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2ovesl  Mathematics for Computer Science
MIT 6.0427/18.062T7

Cardinality
(the size of sets)

Albert R Meyer,  February 18, 2011

T bijection archery

exactly 1 arrow out exucﬂy 1 arrow in

Mapping Rule (bij)

A bijection from
A to B implies

|Al = |B]
for finite A, B

Albert R Meyer,  February 18, 2011

3l
158

A: {ag, ay, G5, A3, Ay, ... fan-1}
subsefsi{as, | as;ax . o)
stRingale ORIEEE ]

this defines a bijection, so
# n-bit strings = |pow(A)]

i1  pow(A) bijection to bit-strings

bec 3F 3

Albert R Meyer,  Februory 18, 2011

lec 3F 4

Simd  pow(A) bijection to bit-strings

every computer scienfist
knows #n-bit strings, so
Corollary:

|pow(A)| = 214l

Albert R Meyer,  Februory 18, 2011

shs  surjective & function

< 1 arrow out > 1 aprow in

s == e B Here,

February 18, 2011

lec IF 6

2%



T5[7]
[ Jeiz Mapping Rule (surj)

[€1 out] A—B
implies |A| > #arrows.
i diml A—B
implies #arrows >|Bl|.

Albert B Meyer,  Februory 18, 2011 lec 37
E|heis Cantor's Idea

A surj B :i= Asurj func:A—B
think: "A as big as B"

A bij B ::= IbijectiontA—B

think: "A same size as B"

Albert R Meyer,  Februsry 18, 2011 e 312

e Mapping Rule (surj)

Surjective function
from A fo B implies

|Al > |B]

Albert R Meyer,  February 18, 2011 loc 3 8

Cantor's Idea

B -
CIEIME
=l ==
~BEE

A strict B :i=
B surj A AND NOT(A surj B)
think: A is smaller than B"
Cantor Thm:
A strict pow(A)

2088 Albert R Meyer,  Februory I8, 2011 e .13

—:;;E Familiar “size” properties
(A = B =C mLIES A = ()
A bij B bij C ImpLIES A bij C

(A = B > C impPLIEs A >C)
A surj B surj C IMPLIES A surj C

Albert R Meyer,  Februory 18, 2011 Lee 314

s
s " . " H
gég . Familiar "size” properties

(A > B > A IMpLIES A =B)
A surj B surj A IMPLIES A bij B

this is NOT obvious:
Schroeder-Bernstein Thm

@
{
i
i

18, 2011 lec 3715




UNfamiliar “size” property

"size +1 = size"
for «-sizes

Albert R Meyer,  February 18, 2011 lec 3F 36

Same Size Infinite Sets?
{234 )
and [Tl el
{0123}
a bijection

=5
(058 Albert R Meyer,  February 18, 2081 e

o[niv
ey Same Size Infinite Sets?

{1,2.3,4,.)
and 1T 1
f@ 123, )

the "same size"!

pow(N) bij ©o-bit-strings

infinite set N={0,1,2,..}
Stibsefi {0 2888 ==t
shieings il 1O RIREE @8 18

a bijection from pow(N) fo
infinite bit-strings, {0 1}

Alert R Meyer,  Februnry 18, 2011 e 318

oo Albert R Meyer,  February 18, 2011 lec 320

oo - {0,1}»is uncountable
A is countable iff can be
listed ag,0.0,,....
same as surj fcn: N—A
So {0,1}* is uncountable, because
N— {0,1}* — pow(N)

3 - i e bW
L surj

ﬁ% Team Problems
Problems
14

=222 Albert R Meyer,  February 18, 2011 e IF.25
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Massachusetts Institute of Technology
6.042J/18.0627J, Spring " 11: Mathematics for Computer Science February 18
Prof. Albert R Meyer revised Thursday 17" February, 2011, 00:27

In-Class Problems Week 3, Fri.
Vinmy padnd o £ 0] 2f6 bodk $.3.4

Problem 1. (a) Several students felt the proof of Lemma 5.2.3 was worrisome, if not circular. What do you
ink? i ) ! ) 7
i %hﬂiz L“ki (2 +}Md hﬂ& Nesoaty !

Lemma 5.2.3. Let A be asetand b ¢ A. If A is infinite, then there is a bijection from A U {h} to A.

Proof. Here’s how to define the bijection: since A is infinite, it certainly has at least one element; call it
ag. But since A is infinite, it has at least two elements, and one of them must not be equal to ag; call
this new element a;. But since A is infinite, it has at least three elements, one of which must not equal
ag or ay; call this new element a;. Continuing in the way, we conclude that there is an infinite sequence
ap.ai,az,...,dn, ... of different elements of A. Now we can define a bijection f : A U {b} — A:

f(b) = ay.
Sflan) = an+ forn € N,
fla) =a fora e A—{b,ag,ay....}.

(b) Use the proof of Lemma 5.2.3 to show that if 4 is an infinite set, then A surj N, that is, every infinite
set is “‘as big as” the set of nonnegative integers.

Problem 2.
This problem provides a proof of the [Schrider-Bernstein] Theorem:

If A surj B and B surj A, then A bij B. (1)
(a) Itis OK to assume that A and B are disjoint. Why?

(b) Explain why there are total injective functions /' : A — B,and g : B — A.

Picturing the diagrams for f and g, there is exactly one arrow out of each element —a left-to-right f-
arrow if the element is in A and a right-to-left g-arrow if the element is in B. This is because / and g are
total functions. Also, there is at most one arrow into any element, because f and g are injections.

So starting at any element, there is a unique, and unending path of arrows going forwards. There is also a
unique path of arrows going backwards, which might be unending, or might end at an element that has no
arrow into it. These paths are completely separate: if two ran into each other, there would be two arrows
into the element where they ran together.

This divides all the elements into separate paths of four kinds:

i. paths that are infinite in both directions,
ii. paths that are infinite going forwards starting from some element of A.
iil. paths that are infinite going forwards starting from some element of B.

(©09@)

Creative Commons 2388 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 3, Fri.

iv. paths that are unending but finite.
(¢) What do the paths of the last type (iv) look like?
(d) Show that for each type of path, either

o the f-arrows define a bijection between the A and B elements on the path, or
e the g-arrows define a bijection between B and A elements on the path, or

e both sets of arrows define bijections.
For which kinds of paths do both sets of arrows define bijections?

(e) Explain how to piece these bijections together to prove that A and B are the same size.

Problem 3.
The rational numbers fill the space between integers, so a first thought is that there must be more of them
than the integers, but it’s not true. In this problem you’ll show that there are the same number of positive
rationals as positive integers. That is, the positive rationals are countable.
(a) Define a bijection between the set, Z*, of positive integers, and the set, (Z* x Z7T), of all pairs of
positive integers:
(1, 1),(1,2),(1,3),(1,4),(1,5),...
(2,1),(2,2),(2,3),(2,4),(2,5),...
3.1,3,2),(3,3),(3,4),(3,5),...
(4,1),(4.2).(4,3),(4,4), 4.5),...
4 (5:1),(5,2),'(5,3), (5, 4); (5,5), - -~

(b) Conclude that the set, Q, of all positive rational numbers is countable.

Problem 4.

Let R : A — B be a binary relation. Use an arrow counting argument to prove the following generalization
of the Mapping Rule 1.

Lemma. If R is a function, and X C A, then

| X| = [R(X)|.
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Solutions to In-Class Problems Week 3, Fri.

Problem 1. (a) Several students felt the proof of Lemma 5.2.3 was worrisome, if not circular. What do you
think?

Lemma 5.2.3. Let A be asetand b ¢ A. If A is infinite, then there is a bijection from A U {b} to A.

Proof. Here’s how to define the bijection: since A is infinite, it certainly has at least one element; call it
ap. But since A is infinite, it has at least two elements, and one of them must not be equal to ap; call
this new element a;. But since A is infinite, it has at least three elements, one of which must not equal
ap or ay; call this new element az. Continuing in the way, we conclude that there is an infinite sequence

ap,ay,ds,...,an, ... of different elements of A. Now we can define a bijection f : A U {b} — A:
f(b) == aop,
flap) i=ap41 forn e N,
flay==a fora € A —{ag,ay,...}.

Solution. There is no “solution” for this discussion problem, since it depends on what seems bothersome.

AN issue that puzzles some students (when they ar challenged about it) is why the third clause in the
definition of f is needed since f is already defined on all the a,’s. The answer is that there may be
elements left over in A, and to be a bijection, the value of f on each “left-over” element of A has to be
defined somehow. In fact, if A is uncountable, there are guaranteed to be such left-over elements.

It may also be bothersome that f is asserted to be a bijection without spelling out a proof. But the bijection
property really does follow directly from definition of f, so it shouldn’t be much burden for a bothered
reader to fill in such a proof.

Another possibly bothersome point is that the proof assumes that if a set is infinite, it must have more than
n elements, for every nonnegative integer n. But really that’s the definition of infinity: a set is finite iff it has
n elements for some nonnegative integer, n, and a set is infinite iff it is not finite.

A possibly worrisome point is how you find an element a, 4. € A4 given ag, a1, ..., a,. But you don’t have
to find a specific one: there must be an element in A — {ag,ay,...,a,}—so just pick any one. Actually,
the justification for this step is the set-theoretic Axiom of Choice described in the Notes chapter first-order
logic, and some logicians do consider it worrisome. |

(b) Use the proof of Lemma 5.2.3 to show that if A is an infinite set, then A surj N, that is, every infinite
set is “as big as” the set of nonnegative integers.

Solution. By the proof of Lemma 5.2.3, there is an infinite sequence ag,ay,ax,....a
elements of A. Then we can define a surjective function f : 4 — N by defining

n, ... of different

n, ifa =a,,
fla) == i

undefined, otherwise.

ZN (o)
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 3, Fri.

—A total surjective function is not required, but if you want one define f’: 4 — N, by

n, ifa = ay,

(@) ==
J) 0, otherwise.
]
Problem 2.
This problem provides a proof of the [Schroder-Bernstein] Theorem:
If A surj B and B surj A, then A bij B. (1)

(a) Itis OK to assume that A and B are disjoint. Why? N 6 j

L ho eﬁthﬂLb (a (0amg) L2, b3 6({’5/6
Solution. We can always find sets A’ bij A and B’ bij B such that A’ and B’ are disjoint. For example, let
A" = A x {0} and B’ = B x {1}. Then if we prove (1) for A’ and B’, we could conclude it held for 4 and
B because

A bij A’ bij B bij B.

(b) Explain why there are total injective functions f : A — B,and g : B — A.

Solution. B surj A means there is a surjective function h : B — A, so h~! : A — B will be a total
injective relation. Removing all but one A~!-arrow out of each element of A, leaves a total injective function
f:A— B.Likewisefor g : B — A. o

Picturing the diagrams for f and g, there is exactly one arrow out of each element —a left-to-right f-
arrow if the element is in A and a right-to-left g-arrow if the element is in B. This is because f and g are
total functions. Also, there is at most one arrow into any element, because f and g are injections.

So starting at any element, there is a unique, and unending path of arrows going forwards. There is also a
unique path of arrows going backwards, which might be unending, or might end at an element that has no
arrow into it. These paths are completely separate: if two ran into each other, there would be two arrows
into the element where they ran together.

This divides all the elements into separate paths of four kinds:

i. paths that are infinite in both directions,

ii. paths that are infinite going forwards starting from some element of A.
iii. paths that are infinite going forwards starting from some element of B.
iv. paths that are unending but finite.

(¢) What do the paths of the last type (iv) look like?

Solution. An even-length cycle of alternating f- and g-arrows.

(d) Show that for each type of path, either

e the f-arrows define a bijection between the A and B elements on the path, or
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e the g-arrows define a bijection between B and A elements on the path, or

e both sets of arrows define bijections.

For which kinds of paths do both sets of arrows define bijections?

Solution. For paths that start at a point in A, there will be an f-arrow out of every point on the path, so the
f-arrows will define a bijection from the A elements to the B elements on the path. The g-arrows don’t
define a bijection the other way, because they don’t hit the starting point.

For paths that start at a point in B, the g-arrows will define a bijection from the B elements to the A elements,
by the same reasoning.

For the other two types of path, every point B element has exactly one f-arrow coming in, so these arrows
define a bijection from the A elements to be B elements. Likewise, the g-arrows define a bijectin the other
way.

O
(e) Explain how to piece these bijections together to prove that A and B are the same size.
Solution. Define & : A — B by the rule:
g Y(a) if a’s path starts at a point in B,
hia) ::= .
f(a) otherwise.
7 |

|
\f\,-lif“l,ff_wf‘  Thafs N
Problem 3.
The rational numbers fill the space between integers, so a first thought is that there must be more of them
than the integers, but it’s not true. In this problem you’ll show that there are the same number of positive
rationals as positive integers. That is, the positive rationals are countable.
(a) Define a bijection between the set, Z*, of positive integers, and the set, (Z+ x Z1), of all pairs of
positive integers:
(1,1),(1,2),(1,3),(1,4), (1,5), ...
(2,0).02.2),00: 3 0 4)00.0]), o6
(3,1),03.2),43,3): 3,4), 3. 5) -
(4,1),(4,2),(4,3),(4,4),(4,5),...
(5.1}, (5:2),(5,3), (3. 4).15.5),:.:«

Solution. Line up all the pairs by following successive upper-right to lower-left diagonals along the top row.

That is, start with (1,1) which is an initial diagonal of length 1. Then follow with the length 2 diagonal (1,2),
(2,1), then the length 3 diagonal (1,3), (2,2), (3,1), then the length 4 diagonal (1,4), (2,3), (3,2), (A1)} e
So the line up would be

1,1 (1,2 @1 1.3 2,2 GD 1.9 2.3) 6.2 41
1 2 3 4 5 6 ) 8 2 10

It’s interesting that this bijection from (Z* x Z*) to ZT happens to have a simple formula. The pair (k, m)
is the kth element on the diagonal consisting of the k -+ m — 1 pairs whose sum is & + m. The total number
of elements in all the preceding diagonals is

O+14+2+--+k+m-2)=(k+m—1)(k +m—2)/2,
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so the pair (k,m) is the (k + m — 1)(k + m — 2)/2 + kth element in the line-up. ]
(b) Conclude that the set, Q%, of all positive rational numbers is countable.

Solution. To show the positive rationals are countable, we want to show how to line them up in a list. To
do this, start with a list of all pairs of positive integers such as the one from part (a). Then, going from
left to right, replace each pair (m, n) by the positive rational r ::= m/n, skipping pairs where r has already
appeared:

16 2 Ao 4 s WL LU By e e 0 s
This is now the desired list of the positive rationals.

Another, indirect approach is to find surjective functions between Z* and Q* and back, and than appeal to
the Schroder-Bernstein Theorem 5.2.2.

To begin, it’s obvious that
Q™ surj ZT, ()
since the identity function restricted to the positive integers does the job. Namely, f : Q1 — Z* where
r if r is an integer,
f(r) == :
undefined otherwise,
is a surjective function.
It’s also obvious that
(ZT x Z%) sufj QF

since there is a trivial surjective function g : (ZT x Z*) — Q™, namely,
g(m,n) z==m/n.

It follows from part (a) that
Z* surj Qt. 3)

Now (2), (3), and the Schrider-Bernstein Theorem 5.2.2 imply

Z* bij QY.

Problem 4.
Let R : A — B be a binary relation. Use an arrow counting argument to prove the following generalization
of the Mapping Rule 1.

Lemma. If R is a function, and X C A, then
e —

| X| = |R(X))].

Solution. Proof. The proof is virtually a repeat of the arrow-counting proof in the text of Mapping Rule 1,
{ [
namely: SNl O fh Is, (6W9leef g
Since R is a function, at most one arrow leaves each element of X, so the number of arrows whose starting
point is an element of X is at most the number of elements in X, That is,

7

| X arrows from X .
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Also, each element of R(X) is, by definition, the endpoint of at least one arrow starting from X, so there
must be at least as many arrows starting from X as the number of elements of R(X ). Thatisy

#arrows from X > |R(X)|.

Combining these inequalities immediately implies that | X'| > |R(X)]. |
An alternative proof appeals to the original Mapping Rule:

Proof. Let R’ be the relation R restricted to X. That is, R’ has domain X, codomain R(X), and the
same arrows as R. Then R’ is a function because R is, and R’ has the [> 1 in] surjective property by

definition of its codomain. Hence the surjective function Mapping Rule 1 applied to the surjective function
R’ : X — R(X) implies that | X| > |R(X)]. |
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Induction

Albert # Meyer February 22, 2011 Jec AM 1

DR
ni| The Idea of Induction

Color the integers 2 0
Oul263d. 5
I tell you, O is red, & any int
next to a red integer is red,
then you know that
all the ints are red!

Alert R Meyer

al=
|

February 22, 2011 Jec 42

.....................................................................

I Tel! you, O is red & any int
next to a red integer is red,
then you know that
all the ints are red!

Albert & Meyer Februnry 22, 2011 Jec AM3

ML Induction Rule

‘R(O), Vvn.R(n) IMPLIES R(n+1)
Vm.R(m)

3
]
«
[=]

Albert R Meyer February 22, 2011 lec AMS

2l e Example Induction Proof

Let's prove:

(1) 1

l+p+r2+...4pn = 0
Sl

(forrz1)
Albert R Meyer February 22, 2011 lec 4M.5




s[5 Example Induction Proof

Statements in magenta form a
template for inductive proofs:

Proof: (by induction on n)

The induction hypothesis, P(n), is:

Leper2s.epn = LD
r-1
(forrz1)
L0858 Abert & Meyer February 22,2011 Jec 447

LIRS

ni| Example Induction Proof

[
LIER L

Inductive Step: Assume P(n)
for some n 20 and prove P
(n+1):

- L (nH)e
r =l
Pl s opline s
r-1
Albert R Meyer February 22, 2011 Jec 4M10

2/22/11

g« Example Induction Proof

Base Case (n = O):
2

lep+er?e-..+pd = i

il

OK!

February 22, 2011 lec 48

12

|

Alert R Meyer

s [n]r
s+ Example Induction Proof

LR

Now from induction
hypothesis P(n) we have
- el
- el
so add r™! to both sides

BB

l+r+ré+...+p

s RRLIES
wis

g« Example Induction Proof

1580

adding r™*! to both sides,

o

-

n+1 _1
1 2 n r,n<-1 = r n+l
(+r-+r' oot )+ _r'-], +r
This proves 1 laii(el)
P(n+1) el

completing the  _r"i-1

proof by induction.  r-1
Albert & Meyer

February 22, 2011 Jec 412

Albert & Meyer Febeury 22, 2011 lec AM 11

s« The MIT Stata Center

February 22, 2011 Jec 4M13
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ofs Design Mockup: Stata

Lobby.
, d g

February 22, 2011 lec 4ML16

2/22/11

12 108
Bl ¢

18| 8 |1

Mockup: Plaza Outside Stata

Goal: Tile the plazg except for 1x1
square in the middle for Bill.

n

Plaza Outside Stata

Gehry specifies L-shaped tiles covering
three squares: J

For example, for 8 x 8 plaza might file for Bill
this way:

Albert R Meyer February 22, 2011 lec 4M.17

5[]z
12| |we|s
a1 1"
8|0

Theorem: For any 2"x2" plaza, we can
make Bill and Frank happy.

Proof: (by induction on n)
P(n) ::= can tile 27x2" with Bill in middle.

Base case: (n=0)

Plaza Outside Stata

FE (no tiles needed)

Albert R Meyer February 22, 2011 lec 4M13
e Plaza Outside Stata

"B 1 duction step: assume can file
2"x2", prove can tile 2m1x21,

beE | B

Albert R Meyer February 22, 2011 Jec AM 20

Albert & Meyer February 22, 2011 lec 419

« IE
T Plaza Outside Stata
Now what?...
2 B
211"‘1 l i
([@1ee) Alvert R Meyer February 22, 2011 lec AM.21




2/22/11

O+ [=]7] OEE
Eﬁg plaza outside Stata B - & plaza outside Stata

T ix: Once have Bill in corner,

he fix : can gef Bill in middle:

prove something else H |

--that we can always Do [

find a tiling with - ‘

Z i G|
Bill in the corner.
o 1 : 7 s [n]7
S« 0 plaza outside Stata B o plaza outside Stata
== method: i ; .
rotafe the squares as indicated. afileniiofalioninave:
- Wl
@ @
Z I B
o
Albert R Meyer February 22, 2011 Jec 4M.29 Albert R Meyer February 22, 2011 lec 4M.30
s OBk s [u]7
A« & plaza outside Stata B - & plaza theorem
now group the 4 squares together, Theorem: For any 2mx2" plaza, we can

and insert a tile.

make Bill and Frank happy.

Proof: (by induction on n)

i Billin REVISED induction hypothesis P(n) ::=
i middle can tile 2x21 with Bill in the corner
Base case: (n=0) as before

Donel

Albert R Meyer February 22, 2011 lec 4 31 Albert R Meyer February 22, 2011 lec 4M.32




« QIR
anog plaza proof
*EB Tnduction step:

Assume we can get Bill in corner of 2"x2".
Prove we can get Bill in corner of 2m1x2ml,

I z@'_m

2/22/11

3 [1]7
2| o]

B plaza proof

158 {11

method: rofate the squares as indicated.

I

Abert R Meyer February 22, 2011 lec 434

Albert & Meyer February 22, 2011 Jec 4433
EmaE
s
Sl plaza proof
mom:

after rotation have:

o -;L
E—

B

Albert R Meyer February 22, 2011 lec AM 35
CmOD
Bn oD ingenious induction hypothesis
oo :

Note 1: To prove
"Bill in middle,” we

proved something else:
“Bill in corner.”

@585 Albert R Meyer February 22, 2011 Jec AM37

s[nly
s

0 plaza proof

alels

now group the squares together,
and fill the center with a tile.

Done!

Albert R Meyer February 22,2011 lec 4M.36

« EIEE
Eaﬁ «| stronger induction hypotheses
DO -

Note 2: It may help to
choose a stronger hypothesis
than the desired result.
(example in class problem)

Albert R Meyer February 22, 2011 lec 4M38




v[n[E
2| [10]%
3 [V
wisn

recursive procedure

Note 3: The induction proof
of "Bill in corner” implicitly
defines a recursive procedure
for finding corner tilings.

ESTETD)
@08 Albert R Meyer February 22, 2011 ez 4M39

¢ RRLIES
12 wls

ke A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

5555 44

Albert R Meyer February 22, 2011 Jec AM41

n wis

i A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any r+1 horses have the same color.

1st and last a@ same color as
the middle ones

5585 55

]
1l i
therefore the set of n+1 have the same color!

2589 Alert R Meyer

5[5 |1

Februory 22, 2011 lec AMA3

2/22/11

(T
12 0|s
3l 1“

i A False Proof

Theorem: All horses are the same color.

Preof: (by induction on n)
Induction hypothesis:

P(n) ::= any set of n horses have the same color
Base case (n=1):

horse is same color as itself!

Albert R Meyer

February 22, 2011 lec 4M.40

v [n]7
6]s

i A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any n+! horses have the same color.

& |1

2nd set of n horses have the same. color

5555 .55

fl!"ST set of n horses have the sume color

(L)

Alvert R Mlylf Frh-x-f 22,2011 lec 4M 42
el
8o A False Proof

What's wrong?
Proof that P(n) — P(n+1) is wrong

if n= 1, because there are
o "middle” horsesl!
2nd set of n=1 horses

oo =
eT of n=1 horses
@280 Albert R Meyer February 22, 2011

lec AM.A5




2/22/11

s [n]7

12 10

-

“

s[n]7

N B

A False Proof

What's wrong?
Proof that P(n) — P(n+1) is wrong

if n=1, because there are
no "middle" horses!

(But proof works for all n z 1)

February 22, 2011 Joc AM46

Albert R Meyer

STrong Induction

1Pr'ove P(0). Then prove P(n+1)
assuming all of

(instead of just P(n)).

P(@);P(1), ...;iR(n)

Conclude VYm.P(m)

Albert R Meyer February 22, 2011

Thm: Get any amount > 8¢

By strong induction with hyp:
P(n) ::= can form n + 8¢.

Postage by Strong Induction

Postage by Sfr'ong Induchon

5¢

February 22, 2011 Jec AM 48

Albert R Meyer

Postage by 51'r'ong Induc'rlon

2wl

3¢

a
Thm Get any amount > 8¢

inductive step:
Assume m+8¢ for n > m > 0.

_Prove can get n+9¢

Albert R Meyer Febeuary 22, 2011

el

o=

Thm: Get any amount > 8¢
base case P(O) make 0+ 8¢

5¢ 3¢

lec 4M 49

Albert R Meyer February 22, 2011

Postage by Strong Induction

inductive s’rep cases:

lec 4M.51




o fnlr

*-

h > 2: so by hypothesis
can get (n-2)+8¢

DO Postage by Strong Induction

BEE

Claim: Every way of unstacking
n blocks gives the same score:

nn-1)
2

(n-1+(n-2)+---+1 =

loert R Meyer Febevary 22, 2011

=i Analyzing the Stacking Game

Jec AM 54

s [nf7

alela

Unstacking game

Start: a stack of boxes

Move: split any stack into fwo of
sizes a,b>0

Scoring: a-b points
Keep moving: until stuck
Overall score: sum of move scores

Abert R Meyer February 22, 2011

lec 4053

?Eﬁ Analyzing the Game

Claim: Starting with size n stack,
final score will be

n(n-1)
2

Proof: by Induction with
Claim(n) as hypothesis

Albert R Meyer Febeuory 22, 2011

¢ RALIES
2| [w|s

=l ls Proving the. Claim by Induction

Base case n = 0O:
0(0-1)
2

Claim(0) is &

score =0 =

lec 4M 55

Albert R Meyer February 22, 2011 eSS

glﬁl Proving the Claim by Induction
oM -

Inductive step. assume for
stacks<n, and prove C(n+1):

(n+1)-stack score = (n+1)n

Albert R Meyer February 22, 2011 Jec 4M57

2122011



s Proving the Claim by Induction

i

Inductive step.
Case n+1 = 1. verify for 1-stack:

score=0= El_é_ﬂ
c(l)is &

il  Proving the Claim by Induction

BRI

by strong induction:

a-stack score = 0(02_ D
b-stack score :?_(.%;i),

2/22/11

]
172 w

Proving the Claim by Induction

im|~

EREY

1si8

Inductive step.
Case n+1> 1. Split n+l into an

a-stack and b-stack,
where a + b = n +1.
(a + b)-stack score = ab +
a-stack score + b-stack score

Albert R Meyer February 22, 2011 lec 460

3

Team Problems
Problems
1-4

@583 Albert R Meyer February 22, 2011

lec 4M 62

February 22, 2011 lec 4M.59

ST
Abert R eyer

=I5 Proving the Claim by Induction

Yotal (a + b)-stack score =
Gb+c1(c1—1)+b(b-1) .

2 2
(a+b)((a+b)-1) : (n+1)n

2 2
so C(n+1) is &
We're donel
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Massachusetts Institute of Technology
6.042]/18.0621, Spring "1 1: Mathematics for Computer Science February 22
Prof. Albert R Meyer revised Monday 21 February, 2011, 22:22

In-Class Problems Week 4, Tue.

]
", g, il J I
P - A —..
Problem 1. 1 N Al

Prove by induction:

foralln > 1.

Problem 2. (a) Prove by induction that a 2" x 2" courtyard with a 1 x 1 statue of Bill in any position can
be covered with L-shaped tiles.

(b) (Discussion Question) In part (a) we saw that it can be easier to prove a stronger theorem. Does this
surprise you? How would you explain this phenomenon?

Problem 3.
Find all possible amounts of postage that can be paid exactly using 3 and 7 cent stamps. Use induction to
prove that your answer is correct.

Problem 4.
The following Lemma is true, but the proof given for it below is defective. Pinpoint exactly where the proof

first makes an unjustified step and explain why it is unjustified. | d‘ '
S an e qwiso

Lemma 4.1. For any prime p and positive integers n, Xy, xa, ..., X If P | X1X2... %y, then p | xi for
some |l <i <n. 'F

Bogus proof. Proof by strong induction on n. The induction hypothesis, P(n), is that Lemma holds for n.
Base case n = 1: When n = 1, we have p | xy, therefore we can let/ = 1 and conclude p | x;.
Induction step: Now assuming the claim holds for all k& < n, we must prove it forn + 1.

So suppose p | X1x2-- Xp41. Let Yy = XpXp41, SO X[X2+ -Xpg1 = X1X2°:-Xp—1YVy. Since the
righthand side of this equality is a product of n terms, we have by induction that p divides one of them. If
p | xi for some i < n, then we have the desired i. Otherwise p | y,. But since y, is a product of the two
terms Xy, X, 41, we have by strong induction that p divides one of them. So in this case p | x; fori = n or
i=n+1. |

n+()? H
nE .
L N

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Massachusetts Institute of Technology
6.042J/18.062J, Spring ’ 1 1: Mathematics for Computer Science February 22
Prof. Albert R Meyer revised Monday 21% February, 2011, 22:20

Solutions to In-Class Problems Week 4, Tue.

Problem 1.

Prove by induction:

- (M)
4 9 n2 n’

foralln > 1.

Solution. Proof. (By Induction). The induction hypothesis, P (n), is the inequality (1).
Base Case (n = 2): The LHS of (1) in this case is 1 4+ 1/4 and the RHS is 2 — 1/2, and
LHS =5/4<6/4=3/7="RES:

so inequality (1) holds, and P(2) is proved.
Inductive Step: Let n > 2 be a nonnegative integer, and assume P (n) in order to prove P(n + 1). That
is, we assume (1). Adding 1/(n + 1)? to both sides of this inequality yields

1 1 1
R E DR, ot iR G e el
Tt +n2+(n+1)2
=2 1+ ]
n (n+1)>2

gl il 1
2 —(?5_(n+1)2)

%) ] —
:2_(n-|—n+ n)

n(n + 1)2
_> n?+n 1
T a4+ D2 nm+1)2
1 1

Tn+1 n(m+1)2
1

n+1
So we have proved P(n + 1). [ |

<2-—

(since n > 0).

Problem 2. (a) Prove by induction that a 2" x 2" courtyard with a 1 x 1 statue of Bill in any position can
be covered with L-shaped tiles.

Solution. Let P(n) be the proposition that for every location of Bill in a 2" x 2" courtyard, there exists a
tiling of the remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some n > 0; that is, for every location of Bill in a 2" x 2"
courtyard, there exists a tiling of the remainder. Divide the 2" %! x 2"*! courtyard into four quadrants, each
2" x 2". One quadrant contains Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in
each of the three central squares lying outside this quadrant:

&)
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 4, Tue.

.

2!’!

2 27

Now we can tile each of the four quadrants by the induction assumption. Replacing the three temporary
Bills with a single L-shaped tile completes the job. This proves that P(n) implies P(n + 1) foralln > 0.
The theorem follows as a special case.

This proof has two nice properties. First, not only does the argument guarantee that a tiling exists, but also
it gives a recursive procedure for finding such a tiling. Second, we have a stronger result: if Bill wanted a
statue on the edge of the courtyard, away from the pigeons, we could accommodate him! 3]

(b) (Discussion Question) In part (a) we saw that it can be easier to prove a stronger theorem. Does this
surprise you? How would you explain this phenomenon?

Solution. It might seem that it ought to be harder to prove a more general theorem than a less general one,
but sometimes not. For example, the more general result might actually be easier because it involves fewer
assumptions, and this can help in avoiding the complications of unnecessary hypotheses.

But for an induction proof in particular, using a more general induction hypothesis means we can make a
stronger assumption in the induction step —namely, we can assume a stronger P (n) —which can make it
easier to prove the conclusion of the induction step, namely, P(n + 1). O

Problem 3.
Find all possible amounts of postage that can be paid exactly using 3 and 7 cent stamps. Use induction to
prove that your answer is correct.

Solution. Proof. We can begin by observing that the following postage amounts can be made by 3 and 7
cent stamps: :

Ono stamps
3=3
6=343

T =7
9=3+4+3+3
10=3+47,

and these are the only amounts < 12 cents that can be paid. Now we prove that every amount > 12 can also
be paid. The proof is by strong induction on n with induction hypothesis

S(n) ::= exactly n + 12 cents postage can be paid with 3 and 7 cent stamps.



Solutions to In-Class Problems Week 4, Tue. 3

Base case: S(0). 12 cents can be paid using four 3 cent stamps.

Inductive step: We assume the strong hypothesis that S(k) forn = k = 0. Now we mmust prove
S(n + 1). The proof is by cases:

case n = 0: S(0 + 1) holds because 13 cents postage can be paid using two 3 cents and a 7 cents stamps.

casen = 1: S(1 + 1) holds because 14 cents postage can be paid using two 7 cent stamps.

casen > 2: Since n > n — 2 > 0, we know by strong induction that S(n — 2) holds. But including an
extra 3 cents stamp in the collection of 3 and 7 cent stamps that paid (n — 2) + 12 cents gives a collection
that pays (n —2) + 12+ 3 = (n + 1) + 12 cents, which proves S(n + 1).

Since S(n + 1) holds in any case, the inductive step has been proved.

It follows by strong induction that every amount of cents postage > 12 can be mde with 3 and 7 cent
stamps.

i

Problem 4.
The following Lemma is true, but the proof given for it below is defective. Pinpoint exactly where the proof
first makes an unjustified step and explain why it is unjustified.

Lemma 4.1. For any prime p and positive integers n,x1,X2,...,Xn, if p | X1X2...Xp, then p | x; for
somel <i <n.

Bogus proof. Proof by strong induction on n. The induction hypothesis, P (n), is that Lemma holds for n.
Base case n = 1: Whenn = 1, we have p | xy, therefore we can leti = 1 and conclude p | x;.
Induction step: Now assuming the claim holds for all k& < n, we must prove it forn + 1.

So suppose p | X1X2---Xp+1. Let Yo = XpXp41, 8O X1X2---Xpq1 = X1X2---Xp—1Yn. Since the
righthand side of this equality is a product of n terms, we have by induction that p divides one of them. If
p | x; for some i < n, then we have the desired i. Otherwise p | y,. But since y, is a product of the two
terms X, Xn+1, We have by strong induction that p divides one of them. So in this case p | x; fori = n or
i=n+1 O

Solution. Notice that nowhere in the proof is the fact that p is prime used. So if this proof were correct, the
Lemma would hold not just for prime p, but for any positive integer p. But of course, the Lemma is false
when p is not prime, for example if p = 6, x; = 3 and x, = 4, we have p | x;x2 but NOT(p | x;) and
NOT(p | x2). So there has to be something wrong somewhere.

The statement “we have by strong induction that p divides one of them” is the place where the proof
breaks down: it appeals to strong induction to justify applying the induction hypothesis for 2 = k < n. But
the base case was n = 1, so we can’t assume 2 < n. Note that the reasoning above is fine for every n > 2,
so the whole proof would be fine if we had an argument to prove the claim forn + 1 = 2.

Now in fact, if a prime, p divides xjx2, it must divide x; or x5; this fact is obvious if we assume the
uniqueness of prime factorizations of integers, but the proof here never made use of this fact. An elementary
proof of this fact appears in the chapter on number theory.

Notice that uniqueness of prime factorization is a much more general result than the simple Lemma here.
This Lemma is even needed in the usual proof about prime factorization, so appealing to it to prove this
Lemma would be circular. |
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Dmiit
Mathematics for Computer Science
MIT 6.0427/18.0627

State
‘Machines

Aloert R Meyer, Feb 23,2011 hex W1
e -
#me  State machines

The state graph of a 99-bounded counter:

start state

©@©-0-@ »=
States: {0,1,..,99, overflow}
Transitions: (i }>(+1) 0<i<99

Albert R Meyer, Feb 23,2011 lec W 3

28 State machines

step by step processes
(may step in response
to input —not today)

Albert R Meyer, Feb 23,2011 lec SW2

sé The Diagonal Robot

elein]
v it can move diagonally
2
1
0
ol oEiEgas; L
Albert R Meyer, Feb 23,2011 lec SW.A5

gﬁ“g The Diagonal Robot
the robot is on a grid

Y
2
1
0
0 1 2iES X
Altert R Meyer, Feb 23,201 Jec 5W.A4

5 The Diagonal Robot

Gon: _ _
v can it get from (0,0) to (£50)2="
')" e,
2 : ..’.‘..-' -.-"'_.--...__‘_A...-
0 %\ B GOAL|
0F in T 5 &

Albert R Meyer, Feb 23, 2011 Jec SW.AG




Robot Preserved Invariant
NO! preserved invariant:

P((x,y)) = x +y is even
move adds +1 o both x &y,
preserving parity of x+y.
Also, P((0, 0)) is true.

2/23/11

Robot Preserved Invariant

So in all positions (x.y)
reachable from (0,0),
X +y stays even
But1+0=1iso0dd, so
(1,0) is not reachable

Albert R Meyer, Feb 23, 2011 luc SWAT

Albert R Meyer, Feb 23, 2011 Jec W 48

Gcg Floyd's Invariant Principle

(induction for state machines)
Preserved Invariant, P(state):

if P(q) and (3)—(r), then P(r)

Conclusion: if P(start), then P(r)
for all reachable states r,
including final state (if any)

Alert R Meyer, Feb 23,2011 Jec SW.43

M 9 (137

120 Tojs| Jhe Flf’reen Puzzle
Kl ¢ [ Explained!

15| 8 |11

—-by similar reasoning
details in problem 2

Fast Exponentiation
compute a® using registers X, Y,z

Xe=qa; Y= Z:= b;

REPEAT:

if Z2=0, then return Y

R:= remdr(Z,2); Z:= quotnt(Zz,2)
if R=1,then Y:= X-Y

X:= X?

Albert R Meyer, Feb 23, 2011 Jec SW.52

Albert R Meyer, Feb 23,2011 Jec WAL

:ay Fast Exponentiation

State Machine:

States iz RxR x N

start ::= (a,1,b)

transitions ::= (X,Y,Z) —

(X2, ¥ , quotnt(z,2)) if 250 is even
(%2, X-¥, quotnt(z,2)) if 2>0 is odd

Albert R Meyer, Feb 23, 2011 e W53




Fast Exponentiation

Preserved Invariant: YX? = a

(X,Y,2) — [Z>0 is odd]
(XS (67 1) D)

b

(X‘Y) (X?.)_{Z-})/Z =(x.Y)XZ-—1
=YX? = a°

&

Alert R Meyer, Feb 23, 2011 Juc SW.54

i Fast Termination

at each fransition
Z:= quotient (z,2)
Z= b at start, so Z=0
in < log,(b) fransitions

&

Alvert R Meyer, Feb 23,2011 Joc SW.54

&% Team Problems

Problems
13

Albert R Meyer, Feb 23, 2011 hec Sw 65

2/23/11

> L]
Partial Correctness

preserved invariant: YX2 = aP
at end Z=0, so refurn

v=nl =6l ex

Albert R Meyer, Feb 23, 201 bec SW.55

Eulogy by Knuth: http://www.acm.org/pubs/membernet/stories/floyd.pdf
Piatire smreer hitp: terd ft1e phait =117, himd

Albert R Meyer, Feb 23,2011 Jec SW.64
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Massachusetts Institute of Technology
6.042]/18.062], Spring "11: Mathematics for Computer Science February 23
Prof. Albert R Meyer revised Monday 21 February, 2011, 17:27

In-Class Problems Week 4, Wed.

Problem 1.

Multiplying and dividing an integer n by 2 only requires a one digit left or right shift of the binary represen-
tation of n, which are hardware-supported fast operations on most computers. Here is a state machine, R,
that computes the product of two nonnegative integers x and y using just these shift operations, along with
integer addition:

states ;1= N> (triples of nonnegative integers)

start state ;:= (x, y,0)

(2r.,s/2,a) forevens > 0,

transitions 1= {(r, s,a) — g
@2r.(s—1)/2,a+r) forodds > 0.

(a) Verify that
P((r,s,a)) i= [rs +a = xy] (1)

is an invariant of R. How about Q((r,s,a)) := [r=r+1]?:)

(b) Prove that R is partially correct: if R reachs a final state, —a state from which no transition is possible
—thena = xy.

(c) Briefly explain why this state machine will terminate after a number of transitions bouned by g small

constant time the length of the binary representation of y. r \ -
\
Problem 2.
In this problem you will establish a basic property of a puzzle toy called the Fifteen Puzzle using the method
of invariants. The Fifteen Puzzle consists of sliding square tiles numbered 1, ..., 15 held in a 4 x 4 frame

with one empty square. Any tile adjacent to the empty square can slide into it.
The standard initial position is

1{2]3]4
5.6 7|8
9 [10] 11|12
13 (14|15

We would like to reach the target position (known in the oldest author’s youth as “the impossible™):

151141312
11110 9| 8
71654
34i)-2 | 4

A state machine model of the puzzle has states consisting of a 4 x 4 matrix with 16 entries consisting of
the integers 1,..., 15 as well as one “empty” entry—Tlike each of the two arrays above.

Creative Commons 888 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .
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In-Class Problems Week 4, Wed.

The state transitions correspond to exchanging the empty square and an adjacent numbered tile. For
example, an empty at position (2, 2) can exchange position with tile above it, namely, at position (1, 2):

ni na n3 4 ni nj3 g
s Nneg ny ns na Ne ny
S
ng Mg | Mo | M11 ng Ng | Nig | N11
N2 | N3 | nia | nis ni2 | N1z | nig | nis

We will use the invariant method to prove that there is no way to reach the target state starting from the
initial state.
We begin by noting that a state can also be represented as a pair consisting of two things:

I. alist of the numbers 1, ..., 15 in the order in which they appear—reading rows left-to-right from the
top row down, ignoring the empty square, and

2. the coordinates of the empty square—where the upper left square has coordinates (1, 1), the lower
right (4, 4).

(a) Write out the “list” representation of the start state and the “impossible” state.

Let L be a list of the numbers 1,..., 15 in some order. A pair of integers is an out-of-order pair in L
when the first element of the pair both comes earlier in the list and is larger, than the second element of
the pair. For example, the list 1,2, 4, 5,3 has two out-of-order pairs: (4,3) and (5,3). The increasing list
1,2 ...n has no out-of-order pairs.

Let a state, S, be a pair (L, (i, j)) described above. We define the parity of § to be the mod 2 sum of the
number, p(L), of out-of-order pairs in L and the row-number of the empty square, that is the parity of S is
p(L)+i (mod 2).

(b) Verify that the parity of the start state and the target state are different.

(¢) Show that the parity of a state is preserved under transitions. Conclude that “the impossible” is impos-
sible to reach.
By the way, if two states have the same parity, then in fact there is a way to get from one to the other. If
you like puzzles, you’ll enjoy working this out on your own.

Problem 3.
A classroom is designed so students sit in a square arrangement. An outbreak of beaver flu sometimes
infects students in the class; beaver flu is a rare variant of bird flu that lasts forever, with symptoms including
a yearning for more quizzes and the thrill of late night problem set sessions.

Here is an illustration of a 6 x 6-seat classroom with seats represented by squares. The locations of
infected students are marked with an asterisk.

* *

Outbreaks of infection spread rapidly step by step. A student is infected after a step if either

e the student was infected at the previous step (since beaver flu lasts forever), or

e the student was adjacent to at least two already-infected students at the previous step.




In-Class Problems Week 4, Wed. 3

Here adjacent means the students’ individual squares share an edge (front, back, left or right); they are not
adjacent if they only share a corner point. So each student is adjacent to 2, 3 or 4 others.
In the example, the infection spreads as shown below.

*® & & | ok *

* | K| K| *

*| | ¥ | *|*
¥ | | H | K| x| *
* || ¥ X|*

* * * | sk

In this example, over the next few time-steps, all the students in class become infected.

Theorem. If fewer than n students among those in an n x n arrangment are initially infected in a flu
outbreak, then there will be ar least one student who never gets infected in this outbreak, even if students
attend all the lectures.

Prove this theorem.
Hint: Think of the state of an outbreak as an n x n square above, with asterisks indicating infection. The
rules for the spread of infection then define the transitions of a state machine. Show that

R(g)::=The “perimeter”’of the “infected region”

of state ¢ is at most k,

is a preserved invariant.
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Massachusetts Institute of Technology
6.042J/18.0621, Spring *11: Mathematics for Computer Science February 23
Prof. Albert R Meyer revised Monday 21* February, 2011, 17:28

Solutions to In-Class Problems Week 4, Wed.

Problem 1.

Multiplying and dividing an integer n by 2 only requires a one digit left or right shift of the binary represen-
tation of n, which are hardware-supported fast operations on most computers. Here is a state machine, R,
that computes the product of two nonnegative integers x and y using just these shift operations, along with
integer addition:

states = N> (triples of nonnegative integers)
start state ::= (x, y,0)
(2r,s/2,a) forevens > 0,

transitions ::= {(r, s,a) —
(2r,(s—1)/2,a+r) forodds > 0.

(a) Verify that
P((r,s,a)) == [rs+a=xy] (N

is an invariant of R. How about Q((r,s,a)) == [r=r+1]?:)

Solution. Q is a trivial invariant since it is always false.
To prove that P is invariant, assume that P((r,s,a)) and (r,s,a) —> (r’,s’,a’). We must prove that
P((r',s’,a’)) holds, that is

r's' +a = xy. 2)
There are two cases corresponding to the transition cases:
If s > 0 is even, then we have that ¥’ = 2r, s’ = 5/2,a’ = a. Therefore,

rr ! B
r's +a =2r- 3 +a

=rs+a
=Xy (by (1)).

If s >0isodd, wehave r’ =2r,s' = (s —1)/2,a =a +r. So:

s
r's' +a =2r-

‘+a+r
=r-(s—1)+a+r
=rs+a
s b (by (1)).
So in both cases, (2) holds, proving that P is indeed an invariant. |

(b) Prove that R is partially correct: if R reachs a final state, —a state from which no transition is possible
—thena = xy.

s E0ST

Creative Common 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Solution. Clearly, P holds for the start state because
P((x,y,0)) iff [xy+0=xy].

The final states are those of the form (r,0,a). By the Invariant Principle, if (r,0,a) is reachable, then
P((r,0,a)) holds, that is,
a=r-04+a=uxy.

(c) Briefly explain why this state machine will terminate after a number of transitions bouned by a small
constant time the /ength of the binary representation of y.

Solution. We claim that the termination condition, s = 0, will occur after at most 1 + log, y transitions.
But each transition reduces the value of s to < s/2. Hence, after at most 1 + log, y transitions, the final
value of s is at most 1/2111°82Y = 1/2y times its initial value, y. This means the value of s will be less

than 1 and so must be 0 at this point if it wasn’t 0 earlier. |
Problem 2.

In this problem you will establish a basic property of a puzzle toy called the Fifteen Puzzle using the method
of invariants. The Fifteen Puzzle consists of sliding square tiles numbered 1, ..., 15 held in a 4 x 4 frame

with one empty square. Any tile adjacent to the empty square can slide into it.
The standard initial position is

1(2|3]4
S5yl |8
91101112
13|14 |15

‘We would like to reach the target position (known in the oldest author’s youth as “the impossible™):

15|14 (13|12
11{10| 9 | 8
7 e
321

A state machine model of the puzzle has states consisting of a 4 x 4 matrix with 16 entries consisting of
the integers 1, ..., 15 as well as one “empty” entry—like each of the two arrays above.

The state transitions correspond to exchanging the empty square and an adjacent numbered tile. For
example, an empty at position (2, 2) can exchange position with tile above it, namely, at position (1, 2):

ny | n2 | n3 | ng ni n3 | n4

ns ne | ny ns | n2 | ne | n7
—

ng | ng (N0 | N11 ng | ng |nio | N1

N2 | N13 [ N14 [ N15 niz2 | n13 | N14 | N15

We will use the invariant method to prove that there is no way to reach the target state starting from the
initial state.
We begin by noting that a state can also be represented as a pair consisting of two things:

1. alist of the numbers 1, ..., 15 in the order in which they appear—reading rows left-to-right from the
top row down, ignoring the empty square, and
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2. the coordinates of the empty square—where the upper left square has coordinates (1, 1), the lower
right (4, 4).

(a) Write out the “list” representation of the start state and the “impossible” state.

Solution. start: (12 ... 15), (4,4)),
impossible: ((15 14 ... 1), (4,4)).
O

Let L be a list of the numbers 1, ..., 15 in some order. A pair of integers is an out-of-order pair in L
when the first element of the pair both comes earlier in the list and is larger, than the second element of
the pair. For example, the list 1,2,4,5,3 has two out-of-order pairs: (4,3) and (5,3). The increasing list
1,2...n has no out-of-order pairs.

Let a state, S, be a pair (L, (i, j)) described above. We define the parity of S to be the mod 2 sum of the
number, p(L), of out-of-order pairs in L and the row-number of the empty square, that is the parity of S is
p(L)+i (mod 2).

(b) Verify that the parity of the start state and the target state are different.

Solution. The parity of the start state is
(0+4)mod 2 =0.

The parity of the target is
((15-14/2) + 4) mod 2 = 1.

(¢) Show that the parity of a state is preserved under transitions. Conclude that “the impossible” is impos-
sible to reach.

Solution. To show that the parity is constant, consider how moves may affect the parity. There are only 4
types of moves: a move to the left, a move to the right, a move to the row above, or a move to the row below.

Note that horizontal moves change nothing, and vertical moves both change i by 1, and move a tile three
places forward or back in the list, L. To consider how the parity is changed in this case, we need to consider
only the 3 pairs in L that are between the tile’s old and new position. (The other pairs are not effected by
the tile’s move). This reverses the order of three pairs in L, changing the number of inversions by 3 or 1, but
always by an odd amount.

To confirm this last remark, note that if the 3 pairs were all out of order or all in order before, the amount
is changed by 3. If two pairs were out of order and 1 pair was in order or if one pair was out of order and
two were in order, this will change the amount by 1. So the sum of i and the number of out-of-order pairs
changes by an even amount (either 143 or 1+1), which implies that its parity remains the same. Since the
initial state has parity O (even), all states reachable from the initial state must have parity 0, so the target
state with parity 1 can’t be reachable. |

By the way, if two states have the same parity, then in fact there is a way to get from one to the other. If
you like puzzles, you’ll enjoy working this out on your own.
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Problem 3.
A classroom is designed so students sit in a square arrangement. An outbreak of beaver flu sometimes
infects students in the class; beaver flu is a rare variant of bird flu that lasts forever, with symptoms including
a yearning for more quizzes and the thrill of late night problem set sessions.

Here is an illustration of a 6 x 6-seat classroom with seats represented by squares. The locations of
infected students are marked with an asterisk.

* *

Outbreaks of infection spread rapidly step by step. A student is infected after a step if either
e the student was infected at the previous step (since beaver flu lasts forever), or
e the student was adjacent to at least two already-infected students at the previous step.

Here adjacent means the students’ individual squares share an edge (front, back, left or right); they are not
adjacent if they only share a corner point. So each student is adjacent to 2, 3 or 4 others.
In the example, the infection spreads as shown below.

* * * | * *
* *

* | ¥ | ¥ | ¥

AR AR SR AR BK

LA AR K R
I AR AR ARAR]

* * * | ok

In this example, over the next few time-steps, all the students in class become infected.

Theorem. If fewer than n students among those in an n X n arrangment are initially infected in a flu
outbreak, then there will be at least one student who never gets infected in this outbreak, even if students
attend all the lectures.

Prove this theorem.

Hint: Think of the state of an outbreak as an n x n square above, with asterisks indicating infection. The
rules for the spread of infection then define the transitions of a state machine. Show that

239

R(q)::=The “perimeter”’of the “infected region”
of state g is at most k,

is a preserved invariant.

Solution. Proof. Define the perimeter of an infected set of students to be the number of edges with infection
on exactly one side. Let v be size (number of edges) in the perimeter.

We claim that v is never gets bigger. This follows because the perimeter changes after a transition only be-
cause some squares became newly infected. By the rules above, each newly-infected square is adjacent to at
least two previously-infected squares. Thus, for each newly-infected square, at least two edges are removed
from the perimeter of the infected region, and at most two edges are added to the perimeter. Therefore, the
perimeter of the infected region cannot increase, so if it is at /k in some state, it stays that way.

Now if an n x n grid is completely infected, then the perimeter of the infected region is 4n. Thus, the
whole grid can become infected only if the perimeter is initially at least 4n. Since each square has perimeter
4, at least n squares must be infected initially for the whole grid to become infected. |




