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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

(a) Find the ML cstimatces of the lincar model paramcters.

(b) Find the ML cstimates of the quadratic model parameters.

Note: You may use the regression formulas and the connection with ML described in pages
478-479 of the text. However, the regression material is outside the scope of the final.

The figure below shows the data points (z;,7;), 4 = 1,...,5, the estimated linear model
y = 40.53z — 65.86,

and the estimated quadratic model
y = 4.09z% — 3.07.
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Figure 1: Regression Plot
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 24
December 7, 2010

1. A blackbody at temperature § radiates photons of all wavelengths, described by its characteristic
spectrum. This problem will have you estimate @, which is fixed but unknown. The PMF for the
number of photons K in a given wavelength range and a fixed very short time interval is given

by,
1

e=k/0
Z(Q) K=0.1.2....

pr(k;0) =
Z () is a normalization factor for the probability distribution (the physicists call it the partition
function). You are giveu the task of determining the lemperature of the body Lo two significant
digits by photon counting in non-overlapping time intervals of duration one second. The photon
emissions in non-overlapping time intervals are statistically independent from each other.

(a) Determine the normalization factor Z(6).

(b) Compute the expected value of the photon number measured in any 1 second time interval,
1k = Eg[K], and its variance, varg(K) = o%.

(c) You count the number k; of photons detected in n non-overlapping 1 second time intervals.
Find the maximum likclihood cstimator, Bn, for temperature 6. Note, it might be uscful to
introduce the average photon number s,, = ,11 > ieq ki. In order to keep the analysis simple
we assume that the body is hot, i.e. 6 >> 1.

You may use the approximation: —c—mﬁ—_—l = for 6 > 1.

In the following questions we wish to estimate the mean of the photon count in a one second
time interval using the estimator K which is given by,

{ =;1L-;K,-.

(d) Find the number of samples n for which the noise to signal ratio for K, (i-e. —11) is 0.01.

(e) Find a 95% confidence interval for the mean photon count estimate for the situation in part
(d). (You may usc the central limit theorem.)

2. Given the five data pairs (z;,3;) in the table below,

x|08 25 5 73 91
y[-23 209 103.5 215.8 334

we want to construct a model relating = and y. We consider a linear model
Yi =0y + 01z; + W, i = 1058,

and a quadratic model
Yi = fo+ Pzl + Vi, i'=71,...,5.

where W; and V; represent additive noisc terms, modeled by independent normal random variables
with mean zero and variance o7 and o3, respectively.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 11
Never Due
Covered on Final Exam

1. Problem 7, page 509 in textbook
Derive the ML estimator of the parameter of a Poisson random variable based of i.i.d. observa-
tions X1, ..., Xn. Is the estimator unbiased and consistent?

2. Caleb builds a particle detector and uses it to measure radiation from far stars. On any given
day, the number of particles Y that hit the detector is conditionally distributed according to a
Poisson distribution conditioned on parameter . The parameter z is unknown and is modeled
as the value of a random variable X, exponentially distributed with parameter p as follows.

| pem#® 2z >0
fx(z) = { 0 otherwise

Then, the conditional PDF of the number of particles hitting the detector is,

e Sa¥ =012, ...
pmyia:)={ gl =

0 otherwise

(a) Find the MAP estimate of X from the observed particle count y.

(b) Our goal is to find the conditional expectation estimator for X from the observed particle
count y.

i. Show that the posterior probability distribution for X given Y is of the form

v+l :
fxiy(z|y) = Tﬂ?ye_)\ﬁ, z>0

and find the parameter A. You may find the following equality useful (it is obviously
true if the equation above describes a true PDF):

o0
f ¥ Ma¥e @ dr = ¢! for any a > 0
0

ii. Find the conditional expectation estimate of X from the observed particle count y.
Hint: you might want to express zfxy(z | y) in terms of fx|y(z |y +1).
(c) Compare the two estimators you constructed in part (a) and part (b).

3. Consider a Bernoulli process X, X3, X3, ... with unknown probability of success q. Define the
kth inter-arrival time T}, as

=Y, Thi=Y-Y1, k=23,...

where Y is the time of the kth success. This problem explores estimation of ¢ from observed

inter-arrival times {t1, ¢, t3, ...}. In problem set 10, we solved the problem using Bayesian
inference. Our focus here will be on classical estimation.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

We assume that ¢ lf an unknown parameter in the interval (0,1]. Denote the true parameter
by ¢*. Denote by @x the maximum likelihood estimate (MLE) of g given k recordings, 77 =
Bsaees T =185

1 1

(a) Compute Q. Is this different from the MAP estimate you found in problem set 107

(b) Show that for all e > 0
lim P ( = e) =0
k—oo Qr 4

(c) Assume g* > 0.5. Give a lower bound on k such that
1
— <0.1) > 0.95

P ( Logdl
Qr 4
4. A body at temperature # radiates photons at a given wavelength. This problem will have you

estimate 0, which is fixed but unknown. The PMF for the number of photons K in a given
wavelength range and a fixed time interval of one second is given by,

1

1 k
p[{(k'; 6) = me_ﬁ, k= 0, 1, 2,

Z(6) is a normalization factor for the probability distribution (the physicists call it the partition
function). You are given the task of determining the temperature of the body to two significant
digits by photon counting in non-overlapping time intervals of duration one second. The photon
emissions in non-overlapping time intervals are statistically independent from each other.

(a) Determine the normalization factor Z(6).

(b) Compute the expected value of the photon number measured in any 1 second time interval,
pr = Eg[K], and its variance, varg(K) = a?(.

(¢) You count the number k; of photons detected in n non-overlapping 1 second time intervals.
Find the maximum likelihood estimator, ©,, for temperature ©. Note, it might be useful to
introduce the average photon number s, = % 1 ki. In order to keep the analysis simple
we assume that the body is hot, i.e. § > 1.

You may use the approximation: _z'rl_ ~0 for 6 > 1.

el -1
In the following questions we wish to estimate the mean of the photon count in a one second
time interval using the estimator K, which is given by,

) Rl
K:E;Ki.

(d) Find the number of samples n for which the noise to signal ratio for K, (i.e.,%f:(i), is 0.01.

(e) Find the 95% confidence interval for the mean photon count estimate for the situation in
part (d). (You may use the central limit theorem.)

5. The RandomView window factory produces window panes. After manufacturing, 1000 panes
were loaded onto a truck. The weight W; of the i-th pane (in pounds) on the truck is modeled as
arandom variable, with the assumption that the W;’s are independent and identically distributed.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

(a) Assume that the measured weight of the load on the truck was 2340 pounds, and that
var(W;) < 4. Find an approximate 95 percent confidence interval for p = E[Wj], using the
Central Limit Theorem.

(b) Now assume instead that the random variables W; arei.i.d., with an exponential distribution
with parameter @ > 0, i.e., a distribution with PDF

fw (w; 0) = ge= .

What is the maximum likelihood estimate of €, given that the truckload has weight 2340
pounds?

6. Given the five data pairs (z;,y;) in the table below,

x| 08 25 5 73 01
y|-23 209 1035 2158 334

we want to construct a model relating z and y. We consider a linear model
Y: =6y + O1z; + Wi, 1=1,---,9,

and a quadratic model
K:ﬁ0+ﬁ1$$+iflr i=1,---,5.

where W; and V] represent additive noise terms, modeled by independent normal random variables
with mean zero and variance o? and o3, respectively.

(a) Find the ML estimates of the linear model parameters.

(b) Find the ML estimates of the quadratic model parameters.

Note: You may use the regression formulas and the connection with ML described in pages
478-479 of the text. However, the regression material is outside the scope of the final.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 11 Solutions

1. Check book solutions on Stellar.

2. (a) To find the MAP estimate, we need to find the value z that maximizes the conditional
density fxy(z | y) by taking its derivative and setting it to 0.

pY|X(?J | z) - fx ()
py (y)
e TV 1
= g o
# Py ()
e~ (wtl)z oy

fxiy(z | y)

y'py ()

d i 12 —{p.-i'-l)l' Y
Xy dzx (y!PY(y) ‘ :

s H y—1 _—(p+1)z _
— T e y—x(p+1
Ty (@) (y—2(p+1))

Since the only factor that depends on = which can take on the value 0 is (y — z(p + 1)), the
maximum is achieved at

. y
IMap(y) = T

It is casy to check that this value is indeed maximum (the first derivative changes from
positive to negative at this value).

(b) i. To show the given identity, we need to use Bayes’ rule. We first compute the denomi-

nator, py (y)
f@O e_IIy#e—,ux ks
o Y
M = 1 (14p)

= , 1+ p)ytig¥e Utz gy

y! (1+u)“‘./o Kl

I
(1+ p)u+t

Il

py (y)

Then, we can substitute into the equation we had derived in part (a)

. = =l Y o= (pt+1)z
frv(ely) = save
ﬁ'wmye—(f1+l)w
y! I
(1 + .L:')y+1$ye-(p+l)m

’y.

Thus, A =1+ pu.
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ii. We first manipulate z fxy(z | y):

+1
(1 g #)y :L.y«:‘le#(y-#l):c
y!
UE L #)‘y+2 ¥l (ut+l)x
1+p (y-+1)!
y

+1
= (ly (T 1
1+u'f‘\|Y( |y+1)

cfxy(z|y) =

Now we can find the conditional expectation estimator:

lo o]
icp(y) = BIX|Y =y = fn zfxy (@ | ) de
®y+1 y+1
+1jdr=4T-
| pavta ly+ e =2

(¢) The conditional expectation estimator is always higher than the MAP estimator by 1_.1_—#
(a) The likelihood function is

k
HPT.'(T;' =1; | Q :q) :qk(]_ _ Q)Z:‘t,-—k'

1=1

To maximize the above probability we set its derivative with respect to g to zero
k c k
qu:—l(l pd (])Z* ti—k (Z fie k)qk(l P q)Zi ti—k—1 _ 0,
i

or equivalently
k
k1-g) - (O _ti—k)g=0,
i

which yields @k = = This is not different from the MAP estimate found before. Since

i=1 **
the MAP estimate is calculated using a uniform prior, the likelihood function is a ‘scaled’
version of posterior probability and they can be maximized at the same value of g.

k
kT
(b) Since @i . —Z—:Ekl—t, and that each T; is independent identically distributed, it follows that
k

— is actually a sample mean estimator. The weak law of large numbers says that, when

k .
the number of samples increases to infinity, the sample mean estimator converges to the
actual mean, which is qi, in this case. So we can write the limit of probability as

>c> =0.

—~

k
I i,
AR 1 =i=12" _ E(n)
Qr k—oo k

lim P (
k—o0
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(c) Chebyshev inequality states that

( Zt_ T; var(Tl)

)_ ke?

~E[n]| >

N

So we have

ko
P(Ai*i gO.l):P zimfi 1) g
Qr ¢ k
k
i1 Tt var(T1)
=1- —— >01]>1-
1 P( = E[T}] ﬁ(]l)_l 5

To ensure the above probability to be greater than 0.95, we need that
l1-¢
T, 2
L O ) T > 0.95,

LSS o 012*

or
k > 2000var(T}) =

The number of observations k needed depends on the variance of T}. For q close to 1, the
variance is close to 0, and the required number of observations is very small (close to 0).
For ¢ = 1/2, the variance is maximum (var(T}) = 2), and we require k = 4000. Thus, to
guarantee the required accuracy and confidence for all g, we need that,

k > 4000.

(a) Normalization of the distribution requires:

, Z‘” lEf)= 3 e 1 ZC"’ _k 1
kruma. I( i =— s 1 3
= =0 2 Z(0)-(1—e7v)
so Z(6) = ——.
l-e @

(b) Rewriting pg(k;0) as:

pi(k;0) = (e’é)k(l—eﬁ), k=0,1,...

the probability distribution for the photon number is a geometric probability distribution
with probability of success p = 1 — e~ a, and it is shifted with 1 to the left since it starts
with k£ = 0. Therefore the photon number expectation value is

1 1 1
prg =-—1= r—1=—
P l1—e7% et —1
and its variance is
l1-p )
2 = £t
O = = — = p¥k + pk.

P (1-emd)
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(c)

The joint probability distribution for the k; is

A R —kfo__1 13 K
p}((kl, ceey fun,g) — E(EFHLle — me [ 21_1 .
The log likelihood is —n - log Z(6) — 1/6 >, k;.
We find the maxima of the log likelihood by setting the derivative with respect to the
parameter € to zero:

1
d e o 1
— 108 PR (K1y v kni0) = =1 ———— k=Y k=
40 ngK( 1 }ﬂ:g) n 82(1—6_%)+922k1 0

=1
or

For a hot body, 6 >> 1 and _2111_1 ~ 6, we obtain
%

1 n
0 ~ H.Zlk" = sp.
o

Thus the maximum likelihood estimator ©,, for the temperature is given in this limit by the
sample mean of the photon number

According to the central limit theorem, the sample mean approaches for large n a Gaussian
distribution with standard deviation our root mean square error

TK

oy = —.

On \/ﬁ
To allow only for 1% relative root mean square error in the temperature, we need % &
0.01pg. With o2 = p3. + p it follows that

2
\ Bkt HK 1
o Ly e S, [ |
HE

0.0lpr LK

In general, for large temperatures, i.e. large mean photon numbers px > 1, we need about
10,000 samples. .

The 95% confidence interval for the temperature estimate for the situation in part (d), i.e.

= 7K — 0.0k,

Jén_ﬁ

is

[K — 1.960;, K +1.960 ] = [K — 0.0196p, K + 0.0196px].
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(a)

. A / . . .
The sample mean estimator ©,, = Y1F==+Wn in this case is

& 2340
©1000 = 1000 = = 2.34.

From the standard normal table, we have ©(1.96) = 0.975, so we obtain
p(_[Sw—pl ;46 500
var(W;)/1000

Because the variance is less that 4, we have

P(QwrﬂgL%Jmﬂmymm)gP@mm—ng%JMmm)

and letting the right-hand side of the above equation = 0.95 gives a 95% confidence, i.e.,

[émgg _ 1.96+/4/1000, 1000 + 1.96\/4/1000] = [émog —0.124, &1000 + 0.124] = [2.216,2.464]

The likelihood function is

Sw(w;0) = wa w;; 0) = Hee-"‘"’:
=1

And the log-likelihood function is

n
log fw(w; ) = nlogf — 6 Zw,;,
=1
The derivative with respect to  is 3 ) w;,and by setting it to zero, we see that the

maximum of log fy (w; @) over § > () is attained at 6, = sv—-. The resulting estimator is
i=1 W

n
.
4 1I/Vi

1=

Amle _
ole —

In this case,

- 1000
omle = — = (.4274.
me = oarg = 04274

Using the regression formulas of Section 9.2, we have

5

Z(-’Ei —Z)(yi — )

él = ) éo - ﬂ i é15:1

where

:_Zrt_4g4 7= ézﬁ_ma’s
i=1

The resulting ML estimates are

01 = 40.53, 0o = —65.86.
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(b) Using the same procedure as in part (a), we obtain

Z(CCE? -Z)(yi — 9)
9“1 it i=1

>
(=]

Il
=)

|
P)
Rzl

5 bl

> (@? - z)?

i=1
where

__1g 2 __1lg
T=z gm =3360, §=z) ui=13438.

i=1

which for the given data yields
6, =4.09, 6= —3.07.
Figure 1 shows the data points (z;,¥;), ¢ =1,...,5, the estimated linear model
y = 40.532 — 65.86,
and the estimated quadratic model

y = 4.09z2 — 3.07.

* SupelamPonts |

v Estimated First-oder Model
o Estimated Second-order Model|
.'I e
A
300 b
rd
£
<
> 20 ,/,'
Pt
.
oy
100 e
;
e et
el
] -’/
-100
0 2 4 6 8 10 12

Figure 1: Regression Plot
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Recitation 25
December 9, 2010
Based on Spring 10 Final exam

Question 2 An atom of the radioactive element Vestium decays to an atom of Hockfieldium after a time that
is an exponential random variable with parameter A. Hockfieldium is a stable element; i.e., it is
not radioactive. Each radioactive atom decays independently of any other atoms.

(a) Suppose a box has n atoms of Vestium at time 0, where n is a positive integer. Let V be the
remaining atoms of Vestium in the box at time ¢, where ¢ is a positive real number. Find
the PMF of V.

(b) An atom of Vestium can itself be the product of the radioactive decay of an atom of Grayon.
The decay of any one atom of Grayon to an atom of Vestium occurs after a time that is an
exponential random variable with parameter [

Suppose a box initially contains two atoms of Grayon and nothing else. Find the expected

time until the box is no longer radioactive, i.e., it contains neither Grayon nor Vestium—only
Hockficldium.

Question 4 Breaking a stick more than twice. We start with a stick of length £. We break at a point
which is chosen randomly and uniformly over its length, and keep the piece that contains the left
end of the stick. We then repeat the same process several times on the piece that we were left
with. Denote by X, the length of the piece we are left with after breaking n times.

(2) Find E[X,].

(b) After breaking the stick n times, we randomly pick one of the n+ 1 pieces, each of the pieces
being equally likely to be picked. Calculate the expected length of the chosen piece.

(c) Does the sequence X;, Xa, ... converge in probability to a number? If so, to what value?
Prove.

Question 5 Let Wi, Wa, and W3y be independent, continuous random variables each uniformly distributed
over [0,1]. Let X =W1 +Wa and Y = X + Wj.

(a) Find the linear least mean squares (LLMS) estimator of X from Y.
(b) Find the maximum a posteriori probability (MAP) cstimator of X from Y.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

6.041/6.431 Fall 2010 Final Exam Solutions
Wednesday, December 15, 9:00AM - 12:00noon.

Problem 1. (32 points) Consider a Markov chain {X,;n = 0,1,...}, specified by the following
transition diagram.

0.5 0.9

1. (4 points) Given that the chain starts with Xy = 1, find the probability that Xy = 2.
Solution: The two-step transition probability is:
r12(2) = pi1-p12 +pi2 - P2
= 06-04+0.4-0.5
= 0.44.

2. (4 points) Find the steady-state probabilities 71, mo, w3 of the different states.

Solution: We set up the balance equations of a birth-death process and the normalization equation
as such:

TipP12 = T2P21
Top23 = T3P32
T +m+mw3 = 1.

Solving the system of equations yields the following steady state probabilities:

m = 1/9
T = 2/9
w3 = 6/9.

In case you did not do part 2 correctly, in all subsequent parts of this problem you can just use the
symbols m;: you do not need to plug in actual numbers.

3. (4 points) Let Y,, = X,, — X,,_1. Thus, Y,, = 1 indicates that the nth transition was to the right,
Y,, = 0 indicates it was a self-transition, and Y;,, = —1 indicates it was a transition to the left. Find
lim P(Y, =1).
n—oo

Solution: Using the total probability theorem and steady state probabilities,

n—oo

3
lim P(Y,=1) = Zm P, =1| Xp—1 =1)
i—1

mT1P12 + T2P23
= 1/9.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

4. (4 points) Is the sequence Y,, a Markov chain? Justify your answer.

Solution: No. Assume the Markov process is in steady state. To satisfy the Markov property,
PY,=1|Y,1=1Y,2.=1)=PY,=1|Y,_1=1).
For large n,
PY,=1|Y,-1=1Y,2=1)=0,
since it is not possible to move upwards 3 times in a row. However in steady state,
PH{Y,=1}n{Y,-1 =1})
P(Y,-1=1)

T1P12P23
mT1P12 + Top23

£ 0.

P(Y,=1|Y, 1=1) =

Therefore, the sequence Y,, is not a Markov chain.

. (4 points) Given that the nth transition was a transition to the right (Y,, = 1), find the probability
that the previous state was state 1. (You can assume that n is large.)

Solution: Using Bayes’ Rule,

P(X, 1 =)P(Y,=1|X, 1=1)
T1P12

mT1Pp12 + T2p23
= 2/5.

P(X, 1=1|Y,=1)

. (4 points) Suppose that Xy = 1. Let T be defined as the first positive time at which the state is
again equal to 1. Show how to find E[T]. (It is enough to write down whatever equation(s) needs
to be solved; you do not have to actually solve it/them or to produce a numerical answer.)

Solution: In order to find the the mean recurrence time of state 1, the mean first passage times to
state 1 are first calculated by solving the following system of equations:

to = 1+ pooto + posts
ts = 1+ psata + p3sts.

The mean recurrence time of state 1 is then 7 = 1 + piata.

Solving the system of equations yields t2 = 20 and t3 = 30 and t] = 9.

. (4 points) Does the sequence X1, Xo, X3,... converge in probability? If yes, to what? If not, just
say “no” without explanation.

Solution: No.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

8. (4 points) Let Z,, = max{X;,..., X, }. Does the sequence Z, Zy, Z3, ... converge in probability?
If yes, to what? If not, just say “no” without explanation.

Solution: Yes. The sequence converges to 3 in probability.

For the original markov chain, states {1, 2, 3} form one single recurrent class. Therefore, the Markov
process will eventually visit each state with probability 1. In this case, the sequence Z, will, with
probability 1, converge to 3 once X, visits 3 for the first time.

Problem 2. (68 points) Alice shows up at an Athena cluster at time zero and spends her time
exclusively in typing emails. The times that her emails are sent are a Poisson process with rate A4 per
hour.

1. (3 points) What is the probability that Alice sent exactly three emails during the time interval
[1,2]7?
Solution: The number of emails Alice sends in the interval [1, 2] is a Poisson random variable with
parameter A4. So we have:

A Age_)‘A
3

2. Let Y7 and Y5 be the times at which Alice’s first and second emails were sent.

P(3,1) =

(a) (3 points) Find E[Ys | Y1].
Solution: Define T5 as the second inter-arrival time in Alice’s Poisson process. Then:

Yo=Y +1T5
ElY; [V1]=EN1 + T3 [ V1] =Y1 + E[T3] = Y1 + 1/ 4.

(b) (3 points) Find the PDF of Y;2.
Solution: Let Z = Y. Then we first find the CDF of Z and differentiate to find the PDF of

Z:
_ oAz
Fz(Z)ZP(YfSz):P(—\/Engg\/E):{ L—e V5 220
0 2 < 0.
dFz(z) —Aavz 1 —1/2
- = 3 >
fZ(Z> dz g€ 22 (2 > 0)
A4 _AA\ﬁ >0
— 2,/z¢ Z 2
f2(2) { 0 2 < 0.

(c) (3 points) Find the joint PDF of Y7 and Y.
Solution:

fY1,Y2(y17y2) = fyl(yl)fYQ‘Yl(y2‘y1)

fvi (1) fry (y2 — y1)

_ )\Ae—AAm)\Ae—)\A(yz—yﬂ Yo >y1 >0
Age M gy >y >0
0 otherwise.
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Department of Electrical Engineering & Computer Science
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(Fall 2010)

3. You show up at time 1 and you are told that Alice has sent exactly one email so far. (Only give
answers here, no need to justify them.)

(a)

(b)

(3 points) What is the conditional expectation of Y3 given this information?

Solution: Let A be the event {exactly one arrival in the interval [0,1]}. Looking forward from
time t = 1, the time until the next arrival is simply an exponential random variable (7"). So,

E[Y2 | A]=1+E[T] =1+ 1/\4.

(3 points) What is the conditional expectation of Y7 given this information?
Solution: Given A, the times in this interval are equally likely for the arrival Y;. Thus,

E[Y: | 4] = 1/2.

4. Bob just finished exercising (without email access) and sits next to Alice at time 1. He starts typing
emails at time 1, and fires them according to an independent Poisson process with rate Ag.

(a)

(5 points) What is the PMF of the total number of emails sent by the two of them together
during the interval [0, 2]?

Solution: Let K be the total number of emails sent in [0,2]. Let K; be the total number of
emails sent in [0, 1), and let K3 be the total number of emails sent in [1,2]. Then K = K+ Ko
where K is a Poisson random variable with parameter A4 and K> is a Poisson random variable
with parameter A4 + Ap (since the emails sent by both Alice and Bob after time ¢ = 1 arrive
according to the merged Poisson process of Alice’s emails and Bob’s emails). Since K is the
sum of independent Poisson random variables, K is a Poisson random variable with parameter
224 + Ap. So K has the distribution:

2\ An)k —(2XAa+AB)
prc(k) = AT B)k,e k=01,....

(5 points) What is the expected value of the total typing time associated with the email that
Alice is typing at the time that Bob shows up? (Here, “total typing time” includes the time
that Alice spent on that email both before and after Bob’s arrival.)
Solution: The total typing time () associated with the email that Alice is typing at the
time Bob shows up is the sum of Sy, the length of time between Alice’s last email or time 0
(whichever is later) and time 1, and 77, the length of time from 1 to the time at which Alice
sends her current email. 77 is exponential with parameter A4. and Sy = min{7y, 1}, where Tj
is exponential with parameter 4.
Then,

Q = S() + 11 = min{TO, 1} + 11

and
E[Q] = E[So] + E[T1].

We have: E[T1] = 1/\4.
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We can find E[Sy] via the law of total expectations:
E[So] = Emin{Ty,1}] = P(To < 1E[Ty | To < 1]+ P(Tp > 1)E[1|T) > 1]

1
= (l — E_AA) /0 th\Togl(t) dt + €_>\A

1 —Aat
by A
= (1 — €_>‘A> / tL}\ dt + e_)\A
0o (I—e4)

1
= / t/\Ae*)‘At dt +e M
0

1 1
= 3 tA\ye Mbdt 4 e
A Jo

where the above integral is evaluated by manipulating the integrand into an Erlang order 2
PDF and equating the integral of this PDF from 0 to 1 to the probability that there are 2 or
more arrivals in the first hour (i.e. P(Y2 <1)=1—-P(0,1) — P(1,1)). Alternatively, one can
integrate by parts and arrive at the same result.

Combining the above expectations:

E[Q] = E[So] + E[T1] = ;A (1 — e*AA) + ;A — )\1A (2 _ efAA> '

(5 points) What is the expected value of the time until each one of them has sent at least one
email? (Note that we count time starting from time 0, and we take into account any emails
possibly sent out by Alice during the interval [0, 1].)
Solution: Define U as the time from ¢ = 0 until each person has sent at least one email.
Define V' as the remaining time from when Bob arrives (time 1) until each person has sent at
least one email (so V =U —1).
Define S as the time until Bob sends his first email after time 1.
Define the event A = {Alice sends one or more emails in the time interval [0,1]} = {Y; < 1},
where Y7 is the time Alice sends her first email.
Define the event B = {After time 1, Bob sends his next email before Alice does}, which is
equivalent to the event where the next arrival in the merged process from Alice and Bob’s
orginal processes (starting from time 1) comes from Bob’s process.
We have:

PA =P <1)=1—¢eM
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Then
E[U] = P(AEU | A]+P(A°)E [U\AC}
= (1—e™A+E[V]|A)+eMA+E[V | A
= (1—e AA)(HE[Vyfl])Jre*M(lJrP(B|AC) [V | BN Al +P(B°| A9E[V | BN A9))
= (1—e ’\A)(1+E[V]A])+e_’\A(1+P( JE[V | BN A% + P(BY)E[V | BN A9))
= (1—e™M)(1+E[V|A4])+ <1 + /\A)f)\BE[V | BN A + )%)\JFA)\BE[V | B¢ mAC}) .

Note that E[V | B¢ N A€ is the expected value of the time until each of them sends one email
after time 1 (since, given A°, Alice did not send any in the interval [0,1]) and given Alice
sends an email before Bob. Then this is the expected time until an arrival in the merged

process followed by the expected time until an arrival in Bob’s process. So, E[V | B¢ N A°] =
1 1

AatAB + A"

Similarly, E[V | BN A°] is the time until each sends an email after time 1, given Bob sends an

email before Alice. So E[V | BN A°] = m + ﬁ.

Also, E[V | A] is the expected time it takes for Bob to send his first email after time 1 (since,

given A, Alice already sent an email in the interval [0,1]). So E[V | A] = E[S] = 1/Ap.

Combining all of this with the above, we have:

EU] = (1—e™M)(1+41/\p)

+e_)‘A<1+ Ap < ! +1>+ M ( ! +1>>
A +AB \ A+ Aa AM+As \M\a+Ag A/ )

(5 points) Given that a total of 10 emails were sent during the interval [0,2], what is the
probability that exactly 4 of them were sent by Alice?

Solution:

P(Alice sent 4 in [0, 2] N total 10 sent in [0, 2])
P(total 10 sent in [0, 2])
P(Alice sent 4 in [0,2] N Bob sent 6 [0, 2])
P(total 10 sent in [0, 2])

((2AA)Zf2*A ) (()\B)GG!e*AB )

(2)\A+AB)10672)\A+)\B
10!

(10 224 \* B 6

B <4> <2)\A+>\B> <2>\A+)\B> '
As the form of the solution suggests, the problem can be solved alternatively by computing
the probability of a single email being sent by Alice, given it was sent in the interval [0, 2].
This can be found by viewing the number of emails sent by Alice in [0, 2] as the number of
arrivals arising from a Poisson process with twice the rate (2A4) in an interval of half the
duration (particularly, the interval [1,2]), then merging this process with Bob’s process. Then

the probability that an email sent in the interval [0, 2] was sent by Alice is the probability that
an arrival in this new merged process came from the newly constructed 2\ 4 rate process:

P(Alice sent 4 in [0, 2] | total 10 sent in [0,2]) =
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224

P oA+ s

Then, out of 10 emails, the probability that 4 came from Alice is simply a binomial probability
with 4 successes in 10 trials, which agrees with the solution above.

5. (5 points) Suppose that Ay = 4. Use Chebyshev’s inequality to find an upper bound on the
probability that Alice sent at least 5 emails during the time interval [0,1]. Does the Markov
inequality provide a better bound?

Solution:

Let N be the number of emails Alice sent in the interval [0, 1]. Since N is a Poisson random variable

with parameter A4,
E[N] =var(N) = 4 = 4.

To apply the Chebyshev inequality, we recognize:

P(N>5)=P(N-4>1)<P(N-4/>1) <

In this case, the upper-bound of 4 found by application of the Chebyshev inequality is uninformative,
as we already knew P(N > 5) < 1.

To find a better bound on this probability, use the Markov inequality, which gives:

E[N] 4
P(N >5) < = = .

6. (5 points) You do not know A4 but you watch Alice for an hour and see that she sent exactly 5
emails. Derive the maximum likelihood estimate of A4 based on this information.

Solution:

~

A = argmaxlog (py (5 1))

Ao
= argmgxlog( =] >

= argmax —log(5!) + 5log(A) — A

Setting the first derivative to zero
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7. (5 points) We have reasons to believe that A4 is a large number. Let N be the number of emails
sent during the interval [0, 1]. Justify why the CLT can be applied to N, and give a precise statement
of the CLT in this case.

Solution: With A4 large, we assume A4 > 1. For simplicity, assume A4 is an integer. We can
divide the interval [0, 1] into A4 disjoint intervals, each with duration 1/ 4, so that these intervals
span the entire interval from [0, 1]. Let NNV; be the number of arrivals in the ith such interval, so that
the N;’s are independent, identically distributed Poisson random variables with parameter 1. Since
N is defined as the number of arrivals in the interval [0, 1], then N = Ny +---+ N, ,. Since Ay > 1,
then N is the sum of a large number of independent and identically distributed random variables,
where the distribution of N; does not change as the number of terms in the sum increases. Hence,
N is approximately normal with mean A4 and variance A4.

If A4 is not an integer, the same argument holds, except that instead of having A4 intervals, we
have an integer number of intervals equal to the integer part of A4 (A4 =floor(A4)) of length 1/A4
and an extra interval of a shorter length (A4 — Aa)/Aa.

Now, N is a sum of A 4 independent, identically distributed Poisson random variables with parameter
1 added to another Poisson random variable (also independent of all the other Poisson random
variables) with parameter (Ag — A4). In this case, N would need a small correction to apply
the central limit theorem as we are familiar with it; however, it turns out that even without this
correction, adding the extra Poisson random variable does not preclude the distribution of N from
being approximately normal, for large A4, and the central limit theorem still applies.

To arrive at a precise statement of the CLT, we must “standardize” N by subtracting its mean
then dividing by its standard deviation. After having done so, the CDF of the standardized version
of N should converge to the standard normal CDF as the number of terms in the sum approaches
infinity (as Ag — 00).

Therefore, the precise statement of the CLT when applied to NV is:

im P (Y 2 L) o
( )=o)

)\A—>OO A/ )\A
where ®(z) is the standard normal CDF.

8. (5 points) Under the same assumption as in last part, that A4 is large, you can now pretend that
N is a normal random variable. Suppose that you observe the value of N. Give an (approximately)
95% confidence interval for \4. State precisely what approximations you are making.

Possibly useful facts: The cumulative normal distribution satisfies ®(1.645) = 0.95 and

®(1.96) = 0.975.

Solution: We begin by estimating A4 with its ML estimator Ay = N, where E[N] = A\4. With
A4 large, the CLT applies, and we can assume N has an approximately normal distribution. Since

var(N) = A4, we can also approximate the variance of N with ML estimator for A4, so var(N) ~ N,
and oy ~ VN.
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To find the 95% confidence interval, we find § such that:

095 = P(IN— A4 <B)

“(s)

B~ VN®1(0.975) = 1.96VN.

Q

So, we find:

Thus, we can write:

P(N —1.96VN < Ay < N +1.96VN) ~ 0.95.

So, the approximate 95% confidence interval is: [N — 1.96v/N, N 4 1.96v/N].

9. You are now told that A4 is actually the realized value of an exponential random variable A, with
parameter 2:
fa(d) =272 x>o0.

(a) (5 points) Find E[N?].
Solution:

EIN?Y —E[EIN? | A]] = Elvar(N | A)+ (B[N | A])?
= E[A+A?]
= E[A] +var(A) + (E[A])?
]
2 22
1.
(b) (5 points) Find the linear least squares estimator of A given N.
Solution:

Apiuvs = E[A] + W(N — E[N)).
Solving for the above quantities:
Bl =
BIN] = E[E[N |A] = B[A] =
var(N) = B[N?Y— (B[N])2=1- 2% _ Z
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Substituting these into the equation above:

Arrvs
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