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Introduction

Probability is one of the lesmplmes in all of the sciences. It is also
one of the least well understood.

Probability is especially important in computer science—it arises in virtually
every branch of the field. In algorithm design and game theory, for example, ran-
domized algorithms and strategies (those that use a random number generator as a
kéy input Tor decision making)-frequently outperform deterministic algorithms and
strategies. In information theory and signal processing, an understanding of ran-
domness is critical for filtering out noise and compressing data. In cryptography
and digital rights management, probability is crucial for achieving security. The
list of examples is long.

Given the impact that probability has on computer science, it seems strange that

" probability should be so misunderstood by so many. Perhaps the trouble is that
basic human intuition is wrong as often as it is right when it comes to problems
involving random events. As a consequence, many students develop a fear of prob-
ability. Indeed, we have witnessed many graduate oral exams where a student will
solve the most horrendous calculation, only to then be tripped up by the simplest
probability question. Indeed, even some faculty will start squirming if you ask them /

a question that starts “What is the probability that...?” 45

Our goal in the remaining chapters is to equip you with the tools that will enable % @4
you to solve basic problems involving probability easily and confidently. ?

Chapter 16 introduces the basic definitions and an elementary 4-step process ] ﬁ?/
that can be used to determine the probability that a specified event occurs. We il- J
lustrate the method on two famous problems where your intuition will probably fail
you. The key concepts of Conditional probability and independence are introduced,
along with examples of their use, and regrettable misuse, in practice: the probabil-
ity you have a disease given that a diagnostic test says you do, and the probability
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that a suspect is guilty given that his blood type matches the blood found at the
scene of the crime.

We study random variables and their probability distributions in the following
Chapter. Random variables provide a more quantitative way to measure random
events. For example, instead of determining the probability that it will rain, we
may want to determine how much or how long it is likely to rain. The fundamental
concept of the expected value of a random variable is introduced and some of its
key properties are developed.

After that, we examine the probability that a random variable deviates signif-
icantly from its expected value. This is especially important in practice, where
things are generally fine if they are going according to expectation, and you would
like to be assured that the probability of deviating from the expectation is very low.

We conclude with final chapter that applies the previous results to solve problems
involving more complex random processes. We will see why you will probably
never get very far ahead at the casino, and how two Stanford graduate students
became gazillionaires by combining graph theory and probability theory to design
a better search engine for the web.
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16 Events and Probability Spaces

16.1 Let’s Make a Deal

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant
responded to this letter:

Suppose you're on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what's behind the doors,
opens another door, say number 3, which has a goat. He says to you,
”Do you want to pick door number 2?” Is it to your advantage to
switch your choice of doors?

Craig. F. Whitaker

07 }5 l% / / Columbia, MD

The letter describes a situation like one faced by contestants in the 1970’s game
show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied
that the contestant should indeed switch. She explained that if the car was behind
either of the two unpicked doors—which is twice as likely as the the car being
behind the picked door—the contestant wins by switching. But she soon received
a torrent of letters, many from mathematicians, telling her that she was wrong. The
problem became known as the Monty Hall Problem and it generated thousands of
hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of
examples where ordinary intuition leads to completely wrong conclusions. So until
you’ve studied probabilities enough to have refined your intuition, a way to avoid
errors is to fall back on a rigorous, systematic approach such as the Four Step
Method that we will describe shortly. First, let’s make sure we really understand
the setup for this problem. This is always a good thing to do when you are dealing
with probability.

16.1.1 Clarifying the Problem

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some
assumptions in order to have any hope of modeling the game formally. For exam-
ple, we will assume that:




“mcs” — 2011/4/16 — 22:07 — page 514 — #520

514 Chapter 16  Events and Probability Spaces

1. The car is equally likely to be hidden behind each of t ee doors.

car’s location.

. , _ % LJQ@
3. After the player picks a door, the host must open a differgnt door with a go
behind it and offer the player the choiceof staying WlEé %%e orfginal door or JQ') y
SWitching. : )
FeniB @Q’h ex ffﬁ jafo

4. If the host has a ch®ice of which door to open, then he is equally likely to
select each of them.

2. The player is equally likely to pick each of the three doors, regardless of the ;
: XU qre

In making these assumptions, we're reading a lot into Craig Whitaker’s letter. Other
interpretations are at least as defensible, and some actually lead to different an-
swers. But let’s accept these assumptions for now and address the question, “What
is the probability that a player who switches wins the car?”

16.2 The Four Step Method

Every probability problem involves some sort of randomized experiment, process,
or game. And each such problem involves two distinct challenges:

meﬁ}\ M‘!’@ 1. How do we model the situation mathematically?
— g o i S

) 2. How do we solve the resulting mathematical problem?
‘h————""'"_-—'-—-_____-—"_
In this section, we introduce a four step approach to questions of the form, “What

is the probability that...?” In this approach, we build a probabilistic model step-
by-step, formalizing the original question in terms of that model. Remarkably, the
structured thinking that this approach imposes provides simple solutions to many
famously-confusing problems. For example, as you'll see, the four step method
cuts through the confusion surrounding the Monty Hall problem like a Ginsu knife.

16.2.1 Step 1: Find the Sample Space

Our first objective is to identify all the possible outcomes of the experiment. A
typical experiment involves several randomly-determined quantities. For example,
the Monty Hall game involves three such quantities:

1. The door concealing the car.

2. The door initially chosen by the player.
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car location

Figure 16.1 The first level in a tree diagram for the Monty Hall Problem. The
branches correspond to the door behind which the car is located.

3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an
outcome. The set of all possible outcomes is called the sample space for the exper-
—TrTent.

A tree diagram is a graphical tool that can help us work through the four step
aplm the number of outcomes is not too large or the problem is nicely
structured. In particular, we can use a tree diagram to help understand the sample
space of an experiment. The first randomly-determined quantity in our experiment
is the door concealing the prize. We represent this as a tree with three branches, as
shown in Figure 16.1. In this diagram, the doors are called A, B, and C instead of
1, 2, and 3, because we’ll be adding a lot of other numbers to the picture later.

For each possible location of the prize, the player could initially choose any of
the three doors. We represent this in a second layer added to the tree. Then a third
layer represents the possibilities of the final step when the host opens a door to
reveal a goat, as shown in Figure 16.2.

Notice that the third layer reflects the fact that the host has either one choice
or two, depending on the position of the car and the door initially selected by the
player. For example, if the prize is behind door A and the player picks door B, then
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Figure 16.2 The full tree diagram for the Monty Hall Problem. The second level
indicates the door initially chosen by the player. The third level indicates the door
revealed by Monty Hall.




“mes” — 2011/4/16 — 22:07 — page 517 — #523

16.2. The Four Step Method 517

the host must open door C. However, if the prize is behind door A and the player
picks door A, then the host could open either door B or door C.

Now let’s relate this picture to the terms we introduced earlier: the leaves of the
tree represent outcomes of the experiment, and the set of all leaves represents the
sample space. Thus, Tor this experiment, the sample space consists of 12 outcomes.
For reference, we've labeled each outcome in Figure 16.3 with a triple of doors
indicating:

(door concealing prize, door initially chosen, door opened to reveal a goat).

In these terms, the sample space is the set

_ | (A4,4,B), (4,A,C), (A,B,C), (A,C,B), (B,A,C), (B, B, A),
—-|-CB:B; G); (B,C, A), (C, A)B), (C, B, 4), (C,C,4), (C.C,B)

The tree diagram has a broader interpretation as well: we can regard the whole
experiment as following a path from the root to a leaf, where the branch taken at
each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it
again later.

S

16.2.2 Step 2: Define Events of Interest

Our objective is to answer questions of the form “What is the probability that ... ?”,
where, for example, the missing phrase might be “the player wins by switching”,
“the player initially picked the door concealing the prize”, or “the prize is behind
door C”. Each of these phrases characterizes a set of outcomes. For example, the
outcomes specified by “the prize is behind door C” is:

{(C, 4, B),(C, B, A),(C,C, A),(C,C, B)}.

A set of outcomes is called @7! and it is a subset of the sample space. So the
event that the player initially picked the door concealing the prize is the set:

{(A, A, B), (4, 4,C), (B, B, A), (B, B,C),(C,C, A), (C,C, B)}.

And what we’re really after, the event that the player wins by switching, is the set
of outcomes:

[switching-wins]
=={(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C, A, B),(C,B, A)}. (16.1)

These outcomes have check marks in Figure 16.4.

Notice that exactly half of the outcomes are checked, meaning that the player
wins by switching in half of all outcomes. You might be tempted to conclude that
a player who switches wins with probability 1/2. This is wrong. The reason is that
these outcomes are not all equally Tikely, as we’ll see shortly.

fa‘lfﬂa{ p@
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car location player’s door outcome
intial revealed

guess

(4,4,B)
(4,4,6)
(4,8,0)
(4,C,B)
(8,4,0)

(B,B,A)

(B,B.C)
(B.C.A)
(C.A,B)
(C,B,A)

(C,C,A)

(C.C.B)

Figure 16.3 The tree diagram for the Monty Hal Problem with the outcomes la-
beled for each path from root to leaf. For example, outcome (A4, A, B) corresponds
to the car being behind door A, the player initially choosing door A, and Monty
Hall revealing the goat behind door B.
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car location player’s door outcome  switch
intial revealed l\ggg
guess
(A,A,B)
(4,4,0)
(4,B,0) v
(A,C,B) v
(B,A,C) v
(B,B,A)
(B,8,C)
(B,C,4) v
(C,A,B) v
(C,B,A) v
(C,C,A)
(C.C,B)

Figure 16.4 The tree diagram for the Monty Hall Problem where the outcomes
in the event where the player wins by switching are denoted with a check mark.
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16.2.3 Step 3: Determine Qutcome Probabilities

So far we’ve enumerated all the possible outcomes of the experiment. Now we
must start assessing the likelihood of those outcomes. In particular, the goal of this
step is to assign each outcome a probability, indicating the fraction of the time this
outcome is expected to occur. The sum of all outcome (probabilities must be-one,
reflecting the fact that there always is an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re mod-
eling and thus are not quantities that we can derive mathematically. However, math-
ematics can help us compute the probability of every outcome based on fewer and
more elementary modeling decisions. In particular, we’ll break The task of deter-
mining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on eagh ed e of the tree diagram. These edge-
probabilities are determined by the assumptions we made at the outset: that the
prize is equally likely to be behind each door, that the player is equally likely to
pick each door, and that the host is equally likely to reveal each goat, if he has a
choice. Notice that when the host has no choice regarding which door to open, the
single branch is assigned probability 1. For example, see Figure 16.5.

Step 3b: Compute Outcome Probabilities
R

,__/
Our next job is to convert edge probabilities into outcome probabilities. This is a
purely mechanical process:

the probability of an outcome is equal to the product of the edge-
probabilities on the path from the root to that outcome.

For example, the probability of the topmost outcome in Figure 16.5, (4, 4, B), is

There’s an easy, intuitive justification for this rule. As the steps in an experiment
progress randomly along a path from the root of the tree to a leaf, the probabilities
on the edges indicate how likely the path is to proceed along each branch. For
example, a path starting at the root in our example is equally likely to go down
each of the three top-level branches.

How likely is such a path to arrive at the topmost outcome, (A, A, B)? Well,
there is a 1-in-3 chance that a path would follow the A-branch at the top level,
a 1-in-3 chance it would continue along the A-branch at the second level, and 1-
in-2 chance it would follow the B-branch at the third level. Thus, it seems that
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1 path in 18 should arrive at the (A, A, B) leaf, which is precisely the probability
we assign it.

We have illustrated all of the outcome probabilities in Figure 16.5.

Specifying the probability of each outcome amounts to defining a function that
maps each outcome to a probability. This function is usually called Pr[-]. In these
terms, we’ve just determined that:

PA(4, A, B)] = 2,
1

Pr[(4,4,C)]) = g

Pr[(4, B, C)] =

\ol'—-'—-

etc.

16.2.4 Step 4: Compute Event Probabilities

We now have a probability for each outcome, but we want to determine the proba-
bility of an event. The probability of an event E is denoted by Pr[E] and it is the
sum of the probabilities of the outcomes in E. For example, the probability of the
[switching wins] event (16.1) is

Pr[[switching wins]] A (J/ C}/ / 7/
= Pr[(4, B, C)] + Pr[(A, C, B)] + Pr[(B, 4, C)]+ /j
Pr[(B, C, A)] + Pr[(C, A4, B)] + Pr[(C, B, A)]

1 1 1 1 1
oot ey

3l

~ 9
il
=
It seems Marilyn’s answer is correct! A player who switches doors wins the car
with probability 2/ SWV who stays with his or her original door
wins with probability 1/3, since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or inge-
nious analogies. In fact, no mathematics more difficult than adding and multiplying
fractions was required. The only hard part was resisting the temptation to leap to
an “intuitively obvious™ answer.

16.2.5 An Alternative Interpretation of the Monty Hall Problem

‘Was Marilyn really right? Our analysis indicates that she was. But a more accurate
conclusion is that her answer is correct provided we accept her interpretation of the

2pdlz
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car location player’s door outcome switch probability
intial revealed wins
guess
(A,A.B) 1/18
(4,4,C) 1/18
(A,B,C) v 1/9
(4,c,B) v 1/9
(B,AC) 1/9
(B,B,A) 1/18
(B,B,C) 1/18
(B,C,A) 1/9
(E4B) 1/9
(C.B,A) 1/9
(C.C,4) 1/18
B 12 (C.C,B) 1/18

Figure 16.5 The tree diagram for the Monty Hall Problem where edge weights
denote the probability of that branch being taken given that we are at the parent of
that branch. For example, if the car is behind door A, then there is a 1/3 chance that
the player’s initial selection is door B. The rightmost column shows the outcome
probabilities for the Monty Hall Problem. Each outcome probability is simply the
product of the probabilities on the path from the root to the outcome leaf.
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Figure 16.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1/3.

a

question. There is an equally plausible interpretation in which Marilyn’s answer
“is wrong. Notice that Craig Whitaker’s original letter does not say that the host is
required to reveal a goat and offer the player the option to switch, merely that he
did thesethings. In fact, on the Let’s Make a Deal show, Monty Hall sometimes
{/\/ : QL 3- simply 6156{7&1% door that the contestant picked initially. Therefore, if he wanted
a/( to, Monty could give the option of switching only to contestants who picked the
{ obend. inifyl

correct door initially. In this case, switching never works!
§ I
Pl L?ACfoof (/qutl see b @Mﬂf}' dnd d/“’“!5 g o .Swz'/lé$
i ) = s [ i
16.3 Strange Dice G jr—f—=pro— it W e (g
The four-step method is surprisingly powerful. Let’s get some more practice with
it. Imagine, if you will, the following scenario.

It’s a typical Saturday night. You're at your favorite pub, contemplating the
true meaning of infinite cardinalities, when a burly-looking biker plops down on
the stool next to you. Just as you are about to get your mind around P(P(R)),
biker dude slaps three strange-looking dice on the bar and challenges you to a $100
wager. His rules are simple. Each player selects one die and rolls it once. The
player with the lower value pays the other player $100.

Naturally, you are skeptical; especially after-yousee-that these are not ordinary
dice. Each die has the usual six sides, but opposite sides have the same number on
them, and the numbers on the dice are different, as shown in Figure 16.6.

Biker dude notices your hesitation, so he sweetens his offer: he will pay you
$105 if you roll the higher number, but you only need pay him $100 if he rolls
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higher, and he will let you pick a die first, after which he will pick one of the other
two. The sweetened deal sounds persuasive since it gives you a chance to pick what
you think is the best die, so you decide you will play. But which of the dice should
you choose? Die B is appealing because it has a 9, which is a sure winner if it
comes up. Then again, die A has two fairly large numbers and die C has an 8 and
no really small values.

In the end, you choose die B because it has a 9, and then biker dude selects
die A. Let’s see what the probability is that you will win. (Of course, you probably
should have done this before picking die B in the first place.) Not surprisingly, we
will use the four-step method to compute this probability.

16.3.1 Die A versus Die B

Step 1: Find the sample space.

The tree diagram for this scenario is shown in Figure 16.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A
and Die B:

For this experiment, the sample space is a set of nine outcomes:
§={@2.,1), 2,5), (2,9, (6,1), (6,5), (6,9), (7.1), (7.5), (7.9 }.

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B. This event is a set of five outcomes: \""t’?

e

'u\l
{2.1), (6,1), (6,5), (7.1), (7, 5)6 S

These outcomes are marked A in the tree diagram in Figure 16.7.

Step 3: Determine outcome probabilities.

To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1/3, regardless of
the value of the other die. Therefore, we assign all edges probability 1/3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1/9. These
probabilities are recorded on the right side of the tree diagram in Figure 16.7.

Step 4: Compute event probabilities.

The probability of an event is the sum of the probabilities of the outcomes in that
event. In this case, all the outcome probabilities are the same, so we say that the
sample space is uniform. Computing event probabilities for uniform sample spaces

too
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die A die B winner probability
of outcome

1/9
1/9
1/9

1/9

1/9
1/9
1/9

1/9

1/9

Figure 16.7 The tree diagram for one roll of die A versus die B. Die A wins with
probability 5/9.
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is particularly easy since you just have to compute the number of outcomes in the
event. In particular, for any event E in a uniform sample space S,
|E]

Pr{E] = B (16.2)

In this case, E is the event that die A beats die B, so |E| =5, |S§| = 9, and
Pr[E] =5/9.

This is bad news for you. Die A beats die B more than half the time and, not
surprisingly, you just lost $100.

Biker dude consoles you on your “bad luck™ and, given that he’s a sensitive guy
beneath all that leather, he offers to go double or nothing.! Given that your wallet
only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die A
will give you the advantage.

So you choose A, and then biker dude chooses C. Can you guess who is more
likely to win? (Hint: it is generally not a good idea to gamble with someone you
don’t know in a bar, especially when you are gambling with strange dice.)

16.3.2 Die A versus Die C

We can construct the three diagram and outcome probabilities as before. The result
1s shown in Figure 16.8 and there is bad news again. Die C will beat die A with
probability 5/9, and you lose once again. —_—

You now owe the bikér dude $200 and he asks for his money. You reply that you
need to go to the bathroom.

16.3.3 Die B versus Die C

Being a sensitive guy, biker dude nods understandingly and offers yet another wa-
ger. This time, he’ll let you have die C. He’ll even let you raise the wager to $200
s0 you can win your money back. eaaur

This is too good a deal to pass up. You know that die C is likely to beat die A
and that die A is likely to beat die B, and so die C is surely the best. Whether biker
dude picks A or B, the odds would be in your favor this time. Biker dude must
really be a nice guy.

So you pick C, and then biker dude picks B. Wait, how come you haven’t
caught on yetmw out the tree diagram before you took this bet :-) 7 If

! Double or nothing is slang for doing another wager after you have lost the first. If you lose again,
you will owe biker dude double what you owed him before. If you win, you will owe him nothing;
in fact, since he should pay you $210 if he loses, you would come out $10 ahead.
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die C die A  winner probability
of outcome

1B3s C 19

A 1/9

A 1/9

C 1/9

A 1/9

A 1/9

C 1/9

C 1/9

C 1/9

Figure 16.8 The tree diagram for one roll of die C versus die A. Die C wins with
probability 5/9.
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you do it now, you’ll see by the same reasoning as before that B beats C with
probability 5/9. But surely there is a mistake! How is it possible that

C beats A with probability 5/9,
A beats B with probability 5/9,
B beats C with probability 5/9?

The problem is not with the math, but with your intuition. Since A will beat B
more often than not, and B will beat C more often than not, it seems like A ought
to beat C more often than not, that is, the “beats more often” relation ought to be
transitive. But this intuitive idea is simply famﬁlﬁ‘ympick, biker dude

m one of the others and be likely to win. So picking first is actually a big
disadvantage, and as a result, you now owe biker dude $400.

Just when you think matters can’t get worse, biker dude offers you one final
wager for $1,000. This time, instead of rolling each die once, you will each roll
your die twice, and your score is the sum of your rolls, and he will even let you
pick your die second, that is, after he picks his. Biker dude chooses die B. Now
you know that die A will beat die B with probability 5/9 on one roll, so, jumping
at this chance to get ahead, you agree to play, and you pick die A. After all, you
figure that since a roll of die A beats a roll of die B more often that not, two rolls
of die A are even more likely to beat two rolls of die B, right?

Wrong! (Did we mention that playing strange gambling games with strangers in
a bar is a bad idea?)

16.3.4 Rolling Twice

If each player rolls twice, the tree diagram will have four levels and 3* = 81
outcomes. This means that it will take a while to write down the entire tree dia-
gram. But it’s easy to write down the first two levels as in Figure 16.9(a) and then
notice that the remaining two levels consist of nine identical copies of the tree in
Figure 16.9(b).

The probability of each outcome is 1 and so, once again, we have
a uniform probability space. By Equation 16.2, this means that the probability that
A wins is the number of outcomes where A beats B divided by 81.

To compute the number of outcomes where A beats B, we observe that the sum
of the two rolls of die A is equally likely to be any element of the following multiset:

4

S4=1{4,8,8,9,9,12,13,13, 14}.

The sum of two rolls of die B js equally likely to be any element of the following
multiset:
g Sp =1{2,6,6,10,10,10, 14, 14, 18}.
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ISt A4 2nd 4 sum of 15t B 2nd B sum of
roll roll A rolls roll roll  Brolls

18

Figure 16.9 Parts of the tree diagram for die B versus die A where each die is
rolled twice. The first two levels are shown in (a). The last two levels consist of
nine copies of the tree in (b).

We can treat each outcome as a pair (x, y) € §4 x Sp, where A wins iff x > y. If
x = 4, there is only one y (namely y = 2) for which x > y. If x = 8§, there are
three values of y for which x > y. Continuing the count in this way, the number
of pairs for which x > y is

1+34+34+34+34+6+6+4+6+6=237.

A similar count shows that there are 42 pairs for which x > y, and there are
two pairs ((14, 14), (14, 14)) which result in ties. This means that A loses to B
with probability 42/81 > 1/2 and ties with probability 2/81. Die A wins with
probability only 37/8T. R

How can it be that A4 is more likely than B to win with one roll, but B is more
likely to win with two rolls? Well, why not? The only reason we’d think otherwise
is our unreliable, untrained intuition. (Even the authors were surprised when they
first learned about this, But at Teast we didn’t lose $1400 to biker dude.) In fact, the
die strength reverses no matter which two die we picked. So for 1 roll,

T TSR EA——

but for two rolls,
S A<B=<C <A,

where we have used the symb@‘dﬁfete which die is more likely to
result in the larger value. —
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D, D, D, D,

D, D, D D B8 B D D,
(a) (b) (c) (d)
Dl Dl Dl Dl

D, D, ~D; Y D; Dy 2 D,
(e) () (8) (h)

Figure 16.10 All possible relative strengths for three dice Dy, D5, and D3. The
edge (D,- —D j) denotes that the sum of rolls for D; is likely to be greater than the
sum of rolls for D ;.

Even Stranger Dice

The weird behavior of the three strange dice above generalizes in a remarkable
way.” The idea is that you can find arbitrarily large sets of dice which will beat
each other in any desired patterfi according to how many fimes the dice Med.g
The precise statement of this result involves several alternations of universal and
existential quantifiers, so it may take a few readings to understand what it is saying:

Theorem 16.3.1. For anyn > 2, there is a set of n dice with the following property:
Jor any n-node digraph with exactly one directed edge between every two distinct
nodes,? there is a number of rolls k such that the sum of k rolls of the ith die is
bigger than the sum for the jth die with probability greater than 1/2 iff there is an
edge from the ith to the jth node in the graph.

For example, the eight possible relative strengths for n = 3 dice are shown in
Figure 16.10.

Our analysis for the dice in Figure 16.6 showed that for 1 roll, we have the
relative strengths shown in Figure 16.10(a), and for two rolls, we have the (reverse)
relative strengths shown in Figure 16.10(b). If you are prone to gambling with

2Reference Ron Graham paper. '
3In other words, for every pair of nodes u # v, either (¥ — v) or {v —u), but not both, are edges
of the graph. Such graphs are called tournament graphs, see Problem 9.4.

Probds
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strangers in bars, it would be a good idea to try figuring out what other relative
strengths are possible for the dice in Figure 16.6 when using more rolls.

16.4 Set Theory and Probability

ol

Let’s abstract what we’ve just done with the Monty Hall and strange dice examples
into a general mathematical definition of sample spaces and probability.

16.4.1 Probability Spaces

Definition 16.4.1. A countabl&sample s 7S is a nonempty countable set.* An
elem@is calle e. @ is calledzan event. , :é., a no

Definition 16.4.2. A probability funciion on a sample space S is a total function (] (0/ /COF# P

Pr:S — R such that =

e Pr[w] > 0 forallw € S, and

o Y pesPrw] = 1. ) ‘hL i (‘/(«C)
A sample space together with a probability function is called a probability space.
For any eve@c probability of E is defined to be the sum of the probabil-

ities of the outc sin E: ad é eac( Oufc ne.

Pr(E] ::= Z Pr{w].

weE

In the previous examples there were only finitely many possible outcomes, but

we’ll quickly come to examples that have a countably infinite number of outcomes.

The study of probability is closely tied to set theory because any set can be a

sample space and any subset can be an event. General probability theory deals

with uncquntable sets like the set of real numbers, but we won’t need these, and

sticking to countable sets lets us define the probability of events using sums instead

lr@{,"’bf integrals. It also lets us avoid some distracting technical problems in set theory
like the Banach-Tarski “paradox” mentioned in Chapter 5,

I
16.4.2 Probability Rules from Set Theory

Most of the rules and identities that we have developed for finite sets extend very
naturally to probability.

4Yes, sample spaces can be infinite. If you did not read Chapter 5, don’t worry —countable just
means that you can list the elements of the sample space as wg, wy, w2, ....

_C_/_;b

af &.ﬂ(ﬂ/@)

arn

—
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é} immediate consequence of the definition of event probability is that

Jjoinevents E and F,

PEU Fl = PriE] +PlF). Moot Jo | rs/on
This generalizes to a countable number of events, as follows.
Rule 16.4.3 @) If{Eo, E1, ...} is collection of a‘is!'ofnr events, then

g it
Pr [ U E,,:] = Y PrE,]. (leo nk
neN neN

The Sum Rule lets us analyze a complicated event by breaking it down into
simpler cases. For example, if the probability that a randomly chosen MIT student
is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then
the probability that a random MIT student is native to North America is 70%.

Another consequence of the Sum Rule is that Pr[A] + Pr[A] = 1, which follows
because Pr[S] = 1 and & is the union of the disjoint sets A and A. This equation
often comes up in the form:

Rule 16.4.4 omﬁi’.ment Rule).

Pr[A] = 1 — Pr[A].

Sometimes the easiest way to compute the probability of an event is to compute
the probability of its complement and then apply this formula.

Some further basic facts about probability parallel facts about cardinalities of
finite sets. In particular: —

Pr[B — A] = Pr[B] — Pr[A N B], (Differencm)
Pr[A U B] = Pr[A] + Pr[B] — Pr[A N B], (Inclusion-Exclusion)
Pr[A U B] < Pr[A] + Pr[B], (Boole’s Inequality)
If A € B, then Pr[A] < Pr[B]. (Monotonicity)

The Difference Rule follows from the Sum Rule because B is the union of the
disjoint sets B — A and A N B. Inclusion-Exclusion then follows from the Sum
and Difference Rules, because A U B is the union of the disjoint sets A and B —
A. Boole’s inequality is an immediate consequence of Inclusion-Exclusion since
probabilities are nonnegative. Monotonicity follows from the definition of event
probability and the fact that outcome probabilities are nonnegative.

The two-event Inclusion-Exclusion equation above generalizes to n events in
the same way as the corresponding Inclusion-Exclusion rule for n sets. Boole’s

inequality also generalizesto ~———

PAEL Ut ) <B4 ). —CdonBomd) )
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This simple Union Bound is useful in many calculations. For example, suppose
that E; is the event that the i-th critical component in a spacecraft fails. Then
Ey U---U E, is the event that some critical component fails. If }7_, Pr[E;]
is small, then the Union Bound cgn give an adequate upper bound on this vital

probability. ko l

16.4.3 Uniform Probability Spaces

Definition 16.4.5. A finite probability space S, Pr is said to be uniform if Pr{w] is
the same for every outcome w € &.

As we saw in the strange dice problem, uniform sample spaces are particularly
easy to work with. That’s because for any event E C S,

|E]
18I

This means that once we know the cardinality of £ and S, we can 1mmed1ately‘fv5f {/déf @n
obtain Pr[E]. That’s great news because we developed lots of tools for computing ﬂ((
the cardinality of a set in Part IIL. 1

For example, suppose that you select five cards at random from a standard deck ’} bv@f )
of 52 cards. What is the probability of havi full house? Normally, this question

Pr[E] = (16.3)

e 52
()
|EI=I3-(:)-12-(:) e Lot Chay

where E is the event that we have a full house. Since every five-card hand is equally
likely, we can apply Equation 16.3 to find that

13129 () 3
PF[E]=T <) ﬂL JC_ tZE, 53
1312 -446:5:4:3-2

52-51-50-49-48

and

would take some effort to answer. But from the analysis in Section 15.9.2, we know / { C&K\

of
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ond
player 1/2 AT
ond
1st player 1/2

player 1/2

1/16

12

Figure 16.11 The tree diagram for the game where players take turns flipping a
st o e

fair coin. The first playc@.

—_—

16.4.4 Infinite Probability Spaces

Infinite probability spaces are fairly common. For example, two players take turns
flipping a fair coin. Whoever flips heads first is declared the winner. What is the
probability that the first player wins? A tree diagram for this problem is shown in
Figure 16.11.

S . A .
The event that the first player wins contains an@er of outcomes, but

we can still sum their probabilities: -~

. 1
Pr{first player wins] = 5 + 3 + e + 2% +O O Gms

o0

Z%EG) & Mok by S Lo bonc

= % (1—11/4) = %

fi
Similarly, we can compute the probability tha? th%eségocr‘m{?)lfgyer wins:

1 1 1 1 1
Pr[second player wins] = i + 16 + a + 758 4= -

In this case, the sample space is the infinite set
i

S:={T"'H|n @
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where T" stands for a length n string of T’s. The probability function is
1
— /‘ ]
n+1 < wa n <
To verify that this is a probability space, we just have to check that all the probabili-

ties are nonnegative and that they sum to 1. Nonnegativity is obvious, and applying
the formula for the sulnwit@ series, we find that

SERMH = ) 2}% =

neN neN

Pr[T"H] ::=

Notice that this model does not have an outcome corresponding to the possi-
bility that both players keep flipping tails forever —in the diagram, flipping for-
ever corresponds to following the infinite path in the tree without ever reaching
a leaf/outcome. If leaving this possibility out of the model bothers you, you’re
welcome to fix it by adding another outcome, Wgyrever, to indicate that that’s what
happened. Of course since the probabililities of the other outcomes already sum to
1, you have to define the probability of Weyever to be 0. Now outcomes with prob-
ability zero will have no impact on our calculations, so there’s no harm in adding
it in if it makes you happier. On the other hand, since it has no impact, we will
exclude such sample points whose probapility is 0, which is the usual thing to do.

in [l fiact

16.5 Conditional Probability

Suppose that we pick a random person in the world. Everyone has an equal chance
of being selected. Let A be the event that the person is an MIT student, and let
B be the event that the person lives in Cambridge. What are the probabilities of
these events? Intuitively, we’re picking a random point in the big ellipse shown in
Figure 16.12 and asking how likely that point is to fall into region A or B.

The vast majority omhe world neither live in Cambridge nor are MIT
students, so events A and B both have low probability. But what about the prob-
ability that a person is an MIT student that the person lives in Cambridge?
This should be much greater —but whatTs 1t exactly?

‘What we’re asking for is called a conditional probability; that is, the probability
that one event happens, given that some other event definitely happens. Questions
about conditional probabilities come up all the time:

e What is the probability that it will rain this afternoon, given that it is cloudy
this morning?
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set of all people
in the world

set of MIT
students

set of people
who live in
Cambridge

Figure 16.12 Selecting a random person. A is the event that the person is an MIT
student. B is the even that the person lives in Cambridge.

e What is the probability that two rolled dice sum to 10, given that both are
odd?

e What is the probability that I’ll get four-of-a-kind in Texas No Limit Hold
"Em Poker, given that I’m initially dealt two queens?

There is a special notation for conditional probabilities. In general, Pr[A | B]
denotes the probability of event A, given that event B happens. So, in our example,
Pr [A | B ] is the probability that a random pm MIT student, given that he
or she is a Cambridge resident.

How do we compute Pr [A | B]? Since we are given that the person lives in
Cambridge, we can forget about everyone in the world who does not. Thus, all
outcomes outside event B are irrelevant. So, intuitively, Pr [A | B] should be the
fraction of Cambridgé‘?g;ldems that are also MIT students; that is, the answer
should be the probability that the person is in set A N B (the darkly shaded region
in Figure 16.12) divided by the probability that the person is in set B (the lightly

“Mshaded region). This motivates the definition of conditional probability:

Definition 16.5.1.

If Pr[B] = 0, then the conditional probability Pr]A4 | B] is undefined.
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Pure probability is often counterintuitive, but conditional probability is even
worse! Conditioning can subtly alter probabilities and produce unexpecied results
n randomized algorithms and computer systems as well as in betting games. Yet,
the mathematical definition of conditional probability given above is very simple
and should give you no trouble —provided that you rely on mathematical reasoning
and not intuition. The four-step method will also be very helpful as we will see in
the next examples.

16.5.1 Using the Four-Step Method to Determine Conditional
Probability g

16.5.2 The “Halting Problem” #GOZ‘QZ GaﬂQ

Th@ was the first example of a property that could not be tested
by any program. It was introduced by Alan Turing in his seminal 1936 paper. The
problem is to determine whether a Turing machine halts on a given . .. yadda yadda
yadda ... more importantly, it was the name of the MIT EECS department’s famed
C-league hockey team. ]_,»—hﬁ “

In a best-of-three tournament, the Halting Problem wins the first game with prob-
ability 1/2. In subsequent games, their probability of winning is determined by the
outcome of the previous game. If the Halting Problem won the previous game,
then they are invigorated by-victory and win the current game with probability 2/3.
If they lost the previous game, then they are demoralized by defeat and win the
current game with probability only 1/3. What is the probability that the Halting
Problem wins the tournament, given that they win the first game?

This is a question about a conditional probability. Let A be the event that the
Halting Problem wins the tournament, and let B be the event that they win the first
game. Our goal is then to determine the conditional probability Pr[A4 | B].

We can tackle conditional probability questions just like ordinary probability
problems: using a tree diagram and the four step method. A complete tree diagram
is shown in Figure 16.13.

Step 1: Find the Sample Space

Each internal vertex in the tree diagram has two children, one corresponding to
a win for the Halting Problem (labeled W) and one corresponding to a loss (la-
beled L). The complete sample space is:

S={WW, WLW, WLL, LWW, LWL, LL).

Step 2: Define Events of Interest

The event that the Halting Problem wins the w rmament is:
T={WW, WLW, LWW}.
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game 1 game 2 game 3 outcome eventA: eventB: outcome
winthe  win probability
series  game ]

Ww 7 v 1/3
WLW g 1/18
WLL o 1/9
LWW 1/9
LWL 1/18

LL 13

Figure 16.13 The tree diagram for computing the probability that the “Halting
Problem” wins two out of three games given that they won the first game.

And the event that the Halting Problem wins the first game is:
cilssaloms it T
F={WW, WLW, WLL}.

The outcomes in these events are indicated with check marks in the tree diagram in
Figure 16.13.

Step 3: Determine Qutcome Probabilities

Next, we must assign a probability to each outcome. We begin by labeling edges
as specified in the problem statement. Specifically, The Halting Problem has a 1/2
chance of winning the first game, so the two edges leaving the root are each as-
signed probability 1/2. Other edges are labeled 1/3 or 2/3 based on the outcome
of the preceding game. We then find the probability of each outcome by multi-
plying all probabilities along the corresponding root-to-leaf path. For example, the
probability of outcome WLL is:

233 O

010”;9 Pacly L((mﬂch
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Step 4: Compute Event Probabilities

We can now compute the probability that The Halting Problem wins the tourna-

ment, given that they win the first game: = =
Pr[A N B]
PriA| B| = ————
a4 8] Pr[B]

_ Pr{Ww,WLW}]
~ Pr{WW,WLW,WLL)}

_ 1/3+1/18
T 1/3+1/184+1/9
.7

=3

We’re done! If the Halting Problem wins the first game, then they win the whole
tournament with probability 7/9.

16.5.3 Why Tree Diagrams Work

We’ve now settled into a routine of solving probability problems using tree dia-
grams. But we’ve left a big question unaddressed: what is the mathematical justifi-
cation behind those funny little pictures? Why do they work?

The answer involves conditional probabilities. In fact, the probabilities that
we’ve been recordmr
For example, consider the uppermost path in the tree diagram for the Halting Prob-
lem, which corresponds to the outcome W W. The first edge is labeled 1/2, which
is the probability that the Halting Problem wins the first game. The second edge
is labeled 2/3, which is the probability that the Halting Problem wins the second
game, given that they won the first—that’s a conditional probability! More gener-
ally, on each edge of a tree diagram, we record the probability that the experiment
proceeds along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. But why can we multiply
edge probabilities to get outcome probabilities? For example, we concluded that:

1 2 1
Pr[WW]zi‘gzg.

Why is this correct?
The answer goes back to Definition 16.5.1 of conditional probability which could
be written in a form called the Product Rule for probabilities:

Rule (Product Rule: 2 Events). IfPr[E;] # O, then:
Pr[E; N E32] = Pr[Ey] - Pr [E2 | E[] .
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Multiplying edge probabilities in a tree diagram amounts to evaluating the right
side of this equation. For example:
Pr[win first game N win second game]
= Prwin first game] - Pr [win second game | win first game]
Essl S fe
gl 2
Tl
probabilities to get outcome probabilities! Of course to justify multiplying edge
probabilities along longer paths, we need a Product Rule for n events.

Rule (Product Rule: @Events).

Pr(E1 N EzN...N Ep) =Pi[E1]-Pr[Ez | E1]-Pr[E3 | E1 N Ez]---
-Pr[Ex | ExNE2N...N Ep1]

provided that
Pr[E1 N Ex;N---N Ep—1] # 0.
This rule follows by routine induction from the definition of conditional proba-
bility.
16.5.4 Medical Testing

There is an unpleasant condition called BO suffered by 10% of the population.
There are no prior symptoms; victims just suddenly start to stink. Fortunately,
there is a test for latent BO before things start to smell. The test is not perfect,
however:

e If you have the condition, there is a 10% chance that the test will say you do
not have it. These are called “false negatives.”

e If you do not have the condition, there is a 30% chance that the test will say
you do. These are “false positives.”

Suppose a random person is tested for latent BO. If the test is positive, then what
is the probability that the person has the condition?

Step 1: Find the Sample Space

The sample space is found with the tree diagram in Figure 16.14.
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person  testresult outcome event A: eventB: event
has BO probability has BO tests ANB
positive
0.09 v v v
0.01 v
0.27 v
0.63

Figure 16.14 The tree diagram for the BO problem.

Step 2: Define Events of Interest

Let A be the event that the person has BO. Let B be the event that the test was
positive. The outcomes in each event are marked in the tree diagram. We want
to find Pr[A | B], the probability that a person has BO, given that the test was
positive.

Step 3: Find Outcome Probabilities

First, we assign probabilities to edges. These probabilities are drawn directly from
the problem statement. By the Product Rule, the probability of an outcome is the
product of the probabilities on the corresponding root-to-leaf path. All probabilities
are shown in Figure 16.14.

Step 4: Compute Event Probabilities

From Definition 16.5.1, we have

Pr[A N B] 0.09 1
B Al = P(B]  009+027 4

So,g you test positl%' e, then there is only a 25% chance that you have the condition!
i isTmitially surprising, but makes sense on reflection. There are two
ways you could test positive. First, it could be that you have the condition and the
test is correct. Second, it could be that you are healthy m he

PR
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problem is that almost everyone is healthy; therefore, most of the positive results
arise from incorrect tests of healthy people!

We can also compute the probability that the test is correct for a random person.
This event consists of two outcomes. The person could have the conditiom and
test positive (probability 0.09), or the person could be healthy and test negative
(pTobability 0.63). Therefore, the test is correct with probability 0.09 + 0.63 =
0.72. This is a relief; the test is correct almost three-quarters of the time.

But wait! There is a simple way to make the test correct 90% of the time: always

@El;a-w This “test” gives the right answer for all healthy people
a e wrong answer only for the 10% that actually have the condition. So a better

strategy by this measure is to completely ignore the test result! € 5:} - M {:WL[/ ‘ d{'

There is a similar paradox in weathe: ing. Du inter, almost all days
in Boston are wet and overcast. Predicting miserable weather every day may be
more accurate than really trying to get it right!

16.5.5 A Posteriori Probabilities

If you think about it too much, the medical testing problem we just considered
could start to trouble you. The concern would be that by the time you take the test,
you either have the BO condition or you don’t—you just don’t know which it is.
So you may wonder if a statement like “If you tested positive, then you have the
condition with probability 25%" makes sense.

In fact, such a statement does make sense. It means that 25% of the people who
test positive actually have the condition. It is true that any particular person has it
or they don’t, but a randomly selected person among those who test positive will
have the conditionmwith-probabitity 25%.

Anyway, if the medical testing example bothers you, you will definitely be wor-
ried by the following examples, which go even further down this path.

16.5.6 The “Halting Problem,” in Reverse ﬁol/lez Ga: s

Suppose that we turn the hockey question around: what is the probability that the
Halting Problem won their first-game,-given that they won the series?

This seems like an absurd question! After all, if the Halting Problem won the
series, then the winner of the first game has already been determined. Therefore,
who won the first game is a question of fact, not a question of probability. However,
our mathematical theory of probability contains no notion of one event preceding
another—there is no notion of time at all. Therefore, from a mathematical perspec-
tive, this is a perfectly valid question. And this is also a meaningful question from
a practical perspective. Suppose that you're told that the Halting Problem won the

series, but not told ts of individual games. Then, from your perspective, it
OC dmtﬂ Uf_ f{"[&nb m,[qun?

An er@r buzd

Al fume acctrall,

(orpted The ik
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makes perfect sense to wonder how likely it is that The Halting Problem won the
first game.

A conditional probability Pr [B | A] is calle@f event B precedes
event A in time. Here are some other examples of @ posteriori probabilities:
PR .

e The probability it was cloudy this morning, given that it rained in the after-
iR S, s e ‘
noon.

e The probability that I was initially dealt two queens in Texas No Limit Hold
"Em poker, given that I eventually got four-of-a-kind.

Mathematically, a posteriori probabilities are no different from ordinary probabil-
ities; the distinction is only at a higher, philosophical level. Our only reason for
drawing attention to them is to say, “Don’t let them rattle you.”

Let’s return to the original problem. The probability that the Halting Problem
won their first game, given that they won the series is Pr [B | A]. We can com-

pute this using the definition of conditional probability and the tree diagram in
Figure 16.13:

PBNA] _  1/3+1/18 7
Pr[A]  1/3+1/184+1/9 9

This answer is suspicious! In the preceding section, we showed that Pr
was also 7/9. Could it be true that Pr[A | B] =Pr[B| 4 ‘m“gﬁﬁﬂmﬁe—w
reflection suggests this is unlikely. For example, the probablhty that I feel uneasy,
given that I was abducted by aliens, is pretty large. But the probability that I was
abducted by aliens, given that I feel uneasy, is rather small.

Let’s work out the general conditions under which Pr[4 | B] = Pr[B | A].
By the definition of conditional probability, this equation holds if an only if:

Pr[B | A] =

Pr[ANB] _ PrlAN B]
Pr[B] =~ Pr[4]

This equation, in turn, holds only if the denominators are equal or the numerator
is 0; namely if
B OV 5o Pr[B] =Pr[A] or Pr[ANB]=0.

The former condition holds in the hockey example; the probability that the Halting
Problem wins the series (event A) is equal to the probability that it wins the first
game (event B) since both probabilities are 1/2.

In general, such pairs of probabilities are related by Bayes” Rule:

Oh /Qa’&: fo
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Theorem lﬁ.S@le). If Pr[A] and Pr[B] are nonzero, then:

Pr[A | B]-PiB

Pr[B | A] = PrA] (16.4)
Proof. When Pr[A] and Pr[B] are nonzero, we have
Pr[A | B]-Pt[B] =Pr[AN B] = Pr[B | A]-Pr[4]
by definition of conditional probability. Dividing by Pr[A] gives (16.4). |

16.5.7 The Law of Total Probability

Breaking a probability calculation into cases simplifies many problems. The idea
is to calculate the probability of an event A by splitting into two cases based on
whether or not another event E occurs. That is, calculate the probability of A N E
and ANE. By the Sumesc probabilities eqtﬁlﬁr‘[_{l],Express-
ing the intersection probabilities as conditional probabilities yields:

Rule 16.5.3 (Law of Total Probability, single event). If Pr[E] and Pr[E] are nonzero,

then :
E]-Pr[E] +Pr[A | E]-Pi[E].

For example, suppose we conduct the following experiment. First, we flip a fair
coin. If heads comes up, then we roll one die and take the result. If tails comes up,
then we roll two dice and take the sum of the two results. What is the probability
that this process yields a 2?7 Let E be the event that the coin comes up heads,
and let A be the event that we get a 2 overall. Assuming that the coin is. fair,
Pr[E] = Pr[E] = 1/2. There are now two cases. If we flip heads, then we roll
a 2 on a single die with probability Pr [A | E ] = 1/6. On the other hand, if we
flip tails, then we get a sum of 2 on two dice with probability Pr [A | E_] = 1/36.
Therefore, the probability that the whole process yields a 2 is

O O 7

PRz 2t et e
s 2 36 p

There is also a form of the rule to handle more than two cases.

Rule 16.5.4 (Law of Total Probability). If E1,..., E, are disjoint events whose
nion is the whole sample space, then:

Pr[A] = iPr[A | Ei]-Pr[E;].

ddy \Vp all dojad 0D
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sample space

Figure 16.15 A counterexample to Equation 16.5. Event A is thé‘é?a% rectangle,
event B is the rectangle with vertical stripes, and event C is the rectangle with
horizontal stripes. B ﬂ C lies entirely within A while B—C and C — B are entirely

outside of A. (L./lta/f e 717& 6-}/((0?}

16.5.8 Conditioning on a Single Event

The probability rules that we derived in Chapter 16 extend to probabilities condi-
tioned on the same event. For example, the Inclusion-Exclusion formula for two

sets holds when all probabilities are conditioned on an event C:
ST AT M Y

Pr[AUB | C]=Pr[4]| C] -I-Pr[B 1 C]—Pr[AnB EaiP
fn
This is easy to verify by plugging in the deﬁmtlog of conditional probability (16.5.1).
It is important not to mix up events before and after the conditioning bar. For
example, the following is not a valid identity:

False Claim. W’O
Pr[A| BUC|=Pr[A| B]+Pr[A| C]-Pr[A| BNC]. (165)

A counterexample is shown in Figure 16.15. In this case, Pr [A | B] = 1/2,
Pr[A| C] =1/2,Pr[A| BNC] =1,and Pr[A | BUC] = 1/3. However,
since 1/3 # 1/2 4+ 1/2 — 1, Equation 16.5 does not hold.

So you’re convinced that this equation is false in general, right? Let’s see if you
really believe that.

SProblem 16.11 explains why this and similar conditional identities follow on general principles
from the corresponding unconditional identifies.
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16.5.9 Discrimination Lawsuit

Several years ago there was a sex discrimination lawsuit against a famous uni-
versity. A female math professor was denied tenure, allegedly because she was
a woman. She argued that in every one of the university’s 22 departments, the
percentage of male applicants accepted was greater than the percentage of female
applicants accepted. This sounds very suspicious!

However, the university’s lawyers argued that across the university as a whole,
the percentage of male applicants accepted was actually lower than the percentage
of female applicants accepted. This suggests that if there was any sex discrimi-
nation, then it was against men! Surely, at least one party in the dispute must be
lying.

Let’s simplify the problem and express both arguments in terms of conditional
probabilities. To simplify matters, suppose that there are only two departments, EE
and CS, and consider the experiment where we pick a random applicant. Define
the following events:

e Let A be the event that the applicant is accepted.

e Let Frg the event that the applicant is a female applying to EE.
e Let Fcg the event that the applicant is a female applying to CS.
e Let Mg the event that the applicant is a male applying to EE.
e Let Mcgs the event that the applicant is a male applying to CS.

Assume that all applicants are either male or female, and that no applicant applied
to both departments. That is, the events Fgg, Fcs, Mgg, and Mcg are all dis-
joint.

In these terms, the plaintiff is making the following argument:

Pr[A| Fgg| <Pr[A| Mgg] and
Pr[A| Fcs] <Pr[A| Mcs].
That is, in both departments, the probability that a woman is accepted for tenure is

less than the probability that a man is accepted. The university retorts that overall,
a woman applicant is more likely to be accepted than a man; namely that

Pr[A | FEE Uch] >Pr[A | Mg UMcs].

It is easy to believe that these two positions are contradictory. In fact, we might
ven try to prove this by adding the plaintiff’s two inequalities and then arguing as
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(o 0 females accepted, 1 applied 0%
50 males accepted, 100 applied 50%

EE 70 females accepted, 100 applied 70%

I male accepted, 1 applied  100%

Overall 70 females accepted, 101 applied = 70%
51 males accepted, 101 applied =~ 51%

Table 16.1 A scenario where females are less likely to be admitted than males in
each department, but more likely to be admitted overall.

follows: W(f\ ]le :_4 q C[;AL

Pr[A| FEg|+Pr[A| Fcs] <Pr[A| Mgg]+Pr[A ]| Mcs]
= Pr[A| Fgg U Fcs] <Pr[A| Mg U Mcs]. (eaff‘afj ¢

The second line exactly contradicts the university’s positio:ll But there is a big
problem with this argument; the second inequality follows from the first only if we
accept the false identity (16.5). This argument is bogus! Maybe the two parties do
not hold contradictory positions after all! '

In fact, Table 16.1 shows a set of application statistics for which the assertions of
both the plaintiff and the university hold. In this case, a higher percentage of males
were accepted in both departments, but overall a higher percentage of females were
accepted! Bizarre!

{50 Who  was f}ﬁ}n‘f

16.6 Independence

Suppose that we flip two fair coins simultaneously on opposite sides of a room.
Intuitively, the way one coin lands does not affect the way the other coin lands.

The mathematical concept that captures this intuition is call@.

Definition 16.6.1. An event with probability 0 is defined to be independent of every
event (including itself). If Pr[B] # 0, then event A is independent of event B iff

Cla 1 51=20 A has ol

In other words, 4 and B are independent if knowing that B happens does not al-
ter the probability that A happens, as is the case with flipping two coins on opposite

sides of a room.
d ha /lg)/lhfy fo 4o

=
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16.6.1 Potential Pitfall

Students sometimes get the idea that disjoint events are independent. The opposite
is true: if A N B = @, then knowing that A happens means you know that B
does not h@endem—mniess one of them has
probability zero.

16.6.2 Alternative Formulation

Sometimes it is useful to express independence in an alternate form which follows
immediately from Definition 16.6.1:

Theorem 16.6.2. A is independent of B if and only if
Pr[A N B] = Pr[A] - Pr[B]. (16.7)

Notice that Theorem 16.6.2 makes apparent the symmetry between A being in-
dependent of B and B being independent of A:

Corollary 16.6.3. A is independent of B iff B is independent of A.

16.6.3 Independence Is an Assumption

Generally, independence is something that you assume in modeling a phenomenon.
For example, consider the experiment of flipping two fair coins. Let 4 be the event
that the first coin comes up heads, and let B be the event that the second coin is
heads. If we assume that A and B are independent, then the probability that both
coins come up heads is:

1 1 1

In this example, the assumption of independence is reasonable. The result of one
coin toss should have negligible impact on the outcome of the other coin toss. And
if we were to repeat the experiment many times, we would be likely to have A N B
about 1/4 of the time.

There are, of course, many examples of events where assuming independence is
not justified, For example, let C be the event that tomorrow is cloudy and R be the
event that tomorrow is rainy. Perhaps Pr{C] = 1/5 and Pr[R] = 1/10 in Boston.
If these events were independent, then we could conclude that the probability of a
rainy, cloudy day was quite small:

PR N C] = Pr[R] - Pr[C] = é ol Loy
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Unfortunately, these events are definitely not independent; in particular, every rainy
day is cloudy. Thus, the probability of a rainy, cloudy day is actually 1/10.

Deciding when to assume that events are independent is a tricky business. In
practice, there are strong motivations to assume independence since many useful
formulas (such as Equation 16.7) only hold if the events are independent. But you
need to be careful: we’ll describe several famous examples where (false) assump-
tions of independence led to trouble. This problem gets even trickier when there
are more than two events in play.

16.6.4 Mutual Independence

We have defined what it means for two events to be independent. What if there are
more than two events? For example, how can we say that the flips of n coins are

all independent of one another? A set of events is said to be m@ally Endepeniey
if, the probability of each event in the set is the same no matter which of the other
events has occurred. We could formalize this with conditional probabilities as in

Definition 16.6.1, but we’ll juno directly to the cleaner definition based on products
of probabilities as in Theorem 16.6.2:

Definition 16.6.4. A set of events Ey, E»,..., E,; is mutually independent iff for
all subsets § < [1,n],

g,
Pr| () Ej| = J]PdE;). (Wq@

j€s jes W 4
Definition 16.6.4 says that Eq, E», . .., E, are mutually independent if and only \/e
if all of the following equations hold for all distinct i, j, k, and /: '@
: Pr[E; N E;] = Pr{E;] - Pr(E;] .\7(
Pr[E; N Ej N Eg] = Pr{E;] - Pr{E ;] - Pr{E]
Pr(E; N E; N Ey N Ej] = Pr[E;] - Pr{E;] - Pr[E] - Pr[E)]

PI[E1 N---N Ey) = Pr[E4] -~'PI'[En]-

For example, if we toss n fair coins, the tosses are mutually independent iff for
every subset of m coins, the probability that every coin in the subset comes up
heads is 27™.

16.6.5 DNA Testing

Assumptions about independence are routinely made in practice. Frequently, such
assumptions are quite reasonable. Sometimes, however, the reasonableness of an




“mes” — 2011/4/16 — 22:07 — page 550 — #556

550

Chapter 16  Events and Probability Spaces

independence assumption is not so clear, and the consequences of a faulty assump-
tion canbe severe,

For example, consider the following testimony from the O. J. Simpson murder
trial on May 15, 1995:

Mr. Clarke: When you make these estimations of frequency—and I believe you
touched a little bit on a concept called independence?

Dr. Cotton: Yes, I did.

"Mr. Clarke: And what is that again?

Dr. Cotton: It means whether or not you inherit one allele that you have is not—
does not affect the second allele that you might get. That is, if you inherit
a band at 5,000 base pairs, that doesn’t mean you’ll automatically or with
some probability inherit one at 6,000. What you inherit from one parent is
what you inherit from the other.

Mr. Clarke: Why is that important?

Dr. Cotton: Mathematically that’s important because if that were not the case, it
would be improper to multiply the frequencies between the different genetic
locations.

Mr. Clarke: How do you—well, first of all, are these markers independent that
you’ve described in your testing in this case?

Presumably, this dialogue was as confusing to you as it was for the jury. Es-
sentially, the jury was told that genetic markers in blood found at the crime scene
matched Simpson’s. Furthermore, they were told that the probability that the mark-
ers would be found in a randomly-selected person was at most 1 in 170 million.
This astronomical figure was derived from statistics such as=—  ———

e 1 person in 100 has marker A.

1 person in 50 marker B.

1 person in 40 has marker C.

1 person in 5 has marker D.

e 1 person in 170 has marker E.
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Then these numbers were multiplied to give the probability that a randomly-selected
person would have all five markers:
PrfAN BN C N D N E] = Pr[A] - Pr[B] - Pr[C] - Pr[D] - Pr[E]
1 1 1 1 1

1
170,000,000

The defense pointed out that this assumes that the markers appear mutually inde-
pendently. Furthermore, all the statistics were based on just a few hundred blood
~Samples.
After the trial, the jury was widely mocked for failing to “understand” the DNA
evidence. If you were a juror, would you accept the 1 in 170 million calculation?

/
16.6.6 Pairwise Independence 0 \(€ @‘\ P%Heé)

The definition of mutual independence seems awfully complicated—there are so
many subsets of events to consider! Here’s an example that illustrates the subtlety
of independence when more than two events are involved. Suppose that we flip
three fair, mutually-independent coins. Define the following events:

e A is the event that coin 1 matches coin 2.
e A- is the event that coin 2 matches coin 3.

e Aj is the event that coin 3 matches coin 1.

[
(e
Are Ay, Az, A3 mutually independent? L/d,ﬁ a ( &{ﬂ
The sample space for this experiment is: )@ onem

{HHH, HET. HTH, HTT, THH, THT, FTH{TTT}.

Every outcome has probability (1/2)* = 1/8 by our assumption that the coins are
mutually independent.

To see if events Ay, Az, and A3 are mutually independent, we must check a
sequence of equalities. It will be helpful first to compute the probability of each
event A;:

Pr[Ay] = Pr[HHH] + Pr[HHT] + Pr[TTH] + Pr[T T T]
1 1 1

AR AR
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By symmetry, Pr[A2] = Pr[43] = 1/2 as well. Now we can begin checking all the
equalities required for mutual independence in Definition 16.6.4:

Pr[A; N Ao] = Pr[HHH] + P{TTT)

L]
8

R —= &= co|—

o
B =

I‘[A 1] PI‘[Az] .

By symmetry, Pr[A; N A3] = Pr[A,] - Pr[A3] and Pr[A2 N A3] = Pr[A3] - Pr[A3]
must hold also. Finally, we must check one last condition:

Pr[A; N A2 N A3l =Pr[HHH] + Pr[TTT]
1 1

# Prl A PrA| Prds] = ¢

The three events A, A2, and A3 are not mutually independent even though any

two of them are independent! This nottquite mutual indepemn ems werrd at
5 ittiappens. It even generalizes:

Definition 16.6.5. A set Ay, A, ..., of events s k-way independeni\iff every set
of k of these events is mutually independent. The set iy pairwise independeny iff it
\.________—_.___\_

is 2-way independent.

So the sets Ay, Az, A3 above are pairwise independent, but not mutually inde-
pendent. Pairwise independence is a much weaker property than mutual indepen-
dence.

For example, suppose that the prosecutors in the O. J. Simpson trial were wrong
and markers 4, B, C, D, and E appear only pairwise independently. Then the
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probability that a randomly-selected person has all five markers is no more than:

P{ANBNCNDNE]<PANE]
= Pr[A] - Pr[E]
bt ol
~ 100 170
il 1)
= 000"

The first line uses the fact that AN BNC N DN E is asubsetof AN E. (We picked
out the 4 and E markers because they’re the__vgg_g.) We use pairwise independence
on the second line. Now the probability of a random match is 1 in 17,000—a far cry
from 1 in 170 million! And this is the strongest conclusion we can reach assuming
only pairwise independence.

On the other hand, the 1 in 17,000 bound that we get by assuming pairwise
independence is a lot better than the bound that we would have if there were no

independence at all. For example, if the markers are dependent, then it is possible
that

everyone with marker E has marker A,
everyone with marker A has marker B,
everyone with marker B has marker C, and

everyone with marker C has marker D.

In such a scenario, the probability of a match is
Pr[E] = 1 /1701/ 7174 5"“//1’57( (P éf/é]%?

So a stronger independence assumption leads to a smaller bound on the prob-
ability of a match. The trick is to figure out what independence assumption is
reasonable. Assuming that the markers are mutually independent may well not be
reasonable unless you have examined hundreds of millions of blood samples. Oth-
erwise, how would you know that marker D does not show up more frequently
whenever the other four markers are simultaneously present?

‘We will conclude our discussion of independence with a useful, and somewhat
famous, example known as the Birthday Principle.
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16.7 The Birthday Principle

ol This
\16 fdr\

There are 85 students in a class. What is the probability that some birthday is
shared by two people? Comparing 85 students to the 365 possmrd:ﬂs, you
might guess the probability lies somewhere around 1/4 —but you’d be wrong: the
probability that there will be two people in the class with matching birthdays is
actually more than 0.9999.
e
To work this out, we’ll assume that the probability that a randomly chosen stu-
dent has a given birthday is 1/d, where d = 365 in this case. We’ll also assume
that a class is composed of # randomly and independently selected students, with
n = 85 in this case. These randomness assumptions are not really true, since
more babies are born at certain times of year, and students’ class selections are
typically not independent of each other, but simplifying in this way gives us a start
on analyzing the problem. More importantly, these assumptions are justifiable in
important computer science applications of birthday matching. For example, the
birthday matching is a good model for collisions between items randomly inserted
into a hash table. So we won’t worry about things like Spring procreation prefer-
ences that make January birthdays more common, or about twins’ preferences to
take classes together (or not). E_ c{* Qf
e

Selecting a sequence of n students for a class yields a sequence of n birthdays.
Under the assumptions above, the d >possible birthday sequerncgs are equally likely
outcomes. Let’s examin ethe consequences of this probability model by focussing

on the ith and jth elements in a birthday sequence, where 1 < i # j <n. It
makes for a better story if we refer to the ith birthday as “Alice’s” and the jth as
“Bob’s.”

Now since Bob’s birthday is assumed to be independent of Alice’s, it follows that
whichever of the 4 birthdays Alice’s happens to be, the probability that Bob has the
same birthday 1/d. Next, If we look at two other birthdays —call them “Carol’s”
and “Don’s” —then whether Alice and Bob have matching birthdays has nothing
to do with whether Carol and Don have matching birthdays. That is, the event that
Alice and Bob have matching birthdays is independent of the event that Carol and
Don have matching birthdays. In fact, for any mwmhc
events tha up maiching birthdays are mutually independent.

In fact, it’s pretty clear that the probability that Alice and Bob have matching
birthdays remains 1/d whether or not Carol and Alice have matching birthdays.
That is, the event that Alice and Bob match is also independent of Alice and Carol
matching. In short, the set of all events in which a couple has matching birthdays

is pairwise independent, degpi overlapping couples. This will be important in

e
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a later chapter because pairwise independence will be enough to justify some con-
clusions about the expected number of matches. However, these matching birthday
events are obviously not even 3-way independent: if Alice and Bob match, and also
Alice and Carol match, then Bob and Carol will match.

I turns out that as long as the number of students is noticeably smaller than the
number of possible birthdays, we can get a pretty good estimate of the birthday
matching probabilities by pretending that the matching events are mutually inde-
pendent. (An intuitive justification for this is that with only a small number of
matching pairs, it’s likely that none of the pairs overlap.) Then the probability of

no matching birthdays would bethe saneas rl{poiof the probabili t a

couple does not have matching birthdays, where r :: ’2’) is the number of couples.
That is, the probability of no matching birthdays wou

(1-1/d)3. (16.8)

Using the fact that e* > 1 + x for all x,® we would conclude that the probability
of no matching birthdays is at most

i &Y

The matching b1rthday problem fits in here so far as a nice example illustrat-
ing pairwise and mutual independence. But it’s actually not hard to justify the
bound (16.9) without any pretence or any explicit consideration of independence.
Namely, there are d(d — 1)(d —2) ---(d — (n — 1)) length n sequences of distinct
birthdays. So the probability that everyone has a different birthday is:

d(d = D)d =2l = @=1))

an
@ de=l . d=d deln=l)
Sy d d
0 1 2 n—1
-(1-3)(-3)0=2)-0-T)
<el.e7Vd 2/d, —(a-D)/d (since 1 + x < e¥)
_ ~(xi=tia)
= e—(n(n—l)/Zd)
= the bound (16.9).

6This approximation is obtained by truncating the Taylor series e ™ = 1—x+x2/2!—x3/314-.-.
The approximation e™* 2 1 — x is pretty accurate when x is small.
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Forn = 85 and d = 365, (16.9) is less than 1/17,000, which means the
probability of having some pair of matching birthdays actually is more than 1 —
1/17,000 > 0.9999. So it would be pretty astonishing if there were no pair of
students in the class with matching birthdays.

For d < n?/2, the probability of no match turns out to be asymptotically equal
to the upper bound (16.9). For d = n?/2 in particular, the probability of no match
is asymptotically equal to 1/e. This leads to a rule of thumb which is useful in
many contexts in computer science:

The Birthday Principle

If there are d days in a year and +/2d people in a room, then the probability
that two share a birthday is about 1 — 1/e = 0.632.

For example, the Birthday Principle says that if you have +/2 - 365 & 27 people
in a room, then the probability that two share a birthday is about 0.632. The actual
probability is about 0.626, so the approximation is quite good.

Among other applications, it implies that to use a hash function that maps n
items into a hash table of size d, you can expect many collisions unless 72 is a
small fraction of 4. The Birthday Principle also famously comes into play as the
basis of “bir@ttfacﬁs“ that crack certain cryptographic systems.

Problems for Section 16.2
Exam Problems

Problem 16.1.

What’s the probability that 0 doesn’t appear among k digits chosen independently
and uniformly at random?

A box contains 90 good and 10 defective screws. What's the probability that if we
pick 10 screws from the box, none will be defective?

First one digit is chosen uniformly at random from {1, 2, 3, 4, 5} and is removed
from the set; then a second digit is chosen uniformly at random from the remaining
digits. What is the probability that an odd digit is picked the second time?

Suppose that you randomly permute the digits 1,2,--- ,n, that is, you select a
permutation uniformly at random. What is the probability the digit k ends up in the
ith position after the permutation?
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A fair coin is flipped n times. What'’s the probability that all the heads occur at the
end of the sequence? Clarification: If no heads occur, then “all the heads are at the
end of the sequence” (the statement is vacuously true).

Problem 16.2.
We consider a variation of Monty Hall’s game. The contestant still picks one of
three doors, with a prize randomly placed behind one door and goats behind the
other two. But now, instead of always opening a door to reveal a goat, Monty
instructs Carol to randomly open one of the two doors that the contestant hasn’t
picked. This means she may reveal a goat, or she may reveal the prize. If she reveals
the prize, then the entire game is restarted, that is, the prize is again randomly
placed behind some door, the contestant again picks a door, and so on until Carol
finally picks a door with a goat behind it. Then the contestant can choose to stick
with his original choice of door or switch to the other unopened door. He wins if
the prize is behind the door he finally chooses.

To analyze this setup, we define two events:

GP: The event that the contestant guesses the door with the prize behind it on his
first guess.

OP: The event that the game is restarted at least once. Another way to describe
this is as the event that the door Carol first opens has a prize behind it.

(a) What is Pr[GP]? 0.5in. Pr[OP | GP20.5in.
(b) What is Pr[OP]? 0.5in

(c¢) Let R be the number of times the game is restarted before Carol picks a goat.

What is Ex[R]70.8in
You may express the answer as a simple closed form in terms of p ::= Pr[OP].

(d) What is the probability the game will continue forever?0.5in

(e) When Carol finally picks the goat, the contestant has the choice of sticking or
switching. Let’s say that the contestant adopts the strategy of sticking. Let W be
the event that the contestant wins with this strategy, and let w ::= Pr[W]. Express
the following conditional probabilities as simple closed forms in terms of w.

i) Pr[W | GP] =0.5in
ii) Pr[W | GP N OP] = 0.5in
iii) Pr[W | GP N OP] = 0.5in
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(f) What is Pr[W]? 0.5in

(g) For any final outcome where the contestant wins with a “stick” strategy, he
would lose if he had used a “switch” strategy, and vice versa. In the original Monty
Hall game, we concluded immediately that the probability that he would win with
a “switch” strategy was 1 — Pr[W]. Why isn’t this conclusion quite as obvious for
this new, restartable game? Is this conclusion still sound? Briefly explain.

Problem 16.3.
Graphs, Logic & Probability

Let G be an undirected simple graph with n > 3 vertices. Let E(x, y) mean that
G has an edge between vertices x and y, and let P(x, y) mean that there is a length
2 path in G between x and y.

(a) Explain why E(x, y) implies P(x, x).
(b) Circle the mathematical formula that best expresses the definition of P(x, y).
e P(x,y):=3z. E(x,z2) AE(y,2)
o Px,y)u=x#yAdz. E(x,z2) AE(y,2)
e P(x,y):=Vz.E(x,z) v E(y,2)
e P(x,y) u=Vz.x#y — [E(x,z) V E(y,2)]
For the following parts (c)—(e), let V' be a fixed set of n > 3 vertices, and let G be a
graph with these vertices constructed randomly as follows: for all distinct vertices
x,y € V, independently include edge (x—y) as an edge of G with probability p.
In particular, Pr[E(x, y)] = p forall x # y.

(¢) For distinct vertices w, x, y and z in V, circle the event pairs that are indepen-
dent.

1. E(w, x) versus E(x, y)
2. (E(w,x) A E(w, y)) versus (E(z,x) A E(z,y))

3. E(x,y) versus P(x, y)
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4. P(w,x) versus P(x,y)
5. P(w,x) versus P(y, z)

(d) Write a simple formula in terms of n and p for Pr[not P(x, y)], for distinct
vertices x and y in V.

Hint: Use part (c), item 2.

(e) What is the probability that two distinct vertices x and y lie on a three-
cycle in G? Answer with a simple expression in terms of p and r, where r ::=
Pr[not P(x, )] is the correct answer to part (d).

Hint: Express x and y being on a three-cycle as a simple formula involving E (x, y)
and P(x, y).

Class Problems

Problem 16.4.

[A Baseball Series]

The New York Yankees and the Boston Red Sox are playing a two-out-of-three

series. (In other words, they play until one team has won two games. Then that

team is declared the overall winner and the series ends.) Assume that the Red Sox

win each game with probability 3/5, regardless of the outcomes of previous games.
Answer the questions below using the four step method. You can use the same

tree diagram for all three problems.

(a) What is the probability that a total of 3 games are played?
(b) What is the probability that the winner of the series loses the first game?

(c) What is the probability that the correct team wins the series?

Problem 16.5.

To determine which of two people gets a prize, a coin is flipped twice. If the flips
are a Head and then a Tail, the first player wins. If the flips are a Tail and then a
Head, the second player wins. However, if both coins land the same way, the flips
don’t count and whole the process starts over.

Assume that on each flip, a Head comes up with probability p, regardless of
what happened on other flips. Use the four step method to find a simple formula
for the probability that the first player wins. What is the probability that neither
player wins?
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Suggestions: The tree diagram and sample space are infinite, so you’re not going
to finish drawing the tree. Try drawing only enough to see a pattern. Summing
all the winning outcome probabilities directly is difficult. However, a neat trick
solves this problem and many others. Let s be the sum of all winning outcome
probabilities in the whole tree. Notice that you can write the sum of all the winning
probabilities in certain subtrees as a function of s. Use this observation to write an
equation in s and then solve.

Problem 16.6.
[The Four-Door Deal]

Let’s see what happens when Let’s Make a Deal is played with four doors. A
prize is hidden behind one of the four doors. Then the contestant picks a door.
Next, the host opens an unpicked door that has no prize behind it. The contestant
is allowed to stick with their original door or to switch to one of the two unopened,
unpicked doors. The contestant wins if their final choice is the door hiding the
prize.

Use The Four Step Method of Section 16.2 to find the following probabilities.
The tree diagram may become awkwardly large, in which case just draw enough of
it to make its structure clear.

(a) Contestant Stu, a sanitation engineer from Trenton, New Jersey, stays with his
original door. What is the probability that Stu wins the prize?

(b) Contestant Zelda, an alien abduction researcher from Helena, Montana, switches
to one of the remaining two doors with equal probability. What is the probability
that Zelda wins the prize?

Problem 16.7.

[Simulating a fair coin] Suppose you need a fair coin to decide which door to
choose in the 6.042 Monty Hall game. After making everyone in your group empty
their pockets, all you managed to turn up is some crumpled bubble gum wrappers,
a few used tissues, and one penny. However, the penny was from Prof. Meyer’s
pocket, so it is not safe to assume that it is a fair coin.

How can we use a coin of unknown bias to get the same effect as a fair coin of
bias 1/2? Draw the tree diagram for your solution, but since it is infinite, draw only
enough to see a pattern.

Suggestion: A neat trick allows you to sum all the outcome probabilities that
cause you to say “Heads”: Let s be the sum of all "Heads” outcome probabilities
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in the whole tree. Notice that you can write the sum of all the "Heads” outcome
probabilities in certain subtrees as a function of s. Use this observation to write an
equation in s and then solve.

Homework Problems

Problem 16.8.
I have a deck of 52 regular playing cards, 26 red, 26 black, randomly shuffled. They
all lie face down in the deck so that you can’t see them. I will draw a card off the
top of the deck and turn it face up so that you can see it and then put it aside. I will
continue to turn up cards like this but at some point while there are still cards left
in the deck, you have to declare that you want the next card in the deck to be turned
up. If that next card turns up black you win and otherwise you lose. Either way, the
game is then over.

(a) Show that if you take the first card before you have seen any cards, you then
have probability 1/2 of winning the game.

(b) Suppose you don’t take the first card and it turns up red. Show that you have
then have a probability of winning the game that is greater than 1/2.

(c) If there are r red cards left in the deck and b black cards, show that the proba-
bility of winning in you take the next card is b/(r + b).

(d) Either,

1. come up with a strategy for this game that gives you a probability of winning
strictly greater than 1/2 and prove that the strategy works, or,

2. come up with a proof that no such strategy can exist.

Problems for Section 16.4
Class Problems

Problem 16.9.

Suppose there is a system with n components, and we know from past experience
that any particular component will fail in a given year with probability p. That is,
letting F; be the event that the i th component fails within one year, we have

Pr(Fi]=p

for 1 <i < n. The system will fail if any one of its components fails. What can we
say about the probability that the system will fail within one year?
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Let F be the event that the system fails within one year. Without any additional
assumptions, we can’t get an exact answer for Pr[F]. However, we can give useful
upper and lower bounds, namely,

p < Pr[F] < np. (16.10)

We may as well assume p < 1/n, since the upper bound is trivial otherwise. For
example, if n = 100 and p = 107>, we conclude that there is at most one chance
in 1000 of system failure within a year and at least one chance in 100,000.

Let’s model this situation with the sample space S ::=P({1, ..., n}) whose out-
comes are subsets of positive integers < n, where s € S corresponds to the indices
of exactly those components that fail within one year. For example, {2, 5} is the
outcome that the second and fifth components failed within a year and none of the
other components failed. So the outcome that the system did not fail corresponds
to the emptyset, @.

(a) Show that the probability that the system fails could be as small as p by de-
scribing appropriate probabilities for the outcomes. Make sure to verify that the
sum of your outcome probabilities is 1.

(b) Show that the probability that the system fails could actually be as large as np
by describing appropriate probabilities for the outcomes. Make sure to verify that
the sum of your outcome probabilities is 1.

(c) Prove inequality (16.10).

Problem 16.10.

Here are some handy rules for reasoning about probabilities that all follow directly
from the Disjoint Sum Rule. Prove them.

Pr[A — B] = Pr[4] — Pr[A N B] (Difference Rule)

Pr{A] = 1 — Pr[A] (Complement Rule)

Pr[A U B] = Pr[A] + Pr[B] — Pr[4 N B] (Inclusion-Exclusion)
Pr[A U B] < Pr[A] + Pr[B]. (2-event Union Bound)

If A C B, then Pr[A] < Pr[B]. (Monotonicity)
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Problem 16.11.

Suppose Pr] : & — [0, 1] is a probability function on a sample space, S, and let
B be an event such that Pr[B] > 0. Define a function Pr.[B] on events outcomes
w € S by the rule:

Pr(B] = Pr{w]/Pr[B] ifw € B, (16.11)
w0 ifw ¢ B. '

(a) Prove that Pr.[B] is also a probability function on & according to Defini-
tion 16.4.2.

(b) Prove that

forallA C S.

Homework Problems

Problem 16.12.
Prove the following probabilistic identity, referred to as the Union Bound. You
may assume the theorem that the probability of a union of disjoint sets is the sum
of their probabilities.

Let Ay,..., A, be a collection of events. Then

n
Pr[Ay U Az U---U Ay] < ) Pr{A;].

i=1

Hint: Induction.

Problems for Section 16.5
Exam Problems

Problem 16.13.

There are two decks of cards, the red deck and the blue deck. They differ slightly
in a way that makes drawing the eight of hearts slightly more likely from the red
deck than from the blue deck.

One of the decks is randomly chosen and hidden in a box. You reach in the
box and randomly pick a card that turns out to be the eight of hearts. You believe
intuitively that this makes the red deck more likely to be in the box than the blue
deck.
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Your intuitive judgment about the red deck can be formalized and verified using
some inequalities between probabilities and conditional probabilities involving the
events

R ::=Red deck is in the box,
B ::=Blue deck is in the box,
E ::= Eight of hearts is picked from the deck in the box.

(a) State an inequality between probabilities and/or conditional probabilities that
formalizes the assertion, “picking the eight of hearts from the red deck is more
likely than from the blue deck.”

(b) State a similar inequality that formalizes the assertion “picking the eight of
hearts from the deck in the box makes the red deck more likely to be in the box
than the blue deck.”

(c) Assuming the each deck is equally likely to be the one in the box, prove that
the inequality of part (a) implies the inequality of part (b).

(d) Suppose you couldn’t be sure that the red deck and blue deck were equally
likely to be in the box. Could you still conclude that picking the eight of hearts
from the deck in the box makes the red deck more likely to be in the box than the
blue deck? Briefly explain.

Practice Problems

Problem 16.14.

Dirty Harry places two bullets in the six-shell cylinder of his revolver. He gives the
cylinder a random spin and says “Feeling lucky?” as he holds the gun against your
heart.

(a) What is the probability that you will get shot if he pulls the trigger?

(b) Suppose he pulls the trigger and you don’t get shot. What is the probability
that you will get shot if he pulls the trigger a second time?

(c) Suppose you noticed that he placed the two shells next to each other in the
cylinder. How does this change the answers to the previous two questions?

Class Problems

Problem 16.15.
There are two decks of cards. One is complete, but the other is missing the ace
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of spades. Suppose you pick one of the two decks with equal probability and then
select a card from that deck uniformly at random. What is the probability that you
picked the complete deck, given that you selected the eight of hearts? Use the
four-step method and a tree diagram.

Problem 16.16.

There are three prisoners in a maximum-security prison for fictional villains: the
Evil Wizard Voldemort, the Dark Lord Sauron, and Little Bunny Foo-Foo. The
parole board has declared that it will release two of the three, chosen uniformly at
random, but has not yet released their names. Naturally, Sauron figures that he will
be released to his home in Mordor, where the shadows lie, with probability 2 /3.

A guard offers to tell Sauron the name of one of the other prisoners who will be
released (either Voldemort or Foo-Foo). Sauron knows the guard to be a truthful
fellow. However, Sauron declines this offer. He reasons that if the guard says,
for example, “Little Bunny Foo-Foo will be released”, then his own probability
of release will drop to 1/2. This is because he will then know that either he or
Voldemort will also be released, and these two events are equally likely.

Using a tree diagram and the four-step method, either prove that the Dark Lord
Sauron has reasoned correctly or prove that he is wrong. Assume that if the guard
has a choice of naming either Voldemort or Foo-Foo (because both are to be re-
leased), then he names one of the two uniformly at random.

Homework Problems

Problem 16.17.

Outside of their hum-drum duties as Math for Computer Science Teaching Assis-
tants, Oscar is trying to learn to levitate using only intense concentration and Liz is
trying to become the world champion flaming torch juggler. Suppose that Oscar’s
probability of success is 1/6, Liz’s chance of success is 1/4, and these two events
are independent.

(a) If at least one of them succeeds, what is the probability that Oscar learns to
levitate?

(b) If at most one of them succeeds, what is the probability that Liz becomes the
world flaming torch juggler champion?

(c) If exactly one of them succeeds, what is the probability that it is Oscar?
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Problem 16.18.
There is a course—not Math for Computer Science, naturally—in which 10% of
the assigned problems contain errors. If you ask a Teaching Assistant (TA) whether
a problem has an error, then they will answer correctly 80% of the time. This 80%
accuracy holds regardless of whether or not a problem has an error. Likewise when
you ask a lecturer, but with only 75% accuracy.

‘We formulate this as an experiment of choosing one problem randomly and ask-
ing a particular TA and Lecturer about it. Define the following events:

E ::= “the problem has an error,”
T ::= “the TA says the problem has an error,”
L ::= “the lecturer says the problem has an error.”

(a) Translate the description above into a precise set of equations involving con-
ditional probabilities among the events E, T, and L

(b) Suppose you have doubts about a problem and ask a TA about it, and they tell
you that the problem is correct. To double-check, you ask a lecturer, who says that
the problem has an error. Assuming that the correctness of the lecturers’ answer
and the TA’s answer are independent of each other, regardless of whether there is
an error’, what is the probability that there is an error in the problem?

(c) Is the event that “the TA says that there is an error”, independent of the event
that “the lecturer says that there is an error”?

Problem 16.19. (a) Suppose you repeatedly flip a fair coin until you see the se-
quence HHT or the sequence TTH. What is the probability you will see HHT first?
Hint: Symmetry between Heads and Tails.

(b) What is the probability you see the sequence HTT before you see the sequence
HHT? Hint: Try to find the probability that HET comes before HTT conditioning on
whether you first toss an H or a T. The answer is not 1/2.

Problem 16.20.
A 52-card deck is thoroughly shuffled and you are dealt a hand of 13 cards.

(a) If you have one ace, what is the probability that you have a second ace?

TThis assumption is questionable: by and large, we would expect the lecturer and the TA’s to spot
the same glaring errors and to be fooled by the same subtle ones.
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(b) If you have the ace of spades, what is the probability that you have a second
ace?

Remarkably, the two answers are different. This problem will test your counting
ability!

Problem 16.21.

You are organizing a neighborhood census and instruct your census takers to knock
on doors and note the sex of any child that answers the knock. Assume that there
are two children in a household and that girls and boys are equally likely to be
children and to open the door.

A sample space for this experiment has outcomes that are triples whose first
element is either B or G for the sex of the elder child, likewise for the second
element and the sex of the younger child, and whose third coordinate is E or Y
indicating whether the elder child or younger child opened the door. For example,
(B, G, Y) is the outcome that the elder child is a boy, the younger child is a girl, and
the girl opened the door.

(a) Let T be the event that the household has two girls, and O be the event that a
girl opened the door. List the outcomes in T and O.

(b) What is the probability Pr [T | O], that both children are girls, given that a
girl opened the door?

(c) Where is the mistake in the following argument?

If a girl opens the door, then we know that there is at least one girl in the
household. The probability that there is at least one girl is

1 — Pr[both children are boys] = 1—(1/2x 1/2) = 3/4. (16.12)
So,

Pr [T | there is at least one girl in the household] (16.13)
_ Pr[T N there is at least one girl in the household] (16.14)
Pr{there is at least one girl in the household]
S i - (16.15)
Pr{there is at least one girl in the household]
= (1/4)/(3/4) =1/3. (16.16)

Therefore, given that a girl opened the door, the probability that there
are two girls in the household is 1/3.
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Problems for Section 16.6

@afn Problems

oblem 16.22.

Sally Smart just graduated from high school. She was accepted to three top col-
leges.

e With probability 4 /12, she attends Yale.

e With probability 5/12, she attends MIT.

e With probability 3/12, she attends Little Hoop Community College.
Sally will either be happy or unhappy in college.

e If she attends Yale, she is happy with probability 4/12.

e If she attends MIT, she is happy with probability 7/12.

e If she attends Little Hoop, she is happy with probability 11/12.

(a) A tree diagram for Sally’s situation is shown below. On the diagram, fill in the
edge probabilities and at each leaf write the probabilty of that outcome.
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(d) Show that the event that Sally attends Yale is not independent of the event that
she is happy []

p(A0R)# P[R)-e)

4.4 #Lomi
1212 |7 )

(e) Show that the event that Sally Sman attends MIT is independent of the event
that she is ha i
e T AR 7

\

Class Problems ‘ 2 S0 g qc fr) >

Problem 16.23.
Suppose that you flip three fair, mutually independent coins. Define the following
events:

e Let A be the event that the first coin is heads.

e Let B be the event that the second coin is heads.

e Let C be the event that the third coin is heads.

e Let D be the event that an even number of coins are heads.

(a) Use the four step method to determine the probability space for this experiment
and the probability of each of 4, B, C, D.

(b) Show that these events are not mutually independent.

(c) Show that they are 3-way independent.

Tk o7 S B L
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Random Variables

Thus far, we have focused on probabilities of events. For example, we computed
the probability that you win the Monty Ha]]@fngg;hat you have a rare medical
condition given that you tested positive. But, in many cases we would like to know
more. For example, how many contestants must play the Monty Hall game until
one of them finally wins? Ho itthi i ast? i-Hose
gambling with strange dice all night? To answer such questions, we need to work
with random variables.

.

17.1 Random Variable Examples

Definition 17.1.1. A7andom variable R on a jyrobability space is a total function
whose domain is the § pace.

The codomain of R can be anything, but will usually be a subset of the real
numbers. Notice that the name “random variable” is a misnomer; random variables

ar&actually functionst ——
For example, suppose we toss three independent, unbiased coins. Let C be the

number of heads that appear. Let M = 1 if the three coins come up all heads or all
tails, and let M = 0 otherwise. Now every outcome of the three coin flips uniquely
determines the values of C and M. For example, if we flip heads, tails, heads, then
C =2and M = 0. If we flip tails, tails, tails, then C = 0 and M = 1. In effect,
C counts the number of heads, and M indicates whether all the coins match.

Since each outcome uniquely determines C and M, we can regard them as func-
tions mapping outcomes to numbers. For this experiment, the sample space is:

S={HHH HHT, HTH, HTT,THH,THT,TTH,TTT}.

Now C is a function that maps each outcome in the sample space to a number as
follows:

C(HHH) = 3 C(THH) = 2
C(HHT) = 2 C(THT) = 1
C(HTH) = 2 C(TTH) = 1
C(HTT) = 1 C(TTT) = O.
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Similarly, M is a functio ng each outcome another way:
M(HHH) = 1 M(THH) = 0
M(HHT) = 0 M(THT) = 0
M(HTH) = 0 M(TTH) = 0
M(HTT) = 0 M(TTT) = L

So C and M are random variables.

17.1.1 Indicator Random Variables

An indicator random variable is a random variable that maps every outcome to
either O or 1. Indicator random variables are also called Bernoulli variables. JThe
random variable M is an example. If all three coins match, then M = 1; otherwise,

M=0. ERENEE
Indicator random variables are closely related to events. In particular, an in-
dicator random variable partitions Wﬁﬁi‘tﬁose outcomes mapped

to 1 and those outcomes mapped to 0. For example, the indicator M partitions the
sample space into two blocks as follows:

HHH TTT HHT HTH HTT THH THT TTH.
M=1 M=0

In the same way, an event E partitions the sample space into those outcomes
in E and those not in E. So E is naturally associated with an indicator random
variable, /g, where /g (w) = 1 for outcomes w € E and /g (w) = 0 for outcomes
w ¢ E. Thus, M = Ig where E is the event that all three coins match.

17.1.2 Random Variables and Events

There is a strong relationship between events and more general random variables
as well. A random variable that takes on several values partitions the sample space
into several blocks. For example, C partitions the sample space as follows:

I'TT TTH THT HTT THH HTH HHT HHH.
S—— ! 7 S——
c=o0 c=1 c=2 Cc=3

Each block is a subset of the sample space and is therefore an event. So the assertion
that C = 2 defines the event

[C =2]={THH,HTH,HHT},
— 2
and this event has probability

Pi[C = 2] = Pr{[THH] + Pi[HTH] + Pt[HHT] = é + -é + é- 3/8.

[ or 0
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Likewise [M = 1]isthe event {TTT + HHH} and has probability 1/4.
More generally, any assertion about the values of random variables defines an
event. For example, the assertion that C < 1 defines

[C<1={TTT,TTH,THT,HTT},
andsoPr[C < 1] =1/2.
Another example is the assertion that C - M is an odd number. This is an obscure
way of saying that all three coins came up heads, lfamcly,
[C-Misodd]| ={TTT}.

Think about it!

CH&/ ](o }%ov@

17.2 Independence

The notion of independence carrie‘s/_ over from events to random variables as well.
Random variables R; and R, Me({ndi'@em iff for all x, x5, the two events

[Ri=x1] and [Rz = xp]

are independent.

Forexample, are C and M independent? Intuitively, the answer should be@ e

The number of heads, C, completely determines whether all three coins match; that
is, whether M = 1. But, to verify this intuition, we must find some x;,x2 € R
such that: -
-—

Pr[C = x; AND M = x3] # Pr[C = x;1] - Pr[M = x3].

One appropriate choice of values is x; = 2 and x; = 1. In this case, we have:
1, 3
Prf[C =2AND M =1]=04# iz =Pr[M = 1]-Pr[C = 2].

The first probability is zero because we never have exactly two heads (C = 2)
when all three coins match (M = 1). The other two probabilities were computed
earlier.
On the other hand, let H; be the indicator variable for event that the first flipis a
Head, so
[Hi=11={HHH,HTH,HHT,HTT}.

(

Aﬂg/ é
Poe
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Then H; is independent of M, since

Pr[M=1]=l/4=Pr[M=1|H1:1]=PF[M=1|H1=0]
Pr[M =0]=3/4=Pr[M =0| H =1]=Pr[M =0| H, =0]

This example is an instance of:

r ?CQJ’Q Lemma 17.2.1. Two events are independent iff their indicator variables are inde-
5{) (W\ pendent.

\
( \;\A{(CL&M The simple proof is left to Problem 17.2
A&VJ [ ple proof is left to Problem 17.2.

As with events, the notion of independence generalizes to more than two random

Q\‘ ( variables.

Definition 17.2.2. Random variables R;, Rz, ..., R, are mutually independent iff
for all x1, x2, ..., xn, the n events

[R1 = x1],[R2 = x2],...,[Rn = xa]

are mutually independent.

{i WV ¢ 173 Distribution Functions
= w
\ ‘\, éb& g Z A random variable maps outcomes to values. Often, random variables that show up
JJ& \ﬂ&% | for different spaces of outcomes wind up behaving in much the sangg way because
Q ( {Q( Qb % 7 they have the > same probability of taking any given value. Hence, random variables
Q Ce( L on different probability spaces may wind up having the same probability density
[LSQ«[ 0 function. T TS
G o ({ Definition 17.3.1. Let R be a random variable with codomain V. The probability
(()ﬁ@/ﬁ density function (pdf) of R is a function PDFg : V' — [0, 1] defined by:
W ? BIELGe IR = Al s voge(R),
Q 0 if x ¢ range(R).

A consequence of this definition is that

Y " PDFr(x) =1.

x€range(R)




-
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Figure 17.1 The probability densi i -sided-dice.

This is because R has a value for each outcome, so summing the probabilities over
all outcomes is the same as summing over the probabilities of each value in the
range of R.

As an example, suppose that you roll two unbiased, independent, 6-sided dice.
Let T be the random variable that equals the sum of the two rolls. This random
variable takes on values in the set V' = {2,3,...,12}. A plot of the probability
density function for T is shown in Figure 17.1: The lump in the middle indicates
that sums close to 7 are the most likely. The total area of all the rectangles is 1
since the-di of the sumsin V = {2,3,...,12}.

Cumulative djstribution functions (cdf’s) are closely-related to pdf’s. The cdf for
a random variable R whose codomain is a subset of real numbers is the function
CDFpg : R — [0, 1] defined by: =5

CDFR(x) :@R/fx]_\)

As an example, the cumulative distribution function for the random variable T
is shown in Figure 17.2: The height of the ith bar in the cumulative distribution
function is equal to the sum of the heights of the leftmost i bars in the probability
density function. This follows from the definitions of pdf and cdf:

CDFRg(x) = Pr[R < x]
= ) PR =]

y=x
= PDFR(y).

y=

In summary, PDF g(x) measures the probability that R = x and CDFg(x)
measures the probability that R < x. Both PDFg and CDFg capture the same
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Figure 17.2 The cumulative distribution function for the sum of two 6-sided dice.

information about the random variable R —obviously each one determines the
other —but sometimes one is more convenient. The key point here is that neither
the probability density function nor the cumulative distribution function involves
the sample space of an experiment.

One of the really interesting things about density functions and distribution func-
tions is that many random variables turn out to have the same pdf and cdf. In other
words, even though R and S are different random variables on different probability
spaces, it is often the case that

PDFg = PDFs.

In fact, some pdf’s are so common that they are given special names. For exam-
ple, the three most important distributions in computer science are the Bernoulli
distribution, the uniform distribution, and the binomial distribution. We look more
closely at these common distributions in the next several sections.

17.3.1 Bernoulli Distributions

The Bernoulli distribution is the simplest and most common distribution func-
tion. That’s because it is the distribution function for an indicator random vari-
able. Specifically, the Bernoulli distribution has a probability density function of
the form fj : {0, 1} — [0, 1] where

fo®=p, and
fo)=1-p,

L or ()
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F for some p € [0, 1]. The corresponding cumulative distribution function is Fp :
C j) _— R — [0, 1] where : ;
) , 0 itx<0 &) o defles bag cass
( g

0 17.3.2 Uniform Distributions CPuatore
A random variable that takes on each possible value in its codomain with the same
A probability is said to be uniform. If the codomain V' has n elements, then the

@\,/ N ‘,»d/‘ha 9 uniform distribution has a pdf of the form

h |
—pot fin 6] "y f:‘ff[o_'” PUF /_/
) ;
3 O /

_. 115\
== )

forallv e V. s e

If Vi i="{1,2: n}, the cumulative distribution function would be F : R —
[0, 1] where \
- 0 ifx<l CYF)
F(x)u=qk/n ifk<x<k+1forl<k<n
1 ifn <x.

Uniform distributions come up all the time. For example, the number rolled on
a fair die is uniform on the set {1, 2, ..., 6}. An indicator variable is uniform when

I
its pdf is fi /5. (ﬁﬂ}l
/ Leﬂg
17.3.3 The Numbers Game

Enough definitions —let’s play a game! We have two envelopes. Each contains
an integer in the range 0, 1,..., 100, and the numbers are distinct. To win the
game, you must determine which envelope ,qut_ain_st_lﬁlggelmmber. To give
you a fighting chance, we’ll let you peek at the number in one envelope selected
at random. Can you devise a strategy that gives you a better than 50% chance of
winning?

For example, you could just pick an envelope at random and guess that it contains
the larger number. But this strategy wins only 50% of the time. Your challenge is
to do better.

So you might try to be more clever. Suppose you peek in one envelope and see
the number 12. Since 12 is a small number, you might guess that the number in the
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W somtng
; \(1 (}l t(l, Semyy other envelope is larger. But perhaps we’ve been tricky and put small numbers in
. l’]\" \ @&5 both envelopes. Then your guess might not be-se-good! L%
L 1\{ & An important point here is that the numbers in the envelopes may notte random.
We're picking the numbers and we’re choosing them in a way that we think will
&5 WE defeat your guessing strategy. We’ll only use randomization to choose the numbers

if that serves our purpose, which is making you lose! !
98{'5 (10 f5y6h9}037/

Amazingly, there is a strategy that wins more than 50% of the time, regardless of g Gie M
what numbers we put in the envelopes!

Suppose that you somehow knew a number x that was in between the numbers
in the envelopes. Now you peek in one envelope and see a number. If it is bigger
than x, then you know you’re peeking at the higher number. If it is smaller than x,
then you’re peeking at the lower number. In other words, if you know a number x
between the numbers in the envelopes, then you are certain to win the game.

The only flaw with this brilliant strategy is that you do not know such an x. Oh
well.

But what if you try to guess x? There is some probability that you guess cor-
rectly. In this case, you m of the time. On the other hand, if you guess
incorrectly, then you’re no worse off than before; your chance of winning is still
50%. Combining these {ngzmerall chance of winning is better than
50%! ( e

Informal arguments about probability, like this one, often sound plausible, but
do not hold up under close scrutiny. In contrast, this argument sounds completely
implausible —but is actually correct!

Intuition Behind the Winning Strategy

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the set {0, 1, ..., n}. Call
the lower number L and the higher number H.

Your goal is to guess a number x between L and H. To avoid confusing equality
cases, you select x at random from among the half-integers:

AN 290 1
Agplgndanidnlisg)
But what probability distribution should you use?

The uniform distribution turns out to be your best bet. An informal justification
is that if we figured out that you were unlikely to pick some number —say 50%
—then we’d always put 50 and 51 in the envelopes. Then you’d be unlikely to pick
an x between L and H and would have less chance of winning.
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After you've selected the number x, you peek into an envelope and see some
number T'. 'Iﬁj;}_gr,ﬁhen you guess that you're looking at the larger number.
If T < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We
can do this with the usual four step method and a tree diagram.

Step 1: Find the sample space.

You either choose x too low (< L), too high (> H), or just right (L < x < H).
Then you either peek at the lower number (T = L) or the higher number (T = H).
This gives a total of six possible outcomes, as show in Figure 17.3.

choices number result probability
of x peeked at
T=L 1/2 lose L/2n
too |
e win L/2n

L/n
win  (H—L)/2n
X just right
win (H—L)/2n

(n—H)/n
x too high

win  (n—H)/2n

T=H 12

lose (n—H)/2n L\/Jy(‘/

Figure 17.3 The tree diagram for the numbers game.

Step 2: Define events of interest.
The four outcomes in the event that you win are marked in the tree diagram.

Step 3: Assign outcome probabilities.

First, we assign edge probabilities. Your guess x is too low with probability L/n,
too high with probability (n — H)/n, and just right with probability (H — L)/n.
Next, you peek at either the lower or higher number with equal probability. Multi-
plying along root-to-leaf paths gives the outcome probabilities.
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Step 4: Compute event probabilities.
The probability of the event that you win is the sum of the probabilities of the four
outcomes in that event:

L+H—L+H—L+n—H

2n 2n 2n 2n

1 H-L

g 2n
1 1

AT

Pr{win] =

The final inequality relies on the fact that the higher number H is at least 1 greater
than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless of
the numbers in the envelopes! For example, if I choose numbers in the range
0,1,...,100, then you win with probability at least % + 2%0 = 50.5%. Even
better, if I’'m allowed only numbers in the range 0, . . ., 10, then your probability of
winning rises to 55%! By Las Vegas standards, those are great odds!

17.3.4 Randomized Algorithms

The best strategy to win the numbers game is an example of mﬁm
—it uses random numbers to influence decisions. Protocols and algorithms that
make use of random numbers are very important in computer science. There are
many pmme best known solutions are based on a random number
generator.
For example, the most commonly-used protocol for deciding when to send a
broa%cast on a shared bus or Ethernet is a randomized algorithm known as(eipo‘)
ential backoffy One of the most commonly-used sorting algorithms used in prac-
fte, called quicksort, uses random numbers. You’ll see many more examples if

you take an algorithms course. In each case, randomness is used to improve the
probability that the algorithm runs quickly or otherwise performs well.

17.3.5 Binomial Distributions
The third commonly-used distribution in computer science is m@gﬂ@
b The standard example of a random variable with a binomial distribution is
€ number megﬁ#ij' If the coin is
fair, then the number of heads has an unbiased binomial distribution, specified by
the pdf
fo i A{L,2,...,n} = [0,1].

 hos

Oyt
Wat
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Figure 17.4 The pdf for the unbiased binomial distribution for n = 20, f20(k).

This is because there are (Z) sequences of n coin tosses with exactly k heads, and
each such sequence has probability 27™.

A plot of f>9(k) is shown in Figure 17.4. The most likely outcome is k = 10
heads, and the probability falls off rapidly for larger and smaller values of k. The
falloff regions to the left and right of the main hump are called the tails of the
distribution.

The cumulative distribution function for the unbiased binomial distribution is
F, : R — [0, 1] where

/
0 if x <1 4/[ ()f/‘vp
CDF Fp(x) = ELO(".’)Z"" ifk<x<k+1forl <k<n ,/'q{a
1 ifn < x. /‘4 % Q?é(/‘-
In many fields, including Computer Science, probability analyses come down to s /qr

getting small bounds on the tails of the binomial distribution. In the context of a é { ﬂ
problem, this typically means that there is very small probability that something r
bad happens, which could be a server or communication link qverloading or a ran-
domized algorithm running for an exceptionally long time or producing the wrong
result.

As an example, we can calculate the probability of flipping at most 25 heads

in 100 tosses of a fair coin and see that it is very small, namely, less than 1 in
3,000,000.

-
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In fact, the tail of the distribution falls off so rapidly that the probability of flip-
ping exactly 25 heads is nearly twice the probability of flipping fewer than 25
heads! That is, the probability of flipping exactly 25 heads —small as it is —
is still nearly twice as large as the probability of flipping exactly 24 heads plus the
probability of flipping exactly 23 heads plus . . . the probability of flipping no heads.

The General Binomial Distribution

If the coins are biased so that each coin is heads with probability p, then the number

of heads has ageneral binomial density funttipn specified by the pdf

Ja,p:{1,2,...,n} = [0,1]
where

fap) = (Z) P —py .

for some n € Nt and p € [0,1]. This is because there are (}) sequences with

# g( 1‘ k heaéis and n — k tails, but now the probability of each such sequence is p* (1 —

Eddp
h [?b For example, the plot in Figure 17.5 shows the probability density function
_ 10 ) -G Jn,p(k) corresponding to flipping n = 20 independent coins that are heads with
@" @(0 probability p = 0.75. The graph shows that we are most likely to get £k = 15
ow (\)5 heads, as you might expect. Once again, the probability falls off quickly for larger

and smaller values of k.

The cumulative distribution function for the general binomial distribution i§ F, , :
R — [0, 1] where

if x <1

0
t»p Fap) =Y ()P —p)" ifk<x<k+1forl<k<n (17.1)
1

ifn < x.

17.4 Great Expectations

Thn or expected value of a random variable is a single number that
tells réveals a lot about the behavior of the variable. The expectation of a random

variable is also known as its mean or average. It is the average value of the variable
where each value is weighted according to its probability.

For example, suppose we select a student uniformly at rando class,
and let R be the student’s quiz score. Then Ex[R] is justetie class average —the
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Figure 17.5 The pdf for the general binomial distribution f, (k) forn = 20
and p = .75.

first thing everyone wants to know after getting their test back! For similar reasons,
the first thing you usually want to know about a random variable is its expected
value.

Formally, the expected value of a random variable is defined as follows:

Definition 17.4.1. If R is a random variable defined on a samﬁle space,S, then the
expectation of R is ‘~\_—)

Ex[R] ::= Z R(w) Pr[w]. (17.2)

wEeES

Let’s work through some examples.

17.4.1 The Expected Value of a Uniform Random Variable

Rolling a 6-sided die provides an example of a uniform random variable. Let R be
the value that comes up when you roll a fair 6-sided die. Then by (17.2), the
expected value of R is

1 1 1 1 1 1l =
BR[Bl=s 16 i s e e B e e B
X[R] et 6+36+46+56+ B2

\
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This calculation shows that the name “expected” value is a little misleading; the
random variable might never actually take on that value. You don’t ever expect to
rolla33 1 on an ordinary die!

In general if R, is arandom variable with a uniform distribution on {1 2,. IR

then \\ ,thd \L
n
Ex[R,,]zZi-% n(n+1) n+1. ) \D}ﬂ
= \xuk o Wy ¢
17.4.2 The Expected Value of a K al Random Vanable &

0
Define a random variable S to be the r of the value that comes up when
you roll a fair 6-sided die. That is, § = 1/R where R is the value that you roll;—x
Now,

I+l 1+1 l+1 1+l 1+11 49
6 26 36 46 56 66 12
1

/ Ex[R]. Assuming that these two quantities are equal

Ex[S] = Ex[%] — % .

Notice that Ex[1/R] #
is a common mistake.

17.4.3 The Expected Value of an Indicator Random Variable

The expected value of an indicator random variable for an event is just the proba-
ope ‘—-"-—-_______-
bility of tharevent. 0 {

Lemma 17.4.2. If I 4 is the indicator random variable for event A, then !
Ex[1 4] = Pr[A].
Proof.
Ex[I4]=1-Pi[l4 = 1]+ 0-Pr[I4 = 0]
=Pr[l4 = 1]
= Pr[A]. (def of 1,4)
For example, if A is the event that a coin with bias p C.Omes up heads, then

Ex[{g] =Py =1]=p
17.4.4 Alternate Definition of Expectation
There is another standard way to define expectation.

Theorem 17.4.3. For any random variable R,

Ex[R]= Y x-Pr[R=1zx]. (17.3)
x€range(R)

L3¢
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The proof of Theorem 17.4.3, like many of the elementary proofs about expec-
tation in this chapter, follows by judicious regrouping of terms in equation 17.2:

P———

Proof. Suppose R is defined on a sample space S. Then,

Ex[R] = Z R(w) Pr{w] (Def 17.4.1 of expectation)
WES

Z Z R(w) Pr[w]
x€range(R) we[R=x] [ﬂd&, 6!/7(
Z Z x Prlw] (def of the event [R = x]) C{" 6L 7

x€range(R) we[R=x]

= Z b E Pr{w] (distributing x over the inner sum)
x€range(R) we[R=x]

= Z x -Pr[R = x]. (def of Pr[R = x])

x€range(R)

The first equality follows because the events [R = x] for x € range(R) partition
the sample space S, so summing over the outcomes in [R = x] for x € range(R)
is the same as summing over S. |

In general, equation (17.3) is more useful than the defining equation (17.2) for
calculating expected values. It also has the advantage that it does not depend on
the sample space, but only on the density function of the random variable. On
the other hand, summing over all outcomes as in equation (17.2) sometimes yields
easier proofs about general properties of expectation.

Medians

The mean of a random variable is not the same as the median. The median is the

@@of a distribution.

Definition 17.4.4. The median of a random variable R is the value x € range(R)

such that
w ol

We won’t devote much attention to the median. The expected value is more
useful and has much more interesting properties.

Pr[R <x] <

Pr[R > x] <

B = B =
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17.4.5 Conditional Expectation

Just like event probabilities, expectations can be conditioned on some event. Given

a random variable R, the expected value of R conditioned on an event A is the

probability-weighted average value of R over outcomes in A. More formally:
palfiden

Definition 17.4.5. Th@@on Ex[R | A] of a random variable R
given event A is:

Ex[R | 4] == ior<Pr[R=r| 4]. (17.4)
rerange(R)

For example, we can compute the expected value of a roll of a fair die, given that
the number rolled is at least 4. We do this by letting R be the outcome of a roll of
the die. Then by equation (17.4),

6
Ex[R|R=4]=) iPr[R=i| R>4]=10+20+30+4-3+53+61 =5.

i=1

Conditional expectation is useful in dividing complicated expectation calcula-
tions into simpler cases. We can find a desired expcct%tﬁbﬁa’lc%g the con-
ditional expectation in each simple case and averaging them, weighing each case
by its probability.

For example, suppose that 49.8% of the people in the world are male and the
rest female —which is more or less true. Also suppose the expected height of a
randomly chosen male is 5’ 11”7, while the expected height of a randomly chosen
female is 5" 5 Whatis-the expected height of a randomly chosen person? We can
calculate this by averaging the heights of men and mt H be the
height (in feet) of a randomly chosen person, and let M be the event that the person
is male and F the event that the person is female. Then

Ex[H] = Ex[H | M]Pr[M] + Ex[H | F]Pr[F]
= (54 11/12) - 0.498 + (5 + 5/12) - 0.502
='5.665

_————
which is a little less than 5° 8”.
This method is justified by:

Theorem 17.4.6 (Law of Total Expectation). Let R be a random variable on a
sample space S, and suppose that Ay, Aa, ..., is a partition of S. Then

Ex[R] = ) Ex[R | Ai] Pr[4;].




“mecs” — 2011/4/24 — 8:08 — page 589 — #597

17.4. Great Expectations 589
Proof.
Ex[Rl= >  r-PrR=7] (by 17.3)
rerange(R)
=Y r-> Pr[R=r| Ai]Pr4] (Law of Total Probability)
r i
= E Z r-Pr[R=r| A;i]|Pr{Ai] (distribute constant r)
o

. Z Z r-Pr [R =r| A,-] Pr[A;]  (exchange order of summation)
i

= ZPr[A,-] Z r-Pr [R =r| A,-] (factor constant Pr[4;])
i r
= EPr[A,—] Ex[R | A;]. (Def 17.4.5 of cond. expectation)
i
|

17.4.6 Mean Time to Failure

A computer program crashes at the end of each hour of use W‘gbamhty p.ifit
has not crashed already. What is the expected time until the program crashes? This
will be easy to figure out using the Law of Tot ectation (Theorem 17.4.6).
Specifically, we want to find Ex[C] where C is the number of hours until the first
crash. We’ll do this by conditioniing on whether or not the crash occurs in the first
hour.

So let A to be the event that the system fails on the first step and A to be the
complementary event that the system does not fail on the first step. Then the mean
time to failure Ex[C] is

Ex[C] = Ex[C | A]Pr[A] + Ex[C | A] Pr[& (17.5)
Since A is the condition that the sysfem crashes on the first step, we know that

Ex[C | A] = 1. (17.6)

Since A is the condition that the system does not crash on the first step, conditioning
on A is equivalent to taking a first step without failure and then starting over without
conditioning. Hence,
(17.7)
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Plugging (17.6) and (17.7) into (17.5):

Ex[C]=1-p+ (1 +Ex[C])(1-p)
=p+1-p+(1-p)Ex[C]
=1+ (1 - p)Ex[C].

Then, rearranging terms gives
1 = Ex[C]— (1 — p)Ex[C] = pEx|[(C],

and thus i
Ex[C] = —.
p

The general principle here is well-worth remembering.

Mean Time to Failure

If a system fails at each time step with probability p, then the expected number
of steps up to the first failure is 1/ p. it oy

—

So, for example, if there is a 1% chance that the program crashes at the end of
each hour, then the expected time until the program crashes is wﬁir&

As a further example, suppose a couple wants to have a baby girl. For simplicity
assume there is a 50% chance that each child they have is a girl, and the genders
of their children are mutually independent. If the couple insists on having children
until they get a girl, then how many baby boys should they expect first?

This is really a variant of the previous problem. The question, “How many hours
until the program crashes?” is mathematically the same as the question, “How
many children must the couple have until they get a girl?” In this case, a crash
corresponds to having a girl, so we should set p = 1/2. By the preceding analysis,
the couple should expect a baby girl after having 1/p = 2 children. Since the last
of these will be the girl, they should expect just one boy.

Something to think about: If every couple follows the strategy of having children
until they get a girl, what will eventually happen to the fraction of girls born in this
world?

Using the Law of Total Expectation to find expectations is worthwhile approach
to keep in mind, but it’s good review to derive the same formula directly from the
definition of expectation. Namely, the probability that the first crash occurs in the
ith hour for some i > 0 is the probability, (1 — p)?~!, that it does not crash in each

\

oh (f lé
'rqs {30‘1 UM*?
hare mde !

9ots o
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of the first i — 1 hours, times the probability, p, that it does crash in the ith hour.
So

Ex[C]=) i -PrC =] (by (17.3))
ieN
=) il-p)'p
ieN
p ! .
=1—_;;-_Zr(1—p)'. (17.8)
ieN
But we’ve already seen a sum like this last one, namely, equation (14.13):
B .
—x)2°
ieN 1-x)
Combining (14.13) with (17.8) gives

P =7 =%
B Ty o g

as expected.
17.4.7 Expected Returns in Gambling Games

Some of the most interesting examples of expectation can be explained in terms of
gambling games. For straightforward games where you win w dollars with proba-
bility p and you lose x dollars with probability 1 — p, it is easy to compute your
expected return or winnings. It is simply

e

pw — (1 — p)x dollars.

For example, if you are flipping a fair coin and you win $1 for heads and you lose $1
for tails, then your expected winnings are

l-1—(1—1)-1=0.
2 )

In such cases, the game is said to be fair since your expected return is zero.

Some gambling games are more complicated and thus more interesting. The fol-
lowing game where the winners split a pot is representative of many poker games,
betting pools, and lotteries.
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Splitting the Pot

After your last encounter with biker dude, one thing led to another and you have
dropped out of school and become a Hell’s Angel. It’s late on a Friday night and,
feeling nostalgic for the old days, you drop by your old hangout, where you en-
counter two of your former TAs, Eric and Nick. Eric and Nick propose that you
join them in a simple wager. Each player will put $2 on the bar and secretly write
“heads” or “tails” on their napkin. Then one player will flip a fair coin. The $6 on
the bar will then be divided equally among the players who correctly predicted the
outcome of the coin toss.

After your life-altering encounter with strange dice, you are more than a little
skeptical. So Eric and Nick agree to let you be the one to flip the coin. This
certainly seems fair. How can you lose?

But you have learned your lesson and so before agreeing, you go through the
four-step method and write out the tree diagram to compute your expected return.
The tree diagram is shown in Figure 17.6.

The “payoff” values in Figure 17.6 are computed by dividing the $6 pot' among
those players who guessed correctly and then subtracting the $2 ﬁ%u put into
the pot at the beginning. For example, if all three players guessed correctly, then
your payoff is $0, since you just get back your $2 wager. If you and Nick guess
correctly and Eric guessed wrong, then your payoff is

6
——2=1.
2

In the case that everyone is wrong, you all agree to split the pot and so, again, your
payoff is zero.
To compute your expected return, you use equation (17.3):

1 1 1 1
) e o i e M=
Ex[payoff] 5 + 3 - 3 + 3

1 1
+(—2)";‘+(—2)'%+(‘2)'§+0'§

= 0.

This confirms that the game is fair. So, for old time’s sake, you break your solemn
vow to never ever engage in strange gambling games.

The Impact of Collusion

Needless to say, things are not turning out well for you. The more times you play
the game, the more money you ;cm-m_hﬂjiing., After 1000 wagers, you have lost

I'The money invested in a wager is commonly referred to as the pot.
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you guess Eric guesses Nick guesses  your
right? right? right? payoff
yes 1/2 50

$1

$1

no 1/2 $0

593

probability

18

1/8

1/8

1/8

1/8

1/8

1/8

1/8

Figure 17.6 The tree diagram for the game where three players each wager $2
and then guess the outcome of a fair coin toss. The winners split the pot.
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over $500. As Nick and Eric are consoling you on your “bad luck,” you remember
how rapidly the tails of the binomial distribute decrease, Siggesting that the prob-
ability of losing $500 in 1000 fair $2 wagers is less than the probability of being
struck by lightning while playing poker and being dealt four Aces. How can this
be?

It is possible that you are truly very very unlucky. But it is more likely that
something is wrong with the tree diagram in Figure 17.6 and that “something” just ( d I
might have something to do with the possibility that Nick and Eric ar@ ﬂﬂTL 7 |
against you.

To be sure, Nick and Eric can only guess the outcome of the coin toss with
probability 1/2, but what if Nick and Eric always guess differently? In other words,
what if Nick always guesses “tails” when Eric guesses “heads,” and vice-versa?
This would result in a slightly different tree diagram, as shown in Figure 17.7.

The payoffs for each outcome are the same in Figures 17.6 and 17.7, but the
probabilities of the outcomes are different. For example, it is no longer possible
for all three players to guess correctly, since Nick and Eric are always guessing
differently. More importantly, the outcome where your payoff is $4 is also no
longer possible. Since Nick and Eric are always guessing differently, one of them
will always get a share of the pot. As you might imagine, this is not good for you!

When we use equation 17.3 to compute your expected return in the collusion
scenario, we find that

Ex[payoffj:().0+1.%+1.%+4_0
1 1
EED04CD 3 + CAig +0-0
1
-

This is very bad indeed. By colluding, Nick and Eric have made it so that you
expect to lose $.50 every time you play. No wonder you lost $500 over the course
of 1000 wagers.
Maybe it would be a good idea to go back to school —your Hell’s Angels buds
may not be too happy that you just lost their $500.
/’F’___

How to Win the Lottery
sider the typical weekly football betting pool, where each participant wagery'$10

and the participants that pick the most games correctly split a large pot. The pool
seems fair if you think of it as in Figure 17.6. But, in fact, if two or more players

collude by guessing differently, they can get an “unfair” advantage at your expense!

Similar opportunities to “collude” arise in many betting games. For example@
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you guess Eric guesses Nick guesses your probability
right? right? right? payoff

yes $0 0

$1 1/4
$1 1/4
$4 0
—52 0
—$2 1/4
—$2 1/4
1o 0 $10 0

Figure 17.7 The revised tree diagram reflecting the scenario where Nick always
guesses the opposite of Eric.
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In some cases, the collusion is inadvertent and you can profit from it. For ex-
ample, many years ago, a former MIT Professor of Mathematics named Herman
Chernoff figured out a way to make money by playing the state lottery. This was
surprising since state lotteries typically have very poor expected returns. That’s be-
cause the state usually takes a large share of the wagers before distributing the rest
of the pot among the winners. Hence, anyone who buys a lottery ticket is expected
to lose money. So how did Chernoff find a way to make money? It turned out to be
easy!

In a typical state lottery,

e all players pay $1 to play and select 4 numbers from 1 to 36,
=

e the state draws 4 numbers from 1 to 36 uniformly at random,

e the states divides 1/2 of the money collected among the people who guessed
correctly and spends the other half redecorating the governor’s residence.

This is a lot like the game you played with Nick and Eric, except that there are
more players and more choices. Chernoff discovered that a small set of numbers
was selected by a large fraction of the population. Apparently many people think
the same way; they pick the same numbers not on purpose as in the previous game
with Nick and Eric, but based on Manny’s batting average or today’s date.

It was as if the players were colluding to lose! If any one of them guessed
correctly, then they’d have o My other players. By selecting
numbers uniformly at random, Chernoff was unlikely to get one of these favored
sequenm likely get the whole pot! By analyzing actual state
lottery data, he determined that he could win an average of 7 cents on the dollar. In
other words, his expected return was not —$.50 as you might think, but F$.07.2 €~

Inadvertent collusion often arises in betting pools and is a phenomenon that you
can take advantage of. For example, suppose you enter a Super Bowl betting pool
where the goal is to get closest to the total number of points scored in the game.
Also suppose that the average Super Bowl has a total ooint scored and that
everyone knows this. Then most people will guess around 30 points. Where should
you guess? Well, you should guess just outside of this range because you get to
cover a lot more ground and you don’t share the pot if you win. Of course, if you
are in a pool with math students and they all know thisSfrategy, then maybe you
should guess 30 points after all.

—

2Most lotteries now offer randomized tickets to help smooth out the distribution of selected se-
quences.
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17.4.8 Linearity of Expectation

Expected values obey a simple, very helpful rule called Linearity of Expectation.

Its simplest form says that the expected value of a sum of random variables is the
sum of the expected values of the variables.

Theorem 17.4.7. For any random variables Ry and R», d O/ d E
Ex[R; + R2] = Ex[R;] + Ex[R2]. ]

Cy
Proof. Let T ::= Ry + Rz. The proof follows straightforwardly by rearranging /
terms in equation (17.2) in the definition of expectation:

Bx[T] = ) T(w) - Prlo] (by (17.2))
= ES(RI (@) + Ra(®)) - Prlw] (def of T)
= ZS Ri(@)Pr{w] + ) Ro(@)Prfw]  (rearranging terms)
= ;ile] + Ex[R2]. w (by 17.2)

A small extension of this proof, which we leave to the reader, implies

Theorem 17.4.8. For random variables Ry, R> and constants ay,az € R,
Ex[a Ry + a2 R2] = a1 Ex[R1] + a2 Ex[R2].

In other words, expectation is a linear function. A routine induction extends the
result to more than two variables:

Corollary 17.4.9 (Linearity of Expectation). For any random variables Ry, . .., Ry
and constants ay, . ..,ay € R,

k k
EX[ZH,'R,'I = Eaf EX[R,‘].

i=1 i=1

The great thing about linearity of expectation is that no independence is required.
This is really useful, because dealing with independence is a pain, and we often
need to work with random variables that are not known to be independent.

As an example, let’s compute the expected value of the sum of two fair dice.
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Expected Value of Two Dice

What is the expected value of the sum of two fair dice?

Let the random variable R; be the number on the first die, and let R» be the
number on the second die. We observed earlier that the expected value of one die
is 3.5. We can find the expected value of the sum using linearity of expectation:

Ex[R1 + R2] = Ex[R;] + Ex[R2] =3.54+35="17.

Notice that we did not have to assume that the two dice were independent. The
expected sum of two dice is 7, even if they are glued together (provided each indi-
vidual die remains fair after the gluing). Proving that this expected sum is 7 with a
tree diagram would be a bother: there are 36 cases. And if we did not assume that
the dice were independent, the job would be really tough!

17.4.9 Sums of Indicator Random Variables

Linearity of expectation is especially useful when you have a sum of indicator ran-

dom variables. As an example, suppose there is a dinner party where n men check—

their hats. The hats are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each man gets his own hat with probability 1/n. What
is the expected number of men who get their own hat?

Letting G be the number of men that get their own hat, we want to find the
expectation of G. But all we know about G is that the probability that a man gets
his own hat back is 1/n. There are many different probability distributions of hat
permutations with this property, so we don’t know enough about the distribution
of G to calculate its expectation directly. But linearity of expectation makes the
problem really easy.

an indicator for the event that the ith man gets his own hat. That is, G; = 1 if the

The trick? is to express G as a sum-of indicator variables. In particular, let G; be M\ $ /

ith man gets his own hat, and G; = 0 otherwise. The number of men that get their
own hat is then the sum of these indicator random variables:

G =Gi+Gs+-+Gn.

e

These indicator variables are{not mutually independent. For example, if n — 1 men
all get their own hats, then th an 1s certain to receive his own hat. But, since

we plan to use linearity of expectation, we don’t have worry about independence!(
Since G; is an indicator random variable, we know from Lemma 17.4.2 that

Ex[G;] = Pr[G; = 1] = 1/n. (17.10)

3We are going to use this trick a lot so it is important to understand it.
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By Linearity of Expectation and equation (17.9), this means that

Ex[G] = Ex[G1 + G2 + --- + Gp]
= Ex[G1] + Ex[G2] + --- + Ex[Gp]

So even though we don’t know much about how hats are scrambled, we’ve figured
out that on average, just one man gets his own hat back!

More generally, Lineamm)ﬁdes a very good method for com-
puting the expected number of events that will happen.

Theorem 17.4.10. Given any collection of events Ay, Aa, ..., Ap, the expected
number of events that will occur is

i PI'[A,'].

i=1

For example, A; could be the event that the ith man gets the right hat back. But
in general, it could be any subset of the sample space, and we are asking for the
expected number of events that will contain a random sample point.

Proof. Define R; to be the indicator random variable for 4;, where R;(w) = 1 if
w e A; and Rj(w) =0if w ¢ A;. Let R= Ry + Ry + ---+ R,. Then

n
Ex[R] = Z Ex[R;] (by Linearity of Expectation)
i=1
n
= PrR; = 1] (by Lemma 17.4.2)
i=1
n
= ZPr[A,- ]. (def of indicator variable)

=1

So whenever you are asked for the expected number of events that occur, all you
have to do is sum the probabilities that each event occurs. Independence is not
needed.

A Noller @Xdﬂ[pl&(‘

(o)
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17.4.10 Expectation of a Binomial Distribution

Suppose that we independently flip n biased coins, each with probability p of com-
ing up heads. What is the expected number of heads?

Let J be the random variable denoting the number of heads. Then J has a
binomial distribution with parameters n, p, and

Pr[J = k] = (Z)kp(n gyl

Applying Equation 17.3, this means that

Ex[J] = i kPr[J = k]
k=0

5 Zk(Z)kP(n—k)*—P. (17.11)
k=0

Ouch! This is one nasty looking sum. Let’s try another approach.

Since we have just learned about linearity of expectation for sums of indicator
random variables, maybe Theorem 17.4.10 will be helpful. But how do we ex-
press J as a sum of indicator random variables? It turns out to be easy. Let J; be
the indicator random variable for the ith coin. In particular, define

it 1 if the ith coin is heads
"7 )o ifthe ith coin is tails.

Then the number of heads is simply
J=h+J2+-+Jn
By Theorem 17.4.10,

Ex[J] = iPr[J,-]

i=1

@ (17.12)

That really was easy. If we flip » mutually independent coins, we expect to get
pn heads. Hence the expected value of a binomial distribution with parameters n
and p is simply pn.
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But what if the coins are not mutually independent? It doesn’t matter—the an-
swer is still pn because Linearity of Expectation-and-Theorem 17.4.10 do not as-
sume any independence.

If you are not yet convinced that Linearity of Expectation and Theorem 17.4.10
are powerful tools, consider this: without even trying, we have used them to prove a
very complicated identity, namely, combining equations (17.11) and (17.12) gives:

n
Zk(")k!’(u — k)P = pn.
k
k=0
If you are still not convinced, then take a look at the next problem.

17.4.11 The Coupon Collector Problem

Every time we purchase a kid’s meal at Taco Bell, we are graciously presented with
a miniature “Racin’ Rocket” car together with a launching device which enables us
to project our new vehicle across any tabletop or smooth floor at high velocity.

Truly, our delight knows no bounds.
There ar@lffcrem types of Racin’ Rocket cars (blue, green, red, gray, etc.).

The type of-car awarded to us each day by the kind woman at the Taco Bell reg-
ister appears to be selected uniformly and independently at random. What is the
expected number of kid’s meals thar we-must-purehase-in-order-to-aequire at least
one of each type of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what
is the expected number of people you must poll in order to find at least one person
with each possible birthday? Here, instead of collecting Racin’ Rocket cars, you're
collecting birthdays. The general question is commonly called the coupon collector
problem after yet another interpretation.

A clever application of linearity of expectation leads to a simple solution to the
coupon collector problem. Suppose there are five different types of Racin’ Rocket
cars, and we receive this sequence:

blue green green red blue orange blue orange gray.

Let’s partition the sequence into 5 segments:

blue  green green red blue orange blue orange gray.
S—— S — ot
XO X1 Xz X3 X4

The rule is that a segment ends whenever w;i For example, the
middle segment ends when we get a red car for the first time. In this way, we can

by b s’
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break the problem of collecting every type of car into stages. Then we can analyze

each stage individually and assemble the results using linearity of expectation.
Let’s return to the general case where we’re collecting n Racin’ Rockets. Let

X} be the length of the kth segment. The total number of kid’s meals we must

purchase to get all n Racin’ Rockets is the sum of the lengths of all these segments:
T

Xo+ X1+ + Xp—y

Now let’s focus our attention on Xy, the length of the kth segment. At the
beginning of segment k, we have k different types of car, and the segment ends
when we acquire a new type. When we own k types, each kid’s meal contains a
type that we already have with probability k/n. Therefore, each meal contains a
new type of car with probability 1 —k/n = (n —k)/n. Thus, the expected number
of meals until we get a new kind of car is n/(n — k) by the Mean Time to Failure
rule. This means that

n
Ex[Xg] = ;
X[Xk] = ——
Linearity of expectation, together with this observation, solves the coupon col-
lector problem:
Ex[T] = Ex[Xo + X1 + --- + Xn—1]
= Ex[Xo] + Ex[X1] + --- + Ex[Xp—1]
=L + 2 gh st : + L + z
“n—0 n-1 3:: 12 1
= l + : Freot = l + = 1 +
e -1 gae’petan]
= mified g g Lo ]
TR =7 7
=nH, (17.13)
Wow! It’s those Harmonic Numb ain!

We can use Equation T7.13 to answer some concrete questions. For example, the
expected number of die rolls required to see every number from 1 to 6 is:

6Hg =14.7....

And the expected number of people you must poll to find at least one person with
each possible birthday is:

365H365 = 2364.6....
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17.4.12 ]@;‘Sums

Linearity of expectation also works for an infinite number of random variables
provided that the variables satisfy some stringent absolute convergence criteria.

Theorem 17.4.11 (Linearity of Expectation). Let Rg, Ry, ..., be random variables

such that
oo
> Ex[|Ri]
i=0

converges. Then
(o9} e8]
Ex [Z R,':I =Y Ex[Ri].
i=0 i=0

Proof. LetT ::=Y 12 Ri-

We leave it to the reader to verify that, under the given convergence hypothesis,
all the sums in the following derivation are absolutely convergent, which justifies
rearranging them as follows: B

o o] oo
Y Ex[Ri] =) )" Ri(s) - Prls] (Def. 17.4.1)
i=0 i=0s€S
oo
= Z Z Ri(s) - Pr[s] (exchanging order of summation)
SESi=0
= Z |:Z R; (s)i| - Pr[s] (factoring out Pr(s])
SES Li=0
=) T(s)-Pxs] (Def. of T)
SES
= Ex[T] (Def. 17.4.1)
oo
=Ex[> _ Ril. (Def. of T). W
i=0

17.4.13 [Expectations of Products

While the expectation of a sum is the sum of the expectations, the same is usually
not true for products. For example, suppose that we roll a fair 6-sided die and
denote the outcome with the random variable R. Does Ex[R - R] = Ex[R] - Ex[R]?

We know that Ex[R] = 31 and thus Ex[R]? = 121. Let’s compute Ex[R?] to
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see if we get the same result.

Ex[R?] = Z R?*(w) Pr{w]

WES

6
= i%-PR; =i

i=1

12 22 32 42 52 62
6 6 "6°6"8
=151/6

#121/4.

That is,

Ex[R - R] # Ex[R] - Ex[R].
So the expectation of a product is not always equal to the product of the expecta-
tions.

There is a special case when such a relationship does hold however; namely,
when the random variables in the product are independent.

Theorem 17.4.12. For any two independent random variables R, Ra,
EX[R1 % R2] = EK[Rl] . EK[Rz].

The proof follows by judicious rearrangement of terms in the sum that defines
Ex[R; - R3]. Details appear in Problem 17.12.

Theorem 17.4.12 extends routinely to a collection of mutually independent vari-
ables.

Corollary 17.4.13 (Expectation of Independent Product). If random variables Ry, R, . ..

are mutually independent, then

k k
Ex[[ [ Ri] = [ [ Ex[Ri.
i=1

i=1
Problems for Section 17.3

Practice Problems

Problem 17.1.
Suppose X, X, and X3 are three mutually independent random variables, each
having the uniform distribution

Pr[X; = k] equal to 1/3 foreach of k = 1,2, 3.
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Let M be another random variable giving the maximum of these three random
variables. What is the density function of M?

P_roblem 17.2. (a) Prove that if A and B are independent events, then so are A and
B.

(b) Let /4 and Ip be the indicator variables for events A and B. Prove that [ 4
and /g are independent iff A and B are independent.

Hint: For any event, E, let E':=FEand E° :=E.

Class Problems

Guess the Bigger Number Game

Team 1:
e Write different integers between 0 and 7 on two pieces of paper.
e Put the papers face down on a table.
Team 2:
e Turn over one paper and look at the number on it.
e Either stick with this number or switch to the unseen other number.

Team 2 wins if it chooses the larger number.

Problem 17.3.

The analysis in section 17.3.3 implies that Team 2 has a strategy that wins 4/7 of
the time no matter how Team 1 plays. Can Team 2 do better? The answer is “no,”
because Team 1 has a strategy that guarantees that it wins at least 3/7 of the time,
no matter how Team 2 plays. Describe such a strategy for Team 1 and explain why
it works.

Problem 17.4.
Suppose you have a biased coin that has probability p of flipping heads. Let J be
the number of heads in n independent coin flips. So J has the general binomial
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distribution:

n e
PDF; (k) = (k) g -

where g ::=1— p.
(a) Show that

PDF;(k) < PDF;(k + 1) fork <np+ p,
PDF, (k) > PDF,(k + 1) fork > np + p.

(b) Conclude that the maximum value of PDF; is asymptotically equal to

1
J2Zmnpg

Hint: For the asymptotic estimate, it’s ok to assume that np is an integer, so by
part (a), the maximum value is PDF y (np). Use Stirling’s formula (14.30).

Homework Problems

Problem 17.5.

A drunken sailor wanders along main street, which conveniently consists of the
points along the x axis with integral coordinates. In each step, the sailor moves
one unit left or right along the x axis. A particular path taken by the sailor can be
described by a sequence of “left” and “right” steps. For example, (left,left,right)
describes the walk that goes left twice then goes right.

We model this scenario with a random walk graph whose vertices are the integers
and with edges going in each direction between consecutive integers. All edges are
labelled 1/2.

The sailor begins his random walk at the origin. This is described by an initial
distribution which labels the origin with probability 1 and all other vertices with
probability 0. After one step, the sailor is equally likely to be at location 1 or —1,
so the distribution after one step gives label 1/2 to the vertices 1 and —1 and labels
all other vertices with probability 0.

(a) Give the distributions after the 2nd, 3rd, and 4th step by filling in the table of
probabilities below, where omitted entries are 0. For each row, write all the nonzero
entries so they have the same denominator.
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location
4 -3 -2 -1 0 1 2 3 4
initially
after 1 step 1/2 0 1/2
after 2 steps R RO A .
after 3 steps T q 7 ?
after4steps | 2 7 ? 7 7 ? ?

(b)

1. What is the final location of a ¢-step path that moves right exactly i times?
2. How many different paths are there that end at that location?

3. What is the probability that the sailor ends at this location?

(c) Let L be the random variable giving the sailor’s location after 7 steps, and let
B::=(L+1)/2. Use the answer to part (b) to show that B has an unbiased binomial
density function.

(d) Again let L be the random variable giving the sailor’s location after ¢ steps,
where ¢ is even. Show that

L |
P —_ —.
r[| L] < 2]<2

So there is a better than even chance that the sailor ends up at least +/ /2 steps from
where he started.

Hint: Work in terms of B. Then you can use an estimate that bounds the binomial
distribution. Alternatively, observe that the origin is the most likely final location
and then use the asymptotic estimate

Pr[L = 0] = Pr[B =1/2] ~ ‘/g

Problems for Section 17.4
Practice Problems

Problem 17.6.
MIT students sometimes delay laundry for a few days. Assume all random values
described below are mutually independent.
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(a) A busy student must complete 3 problem sets before doing laundry. Each
problem set requires 1 day with probability 2/3 and 2 days with probability 1/3.
Let B be the number of days a busy student delays laundry. What is Ex[B]?

Example: If the first problem set requires 1 day and the second and third problem
sets each require 2 days, then the student delays for B = 5 days.

(b) A relaxed student rolls a fair, 6-sided die in the morning. If he rolls a 1, then he

does his laundry immediately (with zero days of delay). Otherwise, he delays for
one day and repeats the experiment the following morning. Let R be the number
of days a relaxed student delays laundry. What is Ex[R]?

Example: If the student rolls a 2 the first morning, a 5 the second morning, and a 1
the third morning, then he delays for R = 2 days.

(c) Before doing laundry, an unlucky student must recover from illness for a num-
ber of days equal to the product of the numbers rolled on two fair, 6-sided dice.
Let U be the expected number of days an unlucky student delays laundry. What is
Ex[U]?

Example: If the rolls are 5 and 3, then the student delays for U = 15 days.

(d) A student is busy with probability 1/2, relaxed with probability 1/3, and un-
lucky with probability 1/6. Let D be the number of days the student delays laundry.
What is Ex[D]?

Problem 17.7.
Each Math for Computer Science final exam will be graded according to a rigorous
procedure:

e With probability % the exam is graded by a TA,with probability % it is graded
by a lecturer, and with probability % it is accidentally dropped behind the
radiator and arbitrarily given a score of 84.

e TAs score an exam by scoring each problem individually and then taking the
sum.

— There are ten true/false questions worth 2 points each. For each, full
credit is given with probability %, and no credit is given with probability
1

i
— There are four questions worth 15 points each. For each, the score is
determined by rolling two fair dice, summing the results, and adding 3.
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— The single 20 point question is awarded either 12 or 18 points with
equal probability.

e Lecturers score an exam by rolling a fair die twice, multiplying the results,
and then adding a “general impression”score.

— With probability %, the general impression score is 40.
— With probability 1—36, the general impression score is 50.

— With probability %, the general impression score is 60.

Assume all random choices during the grading process are independent.
(a) What is the expected score on an exam graded by a TA?

(b) What is the expected score on an exam graded by a lecturer?

(c) What is the expected score on a Math for Computer Science final exam?

Class Problems

Problem 17.8.
Let’s see what it takes to make Carnival Dice fair. Here’s the game with payoff
parameter k: make three independent rolls of a fair die. If you roll a six

e no times, then you lose 1 dollar.

e exactly once, then you win 1 dollar.

e exactly twice, then you win two dollars.
e all three times, then you win k dollars.

For what value of & is this game fair?

Problem 17.9.
A classroom has sixteen desks arranged as shown below.
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If there is a girl in front, behind, to the left, or to the right of a boy, then the two of
them flirt. One student may be in multiple flirting couples; for example, a student
in a corner of the classroom can flirt with up to two others, while a student in
the center can flirt with as many as four others. Suppose that desks are occupied
by boys and girls with equal probability and mutually independently. What is the
expected number of flirting couples? Hint: Linearity.

Problem 17.10.
Here are seven propositions:

X; OR Xx3 OR X7
X5 OR Xxg OR Xx7
X2 OR X4 OR Xg
X4 OR X5 OR X7
X3 OR X5 OR Xg
X9 OR Xg OR X2
X3 OR X9 OR x4

Note that:

1. Each proposition is the disjunction (OR) of three terms of the form x; or the
form X;j.

2. The variables in the three terms in each proposition are all different.
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Suppose that we assign true/false values to the variables xy,..., X9 indepen-
dently and with equal probability.

(a) What is the expected number of true propositions?

Hint: Let T; be an indicator for the event that the i-th proposition is true.

(b) Use your answer to prove that for any set of 7 propositions satisfying the
conditions 1. and 2., there is an assignment to the variables that makes all 7 of the
propositions true.

Problem 17.11. (a) Suppose we flip a fair coin until two Tails in a row come up.
What is the expected number, Nrr, of flips we perform? Hint: Let D be the tree
diagram for this process. Explainwhy D = H-D + T - (H - D 4+ T). Use the
Law of Total Expectation 17.4.6

(b) Suppose we flip a fair coin until a Tail immediately followed by a Head come
up. What is the expected number, Ny, of flips we perform?

(c) Suppose we now play a game: flip a fair coin until either TT or TH first occurs.
You win if TT comes up first, lose if TH comes up first. Since TT takes 50% longer
on average to turn up, your opponent agrees that he has the advantage. So you tell
him you’re willing to play if you pay him $5 when he wins, but he merely pays you
a 20% premium, that is, $6, when you win.

If you do this, you're sneakily taking advantage of your opponent’s untrained intu-
ition, since you’ve gotten him to agree to unfair odds. What is your expected profit
per game?

Problem 17.12.
Justify each line of the following proof that if R; and R, are independent, then

Ex[R; - R2] = Ex[R;] - EX[R>].
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Proof.

Ex[R1 - R2]

= Z r-Pr[RI-R;g:r]
rerange(R1-R2)

= Z rir2-Pr[R; = rp and Ry = 3]
ri€range(R;)

= Z Z rira-Pr[Ry = r; and Ry = rp]

r1€range(R}) ra€range(R2)

a Z Z rirz -Pr[Ry = r1] - Pr[R2 = 1]

ry€range(R)) ra€range(R2)

. Z riPr{Ry =r] - Z r2Pr{Ry = r2]

ry €range(R;) ra€range(R2)
= Y PR =r]-Ex[Ry]
ry€range(R;)

= Ex[R3] - Z r Pr[Ry =ry]
ri€range(R))
= EX[Rz] : EX[R]].

Problem 17.13.
A literal is a propositional variable or its negation. A k-clause is an OR of k literals,
with no variable occurring more than once in the clause. For example,

PORQORRORYV,

is a 4-clause, but e
VORQORXORYV,

is not, since V' appears twice.

Let S be a set of n distinct k-clauses involving v variables. The variables in
different k-clauses may overlap or be completely different, so k < v < nk.

A random assignment of true/false values will be made independently to each of
the v variables, with true and false assignments equally likely. Write formulas in n,
k, and v in answer to the first two parts below.
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(a) What is the probability that the last k-clause in S is true under the random
assignment?

(b) What is the expected number of true k-clauses in §?

(c) A set of propositions is satisfiable iff there is an assignment to the variables
that makes all of the propositions true. Use your answer to part (b) to prove that if
n< 2"‘, then &S is satisfiable.

Problem 17.14.

A gambler bets $10 on “red” at a roulette table (the odds of red are 18/38 which
slightly less than even) to win $10. If he wins, he gets back twice the amount of his
bet and he quits. Otherwise, he doubles his previous bet and continues.

(a) What is the expected number of bets the gambler makes before he wins?
(b) What is his probability of winning?
(c) What is his expected final profit (amount won minus amount lost)?

(d) The fact that the gambler’s expected profit is positive, despite the fact that the
game is biased against him, is known as the St. Petersberg paradox. The paradox
arises from an unrealistic, implicit assumption about the gambler’s money. Explain.

Hint: What is the expected size of his last bet?

Homework Problems

Problem 17.15.

Let R and S be independent random variables, and f and g be any functions such
that domain( /') = codomain(R) and domain(g) = codomain(S). Prove that f(R)
and g(S) are independent random variables. Hint: The event [ f(R) = a] is the
disjoint union of all the events [R = r] for r such that f(r) = a.






