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Introduction

This subject offers an introduction to Discrete Mathematics oriented toward Computer
Science and Engineering. It meets MWF in 26-152 (TEAL) 12:30—2:00PM. There are
no separate recitations. The subject coverage divides into three parts:

1. Fundamental concepts of Mathematics: definitions, proofs, sets, functions,
elementary number theory

2. Discrete structures: graphs, counting.

3. Discrete probability theory.

The prerequisite is 18.01 (first term calculus), in particular, some familiarity with
sequences and series, limits, and differentiation and integration of functions of one
variable.

The goals of the course are summarized in a statement of Course Objectives and

Educational Qutcomes. A detailed schedule of topic coverage appears in the Course
Calendar.

Considerations for Taking the Subject This Term

There are two main considerations for students in deciding to take 6.042J/18.062J this
term —or at all.

1. Team Problem Solving

This term, as in many previous terms, the subject is being taught in
Lecture/Team Problem Solving style. More about two thirds of class meeting
time will be devoted to problem solving in teams of 7--9 sitting around a table
with a nearby whiteboard where a team can write their solutions. Each TA,
assisted by an LA, covers 3 tables, acting as coach and providing feedback on
students' solutions. The Lecturer acts likewise, circulating among all the tables.
The coach will resist answering questions about the material, always trying first
to find a team member who can explain the answer to the rest of the team. Of
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course the coach will provide hints and explanations when the whole team is
stuck.

Problem solving sessions will generally be preceded by half hour presentations
by the lecturer, usually reviewing just the topics needed to understand the
problems. These overviews are not intended as first-time introductions to the
material nor as complete coverage of the assigned reading.

The Good News is that the immediate, active engagement in problem solving
sessions is an effective and enjoyable way for most students to master the
material. Team sessions also provide a supervised setting to acquire and
practice technical communication skills. Student grades for problem solving
sessions depend on degree of active, prepared participation, rather than
problem solving success. Sessions are not aimed to test how well a student can
solve the problems in class; the goal is to have them understand how to solve
them by the end of the session. Participation in team sessions counts for 20% of
the final grade.

In-class team problem solving works to solidify students' understanding of
material they have already seen. The Bad News is that this requires students to
arrive prepared at the sessions: they need to have read (though not carefully
studied) the assigned reading and done the Online Tutor problems before class.
There is no way to make up for not working with the team, so it is necessary to
keep up and be there —no focusing on something else for a month, aiming to
catch up afterward. If you cannot commit to keeping up, you may prefer to
take the subject some other term.

2. This subject covers many of mathematical topics that are essential in Computer
Science and are not covered in the standard calculus curriculum. In addition,
the subject teaches students about careful mathematics: precisely stating
assertions about well-defined mathematical objects and verifying these
assertions using mathematically sound proofs. While some students have had
earlier exposure to some of these topics, in most cases they learn a lot more in
6.042J/18.062J.

The subject is required of all Computer Science (6-3) majors and is in a required

category for Math majors taking the Computer Science option (18C). But
students with a firm understanding of sound proofs, and who are familiar with

many of the covered topics, should discuss substituting a more advanced
Math subject for 6.042 with the Lecturer or their advisor.

Weekly Schedule

¢ Class Text

Successive revised chapters of our own class textbook will be available weekly
for download.

« Online Tutor Problems & Reading Comments

These are generally due at 9AM before class. See the Online Tutor and reading
comments information below.

e Problem Sets
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Problem sets will usually be due at the beginning of class Friday. They are
assigned a week or more in advance. The exact schedule is posted the Course
Calendar. See Problem Sets below for further information.

e Miniquizzes

Miniquizzes are given every other week, usually on Wednesdays. See Biweekly
Miniquizzes below for further information.

Course Website

The class has a comprehensive web site:

http://courses.csail.mit.edu/6.042

Notes, problem sets, solutions, etc., will be posted in the course calendar. Other
course information such as staff contact information, mailing lists, and

announcements are also available on this website. It is always worth checking the
website for corrections and nannouncements before starting problem sets.

Problem Sets

Problem Sets are normally due at the beginning of lecture on Fridays, but a few may
be due at alternate times because of holidays. Doing the problem sets is, for most
students, crucial for mastering the course material. Solutions to the problem sets will
be posted immediately after the due date. Consequently, late problem sets will not
be accepted.

Problem sets count for 25% of the final grade. To reduce problem sets as a source of
pressure, and as a reflection of their intended teaching —as opposed to testing
—purpose, students can make up half the credit for a pset on the subsequent
miniquiz and on the final. But aiming only for half credit on problem sets with intention
of making up the missing half credit on subsequent exams is a risky strategy,
especially since grades on the final tend to be lower than on problem sets.

For example, if a student missed 4 points on a 10 point pset, then 2 of
those missed points get added to the weight of the next miniquiz and 2 to
the final exam. If a student missed more than half the points on a 10 point
pset, then 5 points can be made up —2.5 of the missed points get added
to the weight of the next miniquiz and 2.5 to the final exam.

Students are encouraged to collaborate on problem sets as on teams in class. The

last page of each problem set has a collaboration statement to be completed and
attached as the first page of a pset submission:

"I worked alone and only with course materials”
or

"l collaborated on this assignment with <students in class>,

got help from <people other than collaborators and course staff>,

and referred to <citations to sources other than the class material from this
term>".

No problem set will be given credit until it has a collaboration statement.
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Graders time is limited, and when in doubt about an unclear student solution, they
are instructed initially to deny credit. If a student is concerned about how a pset has
been graded, they should take it up with their LA or TA after class. If they're not
satisfied with the TA's response, the Lecturer will be happy to hear an appeal.

Online Tutor Problems

There are weekly Online Tutor problems due before class on specified dates. These
consist of straightforward questions that provide useful feedback about the assigned
material. Tutor problems should take about 20 minutes after the reading has been
completed. (Some students prefer to try the tutor problems before doing the reading,
which is fine.)

Like team problem-solving in class, online tutor problems are graded solely on
participation: students receive full credit as long as they try the problem, even if their

answer is wrong. Tutor problems count for 5% of the final grade.

Weekly Reading Comments

A comment in email to 6042-probs@csail.mit.edu on the week's reading is due on
specified dates by 9AM before class. (This email address may not be activated until
Monday, Feb. 7.)

As single comment citing some paragraph that specially catches your is all that is
required. The comment should indicate why this paragraph stood out, for example,
because you found it especially

e difficult/confusing, or

e surprising, or

¢ mistaken (pointing out typos & suggesting corrections is appreciated), or
o funny, or

boring, or

lacking Computer Science motivation, or

poorly written,

something you'd like reviewed in class, ....

Multiple comments are welcomed.

Note that global comments such as "l understood everything in the reading, found it all
(un?)interesting, and have no questions” are not considered responsive. Even if you
understood everything, there must, in the 15 to 30 pages assigned each week, have
been something that stood out for you as suggested above.

Reading comments count for 3% of the final grade.

Collaboration and Outside Sources

We encourage students to collaborate on homework as on in-class problems. Study
groups can be a big help in mastering course material, besides being fun and a good
way to make friends. However, students must write up solutions on their own,
neither copying solutions nor providing solutions to be copied. All collaborators must

cited, and if a source beyond the course materials is used in a solution —for
example, an "expert" consultant other than 6.042 staff, or another text —there must

be a proper scholarly citation of the source.
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Subject materials for Spring '10 are available on OCW, solutions for psets and final
exams are not included however. Complete material including solutions are available
if OCW for Fall '05 and Spring '05. The material this term will be similar to that of the
Spring '10, though in a different order largely following the Fall '10 text. A problem
from these prior terms may occasionally be assigned again without change. If a
student looks at the published solution, they should cite it, and may not simply
copy the published solution. Instead, a critique of the published solution or an
improved version should be submitted instead.

We discourage, but do not forbid, use of materials from prior terms other than
available on OCW. We repeat, however, that use of material from any previous term
requires a proper scholarly citation. As long as a student provides accurate citation
and collaboration statements, a questionable submission will rarely be sanctioned
—instead, we'll explain why we judge the submission unsatisfactory (and maybe deny
credit for specific, clearly copied solutions). But omission of such a citation will be
taken as a priori evidence of cheating, with unpleasant consequences for everyone.

Biweekly Miniquizzes

A 25—30 minute Miniquiz will generally be given every other week, usually on
Wednesdays. Miniquizzes count for a total of 17% of the final grade.

Material to study for a miniquiz is very well defined: a miniquiz will cover only the
material in problems from the previous two weeks. Miniquiz questions are often simply
some parts of these online, class, and pset problems. Students can prepare for a
miniquiz simply by reviewing the posted problem solutions for the previous two weeks.

Minquiz dates are:

Feb. 16
Mar. 2
Mar. 16

Apr. 6

Apr. 20
May 4

I

Final

There will be a standard 3 hour final exam on TBA. This exam is worth 30% of the
final course grade.

Grades

The lowest miniquiz score and problem set score, and the lowest two team problem-
solving scores will not count in grade calculation. This effectively gives everyone 1
miniquiz, 1 problem set, and 2 team problem-solving sessions they can miss
without excuse or penalty.

Grades for the course will be based on the following weighting:

Problem Sets: 25%
Final: 30%
Class participation 20%
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Miniquizzes: 17%
Weekly Reading Comments: 3%
Online Tutor Problems: 5%

Note that missed credit (up to a cap of 50%) on problem sets spills over as increased
weight of the final and selected quizzes as explained in the Problem Sets section
above.

Email Forum

Email to
6042-forum(at)csail.mit.edu

will broadcast to all students and staff.

The forum is intended for general course-related communication by class members.
We encourage students to use it to arrange study sessions, discuss homework, and
send comments to the entire class. The staff also emails announcements and
corrections to this list.

General information about the mailing list, including subscribe/unsubscribe
instructions, is at:

http://lists.csail. mit.edu/mailman/listinfo/6042-forum

Questions, Suggestions, and Complaints

In addition to the forum, email can be sent to the staff or to individual staff members
using the addresses on the staff contact page.

Latex macros

Course handouts are formatted using LaTeX, which is the preferred formatting system
among Mathematics professionals. Note that we do not think it's worthwhile for
students to use it for their class submissions.

For website issues, contact the 6042-webmaster (at)csail.mit.edu ﬂ-‘-f: %
@ @@@ 6.042 lectures & problems by Prof. Albert R Mevyer is licensed under a
carrmry Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
License.

This document last modified Wednesday, 02-Feb-2011 22:19:11 EST
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Massachusetts Institute of Technology
6.042J/18.062J, Spring "11: Mathematics for Computer Science February 2
Prof. Albert R Meyer revised Tuesday 1% February, 2011, 12:28

In-Class Problems Week 1, Wed.

Problem 1.
Identify exactly where the bugs are in each of the following bogus proofs.'

(a) Bogus Claim: 1/8 > 1/4.

Bogus proof.
v 2 ad‘w// olt; war
310gw(1/2) > 2log,4(1/2) /0 (5 ne
log10(1/2)% > log(1/2)2 J 9/7(‘/9
(1/2)* > (1/2)%,
. Y7
and the claim now follows by the rules for multiplying fractions. |
\ here too | ﬂéﬂc/ %
(b) Bogus proof 1¢ = $0.01 =0, 2 (105)2 100¢ = $1. m uxwfj
(c) Bogus Claim: If @ and b are two equal real numbers, then @ = 0. Lz
: /7/6 ays ﬂ:j\:\é
Bogus proof. L/{/// ﬁ
e a=d
2=ab
. a 2l
@—Ja) a? - b? = ab — b? adl
&{2,, dz =Zda —Q i

(a—>b)a+b)=(a—b)b
;wo = “Tole ) (aﬂa)q
/ﬂUH;P[T E1 ad fa =a
bet, sdes 4=
ol wite i h
a70ar.
25 2525
Gs)(st5) < (24)s

Creative Commons K288 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'From Stueben, Michael and Diane Sandford. Tiventy Years Before the Blackboard, Mathematical Association of America,
©1998.
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2 In-Class Problems Week 1, Wed.

Problem 2. g H (F P hédq/

It’s a fact that the Arithmetic Mean is at least as large the Geometric Mean, namely, }é -his
720

a+b C;O A
> vab s A a
2 - (ngun mp] /wt]“}l b WMVl |
for all nonnegative real numbers @ and b. But there’s something objectionable about the following proof of l\/e qfe |
this fact. What's the objection, and how would you fix it? '!'f :
i {a prag

Bogus proof.
y q
gJRNJY J“U(j. a+b L. K(AM Ly de{ ol
%#B‘WV\' @ ) l/vé,, ,
2 a+b> 2\/5,/\ S0 /8 n“(é& J
L 42 9 )
(CL ’Lb) o4 mb +b7 a® + 2ab + b* > 4ab, ~4 fOnefh,.s of Squupd S0 J i ad e
E htr{ f(;’ (97
a’ —2ab + b* > 0, 50 s
(a=b)*=0 which we know is true.

The last statement is true because a — b is a real number, and the square of a real number is never negative.
|

This proves the claim. ‘ g
P t H ' ‘ ——);af,{l\wﬁfégx J[(&O‘i’mﬂ {s anf\}
Problem 3. e | (b %Vﬁb‘hm at all- ok Npur vaq vp

Albert announces to his class that he plans to surprise them with a quiz sometime next week.
His students first wonder if the quiz could be on Friday of next next. They reason that it can’t: if Albert
didn’t give the quiz before Friday, then by midnight Thursday, they would know the quiz had to be on Friday,

and so the quiz wouldn’t be a surprise any more.
0+ ! C’/" Next the students wonder whether Albert could give the surprise quiz Thursday. They observe that if the
ﬂ 4 fﬂ}quiz wasn’t given before Thursday, it would have to be given on the Thursday, since they already know it
W \]f’/ 7[' can’t be given on Friday. But having figured that out, it wouldn’t be a surprise if the quiz was on Thursday

either. Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, or Monday. Namely, it’s
(/\/Lﬁol flL impossible for Albert to give a surprise quiz next week. All the students now relax, having concluded that 6\0( £ L)E {M
[ f| Albert must have been bluffing. ‘
And since no one expects the quiz, that’s why, when Albert gives it on Tuesday next week, it really is a
J'{q‘!c h’(ﬁ surprise! G g : g { (@[ (g(\(
What do you think is wrong with the students’ reasoning?

1 6JFQ|0 ]Lb Wfazxj
W prsiy bl oty
~loks of Worry g J(W[
Vv dat haaw  what Vv a/e kaj whoot
& i mith pont 4 f g,
Vet ko what g Vppase

My,
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6.042]/18.062J, Spring *11: Mathematics for Computer Science February 2
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Solutions to In-Class Problems Week 1, Wed.

Problem 1.
Identify exactly where the bugs are in each of the following bogus proofs. !

(a) Bogus Claim: 1/8 > 1/4.

Bogus proof.
32
3log;o(1/2) > 2log;0(1/2)
log1o(1/2)* > log;4(1/2)
(1/2)* > (1/2)%,
and the claim now follows by the rules for multiplying fractions. |

Solution. logx < 0, for 0 < x < 1, so since both sides of the inequality “3 > 2" are being multiplied by
the negative quantity log;(1/2), the “>" in the second line should have been “<.” O

(b) Bogus proof: 1¢ = $0.01 = ($0.1)®> = (10¢)> = 100¢ = $1. W

Solution. $0.01 = $(0.1)2 # ($0.1)? because the units $ and $ don’t match (just as in physics the
difference between sec? and sec indicates the difference between acceleration and velocity). Similarly,

(10¢)2 # 100¢.

|
(c) Bogus Claim: If a and b are two equal real numbers, then a = 0.
Bogus proof.
a=b
a’ =ab
a*—b* = ab—b?
(@a—b)a+b)=(a—b)b
a+b=5>b
a=20.
O

Solution. The bug is at the fifth line: one cannot cancel (a —b) from both sides of the equation on the fourth
line because a — b = 0. |

Creative Commons K458 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .

'From Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Mathematical Association of America,
©1998.



2 Solutions to In-Class Problems Week 1, Wed.

Problem 2.
It’s a fact that the Arithmetic Mean is at least as large the Geometric Mean, namely,

b
a-;— > ab

for all nonnegative real numbers a and b. But there’s something objectionable about the following proof of
this fact. What’s the objection, and how would you fix it?

Bogus proof.
°*2 % va, s0
a+b ; 2vab, S0
a® + 2ab + b* > 4ab, 50
az—2ab+b2§0, S0
(a—8)2=0 which we know is true.

The last statement is true because a — b is a real number, and the square of a real number is never negative.
This proves the claim. ]

Solution. In this argument, we started with what we wanted to prove and then reasoned until we reached a
statement that is surely true. The little question marks presumably are supposed to indicate that we’re not
quite certain that the inequalities are valid until we get down to the last step. At that step, the inequality
checks out, but that doesn’t prove the claim. All we have proved is that if (@ + b)/2 > +/ab, then
(a — b)? > 0, which is not very interesting, since we already knew that the square of any nonnegative
number is nonnegative.

To be fair, this bogus proof is pretty good: if it was written in reverse order—or if “s0”” was simply
replaced by “is implied by” after each line—it would actually prove the Arithmetic-Geometric Mean In-
equality:

Proof.
a+b o e
3 > vab is implied by
a+b=2vab, which is implied by
a® + 2ab + b* > 4ab, which is implied by
a*—2ab+ b* >0, which is implied by
(@—b)?%=>0.

The last statement is true because a — b is a real number, and the square of a real number is never negative.
This proves the claim. |

But the problem with the bogus proof as written is that it reasons backward, beginning with the proposition
in question and reasoning to a true conclusion. This kind of backward reasoning can easily “prove” false
statements. Here’s an example:

Bogus Claim: 0 = 1.



Solutions to In-Class Problems Week 1, Wed. 3

Bogus proof.
2
0=1, )
2
1=0, SO
0+1Z1+0, s0
1=1 which is trivially true,
which proves 0 = 1. |

We can also come up with very easy “proofs” of true theorems, for example, here’s an easy “proof” of
the Arithmetic-Geometric Mean Inequality:

Bogus proof.
b ?
2 ; > +ab, SO
b ?
O-a; >0-+ab, SO
0=0 which is trivially true. H

So watch out for backward proofs!

Problem 3.
Albert announces to his class that he plans to surprise them with a quiz sometime next week.

His students first wonder if the quiz could be on Friday of next next. They reason that it can’t: if Albert
didn’t give the quiz before Friday, then by midnight Thursday, they would know the quiz had to be on Friday,
and so the quiz wouldn’t be a surprise any more.

Next the students wonder whether Albert could give the surprise quiz Thursday. They observe that if the
quiz wasn’t given before Thursday, it would have to be given on the Thursday, since they already know it
can’t be given on Friday. But having figured that out, it wouldn’t be a surprise if the quiz was on Thursday
either. Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, or Monday. Namely, it’s
impossible for Albert to give a surprise quiz next week. All the students now relax, having concluded that
Albert must have been bluffing.

And since no one expects the quiz, that’s why, when Albert gives it on Tuesday next week, it really is a
surprise!

What do you think is wrong with the students’ reasoning?

Solution. The basic problem is that “surprise” is not a mathematical concept, nor is there any generally
accepted way to give it a mathematical definition. The “proof” above assumes some plausible axioms about
surprise, without defining it. The paradox is that these axioms are inconsistent. But that’s no surprise
: —) since, mathematically speaking, we don’t know what we’re talking about.

Mathematicians and philosophers have had a lot more to say about what might be wrong with the students’
reasoning,—see Chow, Timothy Y. The surprise examination or unexpected hanging paradox, American
Mathematical Monthly (January 1998), pp. 41-51. |
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Massachusetts Institute of Technology
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Solutions to In-Class Problems Week 1, Wed.

Problem 1.
Identify exactly where the bugs are in each of the following bogus proofs.!

(a) Bogus Claim: 1/8 > 1/4.

Bogus proof.
30
3logyo(1/2) > 2log,4(1/2)
log;9(1/2)* > log,(1/2)*
(172 > (1/2%,
and the claim now follows by the rules for multiplying fractions. ]

Solution. logx < 0, for 0 < x < 1, so since both sides of the inequality “3 > 2” are being multiplied by
the negative quantity log;,(1/2), the “>" in the second line should have been “<.” 0

(b) Bogus proof: 1¢ = $0.01 = ($0.1)%2 = (10¢)2 = 100¢ = $1. MW

Solution. $0.01 $(0 1)?2 # (80.1)? because the uffits $2 and $ don’) match (just as in physics the
difference between sec? and sec indicates the difference between aec€leration and velocity). Similarly,

(10¢)* # 100¢. - nﬂns Stng
row & 3/7 .

(¢) Bogus Claim: If a and b are two equal real numbers, then a = 0.

Bogus proof.

=yl
2=ab
a2 —b2=ab-b?
(@a—b)a+b)=(a—b)b
a+b=5>»
a=0.

Solution. The bug is at the fifth line: one cannot cancel (@ —b) from both sides of the equation on the fourth
line because a — b = 0. ni |
(¢

Creative Commons m 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'From Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Mathematical Association of America,
©1998.



2 Solutions to In-Class Problems Week 1, Wed.

Problem 2.
It’s a fact that the Arithmetic Mean is at least as large the Geometric Mean, namely,

a—;b = 5

for all nonnegative real numbers a and b. But there’s something objectionable about the following proof of
this fact. What’s the objection, and how would you fix it?

Bogus proof.
X2 L e, so
a+b ; 2+/ab, 50
a’ + 2ab + b? % 4ab, o)
a2—2ab+b2%0, SO
(@a—b)?=>0 which we know is true.

The last statement is true because a — b is a real number, and the square of a real number is never negative.
This proves the claim. O

Solution. In this argument, we started with what we wanted to prove and then reasoned until we reached a
statement that is surely true. The little question marks presumably are supposed to indicate that we’re not
quite certain that the inequalities are valid until we get down to the last step. At that step, the inequality
checks out, but that doesn’t prove the claim. All we have proved is that if (¢ + b)/2 > +/ab, then
(a — b)? > 0, which is not very interesting, since we already knew that the square of any nonnegative
number is nonnegative.

To be fair, this bogus proof is pretty good: if it was written in reverse order—or if “so™ was simply

replaced by “is implied by” after each line—it would actually prove the Arithmetic-Geometric Mean In-
" ————e————————————
equality:

Proof. I/‘M A T &/PPD% ?lo 5(’,@, ‘hfuf/:

a+b
2 > vab is implied by
a+b=>2+vab, which is implied by
a? + 2ab + b? > 4ab, which is implied by
a?—2ab+b*>0, which is implied by
(@ =b)> =0.

The last statement is true because a — b is a real number, and the square of a real number is never negative.
This proves the claim. [ |

But the problem with the bogus proof as written is that it reasons backward, beginning with the proposition
in question and reasoning to a true conclusion. This kimasoning can easily “prove” false
statements. Here’San example:

Bogus Claim: 0 = 1.

7% 5]LG(WL (/V/ ‘((/l/(,




Solutions to In-Class Problems Week 1, Wed. 3

Bogus proof.
?
0=1, SO
?
1 = 0’ SO
037 =140, 50
1=1 which is trivially true,
which proves 0 = 1. |

We can also come up with very easy “proofs” of true theorems, for example, here’s an easy “proof” of
the Arithmetic-Geometric Mean Inequality:

Bogus proof.
a+b?
; > ~ab, so
b7
O-G_; >0-+ab, SO
0=0 which is trivially true. H

So watch out for backward proofs!

Problem 3.
Albert announces to his class that he plans to surprise them with a quiz sometime next week.

His students first wonder if the quiz could be on Friday of next next. They reason that it can’t: if Albert
didn’t give the quiz before Friday, then by midnight Thursday, they would know the quiz had to be on Friday,
and so the quiz wouldn’t be a surprise any more.

Next the students wonder whether Albert could give the surprise quiz Thursday. They observe that if the
quiz wasn’t given before Thursday, it would have to be given on the Thursday, since they already know it
can’t be given on Friday. But having figured that out, it wouldn’t be a surprise if the quiz was on Thursday
either. Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, or Monday. Namely, it’s
impossible for Albert to give a surprise quiz next week. All the students now relax, having concluded that
Albert must have been bluffing.

And since no one expects the quiz, that’s why, when Albert gives it on Tuesday next week, it really is a
surprise!

What do you think is wrong with the students’ reasoning?

Solution. The basic problem is that “surprise” is not a mathematical concept, nor is there any generally
accepted way to give it a mathematical definition. The “proof” above assumes some plausible axioms about

surprise, without defining it. The paradox is that these axioms are inconsistent. But that’s no surprise
: —) since, mathematically speaking, we don’t know what we’re talking about.

Mathematicians and philosophers have had a lot more to say about what might be wrong with the students’

reasoning,—see Chow, Timothy Y. The surprise examination or unexpected hanging paradox, American
Mathematical Monthly (January 1998), pp. 41-51. |
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Mathematics for Computer Science

MIT 6.0427/18.0627

Proof by Confradiction
Proof by Cases

: Proof by Contradiction
Is 31332 <11?
Ifso,1332<1331

That's not true, so

J1332 >11

Fabruaey 4. 2011 lec 1.1

Proof by Contradiction

2w~

If an assertion implies
something false, then
the assertion itself
must be falsel

z|w|=

sirp<| Proof by Contradiction

Theorem: \/é is irrational.

S0 can assume
=n n=2k
V2 - d n® = 4k?
J2d=n Lo - 4
Zdz :nz,_,/ P =

So dis even

So nis even

Febevary 4, 2011 lecIF 6

Pl i s
2
. Proof by Contradiction

Theorem: J2 is irrational.

* Suppose /2 was rational

* So have n, d infegers without common
prime facfors such that

V2 =2

- We will show that n & d are both even.
This contradicts no common factor.

(088 ivers 2 ieyer Febrvary 4, 2011 leciF3

;g Quickie

Proof assumes that
if n? is even, then n is even.
Why is this true?
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Mathematics for Computer Science
MIT 6.0427/18.0627

Proof by Cases

s Case 1: x >0

Trye

if (x>0) || (x <= 0 && y>100))

frue.
if ((<>0) | y>100)
OR

Java Logical Expression
if (x>0) || (x <= 0 && y>100))

better: if (x>0) || y>100)

AND

OR
(more code)

{mor‘e. code)

lec If 9

Fabruary 4, 2011

e Case 2: x < 0

false

if ((<>0) J| (x <= 0 && y>100))

false
if (>0) || y>100)
OR

so both are frue

Febrary 42011

o+ Case 2: x < 0

trie

al=la

Februory 4, 2011

lec 1F.12

BEH

if ( y>100)

so both still the same

bec 1F 13
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Proof by Cases

Reasoning by cases can break a
complicated problem into

easier subproblems.

Some philosophers™ think
_reasoning this way is worrisome.

*intuitionists

Fabriary 4. 2011

- P

lec IF 25

T ~

shgtl $1,000,000 Question

The answer is on my
deskl
(Proof by Cases)

& $1,000,000 Question

Is P=NP?

iec 228

.l

Team Problems

Zlw

lec IF 30

Problems
1—4

lec IF.31
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science February 4
Prof. Albert R Meyer revised Tuesday 1% February, 2011, 13:43

In-Class Problems Week 1, Fri.

Problem 1.
Prove thatif a - b = n, then a or b must be < /n, where a, b, and n are nonnegative integers. Hint: by
contradiction

Problem 2.
Generalize the proof of Theorem 1.8.1 repeated below that +/2 is irrational. For example, how about ¥/27?
Remember that an irrational number is a number that cannot be expressed as a ratio of two integers.

Theorem. /2 is an irrational number.

Proof. The proof is by contradiction: assume that /2 is rational, that is,
V2=12, I
P (M

where 1 and d are integers. Now consider the smallest such positive integer denominator, d.
We will prove in a moment that the numerator, n, and the denominator, d, are both even. This

implies that
n/2

d/2

is a fraction equal to +/2 with a smaller positive integer denominator, a contradiction.

Since the assumption that V2 is rational leads to this contradiction, the assumption
must be false. That is, /2 is indeed irrational. This italicized comment on the
implication of the contradiction normally goes without saying, but since this is an
early example of proof by contradiction, we’ve said it.

To prove that n and d have 2 as a common factor, we start by squaring both sides of (1) and get
2 =n2/d?, so
2d? = n?. (2)

So 2 is a factor of n2, which is only possible if 2 is in fact a factor of 7.

This means that n = 2k for some integer, k, so
n? = (2k)? = 4k2. 3)
Combining (2) and (3) gives 2d? = 4kZ, so
d? = 2k2. (4)

So 2 is a factor of d2, which again is only possible if 2 is in fact also a factor of d, as claimed.
]

Creative Commons e 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 1, Fri.

Problem 3.
If we raise an irrational number to an irrational power, can the result be rational? Show that it can by

considering \/fﬁ and arguing by cases.

Problem 4.
Here is a different proof that +/2 is irrational, taken from the American Mathematical Monthly, v.116, #1,
Jan. 2009, p.69:

Proof. Suppose for the saker of contradiction that +/2 is rational, and choose the least integer, q > 0, such
that (ﬁ— l) g is a nonnegative integer. Let g’ ::= (ﬁ— 1) g. Clearly 0 < ¢’ < g. But an easy

computation shows that (ﬁ - 1) g’ is a nonnegative integer, contradicting the minimality of g. |

(a) This proof was written for an audience of college teachers, and at this point it is a little more concise
than desirable. Write out a more complete version which includes an explanation of each step.

(b) Now that you have justified the steps in this proof, do you have a preference for one of these proofs
over the other? Why? Discuss these questions with your teammates for a few minutes and summarize your
team’s answers on your whiteboard. : '




Massachusetts Institute of Technology
6.042]/18.062]J, Spring ’ 1 1: Mathematics for Computer Science February 4
Prof. Albert R Meyer revised Tuesday 1% February, 2011, 13:43

Solutions to In-Class Problems Week 1, Fri.

Problem 1.
Prove that if @ - b = n, then a or b must be < /n, where a, b, and n are nonnegative integers. Hint: by
contradiction

Solution. Proof. Suppose to the contrary that a > /n and b > ./n. Then
a:b> fn-H=n,

contradicting the fact thata - b = n. O

Problem 2.
Generalize the proof of Theorem 1.8.1 repeated below that /2 is irrational. For example, how about J2?
Remember that an irrational number is a number that cannot be expressed as a ratio of two integers.

Theorem. ~/2 is an irrational number.

Proof. The proof is by contradiction: assume that /2 is rational, that is,
n
2=+, (1)

where n and d are integers. Now consider the smallest such positive integer denominator, d.
We will prove in a moment that the numerator, 7, and the denominator, d, are both even. This
implies that

nf2

d/2

is a fraction equal to /2 with a smaller positive integer denominator, a contradiction.

Since the assumption that ~/2 is rational leads to this contradiction, the assumption
must be false. That is, 2 is indeed irrational. This italicized comment on the
implication of the contradiction normally goes without saying, but since this is an
early example of proof by contradiction, we’ve said it.

To prove that n and d have 2 as a common factor, we start by squaring both sides of (1) and get
2 =n?/d?,so

Pdr =", (2)
So 2 is a factor of n2, which is only possible if 2 is in fact a factor of 1.

This means that n = 2k for some integer, k, so

n?* = (2k)? = 4k2. (3)

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 1, Fri.

Combining (2) and (3) gives 2d? = 4k?, so
d? = 2k2. (4)

So 2 is a factor of d?, which again is only possible if 2 is in fact also a factor of d, as claimed.
[ |

Solution. Proof. We prove that for any n > 1, %2 is irrational by contradiction.
Assume that ¥/2 is rational. Under this assumption, there exist integers a and b with /2 = a/b, where
b is the smallest such positive integer denominator. Now we prove that a and b are both even, so that
a2
b/2

is a fraction equal to /2 with a smaller positive integer denominator, a contradiction.

Y2 =<
b
a
2:;
2bt i—al:

The lefthand side of the last equation is even, so a” is even. This implies that a is even as well (see below
for justification).
In particular, @ = 2¢ for some integer c. Thus,

b3 =2 =20 cl,

bt = 1len,

Since n — 1 > 0, the righthand side of the last equation is an even number, so 5" is even. But this implies
that » must be even as well, contradicting the fact that a /b is in lowest terms. O

Now we justify the claim that if a” is even, so is a.

There is a simple proof by contradiction: suppose to the contrary that a is odd. It’s a familiar (and easily
verified!) fact that the product of two odd numbers is odd, from which it follows that the product of any
finite number of odd numbers is odd, so a” would also be odd, contradicting the fact that a” is even.

More generally for any integers m,k > 0, if mk is divisible by a prime number, p, then m must be
divisible by p. This follows from the factorization of an integer into primes (which we’ll discuss further
in a coming lecture): the primes in the factorization of m* are precisely the primes in the factorization of
m repeated k times, so if there is a p in the factorization of m* it must be one of k copies of a p in the
factorization of m. |

Problem 3.
If we raise an irrational number to an irrational power, can the result be rational? Show that it can by

considering ﬁﬁ and arguing by cases.

Solution. We want to find irrational numbers a, b such that a? is rational. We argue by cases.

Case 1: [\/5\/i is rational]. Leta = b = V2. a and b are irrational since /2 is irrational as we know.
Also, a? is rational by case hypothesis. So we have found the required a and b in this case.

I'Two odd integers can be written as 2x + 1 and 2y + 1 for some integers x and y. Then their product is also odd because it
equals 2z + 1 where z = 2(2xy + x + y) + 1.



Solutions to In-Class Problems Week 1, Fri. 3

Case 2: [ﬁﬁ is irrational]. Leta = ﬂﬁ and b = +/2. Then a is irrational by case hypothesis, we
know b is irrational, and -
2
AP (ﬁﬂ) - \/5‘/5‘/5: v2i =2,

which is rational. So we have found the required @ and b in this case also.
So in any case, there will be irrational @, b such that a? is rational. Note that we have no clue about which
case is true, but that didn’t matter.
O

Problem 4.

Here is a different proof that /2 is irrational, taken from the American Mathematical Monthly, v.116, #1,
Jan. 2009, p.69:

Proof. Suppose for the sake of contradiction that /2 is rational, and choose the least integer, g > 0, such
that (\/5— l)q is a nonnegative integer. Let g’ ::= (\/5—~ 1) g. Clearly 0 < ¢’ < g. But an easy

computation shows that (\/ﬁ . 1) ¢’ is a nonnegative integer, contradicting the minimality of g. |

(a) This proof was written for an audience of college teachers, and at this point it is a little more concise
than desirable. Write out a more complete version which includes an explanation of each step.

Solution. The points that need justification are:

1. Why is there a positive integer, ¢, such that (\/E - I) g is a nonnegative integer? Answer: Since /2

is rational, so is +/2 — 1. So +/2— 1 can be expressed as an integer quotient with positive denominator;
now just let ¢ be that denominator.

2. Why is there such a least positive integer, g7 Answer: As long as there is one such positive integer,
there has to be a least one. This obvious fact is known as the Well Ordering Principle.

3. Why is 0 < ¢’ < q? Answer: We know that | < +/2 < 2,500 < +/2—1 < 1. Therefore,
0< (\/5— 1) r < r for any real number r > 0.

4. Why is (+/2 — 1)g’ a nonnegative integer? Answer: It’s actually positive, because it is a product of
positive numbers. It’s integer because

2
(ﬁ— l)q' = (\/5— 1) q= 2q—2q\/§—i—q =q—2- [(«/5— l)q:|
and the last term is of the form (integer — 2 - [integer]).
|

(b) Now that you have justified the steps in this proof, do you have a preference for one of these proofs
over the other? Why? Discuss these questions with your teammates for a few minutes and summarize your
team’s answers on your whiteboard.

Solution. Both proofs seem about equally easy to understand. The previous problems shows that the first
proof generalizes pretty directly from square roots to kth roots, which doesn’t seems as clear for the this
second proof. On the other hand, the first proof requires appeal to Unique Prime Factorization, while the
second just uses simple algebra. 3]
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FES

Well Ordering principle

é;'.’% s Mathematics for Computer Science 2]
Eam MIT 6.0427/18.0627 BN -
Every nonempty set of
. nonnegative integers
The Well Ordering b
Pri nciple least element.
Familiar? Now you mention it, Yes.
Obvious? VYes.
e o Trivial?  Yes. But watch out:

s[nl7

-« Well Ordering principle

Every nonempty set of
nonnegative rationals
has a
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Well Ordered Postage
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can make any amount <m,
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Proof by WOP. Let m be
smallest n with =. But = for
h=0,som > 0, and
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;g Well Ordered Postage

Som >11. Nowm >m-3 > 8
so can get m-3¢. But
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b ;HE Geometric sums

T e L
S 7=
add r™ to both sides
LHS=1+r+rf+r’ 4o+ 4+ r"

mit m+l _ m ikt
RHS " 1+r r? SRR 1

r—1 pi—1 1|
so = at m, contradicting =:

there is no counterexample.
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To prove Vn e N.P(n) using WOP:
» define sef of counterexamples
Ci={neN | NOT P(n)]

* assume C is not empty. By WOP,
have minimum element m € C

» Reach a contradiction somehow ...
usuclortby proving P(m)vith

A e
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In-Class Problems Week 2, Mon.

Problem 1.
The proof below uses the Well Ordering Principle to prove that every amount of postage that can be assem-
bled using only 6 cent and ]5 cent stamps, is divisible by 3. Let the notation “ j/['&” indicate that integer j
is a divisor of 1nteger k, and Tet S(1) mean that exactly n cents postage can beg%;mbled using only 6 and
15 cent stamps. Then the proof shows that

f
Vo
s T diisor of
S(n) IMPLIES 3 |n, forall nonnegative integers 7. (*)
Fill in the missing portions (indicated by “...”) of the following proof of (*).

Let C be the set of counterexamples to (*), namely'

Cu={n|..} Lwill ghav Fuls

Assume for the purpose of obtaining a contradiction that C_is nonempty. Then by the WOP,

there is a smallest number, m € C. This :n must be positive beuuse@ O WO(L”‘ N”’ a (0 t/ﬁ#( e)‘%ﬂ/
But if S(m) holds and m is positive, then S(m — 6) or S(m — 15) must hold, because@_\ ﬂ-ﬂfﬁ {IWA L? P ‘
05

So suppose S(m — 6) holds. Then 3 | (m — 6), because. @

But if 3 | (m — 6), then obviously 3 | m, contradicting the fact that m is a counterexample.

Next, if S(rm — 15) holds, we arrive at a contradiction in the same way. Since we get a contra-
diction in both cases, we conclude that. . @

which proves that (*) holds.

Problem 2.
Use the Well Ordering Principle to prove that

ikzzn(n—i-l)&n—i—l)- 1

6

for all nonnegative integers, n.

. o) . .
Creative Commons [Slue] 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
"The notation “{n | ...}" means “the set of elements, n, such that ...




2 In-Class Problems Week 2, Mon.

Problem 3.
Euler's Conjecture in 1769 was that there are no positive integer solutions to the equation

a* + b* + c* = d*.

Integer values for a, b, ¢, d that do satisfy this equation, were first discovered in 1986. So Euler guessed
wrong, but it took more two hundred years to prove it.
Now let’s consider Lehman’s equation, similar to Euler’s but with some coefficients:

8a* + 4b* + 2c* = a* 2)

Prove that Lehman’s equation (2) really does not have any positive integer solutions.
Hint: Consider the minimum value of @ among all possible solutions to (2).

How '}?’ p(WE e plibion >s lowest

Problem 4.

In Chapter ??, the Well Ordering was used to show that all positive rational numbers can be written in
“lowest terms,” that is, as a ratio of positive integers with no common factor prime factor. Below is a
different proof which also arrives at this correct conclusion, but this proof is bogus. Identify every step at
which the proof makes an unjustified inference.

Bogus proof. Suppose to the contrary that there was positive rational, ¢, such that ¢ cannot be written in
lowest terms. Now let C be the set of such rational numbers that cannot be written in lowest terms. Then
q € C, so C is nonempty. So there must be a smallest rational, go € C. So since go/2 < qo, it must be
possible to express ¢g/2 in lowest terms, namely,

qo m :
0 (A 24 3
> (3)
for positive integers m, n with no common prime factor. Now we consider two cases:
Case 1: [n is odd]. Then 2m and n also have no common prime factor, and therefore

qoﬁz.(ﬂ)zﬁ

n n

expresses gg in lowest terms, a contradiction.
Case 2: [n is even]. Any common prime factor of m and 11/2 would also be a common prime factor of m
and n. Therefore m and n /2 have no common prime factor, and so

m
o = ——
g n/2
expresses ¢gg in lowest terms, a contradiction.
Since the assumption that C is nonempty leads to a contradiction, it follows that C is empty—that is,

there are no counterexamples. |
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Solutions to In-Class Problems Week 2, Mon.

Problem 1.

The proof below uses the Well Ordering Principle to prove that every amount of postage that can be assem-
bled using only 6 cent and 15 cent stamps, is divisible by 3. Let the notation “; | k™ indicate that integer j
is a divisor of integer k, and let S(n) mean that exactly n cents postage can be assembled using only 6 and
15 cent stamps. Then the proof shows that

S(n) IMPLIES 3 | n, forall nonnegative integers n. *)
Fill in the missing portions (indicated by “...”) of the following proof of (*).

Let C be the set of counterexamples to (*), namely'

Cra=dm] e}
Solution. 7 is a counterexample to (*) if n cents postage can be made and » is not divisible by

3, so the predicate
S(n) and NOT(3 | n)

defines the set, C, of counterexamples. |

Assume for the purpose of obtaining a contradiction that C is nonempty. Then by the WOP,
there is a smallest number, m € C. This m must be positive because. ...

Solution. ...3 | 0, so 0 is not a counterexample. \/ |
But if S(m) holds and m is positive, then S(m — 6) or S(m — 15) must hold, because....
Solution. ...if m > 0 cents postage is made from 6 and 15 cent stamps, at least one stamp
F-'-_-"———‘——-—-‘
must have been used, so removing this stamp will leave another amount of postage that can be
)
made. O

4
&3\)\/ 3 CQ’\h 8o suppose S(m — 6) holds. Then 3 | (m — 6), because. ..

Solution. ...if NOT(3 | (m — 6)), then m — 6 would be a counterexample smaller than m,
contradicting the minimality of m. s

But if 3 | (m — 6), then obviously 3 | m, contradicting the fact that m is a counterexample.

Next, if S(m — 15) holds, we arrive at a contradiction in the same way. Since we get a contra-
diction in both cases, we conclude that. ..

Solution. ...C must be empty. That is, there are no counterexamples to (*), O

3T 5
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
I'The notation “{n | ...}” means “the set of elements, 1, such that ... "



2 Solutions to In-Class Problems Week 2, Mon.

which proves that (*) holds.

Problem 2.
Use the Well Ordering Principle to prove that

)

ikz _n(n+1)@2n+1)
k=0 6

for all nonnegative integers, n.

Solution. The proof is by contradiction.

Suppose to the contrary that equation (1) failed for some n > 0. Then by the WOP, there is a smallest
nonnegative integer, m, such that (1) does not hold when n = m.

But (1) clearly holds when n = Q. which means that m > 1. So m — 1 is nonegative, and since it is
smaller than m, equation (1) must be true for n = m — 1. That is,~

m—1
Y k2= (m—l)((m—l)zl)(Z(m—l)Jr1). @
k=0

Now add m? to both sides of equation (2). Then the left hand side equals
m
2K
k=0
and the right hand side equals

(m—-1D)((m-1)+1D2m—-1)+1) 2
5 +m
Now a little algebra (given below) shows that the right hand side equals ,(L | t
60 T, . C[ﬁ%

m(m+ 1)(2m + 1)

= 2 Mm+ DCm+ 1)

That is,

6 ?
contradicting the fact that equation (1) does not hold for m.

It follows that there is no smallest nonnegative integer for which equation (1) fails. Hence (1) must hold
for all nonnegative integers.

Here’s the algebra:

(m—1)(m-1) —; DEm-1)+1) YL (m— 1)m6(2m -1 iz
5 (m? —mé(Zm -1 e =
_(2m®—3m? 4+ m) 5 6m?
g 6 6
(2m3 + 3m? +m)
6
_m(m+1)2m+1)
T 6




Solutions to In-Class Problems Week 2, Mon. 3

Problem 3.
Euler’s Conjecture in 1769 was that there are no positive integer solutions to the equation

atehti e =

Integer values for a, b, ¢, d that do satisfy this equation, were first discovered in 1986. So Euler guessed
wrong, but it took more two hundred years to prove it.
Now let’s consider Lehman’s equation, similar to Euler’s but with some coefficients:

8a* + 4b* + 2¢* = a* (3)

Prove that Lehman’s equation (3) really does not have any positive integer solutions.
Hint: Consider the minimum value of @ among all possible solutions to (3).

Solution. Suppose that there exists a solution. Then there must be a solution in which a has the smallest
possible value. We will show that, in this solution, a, b, ¢, and d must all be even. However, we can then
obtain another solution over the positive integers with a smaller a by dividing @, b, ¢, and d in half. This is
a contra_@ﬁ@ﬂ,mdmw

All that remains is to show that a, b, ¢, and d must all be even. The left side of Lehman’s equation is
even, so d* is even, so d must be even. Substituting d = 2d’ into Lehman’s equation gives:

- == &w/ vold y#/ kare -}o do ﬁ[a r

8a* + 4b* + 2¢* = 164"

Now 2c¢* must be a multiple of 4, since every other term is a multiple of 4. This implies that c* is even
and so ¢ is also even. Substituting ¢ = 2¢’ into the previous equation gives:
8a* + 4b* +32¢"* = 164" )

Arguing in the same way, 4b% must be a multiple of 8, since every other term is. Therefore, b* is even
and so b is even. Substituting b = 2b’ gives:

8a* + 640" + 32¢" = 164" (6)

Finally, 8a* must be a multiple of 16, a* must be even, and so @ must also be even. Therefore, a, b, c,

and d must all be even, as claimed. 2]
Problem 4.

In Chapter 2, the Well Ordering was used to show that all positive rational numbers can be written in “lowest
terms,” that is, as a ratio of positive integers with no common factor prime factor. Below is a different proof
which also arrives at this correct conclusion, but this proof is bogus. Identify every step at which the proof
makes an unjustified inference.

Bogus proof. Suppose to the contrary that there was positive rational, ¢, such that g cannot be written in
lowest terms. Now let C be the set of such rational numbers that cannot be written in lowest terms. Then
g € C,so C is nonempty. So there must be a smallest rational, go € C. So since go/2 < qo, it must be
possible to express gp/2 in lowest terms, namely,

qo m
ik (7

n

for positive integers m, n with no common prime factor. Now we consider two cases:



4 Solutions to In-Class Problems Week 2, Mon.

Case 1: [n is odd]. Then 2m and n also have no common prime factor, and therefore

5 (m ) 2m
0 =2 — e
1 n n
expresses gp in lowest terms, a contradiction.

Case 2: [n is even]. Any common prime factor of m and n/2 would also be a common prime factor of m
and n. Therefore m and n/2 have no common prime factor, and so

m

fIO=n—/2

expresses ¢ in lowest terms, a contradiction.

Since the assumption that C' is nonempty leads to a contradiction, it follows that C' is empty—that is,
there are no counterexamples. |

Solution. The proof applies Well Ordering to the positive rationals. Unfortunately, the positive rationals
are not Well Ordered, that is, < is not well-founded on the positive rationals. For example, there is no least
positive rational. Aside from that, the other steps in the argument are correctly reasoned. ||



The Logic of
Propositions

February 9, 2011 Jec ZW.2

s [naf7
Si-p Propositional (Boolean) Logic

fis| s 1

A proposifion is either True or False
Example:
There are 6 regular solids.

False

Wake up!
Where am I?
It's 3PM.

Alvert 8 Meyer February 9, 2011 Jec ZW.2

Non-examples:

= English to Math

Greeks carry Swords or Javelins

& —7 VT

True even if a Greek carries both
a Sword and a Javelin

February 9, 2011 lec 2W 3

3 <l  Definition of OR

"B The value of (P OR Q) is T iff

PisT,orQisT,or bothare T.
Truth Table for OR

P | Q|PORQ
5 e i
Al F il
F i T
: - F iff both
= F P.Q are F

Fetrury 9, 2011 lec 2W.5

English to Math

Greeks carry Bronze or Copper swords

G (B DIE)

Bronze or Copper but not both

February 9, 2011 Jec 2W A

:.I'EE Definition of AND
n 2

The value of (P AND Q) is T iff
bothP and Q are T.
Truth Table for AND

P Q |PAND Q
D T iff both
PQareT

F
F
F

n|m|4|/H
Mn|A4|mfH

February 9. 2011 lec 2W.7




==l Definition of NOT

1misin

The NOT(P) is T iff P is F.

Truth Table for NOT (P)
P | NOT(P)
E| s
=

February 9. 201 lec 2W 8

2 [n]7
| [w]s
1)

158 in

TeT

Evaluation in an Environment

=

Example: Suppose environment, v, assigns
viP)=T, v(Q)= T, v(R) =F.
Truth value of
(NOT(P AND Q) ) OR (R XOR NOT(Q))

February 9, 2011 lee W11

s [uf7

3. [ DeMorgan's Law

Bin

HEE

Pv Q is equivalent to P A Q
Plal-PvQ)] [2AQ
T R 5 |lE |1
15 | S | T bR el | A
E e AR TR
|l | T

February 7, 2011 lec 2W.14

s [n]7
wls

i Truth Assignments

[=]

8|1

A truth assignment assigns a value T
or F to each propositional variable.
Computer scientists call assignment
of values to variables an environment.
If we know the environment, we can
find the value of a propositional
formula.

(ECEE ey 3 snayer Februory 9, 2011 lec 2W.9
Pt

6 - ivalence

oo -« Equivalenc

Two propositional formulas are
equivalent
iff they have the same truth
value in all environments.

February 5, 2011 Jec 2W 12

s [1]7]
1| |w]s
=

3.0 DeMorgan’s Law e
is equivalent to P A Q

=

PvQ@ o)
PlQl-PvQ) PAQ@
T T F BRI F
BB B FIFIT
Folom BT T |8 F
Bl | R

Same final column, so equivalent
-- proof by Truth Table

(DS ez meyer Feteuary 9, 2011 Jec 2W.15
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Definition of IMPLIES

=== The value of (P IMPLIES Q) is F iff
Pis Tand Qis F.
Truth Table for IMPLIES (—)

Eiff Plisil
Qis F

February 9, 2011 Jec 2W 16

A True Implication

(1=-1) IMPLIES (T am Pope)-.
We reasoned correctly fo |
reach the false conclusion-~

BEE
==

A True Implication

u-
= sla
e

(1=-1) IMPLIES (I am Pope)
We reasoned correctly to
reach the false conclusion

Februnry 9, 2011 bec ZWAT

February 9, 20U lec 2W .18

A True Implication

wE|n

(1=-1) IMPLIES (I am Pope)
We reasoned correctly to
reach the false conclusion
from the false hypothesis.

Fetruary §, 2011 Jec 2WIS

s [n]7

EHE—' A True Implication

=]z
-

(1=-1) IMPLIES (I am Pope)
We reasoned correctly to
reach the false conclusion
from the false hypothesis.

A True Implication

(1=-1) IMPLIES (I am Pope)
The whole implication is true,
even though both conclusion
& hypothesis are false.

February 9, 2011 lec 2W.20

Februnry 9, 2011 lec 2W.21
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ﬁﬁ Satisfiability & Validity

A formula is satisfiable iff it
IS frue in some environment.

A formula is valid iff it is
true in all environments.

February 9, 2011 bec 2W.22

s [n]7

Slgi Efficient Test for Satisfiability?

The P=NP? question is equivalent
to asking if there is an efficient
(polynomial rather than
exponential time) procedure

to check satisfiability.

February 9, 2011

o|1af7

si-m« Verifying Valid, Satisfiable

a0

Truth table size doubles with
each additional variable
--exponential growth. Makes
truth tables impossible when
there are hundreds of variables.
(In current digital circuits,
there are millions of variables.)

s [ul7

- Application: Digital Logic

" su=A XOR B
c:=A AND B

A N
A00) —S
8 /D_
—~C

Tela

Betpr/imn wikipedis oea/elhi/Adior_lelactronica)

(B8 sewinse rarery 201

EIE

stsms| Other Applications

158N

Java Logical Expressions:

OR AND
if ((x>0) || (x <= 0 && y>100))

(more- code)

Fetruary 9, 2011 lec ZW.39

5 Digital Logic
i di—c XORIs
c,. =(c. AND s) OR c
l—'d
A—> Cm__’ ID_' Cour
: k
B'--WD
C
full adder

February 9, 2011 fec 2WA2
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6.042J/18.062J. Spring "11: Mathematics for Computer Science February 9
‘ Prof. Albert R Meyer revised Sunday 6™ February, 2011, 23:53

In-Class Problems Week 2, Wed.

Problem 1.
Prove by truth table that OR distributes over AND, namely,

P OR (Q AND R) isequivalentto (P OR Q) AND (P OR R) @)

Problem 2.
This problem' examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally, and conversely, if the system is functioning normally, then
the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.

3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using four propositional vari-
ables:

.= file system locked,

L

0 ::= new messages are queued,

B ::= new messages are sent to the message buffer,
N

= system functioning normally.

(b) Demonstrate that this set of specifications is satisfiable by describing a single truth assignment for the
variables L, O, B, N and verifying that under this assignment, all the specifications are true.

(c) Argue that the assignment determined in part (b) is the only one that does the job.

Problem 3.
When the mathematician says to his student, “If a function is not continuous, then it is not differentiable,”
then letting D stand for “differentiable” and C for continuous, the only proper translation of the mathemati-
cian’s statement would be

NOT(C) IMPLIES NOT(D),

or equivalently,
4 D IMPLIES C.
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'From Rosen, 5th edition, Exercise 1.1.36
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2 In-Class Problems Week 2, Wed.

But when a mother says to her son, “If you don’t do your homework, then you can’t watch TV, then
letting T stand for “watch TV and H for “do your homework,” a reasonable translation of the mother’s
statement would be

NOT(H) IFF NOT(T),

or equivalently,
H 1FF T.

Explain why it is reasonable to translate these two IF-THEN statements in different ways into proposi-
tional formulas.

Problem 4.
Propositional logic comes up in digital circuit design using the convention that T corresponds to 1 and F
to 0. A simple example is a 2-bit half-adder circuit. This circuit has 3 binary inputs, ay,aq and b, and 3
binary outputs, ¢, 01,09. The 2-bit word ajag gives the binary representation of an integer, k, between 0
and 3. The 3-bit word cs;s5¢ gives the binary representation of k + b. The third output bit, c, is called the
final carry bit.

So if k and b were both 1, then the value of @;ao would be 01 and the value of the output c¢s159 would
010, namely, the 3-bit binary representation of 1 + 1.

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is, when k = 3 and b = 1.
In that case, the value of c¢sys¢ is 100, namely, the binary representation of 3 + 1.

This 2-bit half-adder could be described by the following formulas:

cop = b
S0 = dg XOR ¢ "“,‘7P0
¢y = ag AND ¢g the carry into column |

§1 =d; XOR ¢

¢2 = d; AND ¢y the carry into column 2
Cc = C2.
(a) Generalize the above construction of a 2-bit half-adder to an n+ 1 bit half-adder with inputs a,,, ... .ay, ag

and b for arbitrary n > 0. That is, give simple formulas for s; and ¢; for 0 < i < n + 1, where ¢; is the
carry into column / and ¢ = ¢, +1.

(b) Write similar definitions for the digits and carries in the sum of two 12+ 1-bit binary numbers a,, . .. ajag
and bn el blbg.

Visualized as digital circuits, the above adders consist of a sequence of single-digit half-adders or adders
strung together in series. These circuits mimic ordinary pencil-and-paper addition, where a carry into a
column is calculated directly from the carry into the previous column, and the carries have to ripple across
all the columns before the carry into the final column is determined. Circuits with this design are called
ripple-carry adders. Ripple-carry adders are easy to understand and remember and require a nearly minimal
number of operations. But the higher-order output bits and the final carry take time proportional to n to
reach their final values.

(c) How many of each of the propositional operations does your adder from part (b) use to calculate the
sum?
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In-Class Problems Week 2, Wed.

The Propositional Operations
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Massachusetts Institute of Technology
6.042J/18.062J, Spring *11: Mathematics for Computer Science February 9
Prof. Albert R Meyer revised Thursday 10 February, 2011, 11:40

Solutions to In-Class Problems Week 2, Wed.

Problem 1.
Prove by truth table that OR distributes over AND, namely,
P OR (Q AND R) isequivalentto (P OR Q) AND (P OR R) (1)

Solution.
PI|OJR[P orR (O AND R)[(P OR Q) AND (P OR R)
T *T|'T T T T T T
T|T|F T F T T T
T|F|T T F T T T
T|F|F T F T T T
F|T|T T T T T T
F|T|F F F T F F
F|F|T F F F F T
F|F|F F F F F F

The highlighted column giving the truth values of the first formula is the same as the corresponding column
of the second formula, so the two propositional formulas are equivalent. O

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 2, Wed.

Problem 2.
This problem' examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally, and conversely, if the system is functioning normally, then
the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.
3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using four propositional vari-
ables:

L ::= file system locked,
Q ::= new messages are queued,
B ::= new messages are sent to the message buffer,

N ::= system functioning normally.

Solution. The translations of the specifications are:

NOT(L) IMPLIESQ (Spec. 1.(a))
NOT(L) IMPLIES B (Spec. 1.(b))
NOT(L)IFFN (Spec. 1.(c))
NOT(Q) IMPLIES B (Spec. 2.)
NOT(B) (Spec. 3.)

O

(b) Demonstrate that this set of specifications is satisfiable by describing a single truth assignment for the
variables L, O, B, N and verifying that under this assignment, all the specifications are true.

Solution. An assignment that works is

Il

I

w0 =
|
=] T

To find this assignment, we could have started constructing the sixteen line truth table—one line for each
way of assigning truth values to the four variables L, N, Q, and B—and calculated the truth value of
the AND of all the five specifications under that assignment, continuing until we got one that made the
AND-formula true.

If for every one of the sixteen possible truth assignments, the AND-formula was false, then the system is not
satisfiable. - O
— e

IFrom Rosen, 5th edition, Exercise 1.1.36



Solutions to In-Class Problems Week 2, Wed. 3

(c) Argue that the assignment determined in part (b) is the only one that does the job.

Solution. We can avoid calculating all 16 rows of the full truthtable calculation suggested in the solution to
part (b) by reasoning as follows. In any truth assignment that makes all five specifications true,

e B must be false, or the last specification, (Spec. 3.), would be false.
e Given that B is false, (Spec. 2.) and (Spec. 1.(b)) can be true only if Q and L are true.
e Given that L is true, (Spec. 1.(c)) can be true only if N is false.

Thus, in order for all five specifications to be true, the assignment has to be the one in the solution to part (b)
O

Problem 3.
When the mathematician says to his student, “If a function is not continuous, then it is not differentiable,”
then letting D stand for “differentiable” and C for continuous, the only proper translation of the mathemati-
cian’s statement would be

NOT(C) IMPLIES NOT(D),

or equivalently,
D 1MPLIES C.

But when a mother says to her son, “If you don’t do your homework, then you can’t watch TV,” then
letting T stand for “watch TV” and H for “do your homework,” a reasonable translation of the mother’s
statement would be

NOT(H) IFF NOT(T),

or equivalently,
H 1FF T.

Explain why it is reasonable to translate these two IF-THEN statements in different ways into proposi-
tional formulas.

Solution. We know that a differentiable function must be continuous, so when a function is not continuous,
it is also not differentiable. Now mathematicians use IMPLIES in the technical way given by its truth table.
In particular, if a function is continuous then to a mathematician, the implication

NOT(C) IMPLIES NOT(D),

is automatically true since the hypothesis (left hand side of the IMPLIES) is false. So whether or not
continuity holds, the mathematician could comfortably assert the IMPLIES statement knowing it is correct.

And of course a mathematician does not mean IFF, since she knows a function that is not differentiable
may well be continuous.

On the other hand, while the mother certainly means that her son cannot watch TV if he does not do his
homework, both she and her son most likely understand that if he does do his homework, then he will be
allowed watch TV. In this case, even though the Mother uses an IF-THEN phrasing, she really means IFF.

On the other hand, circumstances in the household might be that the boy may watch TV when he has not
only done his homework, but also cleaned up his room. In this case, just doing homework would not imply
being allowed to watch TV—the boy won’t be allowed to watch TV if he hasn’t cleaned his room, even if
he has done his homework.

The general point here is that semantics (meaning) trumps syntax (sentence structure): even though the
mathematician’s and mother’s statements have the same structure, their meaning may warrant different
translations into precise logical language.
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4 Solutions to In-Class Problems Week 2, Wed.

Problem 4.
Propositional logic comes up in digital circuit design using the convention that T corresponds to 1 and F to
0. A simple example is a 2-bit half-adder circuit. This circuit has 3 binary inputs, a1, ap and b, and 3 binary
outputs, ¢, 51, 0. The 2-bit word ayap gives the binary representation of an integer, k, between 0 and 3. The
3-bit word c¢s15p gives the binary representation of k + b. The third output bit, ¢, is called the final carry
bit.

So if k£ and b were both 1, then the value of ajag would be 01 and the value of the output c¢s159 would
010, namely, the 3-bit binary representation of 1 + 1.

In fact, the final carry bit equals 1 only when all three binary inputs are 1, thatis, whenk = 3and b = 1.
In that case, the value of ¢s15¢ is 100, namely, the binary representation of 3 + 1.

This 2-bit half-adder could be described by the following formulas:

co=>b

S0 = dp XOR c¢p

c1 = ap AND o the carry into column 1
§1 = da; XOR ¢

¢2 = ap AND ¢ the carry into column 2
C = C2.
(a) Generalize the above construction of a 2-bit half-adder to an n+-1 bit half-adder with inputs a,, ..., a1, ao

and b for arbitrary n = 0. That is, give simple formulas for s; and ¢; for 0 < i < n + 1, where ¢; is the
carry into column i and ¢ = ¢p41.

Solution. The n + 1-bit word a, ...ajap will be the binary representation of an integer, s, between 0 and
27+1 _ 1. The circuit will have n + 2 outputs ¢, S, ..., S1, So where the n + 2-bit word csy, ... 5150 gives
the binary representation of s + b.

Here are some simple formulas that define such a half-adder:

co=2b,

Si = aj XOR ¢ forO0 <i <n,
Ci+1 = a;j AND c¢; forO0 <i <n,

C = Cp+41-

(b) Write similar definitions for the digits and carries in the sum of two 7+ 1-bit binary numbers a,, ... a1ag
and by, ... b1 by.

Solution. Define

cog =0
51 =L P EOR: B KOR ¢ for0 <i <n,
ci+1 = (aj AND b;) OR
(ai AND c¢;j) OR (b; AND c¢;) for0<i <n,
C=Cnti-



Solutions to In-Class Problems Week 2, Wed. 5

Visualized as digital circuits, the above adders consist of a sequence of single-digit half-adders or adders
strung together in series. These circuits mimic ordinary pencil-and-paper addition, where a carry into a
column is calculated directly from the carry into the previous column, and the carries have to ripple across
all the columns before the carry into the final column is determined. Circuits with this design are called
ripple-carry adders. Ripple-carry adders are easy to understand and remember and require a nearly minimal
number of operations. But the higher-order output bits and the final carry take time proportional to n to
reach their final values.

(¢) How many of each of the propositional operations does your adder from part (b) use to calculate the
sum?

Solution. The scheme given in the solution to part (b) uses 3(n + 1) AND’s, 2(n + 1) XOR’s, and 2(n + 1)
OR’s for a total of 7(n + 1) operations.

The Propositional Operations

P | NOT P
T F
F T
P Q|PANDQ
T T T
T F F
F T F
F F F
P Q|PoORQ
T T T
T F T
F T T
F F F
P Q| PXxOROQ
T T F
T F T
F T T
F F F
P Q| P IMPLIES O
T T Y
T F F
F T T
F F T
P Q| PIFFQ
T T T
T F F
F T F
F F T

2Because cp is always 0, you could skip all the operations involving it. Then the counts are 3n + 1 AND’s, 2n + 1 XOR’s, and
2n OR’s for a total of 7n + 2 operations.



