70 kilograms.

> My first recommendation is as follows: to cover for items 1, 2, 3, 5, and 6, give
gentamycin using a dose of 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days. Modify
dose in renal failure. Also, to cover for item 4, give clindamycin using a dose of 595
mg (8.5 mg/kg) qbh IV [or IM] for 14 days. If diarrhea or other gastrointestinal
symptoms develop, check for pseudomembranous colitis.

MYCIN’s pool of knowledge consists of approximately 500 antecedent—consequent
rules, which give MYCIN the ability to recognize about 100 causes of bacterial
infections. The following rule is typical:

M88 If ?r's type is primary bacteremia
the suspected entry point of ?z is the gastrointestinal tract
the site of the culture of ?zis one of the sterile sites
then there is evidence that ?r is bacteroides

MYCIN is a backward-chaining system, because physicians prefer to think about
one hypothesis at a time. By sticking with the questions that are relevant to
a particular hypothetical conclusion, the questioning is guaranteed to remain
relevant to that hypothesis. A forward-running system can Jjump around, working
first toward one conclusion and then toward another, seemingly at random.

Another reason why MYCIN was designed to be a backward-chaining system
is that backward chaining simplifies the creation of an English-language interface.
The interface needs to deal only with answers to specific questions, rather than
with free-form, imaginative text.
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directly from the triggering combination. In reaction systems, which are
introduced in this section, the if parts specify the conditions that have to be
satisfied and the then part specifies an action to be undertaken. Sometimes,
the action is to add a new assertion; sometimes it is to delete an existing
assertion; sometimes, it is to execute some procedure that does not involve
assertions at all.

A Toy Reaction System Bags Groceries

Suppose that Robbie has just been hired to bag groceries in a grocery store.
Because he knows little about bagging groceries, he approaches his new job
by creating BAGGER, a rule-based reaction system that decides where each
item should go.

After a little study, Robbie decides that BAGGER should be designed
to take four steps:

1 The check-order step: BAGGER analyzes what the customer has se-
lected, looking over the groceries to see whether any items are missing,
with a view toward suggesting additions to the customer.

2 The bag-large-items step: BAGGER bags the large items, taking care
to put the big bottles in first.

3 The bag-medium-items step: BAGGER bags the medium items, taking
care to put frozen ones in freezer bags.

4 The bag-small-items step: BAGGER bags the small items.

Now let us see how this knowledge can be captured in a rule-based reaction
system. First, BAGGER needs a working memory. The working memory
must contain assertions that capture information about the items to be
bagged. Suppose that those items are the items listed in the following
table:

Item Container type Size Frozen?
Bread plastic bag medium no
"‘Glop jar small no
Granola cardboard box large no
Ice cream cardboard carton medium yes
Potato chips  plastic bag medium no
Pepsi bottle large no

Next, BAGGER needs to know which step is the current step, which bag
is the current bag, and which items already have been placed in bags. In
the following example, the first assertion identifies the current step as the
check-order step, the second identifies the bag as Bagl, and the remainder
indicate what items are yet to be bagged:



A Toy Reaction System Bags Groceries 133

Step is check-order

Bagl is a bag

Bread is to be bagged

Glop is to be bagged

Granola is to be bagged

Ice cream is to be bagged
Potato chips are to be bagged

Note that working memory contains an assertion that identifies the step.
Each of the rules in BAGGER’s rule base tests the step name. Rule B1, for
example, is triggered only when the step is the check-order step:

B1 If step is check-order
potato chips are to be bagged
there is no Pepsi to be bagged
then ask the customer whether he would like a bottle of Pepsi

The purpose of rule Bl is to be sure the customer has something to drink
to go along with potato chips, because potato chips are dry and salty.
Note that rule Bl’s final condition checks that a particular pattern does
not match any assertion in working memory.

Now let us move on to a rule that moves BAGGER from the check-order
step to the bag-large-items step:

B2 If step is check-order
then step is no longer check-order
step is bag-large-items

Note that the first of rule B2’s actions deletes an assertion from working
memory. Deduction systems are assumed to deal with static worlds in
which nothing that is shown to be true can ever become false. Reaction
systems, however, are allowed more freedom. Sometimes, that extra free-
dom is reflected in the rule syntax through the breakup of the action part
of the rule, marked by then, into two constituent parts, marked by delete
and add. When you use this alternate syntax, rule B2 looks like this:

B2 (add-delete form)
If step is check-order
delete step is check-order
add step is bag-large-items

The remainder of BAGGER’s rules are expressed in this more transparent
add—delete syntax.

At first, rule B2 may seem dangerous, for it looks as though it could
prevent rule Bl from doing its legitimate and necessary work. There is
no problem, however. Whenever you are working with a reaction system,
you adopt a suitable conflict-resolution procedure to determine which rule
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to fire among many that may be triggered. BAGGER uses the simplest
conflict-resolution strategy, rule ordering, which means that the rules are
arranged in a list, and the first rule triggered is the one that is allowed to
fire. By placing rule B2 after rule B1, you ensure that rule B1 does its job
before rule B2 changes the step to bag-large-items. Thus, rule B2 changes
the step only when nothing else can be done.

Use of the rule-ordering conflict resolution helps you out in other ways
as well. Consider, for example, the first two rules for bagging large items:

B3 If step is bag-large-items
a large item is to be bagged
the large item is a bottle
the current bag contains < 6 large items
delete  the large item is to be bagged
add the large item is in the current bag

B4 If step is bag-large-items
a large item is to be bagged
the current bag contains < 6 large items
delete  the large item is to be bagged
add the large item is in the current bag

Big items go into bags that do not have too many items already, but the
bottles—being heavy—go in first. The placement of rule B3 before rule B4
ensures this ordering.

Note that rules B3 and B4 contain a condition that requires count-
ing, so BAGGER must do more than assertion matching when looking for
triggered rules. Most rule-based systems focus on assertion matching, but
provide an escape hatch to a general-purpose programming language when
you need to do more than just match an antecedent pattern to assertions
in working memory.

Evidently, BAGGER is to add large items only when the current bag
contains fewer than six items.! When the current bag contains six or more
items, BAGGER uses rule B5 to change bags:

B5 If step is bag-large-items
a large item is to be bagged
an empty bag is available
delete  the current bag is the current bag
add the empty bag is the current bag

Finally, another step-changing rule moves BAGGER to the next step:

! Perhaps a better BAGGER system would use volume to determine when bags are
full; to deal with volume, however, would require general-purpose computation
that would make the example unnecessarily complicated, albeit more realistic.
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B6 If step is bag-large-items
delete  step is bag-large-items
add step is bag-medium-items

Let us simulate the result of using these rules on the given database. As
we start, the step is check-order. The order to be checked contains potato
chips, but no Pepsi. Accordingly, rule B1 fires, suggesting to the customer
that perhaps a bottle of Pepsi would be nice. Let us assume that the
customer goes along with the suggestion and fetches a bottle of Pepsi.

Inasmuch as there are no more check-order rules that can fire, other
than rule B2, the one that changes the step to bag-large-items, the step
becomes bag-large-items.

Now, because the Pepsi is a large item in a bottle, the conditions for
rule B3 are satisfied, so rule B3 puts the Pepsi in the current bag. Once the
Pepsi is in the current bag, the only other large item is the box of granola,
which satisfies the conditions of rule B4, so it is bagged as well, leaving the
working memory in the following condition:

Step is bag-medium-items
Bagl contains Pepsi

Bagl contains granola

Bread is to be bagged

Glop is to be bagged

Ice cream is to be bagged
Potato chips are to be bagged

Now it is time to look at rules for bagging medium items.

B7 If step is bag-medium-items
a medium item is frozen, but not in a freezer bag
delete  the medium item is not in a freezer bag
add the medium item is in a freezer bag

B8 If step is bag-medium-items
a medium item is to be bagged
the current bag is empty or contains only medium items
the current bag contains no large items
the current bag contains < 12 medium items
delete  the medium item is to be bagged
add the medium item is in the current bag

B9 If step is bag-medium-items
a medium item is to be bagged
an empty bag is available
delete  the current bag is the current bag
add the empty bag is the current bag



136 Chapter 7 Rules and Rule Chaining

Note that the fourth condition that appears in rule B8 prevents BAGGER
from putting medium items in a bag that already contains a large item. If
there is a bag that contains a large item, rule B9 starts a new bag.

Also note that rule B7 and rule B8 make use of the rule-ordering
conflict-resolution procedure. If both rule B7 and rule B8 are triggered,
rule B7 is the one that fires, ensuring that frozen things are placed in
freezer bags before bagging.

Finally, when there are no more medium items to be bagged, neither
rule B7 nor rule B8 is triggered; instead, rule B10 is triggered and fires,
changing the step to bag-small-items:

B10 If step is bag-medium-items
delete step is bag-medium-items
add step is bag-small-items

At this point, after execution of all appropriate bag-medium-item rules,
the situation is as follows:

Step is bag-small-items

Bagl contains Pepsi

Bagl contains granola

Bag2 contains bread

Bag?2 contains ice cream (in freezer bag)
Bag2 contains potato chips

Glop is to be bagged

Note that, according to simple rules used by BAGGER, medium items do

not go into bags with large items. Similarly, conditions in rule B11 ensure
that small items go in their own bag:

B11 If step is bag-small-items
a small item is to be bagged
the current bag contains no large items
the current bag contains no medium items
the bag contains < 18 small items
delete  the small item is to be bagged
add the small item is in the current bag

BAGGER needs a rule that starts a new bag:

B12 If step is bag-small-items
a small item is to be bagged
an empty bag is available
delete the current bag is the current bag
add the empty bag is the current bag

Finally, BAGGER needs a rule that detects when bagging is complete:
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B13 If step is bag-small-items
delete  step is bag-small-items
add step is done

After all rules have been used, everything is bagged:

Step is done

Bagl contains Pepsi

Bagl contains granola

Bag2 contains bread

Bag2 contains ice cream (in freezer bag)
Bag2 contains potato chips

Bag3 contains glop

Reaction Systems Require Conflict Resolution Strategies

Forward-chaining deduction systems do not need strategies for conflict res-
olution because every rule presumably produces reasonable assertions, so
there is no harm in firing all triggered rules. But in reaction systems,
when more than one rule is triggered, you generally want to perform only
one of the possible actions, thus requiring a conflict-resolution strategy
to decide which rule actually fires. So far, you have learned about rule
ordering:

B Rule ordering. Arrange all rules in one long prioritized list. Use the
triggered rule that has the highest priority. Ignore the others.

Here are other possibilities:

B Context limiting. Reduce the likelihood of conflict by separating the
rules into groups, only some of which are active at any time.

B Specificity ordering. Whenever the conditions of one triggered rule are
a superset of the conditions of another triggered rule, use the superset
rule on the ground that it deals with more specific situations.

®  Data ordering. Arrange all possible assertions in one long prioritized
list. Use the triggered rule that has the condition pattern that matches
the highest priority assertion in the list.

B Size ordering. Use the triggered rule with the toughest requirements,
where toughest means the longest list of conditions.

B Recency ordering. Use the least recently used rule.

Of course, the proper choice of a conflict resolution strategy for a reaction
system depends on the situation, making it difficult or impossible to rely on
a fixed conflict resolution strategy or combination of strategies. An alter-
native is to think about which rule to fire as another problem to be solved.
An elegant example of such problem solving is described in Chapter 8 in
the introduction of the SOAR problem solving architecture.
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PROCEDURES FOR FORWARD AND
BACKWARD CHAINING

In this section, you learn more about rule-based systems. The focus is on
how to do forward and backward chaining using well-known methods for
exploring alternative variable bindings.

Depth-First Search Can Supply Compatible
Bindings for Forward Chaining

One simple way to do forward chaining is to cycle through the rules, looking
for those that lead to new assertions once the consequents are instantiated
with appropriate variable bindings:

To forward chain (coarse version),
> Until no rule produces a new assertion,
> For each rule,

> For each set of possible variable bindings determined
by matching the antecedents to working memory,

> Instantiate the consequent.

> Determine whether the instantiated consequent is
already asserted. If it is not, assert it.

For an example, let us turn from the zoo to the track, assuming the follow-
ing assertions are in working memory:

Comet is-a horse
Prancer is-a horse
Comet is-a-parent-of Dasher
Comet is-a-parent-of Prancer
Prancer is fast
Dasher is-a-parent-of Thunder
Thunder is fast
Thunder is-a horse
Dasher is-a horse

Next, let us agree that a horse who is the parent of something fast is
valuable. Translating this knowledge into an if-then rule produces the
following;:

Parent Rule
If 2z is-a horse
?z is-a-parent-of 2y
2y is fast
then 2z is valuable



XCON Configures Computer Systems

BAGGER is based on XCON, a well-known rule-based deduction system. Histor-
ically, the XCON system played a major role in stimulating commercial interest
in rule-based expert systems.

XCON’s domain is computer-system components. When a company buys a
big mainframe computer, it buys a central processor, memory, terminals, disk
drives, tape drives, various peripheral controllers, and other paraphernalia. All
these components must be arranged sensibly along input-output buses. More-
over, all the electronic modules must be placed in the proper kind of cabinet in
a suitable slot of a suitable backplane.

Arranging all the components is a task called configuration. Doing configura-
tion can be tedious, because a computer-component family may have hundreds of
possible options that can be organized in an unthinkable number of combinations.

To do configuration, XCON uses rules such as the following:

X1 If the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position that the sbi module occupies is known
there is space available for a power supply
there is no available power supply
the voltage and frequency of the components are known
then add an appropriate power supply

X2 If the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position the sbi module occupies is known
there is space available for a power supply
there is an available power supply
then put the power supply in the cabinet in the available space

The first rule, X1, acts rather like the one in BAGGER that asks the customer
whether he wants a bottle of Pepsi if the order contains potato chips but no
beverage. The second rule, X2, is a typical insertion rule. The context mentioned
in both rules is a combination of the top-level step and a substep. The context
is changed by rules such as the following:

X3 If the current context is z
then deactivate the z context
activate the y context

Rule X3 has the effect of deleting one item from the context designation and
adding another. It fires only if no other rule associated with the context triggers.

XCON has nearly 10,000 rules and knows the properties of several hundred
component types for VAX computers, made by Digital Equipment Corporation.
XCON routinely handles orders involving 100 to 200 components. It is represen-
tative of many similar systems for marketing and manufacturing.
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Figure 7.4 During forward
chaining, binding commitments
can be arranged in a tree,
suggesting that ordinary search
methods can be used to find
one or all of the possible
binding sets. Here, the parent
rule’s first antecedent leads to
four possible bindings for x, and
the rule’s second antecedent,
given that x is bound to Comet,
leads to two possible bindings
for y.

i = snT e s e — |

Now, if there is a binding for z and a binding for y such that each antecedent
corresponds to an assertion when the variables are replaced by their bind-
ings, then the rule justifies the conclusion that the thing bound to z is
valuable. For example, if z is bound to Comet and y is bound to Prancer,
then each of the antecedents corresponds to an assertion—namely Comet
is-a horse, Comet is-a-parent-of Prancer, and Prancer is fast. Accordingly,

Dasher| |y|Prancer
x| Comet | |x| Comet
y|Prancer

x| Comet

?x is-a horse

x is-a-parent-of ?y

7y is fast

Comet must be valuable.

be arranged in a search tree.

To conduct a search for binding pairs, you can start by matching the
first antecedent against each assertion. As shown in figure 7.4, there are
four matches and four corresponding binding choices for z in the antecedent
2z is-a horse, because Comet, Prancer, Thunder, and Dasher are all horses.

Next, proceeding in the depth-first search style, assume that 2’s binding
should be Comet, which is the binding produced by the first match. Then,
with z bound to Comet, the second assertion, after instantiation, is Comet
is-a-parent-of ?y. Matching this second instantiated antecedent against
each assertion produces two matches, because Comet is a parent of both
Dasher and Prancer. Thus, there are two binding choices for y given that
z is bound to Comet.

Figure 7.4 show how the = and y choices fit together. Evidently, each
of the two antecedents examined so far produces binding choices that can

Traveling along the leftmost branch, with z bound to Comet and y
bound to Dasher, you proceed to the third antecedent, which becomes
Dasher is fast when instantiated with y's binding. This instantiated an-
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Figure 7.5 Two paths extend
from the root down through the
levels corresponding to three

rule antecedents. Evidently, ?x is-a horse
there are two binding sets that
RISl thiarule: [x] Comet | [x[Prancer| [x[Thunde
ey
b X ?x is-a-parent-of 7y
y| Dasher| (y|Prancer y|Thunder|
x| Comet | |x| Comet x| Dasher
7y is fast

Prancer Thunder|
x| Comet x| Dasher

I~
-

tecedent fails to match any assertion, however, so you have to look farther
for an acceptable combination. You do not have to look far, because the
combination with z bound to Comet, as before, and y bound to Prancer
leads to the instantiation of the third antecedent as Prancer is fast, which
does match an assertion. Accordingly, you can conclude that the combi-
nation with z bound to Comet and y bound to Prancer is a combination
that jumps over all the antecedent hurdles. You can use this combination
to instantiate the consequent, producing Comet is valuable.

As shown in figure 7.4, there are three other choices for = bindings.
Among these, if r is bound to Prancer or Thunder, then the second as-
sertion, once instantiated, becomes Prancer 1s-a-parent-of ?y or Thunder
is-a-parent-of ?y, both of which fail to match any assertion. If Dasher is
the proper binding, then Dasher is-a-parent-of Py matches just one asser-
tion, Dasher is-a-parent-of Thunder, leaving only Thunder as a choice for
v’s binding. With z bound to Dasher and y bound to Thunder, the third
instantiated antecedent is Thunder is fast, which matches an assertion,
leading to the conclusion, as shown in figure 7.5, that the Dasher-Thunder
combination also jumps over all the hurdles, suggesting that Dasher is valu-
able too.

From this example, several points of interest emerge. First, you can
see that each path in the search tree corresponds to a set of binding com-
mitments. Second, each antecedent matches zero or more assertions given
the bindings already accumulated along a path, and each successful match
produces a branch. Third, the depth of the search tree is always equal
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to the number of antecedents. Fourth, you have a choice, as usual, about
how you search the tree. Exhaustive, depth-first, left-to-right search is the
usual method when the objective is to find all possible ways that a rule can
be deployed. This method is the one exhibited in the following procedure:

To forward chain (detailed version),
> Until no rule produces a new assertion,
> For each rule,

> Try to match the first antecedent with an existing asser-
tion. Create a new binding set with variable bindings
established by the match.

> Using the existing variable bindings, try to match the
next antecedent with an existing assertion. If any new
variables appear in this antecedent, augment the exist-
ing variable bindings.

> Repeat the previous step for each antecedent, accumu-
lating variable bindings as you go, until,

© There is no match with any existing assertion using
the binding set established so far. In this case, back
up to a previous match of an antecedent to an asser-
tion, looking for an alternative match that produces
an alternative, workable binding set.

> There are no more antecedents to be matched. In this
case,

> Use the binding set in hand to instantiate the con-
sequent.

> Determine if the instantiated consequent is already
asserted. If not, assert it.

> Back up to the most recent match with unexplored
bindings, looking for an alternative match that pro-
duces a workable binding set.

© There are no more alternatives matches to be explored
at any level.

arch Can Supply Compatible
Backward Chaining

You learned that forward chaining can be viewed as searching for variable-
binding sets such that, for each set, all antecedents correspond to assertions
once their variables are replaced by bindings from the set.

Backward chaining can be treated in the same general way, but there
are a few important differences and complications. In particular, you start



Depth-First Search Can Supply Compatible Bindings for Backward Chaining 143

by matching a hypothesis both against existing assertions and against rule
consequents.

Suppose, for example, that you are still working with horses using the
same rules and assertions in working memory as before. Next, suppose that
you want to show that Comet is valuable; in other words, suppose that you
want to verify the hypothesis, Comet is valuable. You fail to find a match
for Comet is valuable among the assertions, but you succeed in matching
the hypothesis with the rule consequent, ?z is valuable. The success leads
you to attempt to match the antecedents, presuming that z is bound to
Comet.

Happily, the instantiated first antecedent, Comet is-a horse, matches
an assertion, enabling a search for the instantiated second antecedent,
Comet is-a-parent-of y. This second antecedent leads to two matches, one
with the assertion Comet is-a-parent-of Dasher and one with the assertion
Comet is-a-parent-of Prancer. Accordingly, the search branches, as shown
in figure 7.6.

Along the left branch, y is bound to Dasher, leading to a futile at-
tempt to match the third antecedent Dasher is fast to an assertion. Along
the right branch, however, y is bound to Prancer, leading to a successful
attempt to match Prancer is fast to an assertion.

Evidently, the hypothesis, Comet is valuable, is supported by the com-
bination of the given rule and the given assertions because a binding set,
discovered by search, connects the hypothesis with the assertions via the
rule.

The search is more complicated, however, when the hypothesis itself
contains a variable. Suppose that the question is “Who is valuable?” rather
than “Is Comet valuable?” Then, the hypothesis itself, 2z is wvaluable,
contains a variable, z

This new hypothesis, like the hypothesis Comet is valuable, matches no
assertions but does match the consequent, ?z is valuable. Now, however,
you have a match between two variables, z and =, instead of a constant,
Comet, and a variable, z.

Accordingly, now that it is time to match the first antecedent with
the assertions, you go into the match with 2 bound to . The variable z
is not bound to anything, however, so the match of the first antecedent
proceeds unfettered, as though the chaining were forward. There are four
possible matches of the first antecedent to assertions, with z bound to any
one of Comet, Prancer, Thunder, or Dasher. Then, assuming z’s binding
should be Comet, and working through the bindings allowed by the next
two assertions, you are led to one of the results shown in figure 7.7, with z
bound to z, z bound to Comet, and y bound to Prancer.

The fact that z, the variable in the hypothesis, matches z, a variable in
a rule, need cause you no serious pause. The only additional task you need
to perform is to instantiate all the way to constants whenever you have an
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Figure 7.6 During backward
chaining, as during forward
chaining, binding commitments
can be arranged in a tree, but
the first binding commitments ?x is valuable
are established by the
consequent, rather than by
the first antecedent. Here, the EEO"W
consequent establishes one
binding for x, and the second
antecedent establishes two ?x is-a horse
bindings for y. The binding for
x and one of the two bindings
for y establish that Comet is Comet

valuable.
5 e s re—

?x is-a-parent-of ?y

y| Dasher| |y|Prancer

x| Comet | |x| Comet
?y is fast

y|Prancer

x| Comet

option to continue instantiating. Thus, you first replace z by z, and then
you replace z by Comet, producing an instantiated hypothesis of Comet is
valuable.

At this point, you could, if you wished, continue to look for other ways
to bind variables so as to find other valuable horses.

The search is still more complicated when more than one rule can pro-
vide a variable binding. Suppose, for example, that you have the hypothesis
with the variable, 2z is valuable, but that you now add a new rule and two
new assertions:

Winner Rule
If ?w is-a winner
then %wis fast



Depth-First Search Can Supply Compatible Bindings for Backward Chaining 145

Figure 7.7 During backward
chaining, hypothesis variables
can be bound not only to 7?2 is valuable
assertion constants but also to
consequent variables. Here, the
hypothesis variable z is bound
to the consequent variable x.
Ultimatsly, two binding sets x is-a horse
are found, establishing that two
horses are valuable.

x| Comet | |x|Prancer| |x|Thunder| |x|Dasher

X z| x z X zZ| x
I I ?x is-a-parent-of 7y

y| Dasher| |y|Prancer y|Thunder

x| Comet | [x| Comet x| Dasher
z| x z| x z| x

| 7y is fast

X y|Prancer y [Thunder

x| Comet x| Dasher
zl X z| x

Dasher Issa Winner
Prancer Is-a Winner

Now, the search proceeds as before, as shown in figure 7.8, until it is time
to find a match for the third antecedent, ?y is fast. The first time, with
y bound to Dasher, there is no matching assertion, but there is a match
between the second rule’s consequent w 4s fast and the instantiated first-
rule antecedent, Dasher is fast. Consequently, w becomes bound to Dasher,
and an effort is made to find a match between the second rule’s instantiated
antecedent, Dasher is-a winner, against an assertion. Because there is a
match with one of the two new assertions, you can conclude that Dasher
is indeed fast, which means that the original hypothesis, ?z is valuable,
can be connected via rules to assertions using the binding set with w and
y bound to Dasher, z bound to Comet, and z bound to z. To instantiate
the hypothesis with this binding set, you first replace z with z, and then
replace £ with Comet.

Note that you can gain nothing by trying to find a second match for
the instantiated antecedent, Comet is-a-parent-of y, because the ultimate
conclusion, that Comet is valuable, has already been reached. Nevertheless,
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Figure 7.8 During backward
chaining, rules chain together 7z s valuable
whenever the antecedent of
one matches the consequent of
another. Here, an antecedent,
?y is fast, in one rule matches ?x Is-a horse
a consequent, ?w is fastin
another rule. x| Comet | (x[Prancer| [x[Thunded [x]Dasher
r4 X z X
7x is-a-parent-of 7y
y| Dasher
x| Comet
2z X
w is fast
w| Dasher w| Prancer w{Thunde
y| Dasher y|Prancer| y|Thunde
x| Comet x| Comet x| Dasher
z X F4 X z X
I 1 w is-a winner
w| Dasher w|Prancer X
y| Dasher y| Prancer!
x| Comet x| Comet
Z X Z X

most binding-set programs are not smart enough to realize that nothing
is to be gained, so they look for other ways to bind y using Comet is-a-
parent-of y.

As shown in figure 7.8, y can be bound to Prancer, which leads to an
attempt to match the third antecedent, Prancer is fast with an assertion;
the match succeeds, reaffirming, with a different binding set, that Comet
is valuable.

Displaying even more energy, most binding programs not only note
that the instantiated antecedent, Prancer is fast, is in the database; they
also note, as shown in figure 7.8, that there is a rule that links Prancer is
fast to the assertion Prancer is-a winner, thus reaffirming, for a third time,
with a binding set that includes a binding for w, that Comet is valuable.
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Similarly, when searching for evidence that Dasher is valuable, the in-
stantiated antecedent, Thunder is fast, is not only matched to an assertion,
it is matched to the consequent, w is fast, in the second rule. This time,
however, the instantiated antecedent in the second rule, w is-a winner,
does not match any assertion, so there remains just one way of showing
that Dasher is valuable.

In summary, the backward-chaining procedure moves from the initial
hypothesis, through rules, to known facts, establishing variable bindings
in the process. When the initial hypothesis matches the consequent of a
rule, you create a binding set. Additional bindings are added to the initial
binding set as the backward-chaining procedure works on the antecedents,
and still more bindings are added when the procedure chains through an
antecedent to the consequent of another rule. The following procedure
summarizes:

To backward chain,

> Find a rule whose consequent matches the hypothesis (or
antecedent) and create a binding set (or augment the existing
binding set).

> Using the existing binding set, look for a way to deal with
the first antecedent,

> Try to match the antecedent with an existing assertion.

> Treat the antecedent as an hypotheses and try to support
it by backward chaining through other rules using the ex-
isting binding set.
> Repeat the previous step for each antecedent, accumulating
variable bindings, until,
> There is no match with any existing assertion or rule con-
sequent using the binding set established so far. In this
case, back up to the most recent match with unexplored

bindings, looking for an alternative match that produces
a workable binding set.

& There are no more antecedents to be matched. In this case,
the binding set in hand supports the original hypothesis.

> If all possible binding sets are desired, report the current
binding set, and back up, as if there were no match.

o If only one possible binding set is desired, report the
current binding set and quit.

> There are no more alternative matches to be explored at
any level.
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Relational Operations Support Forward Chaining

Now it is time to look at another approach to forward chaining. First,
you learn how relational database operations can handle the bookkeeping
required for forward chaining. Then, you learn how the relational database
operations can be arranged to produce high-speed operation.

All that you need to know about relational databases in this section
is introduced as you need it. If you have not studied relational databases
elsewhere, and find the introduction in this section to be too brief, read
the appendix, which describes relational databases in more detail.

Now consider the Parent Rule and assertions previously used to demon-
strate the search-oriented approach. Here, again, is the Parent Rule.

Parent Rule
If ?z is-a horse
?r is-a-parent-of fy
?y is fast

then ?zis valuable

Now think of the assertions as though they were part of a table. In the
language of relations, the assertions are recorded in a relation, named

Data, whose columns are labeled with field names—namely First, Second,
and Third:

First Second Third
Comet is-a horse
Prancer is-a horse
Comet is-a-parent-of Dasher
Comet is-a-parent-of Prancer
Prancer is fast
Dasher is-a-parent-of Thunder
Thunder is fast
Thunder is-a horse
Dasher is-a horse

To determine what values of = and y trigger the rule, you first determine
which of the relation’s records match the first antecedent in the rule, fz is-
a horse. In the language of relations, you need to find those records whose
Second field value is is-e and whose Third field value is horse. Conve-
niently, relational database systems include an access procedure, SELECT,
that extracts records with specified field values from one relation to pro-
duce a new relation with fewer records. You can ask SELECT to pick the
horses out of the Data relation, for example:
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SELECT Data with Second = is-a and Third = horse

The result is the new relation:

First Second Third
Comet is-a horse
Prancer is-a horse
Thunder is-a horse
Dasher is-a horse

All you really want to know, however, is which bindings of z produce
matches. Accordingly, you use another relational database access proce-
dure, PROJECT, to isolate the appropriate field:

PROJECT Result over First

At this point, the field named First is renamed X to remind you that it
consists of bindings for the z variable. The result, a single-field relation, is
as follows:

Al|l x

Comet

Prancer
Thunder
Dasher

Next, you determine which of the records in the data relation match the
second antecedent in the rule, ?z is-a-parent-of ?y. You need to select
those records whose Second field value is is-a-parent-of. Then you project
the results over the First and Third fields:

PROJECT  [SELECT Data with Second = is-a-parent-of]
over First and Third

After renaming the field named First to X and the field named Third to
Y, you have the following table:

A2 x Y
Comet Dasher
Comet Prancer
Dasher Thunder
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Finally, you need to determine which of the records in the data relation
match the third antecedent in the rule, ?y is fast. Accordingly, you select
those records whose Second field value is is and whose Third field value is
fast, and you project the result over the First field:

PROJECT  [SELECT Data with Second = is and Third = fast]
over First

After renaming the field named First to Y, reflecting the fact that the field
values are possible bindings for y, you have the following table:

A3 v

Prancer
Thunder

You now have three new relations-A1, A2, and A3—corresponding to the
three antecedents in the rule. The next question is, What bindings of z
satisfy both the first and second antecedents? Or, What field values are
found both in A1’s X field and in A2’s X field?

The JOIN operation builds a relation with records constructed by con-
catenating records, one from each of two source tables, such that the records
match in prescribed fields. Thus, you can join Al and A2 over their X fields
to determine which values of z are shared. Here is the required JOIN oper-
ation:

JOIN Al and A2 with X = X

The result is a relation in which field-name ambiguities are eliminated by
concatenation of ambiguous field names with the names of the relations
that contribute them:

Bl (preliminary) [ X A1 XA2 s
Comet Comet Dasher
Comet Comet Prancer
Dasher Dasher Thunder

All you really want, of course, is to find the pairs of bindings for z and
y that satisfy the first two antecedents. Accordingly, you can project the

preliminary Bl relation over, say, X.Al and Y, with the following result,
after renaming of the fields:
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Bl1| x Y
Comet Dasher
Comet Prancer
Dasher Thunder

B1 now contains binding pairs that simultaneously satisfy the first two
antecedents in the rule. Now you can repeat the analysis to see which of
these binding pairs also satisfy the third antecedent.

To begin, you join A3 and B1 over their Y fields to determine which
values of y are shared:

JOIN A3and Bl withY =Y

The result is as follows:

B2 (preliminary) | y A3 X Y.BI
Prancer Comet Prancer
Thunder Dasher Thunder

Now you project to determine the pairs of bindings for z and y that satisfy
not only the first two antecedents, but also the third:

B2 x Y
Comet Prancer
Dasher Thunder

At this point, you know that there are two binding pairs that simultane-
ously satisfy all three antecedents. Inasmuch as the then part of the rule
uses only the binding of z, you project B2 over the X field:

B2| x

Comet,
Dasher

Thus, the parent rule is triggered in two ways: once with zbound to Comet,
and once with z bound to Dasher. In a deduction system, both binding sets
can be used. In a reaction system, a conflict-resolution procedure would
be required to select the next action.

The only problem with the procedure that you just learned about
is that it consumes a large amount of computation. If a rule has n an-
tecedents, then it takes n SELECT and n PROJECT operations to produce
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the A relations along with n — 1 JOIN and n — 1 PROJECT operations to
produce the B relations. If there happen to be m rules, and if you check out
each rule whenever a new assertion is added to the data relation, then you
have to perform mn SELECTs, m(2n — 1) PROJECTs, and most alarmingly,
m(n — 1) expensive JOINs each time a new assertion is added. Fortunately,
there is another way to search for variable bindings that does not use so
many operations.

The Rete Approach Deploys Relational
Operations Incrementally

You have just learned how to use relational operations to find binding sets,
but the method described is an expensive way to do forward chaining, be-
cause a great deal of work has to be done to trigger a rule. Now you are
ready to learn that the relational operations can be performed incremen-
tally, as each new assertion is made, reducing both the total amount of work
and the time it takes to trigger a rule once all the triggering assertions are
in place.

Ordinarily, the word rete is an obscure synonym for net, found only
in large dictionaries. In the context of forward chaining, however, the
word rete procedure names a procedure that works by moving each new
assertion, viewed as a relational record, through a rete of boxes, each of
which performs a relational operation on one relation or on a few, but never
on all the relations representing accumulated assertions.

The arrangement of the rete for the valuable-horse example is shown
in figure 7.9.

As a new assertion is made, it becomes a single-record relation. That
single-record relation is then examined by a family of SELECT operations,
each of which corresponds to a rule antecedent.

In the example, the first assertion is Comet is-a horse. Accordingly,
the following single-record relation is constructed:

New-assertion | First Second Third

Comet is-a horse

This relation is examined by three SELECT operations:

SELECT new-assertion with Second = is-a and Third = horse
SELECT new-assertion with Second = is-a-parent-of
SELECT new-assertion with Second = is and Third = fast

Next, whenever the record in the single-record relation makes it past a
SELECT operation, the single-record relation endures a PROJECT operation
that picks off the field or fields that contain bindings.
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Assertions

—’i SELECT assertion with Second = is-a and Third = horse

4)’ SELECT assertion with Second = is-a-parent-ol '— =
—)I SELECT assartion with Second = is and Third = fast }—

=/

X h i

Figure 7.9 The rete for a simple rule about horses with fast offspring. Here the state of the rete is captured just
following the addition made in response to the first assertion. In this and other figures, the most recent changes

are shown shaded.
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In the example, the record makes it past the first of the three SELECT
operations, whereupon the PROJECT and renaming operations produce the
following:

New-assertion | ¥

Comet

Once a record has gone past the SELECT, PROJECT, and renaming oper-
ations, it is added to a relation associated with a rule antecedent. Each
antecedent-specific relation is located at an alpha node created specifically
for the antecedent. Each alpha-node relation accumulates all the assertions
that make it through the corresponding, filterlike SELECT operation. In the
example, the selected, projected, and renamed record is added to the Al
node—the one attached to the first antecedent.

The second assertion, Prancer is-a horse, follows the first through the
rete, and also ends up as a record in the relation attached to the A1 node.
Then, the third assertion, Comet is-a-parent-of Dasher, following a different
route, ends up as a record in the relation attached to the A2 node.

Each addition to an alpha node’s relation inspires an attempt to join
the added record, viewed as a single-record relation, with another relation.
In particular, an addition to either Al's relation or A2’s relation leads to
Jjoining of the added record, viewed as a single-record relation, with the
relation attached to the other alpha node. Importantly, the JOIN opera-
tion is done with a view toward determining whether the variable binding
expressed in the added record corresponds to a variable binding already
established in the other relation.

In the example, the added record—the one added to A2’s relation—
produces the following single-record relation:

X Y

Comet Dasher

Meanwhile, Al’s relation has accumulated two records:

Al|l x

Comet

Prancer

Joining the two relations over the X field and projecting to eliminate one
of the redundant X fields yields a one-record, two-field relation:



The Rete Approach Deploys Relational Operations Incrementally 155

X Y

Comet Dasher

This new relation is then added to a relation attached to a beta node—
the B12 node—so named because it is the JOIN of the A1 and A2 relations.
B12’s relation contains a single record that records a pair of bindings for
and y that satisfies the first and second antecedents.

Thus, an addition to either A1’s relation or A2’s relation leads to a JOIN
operation that may add one or more records to B12's relation reflecting
variable bindings that satisfy the first two rule antecedents simultaneously.

The next assertion—the fourth—Comet is-a-parent-of Prancer, pro-
duces the wave of activity in the rete shown by the shading in figure 7.10.

The wave starts with the addition of a second record to A2's rela-
tion. This new record, viewed as a single-record relation, is joined to Al’s
relation, producing a second record for B12’s relation.

Because it is tiresome to append the phrase, viewed as a relation, each
time a record, viewed as a relation, is joined with another relation, let
us agree to speak of joining records with a relation, even though, strictly
speaking, only relations are joined.

Next, the fifth assertion, Prancer is fast, initiates a wave of additions
to the records in the rete and leads to a record in A3’s relation. In general,
an addition to A3’s relation leads to joining the added record with B12's
relation. This JOIN operation is done with a view toward determining
whether the variable binding expressed in the added record corresponds to
a variable binding already established in B12’s relation.

The result is added to B23’s relation. In this example, the JOIN oper-
ation is over the Y fields, and the JOIN operation produces—after doing a

PROJECT to eliminate one of the redundant Y fields—an initial record for
B23’s relation:

B23| x Y

Comet Prancer

Projecting this new record over the X field yields a possible binding for =
in the rule’s then part:

Parent-Rule Bindings B23 | x

Comet

Thus, an addition to A3’s relation has led to joining the added record with
B12’s relation. Symmetrically, of course, any new records added to B12’s
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Assertions

SELECT assertion with Second = is-a and Third = horse

—-)LSELEGT assertion with Second = is-a-parent-of —

_—)‘ SELECT assertion with Second = is and Third = fast ] (el e

Figure 7.10 Here, the state of the rete is captured just following the additions made in response to the fourth
assertion, Comet is-a-parent-of Prancer. The additions are shown shaded.
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relation are joined to A3’s relation. As before, the JOIN operation is done
to determine whether the variable bindings expressed in the added records
correspond to variable bindings already expressed in the other relation
involved in the JOIN operation.

Now consider the state of the rete after you add three more assertions—
Dasher is-a-parent-of Thunder, Thunder is fast, and Thunder is-a horse.
Al’s relation indicates that there are three horses:

All x

Comet

Prancer
Thunder

A2’s relation indicates that Comet is a parent of two children, and Dasher
is a parent of one child:

A2 x Y
Comet Dasher
Comet Prancer
Dasher Thunder

A3’s relation indicates that Prancer and Thunder are fast:

A3 v

Prancer
Thunder

Next, the information in the alpha-node relations is joined to form the
beta-node relations:

B12| x Y
Comet Dasher
Comet Prancer

Bz3| x Y

Comet Prancer
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Next, the ninth assertion, Dasher is-a horse, initiates another wave of ad-
ditions to the records in the rete—the additions indicated by the shading
in figure 7.11.

The first of these additions is the new record in Al’s relation. This new
record is joined to A2’s relation, producing a new record in B12’s relation:

B12 (increment) [ x v
Dasher Thunder

But now this new B12 record is joined to A3’s relation producing a new
record for B23’s relation:

B23 (increment) [ x Y
Dasher Thunder

Projection of this new record over the X field yields another possible binding
for z in the rule’s consequent:

Parent-Rule Bindings (increment) B23[ x
Dasher

Thus, after all nine assertions are processed, the possible bindings for z in
the rule’s consequent are given by the following relation:

Parent-Rule Bindings B23 | x

Comet
Dasher

As you have seen, adding a new relation produces a wavelike phenomenon
that continues through the rete as long as JOIN operations produce new
records. Note that all the relational operations involve only small rela-
tions containing a few assertions; they never involve the entire accumulated
database of assertions.

Although the example may seem complicated, the procedures for build-
ing and using a rete are straightforward:



The Rete Approach Deploys Relational Operations Incrementally 159

SELECT assertion with Second = is-a and Third = horse

SELECT assertion with Second = is-a-parent-of

‘4)' SELECT assertion with Second = Is and Third = fast

Figure 7.11 Here, the state of the rete is captured just following the additions made in response to the ninth
assertion, Dasher is-a horse. The most recent changes are shown shaded.
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To construct a rete,

> For each antecedent pattern that appears in the rule set,
create a SELECT operation that examines new assertions.

> For each rule,
> For each antecedent,

& Create an alpha node and attach it to the correspond-
ing SELECT operation, already created.

> For each alpha node, except the first,
> Create a beta node.

> If the beta node is the first beta node, attach it to the
first and second alpha nodes.

& Otherwise, attach the beta node to the corresponding
alpha node and to the previous beta node.

> Attach a PROJECT operation to the final beta node.

To use a rete,

> For each assertion, filter the assertion through the SELECT
operations, passing the assertion along the rete to the
appropriate alpha nodes.

> For each alpha node receiving an assertion, use the PROJECT
operation to isolate the appropriate variable bindings. Pass
these new bindings, if any, along the rete to the appropri-
ate beta nodes.

> For each beta node receiving new variable bindings on
one of its inputs, use the JOIN operation to create new
variable binding sets. Pass these new variable binding
sets, if any, along the rete to the next beta node or to the
final PROJECT operation.

> For each rule, use the PROJECT operation to isolate the
variable bindings needed to instantiate the consequent.

SUMMARY

m  Rule-based systems were developed to take advantage of the fact that a
great deal of useful knowledge can be expressed in simple if-then rules.

B Many rule-based systems are deduction systems. In these systems,
rules consist of antecedents and consequents. In one example, a toy
deduction system identifies animals.
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B Deduction systems may chain together rules in a forward direction,
from assertions to conclusions, or backward, from hypotheses to ques-
tions. Whether chaining should be forward or backward depends on
the problem.

B Many rule-based systems are reaction systems. In these systems, rules
consist of conditions and actions. A toy reaction system bags groceries.

® Reaction systems require conflict-resolution strategies to determine
which of many triggered rules should be allowed to fire.

B Depth-first search can supply compatible bindings for both forward
chaining and backward chaining.

B Relational operations support breadth-first search for compatible bind-
ings during forward chaining. The rete procedure performs relational

operations incrementally as new assertions flow through a rule-defined
rete.

BACKGROUND

The rete procedure was developed by C. L. Forgy [1982].

Mycin was developed by Edward Shortliffe and colleagues at Stanford
University [1976).

XcoN was developed to configure the Digital Equipment Corporation’s
VAX computers by John McDermott and other researchers working at
Carnegie Mellon University, and by Arnold Kraft, Dennis O’Connor, and
other developers at the Digital Equipment Corporation [McDermott 1982].
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If the path through E had not worked, then the procedure would move
still farther back up the tree, seeking another viable decision point from
which to move forward. On reaching A, the procedure would go down
again, reaching the goal through D.

Having learned about depth-first search by way of an example, you can
see that the procedure, expressed in procedural English, is as follows:

To conduct a depth-first search,

t Form a one-element queue consisting of a zero-length path that
contains only the root node.

> Until the first path in the queue terminates at the goal node or
the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.
> Add the new paths, if any, to the front of the queue.

o If the goal node is found, announce success; otherwise, an-
nounce failure.

Breadth-First Search Pushes Uniformly into the Search Tree

As shown in figure 4.4, breadth-first search checks all paths of a given
length before moving on to any longer paths. In the example, breadth-first
search discovers a complete path to node G on the fourth level down from
the root level.

A procedure for breadth-first search resembles the one for depth-first
search, differing only in where new elements are added to the queue:

To conduct a breadth-first search,

© Form a one-element queue consisting of a zero-length path that
contains only the root node.

> Until the first path in the queue terminates at the goal node or
the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.
> Add the new paths, if any, to the back of the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.
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HEURISTICALLY INFORMED METHODS

Search efficiency may improve spectacularly if there is a way to order the
choices so that the most promising are explored earliest. In many situ-
ations, you can make measurements to determine a reasonable ordering.
In the rest of this section, you learn about search methods that take ad-
vantage of such measurements; they are called heuristically informed

‘methods.

Quality Measurements Turn Depth-First Search
into Hill Climbing

To move through a tree of paths using hill climbing, you proceed as you
would in depth-first search, except that you order your choices according to
some heuristic measure of the remaining distance to the goal. The better
the heuristic measure is, the better hill climbing will be relative to ordinary
depth-first search.

Straight-line, as-the-crow-flies distance is an example of a heuristic
measure of remaining distance. Figure 4.5 shows the straight-line distances
from each city to the goal; Figure 4.6 shows what happens when hill climb-
ing is used on the map-traversal problem using as-the-crow-flies distance
to order choices. Because node D is closer to the goal than is node A, the
children of D are examined first. Then, node E appears closer to the goal
than is node A. Accordingly, node E’s children are examined, leading to a
move to node F, which is closer to the goal than node B. Below node F,
there is only one child: the goal node G.

From a procedural point of view, hill climbing differs from depth-first
search in only one detail; there is an added step, shown in italic type:

To conduct a hill-climbing search,

t Form a one-element queue consisting of a zero-length path
that contains only the root node.

© Until the first path in the queue terminates at the goal node
or the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.

> Sort the new paths, if any, by the estimated distances be-
tween their terminal nodes and the goal.

> Add the new paths, if any, to the front of the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.
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Beam Search Expands Several Partial Paths
and Purges the Rest

Beam search is like breadth-first search in that it progresses level by
level. Unlike breadth-first search, however, beam search moves downward
only through the best w nodes at each level; the other nodes are ignored.
Consequently, the number of nodes explored remains manageable, even if
there is a great deal of branching and the search is deep. Whenever beam
search is used, there are only w nodes under consideration at any depth,
rather than the exponentially explosive number of nodes with which you
must cope whenever you use breadth-first search. Figure 4.8 illustrates how
beam search would handle the map-traversal problem.

Best-First Search Expands the Best Partial Path

Recall that, when forward motion is blocked, hill climbing demands forward
motion from the most recently created open node. In best-first search,
forward motion is from the best open node so far, no matter where that
node is in the partially developed tree.

In the example map-traversal problem, hill climbing and best-first
search coincidentally explore the search tree in the same way.

The paths found by best-first search are likely to be shorter than those
found with other methods, because best-first search always moves forward
from the node that seems closest to the goal node. Note that likely to be
does not mean certainly are, however.

Search May Lead to Discovery

Finding physical paths and tuning parameters are only two applications
for search methods. More generally, the nodes in a search tree may denote
abstract entities, rather than physical places or parameter settings.

Suppose, for example, that you are wild about cooking, particularly
about creating your own omelet recipes. Deciding to be more systematic
about your discovery procedure, you make a list of ingredient transforma-
tions for varying your existing recipes:

Replace an ingredient with a similar ingredient.
Double the amount of an ingredient.

Halve the amount of an ingredient.

Add a new ingredient.

Eliminate an ingredient.

Naturally, you speculate that most of the changes suggested by these ingre-
dient transformations will turn out to taste awful, and thus to be unworthy
of further development.
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Underestimates and Dynamic Programming
Improve Branch-and-Bound Search

The A* procedure is branch-and-bound search, with an estimate of re-
maining distance, combined with the dynamic-programming principle. If
the estimate of remaining distance is a lower-bound on the actual distance,
then A* produces optimal solutions. Generally, the estimate may be as-
sumed to be a lower bound estimate, unless specifically stated otherwise,
implying that A*’s solutions are normally optimal. Note the similarity
between A* and branch-and-bound search with dynamic programming:

To conduct A* search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths
by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.

» If two or more paths reach a common node, delete all
those paths except the one that reaches the common
node with the minimum cost.

> Sort the entire queue by the sum of the path length
and a lower-bound estimate of the cost remaining, with
least-cost paths in front.

> If the goal node is found, announce success; otherwise,
announce failure.

Several Search Procedures Find the Optimal Path

You have seen that there are many ways to search for optimal paths, each

of which has advantages:

@ The British Museum procedure is good only when the search tree is
small.

m  Branch-and-bound search is good when the tree is big and bad paths
turn distinctly bad quickly.

m  Branch-and-bound search with a guess is good when there is a good
lower-bound estimate of the distance remaining to the goal.

m Dynamic programming is good when many paths converge on the same
place.

m The A* procedure is good when both branch-and-bound search with a
guess and dynamic programming are good.
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Figure 5.1 The length of the
complete path from S to G,
S-D-E-F-G is 13. Similarly,
the length of the partial path
S-D-A-B also is 13 and any
additional movement along a
branch will make it longer than
13. Accordingly, there is no
need to pursue S-D—-A-B any
further because any complete
path starting with S—D-A-B has
to be longer than a complete
path already known. Only the
other paths emerging from

S and from S-D-E have to

be considered, as they may

provide a shorter path.
T e e s Ty

To conduct a branch-and-bound search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths

by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.
> Add the remaining new paths, if any, to the queue.

> Sort the entire queue by path length with least-cost paths
in front.

> If the goal node is found, announce success; otherwise,
announce failure.

Now look again at the map-traversal problem, and note how branch-and-
bound works when started with no partial paths. Figure 5.2 illustrates the
exploration sequence. In the first step, the partial-path distance of S-A
is found to be 3, and that of S-D is found to be 4; partial path S-A is



Problem 2: Search (50 Points)

You have just moved to a strange new city, and you are trying to leam your way around. Most
importantly, you want to learn how to get from your home at S to the subway at T.

In all search problems,use a]phabeucal order to break tles when demdmg the priority to use for
extending nodes. e Sl

Part A (15 points)

Usmg depth-first search with backtracking and Y Wlth an,extende% list, draw that part of the search
tree that is explored by the search.

g
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What is the final path found from the start (S) to the goal (T)?

SAAEBRCIRT 7

List the nodes at which you have to backtrack:
Fop 1

'c‘dpﬁw( )i éo(uﬂms iy be Wfonrj
Part B (15 points)

Some streets have more traffic on them than others. Your friend who has lived in this city for a
long time provides you with information about the traffic on each street - the streets are labeled
with costs, in the form of how many minutes it will take you to traverse each one.

—
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USmg these given path costs, you are to find the lowest-cost path from S to T using { branch- and—
bound With an extended list but withno distance heuristic. First draw the
search tree. Number each node as it is expanded, from 1 to n.
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Now identify the shortest path:

AFNH kT 7

After you have found a path to T, which nodes must you still expand before you can be
certain that you have found the shortest path to T?

T
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Part C: (20 points)

Now you are to use A* search, expecting to do less work as you find the lowest-cost path from S to

T. Thatis, you are to use both an extended list and a distance heuristic. The
distance metric is not straight line distance; instead use the numbers provided by an oracle and
written immediately above or below each node. For example, the oracle tells you that the
estimated distance from node C to the goal, node T, is 2.

i be ()
First draw )‘h%search tree. Number each node as it is expanded, from 1 to n.
¢




Now, show the path you have found:

Sne ICT

If the path you found using A* is the same as the path you found in Part B, explain in detail why it

must be the same; if the path is not the same, explain why your answers are different.
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6.034 Quiz 1

28 September 2011
email [ plaz il ed

Circle your TA and recitation time (fOI‘ 1 extra credit point), so that we can more easily
enter your score in our records and return your quiz to you promptly.
TAs Thu Fri

Avril Kenney Adam Mustafa Time Instructor Time Instructor

1-2 . Bob Berwick ' 1-2 Randal Davis
Darryl Jones Erek Speed ' . ' L
2-3 Bob Berwick 2-3 Randall Davis

Gary Planthaber Caryn Krakauer 3-4( Bob Berwick  3-4  Randall Davis

— ) : e
@ Tanya Kortz

This semester I am taking L subjects with substantial final projects or papers.

d(‘f (nf,z e S st "}f [

: -7 . f ‘

Problem number Maximum Score Grader ,( Am / /b7 CC 5
— \ 'l

2 45. H| Al

3 10 1o AFK

Total 100 95 ARK

There are 12 pages in this quiz, including this one, but not including
blank pages and tear-off sheets. Tear-off sheets are provided at the end
with duplicate drawings and data. As always, open book, open notes,
open just about everything, including a calculator, but no computers.
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Problem 1: Rule Systems (45 points)

After the first few weeks of 6.034, you realize that artificial intelligence is the most exciting topic you
have ever studied. and you decide to start an Al club. To get more people to join the club, you organize
an info session, which will (of course) have free food. You need to figure out how much food to order,
so you write the following rule system to determine who will attend the info session.

Rules:
PO IF(OR(' (?x) lives in Burton Conner',
'(?x) lives in East Campus',
'(?x) lives in Random'),
THEN (' (?x) does not buy a dining plan'))
P1 IF('(?x) does not buy a dining plan’',
THEN (' (?x) wants free food'))
P2 IF('(?x) has class in Stata',
THEN (' (?x) saw a poster'))
P3 IF(OR(' (?x) saw a poster',
'(?x) is in 6.034',
BND('(?x) is friends with (2y)"',
"(?y) is in 6.034')),
THEN (' (?x) is interested'))
P4 IF(AND(' (?x) is interested',
' (?x) wants free food'),
THEN (' (?x) will attend'))
Assertions:

'Anna is in 6.034°

'Anna lives in Maseeh'

'Ben lives in East Campus'
'Ben has class in Stata‘
'Chris is friends with Anna'’'
'Chris wants free food!

Part A: Backward Chaining (25 points)

Make the following assumptions about backward chaining:
* When working on a hypothesis, the backward chainer tries to find a matching assertion in the
list of assertions. If no matching assertion is found, the backward chainer tries to find a rule
with a matching consequent. If no matching consequent is found, then the backward chainer

assumes the hypothesis is false.

* The backward chainer never alters the list of assertions, so it can derive the same result multiple
times. -

* Rules are tried in the order they appear.

*  Antecedents are tried in the order they appear.

« Lazy evaluation/short circuiting is in effect (. g., if the first part of an AND clause is false, the
rest does not need to be evaluated to determine that the whole clause is false).

A

dht
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A1 (17 points)

You want to know whether Anna will attend the info session. Use backward chaining to check the
hypothesis 'Anna will attend'. Use the space provided on the next page to draw the goal tree that
is created by backward chaining (we will use the goal tree to help us assign partial credit). Then, list,
in the order that they are checked, all the hypotheses the backward chainer looks for in the course of
checking the hypothesis 'Anna will attend'. The table may have more lines than you need.

Anna will attend

f 4 1
\ A £ D0tV A
A;r;; 5 InRKEg A

A.V\na (A 0 'P%h’r

Aﬂﬂa_ ka; (}&&5 ' Statu
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A2 (8 points)

If you were able to show 'Anna will attend', which assertions can you remove without changing
the answer:

/

Also, identify which rules can you remove without changing the answer:

If you were not able to show 'Anna will attend', if itis possible to add a new assertion that
would change your answer (other than adding the hypothesis itself), state such an assertion:

| ! N r — l \ h -’
. / , r'\ il »: g '{ |
/]r’f‘# { [# n ﬁ ( b[h"' . / i \Ada/> { e 00

{ \/

Also, if it is possible to add a new rule that would change your answer, state such a rule.
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. | e v GO ANTS { | €F p
Page 3 ’ o :



Use this space to draw your goal tree.

Anna will attend
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Part B: Forward Chaining (20 points)

Make the following assumptions about forward chaining:
¢ Assume rule-ordering conflict resolution.
* New assertions are added to the bottom of the list of assertions.
* If a particular rule matches assertions in the list of assertions in more than one way, the matches
are considered in the order corresponding to the top-to-bottom order of the matched assertions.
Thus, if a particular rule has an antecedent that matches both Asseruon 1 and Assertion 2, the
match with Assertion 1 is considered first.

B1 (15 points)

Now you want to determine all of the people who will attend the info session. Run forward chaining
on the list of assertions. For the first two iterations, fill out the first two rows in the table below, noting
the rules whose antecedents match the data, the rule that fires, and the new assertions that are added by
the rule. For the remainder, supply only the fired rules and new assertions. The table has more lines
than you need.

Iter | Matched Fired |New Assertions Added !
P (\ L/ ) “:n £ Al y ‘ ] ! "j {": ".. {

’} [ p ,Gf\ \,,,;y/ i ;.(';} y “

f 3 []M oy | ﬁ;?f"ff?':,-lf' a
TR TERN o
703 C!ﬂfﬂ ‘ {pq‘/"(f({?;,gj f i \ J {/
it Qen il affead / Wy
P Y (] w:: il df foad /’/ ' Ocdin

How many people will attend the info session? ___

B2 (5 points)

Suppose that you moved P1 to the end of the list of rules.
Then would forward-chaining conclude that Ben will attend the info session?.

t L)
_ N N e ound [k
ircl : N ' )l ip
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] ! ] f
\/ 5 pob o (gf0

Page 5



Problem 2: Search (45 points)

Part A: Basic search (30 points)

°o° ©
OO &
O
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A1: Breadth First Search (15 points) (P(O{ ( (f', X! .f,'g-' O:(‘({? {

Starting at node S, find the BFS path t¢'G, with NO EXTENDED LIST. Assume newly extended
paths are placed on the end of a queue, but no path is checked to see if it is complete before it reaches
the front of the queue. Draw the BFS, tree and give the final path in the spaces below. In your tree
drawing, number each node with the order it was extended.

Tree:

Path:

9B ¢
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A2:Breadth First Search + Extended List (15 points) Lo

Starting at node S, find the BFS path to G USING AN EXTENDED LIST. Draw the BFS tree and

give the final path in the spaces below. In your tree drawing, number each node with the order they

were extended. Keep the extended list in the box provided below.

Tree:

&ﬂ

Path:

66

Extended List:

5 A8CL  pefG
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Part B: Optimal-path search (15 points)

You are an environmentally conscious but greedy student. You have just learned that there is a

recycling bin at the Student Center that converts glass into gold. You just left Professor Winston's
office and the urge to recycle really hits you. As you reach Building 26, it starts raining and there is no

Tech Shuttle. You want to get to the Student Center as quickly as possible. You pull out a map of the

MIT campus and draw a graph on it as shown:
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16T 42 4 g S i Poot 4
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o

A copy of this graph without the map clutter is on the tear off sheet at the end of the quiz. The
numbers on the edges correspond to the length of that edge and the numbers in the parentheses

correspond to the heuristic distance to G.
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Starting at the Building 26 (node K), find th(%* ath to the Student Center (G) using the A*
algorithm you learned in class (i.e. use heuristic distance and an extended list). Draw the A* extension
tree and give the final path in the spaces below. In your tree drawing, show next to each node the
number you use to determine the next path to extend (this way we can give partial credit for arithmetic
errors). Keep the extended list in the box provided below (Alphabetical order breaks ties). Stop when a
path that reaches the goal is the next path to be extended.

Lf Tree:
1.
]
X
A

Path:

TRy
Extended List:
| Lt J X

\k
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Problem 3, Ideas (10 points) 1O

Circle the best answer for each of the following questions. There is no penalty for wrong answers, so
it pays to guess in the absence of knowledge.

Generate and test is what we do when we

@ Identify mushrooms by flipping through pages in a guidebook - o g. W (! -/ 1A
Solve puzzles involving search | .| e oy
3. Answer how and why questions ~ . | p” (.Of'fiff } “hyer |
4. All of the above ]

5. None of the above

A program that leaves behind a goal tree

1. Improves run time performance
2. Conforms to rules of good programming practice

@ Enables the construction of a program that answers how and why quesuons

‘4. Facilitates learning ’ 0550 (- P A L)
5. All of the above I 'L]M ; A5 2 s / a1 ~d T
6.

None of the above

Given a map of the United States, and a desire to go from MIT to Cal Tech, it would be best to use

1. Depth first search (no extended list) A , |
2. Breadth first search (no extended list) / [{ Miod 0 f o (0 /f{;-;(fjr”q , a my
3. Branch and bound (no extended list) . T A SR /
4y Hill climbing (no extended list) ﬂ "
‘ A G| U
e v :

When searching for a path, not necessarily the shortest, more knowledge

1. Can produce results faster
2. Can produce shorter paths

Can draw you into a dead end 4 j | 04 ]
All of the above \ _L (Xda 7 A
5. None of the above - ( ¥
Lt dy gl | of f s~ deptality
Beam search, with no extended list . ' .
{m A | ({1 :/f‘f;“‘ s ¢

\1\ Produces exponentially many paths with distance between start and goal
2. Produces the shortest path
~3. Uses accumulated distance with no heurlsuo estimate of distance remammg

4. All of the above Nose bl
CS:, None of the above : : L vt
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Tear off sheets. You need not hand these in.

Rules:
PO IF(OR('(?x) lives in Burton Conner',
'(?x) lives in East Campus',
'(?x) lives in Random'),
THEN (' (?x) does not buy a dining plan'))
Pl IF (' (?x) does not buy a dining plan',
THEN (' (?x) wants free food'))
P2 IF(' (?x) has class in Stata’',
THEN (' (?x) saw a poster'))
P3 IF(OR(' (?x) saw a poster',
'(?x) is in 6.034°',
AND (' (?x) is friends with (2y)°',
'(?y) is in 6.034')),
THEN (' (?x) is interested'))
P4 IF(AND(' (?x) is interested',
'(?x) wants free food'),
THEN (' (?x) will attend'))
Assertions:

'‘Anna is in 6.034°

'Anna lives in Maseeh'

'Ben lives in East Campus'
'Ben has class in Stata'
'Chris is friends with Anna'
'Chris wants free food!
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6.034 Quiz 1
28 September 2011

Name

email

Circle your TA and recitation time (fOl" 1 extra credit point), so that we can more easily
enter your score in our records and return your quiz to you promptly.

158 Thu Fri

Avril Kenney Adam Mustafa Time | Instructor Time ||Instructor

1-2 Bob Berwick 1-2 Randal Davis

Darryl J Erek Speed
arryl Jones rel spee 2-3 |Bob Berwick | 2-3 | Randall Davis

—

Gary Planthaber Caryn Krakauer 3-4 BOb Berwick 3-4 Randa" Davis

Peter Brin Tanya Kortz

This semester I am taking subjects with substantial final projects or papers.

Problem number | Maximum || Score | Grader
1 45
2 45
> 10
Total 100

There are 12 pages in this quiz, including this one, but not including
blank pages and tear-off sheets. Tear-off sheets are provided at the end
with duplicate drawings and data. As always, open book, open notes,
open just about everything, including a calculator, but no computers.
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Problem 1: Rule Systems (45 points)

Afier the first few weeks of 6.034, you realize that artificial intelligence is the most exciting topic you
have ever studied, and you decide to start an Al club. To get more people to join the club, you organize

an info

session, which will (of course) have free food. You need to figure out how much food to order,

so you write the following rule system to determine who will attend the info session.

Rules:
PO IF(OR('(?x) lives in Burton Conner',
'(?x) lives in East Campus',
'(?x) lives in Random'),
THEN (' (?x) does not buy a dining plan'))
P1 IF('(?x) does not buy a dining plan’,
THEN (' (?x) wants free food'))
P2 IF('(?x) has class in Stata’',
THEN (' (?x) saw a poster'))
P3 IF(OR('(?x) saw a poster’',
'(?x) is in 6.034°',
AND('(?x) is friends with (2y)°',
'(2y) is in 6.034")),
THEN (' (?xXx) is interested'))
P4 IF(AND(' (?x) is interested’',
'(?x) wants free food'),
THEN (' (?x) will attend'))
Assertions:
'Anna is in 6.034'
'Anna lives in Maseeh'

'Ben lives in East Campus'
'Ben has class in Stata'
'Chris is friends with Anna’
'"Chris wants free food!'

Part A: Backward Chaining (25 points)

Make the following assumptions about backward chaining:

Page 2

When working on a hypothesis, the backward chainer tries to find a matching assertion in the
list of assertions. If no matching assertion is found, the backward chainer tries to find a rule
with a matching consequent. If no matching consequent is found, then the backward chainer
assumes the hypothesis is false.

The backward chainer never alters the list of assertions, so it can derive the same result multiple
times.

Rules are tried in the order they appear.

Antecedents are tried in the order they appear.

Lazy evaluation/short circuiting is in effect (e.g., if the first part of an AND clause is false, the
rest does not need to be evaluated to determine that the whole clause is false).




A1 (17 points)

You want to know whether Anna will attend the info session. Use backward chaining to check the
hypothesis 'Anna will attend'. Use the space provided on the next page to draw the goal tree that
is created by backward chaining (we will use the goal tree to help us assign partial credit). Then, list,
in the order that they are checked, all the hypotheses the backward chainer looks for in the course of
checking the hypothesis 'Anna will attend'. The table may have more lines than you need.

Anna will attend

/'\Y\V\O\ 15 \f\‘kﬁlsjtﬁok
, A(\Y\O\ S0 A4 Pas-R,F

AY\M \’\DLS dass in SJFQJ\'"O\

Prna is in b.oZ4

AY\M L»Jétr\\"-“ %‘(’-& ‘Q“OOA

Arna does net Em a dinina_ plan
AY\Y\& lives in Bu.(_‘\-o;\ Ca\n%xe,r
Awa lives in East Campus

AYW\DL \wes " RQV\OLON\

A2 (8 points)

- If you were able 10 show 'Anna will attend’, which assertions can you remove without changing
the answer:

N/A

A]so, identify which rules can you remove without changing the answer:

/A

If you were not able to show 'Anna will attend', if itis possible to add a new assertion that
woulq chan{g\ Jyour answer (other than adding the hypothesis itself), state such an assertion:

\ﬁf\i\tx wan S&3- Loee. oo Anna lives in Bufton Conner Ao Gives i Random
Aaa. does nat by a O\\f\mﬂ\ plan, Aana lives in East CAMPLLS
Also if it is possible to add a new rule that would change your answer, state such a rule.

e

HM:& possible answels. See fexy Paae,-
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Use this space to draw your goal tree.

Anna will attend X

Arno ie interesked v Ao wants Lree food X

Yo Ang s 69.05';’( ‘
Aana sou»\a st ;\ -~ Anna does et L’ﬁ o Aim‘g ‘a\m x

Anna has dags in Stadx

Anna lives in RC
X

R Anna fives in EC
X A lives in Randomn
' X

Last pact of AZ:  TF (P, THEN(AD, where
P is M\l of the ‘QO“O‘-";“\.S (or Gv& combainabion of ‘HAEJV\ u_s:r& AND/OP\B z

(10 s inerested

(10 & in 6.034

(50 lves in Maseel

Cheis is fiends with 0 _

AND (@D ie Biends with 200, (29 wants Leee food )
AND (fc_‘\k is fends with (Y, ‘(?XLS is wheregted’) . 7
AND (‘(7%3 i foends with Q2 f(?@ wil atkead)

Q ' & ol Xhe @D\\ow\'v‘\i‘.
(7)) ot athend
(7% wanks &ee Rood
(%) does nst buy a o\m‘n§ plan
(29 lives w Burfea Com
(7x) tves in Eost Cam?uts
(1) \ves in Roandom
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Part B: Forward Chaining (20 points)

Make the following assumptions about forward chaining;
* Assume rule-ordering conflict resolution. -
* New assertions are added to the bottom of the list of assertions.
* If a particular rule matches assertions in the list of assertions in more than one way, the matches
are considered in the order corresponding to the top-to-bottom order of the matched assertions.
Thus, if a particular rule has an antecedent that matches both Assertion 1 and Assertion 2, the
match with Assertion 1 is considered first.

B1 (15 points)

Now you want to determine all of the people who will attend the info session. Run forward chaining
on the list of assertions. For the first two iterations, fill out the first two rows in the table below, noting
the rules whose antecedents match the data, the rule that fires, and the new assertions that are added by
the rule. For the remainder, supply only the fired rules and new assertions. The table has more lines
than you need.

Iter | Matched Fired |New Assertions Added

PO, P2, % YO | Ben does adt buy a Aining plan
|Po.P1,72,P3 | P1 | Ben wants fee Thod ~
Ben saw a posier

Pvo is ‘m‘r&is’real

Uatis e nteresked

Ben is ntertsted

Chis will gdend

Ren i\ grtend

How many people will attend the info session?. 2

B2 (5 points)

Suppose that you moved P1 to the end of the list of rules.
Then would forward-chaining conclude that Ben will attend the info session?

Circle one: EESj NO
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Problem 2: Search (45 points)

Part A: Basic search (30 points)

o;'go

. \ .
- . . :
4 i
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A1: Breadth First Search (15 points)

Starting at node S, find the BFS path to G, with NO EXTENDED LIST. Assume newly extended
paths are placed on the end of a queue, but no path is checked to see if it is complete before it reaches
the front of the queue. Draw the BFS, tree and give the final path in the spaces below. In your tree
drawing, number each node with the order it was extended. - '

Tree:
/S 1.
N /}3 . \C\’\L 3
| N
%‘;,/D>E8 Ao Ee FuGon A

\

Path:

SNE
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A2:Breadth First Search + Extended List (15 points)

Starting at node S, find the BFS path to G USING AN EXTENDED LIST. Draw the BES tree and
give the final path in the spaces below. In your tree drawing, number each node with the order they
were extended. Keep the extended list in the box provided below.

Tree:
S 1
NoRL G
gﬂm Ev A E Frin H
L
"Path: _]
o A

Extended List:

SRBELLDEFG
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Part B: Optimal-path search (15 points)

You are an environmentally conscious but greedy student. You have just learned that there is a
recycling bin at the Student Center that converts glass into gold. You just left Professor Winston's
office and the urge to recycle really hits you. As you reach Building 26, it starts raining and there is no
Tech Shuttle. You want to get to the Student Center as quickly as possible. You pull ont a map of the
MIT campus and draw a graph on it as shown:

A copy of this graph without the map clutter is on the tear off sheet at the end of the quiz. The

numbers on the edges correspond to the length of that edge and the numbers in the parentheses
correspond to the heuristic distance to G.
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Starting at the Building 26 (node K), find the A* path to the Student Center (G) using the A*
algorithm you learned in class (i.e. use heuristic distance and an extended list). Draw the A* extension
tree and give the final path in the spaces below. In your tree drawing, show next to each node the
number you use to determine the next path to extend (this way we can give partial credit for arithmetic
errors). Keep the extended list in the box provided below (Alphabetical order breaks ties). Stop when a
path that reaches the goal is the next path to be extended. :

'i'-ree: K z8
T?—"\ 3‘ 24 N b
N\ 4 W
X 35 N 24 Xy, Poy 188
LB T
G%‘i ch, R Gt

; Path: ' 2" 5]

KSKG

Extended List:

KTIXKG
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Problem 3, Ideas (10 points)

Circle the best answer for each of the following questions. There is no penalty for wrong answers, so
it pays to guess in the absence of knowledge.

Generate and test is what we do when we

(D) 1dentify mushrooms by flipping through pages in a guidebook
Solve puzzles involving search

Answer how and why questions

All of the above

None of the above

e

A program that leaves behind a goal tree

1. Improves run time performance
2. Conforms to rules of good programming prachce
Enables the construction of a program that answers how and why questions
4, Facilitates learning
5. All of the above
6. None of the above

Given a mép of the United States, and a desire to go from MIT to Cal Tech, it would be best to use

1. Depth first search (no extended list)
2. Breadth first search (no extended list)
3. Branch and bound (no extended list)
(@) Hill climbing (no extended list)

When searéhing for a path, not necessarily the shortest, more knowledge

1. Can produce results faster

2. Can produce shorter paths

3. Can draw you into a dead end
(% All of the above

5. None of the above

Beam search, with no extended list
1. Produces exponentially many paths with distance between start and goal
2. Produces the shortest path
3. Uses accumulated distance with no heuristic estimate of distance remammg
All of the above :
None of the above
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