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The Bernoulli process
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Splitting of a Bernoulli Process

(using independent coin flips)
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Poisson approximation to binomial

e Number of arrivals in n slots is binomial
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Recitation 14
October 26, 2010

1. You are visiting the rainforest, but unfortunately your insect repellent has run out. As a result,
at each second, a mosquito lands on your neck with probability 0.5. If one lands, with probability
0.2 it bites you, and with probability 0.8 it never bothers you, independently of other mosquitoes.

(a) What is the expected time between successive mosquito bites? What is the variance of the
time between successive mosquito bites?

(b) In addition, a tick lands on your neck with probability 0.1. If one lands, with probability
0.7 it bites you, and with probability 0.3, it never bothers you, independently of other ticks
and mosquitoes. Now, what is expected time between successive bug bites? What is the
variance of the time between successive bug bites?

2. Al performs an experiment comprising a series of independent trials. On each trial, he simulta-
neously flips a set of three fair coins.

(2) Given that Al has just had a trial with 3 tails, what is the probability that both of the next
two trials will also have this result?

(b) Whenever all three coins land on the same side in any given trial, Al calls the trial a success.

i. Find the PMF for K, the number of trials up to, but not including, the second success.

ii. Find the expectation and variance of M, the number of tails that occur before the first
success.

(c) Bob conducts an experiment like Al’s, except that he uses 4 coins for the first trial, and
then he obeys the following rule: Whenever all of the coins land on the same side in a trial,
Bob permanently removes one coin from the experiment and continues with the trials. He
follows this rule until the third time he removes a coin, at which point the experiment ceases.
Find E[N], where N is the number of trials in Bob’s experiment.

3. Suppose there are n papers in a drawer. You draw a paper and sign it, and then, instead of filing
it away, you place the paper back into the drawer. If any paper is equally likely to be drawn each
time, independent of all other draws, what is the expected number of papers that you will draw
before signing all n papers? You may leave your answer in the form of a summation. '
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A

The Poisson process

e Readings: Start Section 6.2.

Lecture outline
¢ Review of Bernoulli process
e Definition of Poisson process
e Distribution of number of arrivals
e Distribution of interarrival times

e Other properties of the Poisson process

Bernoulli review

* Discrete time; success probability p - 4 g55 ¢ {a( lvre
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C Jpsths
ot

e Time to k arrivals: Pascal pmf'

Pl -
e Memorylessness 0 56{[«(/641\ ae tIL/CL!S
“ho Pacic powery

79 B Tl tE t Tg C(onvalrg ﬁ(JUMHc)
v P /l\oftl/]L( ‘Pqﬁ(ﬂ( (“5)-

N Ectlc’lhd\geoneklc P(\/K:f):(i:ll) Fk([ﬁ}a)%-k k:%/ o



Definition of the Poisson process
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Example
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~ e You get email according to a Poisson ‘/[/—(’ §‘E i 21 j—
process at a rate of A = 5 messages per
hour. You check your email every thirty
minutes.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 15
October 28, 2010

1. Problem 6.14 (a)-(c),(h)-(j), page 330 in text.

Beginning at time ¢t = 0, we begin using bulbs, one at a time, to illuminate a room. Bulbs are
replaced immediately upon failure. Each new bulb is selected independently by an equally likely
choice between a type-A bulb and a type-B bulb. The lifetime, X, of any particular bulb of a
particular type is a random variable, independent of everything else, with the following PDF:

{ et >,

0, otherwise;

for type-A Bulbs:  fx(z)

Il

Je: i

for type-B Bulbs:  fx(z) = { 0 otherwise.

(a) Find the expected time until the first failure.
(b) Find the probability that there are no bulb failures before time t.

(c) Given that there are no failures until time ¢, determine the conditional probability that the
first bulb used is a type-A bulb.

(d) Determine the probability that the total period of illumination provided by the first two
type-B bulbs is longer than that provided by the first type-A bulb.

(e) Suppose the process terminates as soon as a total of exactly 12 bulb failures have occurred.
Determine the expected value and variance of the total period of illumination provided by
type-B bulbs while the process is in operation.

(f) Given that there are no failures until time ¢, find the expected value of the time until the
first failure.

2. Problem 6.15 (a)-(c), p. 331 in text.

A service station handles jobs of two types, A and B. (Multiple jobs can be processed simultane-
ously.) Arrivals of the two job types are independent Poisson processes with parameters Agq = 3
and Ap = 4 per minute, respectively. Type A jobs stay in the service station for exactly one
minute. Each type B job stays in the service station for a random but integer amount of time
which is geometrically distributed, with mean equal to 2, and independent of everything else.
The service station started operating at some time in the remote past.

(a) What is the mean, variance, and PMF of the total number of jobs that arrive within a given
three-minute interval?

(b) We are told that during a 10-minute interval, exactly 10 new jobs arrived. What is the
probability that exactly 3 of them are of type A?

(c) At time 0, no job is present in the service station. What is the PMF of the number of type
B jobs that arrive in the future, but before the first type A arrival?

3. Let X, Y, and Z be independent exponential random variables with parameters A, p, and v,
respectively. Find P(X <Y < Z).
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LECTURE 15
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Poisson process — II
e Readings: Finish Section 6.2.
e Review of Poisson process |
] "
WV
¢ Merging and splitting ((,{bﬁ‘?f_‘» G{fm/e/@ over —f( 2
e Examples
e Random incidence
-
Review
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Merging Poisson Processes (again)
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Splitting of Poisson processes

e Suppose email traffic through server is
a Poisson process and destinations are
independent.

USA
Email Traffic Ef %O‘

leaving MIT
A
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F""b M Foreign

e Each output stream is Poisson. (Why?)

e Example: VY =X+ 4+ Xy )
N, X1,X»5,... independent

N: geometric(p); X;: exponential(\)
— Find the distribution of Y % ¥n
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Random incidence in
‘“renewal processes”
e Series of successive arrivals

— i.i.d. interarrival times
(but not necessarily exponential)

e Example:
Bus interarrival times are equally likely to

be 5 or 10 minutes
e If you arrive at a "random time":

— what is the probability that you selected
a 5 minute interarrival interval?

— what is the expected time
to next arrival?
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6.041/6.431 Fall 2010 Quiz 2
Tuesday, November 2, 7:30 - 9:30 PM.

DO NOT TURN THIS PAGE OVER UNTIL
YOU ARE TOLD TO DO SO

Question Score Out of

, ‘ 1.2 o, 10

m' oo Pl 1.3 e il 10

Name: H“‘ o f ) Iu(("f/ . 1.4 ;‘ ?H 10
0 R k 1.5 L@ 10

Recitation Instructor: ‘ ( /1 [ ' o \U 0
q ' { G4 O\ 1.8 § 1, 10

TA: [ 1T HAWA o1 @: 3 =
= 10 10

2.3 ey 3

2.4 4& 12__ 5

Your Grade £% & 110

o fi edit, answers should be algebraic expressions (no integrals), in sim-

plified form) These expressions may involve constants such as 7 or e, and need
not be evaluated numerically. ( 50 (J‘ fFe,d b (J ¢ 1

e This quiz has 2 problems, worth a total of 110 points. |

e You may tear apart page 3, as per your convenience, but you must turn them in
together with the rest of the booklet.

e Write your solutions in this quiz booklet, only solutions in this quiz booklet will be graded.
Be neat! You will not get credit if we can’t read it.

e You are allowed two two-sided, handwritten, 8.5 by 11 formula sheets. Calculators are not
allowed.

e You have 120 minutes to complete the quiz.

e Graded quizzes will be returned in recitation on Thursday 11/4.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem 0: (0 ‘points) Write your name, your assigned recitation instructor’s name, and assigned
TA’s name on the cover of the quiz booklet. The Instructor/TA pairing is listed below.

| Recitation Instructor | TA | Recitation Time |
Vivek Goyal Uzoma Orji 10 & 11 AM
Peter Hagelstein Ahmad Zamanian | 12 & 1 PM
Ali Shoeb Shashank Dwivedi | 2 PM—=—~
Dimitri Bertsekas (6.431) | Aliaa Atwi 2 &3 PM/
L
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on [0, 4].
(ii) Y is an exponential random variable, independent from X, with parameter \ = 2.

1. (10 points) Find the mean and variance of X — 3Y.

2. (10 points) Find the probability that ¥ > X.
(Let ¢ be the answer to this question.)

3. (10 points) Find the conditional joint PDF of X and Y, given that the event ¥ > X has
occurred.
(You may express your answer in terms of the constant ¢ from the previous part.)

4. (10 points) Find the PDF of Z = X +Y.

5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that ¥ = 3.
6. (10 points) Find E[Z | Y = y] and E[Z | Y].

7. (10 points) Find the joint PDF fzy of Z and Y.

8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y).
If the result is “heads”, we let W =Y if it is tails, we let W = 2+ Y. Find the probability of
“heads” given that W = 3.-

Problem 2. (30 points) Let X, Xy, Xs,... be independent normal random variables with mean 0
and variance 9. Let N be a positive integer random variable with E[N] = 2 and E[N?] = 5. We
assume that the random variables N, X, X1, X, .. are independent. Let S = >N X;.

1. (10 points) If § is a small positive number, we have P(1 < |X| < 1+4) = ad, for some constant
a. Find the value of a.

2. (10 points) Find the variance of S.
3. (5 points) Are N and S uncorrelated? Justify your answer.

4. (5 points) Are N and S independent? Justify your answer.

Each question is repeated in the following pages. Please write your answer on
the appropriate page.

Page 3 of 13



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on [0,4].
(ii) Y is an exponential random variable, independent from X, with parameter A = 2.

1. (10 points) Find the mean and variance of X — o=
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

(Fall 2010) -

2. (10 points) Find the probability that ¥ > X.
(Let ¢ be the answer to this question.)

P(Vzx)
-P(¥2x)

F‘/(o‘)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

(Fall 2010) ‘

3. (10 points) Find the conditional joint PDF of X and Y, given that the event ¥ > X has
occurred. .
(You may express your answer in terms of the constant ¢ from the previous part.)

» X 01 J Y ln(/(}ff’/ doa !
‘(X/\/ d = ‘{X{\,;(%/L/): é_,_(j_{_) T(/ (f;{]
P(A) C |

% \ |
i e N ~AV
T ba )\f’ : [
Z—
C ’ )O
l -2y
= _q_ & 2 o
C. %A ~ [ &p
. e =
2 (
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

. (Fall 2010)

4. (10 points) Find the PDF of Z = X + Y.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that Y = 3.

\NW/\ \/: m} ':3/
7 5 X+7
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(Fall 2010)

6. (10 points) Find E[Z | Y =y| and E[Z | Y]. (/ﬂfd‘ﬂﬂ O( Y
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iﬁ%%%ﬂyﬁJVng
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K 01y
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; )J 1:"’4}&}2 01Y ¢t ¢4y T
%j/qf\/
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Oty  a
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Uiy o

J
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7. (10 points) Find the joint PDF fzy of Z and Y.
/

2 O”J \{ U/(;.L:’V”Dﬂ (},;, | Qp.(‘ﬁﬂl (2(?)1[/("/}

{
hew 4

) by (2h)

le™Ys g Oty ¢z ¢!ty
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O S EY

018wy

Yz Yy,
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y).
If the result is “heads”, we let W =Y; if it is tails, we let W = 2+ Y. Find the probability of

“@iﬂg—i}fin that W = 3. ; :
" &\/55 flule | p(}wﬂ 9) = 0\/

‘?(-mﬂv PWJ ; \( ' ! LU! "'“?/ p(hﬂ 25) o / ~—Oz/

Y47 '}"u.'[iﬁ/ﬁ-a

v
‘ // Win1 FHJW:J] W ( '}n ;‘}’;T{J’ ( W - /> |

v

1
; {J('—':'."J

= S
-
A~
<
<
T
<
<
—
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3. (5 points) Are N and S uncorrelated? Justify your answer.

¥

=F Z (I '{Z\Nf?(fg” Fl% j f‘g vl alyg ;5 (enter

<Elng)~EMEly  \/8d 00 natty
0 - 20 / how fravy
Uit s b4 b 1o hos (W )

0 0 = - Uﬁ@(@)a{,f{//.d NU{ W(-

to ey 0

I

4. (5 points) Are N and S independent? Justify your answer.
{

NO ’ 9 (5 ‘ )(, N 5 ( ﬁf r)«”'r” ot
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. 4ot » )

Page 13 of 13



+C( d(;dﬁ"(’
U% -»ﬁ“ abdfﬂ&# q/(/
— (taftion

for ediges

U“ ‘Eﬂf PW!‘Q' (ﬂ[

0
"‘! -~ 1)
T Sae on o - fingle 0%
¢

O'ﬁd £ “‘c..?h" _T f.r\‘ o ‘}.’_r.j‘g,\,‘

dlf T s
It g

—
=

=
=

erept {1 ?

(?Of:“T kﬂrl‘[d [“ ‘fqr o fws
Thoun

~) Progh

L
=t
h—1
o
=

—



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Quiz 2 REsSULTS

Solutions to the quiz are posted on the course website.
Graded quizzes will be returned to you during your assigned recitation on Thursday 11/4.

Below are final statistics for 6.041 and 6.431 students. Both histograms are raw scores, no
normalizing has been done.

Regrade Policy: Students who feel there is an error in the grading of their quiz have until
Thursday November 11th to submit the regrade request to their TA. Do not write anything
at all on the exam booklet! Instead attach a note on a separate piece of paper explaining the
putative error. Any attempt to modify a quiz booklet is considered a serious breach of academic
honesty. We photocopy a substantial fraction of the quizzes before they are returned, implying
there exists a nonzero probability of us catching such a change. We also reserve the right to
regrade the entire quiz, not just the problem with the putative error.

Histogram for 6.041 Quiz 2: Out of 110 points

8 T T T
Students: 62

7r mean: 78.1935 -

sid: 21,9337

6l median: 84.5

5 L

4 L

3 L

2 L

1F

0
20 30 40 50 60 70 80 90 100 110
Lower interior bound of 5 point bins
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Histogram for 6.431 Quiz 2: Out of 110 points
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

6.041/6.431 Fall 2010 Quiz 2 Solutions

Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on [0, 4].
(ii) Y is an exponential random variable, independent from X, with parameter A = 2.

1. (10 points) Find the mean and variance of X — 3Y.

E[X - 3Y] = E[X]- 3E[Y]
1
= 2-3.;
1
=

var(X —3Y) = var(X)+ 9var(Y)

_ (4-0)? 1
- 12 Ead 22
43
= 1%

2. (10 points) Find the probability that ¥ > X.
(Let ¢ be the answer to this question.)

The PDFs for X and Y are:

1/4, 0 <z <4,
fx(z) = { 0, otherwise.

26_2y7 if y 2 07
friy) = { 0, otherwise.

Using the total probability theorem,

P o= f de)PY 22X | X =x)de

1

/ 1_1 l—FY .L)
1

= / Z k2'5 dzx

= gf _2$ dx

1

= é(l ).

ey A
Page 1 of 4



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

. (10 points) Find the conditional joint PDF of X and Y, given that the event Y > X has
occurred.
(You may express your answer in terms of the constant ¢ from the previous part.)

Let A be the event that Y > X. Since X and Y are independent,

i T fxg((z‘;y) = fh’gzg(y)

for (z,y) € A

-2y .
E—, f0<z<4,y>a
0, otherwise.

. (10 points) Find the PDF of Z = X + Y.

Since X and Y are independent, the convolution integral can be used to find fz(z).

) 1
fz(z) = / ~2¢~2% gt
max(0,z—4) 4
1/4-(1-e72%%), if0<z<4,
1/4- (8 —1)e™2%, ifz >4,

3

0, otherwise.

. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that ¥ = 3.

Given that Y = 3, Z = X + 3 and the conditional PDF of Z is a shifted version of the PDF of
X. The conditional PDF of Z and its sketch are:

1lfzvzs.(z)

1
= ol e 4
fzy=s)(2) = { 0, otherwise. |

3 7 £

. (10 points) Find E[Z | Y = y] and E[Z | Y].
The conditional PDF fzy—,(z) is a uniform distribution between y and y + 4. Therefore,

EZ|Y=yl=y+2
The above expression holds true for all possible values of y, so
E[Z|Y]=Y +2.

. (10 points) Find the joint PDF fzy of Z and Y.
The joint PDF of Z and Y can be expressed as:

fzy(z,y) = fyWfzyv(z|y)
o of Afse %, ByZ 0 pLeSytd,
N 0, otherwise.




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of ).
If the result is “heads”, we let W =Y; if it is tails, we let W = 2 + Y. Find the probability of
“heads” given that W = 3.

Let X be a Bernoulli random variable for the result of the fair coin where X = 1 if the coin lands
“heads”. Because the coin is fair, P(X = 1) = P(X = 0) = 1/2. Furthermore, the conditional
PDFs of W given the value of X are:

fwix=1(w) = fr(w)
fW|X=0(w) = fr(w-2).

Using the appropriate variation of Bayes’ Rule:

P(X =1) fwx=1(3)
P(X =1)fwix=1(3) + P(X = 0) fwx=0(3)
P(X =1)fr(3)
P(X =1)fy(3) + P(X =0)fy(1)
P(X =1)fr(3)

P(X =1)fy(3)+P(X =0)fy(1)
6

P(X=1|W=3) =

[
e 6 4e2

Problem 2. (30 points) Let X, X, Xo,... be independent normal random variables with mean 0
and variance 9. Let N be a positive integer random variable with E[N] = 2 and E[N?] = 5. We
assume that the random variables N, X, X;, Xo, ... are independent. Let S = Zf‘;l X;.

1. (10 points) If J is a small positive number, we have P(1 < |X| < 1+4) = ad, for some constant
a. Find the value of .

P(1<|X|<1440) = 2P(1<X<1+49)
~ fo(l)é.
Therefore,
a = 2fx(1)
1 _1.0-09?
— 2 e 9
9. 27
2 1
= e 18
3V 2w

2. (10 points) Find the variance of S.

Using the Law of Total Variance,

Il

var(S) E[var(S | N)] + var(E[S | N])
E[9- N] + var(0 - N)

= OE[N] = 18
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

3. (5 points) Are N and S uncorrelated? Justify your answer.

The covariance of S and N is

cov(S,N) = E[SN]-E[S|E[N]
= E[E[SN | N]] - E[E[S | N]|E[V]
N N
= E[E[Y_ XN |N]-E[E[}}_X;| NJE[N]
i=1 =1
= E[X1]E[N?] — E[X}]E[N]
= 0

since the E[X1] is 0. Therefore, S and N are uncorrelated.

4. (5 points) Are N and S independent? Justify your answer.

S and N are not independent.

Proof: We have var(S | N) = 9N and var(S) = 18, or, more generally, fgn(s | n) = N(0,9n)
and fg(s) = N(0,18) since a sum of an independent normal random variables is also a normal
random variable. Furthermore, since E[N?] = 5 # (E[N])? = 4, N must take more than one
value and is not simply a degenerate random variable equal to the number 2. In this case, N can
take at least one value (with non-zero probability) that satisfies var(S | N) = 9N # var(S) = 18
and hence fgn(s | n) # fs(s). Therefore, S and N are not independent.

Page 4 of 4
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 17
November 4, 2010

1. Iwana Passe is taking a multiple-choice exam. You may assume that the number of questions
is infinite. Stmultaneously, but independently, her conscious and subconscious facultics arc gen-
erating answers for her, each in a Poisson manner. (Her conscious and subconscious are always
working on different questions.) Conscious responses are generated at the rate A. responses per
minute. Subconscious responses are generated at the rate A; responses per minute. Assume
Ae # Ay. Each conscious response is an independent Bernoulli trial with probability p. of being
correct. Similarly, each subconscious response is an independent Bernoulli trial with probability
ps of being correct. Iwana responds ounly once to each question, and you can assume that her
time for recording these conscious and subconscious responscs is negligible.

(a) Determine px (k), the probability mass function for the number of conscious responses Iwana
makes in an interval of T' minutcs.

(b) If we pick any question to which Iwana has responded, what is the probability that her
answer to that question:

i. Represents a conscious responsc
ii. Represents a conscious correct response

(c) If we pick an interval of T minutes, what is the probability that in that interval Iwana will
make exactly r conscious responses and s subconscious responses?

(d) Determine the probability density function for random variable X, where X is the time
from the start of the exam until Iwana makes her first conscious response which is preceded
by at least one subconscious response.

2. Shem, a local policeman, drives from intersection to intersection in times that are independent
and all exponentially distributed with parameter X. At each intersection he observes (and reports)
a car accident with probability p. (This activity does not slow his driving at all.) Independently
of all else, Shem receives extremely brief radio calls in a Poisson manner with an average rate of
& calls per hour.

(a) Determine the PMF for N, the number of intersections Shem visits up to and including the
one where he reports his first accident.

(b) Determine the PDF for @, the length of time Shem drives between reporting accidents.
(c) What is the PMF for M, the number of accidents which Shem reports in two hours?

(d) What is the PMF for K, the number of accidents Shem reports between his receipt of two
successive radio calls?

(e) We observe Shem at a random instant long after his shift has begun. Let W be the total
time from Shem’s last radio call until his next radio call. What is the PDF of W?

3. Problem 6.27, page 337 in the textbook. Random incidence in an Erlang arrival process.
Consider an arrival process in which the interarrival times are independent Erlang random vari-
ables or order 2, with mean 2/)\. Assume that the arrival process has been ongoing for a very
long time. An external observer arrives at a given time £. Find the PDF of the length of the
interarrival interval that contains .

Page 1 of 1
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Tutorial 8
November 4/5, 2010

1. Type A, B, and C items are placed in a common buffer, each type arriving as part of an inde-
pendent Poisson process with average arrival rates, respectively, of a, b, and ¢ items per minute.
For the first four parts of this problem, assume the buffer is discharged immediately whenever it
contains a total of ten items.

(a) What is the probability that, of the first ten items to arrive at the buffer, only the first and
one other are type A?

(b) What is the probability that any particular discharge of the buffer contains five times as
many type A items as type B items?

(c) Determine the PDF, expcectation, and variance for the total time between consccutive dis-
charges of the buffer.

(d) Determine the probability that exactly two of each of the three item types arrive at the
buffer input during any particular five minute interval.

2. A store opens at t = 0 and potential customers arrive in a Poisson manner at an average arrival
rate of A potential customers per hour. As long as the store is open, and independently of all
other events, each particular potential customer becomes an actual customer with probability p.
The store closes as soon as ten actual customers have arrived.

(a) What is the probability that cxactly three of the first five potential customers become actual
customers?

(b) What is the probability that the fifth potential customer to arrive becomes the third actual
customer?

(c) What is the PDF and expected value for L, the duration of the interval from store opening
to store closing?

(d) Given only that exactly three of the first five potential customers became actual customers,
what is the conditional expected value of the total time the store is open?

(c) Considering only customers arriving between ¢ = 0 and the closing of the store, what is the
probability that no two actual customers arrive within 7 time units of each other?

3. Problem 6.24, page 335 in text.

Consider a Poisson process with parameter A, and an independent random variable T', which is
exponential with parameter v. Find the PMF of the number of Poisson arrivals during the time
interval [0, T7.

Page 1 of 1
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Vi A .

yo v "; g, it P Problem Set 7 / j) | . )
' . Due November 8, 2010 H / dag J Mol Canfugy
700 Pﬁ)fﬂ t’l 5%0)& H 7 U Aed X ‘
0 1. Consider a sequence of mutually independent, identically distributed, pI‘Ob&bthth trlals Any Cgo f

."b::x 0 7

O AL articular trial results in either a success (with probability p) or a failure. # ( f,ﬁ./ 45_;0)‘
clio s rﬁr‘u

) Obtain a simple expression for the probability that the ith success occurs before the jth
fallure. You may leave your answer in the form of a summation.

(b) Determine the expected value and variance of the number of successes which occur before
the jth failure.

(c) Let Li7 be described by a Pascal PMF of order 17. Find the numerical values of a and b in
the following equation. Explain your work.

Z pLi(l) = i ( I; )p‘”(l =B)i=H

=42

2. Fred is giving out samples of dog food. He makes calls door to door, but he leaves a sample (one
can) only on those calls for which the door is answered and a dog is in residence. On any call
the probability of the door being answered is 3/4, and the probability that any household has
a dog is 2/3. Assume that the events “Door answered” and “A dog lives here” are independent
and also that the outcomes of all calls are independent.

(a) Determine the probability that Fred gives away his first sample on his third call.

(b) Given that he has given away exactly four samples on his first eight calls, determine the
conditional probability that Fred will give away his fifth sample on his eleventh call.

(c) Determine the probability that he gives away his second sample on his fifth call.

(d) Given that he did not give away his second sample on his second call, determine the condi-
tional probability that he will leave his second sample on his fifth call.

(e) We will say that Fred “needs a new supply” immediately after the call on which he gives
away his last can. If he starts out with two cans, determine the probability that he completes
at least five calls before he needs a new supply.

(f) If he starts out with exactly m cans, determine the expected value and variance of D,,, the
number of homes with dogs which he passes up (because of no answer) before he needs a
new supply.

3. Let Ty and T3 be exponential random variables with parameter A, and let S be an exponential
random variable with parameter . We assume that all three of these random variables are inde-
pendent. Derive an expression for the expected value of min{T} + 75, S}. Hint: See Problem 6.19
in the text.

4. A single dot is placed on a very long length of yarn at the textile mill. The yarn is then cut
into lengths requested by different customers. The lengths are independent of each other, but
all distributed according to the PDF f1(¢). Let R be be the length of yarn purchased by that
customer whose purchase included the dot. Determine the expected value of R in the following
cases:

Page 1 of 2
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(&) Frll) =2e™™; L£20
(b) fr(f) =2 >0
(e) frll) =der M<EL

5. Consider a Poisson process of rate A. Let random variable N be the number of arrivals in (0, ¢]
and M be the number of arrivals in (0, + s], where t,s > 0.

(a) Find the conditional PMF of M given N, pyn(m|n), for m > n.

(b) Find the joint PMF of N and M, pn,a(n, m).

(c) Find the conditional PMF of N given M, py|ps(n|m), for n < m, using your answer to part
(b).

(d) Rederive your answer to part (c) without using part (b). As a hint, consider what kind of
distribution the k** arrival time has if we are given the event {M = m}, where k < m.

(e) Find E[NM].

6. The interarrival times for cars passing a checkpoint are independent random variables with PDF

2e % fort>0
fr(t) = { 0, otherwise.

where the interarrival times are measured in minutes. The successive experimental values of
the durations of these interarrival times are recorded on small computer cards. The recording
operation occupies a negligible time period following each arrival. Each card has space for three
entries. As soon as a card is filled, it is replaced by the next card.

(a) Determine the mean and the third moment of the interarrival times.

(b) Given that no car has arrived in the last four minutes, determine the PMF for random
variable K, the number of cars to arrive in the next six minutes.

(¢) Determine the PDI and the expected value for the total time required to use up the first
dozen computer cards.

(d) Consider the following two experiments:

i. Pick a card at random from a group of completed cards and note the total time, Y, the
card was in service. Find E[Y] and var(Y").

ii. Come to the corner at a random time. When the card in use at the time of your arrival
is completed, note the total time it was in service (the time from the start of its service
to its completion). Call this time W. Determine E[W] and var(W).

G1t. Consider a Poisson process with rate A, and let N(G;) denote the number of arrivals of the process
during an interval G; = (¢;,t; + ¢;]. Suppose we have n such intervals, ¢ = 1,2, ---,n, mutually
disjoint. Denote the union of these intervals by GG, and their total length by ¢ = ¢ +ca+-- -+ en.
Given k; > 0 and with &k = k1 + ko + - - - + k,,, determine _

(ominas = fodorspcfs
P(N(G1) = k1, N(G2) = hz,--, N(Ga) = ku | N(C) = k)

. ' : [V
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

1.

2. A successful call occurs with probability p =

(a)

(c)

(a)

(b)

(c)

Problem Set 7: Solutions

The event of the ¢th success occuring before the jth failure is equivalent to the ith success
occurring within the first (7 + 7 — 1) trials (since the ith success must occur no later than
the trial right before the jth failure). This is equivalent to event that 7 or more successes
occur in the first (i + j — 1) trials (where we can have, at most, (i + j — 1) successes). Let
S; be the time of the ith success, F; be the time of the jth failure, and Nj be the number
of successes in the first & trials (so N} is a binomial random variable over k trials). So we
have:

+i-1 .. .
] i+j-1 ey B
P(S; < Fj) = P(Niyj-1 214) = E ( "L )pk(l _ p)iti-1-k
k=i

Let K be the number of successes which occur before the jth failure, and L be the number
of trials to get to the jth failure. L is simply a jth order Pascal, with probability of 1 —p
(since we are now interested in the failures, not the successes.) Plugging into the formula
for jth order Pascal random variable,

J 2 p .
ElL|=——,0 = ——=J
L= T = T—7p
Since K = L — 7,
P . 9 P .
E[K]|=——j 0% = ——=]
[ ] 1 — pj K (1 — p)2
This expression is the same as saying we need at least 42 trials to get the 17th success.
Therefore, it can be rephrased as having a maximum of 16 successes in the first 41 trials.
Hence b = 41, a = 16.

3,21
1°37 2

Fred will give away his first sample on the third call if the first two calls are failures and

the third is a success. Since the trials are independent, the probability of this sequence of
events is simply

The event of interest requires failures on the ninth and tenth trials and a success on the
eleventh trial. For a Bernoulli process, the outcomes of these three trials are independent
of the results of any other trials and again our answer is

(L=}l =plF=sihess =é

We desire the probability that Lo, the time to the second arrival is equal to five trials. We
know that pr,(¢) is a Pascal PMF of order 2, and we have

PLo(5) = (2 - D'p‘?(l -p)° =4 (%)d = %
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

(d) Here we require the conditional probability that the experimental value of Ls is equal to 5,
given that it is greater than 2.

pLz(S) i pL2(5)
B e e e )

chea-pr2 4 (3)

- GRu () O

(e) The probability that Fred will complete at least five calls before he needs a new supply is
equal to the probability that the experimental value of Ly is greater than or equal to 5.

S (E-1) -2
P(Ly>5)=1-P(La<4)=1-) (g_l)p(l—p)
£=2

-4 Q)- (-3

(f) Let discrete random variable F' represent the number of failures before Fred runs out of
samples on his mth successful call. Since L,, is the number of trials up to and including the
mth success, we have F' = L,, — m. Given that Fred makes L,, calls before he needs a new
supply, we can regard each of the /' unsuccessful calls as trials in another Bernoulli process
with parameter 7, where 7 is the probability of a success (a disappointed dog) obtained by

r = P(dog lives there | Fred did not leave a sample)
_ P(dog lives there AND door not answered) % . % il
N 1 — P(giving away a sample) “1-3 3

We define X to be a Bernoulli random variable with parameter r. Then, the number of dogs
passed up before Fred runs out, D,, is equal to the sum of F Bernoulli random variables
each with parameter r = éﬂ, where F is a random variable. In other words,

Dp = Xi+Xo+ X3+ + Xp.

Note that D, is a sum of a random number of independent random variables. Further,
F'is independent of the X;’s since the X;’s are defined in the conditional universe where
the door is not answered, in which case, whether there is a dog or not does not affect the
probability of that trial being a failed trial or not. From our results in class, we can calculate
its expectation and variance by

E[Dn] E[F|E[X]
var(Dy,) E[Fvar(X) + (E[X])*var(F),
where we make the following substitutions.

E[F] = E[Lm_m]=%—m:m.

var(F) = var(Ly —m) = var(L,) = 57— = 2m.
p
E[X] :
= r= -,
3
2
var(X) = 7(l—-r)= g
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Finally, substituting these values, we have

E[D;,] m

1 m
3 3
2 1y2 dm
var(D, = <= (—) 2m = —
(Dm) m 9 + 3 m 9
3. We view the random variables T} and T, as interarrival times in two independent Poisson pro-
cesses both with rate A S as the interarrival time in a third Poisson process (independent from
the first two) with rate p. We are interested in the expected value of the time Z until either the
first process has had two arrivals or the second process has had an arrival.

Given that the first arrival was from the second process, the expected wait time for that arrival

would be #—j_,\ The probability of an arrival from the second process is ;4'“‘—,\ Given that the first
arrival time was from the first process, the expected wait time would be that for first arrival,

“—_L\, plus the expected wait time for another arrival from the merged process. Similarily, the
probability of an arrival from the first process is ﬁ Thus,

E[Z] = P(Arrival from second process)E[wait time|Arrival from second process] +
P(Arrival from first process)E[wait time|Arrival from first process|
1 A 1 1
= # . + . ( _l_ )_
p+A p+Ad g4+ p+a o p4A

After some simplifications, we see that

1 A 1

E[Z] = i :
2] pHA p+A pt

4. The dot location of the yarn, as related to the size of the pieces of the yarn cut for any particular
customer, can be viewed in light of the random incident paradox.

(a) Here, the length of each piece of yarn is exponentially distributed. As explained on page 293
of the text, due to the memorylessness of the exponential, the distribution of the length of the
piece of yarn containing the red dot is a second order Erlang. Thus, the E[R] = 2E[L] = 2.

(b) Think of exponentially-spaced marks being made on the yarn, so the length requested by
the customers each involve three such sections of exponentially distributed lengths (since
the PDF of L is third-order Erlang). The piece of yarn with the dot will have the dot in
any one of these three sections, and the expected length of that section, by (a), will be 2/,
while the expected lengths of the other two sections will be 1/A. Thus, the total expected
length containing the dot is 4/\.

In general, for processes, in which the interarrival intervals with distribution Fx (z) are IID,

2
the expected length of an arbitrarily chosen interval is Fé‘:i . We see that for the above

parts, this formula is certainly valid.

(c) Using the formula stated above, E[L] = [} £2ef d = e*(£* — 20+ 2)|} = e — 2
E[L?] = [ (Pl db = ' (£3 — 302 + 6 — 6)]} = 6 — 2e
Hence,

6 — 2e

—9 7

E[R] =
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

d.

6.

(a) We know there are n arrivals in t amount of time, so we are looking for how many extra
arrivals there are in s amount of time.

& (/\S)m—ne—)\s .
pﬂﬂN(min) = W for m >n > 0

(b) By definition:

pNm(n,m) = PM|N(mI”)PN(”)
A gm—ngn o =A(s+t)

= e form>n>0

(¢) By definition:
pm,N(m,n)
pm(m)

S ' form>n>0
n/)(s+t)m

PN|M(“|m) =

(d) We want to find: P(N = n|M = m). Given M=m, we know that the m arrivals are uni-
formly distributed between 0 and t+s. Consider each arrival a success if it occurs before
time t, and a failure otherwise. Therefore given M=m, N is a binomial random variable
with m trials and probability of success H_LS We have the desired probability:

t n m-—n
HN:MMzm%=CS(a:)(ﬁ%) form >n >0

(e) We can rewrite the expectatation as:

E[NM]

E[N(M - N) + N
E[N]E[M — N] + E[N?]

(A)(As) + (var(N) + (BIN])?)
(AL)(As) + At + (At)?

Il

where the second equality is obtained via the independent increment property of the poisson
process.

The described process for cars passing the checkpoint is a Poisson process with an arrival rate of
-A = 2 cars per minute.

(a) The first and third moments are, respectively,

1 1 00 3! o] 2=1t3€—2t
E[T]==== E[T3] = 19252t = = dt =

=1

=]

where we recognized the integrand to be a 4th-order Erlang PDF and therefore integrating
it over the entire range of the randorn variable must sum to unity.
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(b) The Poisson process is memoryless, and thus the history of events in the previous 4 minutes
does not affect the future. So, the conditional PMF for K is equivalent to the unconditional
PMF that describes the number of Poisson arrivals in an interval of time, which in this case
is 7 = 6 minutes and thus (A1) = 12:

12k 12
ol o
(c) The first dozen computer cards are used up upon the 36th car arrival. Letting D denote this
total time, D =T} +T5 + ... + T3, where each independent T; is exponentially distributed

with parameter A = 2, the distribution for D is therefore a 36th-order Erlang distribution
with PDF and expected value of, respectively,
936 735 o —2d

fo(d) = 251

(d) In both experiments, because a card completes after registering three cars, we are considering
the amount of time it takes for three cars to pass the checkpoint. In the second experiment,
however, note that the manner with which the particular card is selected is biased towards
cards that are in service longer. That is, the time instant at which we come to the corner
is more likely to fall within a longer interarrival period — one of the three interarrival times
that adds up to the total time the card is in service is selected by random incidence (see
the end of Section 6.2 in text).

i. The service time of any particular completed card is given by ¥ = T} + 75 + T3, and
thus Y is described by a 3rd-order Erlang distribution with paramater A = 2:

E[Y]=§=g var(Y)=%=§
ii. The service time of a particular completed card with one of the three interarrival times
selected by random incidence is W = T +T» + L, where L is the interarrival period that
contains the time instant we arrived at the corner. Following the arguments in the text,
L is Erlang of order two and thus W is described by a 4th-order Erlang distribution

with parameter A = 2:

pr(k) = k=0,1,2,...

, d>0 E[D]=36E[T] =18

4 4
E[W]=X=2 var(W}:j\azl
G1f. For simplicity, introduce the notation N; = N(G;) for i = 1,...,n and Ng = N(G). Then
P(Ny = ky, ..., Ny = kn, Ng = k)
P( ¢ =k)
P(Ny =ky)---P(N, = kp)
P(Ng =k)

(ClA)kle_“l)‘ (an)knc—an
( k1! Kn!
((c;\)“e“’}‘)
A

- —( )" (J‘"

P(Nl =ki,...; Ny = knlNG' = k) =
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(Fall 2010)

The result can be interpreted as a multinomial distribution. Imagine we throw an n-sided die k
times, where Side i comes up with probability p; = ¢;/c. The probability that side ¢ comes up
k; times is given by the expression above. Now relating it back to the Poisson process that we
have, each side corresponds to an interval that we sample, and the probability that we sample it
depends directly on its relative length. This is consistent with the intuition that, given a number
of Poisson arrivals in a specified interval, the arrivals are uniformly distributed.

& - : o i
"Required for 6.431; optional for 6.041 Pa
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