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Recursive Data Types

Recursive data types play a central role in programming, and induction is really all
about them.

Recursive data types are specified by recursive definitions that say how to con-
truct new data ¢lements from previous ones. Along with each recursive data type
there are recursive definitions of properties or functions on the data type. Most
importantly, based on a recursive definition, there is a structural induction method
for proving that all data of the given type have some property.

This chapter examines a few examples of recursive data types and recursively
defined functions on them:

e strings of characters,
e the “balanced” strings of brackets,
e the nonnegative integers, and

e arithmetic expressions.

7.1 Recursive Definitions and Structural Induction

o

hy"

We’ll start off illustrating recursive definitions and proofs using the example of
character strings. Normally we’d take strings of characters for granted, but it’s
informative to treat them as a recursive data type. In particular, strings are a nice
first example because you will see recursive definitions of things that are easy to
understand or you already know, so you can focus on how the definitions work
without having to figure out what they are for.

Definitions of recursive data types have two parts:

e Base case(s) specifying that some known mathematical elements are in the

data type, and

e Constructor case(s) that specify how to construct new data elements from
previously contructed element or from base elements.

The definition of strings over a given character set, A, follows this pattern:
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Definition 7.1.1. Let A be a nonempty set called an alphabet, whose-elements are
referred to as characters, letters, or symbols. The reciirsive data typ@g@r:gs/
oveiaiphab)zg A, jare defined as follows:

e Base case: the empty string, A, is in A*.

e Constructor case: If a € A and s € A*, then the pair (a,s) € A*.

So {0, 1}* are supposed to be the binary strings.

The usual way to treat binary strings is as sequences of 0’s and 1’s. For example,
we have identified the length-4 binary string 1011 as a sequence of bits, of a 4-
tuple, namely, (1,0, 1, 1). But according to the recursive Definition 7.1.1, this string
would be represented by nested pairs, namely

(1, {0, (1,€1,A)))) - ety

These nested pairs are definitely cambersome, and may also seem bizarre, but they
actually reflect the way lists of characters would be represented in programming
languages like Scheme or Python, where {a, s) would be correspond to cons(a, ).
Notice that we haven’t said exactly how the empty string is represented. It really
doesn’t matter as long as we can recognize the empty string and not confuse it with
any nonempty string.
Continuing the recursive approach, let’s define the length of a string.

Definition 7.1.2. The length, |s|, of a string, s, is defined recursively based on the
definition of s € A*:

Base case: |A| == 0.

Constructor case: | {a,s) | = 1+ |s].

This definition of length follows a standard pattern: functions on recursive data
types can be defined recursively using the same cases as the data type definition.
Namely, to define a function, £, on a recursive data type, define the value of f for
the base cases of the data type definition, and then define the value of f in each
constructor case in terms of the values of f on the component data items.

Let’s do another example: the _concatenation s - t of the strings s and ¢ is the
string consisting of the letters of s followed by the letters of 7. This is a per-
fectly clear mathematical definition of concatenation (except maybe for what to do
with the empty string), and in terms of Scheme/Python lists, s -  would be the list
append(s, t). Here’s a recursive definition of concatenation.

Definition 7.1.3. The concatenation s - t of the strings s, € A* is defined recur-
sively based on the definition of s € A™:
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Base case:
Aintii=ut. .
( L
Constructor case: /\ih_ﬂf‘ i [{L, £ L\{!G

{a,s)-t = (a,s-t).

Structural induction is a method for proving that all the elements of a recursively

defined datatype-have some property. A structural induction proof has two parts
corresponding to the recursive definition:

e Prove that each base case element has the property.

e Prove that each constructor case element has the property, when the construc-
tor is applied to elements that have the property.

For example, we ca verify the familiar Tact that the length of the concatenation
p g

of two strings is the sum of their lengths using structural induction:

Theorem 7.1.4. Foralls,t € A*,
Is 2] = |s| + [¢].
Proof. By structural induction on the definition of s € A*. The induction hypoth-
esis is
P(s):= Vt e A*.|s-t| = |s| + |¢]-

Base case (s = A):

Is-1] = 41|
= |t] (def -, base case)
=0+ ¢
= |s| + |¢] (def length, base case)

Constructor case: Assume the induction hypothesis, P(s), and letr = {(a,s)-.
‘We must show that P (r) holds:

Ir-t] =1(a,s)-1|

=| a1 | (concat def, constructor case)
=14|s-¢t] (length def, constructor case)
=14 (s|+ ] since P(s) holds
=1+ s+ |

=|{a,s) |+ |t| (length def, constructor case)

= |r| + [t
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This completes the proof of the constructor case, so by structural induction we
conclude that P (s) holds for all strings s € A*. S o

This proof illustrates the general principle:

The Principle of Structural Induction.

Let P be a predicate on a recursively defined data type R. If

e P(b) is true for each base case element, b € R, and

é’b—@

e for all two argument constructors

,__Cé.-

[P(r) AND P(s)] IMPLIES P@-, 5))

forallr,s € R,
and likewise for all constructors taking other numbers of arguments,

then
P(r)istrue forall r € R.

The number, #.(s), of occurrences of the character ¢ € A in the string s has a
simple recursive definition based on the definition of s € A*:

Definition 7.1.5.
Base case: #.(1) 1= 0.
Constructor case:

#e(s ifa #c, :
fo(la,sp =) HaFe gy Gale
1+#:(s) ifa=c. j,
: v
We’ll need the following lemma in the next section: wa/H et ha e

‘Lemma 7.L6. "hw‘{j‘vl of J (L

#eo(s - 1) = #c(5) + #c(2).

The easy proof by structural induction is an exercise (Problem 7.6).

7.2 Strings of Matched Brackets

Let {],[ }* be the set of all strings of square brackets. For example, the following
two strings are in {], [ }*:

[IIL0C00TT and [TL1T011(] (7.1)
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A string, s € {],[}*, is called a matched string if its brackets “match up” in
the usual way. For example, the left move is not matched because its
second right bracket does not have a matching left bracket. The string on the right
is matched.

We're going to examine several different ways to define and prove properties
of matched strings using recursively defined sets and functions. These properties
are pretty straightforward, and you might wonder whether they have any particular
relevance in computer scientist. The honest answer is “not much relevance, gny
more.” The reason for this is one of the great successes of computer science as
explained in the text box below.

Expression Parsing

During the early development of computer science in the 1950°s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in ﬁrocessing a program for compilation was expression parsing. One significant
problem was to take an expression like

x+yxz2+y+7
and put in the brackets that determined how it should be evaluated —should it be

[[x + y] * z%2 = y] + 7, or,
x+[y*z2=[y+7), or,
x+y*22] <[y +7, or...7

The Turing award (the “Nobel Prize” of computer science) was ultimately be-

: stowed on Robert W Floyd, for, among other things, being discoverer of a simple
Pf OCQ% CJQWIM program that would insert the brackets properly. i

gm@ r In the 70’s and 80’s, this parsing technology was packaged into high-level

WL@/C ' compiler-compilers that automatically generated parsers from expression gram-

mars. This automation of parsing was so effective that the subject no longer

demanded attention. It largely disappeared from the computer science curriculum
by the 1990’s.

The matched strings can be nicely characterized as a recursive data type:

Definition 7.2.1. Recursively define the set, RecMatch, of strings as follows:

e Base case: A € RecMatch.
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e Constructor case: If s, € RecMatch, then

[s]t € RecMatch.

Here [ s ] ¢ refers to the concatenation of strings which would be written in full
as

[-G-A-2).

6 M

From now on, we’ll usually omit the “’s.
Using this definition, A € RecMatch by the Base case, so letting s = t = A in
the constructor case implies

[A]1A =[] € RecMatch. 8
'
Now,
[A111 =1111 € RecMatch (lettings = A,t =[1)
[I11A =1[1]11 € RecMatch (lettings =[],£ =)
[[11[] € RecMatch (letings =[], =[1)

are also strings in RecMatch by repeated applications of the Constructor case; and
SO on.

It’s pretty obvious that in order for brackets to match, there better be an equal
number of left and right ones. For further practice, let’s carefully prove this from
the recursive definitions.

Lemma. Every string in RecMatch has an equal number of left and right brackets.

Proof. The proof is by structural induction with induction hypothesis
P(s) = #{ (s) = #] (5).
Base case: P(A) holds because
#[ (A)y=10= #] (1)

by the base case of Definition 7.1.5 of #.().
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Constructor case: By structural induction hypothesis assume P(s) and P(¢)
and must show P ([ s ]1):
# ([s10) = #7 () +# () +# D) +#[ () (Lemma 7.1.6)
=1 +#[ (S)+0+#[ ) (def#[ 0)
=1+ # () +0+ #] ®) (by P(s) and P(1))
:0+#] (s)+1 +#] (1)
=# () +# () +# D) +# ) (def #] 0)
= #] (s (Lemma 7.1.6)
This completes the proof of the constructor case. We conclude by structural induc-
tion that P (s) holds for all s € RecMatch. |
Warning: When a recursive definition of a data type allows the same element
to be constructed in more than one way, the definition is said to be ambiguous.
We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on its definition would always be well-defined. Re-
L cursively defining a function on an ambiguous of a data type definition usually will

not work. To illustrate the problem, here’s another definition of the matched strings.
Definition 7.2.2. Define the set, AmbRecMatch C {], [ }* recursively as follows:
e Base case: A € AmbRecMatch,

e Constructor cases: if 5,7 € AmbRecMatch, then the strings [ s | and st are
also in AmbRecMatch.

It’s pretty easy to see that the definition of AmbRecMatch is just another way
to define RecMatch, that is AmbRecMatch = RecMatch (see Problem 7.10). The
definition of AmbRecMatch is arguably easier to understand, but we didn’t use it
becaused it’s ambiguous, while the trickier definition of RecMatch is unambiguous.
Here’s why this matters. Let’s define the number of operations, f(s), to construct
a matched string s recursively on the definition of s € AmbRecMatch:

f(d)="0, (f base case)
fls]) == 14 f(s),
fGst) == 14+ f(s)+ f(2). (f concat case)
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This definition may seem ok, but it isn’t: f(A) winds up with two values, and
consequently:

0= f(1) (f base case))
= f(A-1) (concat def, base case)
=14+ fA)+ f() (f concat case),
=14+0+0=1 (f base case).

This is definitely not a situation we want to be in!

7.3 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.
RSk B H Okt dhefians i
Definition 7.3.1. The set, N, is a data type defined recursivly as:
e 0 elN.

e If n € N, then the successor,n + 1, of n is in N. aéd’ Q’Q

This of course makes it clear that ordi
stryctural induction on the recursive Definition 7.3.1. This alsojustifies the familiar
recursive definitions of functions on the nonnegative integers.

7.3.1 Some Standard Recursive Functions on N

The Factorial function. This function is often written “n!.” You will see a lot of
it in later cahpters. }—Iere we’ll uge the notation fac(n):

\ 0 &
o fac(0) :=1. Lcw‘\er‘" ;
e fac(n + 1) := (n + 1) - fac(n) forn > 0.

The Fibonacci numbers. Fibonacci numbers arose out of an effort 800 years ago
to model population growth. They have a continuing fan club of people cap-
tivated by their extraordinary properties. The nth Fibonacci number, fib, can
be defined recursively by:

F(0) :=0,
Fl) =1,
Fn):=Fn—-1)+ Fn-2) forn = 2.
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Here the recursive step starts at n = 2 with base cases for 0 and 1. This is
needed since the recursion relies on two previous values.

What is F(4)? Well, F(2) = F(1) + F(0) =1, F3) = F(2) + F(1) = 2,
so F(4) = 3. The sequence starts out 0,1, 1,2,3,5,8,13,21,....

Sum-notation. Let “S(n)” abbreviate the expression Y, f(i).” We can recur-
sively define S(n) with the rules
e S(0):=0.
e Sm+1):=f(n+1)+ Sn) forn > 0.

7.3.2 Ill-formed Function Definitions

There are some other blunders to watch out for when defining functions recursively.
The main problems come when recursive definitions don’t follow the recursive def-
inition of the underlying data type. Below ar€ ction specifications that
resemble gocmons on the nonnegative integers, but they aren’t.

fin) =2+ filn—1). (7.2)

This “definition” has no base case. If some function, fi, satisfied (7.2), so would a
function obtained by adding a constant to the value of f;. So equation (7.2) does
not uniquely define an f;.

0, if n1=.0,
fa(n +1) otherwise.

This “definition™ has a base case, but still doesn’t uniquely determine f,. Any
function that is 0 at 0 and constant everywhere else Would satisfy the specification,
so (7.3) also does not uniquely define anything.

In a typical programming language, evaluation of f>(1) would begin with a re-
cursive call of f(2), which would lead to a recursive call of f5(3), ... with recur-

sive calls continuing without end. This “qperational” approach interprets (7.3) as
defining a partial function, f5, that is und%ﬁrywm

‘i—____‘___‘—-__—‘___—_‘

Ja(n) == (7.3)

0, ifn isdivisible by 2,
f3(n) == <1, ifnis divisible by 3, (7.4)

2, otherwise.
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This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (7.4)
doesn’t define anything. 5

Mathematicians have been wondering about this function specification for a
while:

1, ifn <1,
Ja(n) == fa(n/2) if n > 1iseven, (7.5)
fa(Bn + 1) ifn > 1isodd.

For example, f4(3) = 1 because
JaB3) == f3(10) == fo(5) = fa(16) = fa(8) = fa(4) = fa(2) = fu(1) :=1.

The constant function equal to 1 will satisfy (7.5) (why?), but it’s not known if
another function does too. The problem is that the third case specifies f4(n) in
terms of f4 at arguments larger than n, and so cannot be justified by induction on
N. It’s known that any f4 satisfying (7.5) equals mmlp'm‘overa’bm

A final example is Ackermann’s function, which is an extremely fast-growing
function of two nonnegative arguments. Its inverse is correspondingly slow-growing
—it grows slower than logn, loglogn, logloglogn, ..., but it does grow un-
boundly. This inverse actually comes up analyzing a useful, highly efficient proce-
dure known as the Union-Find algorithm. This algorithm was conjectured to run
in a number of steps that grew linearly in the size of its input, but turned out to be
“linear” but with a slow growing coefficient nearly equal to the inverse Ackermann
function. This means that pragmatically Union-Find is linear since the theoretically
growing coefficient is less than 5 for any input that could conceivably come up.

Ackermann’s function can be defined recursively as the function, A, given by the
following rules:

A(m,n) =2n, ifm=0orn <1, (7.6)
A(m,n) = A(m — 1, A(m,n — 1)), otherwise. (7.7

Now these rules are unusual because the definition of A(m, n) involves an eval-
uation of A at arguments that may be a lot bigger than m and n. The definitions
of f» above showed how definitions of function values at small argument values in
terms of larger one can easily lead to nonterminating evaluations. The definition
of Ackermann’s function is actually ok, but proving this takes some ingenuity (see
Problem 7.12).
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7.4 Arithmetic Expressions

-__.'_"—‘——____-
E@M key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed. .

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 + 2x + 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions a@{em is its definition:

Definition 7.4.1. e Base cases:
o
— The variable, x, is i@ {

— The arabic numeral, k, for any nonnegative integer, k, is in Aexp.
e Constructor cases: If e, f € Aexp, then

— [e+ f1 € Aexp. The expression [ e + f] is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

— [e * f] € Aexp. The expression [ e * f] is called a product. The
Aexp’s e and f are called the components of the product; they’re also
called the multiplier and multiplicand.

— —[e] € Aexp. The expression — [ e] is called a negative.

Notice that Aexp’s are fully bracketed, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2 +2x + 1 would officially be written
as

[[3*[x*x]]+[[2*x] +1]]. (7.8)

These brackets and *’s clutter up examples, so we’ll often use simpler expressions
like “3x24-2x+1” instead of (7.8). But it’s important to recognize that 3x24+2x+1

is not an Aexp; it’s an abbreviation for an Aexp.
—_ D

7.4.1 Evaluation and Substitution with Aexp’s
Evaluating Aexp’s

Since the only variable in an Aexp is x, the value of an Aexp is determined by the
value of x. For example, if the value of x is 3, then the value of 3x2 4 2%
is obviously 34. In general, given any Aexp, e, and an integer value, n, for the
variable, x, we can evaluate e to finds its value, eval(e, n). It’s easy, and useful, to
specify this evaluation process with a recursive definition.
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Definition 7.4.2. The evaluation function, eval(:, Aexp) x Z — Z, is defined re-
cursively on expressions, e € Aexp, as follows. Let n be any integer.

e Base cases:

eval(x,n) :=n, (value of variable x is n.) (7.9)

eval(k,n) ==k, (vaiue of numeral k is k, rega:diess of x.) (7.10)

e Constructor cases:

eval([ e; + e2],n) ::=eval(ey, n) + eval(ez, n), (7.11)
eval([ e; * e2],n) ::= eval(eq, n) - eval(ez, n), (7.12)
eval(—[e1],n) == —eval(ey, n). (7.13)

For example, here’s how the recursive definition of eval(,w)ould arrive at the
value of 3 + x2 when x is 2:

eval([ 3 + [x *x]],2) = eval(3,2) +eval([ x * x],2) (byDef7.42.7.11)

=3 +eval([x * x],2) (by Def 7.4.2.7.10)
=3 4+ (eval(x,2) -eval(x,2)) (by Def7.4.2.7.12)
=34(2-2) (by Def 7.4.2.7.9)
=34+4=17.

Substituting into Aexp’s

Substituting expressions for variables is a standard operation used by compilers
and algebra systems. For example, the result of substituting the expression 3x for
x in the expression x (x — 1) would be 3x (3x — 1). We’ll use the general notation
subst( f, e) for the result of substituting an Aexp, f, for each of the x’s in an Aexp,
e. So as we just explained,

subst(3x,x(x — 1)) = 3x(3x —1).
This substitution function has a simple recursive definition:

Definition 7.4.3. The substitution function from Aexp x Aexp to Aexp is defined
recursively on expressions, e € Aexp, as follows. Let f be any Aexp.
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e Base cases:

subst( f, x) := f, (subbing f for variable, x, just gives ) (7.14)
subst(f, k) ==k  (subbingintoanumeraldoesnothing.) (7.15)

f
e Constructor cases: la'}ef) (?'W—

subst(f, [ e1 + e2]) ::=[ subst(f, e1) + subst( f, e2)] (7.16)
subst(f,[ e1 * e2])) 2= [ subst(f, e1) * subst( f, e2)] (7.17)
subst(f,—| e1]) ::= —[ subst(f,e1)]. (7.18)

Here’s how the recursive definition of the substitution function would find the
result of substituting 3x for x in the x(x — 1):

subst(3x,[ x[x —111)

=subst3x,[x*x[x +—[1]11]) (unabbreviating)
= [ subst(3x, x) * subst(3x,[x +—[1[1]) (by Def 7.4.3 7.17)
= [3x *subst(3x,[x +—=[1]11)] (by Def 7.4.3 7.14)
= (Bx * [ subst(3x, x) + subst(3x,—[ 1]1)]] (by Def 7.4.3 7.16)
= [3x *[3x + —[ subst(3x,1)]1] (by Def 7.4.3 7.14 & 7.18)
e [ (by Def 7.4.3 7.15)
= 3x[3x —1] (abbreviation)

Now suppose we have to find the value of subst(3x,x(x — 1)) when x = 2.
There are two approaches.

First, we could actually do the substitution above to get 3x(3x — 1), and then
we could evaluate 3x(3x — 1) when x = 2, that is, we could recursively calculate
eval(3x(3x — 1), 2) to get the final value 30. In programming jargon, this would
be called evaluation using the Substitution Model. Because the formula 3x ap-
pears twice after substitution, it the multiplication 3 - 2 to computes its value gets
performed twice.

The other approach is called evaluation using the Environment Model. Namely,
to compute

eval(subst(3x, x(x — 1)), 2) (7.19)

we evaluate 3x when x = 2 using just 1 multiplication to get the value 6. Then
we evaluate x(x — 1) when x has this value 6 to arrive at the value 6 - 5 = 30. So
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the Environment Model only computes the value of 3x once and so requires one
fewer multiplication than the Substitution model to compute (7.19). But how do we
know that these final values reached by these two approaches always agree? We can
prove this easily by structural induction on the definitions of the two approaches.
More precisely, what we want to prove is

Theorem 7.4.4. For all expressions e, f € Aexp and n € Z,

eval(subst( f, e),n) = eval(e, eval( f, n)). (7.20)
Proof. The proof is by structural induction on e.!
Base cases:
e Case[x]

The left hand side of equation (7.20) equals eval( f, n) by this base case in
Definition 7.4.3 of the substitution function, and the right hand side also
equals eval( f,n) by this base case in Definition 7.4.2 of eval(,.)

e Case[k].

The left hand side of equation (7.20) equals k by this base case in Defini-
tions 7.4.3 and 7.4.2 of the substitution and evaluation functions. Likewise,
the right hand side equals k by two applications of this base case in the Def-
inition 7.4.2 of eval(,.)

Constructor cases:

e Case[[e; + e2]]

By the structural induction hypothesis (7.20), we may assume that for all
f €Aexpandn € Z,

eval(subst( f, e;),n) = eval(e;, eval( f, n)) (7.21)

fori = 1,2. We wish to prove that
eval(subst(f,[ e; + e2]),n) = eval([ ey + e2],eval( f,n)) (7.22)
But the left hand side of (7.22) equals

eval([ subst( f,e1) + subst(f, e2)],n)

I'This is an example of why it’s useful to notify the reader what the induction variable is—in this
case it isn’t n.
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by Definition 7.4.3.7.16 of substitution into a sum expression. But this equals
eval(subst( f, e1), n) + eval(subst( f, e2), n)

by Definition 7.4.2.(7.11) of eval(,f)or a sum expression. By induction hy-
pothesis (7.21), this in turn equals

eval(ey, eval(f,n)) + eval(ez, eval((, f),n)).

Finally, this last expression equals the right hand side of (7.22) by Defini-
tion 7.4.2.(7.11) of eval(,f)or a sum expression. This proves (7.22) in this
case.

e Case[[ €1 * €3]] Similar.
e Case[—[ e1] ] Even easier.

This covers all the constructor cases, and so completes the proof by structural
induction.

7.5 Induction in Computer Science

Induction is a powerful and widely applicable proof technique, which is why we’ve
devoted two entire chapters to it. Strong induction and its special case of ordinary
induction are applicable to any kind of thing with nonnegative integer sizes —which
is a awful lot of things, including all step-by- computational processes.
Structural induction then goes beyond natural number counting by offering a
simple, natural approach to proving things about recursive data types and recursive
computation. This makes it a technique every computer scientist should embrace.

Problems for Section 7.1

Class Problems

Problem 7.1.

Prove that for all strings r, s, € A*

(r-s)-t=r-(s-1).
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Problem 7.2.
The reversal of a string is the string written backwards, for example, rev(abcde) =
edcbha.

(a) Give a simple recursive definition of rev(s) based on the recursive defini-
tion 7.1.1 of s € A* and using the concatenation operation 7.1.3.

(b) Prove that
rev(s - 1) = rev(t) - rev(s),

for all strings 5,1 € A*.

Problem 7.3.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable
defined recursively as follows:

Base cases:

e The identity function, id(x) ::= x is an F18,
e any constant function is an F18,
e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

1. f+ g, fg, ef (the constant e),
2. the inverse function £ 1),
3. the composition f o g.

(a) Prove that the function 1/x is an F18.

Warning: Don’t confuse 1/x = x~! with the inverse, id"™") of the identity func-
tion id(x). The inverse id is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01
Functions are closed under taking derivatives. That is, show that if f(x) is an F18,
then so is f’ ::= df/dx. (Just work out 2 or 3 of the most interesting constructor
cases; you may skip the less interesting ones.)

Problem 7.4.
Here is a simple recursive definition of the set, £, of even integers:
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Definition. Base case: 0 € E.
Constructor cases: If n € E, then so are n 4+ 2 and —n.

Provide similar simple recursive definitions of the following sets:
(a) The set S ::= {2%3™5" | k. m,n € N}.

(b) The set T ::= {2k32k+msm+n | | m n e N}.

(c) The set L ::={(a,b) € Z? |3 | (a — b)}.
Let L’ be the set defined by the recursive definition you gave for L in the previous

part. Now if you did it right, then L’ = L, but maybe you made a mistake. So let’s
check that you got the definition right.

(d) Prove by structural induction on your definition of L’ that
LS,

(e) Confirm that you got the definition right by proving that
8t

(f) See if you can give an unambiguous recursive definition of L.

Problem 7.5.

Definition. The recursive data type, binary-2PTG, of binary trees with leaf labels,
L, is defined recursively as follows:

e Base case: (leaf,!/) € binary-2PTG, for all labels / € L.
e Constructor case: If G;, G, € binary-2PTG, then

(bintree, G1, G2) € binary-2PTG.

The size, |G|, of G € binary-2PTG is defined recursively on this definition by:

e Base case:
| {1eaf,l)|==1, foralll € L.

e Constructor case:

| (bintree, G1,G2) | = |G1] + |G2| + 1.
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lose win

Figure 7.1 A picture of a binary tree w.

For example, for the size of the binary-2PTG, G, pictured in Figure 7.1, is 7.

(a) Write out (using angle brackets and labels bint ree, leaf, etc.) the binary-2PTG,
G, pictured in Figure 7.1.

The value of flatten(G) for G € binary-2PTG is the sequence of labels in L of
the leaves of G. For example, for the binary-2PTG, G, pictured in Figure 7.1,

flatten(G) = (win, lose,win, win).

(b) Give a recursive definition of flatten. (You may use the operation of concate-
nation (append) of two sequences.)

(¢) Prove by structural induction on the definitions of flatten and size that

2 - length(flatten(G)) = |G| + 1. (7.23)

Homework Problems
Problem 7.6.

Definition. Define the number, #.(s), of occurrences of the character ¢ € A in the
string s recursively on the definition of s € A™:
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base case: #.(1) == 0.
constructor case:

_)#e(s) it g e,

#olla,s)) = 14+#.(s) ifa=c.

Prove by structural induction that for all s, € A* and ¢ € A

#eo(scdott) = #:(5) + #:(2).

Problem 7.7.
Fractals are example of a mathematical object that can be defined recursively. In

this problem, we consider the Koch snowflake. Any Koch snowflake can be con-
structed by the following recursive definition.

e base case: An equilateral triangle with a positive integer side length is a
Koch snowflake.

e constructor case: Let K be a Koch snowflake, and let / be a line segment
on the snowflake. Remove the middle third of /, and replace it with two line
segments of the same length as is done below:

MISSING GRAPHIC

The resulting figure is also a Koch snowflake.

Prove by structural induction that the area inside any Koch snowflake is of the
form ¢ +/3, where ¢ is a rational number.
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Problems for Section 7.2
Practice Problems

Problem 7.8.

Definition. Consider a new recursive definition, MBg, of the same set of “match-
ing” brackets strings as MB (definition of MB is provided in the Appendix):

e Base case: A € MBy.

e Constructor cases:

(i) If s is in MBy, then [ s] is in MBy.
(ii) If s, € MByg, s £ A, and ¢ # A, then st is in MBy.

(a) Suppose structural induction was being used to prove that MBoy € MB. Circle
the one predicate below that would fit the format for a structural induction hypoth-
esis in such a proof.

e Py(n)::=|s| < n IMPLIES s € MB.

e Pi(n):=|s| <n IMPLIES s € MBy.

e Pr(s)::=s5 € MB.

e P;3(s) :=s € MBy.

e P4(s) := (s € MB IMPLIES s € MBy).

(b) The recursive definition MBy is ambiguous. Verify this by giving two different
derivations for the string ”[ ][ ][ ]” according to MBy.
Class Problems

Problem 7.9.

Let p be the string []. A string of brackets is said to be erasable iff it can be
reduced to the empty string by repeatedly erasing occurrences of p. For example,
here’s how to erase the string [ [[1]1]1]1[]:

PEERTEILL > EE T =11 — 2.

On the other hand the string [ ]]1[[[[[]] is not erasable because when we try to
erase, we get stuck:

CILLELET] =< LEE] =301 L 7
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Let Erasable be the set of erasable strings of brackets. Let RecMatch be the
recursive data type of strings of matched brackets given in Definition 7.2.1.

(a) Use structural induction to prove that

RecMatch C Erasable.

(b) Supply the missing parts of the following proof that

Erasable € RecMatch.

Proof. We prove by strong induction that every length-n string in Erasable is also
in RecMatch. The induction hypothesis is

P(n) ::= Vx € Erasable. |x| = n IMPLIES x € RecMatch.

Base case:
What is the base case? Prove that P is true in this case.

Inductive step: To prove P(n + 1), suppose |x| = n + 1 and x € Erasable. We
need to show that x € RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single
occurrence of p in z.

Since x € Erasable and has positive length, there must be an erase, y € Erasable,

of x. So|y| =n—1 >0, and since y € Erasable, we may assume by induction
hypothesis that y € RecMatch.

Now we argue by cases:
Case (y is the empty string):
Prove that x € RecMatch in this case.

Case (y = [ s ] for some strings s, ¢ € RecMatch): Now we argue by subcases.

e Subcase (x is of the form [ s’ ] ¢ where s is an erase of s”):

Since s € RecMatch, it is erasable by part (b), which implies that s’ €
Erasable. But |s’| < |x|, so by induction hypothesis, we may assume that
s’ € RecMatch. This shows that x is the result of the constructor step of
RecMatch, and therefore x € RecMatch.

e Subcase (x is of the form [ s ] #/ where ¢ is an erase of ¢'):
Prove that x € RecMatch in this subcase.
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e Subcase(x = p[s]1):
Prove that x € RecMatch in this subcase.

The proofs of the remaining subcases are just like this last one. List these remain-
ing subcases.

This completes the proof by strong induction on n, so we conclude that P (n) holds
for all n € N. Therefore x € RecMatch for every string x € Erasable. That is,
Erasable € RecMatch. Combined with part (a), we conclude that

Erasable = RecMatch.

Problem 7.10.
The set of strings, RecMatch, is recursively defined as follows:

e Base case: 1 € RecMatch.

e Constructor case: If 5,1 € RecMatch, then

[ s]t € RecMatch.

The set of strings, M, is recursively defined as follows:

e Basecase: 1 € M,

e Constructor cases: if s, € M, then the strings [ s ] and s - ¢ are also in M.

Prove by structural induction that
(a) M C RecMatch

(b) RecMatch C M

Problem 7.11.

Definition 7.5.1. The set, RecMatch, of strings of matching brackets, is defined
recursively as follows:

o Base case: A € RecMatch.
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e Constructor case: If 5,7 € RecMatch, then

[s]t € RecMatch.

One precise way to determine if a string is matched is to start with 0 and read the
string from left to right, adding 1 to the count for each left bracket and subtracting
1 from the count for each right bracket. For example, here are the counts for two
sample strings:

[oalins)e Biduabrd bk od™ Bodd 12
01 0-101234321°0
o 011011101
g1 Ao 1. 9 1 0.1 0

A string has a good count if its running count never goes negative and ends with 0.
So the second string above has a good count, but the first one does not because its
count went negative at the third step.

Definition 7.5.2. Let
GoodCount ::= {s € {],[ }* | s has a good count}.

The matched strings can now be characterized precisely as this set of strings with
good counts.

(a) Prove that GoodCount contains RecMatch by structural induction on the defi-
nition of RecMatch.

(b) Conversely, prove that RecMatch contains GoodCount.

Problems for Section 7.3

Homework Problems

Problem 7.12.

Ackermann’s function, A : N* — N, is defined recursively by the following rules:
A(m,n) ::=2n, ifm=0orn <1 (7.24)
Am,n) = A(m -1, A(m,n — 1)), otherwise. (7.25)

Prove that if B : N> — N is a partial function that satisfies this same definition,
then B is total and B = A.
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Problems for Section 7.4
Practice Problems

Problem 7.13. (a) Write out the evaluation of
eval(subst(3x, x(x — 1)), 2)

according to the Environment Model and the Substitution Model, indicating where
the rule for each case of the recursive definitions of eval(, ) and [:=] or substitution
is first used. Compare the number of arithmetic operations and variable lookups.

(b) Describe an example along the lines of part (a) where the Environment Model
would perform 6 fewer multiplications than the Substitution model. You need not
carry out the evaluations.

(¢) Describe an example along the lines of part (a) where the Substitution Model
would perform 6 fewer multiplications than the Environment model. You need not
carry out the evaluations.

Homework Problems

Problem 7.14. (a) Give a recursive definition of a function erase(e) that erases all
the symbols in the Aexpe but the brackets. For example

erase([[3# [x*x]] +[[2*x] +111) =[[[11[[2*x] + 1]].

(b) Prove that erase(e) € RecMatch for all e € Aexp.

(¢) Give an example of a small string s € RecMatch such that [ s] # erase(e) for
any e € aexp.
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8 Number Theory

Number theory is the study of the integers. Why anyone would want to study the
integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s
1, 2, 3, and so on, and, oh yeah, -1, -2, .... Which one don’t you understand?
Second, what practical value is there in it?

The mathematician G. H. Hardy expressed pleasure in its impracticality when he
wrote:

[Number theorists] may be justified in rejoicing that there is one sci-
ence, at any rate, and that their own, whose very remoteness from or-
dinary human activities should keep it gent]e and clean.

a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory

(e
\} k ( d«&l Q\Je Hardy was specially concerned that number theory not be used in aarfarc; he was
0\ 9

‘\Mm underlies modern cryptography, which is what makes secure online communication

possible. Secure communication is of course crucial in war—which may leave poor
Hardy spinning in his grave. It’s also central to online commerce. Every time you
buy a book from Amazon, check your grades on WebSIS, or use a PayPal account,
you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and
apply the proof techniques that we developed in previous Chapters. We’ll work out
properties of greatest common divisors (gcd’s) and use them to prove that integers
factor uniquely into primes. Then we’ll ifitroduce modular arithmetic and work out
enough of its properties to explain the RSA pubhc key crypto- system

Since we’ll be focusing on properti = opt the default
convention in this chapter ariables range over the set, 7, of integers.

8.1 Divisibility

The nature of number theory emerges as soon as we consider the _ﬂdgelation,

e Ceweder e nafafiy,!

Definition 8.1.1.
a|b: [ak:bforsomeﬁ

!
Tl s IR
The divides relation comes up so frequently that multiple synonyms or it

1

tor it def,
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o alb, i

e ¢ divides b,

a is a divisor of b, Jlﬁf [M%

a is a factor of b, \
ﬁ( 5@‘/’4
i\

t
e b is a multiple of a. SWIQ Aﬂ

S o
Some immediate consequences of Definition 8.1.1 are thatn | O,n | n,and 1 | n),
for all n # 0.

Dividing seems simple enough, but let’s play with this definition. The Pythagore-
ans, an ancient sect of mathematical mystics, said that a number is perfect if it
equals the sum of its positive integral divisors, excluding itself. For example,
6 =1+2+3and28 = 1+ 2+ 4+ 7 + 14 are perfect numbers. On the
other hand, 10 is not perfect because 1 4+ 2 4+ 5 = 8, and 12 is not perfect because
1 + 2+ 3+ 4 4 6 = 16. Euclid characterized all the even perfect numbers around
300 BC. But is there an odd perfect number? More than two thousand years later,j ou d lﬂglf(
we still don’t know! All numbers up to about 10399 have been ruled out, but no one {
has proved that there isn’t an odd perfect numb%T\:rZi’tfng just over the horizon. We t-HC'\ d

So a half-page into number theory, we’ve strayed past the outer limits of human (0 0 9‘(* 7
knowledge! This is pretty typical; number theory is full of questions that are easy (r
to pose, but incredibly difficult to answer.! W

Some of the greatest insights and mysteries in number theory concern properties
of prime numbers:

b is divisible by a,

L

Definition 8.1.2. A prime is a number greater than 1 that is divisible only by itself
and 1. I e S ok

Several such problems are included in the box on the following page. Interest-
ingly, we’ll see that computer scientists have found ways to turn some of these
difficulties to their advantage.

8.1.1 Facts about Divisibility

The following lemma collects some basic facts about divisibility.

Lemma 8.1.3.

'Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These
super-hard unsolved problems rarely get put on problem sets.

=
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Famous Conjectures in Number Theory

Goldbach Conjecture Every even integer greater than two is equal to the sum of
two primes. For example, 4 = 2+ 2,6 = 3 + 3, 8 = 3 + 5, ¢ec. The
‘conjecture holds for all numbers up to 10'. In 1939 Schnirelman proved
that every even number can be written as the sum_of not more than 300,000
primes, which was a start. Today, we know that every even number is the

. |
sum of at most 6 primes. EVG('/ . ,

I
Twin Prime Conjecture There are infinitely many primes p such that p +‘£’is
also a prime. In 1966 Chen showed that there are infinitely many primes p

such that p + 2 is the product of at most-two primes. So the conjecture is
known to be almost true!

Primality Testing There is an efficient way to determine whether a number is
prime. A naive search for factors of an integer n takes a number of steps
proportional to /n, which is exponential in the size of n in decimal or bi-
nary notation. All known procedures for prime checking blew up like this
on various inputs. Finally in 2002, an amazingly simple, new method was
discovered by Agrawal, Kayal, and Saxena, which showed that prime test-
ing only required a polynomial number of steps. Their paper began with a
quote from Gauss emphasizing the importance and antiquity of the prob-
lem even in his time—two centuries ago. So prime testing is definitely not
in the category of infeasible problems requiring an exponentially growing
number of steps in bad cases.

Factoring Given the product of two large primes n = pg, there is no efficient
way to recover the primes p and ¢. The best known algorithm is the “num-

ber field sieve™, whichTunsimtime proportional to:
¢

=
1.9(Inn)/3(nInn)2/3 C_/ o0 \
‘ o did fly,

This is infeasible when n has 300 digits or more. { de f hat

Fermat’s Last Theorem There are no positive integers x, y, and z such that

xn + yn — Zﬂ

for some integer n > 2. In a book he was reading around 1630, Fermat
claimed to have a proof but not enough space in the margin to write it
down. Wiles finally gave a proof of the theorem in 1994, after seven years
of working in secrecy and isolation in his attic. His proof did not fit in any
margin.
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1. Ifa|bandb|c, thena | c.
-j- g 2. Ifa|banda|c, thena | sb+ tcforallsandt.
3. Forallc #0,a | bifandonlyifca | cb.

Proof. These facts all follow directly from Definition 8.1.1, and we’ll just prove
part 2 for practice:

Given that a | b, there is some ky € Z such that ak; = b. Likewise, ak; = ¢,
S0

sb+tc = s(kra) + t(kaa) = (sky + tka)a.
Therefore sb + t¢ = kza where k3 ::= (sk1 + tk>), which means that

a|sb+tc.

A number of the fo called an integer linear combination of b and c,
or a plain linear combination, since in this chapter we’re only talking integers. So
Lemma 8.1.3.2 can be rephrased as

If a divides b and c, then a divides every linear combination of b and c.

-_—
‘We’ll be making good use of linear combinations, so let’s get the general definition
on record:
Definition 8.1.4. An integer n is a linear combination of numbers by, . .., by iff

n =(sobo A(5b1 + -+ Kspbn
for some integ@

8.1.2 When Divisibility Goes Bad

g As you learned in elementary school, if one number does not evenly divide another,
\ 113 » t1] 113 * 29 > N
m{)(:{ you get a “quotient” and a “remainder” left over. More prle(:lseiy.

Theorem 8.1.5. [Division Theorem]* Let n and d be integers such that d > 0.
Then there exists a unique pair of integers q and r, such that

Lfffﬂ%lc/
n=q-d+rAND0§r<d.gdtl/Lw/ (8.1)
Yy il

This theorem is often called the “Division Algorithm,” even though it is not what we would call
an algorithm. We will take this familiar result for granted without proof.
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The number g is called the quotient and the number r is cam\ g
n divided by d. We use the notatioor the quotient anor d
the remainder. /_/
ple, qcn 16,10) = 271 and rem(2716,10) = 6, since 2716 =
271 - 10 + 6. Similarly, rem(—11,7) = 3, since —11 = (=2) - 7 4+ 3. There
is a remainder operator built into many programming languages. For example,
“32 ” will be familiar as remainder notation to programmers in in Java, C, and
C++; it evaluates t 2,5) = 2 in all three languages. On the other hand,
e/ these languages treat quotients involving negative numbers idiosyncratically, so if
+  you program in one those languages, remember to stick to the definition according

nto the Division Theorem &lf_,

/‘1 OCL ~ (1‘# . The remainder on division by n is a number in interval from 0 to n — 1. Such

intervals come up so often that it is useful to have a simple notation for them.

(en)yn= {i|k<i<n) ¢ bl 2 B .
lk,n) == (k,n)U {k} &
(k,n] == (k,n) U {n}

[k,n] = (k,n) U {k,n}

8.1.3 Die Hard

Die Hard 3 is just a B-grade action movie, but we think it has an inner message:
everyone should learn at least a little number theory. In Section 6.2.4, we formal-
ized a state machine for the Die Hard jug-filling problem using 3 and 5 gallon jugs,
and also with 3 and 9 gallon jugs, and came to different conclusions about bomb
explosions. What’s going on in general? For example, how about getting 4 gallons
from 12- and 18-gallon jugs, getting 32 gallons with 899- and 1147-gallon jugs, or
getting 3 gallons into a jug using just 21- and 26-gallon jugs?

It would be nice if we could solve all these silly water jug questions at once. This
is where number theory comes in handy.

Finding an Invariant Property
g ___._——!"'

Suppose that we have water jugs with capacities @ and b with b > a. Let’s carry
out some sample operations of the state machine and see what happens, assuming
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the b-jug is big enough: b Z CL

(0,0) — (a,0) fill first jug
— (0,a) pour first into second
— (a,a) fill first jug
— (2a—b,b) pour first into second (assuming 2a > b) {"(1[[ 1[0 fof
— (2a—5,0) empty second jug
— (0,2a —b) pour first into second
— (a,2a —b) fill first
— (3a —2b,b) pour first into second (assuming 3a > 2b)

(Emandd

What leaps out is that at every step, the amount of water in each jug is of a linear
combination of @ and b. This is easy to prove by induction on the number of
transitions:

Lemma 8.1.6 (Water Jugs). In the Die Hard state machine of Section 6.2.4 with jug

of sizes a and b, the amount of water in each jug is always a linear combination of
a and b.

Proof. The induction hypothesis, P(n), is the proposition that after n transitions,
the amount of water in each jug is7 linear combination of @ and b7

Base case: (n = 0). P(0) is true, because both jugs Wsﬂlemgg, and
0-a+0-b=0.

Inductive step. Suppose the machine is in state (x, y) after n steps, that is, the little

jug contains x gallons and the big one contains y gallons. There are two cases:
———

e If we fill a jug from the fountain or empty a jug into the fountain, then that jug
is empty or full. The amount in the other jug remains a linear combination
of a and f,)SO P(n + 1) holds.

e Otherwise, we pour water from one jug to another until one is empty or the
other is full. By our assumption, the amount x and y in each jug is a linear
combination of a and b before we begin pouring, After pouring, one jug is
either empty (contains () gallons) or full (contains a or b gallons). Thus, the
other jug contains either x + y gallons, x + y —a, or x & y — b gallons, all
of which are linear combinations of a and b since x and y are. So P(n + 1)
holds in this case as well.

Since P(n + 1) holds in any case, this proves the inductive step, completing the
proof by induction. |
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So we have established that the jug problem has an invariant property, namely
that the amount of water in every jug is alwazs a linear combination of the capacities
of the jugs. Lemma 8.1.6 has an important corollary:

Corollary. Getting 4 gallons from 12- and 18-gallon jugs, and likewise getting 32
gallons from 899- and 1147-gallon jugs,

Bruce dies!

Proof. By the Water Jugs Lemma 8.1.6, with 12- and 18-gallon jugs, the amount
in any jug is a linear combination of 12 and 18. This is always a multiple of 6 by
Lemma 8.1.3.2, so Bruce .c_:gg" t get 4 gallons. Ltkeéwise, the amount in any jug using
899- and 1147-gallon jugs is a multiple of 31, so he can’t get 32 either. =

But the Water Jugs Lemma isn’t very satisfying. One problem is that it leaves
the question of getting 3 gallons into a jug using just 21- and 26-gallon jugs unre-
solved, since the only positive factor of both 21 and 26 is 1, and of course 1 divides
3. A bigger problem is that we’ve just managed to recast a pretty understandable
question about water jugs into a complicated question about linear combinations.
This might not seem like a lot of progress. Fortunately, linear combinations are

closely related to something more familiar, namely ngrs, and
these will help us solve the general water jug problem. -

8.2 The Greatest Common Divisor

A common divisor of a and b is a number that divides them both, The greatest com-
mon divisor (gcd) of a and b is wriite W For example, gcd(18,24) = 6.
The ged turns out to be a very valuable pieee-efihformation about the relationship

between a and b and for reasoning about integers in general. So we’ll be making
lots of arguments about gcd’s in what follows.

8.2.1 Euclid’s Algorithm

The first thing to figure out is how to find ged’s. A good way called Euclid’s
Algorithm has beemr known for several thousand years. It is based on the following
elementary observation.

Lemma 8.2.1.
ged(a, b) = ged(b, rem(a, b)).
g ‘—-—-_-——___—_'-——-

Gcd (24,13) thal dosn ¥ Jell
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Proof. By the Division Theorem 8.1.5,
“delied of [N a=qb+r . (82)
where r @{g_._b? Soaisa llnear comb1nat10n of b and r, which implies that
any divisor of b and r is a divisor of a by Lemma 8.1.3.2. Likewise, r is a linear
combination,‘aﬁ%:-ofm divisor of a and b is a divisor of r. This
means that @ and b have the same common divisors as b and r, and so they have
the same greatest common divisor. - 3]
Lemma 8.2.1 is useful for quickly computing the greatest common divisor of
two numbers. For example, we could compute the greatest common divisor of
1147 and 899 by repeatedly it:
ged(1147,899) = ged(899, rem(1147, 899))
— j———
=248
= gcd (248, rem(899, 248))
=155
= ged(155, rem(248, 155)) h
=93 W Q 2l
= ged(93, rem(155, 93)) ( W/S'/
=62
= ged(62, rem(93, 62))
=31
= ged(31, rem(62, 31))
=0
= gecd(31,0)
=31
The last equation might look wrong, but 31 is a divisor of both 31 and 0 since every
integer divides 0. This calculation that gcd(1147,899) = 31 was how we figured
out that with water jugs of sizes 1147 and 899, Bruce dies trying to get 32 gallons.
Euclid’s algorithm can easily be formalized as a state machine. The set of states W LM ()0 '
is N2 and there is one transition rule: t5
b dle g
(x,y) — (y,rem(x, y)), (8.3) le d&am (
for y > 0. So by Lemma 8.2.1, the gcd stays the same from one state to the next,
which means that started in state (a, b), the predicate P(x, y),
ged(x, y) = ged(a, b),
—

L
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is an invariant. By the Invariant Principle, when y = 0 the value of x is the gcd
because

x = ged(x, 0) = ged(a, b). d_/é,

What’s more, y does get to be 0 pretty fast: it’s easy to check that y < x is another

invariant, and since x gets divided by y at each step, it gets smaller by more than
. . . . - '—_-—'*l—‘

a factor of 2 until y < 1, after which the machine terminates in at most two more

transtions.
But applyng Euclid’s algorithm to 26 and 21 gives =g LJ,

ged(26,21) = ged(21,5) = ged(5,1) =1, 2% ﬁmif/

which is why we left the 21- and 26-ga110n jug problem unresolved. To resolve the
matter, we will need more number theory.

8.2.2 The Pulverizer

We will get a lot of mileage out of the following key fact:

Theorem 8.2.2. The greatest common divisor oé a and FI%Q linear combination
of a and b. That is,

ged(a, b) = sa + tb,

for some integers s and t.

We already know from Lemma 8.1.3.2 that every linear combination of a and b is
divisible by any common factor of a and b, so it is certainly divisible by the greatest
of these common divisors. Since any constant multiple of a linear combination is
also a linear combination, Theorem 8.2.2 implies that any multiple of the gcd is a
linear combination. So we have the immediate corollary:

Corollary 8.2.3. An integer is a linear combination of a and b iff it is a multiple of
gcd(a, b). eTI

We’ll prove Theorem 8.2.2 directly by explaining how to find s and 7. This
job is tackled by a mathematical tool that dates to sixth-century India, where it
was called kuttak, which means “The Pulverizer”. Today, the Pulverizer is more
commonly known as “the extended Euclidean GCD algorithm”, because it is so
close to Euclid’s Algorithm.

Tl s ngyfe thes 4
7e de

had

Protlern

=3
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For example, following Euclid’s Algorithm, we can compute the GCD of 259
and 70 as follows:

gcd(259,70) = ged(70, 49) since rem(259, 70) = 49
= gcd(49,21) since rem(70, 49) = 21
= ged(21,7) since rem(49,21) = 7
= gcd(7,0) since rem(21,7) =0
=1

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd(a, b), we keep track of how to w of
the remainders (49, 21, and 7, in the example) as aww_
This is wortm our objective is to write the last nonzero remainder,

which is the GCD, as such a linear combination. For our example, here is this extra

bookkeeping:
x y (rem(x,y)) = x-g-y
259 70 49 = 259<3.70
70,61 & 449 21 = 70—1-49 [t
= 70—1-(259—3-70) A
= \ F
B R < c(wj hort <
49 21 7 = 49-2.2]
= (259—3-70)—2-(—=1-259 + 4-70)
= [3.259—11-70| % pFl dej
21 7 0

n o/
We began by initializing two variables, x = a and y = b. In the first two columns
above, we carried out Euclid’s algorithm. At each step, we computed rem(x, y),
s’\'l which can be written in the form x — ¢ - y. (Remember that the Division Algorithm
(L’ .says x = ¢ - y + r, where r is the remainder. We get r = x — g - y by rearranging

b 415( terms.) Then we replaced x and y in this equation with equivalent linear combina-
e qve ; : b e el
tions of a and b, which we already had computed. After simplifying, we were left
'}q Qf’,@; with a linear combination of @ and b that was equal to the remainder as desired.
q

The final solution is boxed.

This should make it pretty clear how and why the Pulverizer works. Anyone who
has doubts can work out Problem 8.8, where the Pulverizer is formalized as a state
machine and then verified using an invariant that is an extension of the one used for
Euclid’s algorithm.

Since the Pulverizer requires only a little more computation than Euclid’s algo-
rithm, you can “pulverize” very large numbers very quickly by using this algorithm.
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As we will soon see, its speed makes the Pulverizer a very useful tool in the field
of cryptography. —

Now we can restate the Water Jugs Lemma 8.1.6 in terms of the greatest com-
mon divisor:

Corollary 8.2.4. Suppose that we have water jugs with capacities a and b. Then
the amount of water in each jug is always a e of gcd(a, b).

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-
cause 4 is not a multiple of ged(3, 6) = 3.

8.2.3 One Solution for All Water Jug Problems

Corollary 8.2.3 says that 3 can be written as a linear combination of 21 and 26,
since 3 is a multiple of gM6) = 1. So the Pulverizer will give us integers s
and ¢ such that =y

3=5-2141-26 (8.4)

Now the coefficient s could be either positive or negative. However, we can
readily transform this linear combination into an equivalent linear combination

3=5"-214+1¢-26 (8.5)

where the coefficient s’ is positive. The trick is to notice that if in equation (8.4) we
increase s by 26 and decrease ¢ by 21, then the value of the expression s-21 41 -26
is unchanged overall. Thus, by repeatedly increasing the value of s (by 26 at a
time) and decreasing the value of ¢ (by 21 at a time), we get a linear combination
s'-21 4+ 1" - 26 = 3 where the coefficient s’ is positive. Notice that then ¢’ must be
negative; otherwise, this expression would be much greater than 3.

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply
repeat the following steps s’ times:

-1.- Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time
the 26-gallon jug becomes full, empty it out, and continue pouring the 21-
gallon jug into the 26-gallon jug.

At the end of this process, we must have have emptied the 26-gallon jug exactly
|¢'| times. Here’s why: we’ve taken s’ - 21 gallons of water from the fountain, and

¢ ve poured out some multiple of 26 gallons. If we emptied fewer than |¢’| times,
then by (8.5), the big jug would be left with at least 3 + 26 gallons, which is more
than it can hold; if we emptied it more times, the big jug would be left containing
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at most 3 — 26 gallons, which is nonsense. But once we have emptied the 26-gallon
jug exactly |¢'| times, equation (8.5) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s” and ¢’ in order to
use this strategy! Instead of repeating the outer loop s’ times, we could just repeat
until we obtain 3 gallons, since that must happen eventually. Of course, we have to
keep track of the amounts in the two jugs so we know when we’re done. Here’s the
solution that approach gives:

( 0, 0) fill 21
21 into 26
GLi) 0 20v)
26 6 211026
fill 21 (21’ 21) pour 21 to (16, 26) empty 2 (]6, 0) pour 21 to
fill 21 (21 16) pour 21 to 26 (l 1 26) empty 26 (1 1 0) pour 21 to 26
% 9 —> ? % ? _.-_u__>
fill 21 (21 1 1) pour 21 to 26 (6 26) empty 26 (6 0) pour 21 to 26
_— ; —_— K _ : -
fill 21 (21 6) pour 21 to 26 (1 26) empty 26 (] O) pour 21 to 26
% 2 —> ’ % ’ ——).
21to0 26
D 2usn 121y tyron ¥ 2EER B0, 29)
fill 21 (21 22) pour 21 to 26 (17 26) empty 26 (1 7 0) pour 21 to 26
-——> ? —> ? é ? %
fill 21 (21 17) pour 21 to 26 (12 26) empty 26 (]2 0) pour 21 to 26
—_— i —— 8 — 5 ——
fill 21 (21 12) pour 21 to 26 (7 26) empty 26 (7 0) pour 21 to 26
— ; —_— 3 _— ; _
fill 21 (21 7) pour 21 to 26 (2 26) empty 26 (2 O) pour 21 to 26
_> * —> 2 % 2 -—>
fill 21 pour 21 to 26
— (21, 2) — (0,23
fill 21 (21 23) pour 21 to 26 (1 8 26) empty 26 (18 0) pour 21 to 26
% ? % ’ _% ’ —ﬁ
fill 21 (21 18) pour 21 to 26 (1 3 26) empty 26 (1 3 0) pour 21 to 26
R ’ TSR RER ’ G P ) &
fill 21 (21 13) pour 21 to 26 (8 26) empty 26 (8 0) pour 21 to 26
_>. b ] é ’ ——% ’ %
211026 26 2110 26
fill 21 (21 : 8) pour 21 to (3, 26) empty (3, 0) pour 21 to

The same approach works regardless of the jug capacities and even regardless
the amount we’re trying to produce! Simply repeat these two steps until the desired
amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the

larger jug becomes full, empty it out, and contin!!E pggring the smaller jug
into the larger jug.

(0, 16)
(0,11)
(0,6)
©,1)

(0,17)
(0,12)
0,7)
0,2)

(0, 18)
(0,13)
0,8)
(0,3)
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By the same reasoning as before, this method eventually generates every multiple
of the greatest co’r_n_m_o_u_djxiser—ef_the-jug-eapaci-ﬁes. —all the quantities we can
possibly produce. No ingenuity is needed at all!

R GC [‘ ¢ / ;
é ) ﬁ'o, D way /l V7 JQ(’J%C ‘%L),z/wlly ,(e

8.3 The Fundamental Theorem of Arithmetic _

N e (ewj 60/'
We now have almost enough tools to prove something that you probably already
know, namely, that every number has a unique prime factorization.

Let’s state this more carefully. A sequence of numbers is w
when each number in the sequence is > the numbers after it. Note that a sequence
of just one number as well as a sequence of no numbers —the empty sequence —is
weakly decreasing by this definition.

Theorem 8.3.1 (Fundamental Theorem of Arithmetic). Every positive in ;
product of a unique weakly decreasing sequencc@ne/sP '

Notice that the theorem would be false if 1 were considered a prime; for example,
15 could be writtenas 5-3,0or5-3-1,0r5-3-1-1,....

There is a certain wonder in the Fundamental Theorem, even if you’ve known it

since you were in a crib. Primes show up erratically in the sequence of integers. In
fact, their distribution seems almost random:

2:809: 7, 1113, 1719, 25, 29, 31, ST 4143, .

Basic questions about this sequence have stumped humanity for centuries. And yet F) 7 57‘,

we know-thatevery natural number can be built up from primes in exacdy-ene way. .

These quirky numbers are the building blocks for the integers. P%‘t d ﬂl/
The Fundamental Theorem is not hard to prove, but we’ll need a couple of pre- y\pj[ o/

liminary facts.

Lemma 8.3.2. If p is a prime and p | ab, then p | a or p | b.

Proof. One case is if gcd(a, p) = p. Then the claim holds, because a is a multiple
of p.

Otherwise, ged(a, p) # p. In this case ged(a, p) must be 1, since 1 and p are
the only positive divisors of p. Since ged(a, p) is a linear combination of a and p,
we have 1 = sa + tp for some s,¢. Then b = s(ab) + (tb) p, that is, b is a linear
combination of ab and p. Since p divides both ab and p, it also divides their linear
combination b. O

A routine induction argument extends this statement to:
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The Prime Number Theorem

Let m(x) denote the number of primes less than or equal to x. For example,
7(10) = 4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes
are very i larly distributed, so the growth of & w However,
the Prime Number Theorem gives an approximate answer:

7 (x)

x—oo x/Inx

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every
In x in the vicinity of x is a prime.
The Prime Number Theorem was conjectured by Legendre in 1798 and proved a
century later by de la Vallee Poussin and Hadamard in 1896. However, after his
death, a notebook of Gauss was found to contain the same conjecture, which he
apparently made in 1791 at age 15. (You sort of have to feel sorry for all the oth-
erwise “great” mathematicians who had the misfortune of being contemporaries
of Gauss.)

In late 2004 a billboard appeared in various locations around the country:

first 10-digit prime found
- - - - - Om
in consecutive digits of e

Substituting the correct number for the expression in curly-braces produced the
URL for a Google employment page. The idea was that Google was interested in
hiring the sort of people that could and would solve such a problem.

How hard is this problem? Would you have to look through thousands or millions
or billions of digits of e to find a 10-digit prime? The rule of thumb derived from
the Prime Number Theorem says that among 10-digit numbers, about 1 in

In1010 ~ 23
DR 2

is prime. This suggests that the problem isn’t really so hard! Sure enough, the
first 10-digit prime in consecutive digits of e appears quite early:

e =2.718281828459045235360287471352662497757247093699959574966
9676277240766303535475945713821785251664274274663919320030
599218174135966290435729003342952605956307381323286279434 . ..
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Lemma 8.3.3. Let p be aprime. If p | ajas ---ay, then p divides some a;.
Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 2.4.1 showed, using the Well Ordering Principle, that every posi-
tive integer can be expressed as a product of primes. So we just have to prove this
expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist
positive integers that can be written as products of primes in more than one way.
By the Well Ordering Principle, there is a smallest integer with this property. Call

this integer n, and let
——

n=pi-p2--pPj,
=4q1-42-- -4,

where both products are in weakly decreasing order and p; < gq;.

If g1 = p1, then n/q, would be a smaller number than » that was the product of

different weakly decreasing sequences of primes;so p; < y1. But since the p;’s
are weakly decreasing, all the p;’s are less than g;. But gy | n = py - pa--- pj, so

Lemma 8.3.3 implies that ¢, divides one of the p;’s, which contradicts the fact that
¢q1 is bigger than all them. |
N e

T

8.4 Alan Turing

A.q,/ﬂ@

-

The man pictured in Figure 8.1 is e most important figure in the
history of computer science. For decades, his fascinating life story was shrouded
by government secrecy, societal taboo, and even his own deceptions. 7

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-

plication to the Entscheidungsproblem. The crux of the paper was an elegant way
to model a computer in mathematical terms. This was a breakthrough, because it

allowed the tools of mathematics to be brought to bear on questions of computation. |

For example, with his model in hand, Turing immediately proved that there exist
. problems that no computer can solve—no matter how ingenious the programmer.
Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade
before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathemat-
ical problems posed by David Hilbert in 1900 as challenges to mathematicians of
the 20th century. Turing knocked that one off in the same paper. And perhaps
you’ve heard of the “CW thesis”? Same paper. So Turing was obviously

s

46 q‘,/k
6{@@{
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Figure 8.1 Alan Turing

a brilliant guy who generated lots of amazing ideas. But this lecture is about one of
Turing’s less-amazing ideas. It involved codes. It involved number Qeory. And it
was sort of’ stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf
Hitler, world-shattering war looked imminent, and—Ilike us—Alan Turing was pon-
dering the usefulness of number theory. He foresaw that preserving military secrets
would be vital in the coming conflict and proposed a way to encrypt communica-
tions using number theory. This is an idea that has ricocheted up to our own time.
Today, number theory is the basis for numerous public-key cryptosystems, digital
signature schemes, cryptographic hash functions, and electronic payment systems.
Furthermore, military funding agencies are among the biggest investors in crypto-
graphic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a
century would pass before the world learned the full story of where he’d gone and
what he did there. We’ll come back to Turing’s life in aTifife-wiile; for now, let’s
investigate the code Turing left behind. The details are uncertain, since he never
formally Eﬂshed\the idea, so we’ll consider a couple of possibilities.

/? nhL Cen 5@82‘[7/;
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8.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (A = 01, B = 02, C = 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

i3]

“v 1 ¢ t o 1 ¥y
- 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we [ﬁﬂy need to pad

the result with a few more dkae a prime. In this case, appending the digits

13 gives the number 2209032015182513, which is prime. ?)\ow da ] é/v"l/ LA/@/‘ [,O
Here is how the encryption process works. In the description below, m is the Q’p/% -

unencoded message (which we want to keep secret){ m* is the encrypted message

(which the Nazis may intercept), and k is the key. !l% ot e rf d/’f o /e/{:?
2

Beforehand The sender and receiver agree on a secret key, which is a large prime k.

Encryption The sender encrypts the message m by computing:

MU/hﬂtt L// &@7

Decryption The receiver decrypts m* by computing:

m"‘_m-k_
el Bnoy

For example, suppose that the secret key is the prime number &k = 22801763489
and the message m is “victory”. Then the encrypted message is:

m*=m-k
= 2209032015182513 - 22801763489
= 50369825549820718594667857

' 9\ P S QIQ du&Q \/47 There are a couple of questions that one might naturally ask about Turing’s code.

/0 eating ey
Uyl ordig®

1. How can the sender and receiver ensure that m and k are prime numbers, as
= _—
required?

The general problem of determining whether a large number is prime or com-
posite has been studied for centuries, and reasonably good primality tests
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were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena announced a primality test that is guaranteed to
work on a number n in about (log ﬁwmber of steps
bounded by a twelfth degree polynomial in the@@ of the in-
put, n. This definitively places primality testing way below the problems
of exponential difficulty. Amazingly, the description of their breakthrough
algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et
al. procedure is of no practical use. Still, good ideas have a way of breeding
more good ideas, so there’s certainly hope that further improvements will
lead to a procedure that is useful in practice. But the truth is, there’s no
practical need to improve it, since very efficient probabilistic procedures for
prime-testing have been known since the early T970°s. These procedures
have some probability of giving a wrong answer, but their probability of
being wrong is so tiny that relying on their answers is the best bet you’ll ever

(‘
make. }1@(./ SM// i
2. Is Turing’s code secure?

The Nazis see only the encrypted message m* = m - k, so recovering the
original message m requires factoring m”, Despite immense efforts, no re-
ally efficient f; i lgorithm has ever been found. It appears to be a

possible. In effect, Turing’s code puts to practical use his discovery that

(’ 3 m(‘,:/Cf A Objeﬂb fundamentally difficult problem, though a breakthrough someday is not im-
jare

Lagtor [l5) = 35

(i ICW”S )

OL\ @/‘ rot
Jenomipgfo”

(off fwo
"(Dwsor~—

there are limits to the power of computation. Thus, provided m and k are
sufﬁmently large, the Na21s seem to be out of luck!

€ bod, We've Yentd!

This all sounds promlsmg, but there is a major flaw in Turing’s code.

8.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using
Turing’s code and the same key. This gives the Nazis two‘%’rﬁﬁéd messages to
look at:

mi; =my -k and m; =my -k

The g@es@the two encrypted messages, m} and mj, is the
secret key k. And, as we’ve seen, the GCD of two numbers can be computed very
efficiently. So after the second message is sent, the Nazis can recover the secret key
and read every message!

A mathematician as brilliant as Turing is not likely to have overlooked such a
glaring problem, and we can guess that he had a slightly different system in mind,

) il bk Bl

laﬂae&Jr & Gth tat p)& A g1
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8.5. Modular Arithmetic
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8.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss
introduced the notion of “congruence”. Now, Gauss is another guy who managed
to cough up a half-decent idea every now and then, so let’s take a look at this one.

Gauss said that a is congruent to b moa;\ulo n iffn] (a — b)./This is written
a o on )
\-/a-;/b (mod nit. € "‘flomby fo JO c/ ﬂ%@ff7

F234ser (294567 1234577 (23usgr |

For example:

29=15 (mod 7) because 7| (29— 15). ‘Mﬂﬂfwluf =
(+
There is a close connection between congruences and remainders: 5’5’9&5 v I
w Cly,
Lemma 8.5.1 (Congruences and Remainders). 0 & & 6}1 e [\
(Tign

: ry P
a=b (modn) if rem(a,n)=rem(b,n).
_——

Proof. By the Division Theorem 8.1.5, there exist unique pairs of integers g1,

and g2, r2 such that:
Ct!b s
a=qn+r CM( -
b =qan +ra, ‘:‘6 %.

> 5o /L;/{

where ry, 2 € [0, n). Subtracting the second equation from the first gives:
a—>b=(q1—g2)n+ (r1 —r2),

where ry—r3 is in the interval (—n,n). Nowa = b (mod n) if and only if n divides
the left side of this equation. This is true if and only if n divides the right side, which
holds if and only if r; — r is a multiple of n. Given the bounds on r; — rs, this
happens precisely when r; = r, that is, when rem(a, n) = rem(b, n). i3}

So we can also see that

29=15 (mod 7) because rem(29,7) = 1 = rem(15,7).

This formulation explains why the congruence relation has properties like an equal-
ity relation. In particular, the following properties are follow immediately:

nduten weyd
di DrJer Tuan Whe t‘( Mz

\ ’#q(?s will = 249
h rJ(b gt ﬂcﬂcﬁw} hi (Uvgfva
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Lemma 8.5.2.
° a=a (modn) (reflexivity)
e
a=b (modn)b=a (modn) (symmetry)
a = bpmodnandb = ¢ (mod n) impliesa =c (mod n)  (transitivity)

ol 6 %JlJila&

Notice that even though “(mod 7)” appears on the end, the = symbol isn’t any
more strongly associated with the 15 than with the 29. It would really be clearer to
write 29 =7 15 for example, but the notation with the modulus at the end is firmly
entrenched and we’ll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 8.5.1:

Corollary 8.5.3. fl lode by A4
=T }e(u%' [ ale,

Still another way to think about congruence modulo # is that it defines a partition
of the integers into n sets so that congruent numbers are all in the same set. For
example, suppose that we’re working modulo 3. Then we can partition the integers
into 3 sets as follows:

a =rem(a,n) (mod n)

{ “ey —6, _3, 01 3v 67 9, }
‘e O M R e B [ ) }
{ say _4, _11 2; 5, 81 11, }

\

i
according to whether their remainders on division by 3 are 0, 1, or 2. The upshot
is that when arithmetic is done modulo n there are really only n different kinds
of numbers to worry about, because there are only n possible remainders. In this
sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a
good reasoning tool.

The next most useful fact about congruences is that they are preserved by addi-
tion and multiplication:

Lemma 8.5.4. Forn > 1, ifa = b (mod n) and c = d (mod n), then
I.a+c¢c=b+d (mod n),
2. ac = bd (mod n).
Proof. We have that n divides (b — a) which is equal to (b + ¢) — (a +¢), so
a+c=b+c¢ (modn).

Also, n divides (d — ¢), so by the same reasoning

b+c=b+d (modn).
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Combining these according to Lemma 8.5.2, we get
a+c=b+d (modn).

The proof for multiplication is virtually identical, using the fact that if n divides
(b — a), then it obviously divides (bc — ac) as well. [ |

The overall theme is that congruences work a lot like equations, though there are
a couple of exceptions.

8.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against
the Nazis in western Europe. British resistance depended on a steady flow of sup-
plies brought across the north Atlantic from the United States by convoys of ships.
These convoys were engaged in a cat-and-mouse game with German “U-boats”—
submarines—which prowled the Atlantic, trying to sink supply ships and starve
Britain into submission. The outcome of this struggle pivoted on a balance of in-
formation: could the Germans locate convoys better than the Allies could locate
U-boats or vice versa?

Germany lost.

But a critical reason behind Germany’s loss was made public only in 1974: Ger-
many’s naval codt%@tsi&n_a, had been broken by the Polish Cipher Bureau (see
http://en.wikipedia.org/wiki/Polish_Cipher_ Bureau) and the
secret had been turned over to the British a few weeks before the Nazi invasion of
Poland in 1939. Throughout much of the war, the Allies were able to route con-
voys around German submarines by listening in to German communications. The
British government didn’t explain Aow Enigma was broken until 1996,/ When it
was finally released (by the US), the story revealed that Alan Turing had joined the
secret British codebreaking effort at Bletchley Park in 1939, where he became the
lead developer of methods for rapid, bulk decryption of German Enigma messages.
Turing’s Enigma deciphering was an invaluable contribution to the Allied victory
over Hitler.

Governments are always tight-lipped about cryptography, but the half-century of
official silence about Turing’s role in breaking Enigma and saving Britain may be
related to some disturbing events after the war. More on that later. Let’s get back to
number theory and consider an alternative interpretation of Turing’s code. Perhaps
we had the basic idea right (multiply the message by the key), but erred in using

conventional arithmetic instead of modular arithmetic. Maybe this is what Turing
meant: G
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Beforehand The sender and receivi i i ree on a large prime p» which may be made

public. (This will be thg oy all our arithmetic.) They also agree on
——a
a secret key k € [1, p).

Encryption The message m can be any integer in [0, p) in particular, the message
is no longer required to be a prime. The senider encrypts the message m to
produce m* by computing:

m* rem(mk p) (\ (8.6)
Decryption (Uh-oh.) ]0

The decryption step is a problem. We might hope to decrypt in the same way as
before: by dividing the encrypted message m™ by the key k. The difficulty is that
m?™ is the remainder when mk is divided by p. So dividing m* by k might not even
give us an integer!

This decoding difficulty can be overcome with a better understanding of arith-
metic modulo a prime.

8.6 Arithmetic with a Prime Modulus

8.6.1 Multiplicative Inverses
The multiplicative inverse of a number x is another number x~! such that:

x-x1=1

Generally, multiplicative inverses exist over the real numbers. For example, the
multiplicative inverse of 3 is 1/3 since:

The sole exception is that 0 does not have an inverse. On the other hand, over the
integers, only 1 and -1 have inverses. S
Slmmrses do exist when we’re working modulo a prime
number. For example, if we’re working modulo 5, then 3 is a multiplicative inverse
of 7, since:
7-3=1 (mod

(All numbers congruent to 3 modulo 5 are alsol multiplicative inverses of 7; for
example, 7-8 = 1 (mod 5) as well.) The only exception is that numbers congruent

Nb\ o,

Q(‘\M
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to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not
have an inverse over the real numbers. Let’s prove this.

Lemma 8.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative
inverse modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since & is not a mul-
tiple of p, we must have gcd(p, k) = 1. Therefore, there is a linear combination of
p and k equal to 1:

sp+tk =1

Rearranging terms gives:
sp=1—tk

This implies that p | (1 — tk) by the definition of divisibility, and therefore tk = 1
(mod p) by the definition of congruence. Thus, ¢ is a multiplicative inverse of
k. e ——— |

—

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,
we can recover the origi ge by multiplying the enc age by the

f the key:

m* - k™! = rem(mk, p) - k7! (the def. (8.6) of m™)
= (mk)k~! (mod p) (by Cor. 8.5.3)
=m (mod p).

This shows that m*k~! is congruent to the original message m. Since m was in
[0, p), we can recover it exactly by taking a remainder:

m = rem(m*k~!, p).

So all we need to decrypt the message is to find a value of k~!. From the proof of
Lemma 8.6.1, we know that ¢ is sucl? a value, “{here sp+tk = 1. Finding ¢ is easy

using the Pulverizer. ' 5 I 4 f

Oh Ml 6 plsae 45, (0% €
8.6.2 Cancellation
Another sense in which real numbers are nice is that one can cancel multiplicative
terms. In other words, if we know that mk = mk, then we can cancel !
and conclude that m; = my, provided # 0. In general, cancellatiog is not valid

in modular arithmetic. For example, ~——

2-3=4-3 (mod 6),
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but canceling the 3’s leads to the false conclusion that 2 = 4 (mod 6). The fact
that multiplicative terms can not be canceled is the most significant sense in which
congruences differ from ordinary equations. However, this difference goes away if

we’re working modulo a prime; W ion is valid.

e ——
Lemma 8.6.2.\ Suppose p is a prime and k is not a multiple of p. Then
ak = bk (mod p) TIMPLIES a=b (mod p).
Proof. Multiply both sides of the congruence by k1. [ |

We can use this lemma to get a bit more insight into how Turing’s code works.
In particular, the encryption operation in Turing’s code permutes the set of possible
messages. This is stated more precisely in the following corollary.

Corollary 8.6.3. Suppose p is a prime and k is not a multiple of p. Then the
sequence:

rem((1-k),p), rem(2-k),p), ..., rem(((p—1)-k),p)

is a permutation® of the sequence:

12 o (pi—1).

Proof. The sequence of remainders contains p — 1 numbers. Since i - k is not
divisible by p fori =1, ... p—1, all these remainders are in [1, p) by the definition
of remainder. Furthermore, the remainders are all different: no two numbers in
[1, p) are congruent modulo p, and by Lemma 8.6.2,i -k = j - k (mod p) if
and only if i = j (mod p). Thus, the sequence of remainders must contain all of
[1, p) in some order. |

For example, suppose p = 5 and k = 3. Then the sequence:

rem((1-3),5), rem((2-3),5), rem((3-3),5), rem((4-3),5)

= 26 275 = /2 (M@(Jé

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,

they don’t know how the set of possible messages are permuted by the process of

encryption and thus they can’t read encoded messages. =~ GiF P \}h' ‘? f‘]
)

3 A permutation of a sequence of elements is a reordering of the elements.

—
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/ o 8 41 /
8.6.3 Fermat’s Little Theorem Z(:— ﬂ, (1 j @[( tud f/lg / 5o g
Anw to finding the inverse of the secret key k& in Turing’s code

is to rely on Fermat’s Little Theorem, which is much easier than his famous Last
Theorem ————

Theorem 8.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a
multiple of p. Then:
kP71 =1 (mod p)

Proof. We reason as follows:

(p—-D'u=1-2---(p=1)

=rem(k, p) -rem(2k, p)---rem((p — 1)k, p) (by Cor 8.6.3)
=k-2k---(p— 1k (mod p) (by Cor 8.5.3)
=(p—-1D!-kP7! (mod p) (rearranging terms)

Now (p — 1)!is not a multiple of p because the prime factorizations of 1,2, ...,
(p — 1) contain only primes smaller than p. So by Lemma 8.6.2, we can cancel
(p — 1)! from the first and last expressions, which proves the claim. O

Here is how we can find inverses using Fermat’s Theorem. Suppose p is a prime
and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

kP2. k=1 (mod p)
Therefore, k?~2 must be a multiplicative inverse of k. For example, suppose that
we want the multiplicative inverse of 6 modulo 17. Then we need to compute
hich we can do using the fast exponentiation procedure of Sec-
tion 6.2.5, with all the arithemetic done modulo 17. Namely,

(6,1,15) — (36,6,7) = (2,6,7) —> (4,12,3)
— (16,14, 1) —> (256,224, 1) = (1,3, 0).

where the =’s are modulo 17. Thereford, 6!°> = 3 (mod 17). Sure enou
e multiplicative-imverse of 6 mo 17 sinC

B=18=1 (mod 17).

In general, if we were working modulo a prime p, finding a multiplicative inverse
by trying every value in [1, p) would require about p operations. However, this
approach, like the Pulverizer, requires only about log p transition, which is far
better when p is large.
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8.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure
Enigma system. After all, so what if the Allies learned that there was rain off the
south coast of Iceland? But, amazingly, this practice provided the British with a
critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-
mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained
both JJ_ILW reports and the same reports encrypted with Enigma. By com-
paring the two, the British were able to determine which key the Germans were
using that day and could read all other Enigma-encoded traffic. Today, this would
be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-
pose that the Nazis know both m and m™ where:

*=mk (mod p)

Now they can compute:

YYWI {(’ @ m* = mi_z . rer;(mk, p) (def. (8.6) of m*)
= mP7% d (by Cor 8.5.
6 d&b l)y mP~™%.mk (mod p) y Cor 8.5.3)

Fm
) =m?" .k (mod p) L/ 0" ‘}Uﬁ{o}’Pﬁﬂﬂbyd mafy ilj
m P =k (mod p)

Now the Nazis have the secret key k and can decrypt any message!

This is a huge vulnerability, so Turing’s code has no practical value. Fortunately,
Turing got better at cryptography after devising this code; his subsequent decipher-
ing of Enigma messages surely saved thousands of lives, if not the whole of Britain.

(Fermat’ :?(Theorem)
e

8.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined
that a former homosexual lover of Turing’s had conspired in the robbery. So they
arrested him—that is, they arrested Alan Turing—because homosexuality was a
British crime punishable by up to two years in prison at that time. Turing was
sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen
injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His
mother explained what happened in a biography of her own son. Despite her re-
peated warnings, Turing carried out chemistry experiments in his own home. Ap-
parently, her worst fear was realized: by working with potassium cyanide while
eating an apple, he poisoned himself.

y
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However, Turing remained a puzzle to the very end. His mother was a devoutly
religious woman who considered suicide a sin. And, other biographers have pointed
out, Turing had previously discussed committing suicide by eating a poisoned ap-
ple. Evidently, Alan Turing, who founded computer science and saved his country,
took his own life in the end, and in just such a way that his mother could believe it
was an accident.

Turing’s last project before he disappeared from public view in 1939 involved the
construction of an elaborate mechanical device to test a mathematical conjecture
called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper
by Bernhard Riemann in 1859 and is now one of the most famous unsolved problem
in mathematics.

8.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num-
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a
highly secure cryptosystem (called RSA) based on number theory. Despite decades
of attack, no significant weakness Tias been found. Moreover, RSA has a major
advantage over traditional codes: the sender and receiver of an encrypted mes-
sage need not meet beforehand to agree on a secret key. Rather, the receiver has
both a secret key, which she guards closely, and a pubtic key, which she distributes
as widely as possible. The sender then encrypts his message using her widely-
distributed public key. Then she decrypts the received message using her closely-
held private key. The use of such a public key cryptography system allows you
and Amazon, for example, to engage in a secure transaction without meeting up
beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate rime, as Turing’s scheme may
have, but rather modulo(tfie product of two Targe primes_¥Thus, we’ll need to know a
bit about how arithmetic W Mo a composite number in order to understand

RSA. Arithmetic modulo an arbitrary positive integer is really only a little more
painful than working modulo a prime—though you may think this is like the doctor
saying, “This is only going to hurt a little,” before he jams a big needle in your arm.
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The Riemann Hypothesis

The formula for the sum of an infinite geometric series says:
e ——— e .

1

14+x+x2+x>+-.-=
l—x

Substituting x = 21—5, X = %, X = -5-1—;, and so on for each prime number gives a

sequence of equations:

e e e i i RO e

28 22s 23s 1_]/25

L e T 8

3 325 33s 1_1/3s

gty oo gl i

5 ' 525 1 535 1-1/5°
etc.

Multiplying together all the left sides and all the right sides gives:

i 4 maikifh bf
Y= o)

n=1 PEprimes

The sum on the left is obtained by multiplying out all the infinite series and ap-

lyi e Fundamental Theorem of Arithmetic. For example, the term 1/300°
in the sum is obtained by multiplying 1/2%% from the first equation by 1/3% in
the second and 1/5%* in the third. Riemann noted that every prime appears in the
expression on the right. So he proposed to learn about the primes by studying
the equivalent, but simpler expression on the left. In particular, he regarded s as
a complex number and the left side as a functionqs). Riemann found that the
distribution of primes is related to values of s for which {(s) = 0, which led to
his famous conjecture:

Definition 8.6.5. The Riemann Hypothesis: Every nontrivial zero of the zeta func-
tion {(s) lies on the line s = 1/2 + ¢i in the complex plane.

A proof would immediately imply, among other things, a strong form of the Prime
Number Theorem.

Researchers continue to work intensely to settle this conjecture, as they have for
over a century. It is another of the Millennium Problems whose solver will earn
$1,000,000 from the Clay Institute.
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8.7.1 Relative Primality

First, we need a new definition. Integers a and b areGelatively prime iff ged(a, b) =
_1. For example, 8 and 15 are relatively prime, since gcd(8,15) = 1. Note that,
“except for multiples of p, every integer is relativel prime to a prime number p.
Next we’ll need to generalize what we ﬁ%out arithmetic modulo a prime
to work modulo an arbitrary positive integer n. The basic theme is that arithmetic
modulo n may be complicated, but the integers relatively prime to n remain fairly

well-behaved. For example, e

Lemma 8.7.1. Let n be a positive integer. If k is relatively prime fo n, then there
exists an integer k1 such that:

k-k™'=1 (mod n).

An inverse for any k relatively prime to n is simply the coefficient of k in the
linear combination of k and n that equals 1, exactly as in the proof of Lemma 8.6.1.

As a consequence of this lemma, we can cancel a multiplicative term from both
sides of a congruence if that term is relatively prime to the modulus:

Corollary 8.7.2. Suppose n is a positive integer and k is relatively prime to n. If
ak = bk (mod n)

then
a=b (modn)

This holds because we can multiply both sides of the first congruence by k™1
and simplify to obtain the second.

The following lemma is the natural generalization of Corollary 8.6.3 with much
the same proof.

Lemma 8.7.3. Suppose n is a positive integer and k is relatively prime to n. Let
ki,...,kyr denote all the integers relatively prime to n in the range 1 ton—1. Then
the sequence:

rem(ky - k,n), rem(k,-k,n), rem(ks-k,n),... ,rem(k,-k,n)
is a permutation of the sequence:

Kas Howzawn Jor

WAgt C/ygg 776'5 Af@//’

ﬁjﬂﬁg/ ;'/

‘6' /e/

'@'4%

%
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Proof. We will show that the remainders in the first sequence are all distinct and
are equal to some member of the sequence of k;’s. Since the two sequences have
the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose
that rem(k;k,n) = rem(kjk,n). This is equivalent to k;k = k;k (mod n), which
implies k; = k; (mod n) by Corollary 8.7.2. This, in turn, means that k; = k;
since both are in [1,n). Thus, none of the remainder terms in the first sequence is
equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the k;. By
assumption, k; and k are relatively prime to n, and therefore so is k;k by Unique
Factorization. Hence,

ged(n, rem(k; k,n)) = ged(kik,n) (Lemma 8.2.1)
—p

Since rem(k;k, n) is in [0, n) by the definition of remainder, and since it is relatively
prime to n, it must, by their definition, be equal to one of the k;’s. [ |

8.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The-
orem._For both theorems, the exponent of k needed to produce an inverse of k
modulo n depends on the number ¢(n), of integers in [0, n), that are relatively
prime to n. This function ¢ ¢ is known as Euler’s ¢ or totient funcnon) For exam-
ple, ¢(7) = 6 since 1, 2, 3, 4, 5, and 6 are all relatlvely prime fc rime to 7. Similarly,
#(12) = 4 since 1, 5, 7, and 11 are the only numbers in [1, 12] that are relatively
prime to 12.

If n is prime, then ¢(n) = n — 1 since positive every number less than a prime
number is rel@me When »n is composite, however, the ¢
function gets a little complicated. We’ll get back to it in the next section.

We can now provem Theorem:

Theorem 8.7.4 (Euler’s Theorem). Suppose n is a positive integer and k is rela-
tively prime to n. Then
k4™ =1 (mod n)

Proof. Let ki, ...,k, denote all integers relatively prime to n where k; € [0, n).
Then r = ¢(n), by the definition of the function ¢. The remainder of the proof
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mirrors the proof of Fermat’s Theorem. In particular,

Toi il e,
=rem(ky - k,n) -rem(ky - k,n)---rem(k, - k,n)  (by Lemma 8.7.3)
= (k1-k)-(kp-k)----(ky-k) (mod n) (by Cor 8.5.3)
= (ky-ka---k;)-k" (mod n) (rearranging terms)

By Lemma 8.7.2, each of the terms k; can be cancelled, proving the claim. M

We can find multiplicative inverses using Eﬁ :rem as we did with Fer-
mat’s theorem: if k is relatively prim?ton, thefl k¢0)~1 i% multiplicative inverse
of k£ modulo n. However, this approach requires co nig ¢(n). In the next sec-
tion, we’ll show that computing ¢ (n) is easy if we know the prime factorization

of n. Unfortunately, finding the factors of n can be hard to do when » is large, and
so the Pulverizer is generally the best approach to computing inverses modulo 7.

8.7.3 Computing Euler’s Function

RSA works using arithmetic modulo the product of two large primes, so we begin
with an elementary explanation of how to compute ¢ (pq) for primes p and g:

Lemma 8.7.5. BL
¢(;{)P= Gpi==L)(g = 1)
for primes p # q.

Proof. Since p and g are prime, any number that is not relatively prime ton = pg
must be a multiple of p or a multiple of g. Among the pg numbers in [0, pg), there
are precisely ¢ multiples of p and p multiples of g. Since p and g are relatively
prime, the only number in [0, pq) that is a multiple of both p and ¢ is 0. Hence,
there are p +¢ —1 numbers in [0, pq) that are not relatively prime to n. This means
that

¢(n) =pg—(p+q—-1)
=p =1)g —1),
as claimed.* [ |
The following theorem provides a way to calculate ¢(n) for arbitrary n.

Theorem 8.7.6.

“This proof provides a brief preview of the kinds of counting arguments that we will explore more
fully in Part II1.
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(a) If p is a prime, then ¢(p*) = p* — p*=1 fork > 1.
(b) If a and b are relatively prime, then ¢(ab) = ¢(a)¢ (b).

Here’s an example of using Theorem 8.7.6 to compute ¢ (300):

$(300) = p(2%-3.5%)

=¢(2%)-¢(3) - ¢ (5 (by Theorem 8.7.6.(a))
=22 2N (3 =3% (52 =5 ) (by Theorem 8.7.6.(b))
= 80.

To prove Theorem 8.7.6.(a), notice that every pth number among the p* numbers
in [0, p¥ — 1] is divisible by p, and only these are divisible by p. So 1/ p of these
numbers are divisible by p and the remaining ones are not. That is,

¢(p*) = p* - (1/p)p* = p* - p*.

We’ll leave a proof of Theorem 8.7.6.(b) to Problem 8.20.
As a consequence of Theorem 8.7.6, we have

Corollary 8.7.7. For any number n, if p1, pa, ..., pj are the (distinct) prime
factors of n, then

¢(n)=n(1_%)(l_é) (1_;11_)

We’ll give another proof of Corollary 8.7.7 in a few weeks based on rules for
counting things.

8.8 The RSA Algorithm

Finally, we are ready to see how the RSA public key encryption scheme works. The
details are in the box on the next page.

It is not immediately clear from the description of the RSA cryptosystem that the
decoding of the encrypted message is, in fact, the original unencrypted message.

1 d antl' We'll work that out in class.
. | Is it hard for someone without the secret key to decrypt the message? No one
L l lfh b) knows for sure but it is generally believed that if n is a very large number (say, with
\ ( a thousand digits), then it is difficult to reverse engineer d from e and n. Of course,
Y\/‘)( :Jf W) it is easy to compute d if you know p and g (by using the Pulverizer) but it is not

Yook, St e
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The RSA Cryptosystem

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and g. Since they can be used to
generate the secret key, they must be kept hidden.

2. Letn = pgq. e,'(*flmL/éﬁlé” ’
”

3. Select an integer e such that ged(e, (p — 1)(g — 1)) = 1. ( s
0

The public key is the pair (e, n). This should be distributed widely.

4. Comput¢'d such thatde = | (mod (p —i!)(q— 1)). This can be done

. : o |
using the Pulverizer. - a mJJ'I'P e inese of € [ﬁmu [ )
The secret key is the pair (d, n). This should be kept hidden! L J' q/ !

Encoding Given a message m, the sender first checks that gcd(m,n) = 1.

The sender then encrypts message m to produce m™ using the public key:

m* = rem(m®,n).

Decoding The receiver decrypts message m™ back to message m using the secret
key:
m = rem((m*)?, n).

m* {@/LCA/#Q Mgyl
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known how to quickly factor n into p and ¢ when n is very large. Maybe with a
little more studying of number theory, you will be the first to figure out how to do
it. Although, we should warn you that Gauss worked on it for years without a lot to
show for his efforts. And if you do figure it out, you might wind up meeting some
serious-looking fellows in black suits. ...

8.9 What has SAT got to do with it?

\nf o The
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So why does the world, or at least the world’s secret codes, fall apart if there is an
efficient test for satisfiability? To explain this, remember that RSA can be man-
aged computationally because multiplication of two primes is fast, but factoring a
product of two primes seems to be overwhelmingly demanding.

Now designing digital multiplication circuits is completely routine. This means
we can easily build a digital circuit out of AND, OR, and NOTgates that can take two
input strings u, v of length n, and a third input string, z, of length 2, and “check”
if z represents the product of the numbers represented by u and v. That is, it gives
output 1 if z represents the product of u and v, and gives output 0 otherwise.

Now here’s how to factor any number with a length 2n representation using a
SAT solver. Fix the z input to be the representation of the number to be factored.
Set the first digit of the u input to 1, and do a SAT test to see if there is a satisfying
assignment of values for the remaining bits of # and v. That is, see if the remaining
bits of u and v can be filled in to cause the circuit to give output 1. If there is such
an assignment, fix the first bit of u to 1, otherwise fix the first bit of u to be 0. Now
do the same thing to fix the second bit of u and then third, proceeding in this way
through all the bits of u and then of v. The result is that after 2n SAT tests, we
have found an assignment of values for ¥ and v that makes the circuit give output
1. So u and v represent factors of the number represented by z. This means that if
SAT could be done in time bounded by a degree ¢ polynomial in 7, then 2n digit
numbers can be factored in time bounded by a polynomial in n of degree d + 1. In
sum, if SAT was easy, then so is factoring, and so RSA would be easy to break.

reut e g chap 9 el s
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8.10 Problems

Exam Problems

Problem 8.1.
Find the remainder of 26!818181 divided by 297. Hint: 1818181 = (180-10101) +
1; Euler’s theorem

Problem 8.2.

Find an integer k > 1 such that  and n* agree in their last three digits whenever n
is divisible by neither 2 nor 5. Hint: Euler’s theorem.

Problems for Section 8.1

Practice Problems

Problem 8.3.

Prove that a linear combination of linear combinations of integers ag,...,a, is a
linear combination of ay, ..., ay,.

Class Problems

Problem 8.4.

A number is perfect if it is equal to the sum of its positive divisors, other than itself.
For example, 6 is perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because
28 = 1 + 2 + 4 + 7 + 14. Explain why 2K=1(2% — 1) is perfect when 2% — 1 is
prime.’

Problems for Section 8.2

Class Problems

Problem 8.5. (a) Use the Pulverizer to find integers x, y such that

x-50 + y-21 = ged(50, 21).

SEuclid proved this 2300 years ago. About 250 years ago, Euler proved the
converse: every even perfect number is of this form (for a simple proof see
http://primes.utm.edu/notes/proofs/EvenPerfect.html). As is typical in
number theory, apparently simple results lie at the brink of the unknown. For example, it is not
known if there are an infinite number of even perfect numbers or any odd perfect numbers at all.
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(b) Now find integers x’, y” with y’ > 0 such that

x"-50 4+ y’-21 = ged(50,21)

Problem 8.6.

For nonzero integers, a, b, prove the following properties of divisibility and GCD’S.

(You may use the fact that gcd(a, b) is an integer linear combination of a and b.
You may not appeal to uniqueness of prime factorization because the properties
below are needed to prove unique factorization.)

(a) Every common divisor of a and b divides ged(a, b).
(b) If a | bc and ged(a, b) = 1,thena | c.
(c) If p | ab for some prime, p, then p |a or p | b.

(d) Let m be the smallest integer linear combination of a and b that is positive.
Show that m = gcd(a, b).

Homework Problems

Problem 8.7.

Let’s extend the jug filling scenario of Section 8.1.3 to three jugs and a recepta-
cle. The receptacle can be used to store an unlimited amount of water, but has no
measurement markings. Excess water can be dumped into the drain. Among the
possible moves are:

1. fill a bucket from the hose,

2. pour from the receptacle to a bucket until the bucket is full or the receptacle
is empty, whichever happens first,

3. empty a bucket to the drain,
4. empty a bucket to the receptacle,

5. pour from one bucket to another until either the first is empty or the second
is full,

(a) Model this scenario with a state machine. (What are the states? How does a
state change in response to a move?)

(b) Prove that Bruce can get k € N gallons of water into the receptacle using the
above operations only if gcd(a, b) | k.
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Problem 8.8.
Define the Pulverizer State machine to have:
states ::= N7
start state ::= (a, b,0,1,1,0) (wherea > b > 0)
transitions ::= (x, y, s,f,u,v) —
(y,rem(x, y),u — s gent(x, y), v — ¢ gent(x, y), s, 1) (for y > 0)

Note that x, y follows the transition rules of the Euclidean algorithm given in

equation (8.3), except that this machine stops one step sooner, ensuring that y gcd(a, b)

at the end. So for all inputs x, y, this procedure terminates after at most the same
of transitions as the Euclidean algorithm.

(a) Show that the following properties are preserved invariants of the Pulverizer
machine:

gcd(x, y) = ged(a, b), (8.7)
sa +tbh =y, and (8.8)
ua + vb = x. (8.9)

(b) Conclude that the Pulverizer machine is partially correct.

Problems for Section 8.3
Class Problems

Problem 8.9. (a) Let m = 295241171712 and n = 237?2112'113'17°192. What
is the ged(m,n)? What is the least common multiple, lcm(m,n), of m and n?
Verify that

ged(m,n) -lem(m,n) = mn. (8.10)

(b) Describe in general how to find the ged(m,n) and lem(m, n) from the prime
factorizations of m and n. Conclude that equation (8.10) holds for all positive
integers m, n.

Problems for Section 8.5

Class Problems

Problem 8.10.

The following properties of equivalence mod n follow directly from its definition
and simple properties of divisibility. See if you can prove them without looking up
the proofs in the text.
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(@) Ifa = b (mod n), then ac = bc (mod n).
(b) Ifa =b (mod n) and b = ¢ (mod n), thena = ¢ (mod n).
(¢c) fa=b (mod n)andc = d (mod n), then ac = bd (mod n).

(d) rem(a,n) = a (mod n).

Problem 8.11. (a) Why is a number written in decimal evenly divisible by 9 if and
only if the sum of its digits is a multiple of 9?7 Hint: 10 = 1 (mod 9).

(b) Take a big number, such as 37273761261. Sum the digits, where every other
one is negated:

34 (-D42+ (D +3+D+6+ (D) +2+ (—6) +1=—11

Explain why the original number is a multiple of 11 if and only if this sum is a
multiple of 11.

Problem 8.12.

Atone time, the Guinness Book of World Records reported that the “greatest human
calculator” was a guy who could compute 13th roots of 100-digit numbers that were
powers of 13. What a curious choice of tasks . ...

(a) Prove that
d¥ =d (mod 10) (8.11)

for0 <d < 10.
(b) Now prove that
n®*=n (mod 10) (8.12)

for all n.

Problems for Section 8.6
Class Problems

Problem 8.13.
Two nonparallel lines in the real plane intersect at a point. Algebraically, this means
that the equations

y=mx+b

y =max + by
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have a unique solution (x, y), provided m; # m5. This statement would be false if
we restricted x and y to the integers, since the two lines could cross at a noninteger
point:

However, an analogous statement holds if we work over the integers modulo a
prime, p. Find a solution to the congruences

y=mix+by (mod p)
Yy =max + by (mod p)
when m; # m2 (mod p). Express your solution in the form x =? (mod p) and

¥ =7 (mod p) where the ?’s denote expressions involving my, my, by, and b,.
You may find it helpful to solve the original equations over the reals first.

Problem 8.14.
LetSp =15 +25 4+ ... + (p— I)k, where p is an odd prime and k is a positive
multiple of p — 1. Use Fermat’s theorem to prove that Sy = —1 (mod p).

Homework Problems

Problem 8.15. (a) Use the Pulverizer to find the inverse of 13 modulo 23 in the
range {1,...,22}.

(b) Use Fermat’s theorem to find the inverse of 13 modulo 23 in the range {1,...,22}.
Problems for Section 8.10

Practice Problems

Problem 8.16. (a) Prove that 22'290! has a multiplicative inverse modulo 175.
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(b) What is the value of ¢(175), where ¢ is Euler’s function?

(¢) What is the remainder of 2212901 divided by 175?

Problem 8.17. (a) Use the Pulverizer to find integers s, ¢ such that
40s + 7t = gcd(40, 7).
Show your work.

(b) Adjust your answer to part (a) to find an inverse modulo 40 of 7 in the range
{1,...,39}.

Class Problems

Problem 8.18.
Let’s try out RSA! There is a complete description of the algorithm at the bottom
of the page. You’ll probably need extra paper. Check your work carefully!

(a) As ateam, go through the beforehand steps.

e Choose primes p and g to be relatively small, say in the range 10-40. In
practice, p and g might contain several hundred digits, but small numbers are
easier to handle with pencil and paper.

e Try e = 3,5,7,... until you find something that works. Use Euclid’s algo-
rithm to compute the ged.

e Find d (using the Pulverizer—see appendix for a reminder on how the Pul-
verizer works—or Euler’s Theorem).

When you’re done, put your public key on the board. This lets another team send
you a message.

(b) Now send an encrypted message to another team using their public key. Select
your message m from the codebook below:

e 2 = Greetings and salutations!

e 3 = Yo, wassup?

e 4 =You guys are slow!

e 5= All your base are belong to us.

e 6= Someone on our team thinks someone on your team is kinda cute.
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e 7 = You are the weakest link. Goodbye.

(c) Decrypt the message sent to you and verify that you received what the other
team sent!

Problem 8.19.

A critical fact about RSA is, of course, that decrypting an encrypted message al-
ways gives back the original message! That is, that rem((m?)¢, pg) = m. This
will follow from something slightly more general:

Lemma 8.10.1. Let n be a product of distinct primes and a = 1 (mod ¢ (n)) for
some nonnegative integer, a. Then

m%=m (mod n). (8.13)

(a) Explain why Lemma 8.10.1 implies that k and k> have the same last digit. For
example:

2’ =32 79° = 3077056399

Hint: What is ¢ (10)?
(b) Explain why Lemma 8.10.1 implies that the original message, m, equals rem((m¢)?, pq).
(c) Prove that if p is prime, then
m®=m (mod p) (8.14)
for all nonnegative integersa = 1 (mod p — 1).

(d) Prove thatif a = b (mod p); for distinct primes p1, p2,..., pn,thena = b
(mod O p1p1--- pn).

(e) Combine the previous parts to complete the proof of Lemma 8.10.1.

Homework Problems

Problem 8.20.

Suppose m, n are relatively prime. In the problem you will prove the key property
of Euler’s function that ¢p(mn) = ¢ (m)¢(n).

(a) Prove that if x = ¢ (mod a)b, then x = ¢ (mod a) for all positive a, b.
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(b) Prove that for any a, b, there is an x such that

x=a (mod m), (8.15)
x=b (mod n). (8.16)

Hint: Let m™! be an inverse of m modulo n and define e, ::= m~Ym. Define e,
similarly. Let x = ae,, + be,.

(c) Prove that there is an x € [0, mn) satisfying (8.15) and (8.16).
(d) Prove that the x satisfying part (c) is unique.

(e) For an integer k, let k™ be the integers in [1, k) that are relatively prime to k.
Conclude from part (d) that the function

f:(mn)* - m* xn*

defined by
f(x) ::= (rem(x, m), rem(x, n))

is a bijection.

(f) Conclude from the preceding parts of this problem that

P (mn) = ¢p(m)p(n).
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Introduction

tructure is fundamental in computer science. Whether you are \:Ei_t_iggglode, solv-

ing an optimization problem, or designing a network, you will be dealing with

structure. The better you can understand the structure, the better your results will

be. And if you can reason about structure, then you will be in a good position to
convince others (and yourself) that your results are worthy.

The most important structure in computer science is also known as a

. Graphs provide an excellent mechanism for modeling associations be-

tween pairs of objects; for example, two exams that cannot be given at the same

L% time, two people that like each other, or two subroutines that can be run indepen-
- ~ ently. In Chapter 9, we study directed graphs which model one-way relationships

such as being bigger than, loving (sadly, it’s often not mutual)mrerequisite

Ca{{k on t for. A highlight is the special case of acyclic digraphthat correspond to a
class of relations called grdrtial orders., Partial orders arise frequently in the study
of Wnoy. Digraphs as models for data communication and
routing problems are the topic of Chapter 10.

In Chapter 11 we focus oneimiple graphs that represent mutual af symmetrix rela-
tionships, such as being congruent modulo 17, being in conflict, being compatible,
being independent, being capable of running in parallel.

This part of the text concludes with Chapter 12 which elaborates the use of the

@) hiney in program verification and modeling concurrent computation.
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