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Deviation from the Mean

18.1 Why the Mean?
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In the previous chapter we took it for granted that expectation is important, and we
developed a bunch of techniques for calculating Q{Malues. But why should
we care about this value? After all, a random variable may never take a value
anywhere near its expected value.

The most important reason to care about the mean value comes from its con-
nection to estimation by sampling. For example, suppose we want to estimate the
average age, income, family size, or other measure of a population. To do this,
we determine a random process for selecting people —say throwing darts at cen-
sus lists. This process makes the selected person’s age, income, and so on into a
random variable whose mean equals the actual average age or income of the pop-
ulation. So we can select a I‘W and calculate the average of
people in the sample to estimate the true average in the whole population. Many
fundamental results of probability theory explain exactly how the reliability of such
estimates improves as the sample size increases, and in this chapter we’ll examine
a few such results.

In particular, when we make an estimate by repeated sampling, we need to know
how much confidence we should have that our estimate is OK. Technically, this
reduces to finding the probability that an estimate deviates a lot from its expected
value. This topic of deviation from the mean is the focus of this final chapter.

B st el eom lhing by, /%M[M/-,pf/ 5

18.2 Markov’s Theorem

Markov’s theorem is an easy result that glves a generally rough estimate of the
; e mean.

The 1dea behmd Markov’s Theorem can be explained with a simple example of
intelligence quotient, 1Q. This quantity was devised so that the average IQ mea-
surement would be 100. Now from this fact alone we can conclude that at most
1/3 the population can have an IQ of 300 or more, because if more than a third
had an IQ of 300, then the average would have to be more than (1/3)300 = 100,

contradicting the fact that t ge-is100. So the probability that a randomly
chosen person has an IQ of 300 or more is at most 1/3. Of course this is not a very
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Chapter 18 Deviation from the Mean

strong conclusion; in fact no IQ of over 300 has ever been recorded. But by the
same logic, we can also conclude that at most 2/3 of the population can have an
1Q E_E_(_)_g_r_ more. IQ’s of over 150 have certainly been recorded, though again, a
much smaller fraction than 2/3 of the population actually has an IQ that high.

But although these conclusions about IQ are weak, they are actually the strongest
general conclusions that can be reached about a random variable using only the fact
that it is nonnegative and its mean is 100. For example, if we choose a random
vmiable?cﬁm with probability 1/3, and 0 with probability 2/3, then its mean
is 100, and the probability of a value of 300 or more really is 1/3. So we can’t hope
to get a better upper bound based solely on this limited amount of information.

Theorem 18.2.¥ (Markov’s Theorem), If R is a nonnegative random variable, then
forall x >0 e Ry

Proof. Forany x > 0

Ex[R] ::= Z yPr[R = y]
ye€range(R) :
> 2 yPr[R = y] (because R > 0)

y=x,
y€range(R)

> Y xPmR=)]

y=x,
y€range(R)

=X Z Pr[R = y]

yzx,
ye€range(R)

= x Pr[R > x]. (18.1)
Dividing the first and last expression (18.1) by x gives the desired result. |

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s Theo-
rem this way:

Corollary 18.2.2. If R is a nonnegative random variable, then for all ¢ = 1

Pr[R > ¢ -Ex[R]] < (18.2)

| -

This Corollary follows immediately from Markov’s Theorem(18.2.1) by letting
x be ¢ - Ex[R].
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18.2.1 Applying Markov’s Theorem

Let’s consider the Hat-Check problem again. Now we ask what the probability is
that x or more men get the right hat, this is, what the value of Pr[G > x] is.
: e ——————,
We can compute an upper bound with Markov’s Theorem. Since we know
Ex[G] = 1, Markov’s Theorem implies
x[G] 1

PrlG = x] < —— = —.
X x

For example, there is no better than a 20% chance that 5 men get the right hat,
regardless of the number of people at the dinner party.——

The Chinese Appetizer problem is similar to the Hat-Check problem. In this
case, n people are eating appetizers arranged on a circular, rotating Chinese banquet
tray. Someone then spins the tray so that each person receives a random appetizer.
What is the probability that everyone gets the same appetizer as before?

There are n equally likely orientations for the tray after it stops spinning. Ev-
eryone gets the right appetizer in just one of these n orientations. Therefore, the

correct answer s 1/

But what probability do we get from Markov’s Theorem'? Let the random vari-
able, R, be theZnumber of people that get the ri ht appetizer. Then of course
Ex[R] = 1 (right?), so applying Markov's Theorem, we find:

Ex[R] 1

Pr[R = n] <

n n

So for the Chinese appetizer problem, Markov’s Theorem is tight!
On the other hand, Markov’s Theorem gives the same 1/z bound for the proba-
bility everyone gets their hat in the Hat-Check problem in the case that all permuta-

tions age equally likely. But the probability of this event is 1/(n!). So for this case,
Markov’s Theorem gives a probability bound that is way off.

18.2.2 Markov’s Theorem for Bounded Variables

Suppose we learn that the average IQ among MIT students is 150 (which is not
true, by the way). What Tan we say about the probability that an MIT student has
an IQ of more than 200? Markov’s theorem immediately tells us that no more than
150/200 or 3/4 of the students can have such a high IQ. Here we simply applied
Markov’s Theorem to the random variable, R, equal to the IQ of a random MIT
student to conclude:

@Ex[f?] 15 _3
200 200 4
L"’Le/ 73’F ﬂl/[bt
1% ~FT54

'“uu\j
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Chapter 18 Deviation from the Mean

But let’s observe an additional fact (which may be true): no MIT student has an
IQ less than 100. This means that if we let T ::= R — 100, then 7 is nonnegative
and Ex[T'] = 50, so we can apply Markov’s Theorem to T and conclude:

Ex[T] _ 50 1

100 100 2
So only half, not 3/4, of the students can be as amazing as they think they are. A
bit of a relief!

In fact, we can get better bounds applying Markov’s Theorem to R — b instead
of R for any lower bound b > 0 on R (see Problem 18.2). Similarly, if we have
any upper bound, u, on a random variable, S, then u — S will be a nonnegative
random variable, and applying Markov’s Theorem to u — S will allow us to bound
the probability that S is much /ess than its expectation.

Pr[R > 200] = Pr[T > 100] <

18.3 Chebyshev’s Theorem {NLM fn,al&

‘We got more mileage out of Markov’s Theorem by applying it t@rather than
R. More generally, a really good trick for getting stronger bounds on a random
variable R out of Markov’s Theorem is to apply some cleverly chosen function of
R. T
r\Ghoosing functions that are powers of |R| turns out to be specially useful. In
particular, since | R|* is nonnegative, Markov’s inequality also applies to the event
[|R|* > x“]. But this event is equivalent to the event [|R| > x], so we have:

Lemma 18.3.1. For any random variable R, and x > 0,

Ex[|R|*
r|R| > x) < 2R
xC{
Rephrasing (18.3.1) in terms of the random variable, | R — Ex[R]|, that measures
R’s deviation from its mean, we get

Ex[(R — Ex[R])¥]

x® '
The case when & = 2 is turns out to be so important that numerator of the right
hand side of (18.3) has been given a mame:

Pr[|[R —Ex[R] | = x] <

(18.3)

of a random variable, R, is:

Var[R] ::;ﬁx[(R — Ex[R])?].

S (anes hore , o el e Lo
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The restatement of (18.3) for & = 2 is known as Chebyshev’s Theorem.
Theorem 18.3.}(Ch€l;yshev). t R be a random variable and x € R™. Then

Pr{|R — Ex[R]| > x] < [2R]

The expression Ex[(R — Ex[R])?] for variance is a bit cryptic; the best approach
is to work through it from the inside out. The innermost expression, R — Ex[R], is
precisely the deviation of R above its mean. Squaring this, we obtain, (R— —Ex[R])2.
This is a random variable that is near 0 when R is close to the mean and is a large
positive number when R deviates far above or below the mean. So if R is always
close to the mean, then the variance will be small. If R is often far from the mean,
then the variance will be large. ——

P

18.3.1 Variance in Two Gambling Games

The relevance of variance is apparent when we compare the following two gam-
bling games.

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3.

Game B: We win $1002 with probability 2/3 and lose $2001 with probability
1/3.

Which game is better financially? We have the same probability, 2/3, of winning
each game, but that does not tell the whole story. What about the expected return for
each game? Let random variables A and B be the payoffs for the two games. For
example, A is 2 with probability 2/3 and -1 with probability 1/3. We can compute

the expected payoff for each game as follows:
1, é
é o
=1

The expected payoff is the same for both games, but they are obviously very
different! This difference is not apparent in their expected value, but is captured by
variance. We can compute the Var[A] by working “from the inside out” as follows:

Ex[A]=2-§+(—1)-

[T

D
Ex[B] = 1002 - 5 + (~2001)

1 with probability 2
A—Ex[4] =
x4] { —2  with probability 3 ?

1 with probability 2
A—Ex[4])? =
( X[ D { 4  with probablllty?
2 1
Ex[(A—Ex[4])?] = 1-3+4-2
Var[d] = 2.

}%F 0% far Mare rcfﬁ["/




Z{‘()‘“ Jil var i he b@ﬂ*’“"ﬁ

“mes” — 2011/5/1 — 3:22 — page 622 — #630

622 Chapter 18 Deviation from the Mean

Similarly, we have for Var[B]:

1001  with probability 2
B —Ex[B] = -
el { —2002 with probabllltyg
1,002,001 with probability 2
B —Ex[B])? =
(Be-slRelED) { 4,008,004 with probability %

2 1
Ex[(B —Ex[B])?] = 1,002,001 - 3 +4,008,004- 2
Var[B] = 2,004,002.

The variance of Game A is 2 and the variance of Game B is more than two
million! Intuitively, this means that the payoff in Game A is usually close to the

expected value(of $1, but the payoff in Game B ean-deviate very far from this
expected value.

High variance is often associated Wil(l;qid%:h} For example, in ten rounds of
Game A, we expect to make $10, but couldTonceivably lose $10 instead. On the
other hand, in ten rounds of game B, we also expect to make $10, but could actually
lose more than $20,000!

18.3.2 Standard Deviation

Because of its definition in terms of the square of a random variable, the variance
of a random variable may be very far from a typical deviation from the mean. For
example, in Game B above, the deviation from the mean is 1001 in one outcome and
-2002 in the other. But the variance is a whopping 2,004,002. From a dimensional
analysis viewpoint, the “units” of variance are wrong: if the random variable is in
dollars, then the expectation 1s also i dollars, but the variance is in square dollars.
For this reason, people often describe random variables using standard deviation

instead of variance.
—_—
Definition 18.3.4. The standard deviation, og, of a random variable, R, is the

square root of the variance:

Con o= o/¥aR] = |fExR—Ex{RIY]

So the standard deviation is the square root of the mean of the square of the
deviation, or thé root mean squarefpr short. It has the same units —dollars in our
example —as the original fandom variable and as the mean. Intuitively, it measures
the average deviation from the mean, since we can think of the square root on the
outside as canceling the square on the inside.

on 1Y
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o

Figure 18.1 The standard deviation of a distribution indicates how wide the
“main part” of it is.

Example 18.3.5. The standard deviation of the payoff in Game B is:

op = +/Var[B] = /2,004,002 ~ 1416.

The random variable B actually deviates from the mean by either positive 1001

or negative 2002; therefore, the standard deviation of 1416 describes this situation ),
reasonably well. - éz e

Intuitively, the standard deviation measures the “width” of the “main part” of the f‘g C‘é
distribution graph, as illustrated in Figure 18.1. /2
It’s useful to rephrase Chebyshev’s Theorem in terms of standard deviation.

Corollary 18.3.6. Let R be a random variable, and let ¢ be a positive real number. C{ (2 /7{

\

1
Pr[|R — Ex[R]| > cog] < <. fs 4
c l/l;/ Cé’
Here we see explicitly how the “likely” values of R are clustered in an O(og)-
sized region around Ex[R], confirming that the standard deviation measures how
spread out the distribution of R is around its mean. T S
e dISTBIon of 4 15 ATor

Proof. Substituting x = cog in Chebyshev’s Theorem gives:

" valRl 03 1

Pr[|R — Ex[R]| = cog] < (cc:R)2 =

(cor)? 2’
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The IQ Example

Suppose that, in addition to the national average IQ being 100, we also know the
standard deviation of IQ’s is 10. How rare is an IQ of 300 or more?

Let the random variable, R, be the IQ of a random person. So we are supposing
that Ex[R] = 100, g = 10, and R is nonnegative. We want to compute Pr[R >
300].

‘We have already seen that Markov’s Theorem 18.2.1 give@ bound, namely,

1
Pr[R = 300] < 3

GJ D}Z" OU[ E"@m

[re
Var[R] _ 10> 1 %
2000 2002 400 [pt Corsp
So Chebyshev’s Theorem implies that at most one person in four hundred has an

IQ of 300 or more. We have gotten a much tighter bound using the additional infor-
mation, namely the variance of R, than we could get knowing only the expectation.

Now we apply Chebyshev’s Theorem to the same problem:

Pr[R > 300] = Pr[|R — 100| > 200] <

18.4 Properties of Variance

The definition of variance of R as Ex[(R — Ex[R])?] may seem rather arbitrary.
A direct measure of average deviation would be Ex[ |R — Ex[R]| ]. But the direct
measure doesn’t have the many useful properties that variance has, which is what

this section is about. f: 59 I/'{_ J@€6n¥ 4@ 'IL!Q, mﬂ r/w
e v

18.4.1 A Formula for Variance

Applyi(% linea'i‘lt) of expectation to the formula for variance yields a convenient
alternati ula.

Lemma 18.4.1. : - EX[RZ] = EXZ[R]’ 6\ no M( dgf

for any random variable, R.

Here we use the notation Ex?[R] as shorthand for (Ex[R])?.

U\Db\k (l(h\ \_/’__))>
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Proof. Let p = EfoR]. Then
Var[R] = Ex[(R — Ex[R])?] (Def 18.3.2 of variance)

= Ex[(R — p)?] (def of p)
= Ex[R? — 2uR + 12
= Ex[R?] — 2 Ex[R] + u? (linearity of expectation)
= Ex[R?] —2u? + p? (def of p)
= Ex[R?] — p?
= Ex[R?] — Ex?[R]. (def of )

For example, if B is a Bernoulli variable where p ::= Pr[B = 1], then

.

Lemma 18.4.2. j : '
Var[B] = p — p* = p(1 - p)/ Cnals (18.4)

Proof. By Lemma 17.4.2, Ex[B] = p. But since B only takes values 0 and 1,
B? = B. So Lemma 18.4.2 follows immediately from Lemma 18.4.1. |

18.4.2 Variance of Time to Failure

According to section 17.4.6, the mean time to failure is 1/ p for a process that fails
during any given hour with probability p. What about the variance? That is, let C
be the hour of the first failure, so Pr[C = i] = (1 — p)*~! p. We’d like to find a
formula for Var[C].
By Lemma 18.4.1,

Var[C] = Ex[C?] — (1/ p)* (18.5)

so all we need is a formula for Ex[C2].

In section 17.4.6 we used conditional expectation to find the mean time to failure,
and a similar approach works for the variance. Namely, the expected value of C?
is the probability, p, of failure in the first hour times 12, plus (1 — p) times the
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expected value of (C + 1)2. So
Ex[C?] = p-1% + (1 — p)Ex[(C + 1)?]

=p+(1—p)(EXI02]+%+1)
=p+u—mHWH+a—m(%+qso

pmwﬂ:p+a—m(%+0

24+ (1-p)(2
_pr+ta-pe+p .
p

e 2- ' €
18.4.3 Dealing with Constants

It helps to know how to calculate the variance of aR + b:

Theorem 18.4.3. Let R be a random variable, and a a constant. Then

( Varlar] = a2Var[R].) (18.6)
Proof. Beginning with the definition of variance and repeatedly applying linearity

of expectation, we have:
Var[aR] ::= Ex[(aR — Ex[aR])?]
= Ex[(aR)? — 2aR Ex[aR] + Ex?*[aR]]
Ex[(aR)?] — Ex[2aR Ex[aR]] + Ex?[aR]
a® Ex[R?] — 2Ex[aR] Ex[aR] + Ex*[aR]
= a? Ex[R?] — a®> Ex?[R]
= a* (Ex[R?*] — Ex[R])

= a? Var[R] (by Lemma 18.4.1)
—

It’s even simpler to prove that adding a constant does not change the variance, as
the reader can verify:
Theorem 18.4.4. Let R be a random variable, and b a constant. Then

Var[R + b] = Var[R]. (18.7)
e
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Recalling that the standard deviation is the square root of variance, this implies
that the standard deviation of aR + b is simply |a| times the standard deviation of

R:
TaR+b Z@”R-

In general, the variance of a sum is not equal to the sum of the variances, but
variances do add for independent variables. In fact, mutual independence is not
necessary: pairwise independence will do. This is useful to know because there are
some important situations involving variables that are pairwise independent but not
mutually independent.

Corollary 18.4.5.

18.4.4 Variance of a Sum

Theorem 18.4.6. If Ry and*R are independent random variables, then

Var[Ry + Ra] = Var[R,] + Var[R,]. J;;d (18.8)

Proof. We may assume that Ex[R;] = 0 fori = 1, 2, since we could always replace
R; by R; —Ex[R;] in equation (18.8). This substitution preserves the independence
of the variables, and by Theorem 18.4.4, does not change the variances.

Now by Lemma 18.4.1, Var[R;] = Ex[R?] and Var[R; + Rz] = Ex[(R; + R2)?],
so we need only prove

Ex[(R; + R2)?] = Ex[R?] + Ex[R3]. (18.9)
But (18.9) follows from linearity of expectation and the fact that
Ex[R; R2] = Ex[R,] Ex[R>] (18.10)
since R; and R are independent:
Ex[(R1 + R2)?*] = Ex[R? + 2Ry R, + R3]
= Ex[R?] + 2Ex[R; R2] + Ex[R2]
= Ex[R?] + 2Ex[R1] Ex[R,] + Ex[R%] (by (18.10))

= Ex[R}] +2-0-0 + Ex[R3]
= Ex[R?] + Ex[R3]
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An independence condition is necessary. If we ignored independence, then we
would conclude that Var[R + R] = Var[R] + Var[R]. However, by Theorem 18.4.3,
the left side is equal to 4 Var[R], whereas the right side is 2 Var[R]. This implies that
Var[R] = 0, which, by the Lemma above, essentially only holds if R is constant.

The proof of Theorem 18.4.6 carries over straightforwardly to the sum of any
finite number of variables. So we have:

Theorem 18.4.7. [Pairwise Independent Additivity of Variance] If Ry, Ra, ..., Ry
are pairwise independent random variables, then

Var[Ry + Ry + -+ + Ry = Var[Ry] + Var[Rp] + --- + Var[R,].  (18.11)

Now we have a simple way of computing the variance of a variable, J, that has
an (n, p)-binomial distribution. We know that J = Y j_, I} where the [} are
mutually independent indicator variables with Pr[{; = 1] = p. The variance of
each I is p(1 — p) by Lemma 18.4.2, so by linearity of variance, we have

Lemma (Variance of the Binomial Distribution). If J has the (n, p)-binomial dis-
tribution, then
Var[J] = n Var[I] = np(1 — p). (18.12)

18.5 Estimation by Random Sampling

Polling again

Suppose we had wanted an advance estimate of the fraction of the Massachusetts
voters who favored Scott Brown over everyone else in the recent Democratic pri-
mary election to fill Semator-Edward Kennedy’s seat.

Let p be this unknown fraction, and let’s suppose we have some random process
—say throwing darts at voter registration lists —which will select each voter with
equal probability. We can define a Bernoulli variable, K, by the rule that K = 1 if
the random voter most prefers Brown, and X = 0 otherwise.

Now to estimate p, we take a large number, n, of random choices of voters!
and count the fraction who favor Brown. That is, we define variables K1, K>, ...,
where K; is interpreted to be the indicator variable for the event that the ith cho-
sen voter prefers Brown. Since our choices are made independently, the K;’s are

'We're choosing a random voter n times with replacement. That is, we don’t remove a chosen
voter from the set of voters eligible to be chosen later; so we might choose the same voter more than
once in n tries! We would get a slightly better estimate if we required n different people to be chosen,
but doing so complicates both the selection process and its analysis, with little gain in accuracy.
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independent. So formally, we model our estimation process by simply assuming
we have mutually independent Bernoulli variables K, K3, . .., each with the same
probability, p, of being equal to 1. Now let S, be their sum, that is,

n
Spu=)  Ki. (18.13)
i=1
So S, has the binomial distribution with parameter n, which we can choose, and
unknown parameter p.

The variable S,/n describes the fraction of voters we will sample who favor
Scott Brown. Most people intuitively expect this sample fraction to give a useful
approximation to the unknown fraction, p —and they would be right. So we will
use the sample value, S, /n, as our statistical estimate of p and use the Pairwise
Independent Sampling Theorem 18.5.1 to work out how good an estinate this is.

18.5.1 Sampling

Suppose we want our estimate to be within 0.04 of the Brown favoring fraction, p,
at least 95% of the time. This means we want

S
Pr{ ?" —p| =0.04] = 0.95. (18.14)

So we better determine the number, n, of times we must poll voters so that inequal-
ity (18.14) will hold.
Now S, is binomially distributed, so from (18.12) we have
n

Var[S,] = n(p(1 - p)) <n % =7

The bound of 1/4 follows from the fact that p(1— p) is maximized when p = 1—p,
that is, when p = 1/2 (check this yourself?).
Next, we bound the variance of S, /n:

&y JeE
V‘“[T] = Var[S,] (by (18.6))
i (by (18.5.1))
~\n/) 4 P
= 18.15
~ 4n (26:19)
Now from Chebyshev and (18.15) we have:
Sy Var[S, /n] 1 156.25
Pr[|— — p| = 0.04] < = = :

U5 =71 =0 = Goar = m@oa2 CExe)
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To make our our estimate with 95% confidence, we want the righthand side
of (18.16) to be at most 1/20. So we choose n so that

156.25 1
<

n  —20

that is,
n>3,125.

A more exact calculation of the tail of this binomial distribution shows that the
above sample size is about four timsary, but it is still a feasible
size to sample. The fact that the sample size derived using Chebyshev’s Theorem
was unduly pessimistic should not be surprising. After all, in appiying the Cheby-
shev Theorem, we only used the variance of S,. It makes sense that more detailed
information about the distribution leads to better bounds. But working through this
example using only the variance has the virtue of illustrating an approach to esti-
mation that is applicable to arbitrary random variables, not just binomial variables.

18.5.2 Matching Birthdays

There are important cases where the relevant distributions are not binomial because
the mutual independence properties of the voter preference example do not hold.
In these cases, estimation methods based on the Chebyshev bound may be the best
approach. Birthday Matching is an example. We already saw in Section 16.7 that
in a class of 85 students it is virtually certain that two or more students will have
the same birthday. This suggests that quite a few pairs of students are likely to have
the same birthday. How many?

So as before, supposSEHETE are n students and d days in the year, and let D be the
number of pairs of students with the same birthday. Now it will be easy to calculate
the expected number of pairs of students with matching birthdays. Then we can
take the same approach as we did in estimating voter preferences to get an estimate
of the probability of getting a number of pairs close to the expected number.

Unlike the situation with voter preferences, having matching birthdays for dif-
ferent pairs of students are not mutually independent events, but the matchings are
pairwise independent —as explained in Section 16.7 (and proved in Problem 17.2).
This Wil allow us to apply the same reasoning to Birthday Matching as we did for
voter preference. Namely, let By, Ba, ..., B, be the birthdays of n independently
chosen people, and let E; ; be the indicator variable for the event that the ith and
Jjth people chosen have the same birthdays, that is, the event [B; = B;]. So our
probability model, the B;’s are mutually independent variables, the E; ;’s are pair-
wise independent. Also, the expectations of E; ;j for i # j equals the probability
that B; = Bj, namely, 1/d.
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Now, D, the number of matching pairs of birthdays among the n choices is
simply the sum of the E; ;’s:

Bi= 3. B (18.17)
l<i<j<n
So by linearity of expectation
n\ 1
I<i<j=<n 1<i<j<n

Similarly,

Var[D] = Var[ Y Ei]

1<i<j<n
= ) ValE] (by Theorem 18.4.7)
1<i<j<n
= (") L (1 = l) . (by Lemma 18.4.2)
2) d d

In particular, for a class of n = 95 students with d = 365 possible birthdays, we
have Ex[D] < 12.23 and Var[D] > 12.22(1—1/365) > 12.19. So by Chebyshev’s

Theorem
12.19

Prl|D ~12.23| = x] < 5~

Letting x = 7, we conclude that there is a better than %75 chance that in a class of
95 students, the number of pairs of students with the same birthday will be between
6 and 20.

18.5.3 Pairwise Independent Sampling

The reasoning we used above to analyze voter polling and matching birthdays is
very simila_{. We summarize it in slightly more general form with a basic result we
call the Pairwise Independent Sampling Theorem. particular, we do not need
to restrict ourselves to sums of zero-one valued variables, or to variables with the
same distribution. For simplicity, we state the Theorem for pairwise independent
variables with possibly different distributions but with the same mean and variance.

Theorem 18.5.1 (Pairwise Independent Sampling). Let Gy,..., G, be pairwise
independent variables with the same mean, u, and deviation, o. Define

Sp = Gi. (18.18)

i=1
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Then

Pi >x] < 2 (5)2.

n\x

Sn
— K
n

Proof. We observe first that the expectation of S, /n is p:

S i=1 Gi
Ex ) = g i O (et of 5
r 1 Ex[G;
- Z._ln x[Gi] (linearity of expectation)
_ Y M
n
o
=2

The second important property of S, /n is that its variance is the variance of G;

divided by n:
S %
Var[?] = Var[Sp] (by (18.6))
1 n
== Var[) ~ Gi] (def of Sy)
i=1
1 n
== ZVar[GI-] (pairwise independent additivity)
n
i=1
1 2
= — -no’= i (18.19)
n n

This is enough to apply Chebyshev’s Theorem and conclude:

hY V:
Pr| 7" —pl=x]< % (Chebyshev’s bound)
a?/n
= (by (18.19))

iy

The Pairwise Independent Sampling Theorem provides a precise general state-
ment about how the average of independent sam of a random variable ap-
proaches the mean. In particular, it proves what is known as the Law of Large

S R A
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N__l_l_l_Tl_QEl‘Sz : by choosing a large enough sample size, we can get arbitrarily accu-
rate estimates of the mean with confidence arbitrarily close to 100%.

—_—

Corollary 18.5.2. [Weak Law of Large Numbers] Let Gy, ..., Gy, be pairwise in-
dependent variables with the same mean, i, and the same finite deviation, and

let "
S = Zi:l Gf
n .- _'—n .

Then for every € > 0,
lim Pr{|S, —u| <€)= 1.
n—oo

18.6 Confidence versus Probability

So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that,
95% of the time, is within 0.04 of the actual fraction of the voting population who
prefer Brown. _

Notice that the actual size of the voting population was never considered because
it did not matter. People who have not studied probability theory often insist that
the population size should matter. But our analysis shows that polling a little over
3000 people people is always sufficient, whether there are ten thousand, or million,
or billion ...voters. You should think about an intuitive explanation that might
persuade someone who thinks population size matters.

Now suppose a pollster actually takes a sample of 3,125 random voters to esti-
mate the fraction of voters who prefer Brown, and the pollster finds that 1250 of
them prefer Brown. It’s tempting, b PPY-yo say that this means:

False Claim. With probability 0.95, the fraction, p, of voters who prefer Brown is
1250/3125 + 0.04. Since 1250/3125 — 0.04 > 1/3, there is a 95% chance that
more than a third of the voters prefer Brown to all other candidates.

What’s objectionable about this statement is that it talks about the probability or
“chance” that a real world fact is true, namely that the actual fraction, p., of voters
favoring Brown is more than 1/3. But p is what it is, and it simply makes no sense
to talk about the probability that it is something else. For example, suppose p is
actually 0.3; then it’s nonsense to ask about the probability that it is within 0.04 of
1250/3125 =it simply isn’t.

2This is th@ Law of Large Numbers. As you might suppose, there is also a Strong Law, but
it’s outside the scope of 6.042.

(.04

(/on 1 (0 northe/
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This example of voter preference is typical: we want to estimate a fixed, un-
known real-world quantity. But being unknown does not make this quantity a ran-
dom variable, so it makes no sense to talk about the probability that it has some
property.

A more careful summary of what we have accomplished goes this way:

We have described a probabilistic procedure for estimating the value

of the actual fraction, p. The probability that our estimation procedure C' 7[4 [ 1‘ ﬁéﬂ/’/

will yield a value within 0.04 of p is 0.95. R e —

ena L e eshinatley

This is a bit of a mouthful, so special phrasing closer to the sloppy language is
commonly used. The pollster would describe his conclusion by saying that

At th€95% confidence level, theyfraction of voters who prefer Brown
is 1250/3125 £ 0.04.

So confidence levels refer to the results of estimation procedures for real-world
quantities. The phrase “confidence level” should be heard as a reminder that some
statistical procedure was used to obtain an estimate, and in judging the credibility
of the estimate, it may be important to learn just what this procedure was.

Problems for Section 18.2
Problems

Problem™8.1.

A herd of cows_is stricken by an outbreak of cold cow disease. The disease lowers
the normal body temperature of a cow, and a cow will die if its temperature goes
below 90 degrees F. Fhe disease epidemic is so intense that it lowered the average
temperature of the herd t6.85 degrees. Body temperatures as low as 70 degrees, but
no lower, were actually found in the herd.

(a) Prove that at most 3/4 of the’cows could have survived.
Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.
(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is best
possible by giving an example set of temperaturés-for the cows so that the average

herd temperature is 85, and with probability 3/4, a rairdomly chosen cow will have
a high enough temperature to survive.

Homework Problems

Problem 18.2.
If R is a nonnegative random variable, then Markov’s Theorem gives an er

Poocedy
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Now suppose a pollster actually takes a sample of 3,125 random voters t6 esti-
mate the fraction of voters who prefer Brown, and the pollster finds thay1250 of
them prefer Brown. It’s tempting, but sloppy, to say that this means:

False Claim. With probability 0.95, the fraction, p, of voters who prefer Brown is
1250/3125 % 0.04. Since 1250/3125 — 0.04 > 1/3, there is a/95% chance that
more than a third of the voters prefer Brown to all other candidates.

What'’s objectionable about this statement is that it talks,about the probability or
\chance” that a real world fact is true, namely that the actual fraction, p, of voters
fayoring Brown is more than 1/3. But p is what it is /and it simply makes no sense
to talk about the probability that it is something else. For example, suppose p is
actually 0.3; then it’s nonsense to ask about the /;%)ba'mhty that it is within 0.04 of
1250/3425 /

This example of voter preference is typlcal we want to estimate a fixed, un-
known realkworld quantity. But being u;zknown does not make this quantity a ran-
dom variabléy so it makes no sense to talk about the probability that it has some
property. /‘

A more careful summary of hat we have accomplished goes this way:

‘We have describ robabilistic procedure for estimating the value
of the actual fractiom, p. The probability that our estimation procedure
will yield a value within0.04 of p is 0.95.

This is a bit of & mouthful, so spesjal phrasing closer to the sloppy language is

of the estimate, it may be important to learn just what this procedure was.

eha e male it
dhea vy

If all you know about a random variable is its mean and variance, then Chebyshev’s
Theorem is the best you can do when it comes to bounding the probability that
the random variable deviates from its mean. In some cases, however, we know

18.7 Sums of Random Variables
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more —for example, that the random variable has a binomial distribution —and

then it is possible to prove much stronger bounds. Instead of polynomially small
R i SO :

bounds such as 1/c¢2, we can sometimes even obtain exponentially small bounds

such as 1/e°. As we will soon discover, this is the ¢ase wienever the random
variable T is the sum of n mutually independent random variables 11, T2, ..., Ty

where 0 < T; < 1. A random variable with a binomial distribution is just one of
many examples of such a T. Here is another.

18.7.1 A Motivating Example

Fussbook is a new social networking site oriented toward unpleasant people.

Like all major web services, Fussbook has a load balancing problem. Specif-
ically, Fussbook receives 24,000 forum posts every 10 minutes.”Each post is as-
signed to one of m computers for processing, and each computer works sequen-
tially through its assigned tasks. Processing an average post takes a computgf 1/
second. Some posts, such as pointless grammar critiques and snide witticisms, are
easier. But the most protracted harangues require 1 full second.

Balancing the work load across the mmm'any computer is as-
signed more than 10 minutes of work in a 10-minute inferval, then that computer is
overloaded and system performance suffers. That would be bad, because Fussbook
users are not a tolerant bunch.

An early idea was to assign each computer an alphabetic range of forum topics.
(“That oughta work!”, one programmer said.) But after the computer handling the
“privacy” and “preferred text editor” threads me]ted, the drawback of an ad hoc
approach was clear: there are no guarantees. ‘{(

If the length of every task were known in advanca.), then finding a balanced dis-
tribution would be a kind of “bin packing” problem. Such problems are hard to
solve exactly, though approximation algorithms can come close. But in this case,
task lengths are not known in advance, which is typical for workload problems in
the real world.

So the load balancing problem seems sort of hopeless, because there is no data
available to guide decisions. Heck, we might as well assign tasks to computers at
random!

As it turns out, random assignment not only balances load reasonably well, but
also permits provable performance guarantees in place of “That oughta work!” as-
sertions. In general, a randomized approach to a problem is worth considering when
a deterministic solution is hard to compute or requires unavailable information.

Some arithmetic shows that Fussbook’s traffic is sufficient to keep m = 10 com-
puters running at 100% capacity with perfect load balancing. Surely,mﬁh_an 10
servers are needed to cope with random fluctuations in task length and imperfect

M\]HMML (rb [led’ my MNMegn }JZ Ctdom, KW@@LI

p4re
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load balance. But how many is enough? 11? 157 20? 100? We’ll answer that
question with a new mathematical tool.

//—-—--
18.7.2 The Chernoff Bound )

The Chernoff* bound is a hammer that you can use to nail a great many problems.
Roughly, the Chernoff bound says that certain random variables are very unlikely
to significantly exceed their expectation. For example, if the expected load on
a computer is just a bit below its capacity, then that computer is unlikely to be
overloaded, provided the conditions of the Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, indepen-
dent random variables is unlikely to s exceed the mean of the sum. The
Markov and Chebyshev bounds lead To-the—same kind of conclusion but typically
provide much weaker bounds. In particular, the Markov and Chebyshev bounds are

olynomial, while the Chemnoff bound is exponential.
rl P by o meh

Here is the theorem. The proof will come later in Section 18.7.5.

Theorem 18.7.1 (Chernoff Bound). Let T1,...T, be mutually independent ran-
dom variables such that0 < T; < 1 foralli. LetT = Ty + --- + Ty. Then for all
c>1,

---k x[T
Pi{T > ¢ Ex[T]] < e % BT (1823 b )La shot

tloes mal e (0! ~he i ¥

The Chernoff bound applies only to distributions of sums of independent random

wherék = cln(c) —c + 1

variables that take on values in the interval [0, 1]. The binomial distribution is \\Ov &
of course such a distribution, but thereare 1ots of other distributions because the

Chernoff bound allows the variables in the sum to have differing, arbitrary, and
even unknown distributions over the range [0, 1]. Furthermore, there is no direct
dependence on the number of random variables in the sum or their expectations. In
short, the Chernoff bound gives strong results for lots of problems baw___
information —no wonder it is widely used!

i
18.7.3 Chernoff Bound for Binomial Tails [ ho»/ ?L@,

The Chernoff bound is pretty easy to apply, though the details can be daunting at CW D w
first. Let’s walk through a simple example to get the hang of it: getting bounds on P [
the tail of a binomial distribution, for example, bounding the probability that the
number of heads that come up in 1000 independent tosses of a coin exceeds the

4Yes, this is the same Chernoff who figured out how to beat the state lottery —this guy knows a
thing or two.

—
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expectation by20% or more? Let 7; be an indicator variable for the event that the
ith coin is headsThen the total number of heads is

T =T +---+ Troo00-

The Chernoff bound requires that the random variables 7; be mutually independent
and take on values in the range [0, 1]. Both conditions hold here. In this example

the T;’s only take the two values 0 and 1, since they’re indicators. — pof | 5 B

The goal is to bound the probability that the number of heads exceeds its expec-
tation by 20% or more; that is, to bound Pr[T" > ¢ Ex[T]] where ¢ = 1.2. To that
end, we compute k as defined in the theorem: -

k=cln(c)—c+1=0.0187....

If we assume the coin is fair, then Ex[T] = 500. Plugging these values into the
Chernoff bound gives:

Pr[T > 1.2Ex[T]] < e ¥ BT
— e_(0-0187¢|.)‘500 ( 0.0000834.

So the probability of getting 20% or more extra heads on 1000 coins is less than 1
in 10,000.

~“The bound becomes much stronger as the number of coins increases, because
the expected number of heads appears in the exponent of the upper bound. For

example, the probability of getting at least 20% extra heads on a million coins is at
most g
¢~(0-0187...):500000 _ ,—9392

which is an inconceivably small number.

Alternatively, the bound also becomes stronger for larger deviations. For exam-
ple, suppose we're interested in the odds of getting 30% or more extra heads in
1000 tosses, rather than 20%. In that case, ¢ = 1.3 instead of 1.2. Consequently,
the parameter k rises from 0.0187 to about 0.0410, which may not seem significant,
but because k appears in the exponent of the upper bound, the final probability de-
creases from around 1 in 10,000 to about 1 in a billion!

18.7.4 Chernoff Bound for a Lottery Game

Pick-4 is a lottery game where you pay $1 to pick a 4-digit number between 0000
and 9999. If your number comes up in a random drawing, then you win $5,000.
Your chance of winning is 1 in 10,000. If 10 million people play, then the expected
number of winners is 1000. Whn there are exactly 1000 winners, the lottery keeps

———

!
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$5 million of the $10 million paid for tickets. The lottery operator’s nightmare is
that the number of winners is much greater —say at the 2000 or greater point where
the lottery has to pay out more than it received.. What is the probability that will
happen?

Let 7; be an indicator for the event that the ith player wins. Then T = Ty +---+
Ty is the total number of winners. If we assume® that the players’ picks and the
winning number are random, independent and uniform, then the indicators 7; are
independent, as required by the Chernoff bound.

Since 2000 winners would be twice the expected number, we choose ¢ = 2,

compute K = cIn(c) —c + 1 = 0.386..., and plug these values into the Chernoff
bound:

Pr[T > 2000] = Pr[T > 2Ex[T]]
< e—KEx[T] _ ,—(0.386...)-1000

ZigT a0,

So there is almost no chance that the lottery operator pays out double. In fact, the
number of winners won’t even be 10% higher than expected very often. To prove
that, let ¢ = 1.1, compute k = cln(c) —c 4+ 1 = 0.00484 . . ., and plug in again:

Pr[7 = 1.1Ex(7]] < e™*™T]
— o—(0.00484)1000 _ 1

So the Pick-4 lottery may be exciting for the players, but the lottery operator has

little doubt about the outcome!
=tk

Randomized Load Balancing

Now let’s return to Fussbook and its load balancing problem. Specifically, we need
to determine how many machines suffice to ensure that no server is overloaded;
that is, assigned to do more than 10 minutes of work in a 10-minute interval. So a
server is overloaded if it gets assigned more than 600 seconds of work.

To begin, let’s find the probability that the first serverisoverloaded. Letting T’ be
the number of seconds of work assigned to the first server, this means we want an
upper bound on Pr[T > 600]. Let 7; be the number of seconds that the first server
spends on the ith task: then T; is zero if the task is assigned to another machine,

5As we noted in Chapter 17, human choices are often not uniform and they can be highly depen-
dent. For example, lots of people will pick an important date. So the lottery folks should not get
too much comfort from the analysis that follows, unless they assign random 4-digit numbers to each
player.

9714/[7/




“mes” — 2011/5/5 — 0:59 — page 639 — #647

18.7. Sums of Random Variables 639

and otherwise T; is the length of the task. So T = Y 7_, T; is the total length of
tasks assigned to the first server, where n = 24,000.
The Chernoff bound is applicable only if the 7; are mutually independent and
take on values in the range [0, 1]. The first condition is satisfied if we assume that
task lengths and assignments arc independent. And the second condition is satisfied
because processing even the most interminable harangue takes at most 1 second. ol
In all, there are 24,000 tasks, each with an expected length of 1/4 second. Since @
7

v
1
24,000 tasks - 1/4 second per task Gl/d,, /

m machines
= 6000/ m seconds. (18.24)

tasks are assigned to computers at random, the expected load on the first server is:

Ex[T] =

For example, if there are fewer than 10 machines, then the expected load on the
first server is greater than its capacity, and we can expect it to be overloded. If there
are exactly 10 machines, then the server is expected to run for 6000/10 = 600
seconds, which is 100% of its capacity.

Now we can use the Chernoff bound to upper bound the probability that the first
server is overloaded. We have from (18.24)

600 = ¢ Ex[T] where ¢ ::=m/10,
so by the Chernoff bound
Pr[T > 600] = Pr[T > ¢ Ex[T]] < ¢~ (€ !n(c)=c+1)-6000/m

The probability that some server is overloaded is at most m times the probability a_”“l e

that the first server is overloaded, by the Union Bound in Section 16.4.2. So 59/1/@
m
Pr[some server is overloaded] < Z Prserver i is overloaded]
i=1
= m Pr][the first server is overloaded)]
< me_(c ln(c)-—c+1)-6000/m’
——
where ¢ = m/10. Some values of this upper bound are tabulated below:
m = 11: 0.784...
m = 12: 0.000999...
m = 13: 0.0000000760...
These values suggest that a system with m = 11 machines might suffer immediate
overload, m = 12 machines could fail in a few days, but m = 13 should be fine for
a century or two!
L [ [ ' )
Lo tis e 00 Gon g
b ({l/% J l
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18.7.5 Proof of the Chernoff Bound

The proof of the Chernoff bound is somewhat involved. Heck, even Chernoff didn’t
come up with it! His friend, Herman Rubin, showed him the argument. Thinking
the bound not very significant, Chernoff did not credit Rubin in print. He felt pretty
bad when it became famous!®

’Dfa?'( of Theorem 18.7.1. For clarity, we’ll go through the proof “top down.” That is,
we’ll use facts that are proved immediately afterward.

bt bl it et
( ? The key step is to exponentiate both sides of the inequality T > ¢ Ex[T] and
3
/vy} [‘5 § then apply the Markov bound:

Wy £ Pr{T > ¢ Ex[T]] = Prlc” > c°B7)]

Ex[cT
= ﬁ (by Markov)

e(c—l) Ex[T]

L TR (by Lemma 18.7.2 below)
c

gl UEE o—(eIn(e)—c+1) Ex[T]
- o€ In(c) Ex[T] - ’

|

Algebra aside, there is a brilliant idea in this proof: in this context, exponenti-
ating_ somehow supercharges the Markov bound. This is not true in general! One
unfortunate side-effect 1s tha e nasty expectations involving
exponentials in order to complete the proof. This is done in the two lemmas below,

where variables take on values as in Theorem 18.7.1.

Lemma 18.7.2.
EX[CT] < e(c—l)Ex[T].

6See “A Conversation with Herman Chernoff,” Staristical Science 1996, Vol. 11, No. 4, pp 335—
350.
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Proof.
Ex[cT] = Ex[eT1++Tn] (defof T)
= Ex[cT1...cTn]
= Ex[c""]---Ex[cT"] (independent product Cor 17.5.7)
< e DETI] (e~} Ex(Ty] (by Lemma 18.7.3 below)
i0a 20 /=

— (e=1DEx[T1]+-+Ex[Ty])

i) e(c—l) Ex[Ty 4-+T5] (linearity of Ex[-])
= plc—DEx[T] '

/Wﬁl (C’Wd/ldgs [-fbﬁ M ™

EX[CT:'] < ele=1Ex[T;]

Lemma 18.7.3.

Proof. All summations below range over values v taken by the random variable T},
which are all required to be in the interval [0, 1].

—_—

Exlefi]=Y "Bl = 1] (def of Ex[])
< Z(] + (¢ — Dv) PrT; = v] @i{yﬁ—sce below)
=Y Pr[T; = v] + (c — v Pr[T; = ] [

= ZPr[T,— =v]+(c— l)EvPr[T,- =]
=14 (¢ — 1) Ex[T;]

< e(e=DEx(Ti] (since 1 + z < €%).
The second step relies on the inequality

¢! <1+ (c—1v,

which holds for all v in [0, 1] and ¢ > 1. This follows from the general principle
that a convex function, namely ¢?, is less than the linear function, 1 + (¢ — 1)v, 4 i

———

between their points of intersection, namely v = 0 and 1. This inequality is why p ?
the variables T; are restricted to the interval [0, 1]. O fW s
18.7.6 Comparing theBounds éeg,,,; bt

Suppose that we have a collection of mutually independent events Ay, A», ..., Ap, h{cléj 5

and we want to know how many of the events are likely to occur. ELJ\%:

o
M [es,

i\ 4t
6 fhaa !
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Let T; be the indicator random variable for A; and define

pi =Pr[T; = 1] =Pr[4;]

I

for 1 <i < n. Define
T=T1+T2+---+Ty

to be the number of events that occur.
We know from Linearity of Expectation that

Ex[T] = Ex[T1] + Ex[T3] + -+- + Ex[T;]

TR Ly of Bypbfor I lnd

This is true even if the events are not independent. AL
By Theorem 18.4.8, we also Know that r

Var[T] = Var[T1] + Var[T3] + - -+ + Var[T]

=Y pil—p),
i=1

zn:Pi(l — pi). C/@)/
i=1

{
This is true even if the events are only pairwise independent. & Vé{ 6 o ,d[‘ Crtté f/

Markov’s Theorem tells us that for any ¢ > 1,

- PHT > c EX[T]] < ~. B@"/WH;

c

and thus that

Chebyshev’s Theorem gives us the stronger result that
it

1
Pr[|T — Ex[T]| = cor] < =

The Chernoff Bound gives us an even stronger result, namely, that for any ¢ > 0,

———

Pr{T — Ex[T] > ¢ Ex[T]] < e~ (¢!™€)—c+DEX(T]

In this case, the probability of exceeding the mean by ¢ Ex[T] decreases as an
exponentially small function of the deviation. AR e m—

By considering the random variable n — T, we can also use the Chernoff Bound
to prove that the probability that T is much lower than Ex[T'] is also exponentially

small. (
o (o’

/!

Wi gl Al (41 boak
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18.7.7 urpnliy’s Law
If the expectafion of a random variable is much less than 1, then Markov’s Theorem

implies that there is only a small probability that the variable has a value of 1 or
more. On the other hand, a result that we calf Murphy’s Law™\says that if a random
€S an

variable is an independent sum of 0-1-valued v as a large expectation,
then there is a huge probabiity-of getting a value of at least 1.
|
€ 0&\,\ (Y %) Theorem 18.7.4 (Murphy’s Law). Let A;, A, ..., A, be mutually ind/;endent
Smj y b\' q) events. Let T; be the indicator random variable for A; and define L\, A [‘ , i
d\ QWQ/A‘O T il F T, Th)

/Mmean

T to be the number of events that occur. Then
)
PrT = 0] < e B[],

/X_IO (‘i\wb 0“’\ Proof. 7\”9 €(f0/§

é{-@l) QQ&%& Pr[T = 0] = Pr[A1 A A2 A --- A Ay]

= l_[ Pr[A;] (by independence of A;)
i=1
= [ —Pr4))
i=1 .
n C
< H e~ Pridi] (since 1 —x <e™™)
i=1 —

= g~ Tie Fil4] Oh -
=e
=T Ex[T}] A AOWJ 05& ‘(—0 /M
=g ~i=l L (since T; is an indicator for A; Qw
= ¢~ ElT] (linearity of expectation) [}
For example, given any set of mutually independent events, if you expet@of é‘ d lr\
them to happen, then at least one of them will happen with probability at least 1 —
™10, The probability that none of them happen is at most e~1¢ < 1/22000. M I M‘—
So if there are a lot of independent things that can go wrong and their probabil- il
ities sum to a number much greater than 1, then Theorem 18.7.4 proves that some /% 5 p/

of them surely will go wrong. ca(/k o
TThis is in reference and deference to the famous saying that “If something can go wrong, it will  ~ d 064 Ml
go wrong.”

== T T Mtk by

(€
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This result can help to explain “coincidences,” “miracles,” and crazy events that
seem to have been very unlikely tﬁm Such events do happen, in part, because
there are so many possible unlikely events that the sum of their probabilities is
greater than one. For example, someone does win the Tottery.

Mere are 100,000 random tickets in Pick-4, Theorem 18.7.4 says that
the probability that there is no winner is less than e 1% < 1/22000. More generally,
there are literally millions of one-in-a-million possible events and so some of them

will surely occur. |
, '
Weid el

18.8. Coping W1t Elﬁn}ty

\\J

g- C(ijilf?)%lems or Section 18.2

., Class Problems

'\

f'ngblem 18.1.
A hexd of cows is stricken by an outbreak of cold cow disease. The disease lowers

no lower, were actually found in the herd.

(a) Prove that at most\3/4 of the cows could have survived.

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.

(b) Suppose there are 400 cows'iq the herd. Show that the bound of part (a) is best
possible by giving an example set oftemperatures for the cows so that the average
herd temperature is 85, and with probability 3/4, a randomly chosen cow will have
a high enough temperature to survive.

Homework Problems

Problem 18.2.
If R is a nonnegative random variable, then Markov’s Fheorem gives an upper
bound on Pr[R > x] for any real number x > Ex[R]. If a*sgnstant b > O is a
lower bound on R, then Markov’s Theorem can also be applied to~R — b to obtain
a possibly different bound on Pr[R > x].

(a) Show that if & > 0, applying Markov’s Theorem to R — b gives a Smaller
upper bound on Pr[R > x] than simply applying Markov’s Theorem directly to R:

(oA 0
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(b) What would the Markov bound be on the probability that the gambler will win
at least 108 hands on a given day?

(c) Assume the outcomey of the card games are pairwise independent. What is
the variance in the number of hands won per day?

(d) What would the Chebyshey bound be on the probability that the gambler will
win at least 108 hands on a givel day? You may answer with a numerical expres-
sion that is not completely evaluatgd.

Problem 18.4. (a) A computer program crashes at the end of each hour of use with
probability 1/ p, if it has not crashed alreqdy. If H is the number of hours until the
first crash, we know

| =

Ex[H] = —, (Equation (17.8))

S AEN

Var[H] = uation (18.8)),
where g ::=1— p.
(b) What is the Chebyshev bound on

Pr{|H —(1/p)| > x/ p]

where x > 0?

(c) Conclude from part (b) that fora > 2,

P{H >a/p] < b

Hint: Check that |H — (1/p)| > (a—1)/piff H > a/p.
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L For example, given any set of mutually independent event" if you expect 10 of
them to happen, then at least one of them will happen with probability at least 1 —
¢~ "% The probability that none of them happen is at most e ~1¢ < 1/22000.

So if there are a lot of independent things that can go wrong and their probabil-
ities sum to a’sumber much greater than 1, then Theorem 18.7.4 proves that some
of them surely wilkgo wrong.

This result can helptq explain “coincidences,” “miracles,” and crazy events that
seem to have been very un to happen. Such events do happen, in part, because
there are so many possible unli events that the sum of their probabilities is
greater than one. For example, someofte.does win the lottery.

In fact, if there are 100,000 random tickéts_in Pick-4, Theorem 18.7.4 says that
the probability that there is no winner is less than2<!® < 1/22000. More generally,
there are literally millions of one-in-a-million possible~events and so some of them
will surely occur.

18.8 Really Great Expectations =V

Making independent tosses of a fair coin until some desired pattern comes up is a
simple process you should feel solidly in command of by now, right? So how about
a bet about the simplest such process —tossing until a head comes up? Ok, you’re
wary of betting with us, but how about this: we’ll ]ef you sef the odds—

18.8.1 Repeating Yourself

Here’s the bet: you make independent tosses of a fair coin until a head comes up.

Then you will repeat the process. If a second head comes up in the same or fewer

tosses than the first, you have to start over yet again. You keep starting over until

you finally toss a run of}gm;gmu_y(mr_ﬁmt one. The payment rules are that

you will pay me 1 cent each time you start over. When you win by finally getting a

run of tails longer than your first one, I will pay you some generous amount. And

by the way, you're certain to win —whatever your‘wmed to

be, a longer run will occur again with probability 1! | [ 6’4/‘7 - W [l a,];.,q, > ég
For example, if your first tosses are TTTH, then you will keep tossing until you Zﬁ

get a run of 4 tails. So your winning flips might be

Ghad Y

@T?T?%T%&?HTTTTHF!@%Q& “May g lo

In this run there are 10 heads, whgich means you had to start over 9 times. So you ﬁ'L b/lgi}/
I

would have paid me 9 cents by the time you finally won by tossing 4 tails. NowrF )lzc

——

Aﬂ wCwe /

Sor by

Kl
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you’ve won, and I'll pay you generously —how does 25 cents sound? Maybe you’d
rather have $1? How about $10?

Of course there’s a trap here. Let’s calculate your expected winnings.

Suppose your initial run of tails had length k. After that, each time a head comes
up, you have to start over and W. If we regard your getting
k + 1 tails in a row as a “failed” try, and regard your having to start over because a
head came up too soon as a “successful” try, then the number of times you have to
start over is the number df tries Tl the Tirst failure. So the expected number of tries
will be the mean time to failure, which is 2° T, Because the probability of tossing
k + 1 tailg in a row is —(k+1), C At L [('/v'n oo

M of your initial run of tails. So T = k means that your initial

tosses wereﬁkﬁ; Let R be the number of times you repeat trying to beat your
original run of tails. The number of cents you expect to finish with is the number
of cents in my generous payment minus Ex[R]. It’s now easy to calculate Ex[R] by

ditioni the value of T:
conditioning on the value o L'/, bv}/'ﬂfl 7a/€£)
Ex[R]= ) Ex{R|T =kl-BT = k] =) 25*1.27¢4D - 3 "1 E 0.
keN keN keN

So you can expect to pay me an infinite number of cents before winning my
“generous” payment. No amount of generosity can make this bet fair!

We haven’t faced infinite expectations until now, but they just popped up in a
very simple way. In fact this particular example is a special case of an astonish-
ingly general one worked out in Problem 18.23: the expected waiting time M
random variable to achieve a larger value is infinite.

18.8.2 The St. Petersburg Paradox

One of the simplest casino bets is on “red” or “black” at the roulette table. In each
play at roulette, a small ball is set spinning around a roulette wheel until it lands in
ared, black, or green colored slot. The payoff for a bet on red or black matches the
bet; for example, if you bet $10 on red and the ball lands in a red slot, you get back
your original $10 bet plus another matching $10.

In the US, a roulette wheel has green slots among 18 black and 18 red slots,
so the probability of red is 18/38 < 0.473. In Europe, where roulette wheels have
only one green slot, the odds for red are a little better —that is, 18/37 ~ 0.486
—but still less than even.

There is a notorious gambling strategy allegedly used against the casino in St.
Peterburg way back in czarist days: bet $10 on red, and keep doubling the bet until
a red comes up. This strategy implies that a player will leave the game as a net
winner of $10 as soon as the red first appears. B

S ha
3
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Suppose you had the good fortune to gamble against a fair roulette wheel. Then
whatever your bet on a spin of the wheel, you are equally likely to win or lose,
and your expected win is 0. This also means that the expected win after any given
number of spins remains zero, so even playing the St. Peterburg strategy it seems
your expected win would be 0.

But wait a minute. As long as there is a fixed, positive probability of red appear-
ing on each spin of the wheel, it’s certain that red will eventually come up. That
is, you can be certain of leaving the casino having won $10. This implies that even
against an unfair roulette wheel, your expected win is $10, contradicting the idea
that you can’t expect to win in a game that’s biased against you.

This is paradoxical and something’s obviously wrong here. In fact, there are two
things wrong.

The first thing that’s wrong is the argument claiming that the expectation is 0. It
would be 0 if the number of bets had a fixed bound. If you could only make n bets,
then your expectation in the fair game would be the sum of your expected Wwins on
each of the bets, namely, n - 0 = 0. But there is no such fixed bound, and that

changes things. !

)ﬁgﬁn this carefully, let C; be the number of dollars won on the ith spin. So
C; = 2'~! when red comes up for the first time on the ith spin, and C; = —2/~1,
when the first red spin comes up after the ith spin. We can define C; to be 0 if the
first red comes up before the ith spin. This means

Ex[C;] = 0.
Also, the total of your winnings is
Ch= E Ci.
iezt
The conclusion that Ex[C] = 10 follows from Total Expectation, conditioning on

the number of spins till a red first occurs. Namely, if the first red occurs on the ith
spin, the amount won is

=10+(1 42422 F o F 272 410251 = 10
Then by Total Expectation,

Ex[C] = Y Ex[C | first red on ith spin] - Pr[first red on ith spin]
i€zt
= 1027
iezt
=10- » 27 =10-1=10.
iezt
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So sure enough,
Ex[C]:=Ex[ ) G =10. (18.25)
iezZt
But since Ex[C;] = 0,

Y Ex[G]= ) 0=0. (18.26)

iezZt i€zt

It seems that (18.26) and (18.25) contradict each other, but they don’t. The apparent
contradiction comes from applying infinite linearity to conclude

False Claim.

EX|S N €l =YY Ex[Gy].

iezZt ieZt

But this is a case where the convergence conditions required for infinite linearity
don’t hold. Even though the left hand sum converges (to 10) and the right hand sum
converges (to 0), the infinite linearity Theorem (17.5.5) requires that the sum of
expectations of absolute values converges. That is, infinite linearity would follow
if the sum

> Ex(IGi] (18:27)
iezt
converged. But

Ex[|C;i|] = (J]10-2°~1)) - Pr[1st red in i th spin]
+ (] —10-2"71|) - Pr[1st red after i th spin]
+ 0 - Pr[1st red before the ith spin]
=(10-2""1.270) 4 10-2"-1).27® 4 0 = 10,

so the sum (18.27) diverges —rapidly.

Probability theory truly leads to this absurd conclusion: a game entailing an
unbounded number of fair bets may not be fair in the end. In fact, even against an
unfair wheel, as long as there is some fixed positive probability of red on each spin,
you are certain to win $10 playing the St. Petersburg strategy!

This brings us to the second thing that’s wrong here: you may wind up losing a
lot of money before you catch up with your net win of $10. Let L be the number of
dollars you need to have in o1t i il the wheel finally spins red.
If red first comes up on the i th spin, then L would equal

100 +2+4+4---4+2)=102* 1 -1)

[ Bl
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By Total Expectation,

Ex[L] = Z Ex[L | Istred in ith spin] - Pr[1st red in i th spin]

iezt+
= Y (10-@* =1)):77 =Y 0= oo
ieZ+ iezZ+

That is, you can expect to lose an infinite amount of money before finally winning
$10 —giving you a percentage profit of 0. )

So yes, probability theory leads to the absurd conclusion that, even with the odds
heavily against you, you’re certain to win playing roulette, but only if you make the
absurd assumption that you have an infinite bankroll. We can’t fault the theory for
reaching an absurd conclusion fromMon.

Problems for Section 18.2
Class Problems

Problem 18.1.

A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers
the normal body temperature of a cow, and a cow will die if its temperature goes
below 90 degrees F. The disease epidemic is so intense that it lowered the average
temperature of the herd to 85 degrees. Body temperatures as low as 70 degrees, but
no lower, were actually found in the herd.

(a) Prove that at most 3/4 of the cows could have survived.

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound.

(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is best
possible by giving an example set of temperatures for the cows so that the average
herd temperature is 85, and with probability 3/4, a randomly chosen cow will have
a high enough temperature to survive.

Homework Problems

Problem 18.2.

If R is a nonnegative random variable, then Markov’s Theorem gives an upper
bound on Pr[R > x] for any real number x > Ex[R]. If a constant b > O is a
lower bound on R, then Markov’s Theorem can also be applied to R — b to obtain
a possibly different bound on Pr[R > x].

(a) Show that if » > 0, applying Markov’s Theorem to R — b gives a smaller
upper bound on Pr[R > x] than simply applying Markov’s Theorem directly to R.
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(b) What value of b > 0 in part (a) gives the best bound?

Problems for Section 18.4
Practice Problems

Problem 18.3.

A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of
stud poker per day. He wins a hand of draw poker with probability 1/6, a hand of
black jack with probability 1/2, and a hand of stud poker with probability 1/5.

(a) What is the expected number of hands the gambler wins in a day?

(b) What would the Markov bound be on the probability that the gambler will win
at least 108 hands on a given day?

(c) Assume the outcomes of the card games are pairwise independent. What is
the variance in the number of hands won per day?

(d) What would the Chebyshev bound be on the probability that the gambler will
win at least 108 hands on a given day? You may answer with a numerical expres-
sion that is not completely evaluated.

Problem 18.4. (a) A computer program crashes at the end of each hour of use with
probability 1/ p, if it has not crashed already. If H is the number of hours until the
first crash, we know
1
Ex[H] = ;, (Equation (17.8))
q

Var[H] = =

(Equation (18.8)),

~~

where g :=1— p.
(b) What is the Chebyshev bound on
Pr{|H —(1/p)| > x/ p]

where x > 07

(c) Conclude from part (b) that fora > 2,

PlH > a/p) = 5

Hint: Check that |H — (1/p)| > (a—1)/pifft H > a/p.
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(d) What actually is
Pr[H > a/p]?

Conclude that for any fixed p > 0, the probability that H > a/p is an asymptoti-
cally smaller function of a than the Chebyshev bound of part (c).

Class Problems

Problem 18.5.
The hat-check staff has had a long day serving at a party, and at the end of the party
they simply return the n checked hats in a random way such that the probability
that any particular person gets their own hat back is 1/n.

Let X; be the indicator variable for the i th person getting their own hat back. Let
Sy be the total number of people who get their own hat back.

(a) What is the expected number of people who get their own hat back?

(b) Write a simple formula for Ex[X; X j] fori # j. Hint: WhatisPr[X; = 1| X; = 1]?
(¢) Explain why you cannot use the variance of sums formula to calculate Var[S,].

(d) Show that Ex[S?] = 2. Hint: X? = X;.

(e) What is the variance of S,?

(f) Show that there is at most a 1% chance that more than 10 people get their own
hat back. Try to give an intuitive explanation of why the chance remains this small
regardless of n.

Problem 18.6.
For any random variable, R, with mean, x, and standard deviation, o, the Cheby-
shev Bound says that for any real number x > 0,

iR -l = x] < (2)

Show that for any real number, j, and real numbers x > ¢ > 0, there is an R for
which the Chebyshev Bound is tight, that is,

Pr{|R| = x] = (%)2 (18.28)

Hint: First assume ¢ = 0 and let R only take values 0, —x, and x.
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Homework Problems

Problem 18.7.
There is a “one-sided” version of Chebyshev’s bound for deviation above the mean:

Lemma (One-sided Chebyshev bound).

"~ Var[R]
- S ]
Pr[R —Ex[R] = x] < ¥+ Var(R]
Hint: Let Sz ::= (R —Ex[R] + a)?,for0 < a € R. So R —Ex[R] = x
implies S, > (x +a)?. Apply Markov’s bound to Pr[S, > (x +a)?]. Choose a to
minimize this last bound.

Problem 18.8.

A man has a set of n keys, one of which fits the door to his apartment. He tries
the keys until he finds the correct one. Give the expectation and variance for the
number of trials until success if

(a) he tries the keys at random (possibly repeating a key tried earlier)

(b) he chooses keys randomly from among those he has not yet tried.

Problems for Section 18.6
Practice Problems

Problem 18.9. -
You work for the president and you want to estimate the fraction p of voters in the
entire nation that will prefer him in the upcoming elections. You do this by random
sampling. Specifically, you select n voters independently and randomly, ask them
who they are going to vote for, and use the fraction P of those that say they will
vote for the President as an estimate for p.

(a) Our theorems about sampling and distributions allow us to calculate how con-
fident we can be that the random variable, P, takes a value near the constant, p.
This calculation uses some facts about voters and the way they are chosen. Which
of the following facts are true?

1. Given a particular voter, the probability of that voter preferring the President
is p.

2. Given a particular voter, the probability of that voter preferring the President
is1orQ.
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3. The probability that some voter is chosen more than once in the sequence
goes to zero as n increases.

4. All voters are equally likely to be selected as the third in our sequence of n
choices of voters (assuming n > 3).

5. The probability that the second voter chosen will favor the President, given
that the first voter chosen prefers the President, is greater than p.

6. The probability that the second voter chosen will favor the President, given
that the second voter chosen is from the same state as the first, may not equal

P-

(b) Suppose that according to your calculations, the following is true about your
polling:
Pr[|P — p| < 0.04] > 0.95.

You do the asking, you count how many said they will vote for the President, you
divide by n, and find the fraction is 0.53. You call the President, and ... what do
you say?

1. Mr. President, p = (0.53!
2. Mr. President, with probability at least 95 percent, p is within 0.04 of 0.53.

3. Mr. President, either p is within 0.04 of 0.53 or something very strange (5-
in-100) has happened.

4. Mr. President, we can be 95% confident that p is within 0.04 of 0.53.

Class Problems

Problem 18.10.

A recent Gallup poll found that 35% of the adult population of the United States
believes that the theory of evolution is “well-supported by the evidence.” Gallup
polled 1928 Americans selected uniformly and independently at random. Of these,
675 asserted belief in evolution, leading to Gallup’s estimate that the fraction of
Americans who believe in evolution is 675/1928 & 0.350. Gallup claims a margin
of error of 3 percentage points, that is, he claims to be confident that his estimate is
within 0.03 of the actual percentage.

(a) What is the largest variance an indicator variable can have?

(b) Use the Pairwise Independent Sampling Theorem to determine a confidence
level with which Gallup can make his claim.
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(¢) Gallup actually claims greater than 99% confidence in his estimate. How
might he have arrived at this conclusion? (Just explain what quantity he could
calculate; you do not need to carry out a calculation.)

(d) Accepting the accuracy of all of Gallup’s polling data and calculations, can
you conclude that there is a high probability that the number of adult Americans
who believe in evolution is 35 & 3 percent?

Problem 18.11.
Let By, B,,..., B, be mutually independent random variables with a uniform
distribution on the integer interval [1,d]. Let D equal to the number of events
[Bi = Bj] that happen where i # j. It was observed in Section 16.7 (and proved
in Problem 17.2) that Pr[B; = B;] = 1/d fori # j and that the events [B; = Bj]
are pairwise independent.

Let E;,; be the indicator variable for the event [B; = B;].

(a) What are Ex[E; ;] and Var[E; ;] fori # j?
(b) What are Ex[D] and Var[D]?

(c) In a 6.01 class of 500 students, the youngest student was born 15 years ago
and the oldest 35 years ago. Let D be the number of students in the class who were
born on exactly the same date. What is the probability that 4 < § < 32? (For
simplicity, assume that the distribution of birthdays is uniform over the 7305 days
in the two decade interval from 35 years ago to 15 years ago.)

Problem 18.12.

A defendent in traffic court is trying to beat a speeding ticket on the grounds that—
since virtually everybody speeds on the turnpike—the police have unconstitutional
discretion in giving tickets to anyone they choose. (By the way, we don’t recom-
mend this defense :-).)

To support his argument, the defendent arranged to get a random sample of trips
by 3,125 cars on the turnpike and found that 94% of them broke the speed limit
at some point during their trip. He says that as a consequence of sampling theory
(in particular, the Pairwise Independent Sampling Theorem), the court can be 95%
confident that the actual percentage of all cars that were speeding is 94 & 4%.

The judge observes that the actual number of car trips on the turnpike was never
considered in making this estimate. He is skeptical that, whether there were a
thousand, a million, or 100,000,000 car trips on the turnpike, sampling only 3,125
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is sufficient to be so confident.

Suppose you were were the defendent. How would you explain to the judge
why the number of randomly selected cars that have to be checked for speeding
does not depend on the number of recorded trips? Remember that judges are not
trained to understand formulas, so you have to provide an intuitive, nonquantitative
explanation.

Problem 18.13.
The proof of the Pairwise Independent Sampling Theorem 18.5.1 was given for
a sequence Ry, Rz, ... of pairwise independent random variables with the same

mean and variance.

The theorem generalizes straighforwardly to sequences of pairwise independent
random variables, possibly with different distributions, as long as all their variances
are bounded by some constant.

Theorem (Generalized Pairwise Independent Sampling). Let X1, X>, ... be a se-
quence of pairwise independent random variables such that Var[X;] < b for some
b>0andalli > 1. Let

_ Xi+ X2+ -+ X

Ap )
n
W =Ex[A4,].
Then for every € > 0,
b 1
Pr|Ap — pn| > €] < — - — (18.29)

€2 n
(a) Prove the Generalized Pairwise Independent Sampling Theorem.

(b) Conclude that the following holds:
Corollary (Generalized Weak Law of Large Numbers). For every € > 0,

nli)ngoPrHA,, —Un| <€]l=1

Problem 18.14.

An International Journal of Epidemiology has a policy of publishing papers about
drug trial results only if the conclusion about the drug’s effectiveness (or lack
thereof) holds at the 95% confidence level. The editors and reviewers carefully
check that any trial whose results they publish was properly performed and accu-
rately reported. They are also careful to check that trials whose results they publish
have been conducted independently of each other.
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The editors of the Journal reason that under this policy, their readership can be
confident that at most 5% of the published studies will be mistaken. Later, the
editors are embarrassed —and astonished —to learn that every one of the 20 drug
trial results they published during the year was wrong. The editors thought that
because the trials were conducted independently, the probability of publishing 20
wrong results was negligible, namely, (1/20)20 < 10725,

Write a brief explanation to these befuddled editors explaining what’s wrong
with their reasoning and how it could be that all 20 published studies were wrong.

Exam Problems

Problem 18.15.

Yesterday, the programmers at a local company wrote a large program. To estimate
the fraction, b, of lines of code in this program that are buggy, the QA team will
take a small sample of lines chosen randomly and independently (so it is possible,
though unlikely, that the same line of code might be chosen more than once). For
each line chosen, they can run tests that determine whether that line of code is
buggy, after which they will use the fraction of buggy lines in their sample as their
estimate of the fraction b.

The company statistician can use estimates of a binomial distribution to calculate
a value, s, for a number of lines of code to sample which ensures that with 97%
confidence, the fraction of buggy lines in the sample will be within 0.006 of the
actual fraction, b, of buggy lines in the program.

Mathematically, the program is an actual outcome that already happened. The
sample is a random variable defined by the process for randomly choosing s lines
from the program. The justification for the statistician’s confidence depends on
some properties of the program and how the sample of s lines of code from the
program are chosen. These properties are described in some of the statements
below. Indicate which of these statements are true, and explain your answers.

1. The probability that the ninth line of code in the program is buggy is b.

2. The probability that the ninth line of code chosen for the sample is defective,
is b.

3. All lines of code in the program are equally likely to be the third line chosen
in the sample.

4. Given that the first line chosen for the sample is buggy, the probability that
the second line chosen will also be buggy is greater than b.
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5. Given that the last line in the program is buggy, the probability that the next-
to-last line in the program will also be buggy is greater than b.

6. The expectation of the indicator variable for the last line in the sample being
buggy is b.

7. Given that the first two lines of code selected in the sample are the same
kind of statement—they might both be assignment statements, or both be
conditional statements, or both loop statements,. . . —the probability that the
first line is buggy may be greater than b.

8. There is zero probability that all the lines in the sample will be different.

Problems for Section 18.7
Class Problems

Problem 18.16.

We want to store 2 billion records into a hash table that has 1 billion slots. Assum-
ing the records are randomly and independently chosen with uniform probability
of being assigned to each slot, two records are expected to be stored in each slot.
Of course under a random assignment, some slots may be assigned more than two
records.

(a) Show that the probability that a given slot gets assigned more than 23 records
is less than e 36,

Hint: For ¢ = 12, the value of ¢ Inc — ¢ + 1 is greater than 18.

(b) Show that the probability that there is a slot that gets assigned more than 23
records is less than e ~13. This is less than 1/3, 000, 000. Hint: In10° < 21.

Problem 18.17.
Sometimes I forget a few items when I leave the house in the morning. For example,
here are probabilities that I forget various pieces of footwear:

left sock 0.2
right sock 0.1
left shoe 0.1
right shoe 0.3

(a) Let X be the number of these that I forget. What is Ex[X]?
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(b) Upper bound the probability that I forget one or more items. Make no inde-
pendence assumptions.

(¢) Use the Markov Inequality to upper bound the probability that I forget 3 or
more items.

(d) Now suppose that I forget each item of footwear independently. Use Cheby-
shev’s Inequality to upper bound the probability that I forget two or more items.

(e) Use Theorem 18.7.4 to lower bound the probability that I forget one or more
items.

(f) I'm supposed to remember many other items, of course: clothing, watch, back-
pack, notebook, pencil, kleenex, ID, keys, etc. Let X be the total number of items
I remember. Suppose I remember items mutually independently and Ex[X] = 36.
Use Chernoff’s Bound to give an upper bound on the probability that I remember
48 or more items.

(g) Give an upper bound on the probability that I remember 108 or more items.

Problem 18.18.

Reasoning based on the Chernoff bound goes a long way in explaining the recent
subprime mortgage collapse. A bit of standard vocabulary about the mortgage
market is needed:

e A loan is money lent to a borrower. If the borrower does not pay on the
loan, the loan is said to be in default, and collateral is seized. In the case of
mortgage loans, the borrower’s home is used as collateral.

e A bond is a collection of loans, packaged into one entity. A bond can be
divided into tranches, in some ordering, which tell us how to assign losses
from defaults. Suppose a bond contains 1000 loans, and is divided into 10
tranches of 100 bonds each. Then, all the defaults must fill up the lowest
tranche before the affect others. For example, suppose 150 defaults hap-
pened. Then, the first 100 defaults would occur in tranche 1, and the next 50
defaults would happen in tranche 2.

e The lowest tranche of a bond is called the mezzanine tranche.

e We can make a “super bond” of tranches called a collateralized debt obli-
gation (CDO) by collecting mezzanine tranches from different bonds. This
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super bond can then be itself separated into tranches, which are again ordered
to indicate how to assign losses.

(a) Suppose that 1000 loans make up a bond, and the fail rate is 5% in a year.
Assuming mutual independence, give an upper bound for the probability that there
are one or more failures in the second-worst tranche. What is the probability that
there are failures in the best Tranche?

(b) Now, do not assume that the loans are independent. Give an upper bound for
the probability that there are one or more failures in the second tranche. What is an
upper bound for the probability that the entire bond defaults? Show that it is a tight
bound. Hint: Use Markov’s theorem.

(c) Given this setup (and assuming mutual independence between the loans), what
is the expected failure rate in the mezzanine tranche?

(d) We take the mezzanine tranches from 100 bonds and create a CDO. What is
the expected number of underlying failures to hit the CDO?

(e) We divide this CDO into 10 tranches of 1000 bonds each. Assuming mutual
independence, give an upper bound on the probability of one or more failures in the
best tranche. The third tranche?

(f) Repeat the previous question without the assumption of mutual independence.

Homework Problems

Problem 18.19.

An infinite version of Murphy’s Law is that if an infinite number of mutually inde-
pendent events are expected to happen, then the probability that only finitely many
happen is 0. This is known as the first Borel-Cantelli lemma.

(a) Let Ag, A1, ... be any infinite sequence of mutually independent events such
that
> " Pr{4,] = co. (18.30)
neN

Prove that Pr[no A, occurs] = 0.

Hint: By, the event that no A, with n < k occurs. So the event that no A, occurs is
B = ﬂ B;.
keN

Apply Murphy’s Law, Theorem 18.7.4, to By.
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(b) Conclude that Pr[only finitely many A,’s occur] = 0.

Hint: Let C; be the event that no A, with n > k occurs. So the event that only
finitely many A,’s occur is
C 5= U Cr.

keN
Apply part (a) to Cy.

Problems for Section 18.8
Practice Problems

Problem 18.20.
Let R be a positive integer valued random variable such that

1
PDFR(n) = —,
ch

where
= 1
C = Z n—3
n=1
(a) Prove that Ex[R] is finite.

(b) Prove that Var[R] is infinite.

Problem 18.21.
Let T be a positive integer valued random variable such that
1
PDFr(n) = —,
an

where {
a:= Z pr
neZ+t
(a) Prove that Ex[T] is infinite.

(b) Prove that Ex[+/T] is finite.
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Class Problems

Problem 18.22.

You have a biased coin with nonzero probability p < 1 of coming up heads. You
toss until a head comes up, and then, as in Section 18.8, you keep tossing until you
get a long run of tails, but this time let “long run” mean a run of tails that is at least
k — 10 when your initial run was length k. Prove that the expected number of times
you toss a head and start over is still infinite.

Problem 18.23.
Let To, T1, ... be a sequence of mutually independent random variables with the
same distribution. Let

R :=min{k > 0 | Ty > To}.
(a) Suppose the range of the Tp is the set {typ < t; < t2 < ---}. Explain why the
following Theorem implies that Ex[R] = oo.
Theorem 18.8.1. If po + p1 + p2 + --- = l and all p; > 0, then the sum

Q= Z EE

Pk+1 + Pry2 + -+

keN
diverges.
(b) Let
Sk =P+ Pe+1+ ..,
d
an 5, 1
a — ——
e Sk
Prove that
Q=) a. (18.31)
keN
(¢) Prove that |
[[@+1=
k Sn+1
<n

(d) Conclude from part (c) that

[k +1) =co. (18.32)
keN

(e) Conclude that ¥ = 0o and hence Q = oo.
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Random Processes

me used to model situations in which an object moves in a sequence
of steps in randomly chosen directions. For example in Physics, three-dimensional
random walks are used to model Brownian motion and gas diffusion. In this chapter
we’ll examine two examples of random walks. First, we’ll model gambling as
a simple 1-dimensional random walk —a walk along a straight line. Then we’ll
explain how the Google search engine used random walks through the graph of
world-wide web links to determine the relative importance of websites.

19.1 Gamblers’ Ruin

\
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Suppose a gambler starts with an initial stake of n dollars and makes a sequence of
$1 bets. If he wins an individual bet, he gets his money back plus another $1. If he
loses the bet, he loses the $1. éét{r

‘We can model this scenario as a random walk between integer points on the real
line. The position on the line at any time corresponds to the gambler’s cash-on-hand
or capital. Walking one step to the right (left) corresponds to winning (losing) a $1
bet alTJTlT&eby increasing (decreasing) his capital by $1. The gambler plays until
either he is bankrupt or increases his capital to a target amount of 7" dollars. If he
reaches his target, then he is called an overall winner, and his intended profit, m,
will be T — n dollars. If his capital reaches zero dollars before reaching his target,
then we say that he is “ruined” or goes broke. We'll assume that the gambler has
the same probability, p, of winning each individual $1 bet and that the bets are
mutually independent. We’d like to find the probability that the gambler wins.

The gambler’s situation as he proceeds with his $1 bets is illustrated in Fig-
ure 19.1. The random walk has boundaries at 0 and T'. If the random walk ever
reaches either of these boundary values, then it terminates.

In a fair_game, the gambler is equally likely to win or lose each bet, that is
p=1 £2. The corresponding random walk is called unbiased. The gambler is more
likely to win if p > 1/2 and less likely to win if p < 1/2; these random walks
are called biased. We want to determine the probability that the walk terminates at
boundary 7', namely, the probability that the gambler is a winner. We’ll do this in
Section 19.1.1, but before we derive the probability, let’s just look at what it turns
out to be.

Let’s begin by supposing the coin is fair, the gambler starts with 100 dollars, and
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gambler’s bet outcomes:

capital WLLWLWWLLL
n

time ﬁa 41(11/}0 %‘

Figure 19.1 A graph of the gambler’s capital versus time for one possible se-
quence of bet outcomes. At each time step, the graph goes up with probability p
and down with probability 1 — p. The gambler continues betting until the graph
reaches either O or T.

he wants to double his money. That is, he plays until he goes broke or reaches a
target of 200 dollars. Since he starts equidistant from his target and bankruptcy, it’s
clear by—s?r'ﬁ-metry that his probability of winning in this caseQs 1/2

We’ll show below that starting with n dollars and aiming for a target of T > n
dollars, the probability the gambler reaches his target before going broke is n/T.
For example, suppose he want to win the same $100, but instead starts out with™>
$500. Now his_chances are pretty good: the probability of his making the 100
dollars @/—6 d if he started with one million dollars still aiming to win $100
dollars healmost certain to win: the probability is 1M/(1M + 100) > .9999.

So in the fair game, the larger the initial stake relative to the target, the higher
the probability the gambler will win, which makés Some-intuitive sense. But note
that although the gambler now wins nearly all the time, the game is still fair. When
he wins, he only wins $100; when he loses, he loses big: $1M. So the gambler’s
average win is actually zero dollars.

Another way o describe this scenario is as a game between two playets. Say
Albert starts with $500, and Eric starts with $100. They flip a fair coin, and every
time a Head appears, Albert wins $1 from Eric, and vice versa for Tails. They

play this game until one person goes_\bankrupt. What is the probability of Albert

winning? Sdne o
This problem is identical to the GmZbler’s Ruin problem with n = 500 and
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T = 100 + 500 = 600. The probability of Albert winning is 500/600 = 5/6,

mo of his wealth to the combined wealth. Eric’s chances of winnning

are 1/6.

Now suppose instead that the gambler chooses to play roulette in an American
casino, always betting $1 on red. This game is slightly biased against the gambler:
the probability of winning a single betis p = 18/38 = 0.47. (It’s the two green
numbers that slightly bias the bets and give the casino an edge.) Still, the bets
are almost fair, and you might expect starting with $500, the gambler has a
reasonable chance of winning $100 — probability of winning in the unbiased
game surely gets reduced, but perhaps not too drastically.

Not so! The gambler’s odds of winning $100 making one dollar bets against the
“slightly” unfair roulette wheel are__le_l_in_ﬂMhat seems Surpris-
ing, listen to this: no matter how much money the gambler has to start —$5000,
$50,000, $5 - 1012 —his odds are still less than 1 in 37,000 of winning a mere 100
dollars! TE e

Moral: Don’t play!

The theory of random walks is filled with such fascinating and counter-intuitive
conclusions.

19.1.1 The Probability of Avoiding Ruin

We will determine the probability that the gambler wins using an 1dea(’ f Pascal s
dating back to the beginnings of the subject of probability.

Pascal viewed the walk as a two-player game between Albert and Eric as de-
scribed above. Albert starts with a stack of 77 chips and Eric Starts with a stack of
m = T — n chips. At each bet, Albert wins Eric’s top chip with probabillity p and
loses his top chip to Eric with probabillity g ::= 1 — p. They play this game until
one person goes bankrupt.

Pascal’s ingenious idea was to alter the value of the chips to make the game fair.
Namely, Albert’s bottom chip will be given payoff value r Where r ::= q/p, and
the successive chips up his stack will be worth r2,73,... up to his top chip with
payoff value r”. Eric’s top chip will be worth r"*+1 and the successive chips down
his stack will be worth 2 r#+3 . down to his bottom chip worth r” .

Now the expected change in Albert’s chip values on the first bet is

P ptg =" L) . p—r g =0,
P
so this payoff makes the bet fair. Moreover, whether Albert wins or loses the bet,
the successive chip values counting up Albert’s stack and then down Eric’s remain
r"*™ ensuring by the same reasoning that every bet payoff re-
mains meL So A]bert s expected payoff at the end of the game is the sum of the

Cath '{'el/@f] éﬁf' (5 ﬁbaf‘

Q@U‘“\ )

WK

(Ag,\dfry f](g@m T %\/ﬁqﬂ'
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expectations of his payoffs of each bet, namely 0. Here we’re legitimately appeal-
ing to infinite linearity, since the payoff amounts remain bounded independent of
the number of bets. s A

When Albert wins all of Eric’s chips his total payoff gain is Y72 | r, and
when he loses all his chips to Eric, he total payoff loss is Y/, r'. Letting wy be
Albert’s probability of winning, we now have

n+m n
0 = Ex[Albert’s payoff] = ( Z ri) “ Wy — (Z r") (1 —wy).

i=n+1 i=1

In the truly fair game when r = 1, we have 0 = mw, — n(l — wy), so w, =
n/(n + m), proving the claim above.
In the biased game with r # 1, we have

n4+m __ .n n_
Dl s = e (=)
r—1 r—1
Solving for w, gives
n_1 n_1
e 4 (19.1)

rrtm 1 7 T

‘We have now proved

Theorem 19.1.1. In the Gambler’s Ruin game with initial capital, n, target, T, and
probability p of winning each individual bet,

1
_ﬁrp—-?

Pr(the gambler is a winner] = (19.2)
rt—1

1
| forp;éz,

\
;
Nl =

wherer =g/ p.

The expression (19.1) for the probability that the Gambler wins in the biased
game is a little hard to interpret. There is a simpler upper bound which is nearly
tight when the gambler’s starting capital is large and the game is biased against the
gambler. Then r > 1, both the numerator and denominator in (19.1) are positive,
and the numerator is smaller. This implies that

and gives:
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Corollary 19.1.2. In the Gambler’s Ruin game with initial capital, n, target, T,
and probability p < 1/2 of winning each indivi

N

T—n
@gnmbler is a winner] < (IL)
-Pp

So the gambler gains his intende_dwmrﬁprobability at
most _ﬁ/ﬁ_—_@) raised to the intended-profit power. Notice that this upper bound
does not depend on the gambler’s starting capital, but only on/his_wgﬁt.
This has the amazing consequence we announced above: no matter how much

money he starts with, if he makes $1 bets on red in ronlette aiming to win $100, the
probability that he wins is less than

18/38)'% (9% .
20/ 38 10 37,648
The bound (19.3]1s expon . in the intended profit. So, for example, doubling
his intended profit will square his probability of winning. In particular, the prob-

ability that the gambler’s stake goes up 200 dollars before he goes broke playing
roulette is at most

(19.3)

200 _ RS Gl SR
07107 = ©/10') = (57765) -

which is about 1 in 70 billion.

19.1.2 Intuition

Why is the gambler so unlikely to make money when the game is slightly biased
against him? Intuitively, there are two forces at work. First, the gambler’s capital
has random upward and downward swings due to runs of good and bad luck. Sec-
ond, the gambler’s capital will have a steady, downward. drift, because the negative
bias means an average loss of a few cents on each $1 bet. The situation is shown in
Figure 19.2.

Our intuition is that if the gambler starts with, say, a billion dollars, then he is
sure to play for a very long time, so at some point there should be a lucky, upward
swing that puts him $100ahead. The problem is that his capltal is steadily dri }7 4 é h
downward. If the gambler does not have a lucky, upward swing early on, then he is Of
doomed. After his capital drifts downward a few hundred dollars, he needs a huge
upward swing to save himself. And such a huge swing is extremely improbable.

As a rule of thumb, drift dominates swings in the long term.

We can quantify these drifts and swings. After k rounds for & < min(m, n), the

number of wins by our player has a binomial distribution with parameters p < 1/2
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Figure 19.2 In a biased random walk, the downward drift usually dominates
swings of good luck.

and k. His expected win on any single bet is p — g = 2p — 1 dollars, so his
expected capital is n — k(1 — 2p). Now to be a winner, his actual number of wins
must exceed the expected number by m + k(1 — 2p). But we saw before that
the binomial distribution has a standard deviation of only /kp(1 — p). So for the
gambler to win, he needs his number of wins to deviate by

m+ k(1 —2p) o
vkp(1—2p)

times its standard deviation. In our study of binomial tails, we saw that this was
extremely unlikely.

In a fair game, there is no drift; swings are the only effect. In the absence of
downward drift, our earlier intuition is correct. If the gambler starts with a trillion
dollars then almost certainly there will eventually be a lucky swing that puts him
$100 ahead. i 2

e(vk)

19.1.3 Quit While You Are Ahead

Suppose that the gambler never quits while he is ahead. That is, he starts withn > 0
dollars, ignores any target 7', but plays until he is flat broke. Then it turns out that
if the game is not favorable, thatis, p < 1 mﬂer is sure to go broke. In
particular, even in a “fair” game with p = 1/2 he is sure to go broke™~

Lemma 19.1.3. If the gambler starts with one or more dollars and plays a fair
game until he is broke, then he will go broke with probability 1.
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Proof. If the gambler has initial capital n and goes broke in a game without reach-
ing a target 7', then he would also go broke if he were playing and ignored the
target. So the probability that he will lose if he keeps playing without stopping at
any target 7" must be at least as large as the probablhty that he loses when he has a
targ?ltt{;: kr:ww that in a glg lY s }Lt t!o -

game, the robablllty he loses is 1 — n/T. This
number can be made arbitrarily close to 1 by choosing a sufficiently large value of
T. Hence, the probability of his losing while playing without any target has a lower
bound arbitrarily close to 1, which means it must in fact be 1. O

So even if the gambler starts with a million dollars and plays a perfectly fair
game, he will eventually lose it all with probability 1. But there is good news: if
the game is fair, he can “expect” to play forever:

Lemma 19.1.4. If the gambler starts with one or more dollars and plays a fair
game until he goes broke, then his expected n}t_mber of plays is infinite.

s
A proof appears in Problem 19.1. i t‘” ¥ ']L(;/L{ an
So even starting with just one dollar, the expected number of plays before going
broke is infinite! Of course, this does not mean that the gambler is likely to play for
long —there is even a 50% chance he will lose the very first bet and go broke right
away.

Pl verr stey Leld

| I
mﬁz\/‘[hgq(

19.2 Random Walks on Graphs

The hyperlink structure of the World Wide Web can be described as a digraph. The
vertices are the web pages with a directed edge from vertex x to vertex y if x has

alink to y. For example, in the following graph the vertices x1,. .., x, correspond
to web pages and (x;- —X j) is a directed edge when page x; contains a hyperlink to
page Xx;. e
x3 x4
x7
x2
x1 ./_. X5
x6

The web graph is an enormous graph with many billions and probably even tril-
lions of vertices. At first glance, this graph wouldn’t seem to be very interesting.
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But in 1995, two students at Stanford, Larry Page and indexBrin, Sergey Sergey
Brin realized that the structure of this graph could be very useful in building a
search engine. Traditional document searching prbgrams had been around for a
long time and they worked in a fairly straightforward way. Basically, you would
enter some search terms and the searching program would return all documents
containing those terms. A relevance score might also be returned for each docu-
ment based on the frequwigian that the search tcrm?iﬁﬁ&a?ed in the doc-
ument. For example, if the search term appeared in the title or appeared 100 times
in a document, that document would get a higher score. So if an author wanted a
document to get a higher score for certain keywords, he would put the keywords in
the title and make it appear in lots of places. You can even see this today with some
bogus web sites.

This approach works fine if you only have a few documents that match a search
term. But on the web, there are billiorﬂégcmmms-and.miﬂio@tches to a
typical search. it )

For example, a few years ago a search on Google for “math for computer science
notes” gave 378,000 hits! How does Google decide which 10 or 20 to show first?
It wouldn’t be smart to pick a page that gets a high keyword score because it has
“math math ... math” across the front of the document.

Onm get placed high on the list is to pay Google an advertising fees —
and Google gets an enormous revenue stream from these fees. Of course an early
listing is worth a fee only if an advertiser’s target audience is attracted to the listing.
But an audience does get attracted to Google listings because its ranking method
is really good at determining the most relevant web pages. For example, Google
demonstrated its accuracy in our case by giving first rank to the Fall 2002 open
courseware page for 6.042 : —) . So how did Google know to pick 6.042 to be first
out of 378, 0007 e

Well back in 1995, Larry and Sergey got the idea to allow th@stmcture
of the web to determine which pages are likely to be the most important.

19.2.1 A First Crack at Page Rank

Looking at the web graph, any idea which vertex/page might be the best to rank
Ist? Assume that all the pages match the search terms for now. Well, intuitively,
we should choose x», since lots of other pages point to it. This leads us to their first
idea: try defining th€ page ran X to be the number of links pointing to x, that
igs indegree(¥) The idea i to think of web pages as voting for the most important
page —the more votes, the better rank.

Of course, there are some problems with this idea. Suppose you wanted to have
your page get a high ranking. One thing you could do is to create lots of dummy

|75 of pqk b fids
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pages with links to your page.

There is another problem —a page could become unfairly influential by having
lots of links to other pagcs it wanted to hype.

- @ +1
@ +1

® ;i

@ +1
So this strategy for high ranking would amount to, “vote early, vote often,” which
is no good if you want to build a search engine that’s worth paying fees for. So,
admittedly, their original idea was not so great. It was better than nothing, but
certainly not worth billions of dollars.

19.2.2 Random Walk on the Web Graph
But then Sergey and Larry thought some more and came up with a couple of im-
provements. Instead of just counting the indegree of a vertex, they considered the

probability of being at each page after a long random walk on the web graph. In

particular, they decided to model a user’s web experience as following each link on
a page with uniform probability. That is, they assigned each edge x — y of the
web graph with a probability conditioned on being on page x:
follow link (x — at page x ﬂ:{_
[ ( » | I,)_E—]__ outdegree(x) ()AQ'

The user experience is then just a random walk on the web graph. ']‘7—\, MA'/

0 legfe
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For example, if the user is at page x, and there are three links from page x, then
each link is followed with probability 1/3.

We can also compute the probability of arriving at a particular page, y, by sum-
ming over all edges pointing to y. We thus have

Prlgotoy] = Z Pr [follow link (x —y) | at page x] - Pr[at page x]
S edges (x—y) S 5=
Prlat
= rlatx] (19.4)
outdegree(x)

edges (x—y)
For example, in our web graph, we have

Prlat x7]  Prfat x3]

Pr{go to x4] =
rfgo to x4] 5 1

One can think of this equation as x5 sending half its probability to x, and the other
half to x4. The page x2 sends all of its probability to x4.

There’s one aspect of the web graph described thus far that doesn’t mesh with the
user experience —some pages have no hyperlink: . Under the current model,
the user cannot escape these pages. In reality, however, the user doesn’t fall off the
end of the web into a void of nothingness. Instead, he restarts his web journey.

To model this aspect of the web, Sergey and Larry added a supervertex to the web
graph and had every page with no hyperlinks point to it. Moreover, the supervertex
points to every other vertex in the graph, allowing you to restart the walk from a
random place. For example, below left is a graph and below right is the same graph
after adding the supervertex xy 1.

x1
x1
1/2
1 x2 XNt @ x2
1/2
x3 x3

The addition of the supervertex also removes the possibility that the value 1/outdegree(x)

might involve a division by zero.
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s
/
19.2.3 Stationary Distribution & Page @(

The basic idea of page rank is just over the web graph, so

let’s define a stationary distribution. 7

Suppose each vertex is assigned a pro\bability that corresponds, intuitively, to the
likelihood that a random walker is at that vertex at a randomly chosen time. We
assume that the walk never leaves the vertices in the graph, so we require that

Prlat x] = 1. (19.5)

6‘? WL.O‘Q/ ﬂﬁ&l{)

abililties to vertices in a digraph is a

vertices X

Definition 19.2.1. An assign
stationary distribution if for all vertices x

Pr[at x] = Pr[go to x at next step]

Sergey and Larry defined their page ranks to be a stationary distribution. They
did this by solving the following system of linear equations: find a nonnegative
number, PR(x), for each vertex, x, such that

3 e — "
PR(y)
PR = —_— H
(%) Z outdegree(y)’ KE20)
edges (y—x)

corresponding to the intuitive equations given in (19.4). These numbers must also
satisfy the additional constraint corresponding to (19.5):

Y. PR(x)=1 (19.7)
vertices x

So if there are n vertices, then equations (19.6) and (19.7) provide a system
of n + 1 linear equations in the n variables, PR(x). Note that constraint (19.7)
is needed because the remaining constraints (19.6) could be satisfied by letting
PR(x) ::= 0 for all x, which is useless.

Sergey and Larry were smart fellows, and they set up their page rank algorithm
so it would always have a meaningful solution. Their addition of a supervertex
ensures there is always a unique stationary distribution. Moreover, starting from
any vertex and taking a sufficiently long random walk on the graph, the probability
of being at each page will get closer and closer to the station istribution. Note
that general digraphs without supervertices may have neither of these properties:
there may not be a unique stationary distribution, and even when there is, there
may be starting points from which the probabilities of positions during a random
walk do not converge to the stationary distribution. Examles of this appear in some
problems below.
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Now just keeping track of the digraph whose vertices are billions of web pages
is a daunting task. That’s why Google is building power plants. Indeed, Larry
and Sergey named their system Google after the number 10**" —which called a
“googol” —to reflect the fact that the web graph is so enormous.

Anyway, now you can see how 6.042 ranked first out of 378,000 matches. Lots
of other universities used our notes and presumably have links to the 6.042 open
courseware site, and the university sites themselves are legitimate, which ultimately
leads to 6.042 getting a high page rank in the web graph.

Problems for Section 19.1 TLQ{L[ P @ l] ( Qﬂﬂ/fb bCW\"

Class Problems

Problem 19.1.
In gambler’s ruin scenario, the gambler makes independent $1 bets, where the prob-
ability of winning a bet p and of losing is g ::= 1 — p. The gambler keeps betting
until he goes broke or reaches a target of T dollars.

Suppose T = oo, that is, the gambler keeps playing until he goes broke. Let
r be the probability that starting with n > 0 dollars, the gambler’s stake ever gets
reduced to n — 1 dollars.

(a) Explain why
r=gq-+ prz.

(b) Conclude thatif p < 1/2,thenr = 1.

(¢) Conclude that even in a fair game, the gambler is sure to get ruined no matter
how much money he starts with!

Hint: If r, is probability of ruin starting with stake n, then r, = rp41p + rm—19,
S0
-
T LAl (19.8)
p p
(d) Let ¢ be the expected time for the gambler’s stake to go down by 1 dollar.

Verify that
t =g+ p(l+21).

Conclude that starting with a 1 dollar stake in a fair game, the gambler can expect
to play forever!

CM‘MS (Ir\ G,OLH?
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Problems for Section 19.2
Class Problems

Problem 19.2. (a) Find a stationary distribution for the random walk graph in Fig-
ure 19.3.

O

Figure 19.3
(b) If you start at node x in Figure 19.3 and take a (long) random walk, does the
distribution over nodes ever get close to the stationary distribution? Explain.

(¢) Find a stationary distribution for the random walk graph in Figure 19.4.

1

0.9

Figure 19.4

(d) If you start at node w Figure 19.4 and take a (long) random walk, does the
distribution over nodes ever get close to the stationary distribution? You needn’t
prove anything here, just write out a few steps and see what’s happening.

(e) Find a stationary distribution for the random walk graph in Figure 19.5.

(f) If you start at node b in Figure 19.5 and take a long random walk, the proba-
bility you are at node d will be close to what fraction? Explain.

Problem 19.3.
We use random walks on a digraph, G, to model the typical movement pattern of a
Math for CS student right after the final exam.
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1/2 1/2
1/2
Figure 19.5

The student comes out of the final exam located on a particular node of the
graph, corresponding to the exam room. What happens next is unpredictable, as
the student is in a total haze. At each step of the walk, if the student is at node
u at the end of the previous step, they pick one of the edges {(u — v) uniformly at
random from the set of all edges directed out of u, and then walk to the node v.

Let n ::= |V(G)| and define the vector PY) to be

D=, 09

where pi(j )

(a) We will start by looking at a simple graph. If the student starts at node 1 (the
top node) in the following graph, what is PO _pW) P29 Give anice expression

for P,
Q 1”2

1/2

is the probability of being at node i after j steps.

(b) Given an arbitrary graph, show how to write an expression for p(j ) in terms

_ i
of the p,(c"'_l)’s.

(c) Does your answer to the last part look like any other system of equations
you’ve seen in this course?

(d) Let the limiting distribution vector, , be

k )
lim Zi= P i
k—o00 k
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What is the limiting distribution of the graph from part a? Would it change if the
start distribution were P9 = (1/2,1/2) or P© = (1/3,2/3)?

(e) Let’s consider another directed graph. If the student starts at node 1 with
probability 1/2 and node 2 with probability 1/2, what is P©, P P2 in the
following graph? What is the limiting distribution?

1/3 1/3

(f) Now we are ready for the real problem. In order to make it home, the poor
Math for student is faced with n doors along a long hall way. Unbeknownst to him,
the door that goes outside to paradise (that is, freedom from the class and more
importantly, vacation!) is at the very end. At each step along the way, he passes
by a door which he opens up and goes through with probability 1/2. Every time he
does this, he gets teleported back to the exam room. Let’s figure out how long it
will take the poor guy to escape from the class. What is PO pM) p@9 What is
the limiting distribution?

172
12 \172
o— @ 1
1 1/2 1/2 12 1/2
0 1 P 3 n

(g) Show that the expected number, T'(n), of teleportations you make back to the
exam room before you escape to the outside world is 2"~ — 1.

Problem 19.4.

A Google-graph is a random-walk graph such that every edge leaving any given
vertex has the same probability. That is, the probability of each edge (v—w) is
1/out-degree(v).
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A directed graph is symmetric if, whenever (v — w) is an edge, so is (w —v).
Given any finite, symmetric Google-graph, let
A out—degree(v),
e
where e is the total number of edges in the graph. Show that d is a stationary
distribution.

Homework Problems

Problem 19.5.

A digraph is strongly connected iff there is a directed path between every pair of
distinct vertices. In this problem we consider a finite random walk graph that is
strongly connected.

(a) Let dj and d5 be distinct distributions for the graph, and define the maximum
dilation, y, of d; over d; to be

flo dy (x)
b G

Call a vertex, x, dilated if dy(x)/d>(x) = y. Show that there is an edge, (y — z),
from an undilated vertex y to a dilated vertex, z. Hint: Choose any dilated vertex,
x, and consider the set, D, of dilated vertices connected to x by a directed path
(going to x) that only uses dilated vertices. Explain why D # V, and then use the
fact that the graph is strongly connected.

(b) Prove that the graph has ar most one stationary distribution. (There always is
a stationary distribution, but we’re not asking you prove this.) Hint: Let d; be a
stationary distribution and d> be a different distribution. Let z be the vertex from
part (a). Show that starting from d>, the probability of z changes at the next step.
That is, da(z) # da(z).

Exam Problems

Problem 19.6.
For which of the graphs in Figure 19.6 is the uniform distribution over nodes a
stationary distribution? The edges are labeled with transition probabilities. Explain
your reasoning.
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0.5

0.5

@ 0.5
0.5

0.5 0.5

0.5 0.5

Figure 19.6 Which ones have uniform stationary distribution?
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—, set difference, 68

(k1,ka, ..., km)-split of A, 462
Cn, 304, 325

I g, indicator for event E, 574
K3 3, 361

Ks,361

big omega, 436

©(), 433

bij, 88

C, 68

3, 68

et

= (mod n), 201

Ex[R], expectation of R, 585
Ex?[R], 624

v,8

Done, 390

€8

inj, 82, 88

Z, 68

7=, 68

n, 68

A, 71

N, 8, 68

A, 68

¢ (n), 212

Z+,8

P(A), 69

Q, 68

R, 68

RT, 68

~, 431

~ (asymptotic equality), 425
strict, 88

C, 68

C, 68

surj, 88

U, 68

k-combinations, 465
k-edge connected, 326
k-to-1 function, 457
k-way independent, 554
n + 1-bit adder, 141
r-permutation, 493

1Q, 618, 624

icr, 334

while programs, 390
2-D Array, 294

2-Layer Array, 294
2-dimensional array, 283

absolute value, 647
adjacency matrix, 239
adjacent, 300

Adleman, 209

Agrawal, 185

alphabet, 160

annuity, 402

antecedents, 11
antichain, 255, 269
antisymmetric, 246, 258
antisymmetry, 246

a posteriori, 545

arrows, 233

assignment statement, 132, 390
asymmetric, 245
asymmetry, 245
asymptotically equal, 425
asymptotically smaller, 431
asymptotic relations, 442
average, 585, 617
average degree, 302, 359
axiomatic method, 11
Axiom of Choice, 102
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axioms, 4, 10

Banach-Tarski, 102

base case, 116

basis step, 116

Bayes’ Rule, 545

Benes nets, 287

Bernoulli distribution, 578

Bernoulli variable, 625

Bernoulli variables, 574

biased, 661

bijection, 498

Bijection Rule, 449

bijective, 76

binary predicate, 54

binary relation, 74

Binary relations, 73

binary trees, 176

binomial, 463

binomial coefficient, 464

binomial coefficients, 494

binomial distribution, 578, 582, 628

Binomial Theorem, 464

bin packing, 635

bipartite graph, 307, 311, 347, 373
degree-constrained, 311

birthday principle, 557

blocks, 257

body, 391

bogus proofs, 21

Boole’s inequality, 534

Boolean variables, 36

Borel-Cantelli lemma, 658

bottleneck, 311

branches, 391

Brin, Sergey, 233

buildup error, 328

busy, 610

butterfly, 285

butterfly net, 297
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Cancellation, 206
Cantor’s paradise, 91, 103
cardinality, 88
carry bit, 56
CDO, 657
chain, 253, 269
chain of “iff”, 16
characters, 160
Chebyshev’s bound, 651
Chebyshev’s Theorem, 621, 633
Chebyshev bound, 649
Chernoff Bound, 636
Chinese Appetizer problem, 619
Chinese Remainder Theorem, 222
Choice axiom, 101
chromatic number, 321
Church-Turing thesis, 198
closed forms, 401
closed walk, 237, 324
CML, 296, 297
CNF, 45
codomain, 71, 74
Cohen, 102
collateralized debt obligation, 657
colorable, 320
coloring, 320

solid, 336
combinatorial proof, 399, 477, 508
common divisor, 189
communication nets, 233
compilation, 95
complement, 68
Complement Rule, 534
complete binary tree, 279
complete bipartite graph, 361
complete digraph, 260
complete graph, 303, 361
components, 70
composing, 73
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composition, 73, 84, 242
concatenation, 160, 161, 238
conclusion, 11, 37
conditional, 391
conditional expectation, 588
conditional probability, 537
confidence level, 634
congestion, 282, 297
congestion for min-latency, 296, 297
congestion of the network, 283
congruence, 201
congruent, 201
conjunctive form, 45
conjunctive normal form, 45, 48
connected, 325, 327

k-edge, 327

edge, 327
connected components, 326
connects, 300
consequent, 11
consistent, 102
continuous faces, 365
Continuum Hypothesis, 102
contrapositive, 14, 42
converges, 647
converse, 42
convex function, 641
corollary, 10
countable, 92, 103, 105
countably infinite, 92
counter model, 55
coupon collector problem, 602
cover, 259, 310
covering edge, 259
critical path, 254, 255
Cumulative distribution functions (cdf’s),

577

cut edge, 327
cycle, 237, 321, 324

of length n, 304
cycle of a graph, 325

DAG, 231, 259
de Bruijn sequences, 265
degree, 300
degree-constrained, 311, 486, 509
degree sequence, 498
DeMorgan’s Laws, 46
depth, 254
describable, 107
Deviation from the mean, 617
diagonal argument, 95
diameter, 280
Die Hard, 187, 188
Difference Rule, 534
digraphs, 233
directed acyclic graph (DAG), 243
directed edge, 235
directed graph, 235
Directed graphs, 233
directed graphs, 231
discrete faces, 368
disjoint, 69
disjunctive form, 44
disjunctive normal form, 45, 48
distance

between vertices, 238
Distributive Law, 70
distributive law, 45
divides, 183
divisibility relation, 235
divisible, 184
Division Rule, 457
Division Theorem, 186
divisor, 184
DNEF, 45
domain, 53, 71, 74
domain of discourse, 53, 503
double letter, 96
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Double or nothing, 528
double summations, 428
drawing, 361

edge connected, 327
edge cover, 310
edges, 235, 300
efficient solution, 49
elements, 67
Elkies, 8
empty graph, 303, 321
empty relation, 266, 268, 273
empty sequence, 71
empty string, 63
end of chain, 254
endpoints, 300
end vertex, 235
Enigma, 203
environment, 391
equivalence class, 256
equivalence relation, 256
equivalent, 40
erasable, 179
Euclid, 10, 184, 217
Euclid’s Algorithm, 189
Euler, 8, 217

formula, 371
Euler’s ¢ function, 212
Euler’s constant, 425
Euler’s formula, 379
Euler’s Theorem, 212
Euler’s theorem, 224
Euler tours, 263
evaluation function, 170
event, 519, 533
events, 573
exclusive-or, 37
existential, 51
expectation, 585
expected return, 591
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expected value, 514, 585, 586, 617
exponential backoff, 582
exponentially, 45, 49

extends F, 336

Extensionality, 100

face-down four-card trick, 510

factor, 184

factorial function, 402

factorials, 494

Factoring, 185

fair, 592

fair game, 661

Fast Exponentiation, 132

father, 490

Fermat’s Last Theorem, 185

Fermat’s Little Theorem, 207

Fermat’s theorem, 221

Fifteen Puzzle, 148

Floyd’s Invariant Principle, 122

Foundation, 101

Four-Color Theorem, 9

four-step method, 567

Frege, 102

Frege, Gotlob, 93

function, 71, 75

Fundamental Theorem of Arithmetic,
195

Godel, 102

Gale, 318

Gauss, 185, 201

general binomial density function, 584
Generalized Pigeonhole Principle, 481
Generalized Product Rule, 454
geometric distribution, 591, 591
geometric sum, 401

Goldbach’s Conjecture, 51, 52, 53
Goldbach Conjecture, 185

golden ratio, 191, 218
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good count, 181

Google, 661

graph
bipartite, 307
coloring problem, 320
matching, 310
perfect, 310
shortest path, 241
valid coloring, 320

graph coloring, 320

graph of R, 74

gray edge, 336

greatest common divisors, 183

grid, 283

grows unboundedly, 22

half-adder, 56

Hall’s Matching Theorem, 308
Hall’s Theorem, 311, 509
Hall’s theorem, 347
Halting Problem, 95
Handshake Lemma, 303
Hardy, 183, 199
Harmonic number, 424
Hat-Check problem, 619
head, 235

Herman Rubin, 640
Hoare Logic, 395
hypothesis, 37

identity relation, 268

image, 73, 76

implications, 13

incident, 300

Inclusion-Exclusion, 471, 473

inclusion-exclusion for probabilities,
534

Inclusion-Exclusion Rule, 471

increasing subsequence, 275

in-degree, 235

independence, 549
independent, 627

independent random variables, 575
indicator random variable, 574
indicator variable, 586, 650
indicator variables, 576
indirect proof, 18

Induction, 113

induction hypothesis, 116
inductive step, 116

inference rules, 11

infinite, 87

Infinity axiom, 100

infix notation, 74

injection relation, 82

injective, 75

integer linear combination, 186
interest rate, 438

interpreters, 95

intersection, 68

Invariant, 187

invariant, 122

inverse, 77, 81

inverse image, 77

irrational, 15

irreflexive, 245, 258
irreflexivity, 245

isomorphic, 247, 382

Kayal, 185
King Chicken Theorem, 262
known-plaintext attack, 208

latency, 282

latency for min-congestion, 296, 297
Latin square, 344

lattice basis reduction, 483

Law of Large Numbers, 633

leaf, 331

lemma, 10
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length-n cycle, 304
length-n walk relation, 243
length of a walk, 324
letters, 160

linear combination, 186
Linearity of Expectation, 597, 598
literal, 613

LMC, 296, 297

load balancing, 635, 638
logical deductions, 4
lowest terms, 25

Mapping Rules, 449, 430
Markov’s bound, 651
Markov’s Theorem, 618
Markov bound, 640
matched string, 163
matching, 308, 310
matching birthdays, 631
matching condition, 309
mathematical proof, 4
matrix multiplication, 433
maximal, 252

maximum, 252

maximum dilation, 676
mean, 16, 585

meaning, 391, 393
median, 587

Menger, 327

merge, 237, 238

merging vertices, 374
minimal, 111, 250, 252
minimum, 250
minimum-weight spanning tree, 334
minor, 374

modulo, 201

modus ponens, 11

Monty Hall Problem, 515
multigraphs, 301
multinomial coefficient, 462

683

multinomials, 464
Multinomial Theorem, 508
multiple, 184
multiplicative, 222
multiplicative inverse, 204
Multiplicative Inverses, 204
multisets, 67
Murphy’s Law, 643
mutual independence, 627
mutually independent, 551, 576, 631,
637

neighbors, 311, 342
network latency, 282
node, 235, 300

nodes, 301

nonconstant polynomial, 22
nonconstructive proof, 483
nondecreasing, 410
nonincreasing, 411

not primes, 22

numbered tree, 490
numbered trees, 498
number of processors, 254
Number theory, 183

o(), asymptotically smaller, 431
0O(), big oh, 432

o(), little oh, 431

one-sided Chebyshev bound, 651
optimal spouse, 317

ordinary induction, 114
outcome, 517, 533

out-degree, 235

outside face, 365

overhang, 414

packet, 279
Page, Larry, 233, 668
page rank, 668, 671
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Pairing, 100

pairwise disjoint, 110

pairwise independence, 627

pairwise independent, 554, 556, 628,
631

Pairwise Independent Additivity, 628

Pairwise Independent Sampling, 632,
654

parallel schedule, 254

parallel time, 255

parity, 149

partial correctness, 131

partial correctness assertion, 395

partial functions, 72

partition, 257, 307

Pascal’s Identity, 477

path, 608

path relation, 242

path-total, 259

perfect graph, 310

perfect number, 184, 217

permutation, 206, 384, 456, 494

Perturbation Method, 403

pessimal spouse, 317

Pick-4, 637

pigeonhole principle, 399

planar drawing, 361

planar embedding, 368, 382

planar embeddings, 368

planar graph, 365

planar graphs, 323

planar subgraph, 374

pointwise, 73

Polyhedra, 377

polyhedron, 378

polynomial growth, 49

polynomial time, 307

population size, 633

positive path relation, 242

potential, 154

power set, 69, 79, 94

Power Set axiom, 100

Power sets, 94

precondition, 395

predicate, 9

pre-MST, 335

preserved, 202

preserved invariant, 127
preserved under isomorphism, 306
Primality Testing, 185

prime, 7, 184

prime factorization, 217

Prime Factorization Theorem, 28
prime number, 184

Prime Number Theorem, 210
probability density function, 576
probability density function (pdf), 576
probability function, 533, 564
probability of an event, 533
probability space, 533

product of sets, 71

Product Rule, 450, 541

proof, 10

proof by contradiction, 18
proper subset, 310

proposition, 4, 7

propositional variables, 36
public key, 209

public key cryptography, 209
Pulverizer, 217, 221
Pythagoreans, 377

quicksort, 582
quotient, 187

Rabin cryptosystem, 226
randomized, 513
randomized algorithm, 582
random variable, 573
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random variables, 574
random walk, 608, 669
Random Walks, 661
range, 73

rank, 495

rational, 15, 18
reachability., 126
reachable states, 127
recognizable, 96
recognizes, 96
recurrence, 420
Recursive data types, 159
recursive definitions, 159
reflexive, 242, 258
regular polyhedron, 378
relation on a set, 74
relatively prime, 211
relaxed, 610

remainder, 187
Replacement axiom, 100
reversal, 174

Riemann Hypothesis, 210
ripple-carry, 57
ripple-carry circuit, 142
Rivest, 209

root mean square, 623
round-robin tournament, 261
routing, 280

routing problem, 280

RSA, 209, 225

RSA public key crypto-system, 183

RSA public key encryption scheme,
214

Russell, 99, 102

Russell’s Paradox, 98, 101

sample space, 517, 533
SAT, 49

satisfiable, 43, 49, 60, 613
SAT-solvers, 49
Saxena, 185
scheduled at step k, 254
Schroder-Bernstein, 91, 105
secret key, 209
self-loop, 301
self-loops, 237
sequence, 70
sequencing, 391
set, 67

covering, 310
set difference, 68, 78
Shamir, 209
Shapley, 318
simple graph, 300
Simple graphs, 299
simple graphs, 231
smallest counterexample, 27
solid coloring, 336
solves, 280
sound, 12
spanning subgraph, 333
spanning tree, 333
spread, 415
St. Petersberg paradox, 615
St. Petersburg Paradox, 645
stable matching, 313
standard deviation, 623, 624, 627
start vertex, 235
state graph, 123
state machines, 231
stationary distribution, 671
Stirling’s formula, 608
store, 392
strictly bigger, 94
strictly decreasing, 411
strictly increasing, 410
strict partial order, 245, 259

685
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string procedure, 96
Strong Induction, 134
strongly connected, 676
Structural induction, 161
structural induction, 159
subsequence, 275

subset, 68

substitution function, 171
suit, 495

summation notation, 27
Sum Rule, 452, 534
surjection relation, 82
surjective, 75

switches, 279

symbols, 160

symmetric, 231, 258, 299, 676

tail, 235

tails, 583

tails of the distribution, 583
terminals, 279

terms, 70

test, 391

tests, 391

theorems, 10

The Riemann Hypothesis, 210
topological sort, 250

total, 75

total expectation, 589

total function, 72

totient function, 212
tournament digraph, 260, 261
transition, 123

transition relation, 123
transitive, 242, 258, 530
Traveling Salesman Problem, 263, 355
tree diagram, 517, 567

truth tables, 36

Turing, 197, 199, 209
Turing’s code, 199, 203, 208

Twin Prime Conjecture, 185
type-checking, 95, 97

unbiased, 661

unbiased binomial distribution, 582
undirected, 299

undirected edge, 300

uniform, 526, 535, 579

uniform distribution, 578, 579
union, 68

Union axiom, 100

Union Bound, 535

unique factorization, 217

Unique Factorization Theorem, 195
universal, 51

unlucky, 610

valid, 43

valid coloring, 320
value of an annuity, 404
variance, 621, 630, 650
vertex, 235, 300

vertex connected, 327
vertices, 235, 300
virtual machines, 95

walk, 264, 355

walk counting matrix, 240

walk in a digraph, 236

walk in a simple graph, 324

Weak Law of Large Numbers, 633,
654

weakly connected, 264

weakly decreasing, 153, 195, 411

weakly increasing, 410

weak partial order, 259

well founded, 111

Well Ordering, 135

Well Ordering Principle, 25, 115, 138

while loop, 391
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width, 351
winnings, 591

Zermelo, 102

Zermelo-Frankel, 11
Zermelo-Frankel Set Theory, 100
ZFC, 11, 100, 102

ZFC axioms, 101




“mes” — 2011/5/9 — 20:49 — page 688 — #696

688 INDEX

Glossary of Symbols

symbol  meaning

e is defined to be

A and

v or

— implies, if ..., then ---

— state transition

-P,P  notP

— iff, equivalent

® xor, exclusive-or

3 exists

A for all

€ is a member of, is in

< is a (possibly =) subset of
C is a proper (not =) subset of
) set union

N set intersection

A complement of set A

= set difference

P(A) powerset of set, A

) the empty set, { }

VA integers

N,ZZ%  nonnegative integers

z+ positive integers

Y/ negative integers

Q rational numbers

R real numbers

C complex numbers

R(X) image of set X under binary relation R
R inverse of binary relation R

R™Y(X) inverse image of set X under relation R
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INDEX
symbol meaning
A the empty string/list
A* the finite strings over alphabet A
rev(s) the reversal of string s
5t concatenation of strings s, ¢; append(s, 1)
#c(5) number of occurrences of character ¢ in string §
m|n integer m divides integer n; m is a factor of n
ged greatest common divisor
(k,n) {ilk<i<n}
[k, n) {ilk<i<n}
(k,n] {ilk<i=<n}
[k, n] {ilk=i=n}
(u—v) directed edge from vertex u to vertex v
Id4 identity relation on set A: ald4a’ iffa = o’
R* path relation of relation R; reflexive transitive closure of R
RT positive path relation of R; transitive closure of R
(u—v) undirected edge connecting vertices u neqv
E(G) the edges of graph G
V(G) the vertices of graph G
Cn the length-n undirected cycle
L, the length-n line graph
Kn the n-vertex complete graph
L(G) the “left” vertices of bipartite graph G
R(G) the “right” vertices of bipartite graph G
Knm the complete bipartite graph with n left and m right vertices
Hp the nth Harmonic number Y ;_, 1/i
~ asymptotic equality
n! n factorial :=n-(n—1)---2-1
o() asymptotic notation “little oh”
0() asymptotic notation “big oh”
e asymptotic notation “Theta”
Q0 asymptotic notation “big Omega”
() asymptotic notation “little omega”
Pr[A] probability of event A
Pr [A | B] conditional probability of A given B
Ex[R] expectation of random variable R
Ex[R | A] conditional expectation of R given event A
Var[R] variance of R

OR

standard deviation of R






