MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.041 PROBABILISTIC SYSTEMS ANALYSIS
6.431 APPLIED PROBABILITY
Fall 2010
http://stellar.mit.edu/S/course/6/fal10/6.041/

Included in this opening day handout:

1. General Information (please digest it before next lecture.)
2. Syllabus with lecture subjects and quiz dates.

3. Statement on Collaboration, Honesty, etc.

4. Recitation and tutorial schedule form. Please complete it now. We know
that you may have to make changes later. We need forms returned now,
in order to have initial recitation assignments available by the morning of
Thursday, September 9th. :



GENERAL INFORMATION

WELCOME to 6.041/6.431! This fundamental subject is concerned with the nature, for-
mulation, and analysis of probabilistic situations. No previous experience with probability
is assumed. This course is fun, but also demanding.

6.041 and 6.431: Students intending to take the undergraduate version of the course need
to sign up for 6.041, while those intending to take the graduate version should sign up for
6.431, which includes full participation in 6.041, together with some additional homework
problems, additional topics, and possibly different quiz and exam questions.

6.041/6.431 has three types of class sessions: lectures, recitations, and tutorials. The lectures
and recitations each meet twice a week. In addition, there will be a tutorial once a week,
which is not mandatory, but is highly recommended.

LECTURES serve to introduce new concepts. They have an overview character, but also
include some derivations and motivating applications. You are expected to attend. Lec-
tures are at 12-1PM on Mondays and Wednesdays in Room 34-101. The first lecture is on
Wednesday 9/8.

RECITATIONS meet on Tuesdays and Thursdays, and attendance is mandatory. In recita-
tion, your instructor elaborates on the theory, works through new examples with your par-
ticipation, and answers your questions about them. The recitation assignments will be
made based on the recitation and tutorial schedule forms you complete and turn in im-
mediately at the end of the first lecture. The recitation assignments will be available by
8AM. Thursday 9/9. The recitation assignments will be posted on the course web page
(http://stellar.mit.edu/S/course/6/£al0/6.041/) for the entire semester.

TUTORIALS for 6.041 and 6.431 meet on Thursday afternoons and Fridays, and will be
assigned in response to the recitation and tutorial schedule form, within a few days. In
tutorial, you discuss and solve new examples with a little help from your classmates and
your instructor. Tutorials are active sessions to help you develop confidence in thinking
about probabilistic situations in real time. Tutorials are not mandatory, but are highly
recommended. Past students have found them to be very helpful. The TA who leads the
tutorial you are assigned to, will be your first point of contact for questions on
the problem sets. Tutorial assignments will be posted on the course web page with the
recitation assignments.

ADVANCED SECTIONS. There may be a possibility for 6.041 students to be assigned
to 6.431 recitation sections. If you are interested in slightly faster paced or more advanced
recitations and tutorials (while remaining responsible only for 6.041 assignments), please
indicate so on the signup sheet.

RECITATION AND TUTORIAL REASSIGNMENT. We try to give everyone their
first or second choice in all assignments. Unfortunately with such a large class this is not
always possible. If you have a class conflict with your recitation or tutorial assignment you
must submit your full class schedule so we can find an assignment which fits your schedule.
Recitation and Tutorial assignments are paired, thus a reassignment in one will often require



a reassignment in the other. Please submit any reassignment requests by email to the Head
TA, Shashank Shekhar Dwivedi (head.ta@mit.edu). To avoid bouncing emails all day, please
include your full and complete schedule with any reassignment request.

RECITATION ASSIGNMENTS PROVIDED BY THE REGISTRAR will not be
followed. Please disregard them.

FIRST WEEK. There will be no tutorials during the first week of classes, but recitations
will be held on Thursday September 9. Your updated recitation assignment will be posted
by Thursday 8AM at http://stellar.mit.edu/S/course/6/fa10/6.041/.

INDIVIDUAL MEETINGS WITH YOUR RECITATION INSTRUCTOR AND
TA are encouraged. We want to help! They will both give you their office hours at the first
recitation or tutorial meeting. If you have already made a reasonable effort, your instructor
or TA will be glad to help you with homework problems, before or after they are due.
However, do not expect either of them to work with you if you have not yet carefully read
the relevant material in both the lecture handouts and the text.

ADDITIONAL HELP FROM STAFF MEMBERS. Your tutorial TA and your recita-
tion instructor will both have office hours every week. Optional quiz reviews are presented
uniformly for the entire class, not for individual sections. Similarly, any supplementary
handouts will be identical for all sections.

SPECIAL PERSONAL SITUATIONS. Unforeseen events happen to many of us during
the semester. If any are likely to affect your performance, please keep your TA, recitation
instructor and/or the Head TA and the lecturers aware of your situation.

ADMINISTRATIVE MATTERS. Recitation and tutorial assignments will be handled
by the Head TA, Shashank Shekhar Dwivedi (head.ta@mit.edu). Copies of all material
distributed can be found on the course’s web site and outside the TA office in 24-312. Graded
problem sets will be returned to you in your assigned tutorial. All unclaimed problem sets
will be placed outside 24-312 on the metal shelves.

PREREQUISITES. The prerequisite for 6.041 and 6.431 is 18.02, or a year of college level
calculus for those with undergraduate degrees from other universities. Students who have
not completed the prerequisite with a grade of A, B, C or P may not enroll.

TEXT. The text for this course is Introduction to Probability (second edition) by Bertsekas
and Tsitsiklis. It is available at the MIT Coop. Solutions to end-of-chapter problems are
available at http://athenasc.com/prob-solved_2ndedition.pdf. We recommend that
you print out these solutions. A few of these problems will be covered in recitation and
tutorial. The remaining ones can be used for self-study (for best results, always try to solve
a problem on your own, before reading the solution).

Additionally, the following books may be useful as references. They cover many of the topics
in this course, although in a different style. You may wish to consult them to get a different
perspective on particular topics:

1. A.Drake, Fundamentals of Applied Probability Theory

2. S. Ross, A First Course in Probability



PROBLEM SET questions are posted on the course website according to the schedule in
the course syllabus. PSets are due at the beginning of lecture on their respective due
date, typically Wednesday. Baskets will be placed outside 34-101, 10 minutes before lecture
begins (approximately 11:55 AM), and will remain available until 12:15PM. Be sure to arrive
on time the day PSets are due! Place your solutions in the basket corresponding to
your tutorial TA. Solutions will be available on the course website, shortly after lecture.
There will be 11 problem sets handed out this term, with the final PSet not collected. Your
worst Pset (out of the 10 collected) will not be taken into account, which essentially allows
you to miss on Pset without penalty.

Since we post PSet solutions immediately after the PSets are due, we do NOT accept any
late PSets. Students who submit a note from Student Support Services will be excused
from the appropriate PSet. Please see the head TA if you have further questions regarding
this policy.

We grade homework, but often only a small, randomly chosen subset of the problems. We
do post detailed solutions on the course website. Your TA is available to discuss your work
with you, both before and after it is due. You may encounter difficulty figuring out where
your own solution of a homework problem went astray. There are many ways to approach
most probability problems. Just agreeing with our problem solutions may not explain why
your approach didn’t work. Please let your instructor or TA help you whenever such issues
occur. If the intent of a question on a problem set is unclear, please email your assigned
tutorial TA for clarification.

QUIZZES AND EXAMS. There will be two quizzes and a final exam this term. Quiz 1,
on Tuesday October 12th, will be given in the evening from 7:30-9:00PM (venue: 54-100).
Quiz 2, on Tuesday November 2nd, will be given in the evening from 7:30-9:30PM (venue:
54-100). A comprehensive final exam will be given during finals week, time and place to be
determined.

CONFLICT EXAMS: Conflicts with quiz times must be submitted to the Head TA
(Shashank Shekhar Dwivedi, head.ta@mit.edu) two weeks prior to the scheduled quiz date.
Conflicts for the final are resolved by the Scheduling office.

THE COURSE WEB SITE at http://stellar.mit.edu/S/course/6/£a10/6.041/
contains a wealth of information — course introduction, announcements, homework assign-
ments and solutions, recitation and tutorial handouts, lecture slides, etc.

STUDY HABITS. In order to get the most out of the course, it is important to not
fall behind. It is also important to read the text carefully before attempting to solve the
Problem Sets. A very good practice is to review the transparencies handed out at lecture
before attending the next lecture or recitation; this way, recitations and tutorials will be
much more informative and meaningful.

Make it a point to go to staff office hours if you have any questions or just want to chat
about the course; we count on seeing you during the term! Also, it is a good idea to retain a
copy of your homework solutions before you turn them in. This lets you compare them with
our solutions right away, rather then waiting a week until the graded solutions come back to



you.

GRADES will be determined by your work in all aspects of this subject. Final grades are

assigned in a meeting by the entire staff. Your TA is not allowed to discuss likely final grades
with you.

The “formula” that will be used to determine your grade is:

First Quiz: 20%

Second Quiz: 28%

Final: 37%

Homework: 10% (Based on your best 9 out of 10 problem sets)

Attendance & Participation: 5% (Your recitation instructor’s and tutorial TA’s combined
assessment, based primarily on their personal contact with you during recitations and tuto-
rials.)

6.041-6.431 Statement on Collaboration, Honesty, etc.

We encourage working together whenever possible — working out problems in tutorials, dis-
cussing and interpreting reading assignments and homework. Talking about the course
material is a great way to learn.

Regarding homework, the following is a fruitful (and acceptable) form of collaboration:
discuss with your classmates possible approaches to solving the problems, and then have
each one fill in the details and write her/his solution independently. An unacceptable
form of dealing with homework is to copy a solution that someone else has written.

We discourage, but do not forbid, use of materials from prior terms that students may have
access to. Furthermore, at the time that you are actually writing up your solutions, these
materials must have been set aside; copy-editing from a bible is not acceptable.

At the top of each homework you turn in, we expect you to briefly list all sources of in-
formation you used, other than the text, books on reserve for this course, or discussions
with 6.041/6.431 staff. A brief note such as “Did homework with John Thompson and Jane
Appleby in study group” or “Looked at old bible for Problem 4” would be sufficient. With
such a disclosure, there is no penalty or other downside to the use of sources or collaboration.
On the other hand, using such sources without reference is plagiarism and is not acceptable.

After a quiz has been returned, we give students a limited amount of time to resubmit their
quizzes for regrades if they feel that there is a problem with the grading on their exam.
Your new grade can turn out to be higher, lower, or the same as before. (We reserve the
right to regrade the entire exam.) If you submit an exam to be regraded, do not write
anything at all on the exam booklet. Please write a note on a separate sheet of paper.
We will reconsider the grade based on the explanation in your note, but TAs are not allowed
to discuss the grading with you personally. Any attempt to modify an exam booklet is
considered a serious breach of academic honesty. We photocopy a substantial fraction of the
exams before they are returned and the probability of catching a change is high.

In general, we expect students to adhere to basic, common sense concepts of academic
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honesty. Presenting another’s work as if it were your own, or cheating in exams will not
be tolerated. The appropriate authorities at MIT will be notified in cases of academic
dishonesty.
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Date

9/8
9/13
9/15
9/20
9/22
9/27
9/29
10/4
10/6
10/11

10/12

10/13
10/18
10/20
10/25
10/27

11/2

11/3
11/8
11/10
11/11
11/15
11417
11/22
11/24
11/29
12/1
12/6
12/8

SYLLABUS

(numbers in parentheses indicate textbook sections)

Topic

L1: Probability models and axioms (1.1-1.2)

L2: Conditioning and Bayes’ rule (1.3-1.4)

L3: Independence (1.5)

L4: Counting (1.6)

L5: Discrete rand. variables (r.v’s); probability mass functions; expectations (2.1-2.4)
L6: Discrete r.v. examples; joint PMFs (2.4-2.5)

L7: Multiple discrete r.v.’s: expectations, conditioning, independence (2.6-2.7)

L8: Continuous random variables (3.1-3.3)

L9: Multiple continuous random variables (3.4-3.5)

Columbus day — no class

Quiz 1, 7:30-9:00 pm; covers L1-L7; location TBA

L10: Continuous Bayes rule; derived distributions (3.6; 4.1)

L11: Derived distributions; convolution; covariance and correlation (4.1-4.2)

L12: Tterated expectations; sum of a random number of random variables (4.3; 4.5)
L13: Bernoulli process (6.1)

L14: Poisson process — I (6.2)

Quiz 2, 7:30-9:30pm, location TBA, covers up to L12; no class on M 11/1

L15: Poisson process — IT (6.2)

L16: Markov chains — I (7.1-7.2)

L17: Markov chains — II (7.3)

Veteran’s day — no recitation

L18: Markov chains — IIT (7.3)

L19: Weak law of large numbers (5.1-5.3)

L20: Central limit theorem (5.4)

L21: Bayesian statistical inference — I (8.1-8.2)
L22: Bayesian statistical inference — II (8.3-8.4)
L23: Classical statistical inference — I (9.1)
L24: Classical inference — II (9.1-9.4)

L25: Classical inference; course overview — III (9.1-9.4)

Final exam, during finals week

t not to be handed in

due
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6.041 Probabilistic Systems Analysis
6.431 Applied Probability

e Staff

— Lecturer: John Tsitsiklis, jnt@mit.edu

Recitation instructors: Dimitri Bertsekas (6.431),
Peter Hagelstein, Ali Shoeb, Vivek Goyal

Head TA: Shashank Dwivedi, head.ta@mit.edu

— Other TAs: Alia Atwi, Uzoma Orji, Sam Zamanian
e Pick up and read course information handout

e Turn in recitation and tutorial scheduling form
(last sheet of course information handout)

e Pick up copy of slides
e http://stellar.mit.edu/S/course/6/sp10/6.041/

Coursework
— Quiz 1 (October 12, 7:30-9:00pm) 20%
= Quiz 2 (November 2, 7:30-9:30pm) 28%
— Final exam (scheduled by registrar) 38%
— Weekly homework (best 9 of 10) 9%
— Attendance/participation/enthusiasm in 5%

recitations/tutorials
e Pset #1, available on Stellar, due September 15
e Collaboration policy described in course info handout
e Text: Introduction to Probability, 2nd Edition,

D. P. Bertsekas and J. N. Tsitsiklis, Athena Scientific, 2008
Read the text!

LECTURE 1 mD‘-} {Jn7 (‘()f")'a{lq thﬂt Wt‘” ;\d'or}fn

¢ Readings: Sections 1.1, 1.2

Lecture outline

e Probability as a mathematical framework
for reasoning about uncertainty

e Probabilistic models

— sample space ho}' (mm‘[)lg l’y ﬂ.r\)} }TW:7

— probability law
e Axioms of probability

e Simple examples
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Probability axioms

e Event: a subset of the sample space (LW:I'F O‘F ﬁqlfaﬂ)

o Probability i1s Besi igned to events

Axioms:

1. Nonnegativity: P(A) >0
2. Normalization: P(2) =1
3. Additivity: If AnB =@, then P(AU B) = P(4) +

rea\
T

e =P{s1) + -+ P({s:})

=P(s1)+ - +P(sp) CSwﬂr‘Fl‘J

e Axiom 3 needs strengtl'lenir'lg X
« Do weird sets have probabilities? h"}"h”"

=) < p(huR)

o P({s1,52,.

.4 Caap)w,,}“

P(h) < |~P(4")

Probability law: Example with finite sample space

Y =Sccond 2
roll

1 2 3 4
X =First roll

s Let every possible outcome have probab|l|ty 1/16 - V\Q
— P((X,Y) is (1,1) or (1 2)) = '/g
- P{{x=1}= ‘C.

.,P(X+Ylsodd)— 0(.1 Olf f)((. l'{'f

- P(min(X,Y)=2) =
TL’ Uu,vqfhe

\
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Discrete uniform law
e Let all outcomes be equally Iikely__]’_\_

e Then,

number of elements of A

P(A) =
S total number of sample points

1]
e Computing probabilities = counting l{

¥/ Cqa

e Defines fair coins, fair dice, well-shuffled decks
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Continuous uniform law

e Two “random” numbers in [0, 1].
¥
1

1 X

Mo dea of whet il }ﬂf’Peﬂ
it calddate ate of sof ¥

e Uniform law: Probability = Area

P(X+Y<1/2)=7? '/g

- P((X,¥)=(0503)) T O

Probability law: Ex. w/countably infinite sample space
e Sample space: {1,2,...}
— We are given P(n) =2"", n=1,2,... e«
— Find P(outcome is even)
_~——

P((2,4,6,...)) = PQ)+B@) + - = o+ gt as

A\ | \
s Countable additivity axiom (needed for this calculation): * h[t?\, Cokw] SQHQS

If Ay, As,... are disjoint events, then:

=1
3

P(AjUAU--- ) =P(A1) +P(A2) + -+

Som of irdiudal fleccb

Remember!
Turn in recitation/tutorial scheduling form now

Check Stellar site very late tonight or early tomorrow for
recitation assignments and attend recitation tomorrow

Tutorials start next week



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

. (Fall 2010)

Git.

Recitation 1
September 9, 2010

- Give a mathematical derivation of the formula

P((ANB°)U(4°N B)) = P(4) + P(B) — 2P(AnN B).

“ Your derivation should be a sequence of steps, with each step justified by appealing to one of

the probability axioms.

. Problem 1.5, page 54 in the text.

Out of the students in a class, 60% are geniuses, 70% love chocolate, and 40% fall into both
categories. Determine the probability that a randomly selected student is neither a genius
nor a chocolate lover.

- A six-sided die is loaded in a way that each even face is twice as likely as each odd face.

Construct a probabilistic model for a single roll of this die, and find the probability that a 1,
2, or 3 will come up.

. Example 1.5, page 13 in the text.

Romeo and Juliet have a date at a given time, and each will arrive at the meeting place with
a delay between 0 and 1 hour, with all pairs of delays being equally likely. The first to arrive
will wait for 15 minutes and will leave if the other has not yet arrived. What is the probability
that they will meet?

Problem 1.13, page 56 in the text. Continuity property of probabilities.

(a) Let Ay, A, ... be an infinite sequence of events that is “monotonically increasing,” mean-
~ ing that A, C Apy for every n. Let A — UnZ14a. Show that P(4) = lim,_,o P(4,).
Hint: Express the event A as a union of countably many disjoint sets.

(b) Suppose now that the events are “monotonically decreasing,” ie., Apy; C A, for every n.
Let A = N52,A,. Show that P(4) = lim, oo P(A,). Hint: Apply the result of the
previous part to the complements of the events.

(c) Consider a probabilistic model whose sample space is the real line. Show that

P(0,00) = lim P(0,n])  and  Jim P([n,00)) = 0.
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LECTURE 2

ot ¢ Readings: Sections 1.3-1.4

Lecture outline

e Review

e Conditional probability

e Three important tools:

— Multiplication rule

— Total probability theorem

— Bayes' rule

Review of probability models

e Sample spacg 2

—

— Mutually exclusive ‘Sﬁlf (dncl, pnl\( l o\AwW

Collectively exhaustive
— Right granularity
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L - DZfin;yprob:l:I)ilitjlaw Col [r;q,b) i bkt st ol |<0
Identify event of interest @ [/A[P[D Voml WL:H W&(/( 59‘7‘4’ - 5&{‘/{7\,{{

— Calculate... S‘[UW

P = o () L "o L

P6v3) = O (w0 are 9) !*[ onsddyr
™ Slngle point ——/ ‘2“’55%“’?“”

)



)
Conditional probability ED{ 8

| e gt T b ey

| s
o P(A|B) = probability of A, @

given that B occurred @Luu al(‘m\z OCCUN/&

: - T )

— DB is our new universe o 1 ,l
el pob. conterd on Maiately [07opP 7YY

e Definition: suming P(B) # 0,

o E
P(A| By =g %//EL =® sam (/)

P(A | B) undefined if P(B) =0

P(ANS) <e(g) ¢ (n10)
PIBOA) < p(4) - P[4 14)

P(AUC) = (R ) tP() @ -
P(Avc)e)= p(al p) ¢ P(cld) @

— 4
Die roll example Wﬁ}ﬂdd ﬂ"- CQ"(]/EJ('H@»-

L 43 qlmod ﬂm? (bbq,iom
; [ each

7
Y = Second 8 %/;

roll

T <

Lle
¥y 2 3 4

X = First roll

e Let B be the event: min(X,Y) =2 @
o Let M = max(X,Y)

« PM=1|B)= () E

- Pu=21B=|f|¢ = |
\\\! S/IQ i —5“«



! o
Models based on conditional ; 'H)C{'b"’l" ¢
probabilities

e Event A: Airplane is flying above
Event B: Something registers on radar

screen
P(B | A)=0.99 Q) @

P(BC | A)=0.01

(lor
ff wobab])iky P(A)=0.05
belihs

P(A©)=0.95 ﬁifg( ahin
P(B | A©)=0.10 @

BC 1 A©)=0.90

0 PANB) = caphied plofae P(A (ﬁlﬂ) (5+9¢ =

@P(B)— 0699 9510 = that # ﬁappmd ol naF
Gream= ) | aq s oty o
P(B Fi rul plane

TGO"LI 3"[‘% p’{'
Multiplic;;):-:r:\ﬂ “”{ ﬂL fa’iar d‘lUmjf H’ 1’5 A rtul F[d/\(,

‘—-_-_-___-—--——-—-—
P(ANBNC) = P(A)-P(B | A)-P(C | ANB)

bhen by ttrsetlons ardie oey et okt
o _rcnm o PAREAC) < P((nn o 9

“Pl4ng) - P (cang)
~Pla)-p(a)n) - P(C{ang)

ANBEN C

ANBEN Ce




Ceneral P’ch" vt

Total probability theorem

Divide and conquer
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Bayes’ rule

e “Prior” probabilities P(A;)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 2
September 14, 2010

1. Problem 1.15, page 56-57 in the text.

A coin is tossed twice. Alice claims that the event of two heads is at least as likely if we know
that the first toss is a head than if we know that at least one of the tosses is a head. Is she right?
Does it make a difference if the coin is fair or unfair? How can we generalize Alice’s reasoning?
2. Problem 1.14, page 56 in the text.
We roll two fair 6-sided dice. Each one of the 36 possible outcomes is assumed to be equally
likely.
(a) Find the probability that doubles are rolled.

(b) Given that the roll results in a sum of 4 or less, find the conditional probability that doubles
are rolled.

(c) Find the probability that at least one die roll is a 6.
(d) Given that the two dice land on different numbers, find the conditional probability that at
least one die roll is a 6.
3. Example 1.13, page 29, and Example 1.17, page 33, in the text.

You enter a chess tournament where your probability of winning a game is 0.3 against half of the
players (call them type 1), 0.4 against a quarter of the players (call them type 2), and 0.5 against
the remaining quarter of the players (call them type 3). You play a game against a randomly
chosen opponent.

(a) What is the probability of winning?

(b) Suppose that you win. What is the probability that you had an opponent of type 17

4. Example 1.12, page 27 in the text.

The Monty Hall Problem. This is a much discussed puzzle, based on an old American game
show. You are told that a prize is equally likely to be found behind any one of three closed doors

_ in front of you. You point to one of the doors. A friend opens for you one of the remaining two
doors, after making sure that the prize is not behind it. At this point, you can stick to your
initial choice, or switch to the other unopened door. You win the prize if it lies behind your final
choice of a door. Consider the following strategies:

(a) Stick to your initial choice.
(b) Switch to the other unopened door.

(c) You first point to door 1. If door 2 is opened, you do not switch. If door 3 is opened, you
switch.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2010)

]

Problem Set 1
Due: September 15, 2010

A) Express each of the following events in terms of the events A, B and C as well as the operations

4

of complementation, union and intersection:

(a) at least one of the events A, B, C occurs;
@ at most one of the events A, B, C' occurs;
(¢) none of the events A, B, C occurs;

(d) all three events A, B, C occur;

(@ exactly one of the events A, B, C occurs;
f

(

) events A and B occur, but not C;
Eg) either event A occurs or, if not, then B also does not occur.

N\

In each case draw the corresponding Venn diagrams.

You flip a fair coin 3 times, determine the probability of the below events. Assume all
sequences are equally likely.

(a) Three heads: HHH

(b) The sequence head, tail, head: HTH

(¢) Any sequence with 2 heads and 1 tail

(d) Any sequence where the number of heads is greater than or equal to the number of tails
Bob has a peculiar pair of four-sided dice. When he rolls the dice, the probability of any

particular outcome is proportional to the sum of the results of each die. All outcomes that
result in a particular sum are equally likely.

(a) What is the probability of the sum being even?

(b) What is the probability of Bob rolling a 2 and a 3, in any order?

. Alice and Bob each choose at random a number in the interval [0,2]. We assume a uniform

probability law under which the probability of an event is proportional to its area. Consider
the following events:

A : The magnitude of the difference of the two numbers is greater than 1/3.

B : At least one of the numbers is greater than 1/3.

C' : The two numbers are equal.

D : Alice’s number is greater than 1/3.

Find the probabilities P(B), P(C), and P(AnN D).
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5. Mike and John are playing a friendly game of darts where the dart board is a disk with radius
of 10in.

Whenever a dart falls within 1in of the center, 50 points are scored. If the point of impact is
between 1 and 3in from the center, 30 points are scored, if it is at a distance of 3 to 5in 20
\/ points are scored and if it is further that 5in, 10 points are scored.

Assume that both players are skilled enough to be able to throw the dart within the boundaries
of the board.

Mike can place the dart uniformly on the board (i.e., the probability of the dart falling in a
given region is proportional to its area).

(a) What is the probability that Mike scores 50 points on one throw?
(b) What is the probability of him scoring 30 points on one throw?

(c) John is right handed and is twice more likely to throw in the right half of the board
than in the left half. Across each half, the dart falls uniformly in that region. Answer
the previous questions for John’s throw.

@‘/Prove that for any three events A, B and C, we have

P(ANBNC)>P(A)+P(B)+P(C) -2
G17. Consider an experiment whose sample space is the real line.

(a) Let {an} be an increasing sequence of numbers that converges to @ and {b,} a decreasing
sequence that converges to b. Show that

TEE&P([fLrlu bn]) = P([e,b]).

Here, the notation [a,b] stands for the closed interval {z | @ < = < b}. Note: This

result seems intuitively obvious. The issue is to derive it using the axioms of probability
theory.

(b) Let {a,} be a decreasing sequence that converges to a and {b,} an increasing sequence
that converges to b. Is it true that

lim P([aq, ba]) = P([a,b))?

Note: You may use freely the results from the problems in the text in your proofs.

— e —
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Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 1: Solutions
Due: September 15, 2010

1. (a) AUBUC

(b) (ANB°NCY)U(A*NBNCS)U(A°N BN C)U (AN BN CF)
(¢) (AUBUC) =A°NBeNncCe

(d) ANBNC

(e) (ANBNCHU(ANBNC)U (A NBNC)

(f) AnBnNC*e

)
(g) AU (AN B°)

(c) N (8)

2. Since all outcomes are equally likely we apply the discrete uniform probability law to solve
the problem. To solve for any event we simply count the number of elements in the event
and divide by the total number of elements in the sample space.

There are 2 possible outcomes for each flip, and 3 flips. Thus there are 2% = 8 elements (or
sequences) in the sample space.

(a) Any sequence has probability of 1/8. Therefore P({H, H, H}) = .
(b) This is still a single sequence, thus P({H,T,H}) = .

(c) The event of interest has 3 unique sequences, thus P({HHT, HTH,THH}) = .

(d) The sequences where there are more heads than tails are A : {HHH, HHT,HTH,THH}.
4 unique sequences gives us P(A) = .

3. The easiest way to solve this problem is to make a table of some sort, similar to the one
below.

LlV
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Diel Die2 | Sum P(Sum)
1 1 2 2p
2 3p
3 4p
5p
3p
4p
5p
6p
dp
5p
6p
7p
5p
6p
p
8 8p
Total 80p

1

AR R R W W W W NN N
B N R O e W RS
=] O UL =] O U = O U e WO e W

P(All outcomes) = 80p (Total from the table)

and therefore

]
P=30
(a)
P(Even sum) = 2p+4p+4p+6p+4p+6p+6p+8}7=40P=
(b)
P(Rolling a 2and a 3) = P(2,3)+P(3,2) =5p+5p=10p=
4. P(B)

The shaded area in the following figure is the union of Alice’s pick being greater than 1/3
and Bob’s pick being greater than 1/3.

Bob

e 2/#5'
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P(B) = 1— P(both numbers are smaller than 1/3)
area of small square

total sample area

R OV 1) R S~
= 1-—2 = 1- o = [35/36

P(C)

In the following figure, the diagonal line represents the set of points where the two selected
numbers are equal.

Bob

L35

113+

0 3 | 2 Alice

The line has an area of 0. Thus,

area of line 0
P(C) = == =
() total sample area 4 @

P(AN D)

Overlapping the diagrams we would get for P(A4) and P(D),

Bob

TR

0 I 2 Alice
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double shaded area

PAND) = total sample area
_ GG+ AR/ _ 25/18+16/18 _
4 4

5. (a) The probability of Mike scoring 50 points is proportional to the area of the inner disk.
Hence, it is equal to anR*> = am, where « is a constant to be determined.
Since the probability of landing the dart on the board is equal to one, aw10? = 1, which
implies that o = 1/(1007).
Therefore, the probability that Mike scores 50 points is equal to 7/(1007) =

(b) In order to score exactly 30 points, Mike needs to place the dart between 1 and 3 inches
from the origin. An easy way to compute this probability is to look first at that of
scoring more than 30 points, which is equal to am3? = 0.09.

Next, since the 30 points ring is disjoint from the 50 points disc, probability of scoring
more than 30 points is equal to the probability of scoring 50 points plus that of scoring
exactly 30 points. Hence, the probability of Mike scoring exactly 30 points is equal to

0.09 - 0.01 =

¢) For the part (a) question. The probability of John scoring 50 points is equal to the
q ¥ 8 1
probability of throwing in the right half of the board and scoring 50 points plus that of
throwing in the left half and scoring 50 points.

The first term in the sum is proportional to the area of the right half of the inner disk
and is equal to amrR?/2 = a7 /2, where o is a constant to be determined.

Similarly, the probability of him throwing in the left half of the board and scoring 50
points is equal to 87 /2, where 3 is a constant (not necessarily equal to a).

In order to determine a and [, let us compute the probability of throwing the dart in
the right half of the board. This probability is equal to

amR?/2 = ar10?/2 = a50.

Since that probability is equal to 2/3, @ = 1/(757). In a similar fashion, § can be
determined to be 1/(150x). Consequently, the total probability is equal to 1/150 +
1/300 =

For the part (b), The probability of scoring exactly 30 points is equal to that of scoring
more than 30 points minus that of scoring exactly 50. By applying the same type of
analysis as in (b) above, the probability is found to be equal to

These numbers suggest that John and Mike have similar skills, and are equally likely
to win the game. The fact that Mike’s better control (or worst, depending on how you
look at it) of the direction of his throw does not increase his chances of winning can be
explained by the observation that both players’ control over the distance from the origin
is identical.

6. See the textbook, Problem 1.11 page 55, which proves the general version of Bonferroni’s
inequality.

G1t. (a) If we define A, = [ay,, by for all n, it is easy to see that the sequence Aj, Ao, ... is
“monotonically decreasing,” i.e., A, C A, for all n:
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Furthermore, N° 4,, = [a, b].

By the continuity property of probabilities (see Problem 1.13, page 56 of the text),

Tim_P([an, ba]) = P([a, ]).

No. Consider the following example. Let a, = a + %, by =b— % for all n. Then {a,}
is a decreasing sequence that converges to a, and {b,} is an increasing sequence that
converges to b. If we define a probability lasw that places non-zero probability only on
points a and b, then lim, ..o P([an, bs]) = 0, but P([a,b]) = 1.

This example is closely related to the continuity property of probabilities. In this case, if
we define A, = [an, by], then Ay, Ao, ... is “monotonically increasing,” i.e., A, C A,.q,
but A = (UPA,) = (a,b), which is an open interval whose probability is 0 under our
probability law.

S/5



LECTURE 3

¢ Readings: Section 1.5

e Review
e[ Independence of two events
e| Independence of a collection of events

Review

_PUnB) l\““f Nt (vtfo - /&/ifﬁ_ \93)!9‘(5

P(A| B) PB) assuming P(B) > 0

e Multiplication rule:

P(ANB) = P(B)-P(A | B) = P(A).P(B | A) P of 2 h‘"‘ﬂb t\appﬁnei
tJut e inadin] Iomlmb;lhl&s ~Same ﬂ“:o,q ffafm/As

e Total probability theorem:

P(B) = P(A)P(B | A) + P(A9)P(B | A%)
adl
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P(B)
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Models based on conditional
probabilities

P(A; | B) =
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e 3 tosses of a biased coin:

P(H)=p, PM=1-p

HHH
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Independence of two events

e “Defn:” P(B|A)=P(B)

— ‘"occurrence of A
provides no information
about B's occurrence"

e Recall that P(ANB) =P(A)-P(B|A)

o Defn: (P(ANB)=P(A)- P(B) c@ueqwaf

o ﬂthml e
e Symmetric with respect to A and B

— applies even if P(A) =0
— implies P(A | B) = P(A)

@ P(f]), P(B) 0 ‘/_V_gr t)f‘[é(;one(l 74 inc{ff;@,l&mf’
@ (e eveats ;’lAfP(hdedﬁ

Conditioning may affect independence

¢ Conditional independence, given C,
is defined as independence

under probability law P(- | ) /(“:WGV m+ L(Mw wl(utl'
!
Wil happea

e Assume A and B are independent

e If we are told that € occurred,

are A and B independent? 46{./41“\{ ({{PM&BM’
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Conditioning may affect independence

e Two unfair coins, A and B:
P(H | coin A) = 0.9, P(H | coin B) =0.1
choose either coin with equal probability

Coin A

05

0.5

Coin B

e Once we know it is coin A, are tosses r:) F(H” ): P[A’) P[H” ZA)
independent?
™ . . P )l
o IR, 8) <9 4
' {

. ol
— Compare:
P(toss 11 = H) mmlhtg — ]
P(toss 11 = H | first 10 tosses are heads) \:3 Wl\qf’ dae;. 'h,b h” Yw ’Q
J“Y CO(A 4
50 P(Heds) 229

T ol mast

Independence of a collection of events

e Intuitive definition:
Information on some of the events tells
us nothing about probabilities related to

the remaining events FVEJ'}'S A A"L A"A

— E.g.:
P(A1N(ASUA3) | AsNAE) = P(A1N(ASUA3)) é;}’ i ﬂz) P(A‘)PML)

Events A, A A [AﬁﬂAS) P[AZ /h) Pq‘\W‘(sQ :M‘Q’D d
are calledllr;jé'p'e'z;*rdgnt if: ?(143 /IA, = P[/+s

e Mathematical definition:

]\T)(A?-mjn- -NAg) = P(A;)P(A;) - .-P(,@ P(An /] [
for any distinct indices 4.74,....q, A’Z ﬂ"&) P(A P ’47-) \0643) zm'}' "‘&S&(?ff?, /7;(7
(chosen from {1,...,n}) Pd'lfW({S(_’
Cadm
S—)



Independence vs. pairwise
independence

e Two independent fair coin tosses

— A: First toss is H

— B: Second toss is H P[A.)o P[{BJ = ‘l?',‘ _[i :{_
— P(A)=P(B) = 1/2 ‘

HH HT A
TH T
C
LU 0ss give same

— (C: First—amd~setond

t
result 2 Yy + 1

7
- P(C) —_

- Penm= 42 = p(c) P(4) C-hnqi'flub ace iawrﬂd%t

~ panBncy= 5 FRAAPD Y T YL A <
- pelann= 1 #0()%

e Pairwise independence does not
i El L
imply independence

/m (ondWangl are not gam{ Os W vn@adifien )

U'\an@t of pd@“

The Kking's sibling

e The king comes from a family of two
children. What is the probability that
his sibling is female?

chifen ar {B(,g 9 P(Y o ach
Hot et 39 4

%, B .

£ iiiaey 3 3
at least | 6B {
ot fe el
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Recitation 3: September 16, 2010

. Example 1.20, page 37 in the text.

Consider two independent fair coin tosses, in which all four possible outcomes are equally likely.
Let

H, = {lst toss is a head},
H; = {2nd toss is a head},
D = {the two tosses produced different results}.

(a) Are the events H; and Hj (unconditionally) independent?
(b) Given event D has occurred, are the events H; and Hs (conditionally) independent?

. Imagine a drunk tightrope walker, in the middle of a really long tightrope, who manages to keep
his balance, but takes a step forward with probability p and takes a step back with probability
.(1-p).

(a) What is the probability that after two steps the tightrope walker will be at the same place
on the rope?

(b) What is the probability that after three steps, the tightrope walker will be one step forward
from where he began?

(¢) Given that after three steps he has managed to move ahead one step, what is the probability
that the first step he took was a step forward?

. Problem 1.31, page 60 in the text.

Communication through a noisy channel. A binary (0 or 1) message transmitted through
a noisy communication channel is received incorrectly with probability ey and e;, respectively
(see the figure). Errors in different symbol transmissions are independent. The channel source
transmits a 0 with probability p and transmits a 1 with probability 1 — p.

1-e0
0 0
el
el
1 1
1-el

Figure 1: Error probabilities in a binary communication channel.

(a) What is the probability that a randomly chosen symbol is received correctly?

(b) Suppose that the string of symbols 1011 is transmitted. What is the probability that all
the symbols in the string are received correctly?

Page 1 of 2
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(c) In an effort to improve reliability, each symbol is transmitted three times and the received
symbol is decoded by majority rule. In other words, a 0 (or 1) is transmitted as 000 (or
111, respectively), and it is decoded at the receiver as a 0 (or 1) if and only if the received
three-symbol string contains at least two Os (or 1s, respectively). What is the probability
that a transmitted 0 is correctly decoded?

(d) Suppose that the scheme of part (c) is used. What is the probability that a 0 was transmitted
given that the received string is 1017

4. (a) Can an event A be independent of itself?
(b) Problem 1.43(a) on page 63 in text.

Let A and B be independent events. Use the definition of independence to prove that the
events A and B are independent.

(¢) Problem 1.44 on page 64 in text.

Let A, B, and C be independent events, with P(C) > 0. Prove that A and B are condi-
tionally independent of C.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Tutorial 1
September 16/17, 2010

1. Let A and B be events such that A C B. Can A and B be independent?

2. An electrical system consists of identical components that are operational with probability p
independently of other components. The components are connected in three subsystems, as
shown in the figure. The system is operational if there is a path that starts at point A, ends
at point B, and consists of operational components. This is the same as requiring that all three
subsystems are operational. What are the probabilities that the three subsystems, as well as the
entire system, are operational?

l

Figure 1: A system of identical components that consists of the three subsystems 1, 2, and 3. The
system is operational if there is a path that starts at point A, ends at point B, and consists of operational
components.

3. The Chess Problem. This year’s Belmont chess champion is to be selected by the following
procedure. Bo and Ci, the leading challengers, first play a two-game match. If one of them wins
both games, he gets to play a two-game second round with Al, the current champion. Al retains
his championship unless a second round is required and the challenger beats Al in both games.
If Al wins the initial game of the second round, no more games are played.

Furthermore, we know the following;:

e The probability that Bo will beat Ci in any particular game is 0.6.
e The probability that Al will beat Bo in any particular game is 0.5.
e The probability that Al will beat Ci in any particular game is 0.7.

Assume no tie games are possible and all games are independent.

(a) Determine the apriori probabilities that

i. the second round will be required.
ii. Bo will win the first round.

iii. Al will retain his championship this year.

(b) Given that the second round is required, determine the conditional probabilities that 3
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

i. Bo is the surviving challenger.

ii. Al retains his championship.

(c) Given that the second round was required and that it comprised only one game, what is the
conditional probability that it was Bo who won the first round?

Page 2 of 2
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LECTURE 4

— e Readings: Section 1.6 Todﬂ\{‘{ 00 7 ‘b(/lﬂm-l' 1 Cm/nt‘mj

Lecture outline
e Principles of counting

e Many examples
— permutations
— k-permutations
— combinations

— partitions

e Binomial probabilities

—
do "
Mh‘f WL Cat dﬁbu/}b Contin
Discrete uniform law ﬂ
e Let all sample points be equally likely
e Then,
P(A) = number of elements of A _ 14] - LL
total number of sample points || N
e Just count...
—

Yot complicghed !



Basic counting principle

r stages o
e n; choices at stage ¢

n

ng

How many leasts on
fe tree”,
3.2 = 132 <1 chi

e Number of choice‘! is:¥ nino-

e Number of license plates
with 3 letters and 4 digits =

202 26+2¢ + 10+10-10 10

e ... if repetition is prohibited =

2602624+ 1) % 17

e Permutations: Number of ways _ .. 4
of ordering n elements is: Ofder MaHE/_B PWJ%M = Jt%@/&ll— hay s ﬂ/‘ O('Jéff’ﬁ a 5’%
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Example

( W““\y of » Probability that six rolls of a six-sided die}
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all give different numbers?

I
— Number of outcomes that l
{A( make the event happen: G
- of pomptation

— Number of elements

}_Q_) in the sample space: G (

— Answer: _[__/;U_- _ 6 J
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Combinations

° (n) number of k-element subsets

of a given n-element set

e Two ways of constructing an ordered
U’a(ercl

sequence of k distinct items:
— Choose the k items one a time:
n(n—1)---(n—k+1) :Lj]:hmces Ofdef ‘hUh L,l

— Choose k items, then order them
(k! possible orders)

/ 4
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 4 C f\
September 21, 2010 Ovh fﬂ?

. Problem 1.50, page 67 in the text.

The birthday problem. Consider n people who are attending a party. We assume that every
person has an equal probability of being born on any day during the year, independently of
everyone else, and ignore the additional complication presented by leap years (i.e., nobody is
born on February 29). What is the probability that each person has a distinct birthday?

. Imagine that 8 rooks are randomly placed on a chessboard. Find the probability that all the
rooks will be safe from one another, i.e. that there is no row or column with more than one rook.

. Problem 1.61, page 69 in the text.

Hypergeometric probabilities. An urn contains n balls, out of which exactly m are red. We
select % of the balls at random, without replacement (i.e., selected balls are not put back into
the urn before the next selection). What is the probability that i of the selected balls are red?

- Multinomial coefficient. Derive the multinomial coefficient (the number of partitions of n
distinct items into groups of ny, .. ., ny) using a different argument than the one in class. Consider
n items which can be placed into n slots and divide the group of n slots into segments of length
ny, ..., ny slots. Derive the multinomial coefficient by showing how many different ways can the
n items be arranged into the r segments.

- Multinomial probabilities. At each draw, there is a probability p; (i =1,...,r) of getting a
ball of color . Draw n objects. What is the probability of obtaining exactly n; of each color i?

Page 1 of 1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 4: Extra Handout
September 21, 2010

1. As part of the solution to problem 1, plotted below are the probabilities of each person having a
distinct birthday versus n the number of people present.
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LECTURE 5 ot

e Readings: Sections 2.1-2.3, start 2.4

Lecture outline
e Random variables
e Probability mass function (PMF)
e Expectation

e \Variance

Random variables

e An assignment of a value (number) to

every possible outcome /,,/’/2——
e —— e
“ o
e Mathematically: A function f@
from the sample space 2 to the real il'ZO[ L

4
numbers @

— discrete or continuous values

e Can have several random vari

defined on the same sample space

e Notation:

Y(w)=g(x()

— numerical value )( =
| fdfd’!mg V 6 (X')



Pl fhet o stdeds le“ Wl b 120

Probability mass function (PMF) &

e (“probability law", -
“probability distribution” of X) | b\.{ K"‘Zﬂ
Notat, L x= 130

e Notation:

Grads v frult Yolo
PY(w = P(X=2) o,\va.ldf’

= P{{we Q st X(w) =uz})

),\\
N voralle all Pocq,ﬂe, v alvts
° P\ ) >0 Yapx(z) =1

it Al e —_ Tom o all ?"GJ:M\% of %t@{* 2

e Example: X=number of coin tosses
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— assume independent tosses,
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Binomial PMF
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Properties of expectations

e Let X bearwv. and let Y = g(X)

— Hard: B[] =Y upy () O\PPH Uy m[ eapectation
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Variance
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(Fall 2010)

Recitation 5
September 23, 2010

1. (a) Derive the expected value rule for functions of random variables E[g(X)] = 3, g(z)px ().

(b) Derive the property for the mean and variance of a linear function of a random variable
Y =aX +b.

E[Y] = aE[X] + b, var(Y) = a%var(X).
(c) Derive var(X) = E[X?] — (E[X])?
2. A marksman takes 10 shots at a target and has probability 0.2 of hitting the target with each

shot, independently of all other shots. Let X be the number of hits.

(a) Calculate and sketch the PMF of X.
(b

)
) What is the probability of scoring no hits?
¢) What is the probability of scoring more hits than misses?
)
)

(

(d

(e) Suppose the marksman has to pay $3 to enter the shooting range and he gets $2 dollars for
each hit. Let Y be his profit. Find the expectation and the variance of Y.

Find the expectation and the variance of X.

(f) Now let’s assume that the marksman enters the shooting range for free and gets the number
of dollars that is equal to the square of the number of hits. Let Z be his profit. Find the
expectation of Z.

3. 4 buses carrying 148 job-seeking MIT students arrive at a job convention. The buses carry 40,
33, 25, and 50 students, respectively. One of the students is randomly selected. Let X denote
the number of students that were on the bus carrying this randomly selected student. One of
the 4 bus drivers is also randomly selected. Let Y denote the number of students on his bus.

(a) Which of E[X] or E[Y] do you think is larger? Give your reasoning in words.
(b) Compute E[X] and E[Y].

4. Problem 2.21, page 123 in the text.

St. Petersburg paradox. You toss independently a fair coin and you count the number of
tosses until the first tail appears. If this number is n, you receive 2" dollars. What is the
expected amount that you will receive? How much would you be willing to pay to play this
game?

Page 1 of 1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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Recitation 5: Extra Handout
September 23, 2010

1. To show some relavant computations to Problem 4, the results (plotted as histograms) of simu-
lations of this game have been plotted below for various numbers of simulations.

20 simulations, observed average = $19.20
15 T T T T X

10f -

0 50 100 150 200 250 300

200 simulations, observed average = $11.16
150 T T T T T

100 .

50 g

0 100 200 300 400 500 600
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l U}.ﬂ%‘?"ﬁ Problem Set 2
! ‘dgf/\.r Due September 22, 2010
NAVL .

1. Most mornings, Victor checks the weather report before deciding whether to carry an umbrella.
If the forecast is “rain,” the probability of actually having rain that day is 80%. On the other
hand, if the forecast is “no rain,” the probability of it actually raining is equal to 10%. During
fall and winter the forecast is “rain” 70% of the time and during summer and spring it is 20%.

(a) One day, Victor missed the forecast and it rained. What is the probability that the forecast
was “rain” if it was during the winter? What is the probability that the forecast was “rain”
if it was during the summer?

(b) The probability of Victor missing the morning forecast is equal to 0.2 on any day in the
year. If he misses the forecast, Victor will flip a fair coin to decide whether to carry an
umbrella. On any day of a given season he sees the forecast, if it says “rain” he will always
carry an umbrella, and if it says “no rain,” he will not carry an umbrella. Are the events
“Victor is carrying an umbrella,” and “The forecast is no rain” independent? Does your
answer depend on the season?

(c) Victor is carrying an umbrella and it is not raining. What is the probability that he saw
the forecast? Does it depend on the season?

2. You have a fair five-sided die. The sides of the die are numbered from 1 to 5. Each die roll is
independent of all others, and all faces are equally likely to come out on top when the die is
rolled. Suppose you roll the die twice.

(a) Let event A to be “the total of two rolls is 10", event B be “at least one roll resulted in 5",
and event C be “at least one roll resulted in 17.

i. Is event A independent of event B?
ii. Is event A independent of event C'?

(b) Let event D be “the total of two rolls is 77, event £ be “the difference between the two roll
outcomes is exactly 17, and event F' be “the second roll resulted in a higher number than
the first roll”.

i. Are events I and I’ independent?
ii. Are events F and I independent given event D7

3. The local widget factory is having a blowout widget sale. Everything must go, old and new. The
factory has 500 old widgets, and 1500 new widgets in stock. The problem is that 15% of the old
widgets are defective, and 5% of the new ones are defective as well. You can assume that widgets
are selected at random when an order comes in. You are the first customer since the sale was
announced.

(a) You flip a fair coin once to decide whether to buy old or new widgets. You order two widgets
of the same type, chosen based on the outcome of the coin toss. What is the probability
that they will both be defective?

(b) Given that both widgets turn out to be defective, what is the probability that they were
old widgets?

Page 1 of 2
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4. Oscar has lost his dog in either forest A (with a priori probability 0.4) or in forest B (with a
priori probability 0.6).

On any given day, if the dog is in A and Oscar spends a day searching for it in A, the conditional
probability that he will find the dog that day is 0.25. Similarly, if the dog is in B and Oscar
spends a day looking for it there, the conditional probability that he will find the dog that day
is 0.15.

The dog cannot go from one forest to the other. Oscar can search only in the daytime, and he
can travel from one forest to the other only at night.

(a) In which forest should Oscar look to maximize the probability he finds his dog on the first
day of the search?

(b) Given that Oscar looked in A on the first day but didn’t find his dog, what is the probability
that the dog is in A?

(¢) If Oscar flips a fair coin to determine where to look on the first day and finds the dog on
the first day, what is the probability that he looked in A?

(d) If the dog is alive and not found by the Nth day of the search, it will die that evening
with probability NL+2 Oscar has decided to look in A for the first two days. What is the
probability that he will find a live dog for the first time on the second day?

5. In solving this problem, feel free to browse problems 43-45 in Chapter 1 of the text for ideas. If
you need to, you may quote the results of these problems.

(a) Suppose that A, B, and C are independent. Use the definition of independence to show
that A and B U C are independent.

(b) Prove that if Ay, ..., A, are independent events, then

P(A UAsU...UA,)=1- ﬁ(l ~P(4)).

i=1

G1t. Alice, Bob, and Caroll play a chess tournament. The first game is played between Alice and
Bob. The player who sits out a given game plays next the winner of that game. The tournament
ends when some player wins two successive games. Let a tournament history be the list of game
winners, so for example ACBAA corresponds to the tournament where Alice won games 1, 4,
and 5, Caroll won game 2, and Bob won game 3.

(a) Provide a tree-based sequential description of a sample space where the outcomes are the
possible tournament histories.

(b) We are told that every possible tournament history that consists of £ games has probability
1/2% and that a tournament history consisting of an infinite number of games has zero prob-
ability. Demonstrate that this assignment of probabilities defines a legitimate probability
law.,

(¢) Assuming the probability law from part (b) to be correct, find the probability that the
tournament lasts no more than 5 games, and the probability for each of Alice, Bob, and
Caroll winning the tournament.

TRqu.lired for 6.431; optional for 6.041 Page 2 of 2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 2: Solutions
Due September 22, 2010

1. (a) The tree representation during the winter can be drawn as the following:

0.8 Rain
The forecast is
IIRainll
P 0.2 No Rain
0.1 Rain
1-p
The forecast is
"No Rain"
0.9 No Rain

Let A be the event that the forecast was “Rain,”
let B be the event that it rained, and
let p be the probability that the forecast says “Rain.” If it is in the winter, p = 0.7 and

_P(B|AP(A) (0.8)(0.7) _ 56
s B =~ P(B) ~(0.8)(0.7) + (0.1)(0.3) 59
Similarly, if it is in the summer, p = 0.2 and
_P(B|AP(A) (0.8)(0.2) _2
Rl 8= P(B) ~(0.8)(0.2) + (0.1)(0.8) 3

(b) Let C be the event that Victor is carrying an umbrella.
Let D be the event that the forecast is no rain.
The tree diagram in this case is:

05 Umbrella
Missed the forecast
0.2 0.5 No umbrella
0.8 p Rain (umbrella)
Saw the forecast
1-p :
No Rain (no umbrella)
P(D) = 1-p
P(C) = (0.8)p+ (0.2)(0.5) = 0.8p+0.1

P(C|D) = (0.8)(0)+ (0.2)(0.5) = 0.1

Page 1 of 7
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Therefore, P(C') = P(C | D) if and only if p = 0. However, p can only be 0.7 or 0.2, which
implies the events C' and D can never be independent, and this result does not depend on
the season.

(c) Let us first find the probability of rain if Victor missed the forecast.
P (actually rains | missed forecast) = (0.8)p + (0.1)(1 — p) = 0.1 + 0.7p.
Then, we can extend the tree in part (b) as follows:

0.140.7p Actually rain

0.5 Umbrella

Actually no rain

0.9-0.7p

Missed the forecast: 0.140.7 Actually rain

02 0.5 ™ Noumbrella ‘
0.9-0.7p Actually no rain

) 0.8 Actually rain
0.8 P Rain (umbrella)
Saw the forecast

1-p 0. Actually rain
No Rain (no umbrella

0.9 ~ Actually no rain

Therefore, given that Victor is carrying an umbrella and it is not raining, we are looking at
the two shaded cases.

(0.8)p(0.2)

P(saw forecast | umbrella and not raining) = 08)p(02) + (0.2)(0.5)(0.9 —0.7p)

In fall and winter, p = 0.7, so the probability is %

In summer and spring, p = 0.2, so the probability is

() i

8
27"

q/toral is 10
e
4 ]

Die 2
W

(%]

b 1 g
Die 1

Overall, there are 25 different outcomes in the sample space. For a total of 10, we
should get a 5 on both rolls. Therefore A C B, and

P(ANB) _ P(4)

PA) _ PA) -

P(B|A) =

Page 20f 7
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3.

(a)

We observe that to get at least one 5 showing, we can have 5 on the first roll, 5 on the
second roll, or 5 on both rolls, which corresponds to 9 distinct outcomes in the sample
space. Therefore

P(B) = . # P(B4)

ii. Given event A, we know that both roll outcomes must be 5. Therefore, we could
not have event C occur, which would require at least one 1 showing. Formally, there
are 9 outcomes in C, and

But
P(C|4)="0P(C)

i Out of the total 25 outcomes, 5 outcomes correspond to equal numbers in the two
rolls. In half of the remaining 20 outcomes, the second number is higher than the first
one. In the other half, the first number is higher than the second. Therefore,

10

There are eight outcomes that belong to event E:

E = {(1,2),(2,3),(3,4),{4,5),(2,1);(3,2), (4, 3); [5,4) }.

To find P(F|E), we need to compute the proportion of outcomes in E for which the
second number is higher than the first one:

P(F|E) = 5 #P(F)

ii. Conditioning on event D reduces the sample space to just four outcomes

{(2,5),(3,4),(4,3),(5,2)}
which are all equally likely. It is easy to see that
2 1 2 1

1
P(EID)=;=3 P(FID)=7=5  P(ENFID)=;=P(ED)P(FID)
Suppose we choose old widgets. Before we choose any widgets, there are 500 - 0.15 = 75
defective old widgets. The probability that we choose two defective widgets is
P(two defectivelold) = P(first is defective|old) - P(second is defectivelfirst is defective, old)
75 T4
= 300199 — 0.02224

Now let’s consider the new widgets. Before we choose any widgets, there are 1500-0.05 = 75
defective old widgets. Similar to the calculations above,

P(two defectivelnew) = P(first is defectivelnew) - P(second is defectivelfirst is defective, new)
75 74
= 15001499 = 0.002568
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By the total probability law,

P(two defective) = P(old) - P(two defective|old)
+P(new) - P(two defective|new)

1 i]
3 -0.02224 + 3 -0.002568 = 0.01240.
Note that this number is very close to what we would get if we ignored the effects of removing

one defective widget before choosing the second widget:

P(two defective) = P(old) - P(two defective|old)
P(new) - P(two defective|new)

+

o

1
5 .0.15% + % .0.052 = 0.0125.

(b) Using Bayes’ rule,

P(old) - P(two defective|old)
P(old) - P(two defective|old) + P(new) - P(two defective|new)
3 -0.02224
3 -0.02224 + 1 - 0.002568

P(old|two defective) =

= (0.8965

a
W P(find in A and in A) = P(in A) - P(find in Alin A) =04-0.25=0.1
P(find in B and in B) = P(in B) - P(find in B|in B) = 0.6 - 0.15 = 0.09
Oscar should search in Forest A first.
(b) Using Bayes’ Rule,

P(not find in Alin A) - P(in A)
P(not find in Alin A) - P(in A) + P(not find in Alin B) - P(in B)
(0.75) - (0.4) 1

(0.4)- (0.75) + (1) - (0.6) _ 3

P(in Alnot find in A) =

(c) Again, using Bayes’ Rule,

P(find dog|looked in A) - P(looked in A)
P(find dog)
(0.25) - (0.4) - (0.5) _10

(0.25) - (0.4) - (0.5) + (0.15) - (0.6) - (0.5) ~ 19
(d) In order for Oscar to find the dog, it must be in Forest A, not found on the first day, alive,

and found on the second day. Note that this calculation requires conditional independence

of not finding the dog on different days and the dog staying alive.

P(find live dog in A day 2) = P(in A)-P(not find in A day 1fin A)

-P(alive day 2) - P(find day 2|in A)

= 04-075-(1— %) £0.25 = 0.05

P(looked in Alfind dog) =
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5.

Gl

(a)

We proceed as follows:

P(AN(BUC)) = P((ANB)U(ANC))

P(ANB)+P(ANC)-P(ANBNC)
P(A)P(B) + P(A)P(C) — P(A)P(B)P(C)
P(A) [P(B) +P(C) - P(B)P(C)]
P(A)P(BUC),

I 1l

I

where the equality marked with * follows from the independence of A, B, and C.

Proof 1: If A and B are independent, then A¢ and B¢ are also independent (see Problem

1.43, page 63 for the proof).
For any two independent events U and V', DeMorgan’s Law implies

PUUV) = P(U°NVO)) =1-PU°NV)=1-PUC) P(V)

= 1=(1-FU)Q-P(V)).

We proceed to prove the statement by induction. Letting U = A; and V' = Aj, the base
case is proven above. Now we assume that the result holds for any n and show that it holds
for n + 1. For independent {Aj1,..., Ay, Ant1}, let B = UL A;. It is easy to show that B
and A, are independent. Therefore,

P(AJUAU...UApy1) = 1-(1-P(B))- (1 —P(An+1))
n+1
= 1-JI1-P(4y)),
i=1
which completes the proof.
Proof 2: Alternatively, we can use the version of the DeMorgan’s Law for n events:

P(A1UA2U...UA,) = P((ASNASN...NAS))
1-P(ASNASN...NAS).

But we know that A§, AS,..., A5 are independent. Therefore

P(A1UAU...UA,) = 1-P(AS)P(AS)...P(AS)
= 1-[Ja-P(4)).

i=1

The figure below describes the sample space via an infinite tree. The leaves of this tree
are exactly all finite tournament histories; in addition, the two infinite paths represent the
two infinite tournament histories that are possible. Note that the winner of the first game
is either Alice or Bob; from then on, the winner of a game is either the winner of the
previous game (in which case we have reached a leaf and the tournament has ended) or the
player that sat out the previous game.The outcomes of the sample space correspond to the
finite histories (which are identified with the leafs of the tree) and the two infinite histories:

ACBACB... and BCABCA...
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A C/B/A C B A C B A
A C B A C B A C B A

B Cc A B C A B C/A B
B C A B C A B c A B

(b)

The probability of an event is 1/2* times the number of finite histories contained in the
event. The probability of the event consisting of one or both infinite histories is 0. We
have to show that this probability law satisfies the three probability axioms. It clearly
satisfies nonnegativity and additivity. To check normalization, we have to verify that the
probabilities of all tournament histories sum up to 1.

Start by noticing that two of the histories are infinite and have probability 0. Each one of
the remaining histories has some finite length k£ > 2 (and hence is represented by one of the
two leaves of the tree of the figure above at depth k) and probability 1/2*. Hence, summing
all probabilities we get

2.0+i2 : i ! i 1 15":1 11 X
. _k: k—].: k+1=_ =g = — 1.
k=2 2 l\;=22 k=02 2k:02 2.1 1/2

The probability that exactly 2 games will be played is the sum of the probabilities of the
two leaves at depth 2; that is,

1 1 1
P(exactly 2 games) = 7] + 2 =3

Similarly, the probability that exactly ¢ games will be played, for i = 3,4, 5, is

P(exactly 3 games) = o+ =1,
P(exactly 4 games) = 2-1r i 2_{{ =1,
P(exactly 5 games) = g5+ 55 = 1.

Hence, the probability that the tournament lasts no more than 5 games is

1 1 1 1 15
P(at m05t5games)=§+4 +8T1_6 _E'

Hence, it’s pretty probable that the tournament will last at most that much.

The probability that Alice wins the tournament is the sum of the probabilities of the leaves
of the tree that are labeled “A”; that is,

1 1 1 1 1 1

(2_2'+§+2_8+“')+(§E+?+@+“')’

where the first summation includes all leaves from the upper part of the tree, while the
second one takes care of the leaves on the lower part. Calculating, we have

1 . | Bactlle: 51,3 5
S 1 Lt gy g W D S
ItEtg )ty ( ta + s+ = 16%83 161-1/8 14
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By symmetry (note the correspondence between the histories where Alice wins and the
histories where Bob does), Bob’s probability of winning is %, as well. Then, since the
outcomes where nobody wins (these are the two infinite tournament histories) have total
probability 0, Carol wins with probability 1 — % — % = %. Hence, by not participating in

the first game, Carol enters the tournament with a disadvantage.

tRequired for 6.431; optional for 6.041 Page T of 7
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Tutorial 2
September 23/24, 2010

- A player is randomly dealt 13 cards from a standard 52-card deck.

(a) What is the probability the 13th card dealt is a king?
(b) What is the probability the 13th card dealt is the first king dealt?

. Consider a random variable X such that

2

px(z) == forz € {~3,-2,-1,1,2,3}, P(X=z)=0forz ¢ -8-2~1.1.24%

a
where a > 0 is a real parameter.
(a) Find a.
(b) What is the PMF of the random variable Z = X2 ?

- 90 students, including Joe and Jane, are to be split into three classes of equal size, and this is to
be done at random. What is the probability that Joe and Jane end up in the same class?

- Draw the top 7 cards from a well-shuffled standard 52-card deck. Find the probability that the
7 cards include exactly 3 aces.

Page 1 of 1
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 6
September 28, 2010

1. Consider an experiment in which a fair four-sided die (with faces labeled 0, 1, 2, 3) is thrown once
to determine how many times a fair coin is to be flipped. In the sample space of this experiment,
random variables N and K are defined by

e N = the result of the die roll

® K = the total number of heads resulting from the coin flips

(a) Determine and sketch py(n)

(b) Determine and tabulate py x(n, k)
(c) Determine and sketch p xin(k | 2)
(d) Determine and sketch pNik(n | 2)

2. Consider an outcome space comprising eight equally likely event points, as shown below:

¥

(1/8) (1/8)

3¢ o
(1/8) (1/8)'

2+ ° .
(1/8) (1/8) (1/8)

1 o o
(1/8)

0 1 2 3 4 x

(a) Which value(s) of 2 mazimize(s) E[Y | X = z]?

(b) Which value(s) of y mazimize(s) var(X|Y =1y)?

(c) Let R =min(X,Y’). Prepare a neat, fully labeled sketch of pg(r),

(d) Let A denote the event X2 > Y. Determine numerical values for the quantities E[XY] and
E[XY | A].

3. Example 2.17. Variance of the geometric distribution. You write a software program over
and over, and each time there is probability p that it works correctly, independent of previous
attempts. What is the variance of X, the number of tries until the program works correctly?

Page 1 of 1
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

o

Problem Set 3
Due September 29, 2010

. The hats of n persons are thrown into a box. The persons then pick up their hats at random (i.e.,

so that every assignment of the hats to the persons is equally likely). What is the probability
that

(a) every person gets his or her hat back?
(b) the first m persons who picked hats get their own hats back?

(c) everyone among the first m persons to pick up the hats gets back a hat belonging to one of
the last m persons to pick up the hats?

Now assume, in addition, that every hat thrown into the box has probability p of getting dirty
(independently of what happens to the other hats or who has dropped or picked it up). What is
the probability that

(d) the first m persons will pick up clean hats?
(e) exactly m persons will pick up clean hats?

Alice plays with Bob the following game. First Alice randomly chooses 4 cards out of a 52-card
deck, memorizes them, and places them back into the deck. Then Bob randomly chooses 8 cards
out of the same deck. Alice wins if Bob’s cards include all cards selected by her. What is the
probability of this happening?

(a) Let X be a random variable that takes nonnegative integer values. Show that

o0
EX]=) P(X > k).
k=1
Hint: Express the right-hand side of the above formula as a double summation then inter-
change the order of the summations.

(b) Use the formula in the previous part to find the expectation of a random variable ¥ whose
PMF is defined as follows:

1
PY(y)=m, y=a,a+1,...,b
where a and b are nonnegative integers with b > a. Note that for y = a,a+1,...,b, py(y)

does not depend explicitly on y since it is a uniform PMF.
Two fair three-sided dice are rolled simultaneously. Let X be the difference of the two rolls.

(a) Calculate the PMF, the expected value, and the variance of X.
(b) Calculate and plot the PMF of X?2.

Let n > 2 be an integer. Show that
n
S k(k—1)(" ) =n(n—1)2""2.
k=2 k

Hint: As one way of solving the problem, following from Example 1.31 in the text, think of a
committee that includes a chair and a vice-chair.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

G17. A candy factory has an endless supply of red, orange, yellow, green, blue, black, white, and violet
jelly beans. The factory packages the jelly beans into jars in such a way that each jar has 200
beans, equal number of red and orange beans, equal number of yellow and green beans, one more
black bean than the number blue beans, and three more violet beans than the number of white
beans. One possible color distribution, for example, is a jar of 50 yellow, 50 green, one black,
48 white, and 51 violet jelly beans. As a marketing gimmick, the factory guarantees that no
two jars have the same color distribution. What is the maximum number of jars the factory can
produce?

tRequired for 6.431; optional for 6.041 Page 2 of 2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 3 Solutions
Due September 29, 2010

1. The hats of n persons are thrown into a box. The persons then pick up their hats at random (i.e.,
so that every assignment of the hats to the persons is equally likely). What is the probability

that

(a)

every person gets his or her hat back?

L1
Answer: e

Solution: consider the sample space of all possible hat assignments. It has n! elements (n
hat selections for the first person, after that n — 1 for the second, etc.), with every single-
element event equally likely (hence having probability 1/n!). The question is to calculate
the probability of a single-element event, so the answer is 1/n!

the first m persons who picked hats get their own hats back?

—m)!
Answer: (”n, )

Solution: consider the same sample space and probability as in the solution of (a). The
probability of an event with (n —m)! elements (this is how many ways there are to disribute
the remaining n — m hats after the first m are assigned to their owners) is (n — m)!/n!

everyone among the first m persons to pick up the hats gets back a hat belonging to one of
the last m persons to pick up the hats?
m!(n—m)! 1 1

Answer: g = '(n—) = —(—n—) .

Solution: there are m! ways to distribute m hats among the first m persons, and (n — m)!
ways to distribute the remaining n — m hats. The probability of an event with m!(n — m)!
elements is m!(n — m)!/nl.

Now assume, in addition, that every hat thrown into the box has probability p of getting dirty
(independently of what happens to the other hats or who has dropped or picked it up). What is
the probability that

(d)

(e)

the first m persons will pick up clean hats?

Answer: (1 —p)™.

Solution: the probability of a given person picking up a clean hat is 1 — p. By the
independence assumption, the probability of m selected persons picking up clean hats is
1 -p)™

exactly m persons will pick up clean hats?

Answer: (1 —p)™p"~™(").

Solution: every group G of m persons defines the event “everyone from G picks up a
clean hat, everyone not from G picks up a dirty hat”. The events are disjoint. Each has

probability (1 — p)™p™~™. Since there are (") such events, the answer follows.

2. Since 4 cards are fixed, Bob can only choose 4 more cards out of 48 remaining cards, so total
number of hands Bob can have such that they include Alice’s cards is (‘i) (448). The total number

4 48
of ways Bob can choose any 8 cards is (582). So the probability is Q&*—)

3. (a)

(%)

The picture below illustrates the double sum needed to prove the statement of this problem:

Page 1 of 4
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infinity
£

L =k

We first note that
P(X > k) Z px(7)

and proceed as follows:

Y P(X>k)= ZZpJ\(z)—Zpr )—Zzp\(z)—E[X]

k=1 k=1i=k i=1 k=1
(b) We first compute
1 k<a
PY>k)=¢ =5l a+1<k<b
0 k>b+1
So

o a b b—k+1
PY 2k = Y 1+ —
l; ; k=§-1b_a+1

1 b—a
=St

1 (b-a+1)(b—a)

= bty 2
_ b—a

= a+ 5

R

sruls a8

Therefore E[Y] = 252

(a) For each value of X, we count the number of outcomes which have a difference that equals
that value:

1/9 z=-2,2
2/9 x=-1,1
px(e) = 3;9 z=0

0 otherwise.

Page 2 of 4
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5.

@it.

2

1 2 3 2 1
— i ) = —92 T ;
E[X]= ) apx(z) = 5T 9+0—9+1—9+2~9_—@

z=-2

We can also see that E[X] = 0 because the PMF is symmetric around 0.
To find the variance of X, we first compute
2
1 2 3 2 1
E[X? = px(z)=4-+1-+0-+1-+4-=|3|
(X7 = ¥ #pelm)=dg+1la+Uotiz +do=(]

r=-2
and

var(X) = E[X?] - (E[X])? = _

(b) Let Z = X?. By matching the possible values of X and their probabilities to the possible
values of Z, we obtain
2/9 z=4
4/9 z=1
pz(2) =3 319 .=
0 otherwise.

pr(y)
4/9

3/9
2/9

0 1 a2 Y

Consider k out of n persons forming a club, with one being designated as the leader and another
as the treasurer. We can first choose the leader (n choices), then the treasurer (n — 1 choices),
and then a subset of the remaining n — 2 persons. Thus, there are n(n — 1)2"~2 possible clubs.

Alternatively, for any given k, there are () choices for the members of the club. There are
k(k — 1) choices for the leader and treasurer, so that there are k(k — 1)(}) k-member clubs.
Summing over all k, we see that there is a total of }}_, k(k — 1)(}) possible clubs.

A candy factory has an endless supply of red, orange, yellow, green, blue, black, white, and violet
jelly beans. The factory packages the jelly beans into jars in such a way that each jar has 200
beans, equal number of red and orange beans, equal number of yellow and green beans, one more
black bean than the number blue beans, and three more violet beans than the number of white

Page 3 of 4
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beans. One possible color distribution, for example, is a jar of 50 yellow, 50 green, one black,
48 white, and 51 violet jelly beans. As a marketing gimmick, the factory guarantees that no
two jars have the same color distribution. What is the maximum number of jars the factory can
produce?

Answer: (lgl) = 166650.

Solution: Let Ny, No, N3, Ny, N5, Ng, N7, Ng denote, respectively, the numbers of red, orange,
yellow, green, blue, black, white, and violet jelly beans in a jar. There is a one-to-one correspon-
dence

T = (21, %2, %3, 24) = N = (21,1, T2, T2, 23, 23 + 1,74, 4 + 3)

between the non-negative integer solutions = = (z;, z2, 3, z4) of the equation
T1+ To + 3 + T4 = 98,

and the sequences N = (Nj, Na, N3, Ny, N5, Ng, N7, Ng) of non-negative integers N; satisfying
the conditions

8
Ny =Ny, Ny= N3, Ng=Ns+1, Ng=N7+3, > N; =200

1=1

(i.e. possible color arrangements). The number of possible solutions z is (lgl) according to the

solution of the more general problem given below:

Given a non-negative integer n and a positive integer k, consider the equation
i+ 2at...F+Zp=mn,

to be solved with respect to non-negative integer variables x1, s, ..., x. Find the total number
of solutions (solutions ®y = 1, 3 = 0 and 1 = 0, 3 = 1 to the equation z; + xo = 1 are
considered as different).

Answer: ("'};f;l) = ("+ﬁ_1). .

Solution: there is a one-to-one correspondence between non-negative integer solutions of equa-
tion z1 +. ..+ = n and sequences of n+ k — 1 symbols (n “0” and k—1 ¥|”), where a solution
T = (21,...,T)) maps to the sequence in which the i-th “|” (where i € {1,2,...,k—1}) is in
the z; + ...+ z; + ith place: in this bijection, the numbers of “0” between the consecutive “|”
correspond to the values of z;. Hence the total number of solutions equals the number of ways

of selecting k — 1 places for the “|” symbols in a sequence of length n 4+ k — 1.

TRequired for 6.431; optional for 6.041 Page 4 of 4
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Independent random variables

pxy,z(z,y,2) = px(@)py|x (v | ©)pz|x y (2 | .9)
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bl
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Variances

g - W Var(aX) = a?Var(X)

e Var(X 4+ a) = Var(X)

we EBI(< Ef] -
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e Examples:
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Binomial)mean and variance

e X = # of successes in n independent
trials

— probability of success p
E[X] = Z k()P —pm*
k)
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0, otherwise
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The hat problem
e 1 people throw their hats in a box and
then pick one at random.

— X: number of people who get their own
hat

— Find B[X]

oy {1, if ¢ selects own hat ;ﬂafcm(of L/dfld/“f

0, otherwise.

X=X+ Xo+---+ Xn

P(X;=1)= 'I?\

i |20 (4)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 7
September 30, 2010

1. Problem 2.35, page 130 in the text. Verify the expected value rule

E[Q(X: Y)] = Z Zg(xa y)PX,Y(i',y):

using the expected value rule for a function of a single random variable. Then, use the rule for
the special case of a linear function, to verify the formula

E[aX + bY] = aE[X] + bE[Y],

where a and b are given scalars.

2. Random variables X and Y can take any value in the set {1,2,3}. We are given the following
information about their joint PMF, where the entries indicated by a * are left unspecified:

y
V12 112«

3+ @ (] O
2/12 * *

2+ @ @ Q
/12 2/12 0

1+ @ o o
| : :
1 . 3 %

(a) What is px(1)?

(b) Provide a clearly labeled sketch of the conditional PMF of ¥ given that X = 1.

(c) What is E[Y | X =1]?

(d) Is there a choice for the unspecified entries that would make X and Y independent?

Let B be the event that X < 2and ¥ < 2. We are told that conditioned on B, the random
variables X and Y are independent.

(e) What is px,y(2,2)?

(If there is not enough information to determine the answer, say so.)
(f) What is pX,Y[B(2:2 I B)?

(If there is not enough information to determine the answer, say so.)

3. Problem 2.33, page 128 in the text. A coin that has probability of heads equal to p is tossed
successively and independently until a head comes twice in a row or a tail comes twice in a row.
Find the expected value of the number of tosses.

Page 1 of 1
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MASSACHUSETTS INSTITUTE OF T'ECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Tutorial 3
September 30/October 1, 2010

1. Let X and Y be independent random variables. Random variable X has mean px and variance
0%, and random variable Y has mean py and variance o%. Let Z = 2X — 3Y. Find the mean
and variance of Z in terms of the means and variances of X and Y.

2. Problem 2.40, page 133 in the text.
A particular professor is known for his arbitrary grading policies. Each paper receives a grade
from the set {A, A—, B+, B, B—,C+}, with equal probability, independently of other papers.
How many papers do you expect to hand in before you receive each possible grade at least once?

3. The joint PMF of the random variables X and Y is given by the following table:

y=3 c c 2c
y=2 2¢c 0 4c
y=1 3c c 6e

z=1|lz=2|z2z=3

(a) Find the value of the constant c.
(b) Find py(2).
(c) Consider the random variable Z = Y X2. Find E[Z | Y = 2].

(d) Conditioned on the event that X # 2, are X and Y independent? Give a one-line justifica-
tion.

(e) Find the conditional variance of Y given that X = 2.
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epartment of Electrical Engineering & Computer Science

Q[Ge) M(\' 6.041/6.431: Probabilistic Systems Analysis ‘/@eg WI‘?{(L

\orl (Fall 2010) %JDW\
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Problem Set 4
Due October 6, 2010

1. Random variables X and Y have the joint PMFE

o | e@®+y?), ifae{1,2,4} and y € {1,3},
pxy(2y) = { 0, otherwise.

(a) What is the value of the constant ¢?

(b) What is P(Y < X)?

(¢) What is P(Y > X)7

(d) What is P(Y = X)?

() What is P(Y = 3)?

(f) Find the marginal PMFs px(z) and py(y).

(g) Find the expectations E[X], E[Y] and E[XY].

(h) Find the variances var(X), var(Y’) and var(X +Y).

(i) Let A denote the event X > Y. Find E[X | 4] and var(X | A).

2. The newest invention of the 6.041/6.431 staff is a three-sided die with faces numbered 1, 2, and 3.
The PMF for the result of any one roll of this die is

1/2, ifz=1,
) 1ya, ite=2,
PX(¥) =1 11 ifz=3,

0, otherwise.

Consider a sequence of six independent rolls of this die, and let X; be the random variable
corresponding to the ith roll.

(a) What is the probability that exactly three of the rolls have result equal to 37
(b) What is the probability that the first roll is 1, given that exactly two of the six rolls have
result of 17

(c) We are told that exactly three of the rolls resulted in 1 and exactly three resulted in 2.
Given this information, what is the probability that the sequence of rolls is 1212127

(d) Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of
the number of 3’s.

3. Suppose that X and Y are independent, identically distributed, geometric random variables with
parameter p. Show that

1
P(X:i|X+Y=n)=——~I, fori=1,2,...,n—1.
-~
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

4. Consider 10 independent tosses of a biased coin with a probability of heads of p.

(a) Let A be the event that there are 6 heads in the first 8 tosses. Let B be the event that the
9th toss results in heads. Show that events A and B are independent.

(b) Find the probability that there are 3 heads in the first 4 tosses and 2 heads in the last 3
tosses.

(c) Given that there were 4 heads in the first 7 tosses, find the probability that the 2nd head
occurred during the 4th trial.

(d) Find the probability that there are 5 heads in the first 8 tosses and 3 heads in the last 5
tosses.

5. Consider a sequence of independent tosses of a biased coin at times t = 0,1,2,.... On each toss,
the probability of a ’head’ is p, and the probability of a “tail’ is 1 — p. A reward of one unit is
given each time that a 'tail’ follows immediately after a "head.” Let R be the total reward paid
in times 1, 2, ..., n. Find E[R] and var(R).

G11. A simple example of a random variable is the indicator of an event A, which is denoted by I4:

1, fweA
Ip(w) = { 0, otherwise.

(a) Prove that two events A and B are independent if and only if the associated indicator
random variables, I4 and Ig are independent.

(b) Show that if X = I, then E[X] = P(A).

"Required for 6.431; optional for 6.041 Page 2 of 2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 4: Solutions

1. (a) From the joint PMF, there are six (z, y) coordinate pairs with nonzero probabilities of
occurring. These pairs are (1, 1), (1, 3), (2, 1), (2, 3), (4, 1), and (4, 3). The probability
of a pair is proportional to the sum of the squares of the coordinates of the pair, z2 + y*.
Because the probability of the entire sample space must equal 1, we have:

LI4+De+(1+9c+A+1)ec+(d+9)c+ (16+1)c+ (16 +9)c=1.

Solving for ¢, we get ¢ = .

(b) There are three sample points for which y < z:

P(Y < X) =P ({2 D) +P ({4 D) +P({43)}) = = + =2 + 2= =[F].

(c) There are two sample points for which y > x:

P(Y > X)=P({(L3N + P2 = 05+ 2 =[B].

(d) There is only one sample point for which y = z:

P(Y =X)=P{(L,1}) =4]|
Notice that, using the above two parts,

47 2
P(Y<X)+P(Y>X)+P(Y:X)=ﬁ+%+,7_2_:1

as expected.
(e) There are three sample points for which y = 3:

10,13 . % @

P(Y =3) =P{(LIN+PUCHN +PUA) = = + %

7~ 2]

(f) In general, for two discrete random variable X and Y for which a joint PMF is defined, we
have

and  py(y) = Z pxy(z,y).

I=-—00

px(z) = Z pxy(z,y)

y=—00

In this problem the ranges of X and Y are quite restricted so we can determine the marginal
PMF's by enumeration. For example,

18

px(2)=P{HEIH +P{(23)}) ==

Overall, we get:

12/72, ifz=1,

18/72, ifz=2 24/72, fy=1,
px(z) = 42/727 if ¢ = 47 and py(y) = 48/72, ify =3,
0, otherwise 0, otherwise.
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(2)

(h)

In general, the expected value of any discrete random variable X equals

o0

E[X]= ) zpx(a).

T==00

For this problem,

12 18 42
EX]|=1-—-+4+2-—+4-— =
X = 72 L& 72 * 72

24 8
Y]=1 — il 5 5
E[Y]=1->+3- T
To compute E[XY], note that px y(z,y) # px(:z:)py(y). Therefore, X and Y are not inde-

pendent and we cannot assume E[XY]| = E[X]E[Y]. Thus, we have

EIXY] =53 aypxy (@,9)

2 5 17 10 13 25
=1. 2. 4— = e i P e | L
ZRET tagp bt =s

The variance of a random variable X can be computed as E[X?]|-E[X]? or as E[(X —E[X])?].
We use the second approach here because X and Y take on such limited ranges. We have

218 342 T3

(437> =3

7 24 7.,48
var(Y)=(1—§ 79—}- —E —ﬁ:

X and Y are not independent, so we cannot assume var(X +Y) = var(X) + var(Y). The
variance of X +Y will be computed using var(X +Y) = E[(X+Y)?]—(E[X+Y])?. Therefore,
we have

var(X) = (1 -3z + (2 -3)

and

5 17 10 13 25 547
E[(X +Y)Y] =4- ﬁ” el M B vl g =

2 g
(B[X +Y))? = (B[X] + E[Y])? = (3 ¥ Z) 20,

3 9
Therefore, 547 255
. 35
var(X +Y) = 18 9 18-

There are four (z, y) coordinate pairs in A : (1,1), (2,1), (4,1), and (4,3). Therefore,
P(A) = L(2+5+17+25) = 8. To find E[X | A] and var(X | A), px|a(z) must be
calculated. We have

2/491 if = ]-v

; 5/49, ifz =2,

pxja(z) = 42/49, if z =4,
0, otherwise,
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_ 2 5 4 i
E[X | 4] = 1'4—94-2-@-#4 L
2 5 42 694
2 9 2 2
A = 12— 3. — . — ==
BT A B T w1
694 (1802
var(X | A) = E[X*| 4] - (B[X | A))’ = = - (E) =| 3408 | -

2. Consider a sequence of six independent rolls of this die, and let X; be the random variable
corresponding to the zth roll.

(a)

What is the probability that exactly three of the rolls have result equal to 3?7 Each roll X;
can either be a 3 with probability 1/4 or not a 3 with probability 3/4. There are (g) ways
of placing the 3’s in the sequence of six rolls. After we require that a 3 go in each of these
spots, which has probability (1/4)3, our only remaining condition is that either a 1 or a 2 go
in the other three spots, which has probability (3/4)%. So the probability of exactly three

rolls of 3 in a sequence of six independent rolls is (g)(%)g‘(%)3

What is the probability that the first roll is 1, given that exactly two of the six rolls have
result of 17 The probability of obtaining a 1 on a single roll is 1/2, and the probability of
obtaining a 2 or 3 on a single roll is also 1/2. For the purposes of solving this problem we
treat obtaining a 2 or 3 as an equivalent result. We know that there are (g) ways of rolling
exactly two 1’s. Of these (g) ways, exactly (‘;’) = 5 ways result in a 1 in the first roll, since
we can place the remaining 1 in any of the five remaining rolls. The rest of the rolls must
be either 2 or 3. Thus, the probability that the first roll is a 1 given exactly two rolls had
an outcome of 1 is (27

We are now told that exactly three of the rolls resulted in 1 and exactly three resulted in 2.
‘What is the probability of the sequence 1212127 We want to find

P(121212)

P(121212 | exactly three 1’s and three 2’s) = i p—— - —
xactly 3 on WOS

Any particular sequence of three 1’s and three 2’s will have the same probability: (1/2)3(1/4)3.
There are (g) possible rolls with exactly three 1’s and three 2’s. Therefore,

P(121212 | exactly three 1’s and three 2’s) = | 7+ |-

Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of
the number of 3’s. Let A be the event that at least one roll results in a 3. Then

6
P(A) =1 — P(no rolls resulted in 3) =1 — (%) .

Now let K be the random variable representing the number of 3’s in the 6 rolls. The
(unconditional) PMF pg (k) for K is given by

= (0 ()
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We find the conditional PMF py4(k | A) using the definition of conditional probability:

P({K =k} N A)
P(A)

pK|A(k | A) =
Thus we obtain

1 6\ (L\k(3\6~k f 1. —
e 2= { QD@ =12

otherwise.

Note that pgja(0 | A) = 0 because the event {K = 0} and the event A are mutually
exclusive. Thus the probability of their intersection, which appears in the numerator in the
definition of the conditional PMF, is zero.

3. By the definition of conditional probability,

PUX =i} n{X+Y =n})
P(X+Y =n) ’

PX=i|X+Y=n)=

The event {X = i} N{X +Y = n} in the numerator is equivalent to {X =i} N {Y =n — i}.
Combining this with the independence of X and Y,

PUX=i}n{X+Y =n})=P{X =i}n{Y =n—i}) =P(X =)P(Y =n—1).

In the denominator, P(X +Y = n) can be expanded using the total probability theorem and the
independence of X and Y:

n—1
P(X+Y=n)=) PX=iP(X+Y =n|X =i)

=1
n—1

=Y P(X=i)P(i+Y =n|X =i
i=1
n—1

=) PX=)P(Y =n—i| X =4
i=1

n-1
=) P(X=9P(Y =n-i)
i=1

Note that we only get non-zero probability for ¢ = 1,...,n — 1 since X and ¥ are geometric
random variables.

The desired result is obtained by combining the computations above and using the geometric
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PMF explicitly:
P(X =)P(Y =n—1)

n—

P(X=i|X+Y=n)=

1
P(X =i)P(Y =n—1)

i=1

(1-p)lp(l —p)" " 1p

n—1
> (1-p)pl—p)"p

i=1

__(A-p"
T n-1
> (a-p)n
i=1
__QQ-p"
- n—-1
(1-p> 1
i=1
1
= = ,n—1
—7 ° 1ei05m

4. (a) Since P(A) > 0, we can show independence through P(B) = P(B | A):

P(BnA) _ (gr°(1-p)?p
P(A) (8)p°(1 — p)

Therefore, A and B are independent.

P(B| A) = =p=P(B).

(b) Let C be the event “3 heads in the first 4 tosses” and let D be the event “2 heads in the last
3 tosses”. Since there are no overlap in tosses in C and D, they are independent:

P(C N D) = P(C)P(D)

= g) (1-p)- (g)ﬂl - p)
=12p°(1 - p)*.

(c) Let E be the event “4 heads in the first 7 tosses” and let F' be the event “2nd head occurred
during 4th trial”. We are asked to find P(F | E) = P(F N E)/P(E). The event F N E occurs
if there is 1 head in the first 3 trials, 1 head on the 4th trial, and 2 heads in the last 3 trials.
Thus, we have

P(F|E)= P(FNE) (?)p(l —p)2-p- (g)pz(l )

PE) (Dpta —p)?
_D-1Q)_9
@ &

Alternatively, we can solve this by counting. We are given that 4 heads occurred in the first
7 tosses. Each sequence of 7 trials with 4 heads is equally probable, the discrete uniform
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probability law can be used here. There are (}) outcomes in E. For the event E N F, there
are (g) ways to arrange 1 head in the first 3 trials, 1 way to arrange the 2nd head in the 4th
trial and (;’) ways to arrange 2 heads in the first 3 trials. Therefore,

(d) Let G be the event “5 heads in the first 8 tosses” and let H be the event “3 heads in the last
5 tosses”. These two events are not independent as there is some overlap in the tosses (the
6th, 7th, and 8th tosses). To compute the probability of interest, we carefully count all the
disjoint, possible outcomes in the set G N H by conditioning on the number of heads in the
6th, 7th, and the 8th tosses. We have

P(GNH)=P(GNH |1 head in tosses 6-8)P(1 head in tosses 6-8)
+P(G N H | 2 heads in tosses 6-8)P(2 heads in tosses 6-8)
+P(G N H | 3 heads in tosses 6-8)P(3 heads in tosses 6-8)

= (i)'p“(l -p)-p*- G)p(l - p)
+(2)pra-p2 (2)pa-n- (2)r2a-»
(s)ra-o(Joa-n-(;)

+ (Z)pz(l -p)*-(1-p)* p’.

= 15p (1 — p)® + 60p°(1 — p)* +10p°(1 — p)°.

5. Let I} be the reward paid at time k. We have
E(I,] =P(I;; =1) =P(T at time k and H at time k — 1) = p(1 — p).

Computing E[R] is immediate because

E[R| = E Liu} = Y B[] = np(l - p)-
e=1 k=1

The variance calculation is not as easy because the ;s are not all independent:

E[[f] = p(1-p)
E[l}Ir+1] = 0 because rewards at times k& and k + 1 are inconsistent
E[l Ly = E[LJE[isd =p*(1-p)* for£>2
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E[RY = Z Z In)] = Z Z E[l4];n]
k=1m=1
= (1— p,  + 0 + (0 =3n+2p°(1-p)°

n terms with k=m  2(n—1) terms with [k —m[=1 ;2 _ 3, 1 9 terms with [k —m|>1

var(R) = E[R’] - (E[R])®
np(l — p) + (n® — 3n + 2)p*(1 — p)* — n?p*(1 — p)*
np(1l - p) — (3n — 2)p°(1 — p)*.

G17. (a) We know that I is a random variable that maps a 1 to the real number line if w occurs
within an event A and maps a 0 to the real number line if w occurs outside of event A. A
similar argument holds for event B. Thus we have,

Falud) = 1, with probability P(A)
A= 0, with probability 1 — P(A)

() = 1, with probability P(B)
“J=19 0, with probability 1 — P(B)

If the random variables, A and B, are independent, we have P(A N B) = P(A)P(B). The
indicator random variables, I4 and Ip, are independent if, Py, 1, (z,y) = P, ()P, (y)

We know that the intersection of A and B yields.

Pf,\,fn(ll 1) = Pf,\(I)PfB (1)

= P(A)P(B)
P(ANB)
We also have,
Pr,15(1,1) = P(ANB)=P(A)P(B) =P, (1)Pr;(1)
Pr,15(0,1) = P(A°NB)=P(A)P(B) =P, (0)P1;(1)
Pr,15(1,0) = P(ANB°) =P(A)P(B°) = Pr,(1)P,(0)
Pr,15(0,0) = P(A°NB°) =P(A°)P(B) = Pr,(0)P;(0)

(b) If X = I4, we know that

E[X] = E[I4] =1-P(A) +0- (1 — P(A)) = P(A)

TRequired for 6.431; optional for 6.041 Page Tof 7



6.041/6.431 Fall 2010 Quiz 1
Tuesday, October 12, 7:30 - 9:00 PM.

DO NOT TURN THIS PAGE OVER UNTIL
YOU ARE TOLD TO DO SO

Question Score Out of
1.1 10 10
_ | 1.2 3 10 |-/
/e ruolnf 1.3 - b 10 |-Y
Name: “ Vid v : 14 © }?{\ 0
U Vo 1.5 - d 5
Recitation Instructor: (e {1 1.6 N 10 | ~|
S o 1.7 \O 10
TA: [ ! (4.0 ?()N 1.8 1O 10
2.1 \ 10 |- ¢
2.2 0 10 | ~/¢)
2.3 o 10 | <1
Your Grade 66 ) 105

e This quiz has 2 problems, worth a total of 105 points.

e You may tear apart pages 3, 4 and 5, as per your convenience, but you must turn them
in together with the rest of the booklet.

o Write your solutions in this quiz booklet, only solutions in this quiz booklet will be graded.
Be neat! You will not get credit if we can’t read it.

® You are allowed one two-sided, handwritten, 8.5 by 11 formula sheet. Calculators are not
allowed.

e You may give an answer in the form of an arithmetic expression (sums, prod-
ucts, ratios, factorials) of numbers that could be evaluated using a calculator.
Expressions like (5) or 30 _(1/2)* are also fine.

e You have 90 minutes to complete the quiz.

o Graded quizzes will be returned in recitation on Thursday 10/14.
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Problem 0: (0 points) Writc your name, your assigned recitation instructor’s name, and assigned
TA’s name on the cover of the quiz booklet. The Instructor/TA pairing is listed below.

| Recitation Instructor TA | Recitation Time
Vivek Goyal Uzoma Orji 10 & 11 AM
Peter Hagelstein Ahmad Zamanian | 12 & 1 PM
Ali Shoeb Shashank Dwivedi.. -2.PM~
<-Dimitri Bertsekas (6.431) | Aliaa Atwi 2&3PM )
— —
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Summary of Results for Spec1a1 Random Varlables

Discrete Umform over [a,b]:

- - e b,
-_ px(k)z'.{b—a+_1. itk=aat1,. -
0, 0therw1se, =

x| =

aie a)(,,_f_ﬂ iy
2 - V&I‘(X) = 12 =

Bernoulli Wlth Parameter pe (Descrlbes the success or. fallure ina smgle' 7
trlal ) ,

wi={2, B
ElX]=p, Va_r(X)_ (1—p)

Binomial with Parameters p and n: (Descrlbes the number of successes
in 7 independent Bernoulli trials.) ' ' = =

o) =(P)pa-prs k=01 n
E[X]::%Inp, : var(X):: np(l,_p)

Geometric with Pafameter p: (Describes the number of trials until the
first success, in a sequence of independent Bernoulli trials.) '

(B —0-pk b E_13

BX=Z  wm-P

( /‘0"j VR
o | 74

- j.’jilﬂ, (
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Problem 1: (75 points)

Note: All parts can be donc independently, with the exception of the last part. Just in casc you
made a mistake in the previous part, you can use a symbol for the expression you found there, and
use that symbol in the formulas for the last part.

Note: Algebraic or numerical expressions /(_i/c»/rlp_t_ge@_gl_yq_be simplifie

d in your answers.

Jon and Stephen cannot help but think about their commutes using probabilistic modeling. Both
of the them start promptly at 8am. .

Stephen drives and thus is at the mercy of traffic lights. When all traffic lights on his route are
green, the entire trip takes 18 minutes. Stephen’s route includes 5 traffic lights, each of which is red
with probability 1/3, independent of every other light. Each red traffic light that he encounters adds
1 minute to his commute (for slowing, stopping, and returning to speed).

1. (10 points) Find the PMF, expectation, and variance of the length (in minutes) of Stephen’s
commute.

2. (10 points) Given that Stephen’s commute took him at most 19 minutes, what is the expected
numbecr of red lights that he encountered?

3. (10 points) Given that the last red light encountered by Stephen was the fourth light, what is
the conditional variance of the total number of red lights he encountered?

4. (10 points) Given that Stephen encountered a total of three red lights, what is the probability
that exactly two out of the first three lights were red?

Jon’s commuting behavior is rather simple to model. Jon walks a total of 20 minutes from his
home to a station and from a station to his office. He also waits for X minutes for a subway train,
where X has the discrete uniform distribution on {0, 1, 2, 3}. (All four valucs arc cqually likely, and
independent of the traffic lights encountered by Stephen.)

5. (5 points) What is the PMF of the length of Jon’s commmte in minutes?

6. (10 points) Given that there was exactly one person arriving at exactly 8:20am, what is the
probability that this person was Jon?

7. (10 points) What is the probability that Stephen’s commute takes at most as long as Jon’s
commute?

8. (10 points) Given that Stephen’s commute took at most as long as Jon’s, what is the conditional
probability that Jon waited 3 minutes for his train?

Problem 2. (30 points) For each one of the statements below, give either a proof or a counterexample
showing that the statement is not always true.

1. (10 points) If events A and B are independent, then the events A and B€ are also independent.

2. (10 points) Let A, B, and C be events associated with a common probabilistic model, and
assume that 0 < P(C) < 1. Supposc that A and B arc conditionally independent given C.
Then, A and B are conditionally independent given C°.

Page 4 of 13
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3. (10 points) Let X and Y be independent random variables. Then, var(X + Y) > var(X).

Each question is repeated in the following pages. Please write your answer on
the appropriate page.
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Problem 1: (75 points)

Note: All parts can be done independently, with the exception of the last part. Just in casc you

made a mistake in the previous part, 3

YOu can use a symbol for the LX}')I'G":SIOI] you found there, and
use that symbol in the formulas for the last part.

Note: Algebraic or numerical expressions do not need to be simplified in your answers.

Jon and Stephen cannot help but think about their commutes using probabilistic modeling. Both

of the them start promptly at 8am.

Stephen drives and thus is at the mercy of traffic lights. When all traffic lights on his route are
green, the entire trip takes 18 minutes. Stephen’s route includes 5 traffic lights, each of which is red
with probability 1/3, independent of every other light. Each red traffic light that he encounters adds
1 minute to his commute (for slowing, stopping, and returning to speed).

1. (10 points) Find the PMF, expectation, and variance of the length (in minutes) of Stephen’s
commute.

G, N6, NG5 ACq 16, =15 mia
(o d“qﬁi’. pol (\W'/!Oz
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each ced | min
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2. (10 points) Given that Stephen’s commute took him at most 19 minutes, what is the cxpected
number of red lights that he encountered?

—

(‘\ f'r‘.b‘l}: H WU}C‘J (5 ()M/ Ogr (PJ J;ﬁﬂ
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L‘v? C](}f ‘/ CO(F Akt P That fr ) la ? v
3. (10 points) Given that the last red i ht encountered by tephen was the fourth llght what i 1s

the conditional variance of the total number of red lights he encountered?
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4. (10 points) Given that Stephen encountered a total of three red lights, what is the probability
that exactly two out of the first three lights were red?

(A . 1 b N
P[Q o0l of 15 Zlopt (o4 / X* if 10( J f(/‘/‘
. _ A g | h{rl‘_ﬁ.
\———-—-j«v-nm.,_, | __-r\"j) ¢ /,'eé-.?‘» Nt 1adepeagpa
F(-.,- Ty O boss ol .‘w o .J,-.,,..'-w ¢
\ . S
P(AY (3) (5 (3) (B8 (3) (1))
- — { A Y i | A
LB (5)0)° (5 BT
37 71N202 ) 272 Y 72 L3 /0% | % |
(_‘;;' 0L A v i’ ‘,Qh lLL“ fﬂ- )
" Zf;vj‘ ,:‘_ a{(?“ ;.' f /; 24 T

Jon’s commuting behavior is rather simple to model. Jon walks a total of 20 mmutes from h]S taat )
home to a station and from a station to his office. He also waits for X minutes for a subway train, ’

where X Ras the discrete uniform distribution on {0, 1, 2, 3}. (All four values are equally i} hkely, and
independent of the traffic lights encountered by Stephen.) / f :
0 Tig O | fea(

5. (5 points) What is the PMF of the length of Jon’s comnmute in minutes?
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)
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6. (10 points) Given that there was cxactly onc person arriving at exactly 8:20am, what is the
probability that this person was Jon?
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7. (10 points) What is the probability that Stephen’s commutc takes at most as long as Jon’ s
? jr ;
commute? 1 £ r r le‘fm\ r i /a{ oveC O Jdﬁ{ as \_;G ﬁ?ﬁ

a‘cj f* \i- o\
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8. (10 points) Given that Stephen’s commute took at most as long as Jon’s, what is the conditional
probability that Jon waited 3 minutes for his train?
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Problem 2. (30 points) For cach onc of the statements below , give cither a proof or a countcrexa.mplc

showing that the statement is not always true. 4 ‘\ o ﬂ d s /v 0 A *C 1[50

1. (10 points) If events A and B arc independent, then the cvents A and B are also independent.
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2. (10 points) Let A, B, and C be events associated with a common probabilistic model, amn a;ud“ ot
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(Additional space for Problem 2.2)

3. (10 points) Let X and Y be independent random variables. Then, var(X + Y) > var(X).
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Quiz 1 Solutions:
October 12, 2010

Problem 1.

1. (10 points) Let R; be the amount of time Stephen spends at the ith red light. R; is a Bernoulli
random variable with p = 1/3. The PMF for R; is:

2/3, ifr=0,
Pr(r)=< 1/3, ifr=1,

0, otherwise.
The expectation and variance for R; are:

E{RI.] = B= 57

18- 2
var(R;) = pl-p)=33=73

Let Ts be the total length of time of Stephen’s commute in minutes. Then,

T3=18+ZR1'.

=1

Ts is a shifted binomial with n = 5 trials and p = 1/3. The PMF for Ty is then:

5 1 k-18 D) 23—k )
PTs(k)={ (k—lB) (5) (§> . if k € {18,19,20,21,22, 23},

0, otherwise.

The expectation and variance for T are:

E[Ts] = E 18+ZRL-]
i=1
_ 9
= 3
var(Ts) = wvar (18—{—2&')
i=1
_
= 5

2. (10 points) Let N be the number of red lights Stephen encountered on his commute. Given that
Tg <19, then N =0 or N = 1. The unconditional probability of N =0is P(N =0) = (%)5. The

unconditional probability of N =1is P(N =1) = (i’)(%)‘l(%)l

Page 1 of 5
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To find the conditional expectation, the following conditional PDF is calculated:

215
: (g) > , ifn=0,
(5)5 + (1)(3)4 %)1 2/7, ifn=20,
Pyirs<i0(n | Ts < 19) = BIGEOE T
(2)5 + (5)(2)4(1 i, RAET M 0, otherwise.
3 1/\3/°\3
0, otherwise,

Therefore,
E[N | Ts < 19] = g

. (10 points) Given that the last red light encountered by Stephen was the fourth light, R4 =1
and Rs = 0.

We are asked to compute var(N | {Rq = 1} N {R5 = 0}). Therefore,

var(N | {R.q = 1} N {R5 - U}) = var(R; + Ro+ R3 + Rq+ Rs | {R4 = 1} N {R5 = 0})
= var(Ry + Ro+ Ry + 1+ 0| {Ry4 =1}D{R5=O})
= var(Ry + R+ R3+ 1)
= var(R; + Ra2 + R3)
= 3var(R;)
6
5
(10 points) Under the given condition, the discrete uniform law can be used to compute the
probability of interest. There are (g) ways that Stephen can encounter a total of three red lights.
There are (g) ways that two out of the first three lights were red. This leaves one additional red

light out of the last two lights and there are @) possible ways that this event can occur. Putting it
all together,

3
P(two of first three lights were red | total of three red lights) = 0 =z
3
(5 points) Let Ty be the total length of time of Jon’s commute in minutes. The PMF of Jon’s
commute is: 1
—, if £€{20,21,22,23

Pr,()=4 2 ' = {20,288

0, otherwise.

(10 points) Let A be the event that Jon arrives at work in 20 minutes and let B be the event
that exactly one person arrives in 20 minutes.

P(4]| B) —P(;(E)B )
P({Ty = 20} N {Ts # 20})
P({T; = 20} N {Ts # 20}) + P({Ty # 20} N {Ts = 20})
P(T; = 20)P(Ts # 20)
P (T = 20)P(Ts # 20) + P(T; # 20)P(Ts = 20)°
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Jon arrives at work in 20 minutes (or Ty = 20) if he does not have to wait for the train at the
station (or X = 0). The probability of this event occurring is:

P(Ty=20)=P(X =0)=-.

1
4

Stephen arrives at work in 20 minutes if he encounters 2 red lights. The probability of this event is

a binomial probability:

Thus,

ra-- ()3 2)

P(A|B) =

11-0 33

(-0 G)+1(O @)

7. (10 points) The probability of interest is P(Ts < Ty). This can be calculated using the total
probability theorem by conditioning on the length of Jon’s commute or Jon’s wait at the station. If
Jon’s commute is 20 minutes (or X = 0), then Stephen can encounter up to 2 red lights to satisfy
Ts < Ty. Similarly if Jon’s commute is 21 minutes (or X = 1), Stephen can encounter up to 3 red

lights and so on.

P(Ts < Ty)

3
Y PTs<Ty| X =2)P(X =x)
=0
GG
4 =0 k=0 k 3 3
0.9352

An alternative approach follows. We first compute the joint PMF of the commute times of Stephen
and Jon Prg 1, (k,£). Because of independence, Pr, 7,(k, ) = Py (k)Pr, (£).

Therefore,

P(Ts <Tj)

P(Ts =18)+P(Ts =19) + P(Ts = 20) + P({Ts =21} n{T; > 21})
+P({Ts =22} n{T; > 22}) + P({Ts = 23} N {Ty = 23})

() ()
()6 G

0.9352.

NONCYIONONEIGIONRE

IRONONC

8. (10 points) We express the conditional probability as such:

P{X =3}n{Ts <Ty})
P(Ts < Ty) '
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If Jon waited 3 minutes at the train, his commute was 23 minutes and Stephen’s commute takes
at most as long as Jon’s commute since the longest possible commute for Stephen is 23 minutes.
Therefore, the numerator in the previous expression is equal to P(X = 3) = ll The denominator
was computed in the previous part.

1

SEO6) 6

= 0.2673.

P(X = 3| T5 <T))

Problem 2.
1. (10 points) Always True. We need to show that
P(A N B°) =P(A)P(B°).
We start with expressing P(A) as P(A N B) +P(A N B¢). Therefore,
P(AN B°)

P(A) - P(ANB)
= P(4)-P(4)P(B)
= P(A)(1-P(B))
= P(A)P(B°),

which shows that A and B° are independent.

2. (10 points) Not Always True. Using the diagram below, let C = AN B and let P(4) > P(C)
and let P(B) > P(C). The conditional probability P(AN B | C) = 1. Furthermore, P(A | C) =1
and P(B | C) = 1. Since P(ANB | C) =PA | C)P(B | C), A and B are conditionally
independent given a third event C. Given C¢, A and B are disjoint which means that A and B are
not independent.

Q

The following is an alternative counterexample. Imagine having 3 coins with the following probabil-
ity of heads: p =1/5, p = 1/3 and p = 2/3, respectively. Each coin has equal probability of being
selected. Let C' be the event that you select the coin with p = 1/5. Let C¢ be the event that you
choose one of the other two coins. Let A be the event that the first coin toss results in heads. Let B
be the event that the second coin toss results in heads. For a given coin, the tosses are independent
such that:

PB|ANC)=P(B|C).
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Given C¢, A and B are not independent since we can have either the p = 1/3 coin or the p = 2/3
coin. Knowing A changes our beliefs of the result of the second coin toss.

P(B | ANCE)

However,

P(B | C°)

As shown, P(B | ANC®) # P(B | C°).

BnAnNncCe
ANcCe

| wm

P(BNC*)
P(Ce)

3(3+3)
2
3

L
=

(10 points) Always True. Using independence of X and Y, var(X +Y) = var(X) + var(Y).
Since variance is always non-negative, var(X) + var(Y) > var(X).
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Quiz 1 REsuLTS

Solutions to the quiz are posted on the course website.
Graded quizzes will be returned to you during your assigned recitation on Tuesday 10/18.

Below are final statistics for 6.041 and 6.431 students. Both histograms are raw scores, no
normalizing has been done.

Regrade Policy: Students who feel there is an error in the grading of their quiz have until
Monday October 24th to submit the regrade request to their TA. Do not write anything
at all on the exam booklet! Instead attach a note on a separate piece of paper explaining the
putative error. Any attempt to modify a quiz booklet is considered a serious breach of academic
honesty. We photocopy a substantial fraction of the quizzes before they are returned, implying
there exists a nonzero probability of us catching such a change. We also reserve the right to
regrade the entire quiz, not just the problem with the putative error.

Histogram for 6.041 Quiz 1: Out of 105 points
10 T T T T T T T T T T

Students: 67

mean: 75.0373
std: 21.5159
median: 78.0

10 20 30 40 50 60 70 80 90 100 110
Lower interior bound of 5 point bins
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Histogram for 6.431 Quiz 1: Out of 105 points
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Students: 32
mean: 78.2500
std: 18.9669
median: 79.0
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