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In-Class Problems Week 5, Fri.

Problem 1.
Find the remainder of 26'813181 divided by 297. Hint- 1818181 = (180 - 10101) + 1; Euler’s theorem

Problem 2.
Find an integer k > 1 such that n and n* agree in their last three digits whenever n is divisible by neither 2
nor 5. Hint: Euler’s theorem.

Problem 3.
Suppose a, b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder
Theorem, which says that for all m, n, there is an x such that

x=mmoda, (1
x=n modb. (2)

Moreover, x is unique up to congruence modulo ab, namely, if x’ also satisfies (1) and (2), then
x" = x mod ab.

(a) Prove that for any m, n, there is some x satisfying (1) and (2).

Hint: Let =1 be an inverse of b modulo a and define e, ::=b"'h. Define ep, similarly. Let x = me, +neyp.

(b) Prove that
[x=0moda AND x =0 mod b] implies x =0 mod ab.

(¢) Conclude that

[x=x'moda AND x = x"mod b] implies x = x’ mod ab.

(d) Conclude that the Chinese Remainder Theorem is true.

(e) What about the converse of the implication in part (¢)?

Problem 4.
Suppose a, b are relatively prime integers greater than 1. In this problem you will prove that Euler’s function
is multiplicative, namely, that

¢lab) = ¢(a)p (D).

The proof is an easy consequence of the Chinese Remainder Theorem .

[@lole)
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2 In-Class Problems Week 5, Fri.

(a) Conclude from the Chinese Remainder Theorem that the function [ : [0, ab) — [0,a) x [0, b) defined
by
f(x) = (rem(x,a), rem(x, b))

is a bijection.

(b) For any positive integer, k, let k™* be the integers in [1, k) that are relatively prime to k. Prove that the
function f from part (2) also defines a bijection from (ab)* to a™ x b*.

(c) Conclude from the preceding parts of this problem that
P(ab) = p(a)gp(b). 3)

(d) Prove Corollary ??: for any number n > 0, if py, pa, ..., p; are the (distinct) prime factors of n, then

gb(n):n(l —L) (I—L)---(l —L)
P1 P2 Pj
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Solutions to In-Class Problems Week 5, Fri.

Problem 1.
Find the remainder of 261818181 divided by 297. Hint: 1818181 = (180 - 10101) + 1; Euler’s theorem

Solution. 26.
Since 26 = 2 - 13 and 297 = 32 - 11 are relatively prime, Euler’s theorem implies that

k2% =1 (mod 297)
where

$(297) = ¢(3° - 11)

= ¢(3%) - ¢(11) (since ged(33,11) = 1)
= (32 -3%-(11-1 (since 3 and 11 are prime)
= 180.

Using the hint that 1818181 = (180 - 10101) + 1, we can conclude

261818181 s 26( 26180'10]01

= 26- 1(;0101 (mod 297) (by Euler’s Theorem)

= 26. w\\ 2% 0=\

Problem 2.

Find an integer k£ > 1 such that n and nk agree in their last three digits whenever # is divisible by neither 2
nor 5. Hint: Euler’s theorem.

Solution. Two numbers agree in their last three digits iff they are congruent modulo 1000. So we must find
ak > 1 such that

n=n* (mod 1000)

for all n not divisible by 2 or 5—that is, for all n relatively prime to 1000. But by Euler’s theorem, we know
k = ¢(1000) + 1 will work, namely,

k=¢(1000) + 1 = ¢p(2*)$p(5°) + 1 =4-100 + 1 = 401.

) — 1 }
(Eocumentclass[prob]em]mcs ()-‘i o prc!
e ‘ . 1
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2 Solutions to In-Class Problems Week 5, Fri.

Problem 3.

Suppose a, b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder
Theorem, which says that for all m, n, there is an x such that such that

x = m mod a, (D
x=n mod b. (2)

Moreover, x is unique up to congruence modulo ab, namely, if x” also satisfies (1) and (2), then
x' = x mod ab.

(a) Prove that for any m, n, there is some x satisfying (1) and (2).

Hint: Let b~ be an inverse of b modulo a and define e, ::= b~ 'b. Define e, similarly. Let x = me, +ney,.

Solution. We have by definition

ean=b"lb= hooca,
0 mod b,

and likewise for ey, . Therefore

m-14+n-0=mmoda
m-04+n-1=nmodb.

meg + nep

(b) Prove that
[x=0moda AND x =0mod b] implies x = 0 mod ab.

Solution. If x = 0 mod a, then by definition, @ | x. Likewise, b | x. But a and b are relatively prime, so
by Unique Factorization ??, ab | x, that is, x = 0 mod ab. [ |

(¢) Conclude that
[x =x"moda AND x = x"mod b] implies x = x’ mod ab.
Solution. (x’—x)is = 0 mod a by (1) and = 0 mod b by (2), so by part (b), (x’—x) = 0 mod ab. Adding

x to both sides of this = gives
x' = x mod ab.

(d) Conclude that the Chinese Remainder Theorem is true.
Solution. The existence of an x is given in part (a), so all that’s let is to prove x is unique up to congruence
modulo ab. But if x and x’ both satisfy (1) and (2), then x’ = x mod @ and x’ = x mod a, so x’

x mod ab by part (c). O

(e) What about the converse of the implication in part (c)?



Solutions to In-Class Problems Week 5, Fri. 3

Solution. The converse is true too: if cd | (x” — x), then obviously ¢ | (x” — x). This means that
x' = xmodcd implies x’ = x mod c.
So in particular,

x=x"modab implies [x=x"moda AND x = x’ mod b].

So this together with part (c) gives a basic fact worth calling a

Lemma. For a,b are relatively prime and greater than 1,

[x'=xmoda AND x’ = xmod b] iff x’ = x modab.

Problem 4.
Suppose a, b are relatively prime integers greater than 1. In this problem you will prove that Euler’s function
is multiplicative, namely, that

¢(ab) = ¢(a)p(b).
The proof is an easy consequence of the Chinese Remainder Theorem .

(a) Conclude from the Chinese Remainder Theorem that the function f : [0,ab) — [0, a) x [0, b) defined
by
f(x) ::= (rem(x, a), rem(x, b))

is a bijection.
Solution. The Chinese Remainder Theorem says that the congruences

x=m (mod a),

x=n (mod b).

have a solution x € [0, ab), which means that f is surjective, and that the solution is unique, which means
that f is injective, and hence it is a bijection. [ |

(b) For any positive integer, k, let k* be the integers in [1, k) that are relatively prime to k. Prove that the
function f from part (a) also defines a bijection from (ab)* to a* x b*

Solution. But since a and b are relatively prime, number x is relatively prime to ab iff x is relatively prime
to a and x is relatively prime to b, by Unique Factorization. This means precisely that x € (ab)* iff f(x) €
a*xb*, which in turn means f((ab)*) = a* xb*. So restricting the bijection, f, to codomain (ab)* defines
a bijection to a* x b*. [ ]

(¢) Conclude from the preceding parts of this problem that
P (ab) = ¢p(a)gp(b). 3)
Solution. The mapping f defines a bijection between (ab)* and a* x b*. So

¢(ab) :=|(ab)*| = la* x b*| = |a*| - |b*| = p(a) - p(b).



4 Solutions to In-Class Problems Week 5, Fri.
(d) Prove Corollary ??: for any number n > 0, if py, p2, ..., p; are the (distinct) prime factors of 7, then

ow=a (=) (-2)(-2)

Solution. We know from Theorem ?? that for all primes, p, and k > 0,
- 1
¢Uf)=pk—pk1=pk(b—;)-

So if
k

k k
n:pll.p22...pj
where all the k’s are positive, then repeated applications of (3) we get
k k k
() = d(p1") - d(py*) - d(p;7)
k 1 k 1 k; 1
s G N o) o
14 P2 Pj
7 = e ) %)
: . d 1 D2 Pj
(22 03)
gl P2 Pj
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Massachusetts Institute of Technology
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In-Class Problems Week 6, Mon.

Problem 1.
Let’s try out RSA! There is a complete description of the algorithm in the text box. You’ll probably need
extra paper. Check your work carefully!

(a) As ateam, go through the beforehand steps.

e Choose primes p and g to be relatively small, say in the range 10-40. In practice, p and ¢ might
contain several hundred digits, but small numbers are easier to handle with pencil and paper.

e Trye =3,5,7,... until you find something that works. Use Euclid’s algorithm to compute the gcd.

e Find d (using the Pulverizer—see appendix for a reminder on how the Pulverizer works—or Euler’s
Theorem).

When you’re done, put your public key on the board. This lets another team send you a message.

(b) Now send an encrypted message to another team using their public key. Select your message m from
the codebook below:

e 2 = Greetings and salutations!

e 3 = Yo, wassup?
e 4 = You guys are slow!
e 5= All your base are belong to us.

e 6= Someone on our team thinks someone on your team is kinda cute.

e 7 = You are the weakest link. Goodbye.

(¢) Decrypt the message sent to you and verify that you received what the other team sent!

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .

I &




[y]

In-Class Problems Week 6, Mon.

The RSA Cryptosystem
Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and ¢. Since they can be used to generate the secret key, they
must be kept hidden.

2. Letn = pq.

3. Select an integer e such that ged(e, (p — 1)(g — 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Compute d such thatde =1 (mod (p — 1)(g — 1)). This can be done using the Pulverizer.
The secret key is the pair (d, n). This should be kept hidden!

Encoding Given a message m, the sender first checks that gcd(m,n) = 1.

The sender then encrypts message m to produce m* using thg public key:

\
m* = rem(m®,n). h‘{(/’

Decoding The receiver decrypts message m™ back to message m using the secret key:

m = rem((m*)?, n).

Problem 2.

A critical fact about RSA is, of course, that decrypting an encrypted message always gives back the original
message! That is, that rem((m?)¢, pg) = m. This will follow from something slightly more general:

Lemma 2.1. Let n be a product of distinct primes and a = 1 (mod ¢(n)) for some nonnegative integer, a.
Then

m®=m (mod n). (D
(a) Explain why Lemma 2.1 implies that & and k* have the same last digit. For example:

5=3

[§%)
I

79° = 3077056399
Hint: What is ¢(10)?
(b) Explain why Lemma 2.1 implies that the original message, m, equals rem((m®)¥, pq).

(c) Prove that if p is prime, then
m*=m (mod p) (2)

for all nonnegative integersa = 1 (mod p — 1).
(d) Prove thatif a = b (mod p;) for distinct primes py, pa..... Pn.thena = b (mod pypy--- pn).

(e) Combine the previous parts to complete the proof of Lemma 2.1.
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Appendix

Inverses, Fermat, Euler

Lemma (Inverses mod n). If k and n are relatively prime, then there is integer k' called the modulo n
inverse of k, such that
k-k"=1 (modn).

Remark: If ged(k,n) = 1, then sk + tn = 1 for some s, 7, so we can choose k" ::= s in the previous
Lemma. So given k and n, an inverse k' can be found efficiently using the Pulverizer.

Theorem (Fermat’s (Little) Theorem). If p is prime and k is not a multiple of p, then
kP~'=1 (mod p)

Definition. The value of Euler’s totient function, ¢ (n), is defined to be the number of positive integers less
than n that are relatively prime to n.

Lemma (Euler Totient Function Equations).

(,I‘)(pk] = pk - pk_l for prime, p, and k > 0,
¢p(mn) =¢p(m)-¢p(n) when ged(m,n) = 1.
Theorem (Euler’s Theorem). If k and n are relatively prime, then

kP =1 (mod n)

The Pulverizer

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equation:
gcd(a, b) = ged(b, rem(a, b))

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we
compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the example)
as a linear combination of @ and b (this is worthwhile, because our objective is to write the last nonzero
remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

X y rem(x,y) = x—q-y
259 70 49 = 259-3.70
70 49 21 = 70—1-49
= 70—1-(259—3-70)
= —1-259+4-70
49 21 7 = 49-2-21
= (259-3-70)—2-(=1-259 + 4-70)
[3-259—11-70]
21 7 0

We began by initializing two variables, x = a and y = b. In the first two columns above, we carried out
Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form x — ¢ - y. Then
we replaced x and y in this equation with equivalent linear combinations of @ and b, which we already
had computed. After simplifying, we were left with a linear combination of @ and b that was equal to the
remainder as desired. The final solution is boxed.
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RSA encryption

Albert R Meyer March 7,201 lec 6M.1

EE%E Beforehand

receiver generates primes p, g
n:.= p-q :
selects e rel. prime fo (p-1)(g-1)
(e, n) = public key, publishes it
finds d, inverse mod (p-1)(g-1) of e
d is secret key, keeps hidden

Albert B Meyer Merch 7, 2011 lec 6M.3

Receiver's abilities

find two large primes p, q
- ok because: lots of primes
- fast test for primality

find e rel. prime to (p-1)(g-1)
- ok: lots of rel. prime nums
- gcd easy to compute

find (mod (p-1)(g-1)) inverse of e

s - €0SY using Pulverizer or Euler

M5

EEE RSA Public Key Encryption

Albert it Meyer March 7, 2011 lec 6M.2

& RSA
Encoding message me[1,n)
send m* ::= rem(me, n)
Decoding m*:
receiver computes
rem((m*)4, n) = m

Albert R Meyer March 7, 2011 lec 6M4

lots of primes
Prime Number Thm:

(n) ::= |primes < n|
~n/Inn (deep thm)
n(n) > n/4 log n
Chebyshev's bound
"elementary” proof

Albert & Meyer March7, 2011 lec M6




énm
lots of primes

so for 200 digit #'s,
af least 1/1000 is prime
m(n) > n/4 logn
Chebyshev's bound
“elementary” proof

Albert R Meyer March 7, 2011 lec 6M.7

ZE test if n is prime
check if
rem(a™!, n) =1
if fails, not prime (Fermat)
choose random a in [1,n).
if not prime, Pr(fails)>1/2

(with rare exceptions)

(1 AbertR Meyer  March7, 2011 lec 6M.8

i Why does this work?

follows easily from
Euler's Theorem when
m has inverse mod n

:g n'-‘_:'—-‘f‘ Albert B Meyer March 7, 2011 lec 6M9

Why is it secure?

» easy to break if can factor n
(find d same way receiver did)
« conversely, from d can factor n

(but factoring appears hard
so finding d must also be hard)

» RSA has withstood 30 years of
attacks

Clo=E Albert R Mayer March 7, 2011 lec 6M11

Why does this work?

actually works for
all m ... explained in
Class Problem 2

@g’a"«._\‘ Albert & Meyer March7, 2011 lec 5M.10

: + Why does SAT-solver break it?

multiplier circuit

—e —
P ::} k bits i

= 2k bitsq [ F Pq
q- ::} k bits 2

L9 — |

Albert B Meyer March7, 2011 lec Mot
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Why does SAT-solver break it? B Why does SAT-solver break it?
multiplier circuit equality circuit multiplier circuit equality circuit
—e r 0—e '
- -4 2 :
X ""_"‘:} k bits &= X 51 Fkbits
—0 : LA C— . £
2k bits- e — =
o i [ s 2k bits
—
y ::]» k bits = y {3:: k bits =
— L e i
AbertRMeyer  March7, 2011 Tec SM > AbertRMeper  March7, 201 lec M.t
oRod oRco :
Why does SAT-solver break it? si:  Why does SAT-solver break it?
multiplier circuit equality circuit multiplier circuit equality circuit
0—e [ 0—e [ EX
) S ——a . :
X ,:::I— k bits g e Q::} k bits 4]
—s : L« -p o ; Tl B8
) 2 -
= 2k bits [ i k bits
y {g::} K bits ] Y {2::} SR
>—e _+— —e —+—
Alert 8 Meyer Morch 7, 2011 Tec M. Aloert R Meyer March 7, 2011 Tec GM. 2>

« Qmn .
Why does SAT-solver break it? Why does SAT-solver break it?
multiplier circuit equality circuit multiplier circuit equality circuit
O0—e B 0—e B B
: = 4
X 1,::} k bits i) X %}::} k bits B
r—e 4 LA s P k B o
2k bits = ‘ 2k bits = ~>.
—e 1= @ — ] @
: — — :
y {;::} k bits ) y «[;Mﬁ} k bits
Pl 4 L —of P ——
Albert R Meyer Merch 7, 2011 lee SM <t Albert R Meyer March 7, 2011 fec 6M et




Why does SAT-solver break it?

multiplier circuit equality circuit
} k bits
2k bits

p
)
b
y
: ?—". :
y {3::} k bits
:3—“ =

after 2k SAT tests...

Abert 3 Meyer  March7, 2011 lec &M

0
—
e D

77—

lllllllll
>

P o—

Why does SAT-solver break it?

SAT-solvers work on formulas.
Formula equivalent to circuit
may be too big fo check.

But there's a simple trick fo find
an equi-satisfiable formula
about the same size as circuit.

Albert R Meyer March 7, 2011 lec 6M.22

Why does SAT-solver break it?

multiplier circuit equality circuit

:|~ k bits

2k bits—

0—¢
71—

1—

(Fmmm,

10000

k bits

b
4
3
3
1=
b
>
b

found the factors p,q !

Albert R Meyer March 7, 2011 lec M o>

Team Problems

Problem 2

Albert R Meyer March 7, 2011 lec 6M.23
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Massachusetts Institute of Technology

6.042J/18.062J, Spring * 1 1: Mathematics for Computer Science March 7

Prof. Albert R Meyer revised Monday 7% March, 2011, 14:50

Solutions to In-Class Problems Week 6, Mon.

Problem 1.

Let’s try out RSA! There is a complete description of the algorithm in the text box. You’ll probably need
extra paper. Check your work carefully!

(a) As ateam, go through the beforehand steps.

e Choose primes p and g to be relatively small, say in the range 10-40. In practice, p and g might
contain several hundred digits, but small numbers are easier to handle with pencil and paper.

e Trye = 3,5,7,... until you find something that works. Use Euclid’s algorithm to compute the ged.

e Find d (using the Pulverizer—see appendix for a reminder on how the Pulverizer works—or Euler’s
Theorem).

When you’re done, put your public key on the board. This lets another team send you a message.

(b) Now send an encrypted message to another team using their public key. Select your message m from
the codebook below:

e 2 = Greetings and salutations!

e 3 = Yo, wassup?

e 4 = You guys are slow!

e 5= All your base are belong to us.

e 6= Someone on our team thinks someone on your team is kinda cute.

e 7 = You are the weakest link. Goodbye.

(c) Decrypt the message sent to you and verify that you received what the other team sent!

Problem 2.
A critical fact about RSA is, of course, that decrypting an encrypted message always gives back the original
message! That is, that rem((m?)¢, pg) = m. This will follow from something slightly more general:

Lemma 2.1. Let n be a product of distinct primes and a = 1 (mod ¢ (n)) for some nonnegative integer, a.
Then

m®=m (mod n). (1)
(a) Explain why Lemma 2.1 implies that k and k> have the same last digit. For example:

2° =32 79° = 3077056399

Hint: What is ¢(10)?

Creative Commons m 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 6, Mon.

Solution. Two nonnegative integers have the same last digit iff they are = (mod 10). Now ¢(10) =
$(2)p(5) =4and 5= 1 (mod 4), so by Lemma 2.1,

k> =k (mod 10).

(b) Explain why Lemma 2.1 implies that the original message, m, equals rem((m®)?, pq).

Solution. To apply Lemma 2.1 to RSA, note that the first condition of the Lemma is that n be a product of
primes. In RSA, n = pq so this condition holds.

For n = pq, we have from from Lemma 8.7.5 or the more general the Theorem 8.7.6 that ¢ (n) = (p —
1)(g — 1). So when d and e are chosen according to RSA, de = 1 (mod ¢(n)). So a ::= de satisfies the
second condition of the Lemma.

Now, from equation (1) withn = pg and a = de, we have

m)% =m9 =m (mod rq)-
Hence,
rem((m®)?, pq) = rem(m, pq),
but rem(m, pg) = m, since 0 < m < pq. |

(c) Prove that if p is prime, then
m®=m (mod p) 2)

for all nonnegative integersa = 1 (mod p — 1).

Solution. If p | m, then equation (2) holds since both sides of the congruence are = 0 (mod p).

So assume p does not divide m. Now ifa = 1 (mod p — 1), thena = 1 + (p — 1)k for some k, so
mé = m1+(p—-1)k
=m- (mp""])k

=m-(1)* (mod p) (by Fermat’s Little Thm.)
=m (mod p).

(d) Prove thatif a = b (mod p;) for distinct primes py, pa, ..., pn,thena = b (mod pyp; --- pn).

Solution. By definition of congruence, @ = b (mod k) iff k | (a — b). Soifa = b (mod p;) for each p;,
then p; | (a — b) for each p;. By the Unique Factorization Theorem 8.3.1, the product of the p;’s must also
divide (a — b), which means thata = b (mod pj p; --- pp). [ |

(e) Combine the previous parts to complete the proof of Lemma 2.1.



Solutions to In-Class Problems Week 6, Mon. 3

Solution. Suppose 7 is a product of distinct primes, pjps --- px. Then from the formulas for the Euler
function, ¢, we have

dp(n)=(p1—D(p2—1)---(p—1).

Now suppose @ = 1 (mod ¢ (n)), that is, a is 1 plus a multiple of ¢ (n), so it is also 1 plus a multiple of
pi — 1. That s,
a=1 (mod p; —1).

Hence, by part (c),
m®=m (mod p;)

for all m. Since this holds for all factors, p;, of n, we conclude from part (d) that
m? =m (mod n),

which proves Lemma 2.1. [
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Directed Graphs

Albert R Meyer  March 9, 2011 L

w1

s BIEIE
L i+ Computer Scientist's Graph
mom :

b

A C

a

sw3

L A

:Ig+< Relations and Graphs
a b

N

Ve {ab c di
E = {(a,b), (a,c), (c,b)}
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i Normal Person’s Graph

Y

X

Albert R Meyer  March 9, 2011 toc dW.2

P e Di h
igraphs

«a set, V, of vertices
caset, E C VxV
of directed edges

(vw) € E  notation: v—w
Ve
= Digraphs
Formally, a digraph

with vertices V is
the same as a binary
relation on V.
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SuEH Walks & Paths

sl Walk: follow successive edges

=

length: 5 edges
—0—>0—->0—0—0

(not 6 vertices)

Albert R Meyer  March 9, 2011 Bec 6W.7

% Walks & Paths

B Lemma:
The shortest walk between
two vertices is a path!
Proof: (by contradiction) suppose

Walks & Paths
A Path: walk thru vertices
without repeat vertex

length: 4 edges
0—0—0—0—0

Albert R Meyer  March 3,201 lec WS

hEE Walks & Paths

Digraph & defines path

relation G*

u &'v iff dpathutov
Inth >0

(the positive path relation)

Albert R Meyer  March §, 2011 lec 6W 11
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% Walks & Paths
svg Lemma:
The shortest walk between
two vertices is a path!
then path without c---c is
shorter!

c
& e b4
u v
"'~.-.......>.'.-‘

Albert R Meyer March 9, 2011 Jec EW.10

6 nm 7
EHF . Cycles

Qi -

A cycle is a walk whose
only repeat vertex is its
start & end.

(a single vertex is a
length O cycle)

= O Albert R Meyer  March 9, 2011 tec W12




¢ [0 m 7
Hi-a Cycles
oo -
*—0—0— .- g
Vo Vi Vo Vi Vo
Vo,: ? Vil
Albert R Meyer  March 9, 2011 w3

Directed Acyclic Graph

examples: DAG

< relation on integers
C relation on sets
prerequisite on classes

Albert R Meyer  March 9, 2011

10 < Covering Edges

unneeded edges

covering edges

2lalw

Directed Acyclic Graph

DAG
has no positive

length cycle

Albert R Meyer  March 5, 2011

DAG path relation

a what is smallest
DAG with same
path relation?

Albert R Meyer  March 9, 2011

B e.g.any path
Y1 from ¢ to d must
.-' Ml owl L usecyd |
el o e % f
Albert R Meyer March 9, 2011 lec W17

What 1 soulled -called’

AEE

Problems
1-3
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In-Class Problems Week 6, Wed.

Problem 1.
In a round-robin tournament, every two distinct players play against each other just once. For a round-

robi

n tournament with with no tied games, a record of who beat whom can be described with a tournament

digraph, where the vertices correspond to players and there is an edge (x — y) iff x beat y in their game.
A ranking is a path that includes all the players.

(a)
(b)

Give an example of a tournament digraph with more than one ranking.

Prove that if a tournament digraph is a DAG, then it has at most one ranking. Hint: Prove that the

elements below u in any ranking are uniquely determined.

(c)
(d)

Prove that every finite tournament digraph has a ranking.

Give an example of a tournament with a countably infinite number of players, po, pi1,... that has no

ranking.

Hint: Q.

Problem 2.

If a

and b are distinct nodes of a digraph, then a is said to cover b if there is an edge from a to b and every

path from a to b traverses this edge. If @ covers b, the edge from a to b is called a covering edge.

(a)
(b)

What are the covering edges in the DAG in Figure 17?

Let covering (D) be the subgraph of D consisting of only the covering edges. Suppose D is a finite

DAG. Explain why covering (D) has the same positive path relation as D.

Hint: Consider longest paths between a pair of vertices.

(c)

Show that if two DAG’s have the same positive path relation, then they have the same set of covering

edges.

(d)

Conclude that covering (D) is the unigue DAG with the smallest number of edges among all digraphs

with the same positive path relation as D.
The following examples show that the above results don’t work in general for digraphs with cycles.

(e)

Describe two graphs with vertices {1, 2} which have the same set of covering edges, but not the same

positive path relation (Hint: Self-loops.)

()

(i

(i) The complete digraph without self-loops on vertices 1,2, 3 has edges between every two distinct
vertices. What are its covering edges?

) What are the covering edges of the graph with vertices 1,2, 3 and edges (1 —2).(2—3),{3—1)?

(iii) What about their positive path relations?

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 6, Wed.

Figure 1 DAG with edges not needed in paths

Problem 3.
A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you’d like to write out, in one
string, all eight of the 3-bit strings in any convenient order. For example, if you wrote out the 3-bit strings in
the usual order starting with 000 001 010. .., you could concatenate them together to get a length 3-8 = 24
string that started 000001010. ...

But you can get a shorter string containing all eight 3-bit strings by starting with 00010.... Now 000 is
present as bits 1 through 3, and 001 is present as bits 2 through 4, and 010 is present as bits 3 through 5, ....

(a) Say astring 3-good if it contains every 3-bit string as 3 consecutive bits somewhere in it. Find a 3-good
string of length 10, and explain see why this is the minimum length for any string that is 3-good.

(b) Explain how any walk that includes every edge in the graph shown in Figure 2 determines a string that
is 3-good. Find the walk in this graph that determines your good 3-good string from part (a).

(¢) Explain why a path in the graph of Figure 2 that includes every every edge exactly once provides a
minimum length 3-good string.

(d) The situation above generalizes to k > 2. Namely, there is a digraph, By, such that V(By) = {0, 1}X,
and any walk through By that contains every edge exactly once determines a minimum length (k + 1)-good
bit-string. What is this minimum length?

Define the transitions of By. Verify that the in-degree and out-degree of every vertex is even, and that there
is a positive path from any vertex to any other vertex (including itself) of length at most k.

IProblem 9.6 shows that if the in-degree of every vertex of a digraph is equal to its out-degree, and there are paths between
any two vertices, then there is a closed walk that includes every edge exactly once. So the graph By implies that there always is
alength-251 4+ k bit-string in which every length-(k 4 1) bit-string appears as a substring. Such strings are known as de Bruijn
sequences.




In-Class Problems Week 6, Wed.

+1
10 +0 D
O~
1

1

+1
+0 +1

+0

00

@“\/01

+0 +1

Figure 2 The 2-bit graph.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring " 11: Mathematics for Computer Science March 9
Prof. Albert R Meyer revised Wednesday 9™ March, 2011, 18:23

Solutions to In-Class Problems Week 6, Wed.

Problem 1. _

In a round-robin tournament, every two distinct players play against each other just once. For a round-

robin tournament with with no tied games, a record of who beat whom can be described with a tournament

digraph, where the vertices correspond to players and there is an edge (x — y) iff x beat y in their game.
A ranking is a path that includes all the players.

(a) Give an example of a tournament digraph with more than one ranking.

Solution. Letn = 3 with edges (u —v), (v — w) and (w — u). Then both u, v, w and v, w, u are rankings.
B

(b) Prove that if a tournament digraph is a DAG, then it has at most one ranking.

Solution. Suppose for contradiction that there are two rankings for the graph. Since the rankings differ,
there must be two players u # v such that u ranks higher than v in one ranking and lower than v in the other
ranking. So one ranking gives a path from u to v and the other ranking gives a path from v to u.

Merging these paths gives a closed walk from u to u that goes through v. From this we would like to
conclude that there is a positive length cycle from u to u. This would contradict the fact that the graph is a
DAG, and so would complete the proof.

But having a closed walk of from u to u that goes through v does not by itself imply that there is a cycle
from from u to u that goes through v. In fact, in general there may not be such a cycle —an example of this
appears at the end of this solution.

Now there are two ways to close this loophole. One is to observe that

Lemma. The shortest positive length closed walk through a vertex is a cycle.

Since a walk from from u to u that goes through v # u must have positive length, this Lemma implies there
is a positive length cycle from u to u (somewhere, not necessarily though v), contradicting the fact the graph
is a DAG and so completing the overall proof.

All that remains is proving the Lemma, and the proof of the Lemma is essentially the same as for Theo-
rem 9.2.4 that a shortest walk is a path.

Orhe Lemma. Suppose w is a minimum positive length walk from u to u. We claim w is a cycle.
To prove the claim, suppose to the contrary that w is not a cycle.
case (u occurs more than two times in w): This means that

w=euf

where both e and f have positive length. Then e is a shorter positive length walk from u to u, contradicting
the minimality of w.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 6, Wed.

case (some vertex X # u occurs twice in w): Then
w=exfXxg
for some positive length walks e, f, g. But then “deleting” f yields a strictly shorter walk, namely
exg
is a shorter walk from u to u, again contradicting the minimality of w. O

The second way out of the loophole is to observe that in a tournament graph, there must be an edge in one
direction or the other between u and v. So say the edge is (¢ — v). Then this edge merged with the path
from v to u will be a cycle (think about why).

By the way, another workable approach to this problem is by induction on the number of vertices, which we
omit.

Example.

Pea={u w0 %},
E:={{u—-w),(w—x),{x—=u), (vo>w), {x—>v)},
there is a path
u{fu—w)w(w—-x)x(x—wv)
from u to v, and a path
v(ivow)w(w—ox)x{(x—u)u

from v to u, but it is easy to see that there is no cycle from u to u that contains v. (The sole edge out of u
goes to w, and the sole edge out of v likewise goes to w, so any walk from u to u that goes through v must
go through w at least twice and therefore won’t be a cycle.

|
(c) Prove that every finite tournament digraph has a ranking.
Solution. By induction on n with induction hypothesis

P (n) ::= every tournament digraph with n vertices has a ranking.

base case n = 1: Trivial.

inductive step: Let G be a tournament digraph with n + 1 vertices. Remove one vertex, v, to obtain the
subgraph, H, with the n remaining vertices. Clearly, H is also a tournament digraph, so by induction
hypothesis it has a ranking. Now if the last player in this H -ranking beat player v, then v can be added at
the end to form a ranking in G. On the other hand, if v beat the last player in the H-ranking, then there
will (by WOP) be a first player in the H -ranking that v beats. Inserting v just before that first player gives a
ranking for G. Since G was an arbitrary n + 1 vertex tournament graph, we conclude that P (n + 1) holds,

which completes the proof. |
(d) Give an example of a tournament with a countably infinite number of players, pg, p1, ... that has no
ranking.

Hint: Q.
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Solution. The rationals, Q, are a countable set, and specifying that r beats s precisely when r > s defines
a tournament graph with @ as the set of players.

Now in any tournament graph, vertex u can come before vertex u in some ranking only if there is a path
from u to v. This implies that if r > s, then r must come before s in any ranking of Q.

So suppose there was a ranking of (Q and (r —s) was an edge on the path. This implies that r > s. Now
let t be any rational such that r > ¢ > s. Now in a ranking, # must come before r or after s, which implies
t > rors > t,acontradicting the choice of 7. SO there cannot be a ranking of the @Q tournament. =

Problem 2.
If a and b are distinct nodes of a digraph, then a is said to cover b if there is an edge from a to b and every
path from a to b traverses this edge. If a covers b, the edge from a to b is called a covering edge.

(a) What are the covering edges in the DAG in Figure 1?

Solution. E—BA/ |

(b) Let covering (D) be the subgraph of D consisting of only the covering edges. Suppose D is a finite
DAG. Explain why covering (D) has the same positive path relation as D.

Hint: Consider longest paths between a pair of vertices.

Solution. What we need to show is that if there is a path in D between vertices a 7# b, then there is a path
consisting only of covering edges from a to b. But since D is a finite DAG, there must be a longest path
from a to b. Now every edge on this path must be a covering edge or it could be replaced by a path of length
2 or more, yielding a longer path from a to b. ]

(c) Show that if two DAG’s have the same positive path relation, then they have the same set of covering
edges.

Solution. Proof. Suppose C and D are DAG’s with the same positive path relation and that (¢ —b) is a
covering edge of C. We want to show that (¢ — b) must also be a covering edge of D.

Since (a — b) itself defines a (length one) positive length path in C, there must be a positive length path in
D from a to b. If this positive length path in D is of length greater than one, then the path must consist of

a positive length path from a to ¢ followed by a positive length path from ¢ to b for some vertex, c. Also,
since D is a DAG, ¢ cannot be a or b.

This means there must also be positive length paths in C from a to ¢ and from ¢ to b, and neither of these
paths can traverse (a — b) or there would be a cycle. Hence the path from a to ¢ to b is a path in C that
does not traverse (@ — b), contradicting the fact that (@ — b) is a covering edge of C.

In sum, there is a length one path from a to b in D, namely (@ — b), and this is the only path from a to b in
D, which proves that {¢ — b) is a covering edge in D. a

(d) Conclude that covering (D) is the unique DAG with the smallest number of edges among all digraphs
with the same positive path relation as D.

Solution. By part (c), any DAG with the same positive path relation as D must contain all the edges of
covering (D). By part (b), covering (D) has this same positive path relation. It follows immediately that
covering (D) is the unique minimum-size DAG with the same positive path relation as D. |

The following examples show that the above results don’t work in general for digraphs with cycles.
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Figure 1 DAG with edges not needed in paths

(e) Describe two graphs with vertices {1, 2} which have the same set of covering edges, but not the same
positive path relation (Hint: Self-loops.)

Solution. Let one graph have edges {(1,2), (1, 1)} and the other {(1, 2), (2, 2)}. They have the same set of
covering edges, namely, (1, 2). But in the second there is a positive length path from 2 to 2, namely a path
of length one but there is no positive length path from 2 to 2 in the first graph. |

() (i) The complete digraph without self-loops on vertices 1, 2, 3 has edges between every two distinct
vertices. What are its covering edges?

(ii) What are the covering edges of the graph with vertices 1,2, 3 and edges (1—2), (2—3),(3—1)?
(iii) What about their positive path relations?

Solution. (i) There are no covering edges, since there is always a length two path from a to b that does
not use the edge (a —b).

(ii) All three edges are the covering edges.

(iti) They have the same positive path relation, namely, each vertex is connected to all the vertices, including
itself, by positive length paths.

Problem 3.
A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you’d like to write out, in one
string, all eight of the 3-bit strings in any convenient order. For example, if you wrote out the 3-bit strings in
the usual order starting with 000 001 010. .., you could concatenate them together to get a length 3-8 = 24
string that started 000001010....

But you can get a shorter string containing all eight 3-bit strings by starting with 00010.... Now 000 is
present as bits 1 through 3, and 001 is present as bits 2 through 4, and 010 is present as bits 3 through 5, ...

(a) Say a string 3-good if it contains every 3-bit string as 3 consecutive bits somewhere in it. Find a 3-good
string of length 10, and explain see why this is the minimum length for any string that is 3-good.

Solution. The string 0001110100 is a length 10 string that is 3-good. You can’t do better: there must be
two bits to start and each additional bit can yield at most one new 3-bit string. ]
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(b) Explain how any walk that includes every edge in the graph shown in Figure 2 determines a string that
is 3-good. Find the walk in this graph that determines your good 3-good string from part ().

Solution. A string can be built up from any walk by starting with the k bits in the vertex at the start of
the walk and successively adding the bit that labels the edge to the end of the string being built. If the walk
includes every edge, then any string b1 b2b3 will appear as a substring when the edge (b1b2 — byb3) appears
in the walk.

In particular, the string 0001110100 is determined by the walk that goes through the following sequence of
edges:

(00— 00) (00—01) (01 —11) (11— 11) (11— 10) (10— 01) (01— 10) (10— 00) .

(c) Explain why a path in the graph of Figure 2 that includes every every edge exactly once provides a
minimum length 3-good string.

Solution. Since there are 8 edges, the string determined by the walk will be of length 10, which is minimum
possible as observed in part (a). Since the walk includes every edge, it will determine a 3-good string by
part (b). O

(d) The situation above generalizes to k > 2. Namely, there is a digraph, By, such that V(By) ::= {0, 1}¥,
and any walk through By that contains every edge exactly once determines a minimum length (k + 1)-good
bit-string. What is this minimum length?

Define the transitions of By. Verify that the in-degree and out-degree of every vertex is even, and that there
is a positive path from any vertex to any other vertex (including itself) of length at most k.

Solution. A string of length n has exactly n — k locations where a length k + 1 subsequence can begin.
Since there are 2€*1 length-(k + 1) bit strings, the mininum length, n of any (k + 1) good string must
satisfy n — k/ge2**1, so the mininum length is at least 25+! 4 k. This is exactly the length string that
would be determined by a path containing all 2 - 2% edges in the graph By.

E(By) == {(xa—bx) | x € {0,1}* 1 ANDa,b € {0,1}}

If y € {0,1}%, then y = xa and y = bz for unique strings x,z € {0,1}*~1 and bits a,b € {0, 1}.
Then by definition of E(By), there are exactly two edges out of y, one going to Ox and the other to 1x,

so outdeg(y) = 2. Likewise, there are only two edges into y, one from z0 and the other from z1, so
outdeg(y) = 2.

To get from vertex b1 b, ... by to c1cz ... c with a length k path, proceed as follows:

blbz - .bk —> Ckblbz .. -bk—l - Ck_]Ckblbz . --bk—z

— - = C2C3...Chy > c1ea .. cp

Problem 9.7 shows that if the in-degree of every vertex of a digraph is equal to its out-degree, and there are paths between
any two vertices, then there is a closed walk that includes every edge exactly once. So the graph By implies that there always is
a Ic:nglh-2le -+ k bit-string in which every length-(k + 1) bit-string appears as a substring. Such strings are known as de Bruijn
sequences.
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Figure 2 The 2-bit graph.
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if sequence of prereq's from
u to v, say
u is an “indirect prereq” of v
u is “earlier” than v

ige|  Some Course 6 Prerequisites

18.01 — 6.042 8.%22—> %%%i
18.03, 6.002 — 6.

18.01 —> 18.02 4601’ 6.004 — 6,033
18.01 — 18.03 6.033 — 6.857
6.001 — 6.034 OO0 el
6.042 — 6.046

@083 Albert R Meyer  March 11 2011 o2

Qo
- [ indirect prerequisites

so u is an indirect prereq of v
Just means that there is a
positive length path from

u to v in the prerequisite
digraph R:

“smaller”

AlertRMeyer  March 1L 2011 s
- Qg % _
oo a minimal subject?
Do

a minimal subject has no
preequisites --a Freshman
subject

nothing —»>d

Albert R Meyer  March 11 2011

uR*v
[Slense Albert RMeyer  Mharch 11 2011 44
Hh -0 a minimum subject?

minimum means earliest of all:
an indirect prereq. of everything
none in this example
there used to be one at MIT:
orientation week seminar on
on summer book assignment

S
2 Albert R Meyer  March 11 2011 iy
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Eii ¢« £ Constructing a Term Schedule

6.042 6.002

18.03, 5002 6.004
18.01 —18.02 ¢ 001’ 6,004 — 6.033
18.01 — 18.03 6.033 — 6.857

6.042 — 6.046

identify minimal elements

8220 Albert R Meyer  March 11, 2011 o
-|n]r
g Constructing a Term Schedule
BT 6.042 (803 — 6.002
718.0T — 18.02 18.03,6.002 — 6.004
~3§.5—1"_, 18.03 6.001, 6.004 — 6.033
e - 6.046 — 6.840
— 6.034
~ 6.042 — 6.046

remove minimal elements

Albert R Meyer  March 11 2011 LFIL

Constructing a Term Schedule

-
2=

—(6.043 —(6.002
—(18.02] 18.03, 6.002 — 6,004
— 6.004 — 6.033
= 6.033 — 6.857
= 6.046 — 6.840

identify new minimal elements

Albert R Meyer  March 11 2011 sF13

E L5 Constructing a Term Schedule

start schedule with them

Albert R Meyer  March 11 2011 10

i’ 3.0 Constructing a Term Schedule
— 6,042 — 6.002
1802  18.03,6.002 — 6004
ia g 6.004 — 6.033
—18.03 6.033 — 6.857
— 6.034 6.046 — 6.840
6.042 — 6.046

remove minimal elements

Albert & Meyer  March 1L 2011

EF12

< oo
e Constructing a Term Schedule
GO -
(18.01] (6.001
(1807 (6043 [18.03 [6.003 5034
schedule them next
Albert & Meyer  March 11 2011

3/11/11
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Hap Constructing a Term Schedule
6.00]
(6.033

continue in this way...

Albert R Meyer  March 11. 2011 sE18

=<  complete term schedule

Albert R Meyer  March 11 2011 L6

3/11/11

s OOE
an antichain

a set of subjects with no indirect
preregs among them

--so can be faken in any order
--called “incomparable”

Def: uisincomparable to v iff
no path from u to v and

no path from v to u

==l

oo some antichains

1@ e -]
1-i-i-h /mi

mmcit
ag - a chain

- sequence of subjects that

must be taken in order
(subjects are comparable)

Albert R Meyer  March 11 2011 SE19

&F 20
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il ¢ some chains s maximum length chain
still a =
chain
Albert R Meyer  March 11, 2011 ozl Albert R Meyer  March 1L 2011 22
s [n]7 CIEE
i py| how many terms to graduate? 2 ..sufficient
5 terms are necessary to (o0l |
graduate --because max (] ]
chain length is 5 l /
and 5 are sufficient 'ﬁ 7
—-if you can fake unlimited |
subjects per term... | (& |
Albert R Meyer  March 11 2011 (Sree Albert B Meyer  March 11 201 e
Jmci maE duce th |
il - i i o reduce the term load
7 parallel processing time ga .
min # terms o graduate: [Gean (ool
- min parallel time = max chain size | 603 |
max ferm load: i (o
# processors for min fime (ﬁ @3 |
| < max antichain size ;| W B
5in ?his case




max 4 subjects per term

@ Gw  Gol
l‘/ﬁhﬁ /3 |

2«5

Alpert R Meyer  March 11 2011 6F27

DEE
12| jw|s

| Bl a leisurely schedule

Graduate taking only 1 subject/term?
Sure,

a Topo/og:ca/ sort

Alber? R Meyer  March 11 2011

8F.30

[n]7
=zl 3 Subjects per Term Possible

l (o) (e02) (s00) |
[ @ GoF God |
| (203 (e0 (o33 |
]
|

Albert R Meyer  March 11 2011 428

g3 7
2| |wls

siigs| For min time: > 3-subject term '

13 subjects
max chain size = 5
so load of some term must be

> [13/5] =

Albert R Meyer  March 1L 2011

&F 31

Team Problems
Problems
1-3

Albert R Meyer  March 11 2011

-
2| =

4F.37
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