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In-Class Problems Week 7, Mon.

Problem 1.
For each of the binary relations below, state whether it is a strict partial order, a weak partial order, or neither.
If it is not a partial order, indicate which of the axioms for partial order it violates.

(a) The superset relation, 2 on the power set P{1,2,3,4,5}.
(b) The relation between any two nonegative integers, a, b thata = b (mod 8).
(c) The relation between propositional formulas, G, H, that G IMPLIES H is valid.

(d) The relation "beats’ on Rock, Paper and Scissor (for those who don’t know the game Rock, Paper,
Scissors, Rock beats Scissors, Scissors beats Paper and Paper beats Rock).

(e) The empty relation on the set of real numbers.

L ™
(f) The identity relation on the set of integers. : ;’@
,!’“ -~

Problem 2. (a) Why is every strict partial order a DAG? w
(b) Give an example of a DAG that is not a strict partial order. : /C/:\

(c) Why is the positive path relation of a DAG a strict partial order?

Problem 3. (a) Verify that the divisibility relation on the set of nonnegative integers is a weak partial order.
q

(b) What about the divisibility relation on the set of integers?

Problem 4.
Consider the nonnegative numbers partially ordered by divisibility.

(a) Show that this partial order has a unique minimal element.
(b) Show that this partial order has a unique maximal element.
(c) Describe an infinite chain in this partial order.

(d) Describe an infinite antichain in this partial order.

(e) What are the minimal elements of divisibility on the integers greater than 1?7 What are the maximal
elements?

©238) H011,
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2 In-Class Problems Week 7, Mon.

Properties of a Relation R : A — A / Digraph G with V(G) = A

. Reflexivity R is reflexive when

YxeAd x R x.

Every node in G has a self-loop.

Irreflexivity R is irreflexive when

NOTdx € A. x R x.

There are no self-loops in G.

Symmetry R is symmetric when
Vx,y € A.x R y IMPLIES y R x.

If there is an edge from x to y in G, then there is an edge back from y to x in G as well.

Asymmetry R is asymmetric when
Vx,y € A. x R y IMPLIES NOT(y R x).

There is at most one directed edge between any two nodes in G; there are no self-loops.

Antisymmetry R is antisymmetric when
Vx # y € A. x R y IMPLIES NOT(y R x).

There is at most one directed edge between any two nodes; there may be self-loops.

Transitivity R is transitive if

Vx,yv,z€A. (x Ry ANDy R z) IMPLIES x R z.

If there is a positive length path from u to v, then there is an edge from u to v.

Total R is roral when
Vx#yeAd. (xRyoryR x)

Given any two vertices in G, there is an edge in one direction or the other between them.

Strict Partial Order R is a strict partial order iff it is transitive and asymmetric iff it is transitive and
irreflexive.

‘Weak Partial Order R is a weak partial order iff it is transitive and anti-symmetric and reflexive.
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6.042J/18.062], Spring * 1 1: Mathematics for Computer Science March 14
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Solutions to In-Class Problems Week 7, Mon.

Problem 1. _
For each of the binary relations below, state whether it is a strict partial order, a weak partial order, or neither.
If it is not a partial order, indicate which of the axioms for partial order it violates.

(a) The superset relation, 2 on the power set P{1,2, 3, 4, 5}.

Solution. This is a weak partial order, but not a total one. For example, the sets of size 3 form an antichain.
]

(b) The relation between any two nonegative integers, a, b thata = b (mod 8).
Solution. Violates antisymmetry: 8 R 16 and 16 R 8 but 8 # 16. It is transitive, though. |
(c) The relation between propositional formulas, G, H, that G IMPLIES H is valid.

Solution. Violates antisymmetry: P and NOT(NOT(P)) imply each other but are different expressions. It is
transitive, though. O

(d) The relation ’beats’ on Rock, Paper and Scissor (for those who don’t know the game Rock, Paper,
Scissors, Rock beats Scissors, Scissors beats Paper and Paper beats Rock).

Solution. Violates transitivity: obviously. Also violates antisymmetry. O
(e) The empty relation on the set of real numbers.

Solution. It’s vacuously asymmetric and transitive, so it’s a strict partial order. It’s irreflexive. It’s not total.
Every element is vacuously both minimal and maximal. |

(f) The identity relation on the set of integers.

Solution. It’s obviously reflexive, antisymmetric and transitive, so it’s a weak partial order. It’s not total.
Every element is vacuously both minimal and maximal.

Problem 2. (a) Why is every strict partial order a DAG?

Solution. If a the strict partial was not a DAG, then it has a vertex v that is on positive length cycle. So
there is a positive length path from v to v, which implies that v is related to itself ﬁ the partial order. This
contradicts assymetry. r |

I
(N«
(b) Give an example of a DAG that is not a strict partial order.

Creative Commons @@ 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 7, Mon.

Solution. (1—2), (2—3) but not (1 —3). O
(c) Why is the positive path relation of a DAG a strict partial order?

Solution. In a DAG, there is no positive length path from a vertex to itself, so it’s positive path relation is
irreflexive. If there a a positive length path from u to v and another from v to w, thenn the merge of the

paths goes from u to w, so the positive path relation is transitive. These two properties make it a strict partial
order. O

Problem 3. (a) Verify that the divisibility relation on the set of nonnegative integers is a weak partial order.

Solution. Divisibility is reflexive since n | n.
It is transitive by Lemma 8.1.3.1.

It is anti-symmetric since if n | m, then n < m for all positive integers m and nonnegative n. Soifn | m
andm | n,thenm < nandn < m,thatis,n = m. Also, if n | 0 then n = 0, which confirms anti-symmetry
when m = —0.

o
(b) What about the divisibility relation on the set of integers?

Solution. Divisibility is not antisymmetric on the integers, since n | —n. 27

Problem 4.
Consider the nonnegative numbers partially ordered by divisibility.

(a) Show that this partial order has a unique minimal element.

Solution. 1 is minimal as there is no other natural number that divides 1. It is unique because all other
numbers are divisible by 1 and therefore are not minimal. =

(b) Show that this partial order has a unique maximal element.

Solution. 0 is maximal: all nonnegative integer divide zero. It is the only maximal element, because for
every positive natural number, n, we have that n is strictly “smaller” than 2n under divisibility. |

(c) Describe an infinite chain in this partial order.
Solution. 124 8 16 ...is a chain with infinite length. O
(d) Describe an infinite antichain in this partial order.

Solution. The set of prime numbers is infinite. Since no prime divides another, any two primes are incom-
parable. So the set of prime numbers is an antichain. |

(e) What are the minimal elements of divisibility on the integers greater than 1? What are the maximal
elements?

Solution. The primes are the minimal elements. There are no maximal elements. B



Solutions to In-Class Problems Week 7, Mon. 3

Properties of a Relation R : A — A / Digraph G with V(G) = A

Reflexivity R is reflexive when
Yxe A xR x.

Every node in G has a self-loop.

Irreflexivity R is irreflexive when
NoTdx € A. x R x.

There are no self-loops in G.

Symmetry R is symmetric when
Vx,y€ A.x R y IMPLIES y R x.

If there is an edge from x to y in G, then there is an edge back from y to x in G as well.

Asymmetry R is asymmetric when
Vx,y € A. x R y IMPLIES NOT(y R x).

There is at most one directed edge between any two nodes in G; there are no self-loops.

Antisymmetry R is antisymmetric when
Vx # y € A. x R y IMPLIES NOT(y R x).

There is at most one directed edge between any two nodes; there may be self-loops.

Transitivity R is transitive if

Vx,y,z€ A.(x Ry ANDy R z) IMPLIES x R z.

If there is a positive length path from u to v, then there is an edge from u to v.

Total R is total when
Vx#yeAdA. (x RyoRyR x)

Given any two vertices in G, there is an edge in one direction or the other between them.

Strict Partial Order R is a strict partial order iff it is transitive and asymmetric iff it is transitive and
irreflexive.

Weak Partial Order R is a weak partial order iff it is transitive and anti-symmetric and reflexive.
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March 16
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Mini-Quiz Mar. 16

0

Your name: |

/C(‘zrre;p/

Circle the name of your TA and write your table number:

Ali Nick

Oscar @

e This quiz is closed book. Total time is 30 minutes.

Table number );

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader
HEREAN
2 5 | AL
3 s I |
4 5 5 05
Total 20 [\3-5| OS

SO : .
Creative Commons (@I0Ee) 2011, Eric Lehman, F Tom Leighton, Albert R Mever .




{
\ n(i({ e
U/l 7
2 Your name: P o Mini-Quiz Mar. 16 ]

Problem 1 (5 points). (a) Calculate the value of ¢(100).

210)~ Q(22 -5
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o Pl s
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((@ Assume an integer k > 9 is relatively F ime to 100. Explain why the lawigits of k an@are
he same. e

Hint: Use your solution to part (a).
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Mini-Quiz Mar. 16 Your name: p?ﬁ%ﬁx— 0/ 3

Problem 2 (5 points).
Prove thatif @ = b (mod 14) and @ = b (mod 5), thena = b (mod 70).
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Mini-Quiz Mar. 16

4 Your name:

Figure 1 Task DAG

Problem 3 (5 points).
Answer the following questions about the dependency DAG shown in figure 1. Assume each node is a task
that takes | second.

1. What is the largest chain in this DAG, i
EIEYRIEY
2. What is the largest antichain? (again, pick ape if you find there is more than one). /
U 1 1717 e all o by chain
3. How much time would b€ required to complete all the tasks with @ processor.
Y

4. How much time would

5

5. What is the smallest number of processors that would still allow to complete all the tasks in optimal
time. Show a schedule proving it.

N I A B

ere is more than one, only show one.

e

required to complete all the tasks if there are unlimited processors available.
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Problem 4 (5 points).
What is the smallest number of partially ordered tasks for which there can be more than o_r_qunmi_@m time
schedule, if theremﬁffw_____num@r of processors? Explain your answer.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring ’ 1 1: Mathematics for Computer Science March 16
Prof. Albert R Meyer revised Tuesday 15% March, 2011, 23:36

Solutions to Mini-Quiz Mar. 16

Problem 1 (5 points). (a) Calculate the value of ¢(100).

Solution.

$(100) = $(25)p(4) = $(5)$(2%) = (5* —5)(2* —2) = 40.
|

(b) Assume an integer k > 9 is relatively prime to 100. Explain why the last two digits of k and k!2! are
the same.

Hint: Use your solution to part (a).

Solution. Notice that all we have to prove is that k and k2! are congruent mod 100, implying they have
the same last two digits.
k121 = 403%1 = k(k4%)®  (mod 100).

By Euler’s Theorem, since k and 100 are relatively prime, k%(1°® = 1 (mod 100). By part (a), we have
that ¢(100) = 40, implying k%° = 1 (mod 100). Hence, k(k*°)3 = k(1%) = k (mod 100). [ |

Problem 2 (5 points).
Prove thatifa = b (mod 14) anda = b (mod 5), thena = b (mod 70).

Solution. We know a = b (mod 14) means 14|a — b. Likewise, @ = b (mod 5) means 5|a — b. Also 14
and 5 are relatively prime.

For any p, g and x, if p|x and ¢|x and p and g are relatively prime, we know from class that pg|x. So,
applying that reasoning with x = a — b, p = 14 and ¢ = 5 yields 70|a — b, which is what we were trying
to prove. |

Problem 3 (5 points).
Answer the following questions about the dependency DAG shown in figure 1. Assume each node is a task
that takes 1 second.

1. What is the largest chain in this DAG, if there is more than one, only show one.

2. What is the largest antichain? (again, pick one if you find there is more than one).

3. How much time would be required to complete all the tasks with a single processor.

4. How much time would be required to complete all the tasks if there are unlimited processors available.

5. What is the smallest number of processors that would still allow to complete all the tasks in optimal
time. Show a schedule proving it.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Mini-Quiz Mar. 16

Figure 1 Task DAG

Solution. 1. One largest chain is {1,6,7, 11, 14}
2. One largest antichain is {1, 2, 3,4,5,8,9,10,12, 13}
3. There are 14 nodes, so a single processor would take 14 seconds.
4. With unlimited processors, we can take 5 seconds. This is the length of the longest chain.

5. With 5 processors, we can still finish everyting in 5 seconds. A schedule showing this is {1, 2, 3,4, 5},
16,8}, {7}, {9,10, 11, 12,13}, {14}. We cannot do this with less than 5 processors because in order to
make progress on the longest chain at every time step, we need to process {1,2, 3, 4, 5} in step 1.

O

Problem 4 (5 points).
What is the smallest number of partially ordered tasks for which there can be more than one minimum time
schedule, if there are unlimited number of processors? Explain your answer.

Solution. Three tasks.

With one task, there is only one possible schedule. Two tasks that are incomparable can both be completed
in one step, and this is the unique minimum step schedule. For two tasks that are comparable, there is only
one possible schedule, which therefore is the unique minimum time schedule.

For an example with three tasks with two minimum time schedules, let two of the tasks be comparable
and the third task incomparable to the other two. The two comparable tasks have a unique minimum time
schedule that takes two steps. So any schedule for the three tasks that also takes only two steps will certainly
be minimum time for the three. But the third task can be scheduled at the same time as either the first or the
second of the comparable tasks, giving two minimum schedules for the three tasks.

|
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Mathematics for Computer Science
MIT 6.0427/18.0627

Simple Graphs
Degrees

Alber? R Meyer  March 16, 2011

Juc TS

s A simple graph:
Definition:
A simple graph G consists of
-a nonempty seft, V, of vertices, and
-a set, E, of edges such that

each edge has two endpoints in V

Albert R Meyer  March 16, 2011

te TWI

§§§E Vertex degree

degree of a vertex is
# of incident edges

deg(e) =2

(Dfsx0)
@ o Albert R Meyer  March 16, 2011

Types of Grqphs
Directed Graph
last week
this week Multi-Greph
@m Albert R Meyer  March 18, 2011 e TW2

A Simple Graph edge

vertices, V
undirected edges, E

o (i ={e0}

¥, A

‘ad, jc;cenf ‘

Y4)
_@_?_"' G? Albert R Meyer  March 15, 2011

Vertex degree

degree of a vertex is
# of incident edges

deg(c) =4

tec TWLID

Albert R Meyer  Maorch 16, 2011




B Impossible Graph

Is there a graph with
vertex degrees 2,2,1?
P

Nel | <—->phaned edge
1

2

Albert R Meyer  March 16, 2011 loz W11

Handshaking Lemma
sum of degrees is
twice # edges
2|E[= Y, deg(v)
veV

Proof: Each edgé contributes

Handshaking Lemma
sum of degrees is
twice # edges
2|E[= ), deg(v)
ve V
2+2+1 = odd,
so impossible

Alber? R Meyer  March 16, 2011 loe TW13

2 to the sum on the right

Yoo
@I.g“'f*@.‘ Albert R Meyer  March 16, 2011 e TWIZ

gy Sex in America: Men more Promiscuous?

Study claims:
Men average many more
partners than women.

Graph theory shows
this is nonsense

Albert R Meyer  March 15, 2011 s TWIA

omog
;@ Sex Partner Graph

par"rﬁers

Albert R Meper  March 15, 2011 fos TWLS

va00
Counting pairs of partners

Y. deg(m)=[E|= ;deg(f)

now divide by both sides by |M|
Z deg(m) |{ | Zdeg(r)
MM

“‘—ﬁ/_) b....—v.T..J
avg-deg(M) avg-deg(")

Albert R Meyer  March 16, 2011 ez TW 34




* QG0

iy Average number of partners
avg-deg(M)=1.035"avg-deg(")

Averages differ solely by
ratio of females fo males.
No big difference
Nothing to do with promiscuity

omod
itm2  Team Problems

g -

Problems
1&2

E=e

Albert R Meyer  March 16, 2011 tac TWIT

Altert R Meyer  March 16, 2011
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Massachusetts Institute of Technology

6.042J/18.062J, Spring *11: Mathematics for Computer Science March
Prof. Albert R Meyer revised Tuesday 15" March, 2011, 12:

In-Class Problems Week 7, Wed.

Problem 1.

A researcher analyzing data on heterosexual sexual behavior in a group of m males and f females found
that within the group, the male average number of female partners was 10% larger that the female average
number of male partners.

(a) Comment on the following claim. *Since we’re assuming that each encounter involves one man and
one woman, the average numbers should be the same, so the males must be exaggerating.”

(b) For what constant c ism = ¢ - f7

(c) The data shows that approximately 20% of the females were virgins, while only 5% of the males
were. The researcher wonders how excluding virgins from the population would change the averages. If he
knew graph theory, the researcher would realize that the nonvirgin male average number of partners will be
x(f/m) times the nonvirgin female average number of partners. What is x?

(d) For purposes of further researach, it would be helpful to pair each female in the group with a unique
male in the group. Explain why this is not possible.

Problem 2. (a) Prove that in every graph, there are an even number of vertices of odd degree.

Hint: The Handshaking Lemma 11.2.1.

(b) Conclude that at a party where some people shake hands, the number of people who shake hands an
odd number of times is an even number.

(c) Call a sequence of two or more different people at the party a handshake sequence if, except for the last
person, each person in the sequence has shaken hands with the next person in the sequence.

Suppose George was at the party and has shaken hands with an odd number of people. Explain why, starting
with George, there must be a handshake sequence ending with a different person who has shaken an odd
number of hands.

Hint: Just look at the people at the ends of handshake sequences that start with George.

Creative Commons (2888 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Massachusetts Institute of Technology
6.042J/18.062], Spring * 11: Mathematics for Computer Science March 16
Prof. Albert R Meyer revised Tuesday 15" March, 2011, 13:01

Solutions to In-Class Problems Week 7 , Wed.

Problem 1.
A researcher analyzing data on heterosexual sexual behavior in a group of m males and f females found

that within the group, the male average number of female partners was 10% larger that the female average
number of male partners.

(a) Comment on the following claim. “Since we’re assuming that each encounter involves one man and
one woman, the average numbers should be the same, so the males must be exaggerating.”

Solution. The averages won’t be the same. According to equation (11.1),

F
Avg. # male partners = % - Avg. # female partners (1)
So the averages simply reflect the relative sizes of the male and female populations. This means that the
males could truthfully report a higher average if there where more females.

Of course if the males exaggerate, then their reported average could be as large as they choose to fantasize,
whatever the size of the female population. o

(b) For what constantcism =c - f?

Solution. By equation (1), the men’s average number of partners is f/m times the female’s average, so
f/m = 1.1 which implies m = (1/1.1) f and ¢ = 10/11. |

(c) The data shows that approximately 20% of the females were virgins, while only 5% of the males
were. The researcher wonders how excluding virgins from the population would change the averages. If he
knew graph theory, the researcher would realize that the nonvirgin male average number of partners will be
x(f/m) times the nonvirgin female average number of partners. What is x?

Solution. The male average number of partners is f/m times the female average number of partners. (Ac-
cording to part (b), f/m = 1.1, but this number isn’t needed here.) When virgins are excluded, the ratio of
the male’s average to the females’ average will be

f-2f _8f _ 45 f
m—.05m .95m  19/20 m’

so'x = 80/95=16/19. O

(d) For purposes of further researach, it would be helpful to pair each female in the group with a unique
male in the group. Explain why this is not possible.

Solution. There are more females than males, so there cannot be an injective function from the females to
the males. |

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



7 Solutions to In-Class Problems Week 7, Wed.

Problem 2. (a) Prove that in every graph, there are an even number of vertices of odd degree.
Hint: The Handshaking Lemma 11.2.1.

Solution. Proof. Partitioning the vertices into those of even degree and those of odd degree, we know

Ydw) = ) de) + ). dw)

veV d(v) is even d(v) is odd

By the Handshaking Lemma, the value of the lefthand side of this equation equals twice the number of
edges, and so is even. The first summand on the righthand side is even since it is a sum of even values. So
the second summand on the righthand side must also be even. But since it is entirely a sum of odd values,
it must must contain an even number of terms. That is, there must be an even number of vertices with odd
degree. [ |

(b) Conclude that at a party where some people shake hands, the number of people who shake hands an
odd number of times is an even number.

Solution. We can represent the people at the party by the vertices of a graph. If two people shake hands, then
there is an edge between the corresponding vertices. So the degree of a vertex is the number of handshakes
the corresponding person performed. The result in the first part of this problem now implies that there are
an even number of odd-degree vertices, which translates into an even number of people who shook an odd
number of hands. O

(c) Call a sequence of two or more different people at the party a handshake sequence if, except for the last
person, each person in the sequence has shaken hands with the next person in the sequence.

Suppose George was at the party and has shaken hands with an odd number of people. Explain why, starting
with George, there must be a handshake sequence ending with a different person who has shaken an odd
number of hands.

Hint: Just look at the people at the ends of handshake sequences that start with George.

Solution. The handshake graph between just the people at the ends of handshake sequences that start with
George is a graph, so by part (b), it must have an even number of people who shake an odd number of hands.
In particular, there must be at least one other person besides George, call him Harry, who has also shaken
an odd number of hands. So the handshake sequence from George that ends with Harry is what we were
looking for. O
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Mathematics for Computer Science
MIT 6.0423/18.0627

Simple Graphs
Isomorphism
Stable Marriage

@9{:‘? Abert 8 Meyer  March 18, 2011 e 774

The Graph Abstraction
Same graph, different layouts

“ 99
306 67
99
67 306 145
g Albert 8 Meyer_sreh 18,200 s

a2 The Graph Abstraction

Same layout, different vertices

two graphs are isomorphic
when there is an
edge-preserving
bijection
between their vertices.

257 122 145 Albert G)rant Sharat
30 67 Christos
: Son!
99 Jessica
Abert & Meyer  March 18, 2011 ot
o <
i Isomorphism

Abert A Meyer  March 18, 2011 e T2

The Graph Abstraction

All that matters
are the connections:
graphs with the
same conhections
are isomorphic

Abert R Meyer  March 18, 2011

e PP

Are these isomorphic?

Beef  /Tuna
f(Cow) = Hay
G o

18

f(Dog) = Beef
f(Cat) = Tuna

Abert

lne 1733




Edges preserved? Edges preserved? YES!

e

Abert B Meyer  March 18, 2011 s T4 @w Abert A Meyer  Morch 18 2011 e 77I3
] o '
Nonedges preserved? YESI! Formal Def of Graph Isomorphism
G, isomorphic to G, means

_edge-preserving verfex matching:
1
'd bijection f:V; — V, with

%iu—v in gy iff f(u)—f(v)inE,

i

isomorphic!
Abery & Meyer  March 18, 2011 ot 7737 Albert & Mayer _March 18, 2011 7P
Nonisomorphism EEEE Proving nonisomorphism

If some property preserved by

isomorphism differs for two
graphs, then they're not isomorphic:
- # of nodes, :

» # of edges,

degree 2 all degree 3 + degree distributions, ....

OEE
s (250 At g, 231 )




iy Finding an isomorphism?

many possible mappings: large search
can use properties preserved by
isomorphisms as a guide, for example:
» a deg 4 vertex adjacent to adeg 3

can only match with
+ a deg 4 vertex also adjacent o a deg 3

but even so...

@1’:‘—_}:9: Abert R Meyer  March 18, 2011 i)

CFES  -Mathematics for Computer Science
MIT 6.0427/18.0627

Stable
 Matching

Alimrt & Meyer.  arch 18, 2011 e 7721

Stable Marriage

Preferences
Boys Girls
§-1 : CBEAD A:35214
2 : ABECD B : 52143
3: DCBAE 8¢ 43512
& 4: acose D : 12345
¥ 5: ABDEC 8c: 23415

(5 OO
I e ARert & Merer  March I8, 701 < 7723

Are these two graphs isomorphic?
i’,

...nothing known is sure to be
much faster than searching thru
all bijections for an isomorphism

o
@’ s’ ‘:’ Lj Alart B Mayer.  March 182011 e TFI2

- goal
Stable Marriage
A Marriage Problem

E“; OST) Alart 8 Maper. arth 18, 2581 e 720

Stable Marriage

Preferences

élz CBEAD
ga : ABECD

3 : DCBAE
%4 : ACDBE
T'5: ABDEC

Try "greedy”
strategy for boys

E@I 2 EI Abart B Meyer.  March 18, 7311 tec TS




]
Stable Marriage

Marry Boy 1 with Girl 1%
(his 15t choice)

-Preferences

&1 cpEAD—
gz : ABECD
3: D(ZﬁAE
§'4 : Ae/DBE
*5: ABDEC.

AR B dheyer.  Morch 18, 7501 e TEIT

-
@ Stable Marriage

Preferences

>

gz : ABED
3:DBAE

§'4:ADBE

'?1'5 : ABDE

e
g Stable Marriage
-Preferences

#2: ABED
23 :DBAE
#4: ADBE
T'5: ABDE

gﬂi l Abart & Meyer.  March W, 20U b TE2Y

G
I Alart B Meyer, parch 8, 2901 7P 28

g Stable Marriage

=
Next:

Stable Marrihge
Final "boy greedy” marriages

Abert & Moyer.  Morch I, FOI tec 7E02

-Preferences  Marry Boy 2 with Girl A
: (his remaining 15* choice)
3. pRAE
g‘ﬂf : ADBE
5 : ABDE
o"‘?"‘?‘ ARart B Moyer  March 18, 201 e 7730

Stable Marriage
Troublel

a1

e
B

Abart & Shaywr,  March 18, 700 e TPI2




+ 000
#m:  Stable Marriage
Boy 4 likes Girl C better than his wife.

e 7723

+ DE3
Stable Marriage
and vice-versa

Stable Marriage
arogue couple

Stable Marriage

Let's try it

Abart & Mayer. Mook 18, 2011

e TEIT

,"g
&3 =¥
¥ C
S,
s
o
I”
=
==
s
L
i)
AT~
-
T é 3
Alart & Meyer.  March 18, 201 o TF 34

Stable Marriage
Stable Marriage

Problem:

Marry everyone without
any rogue couples!

AMart B Meyer.  March 18, 2013 Jns P34

"boy optimal”
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More than a puzzle:

- College Admissions
{original Gale & Shapley paper, 1962)

* Matching Hospitals &
Residents.

* Matching Dance Partners.
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Massachusetts Institute of Technology
6.0421/18.062]. Spring *11: Mathematics for Computer Science March 19
Prof. Albert R Meyer revised Thursday 17" March, 2011, 14:45

In-Class Problems Week 7, Fri.

Problem 1.

See if you can come up with a stable marriage assignment given the following preferences. You are not
expected to know/remember the Mating Ritual that solves this problem in general. (And if you do remember
the protocol, don’t spoil your teammates’ fun by telling them.)

boys girls
1:CBEAD A:35214
2: ABECD B :52143
3: DCBAE C : 43512
4: ACDBE D : 12345
5:ABDEC E 123415

Problem 2.

For each of the following pairs of graphs, either define an isomorphism between them, or prove that there is
none. (We write ab as shorthand for a—»b.)

(a)
Gy with V; = {1,2,3,4,5,6}, Ey = {12,23,34, 14, 15,35, 45}
Gy with Vo = {1,2,3,4,5,6}, E, = {12,23,34,45,51,24,25}
(b)
Ga with V3 = {1,2,3,4,5,6}, E3 = {12,23,34, 14, 45, 56, 26}
Gy with Vy ={a,b.c.d e, f}, E4 = {ab.bc,cd.de,ae,ef.cf}
()

Gswith Vs ={a,b,c.d,e, f.g,h}, Es = {ab,bc,cd,ad ef, fg,gh,he.dh.bf}

Ge with Vg = {s, 1, u, v, w,x,y,z}, E¢ = {st, tu,uv,sv, wx, xy, yz, wz,sw, vz}

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 7, Fri.

Problem 3.
There are four isomorphisms between these two graphs. List them.

1 a

(4

Problem 4.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students.

What would be a rogute couple when matching medical students and hospitals?

Modify the definition of stable matching so it applies in this situation.
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Massachusetts Institute of Technology
6.042J/18.062], Spring ’11: Mathematics for Computer Science March 19
Prof. Albert R Meyer revised Thursday 17 March, 2011, 14:46

Solutions to In-Class Problems Week 7, Fri.

Problem 1.

See if you can come up with a stable marriage assignment given the following preferences. You are not
expected to know/remember the Mating Ritual that solves this problem in general. (And if you do remember
the protocol, don’t spoil your teammates’ fun by telling them.)

boys girls
1:CBEAD A 35214
2:ABECD B : 52143
3: DCBAE C : 43512
4: ACDBE D : 12345
5:ABDEC E : 23415
Solution.
5A2B 4C 3D 1E a boy optimal matching
3A5B 4C D22F girls get their 1st choice
O
Problem 2.

For each of the following pairs of graphs, either define an isomorphism between them, or prove that there is
none. (We write ab as shorthand for a—b.)

()

Gy with Vi ={1,2,3,4,5,6}, E; = {12,23,34, 14,15, 35,45}

G, with Vo = {1,2,3,4,5,6}, E; = {12,23,34,45,51, 24,25}
Solution. Not isomorphic: G2 has a node, 2, of degree 4, but the maximum degree in G is 3. O
(b)

Gi3 with V3 = {1,2,3,4,5,6}, E5 = {12,23,34, 14, 45,56,26}
G4 with Vy ={a,b,c,d,e, f}, E4 = {ab,bc,cd,de,ae,ef,cf}

Solution. Isomorphic (two isomorphisms) with the vertex correspondences:
1f,2¢,3d,4e,5a, 6b
or 1f,2e,3d, 4c,5b, 6a

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



Solutions to In-Class Problems Week 7, Fri.
(©)

Gs with Vs = {a,b,c,d,e, f,g,h}, Es = {ab,bc,cd,ad,ef, fg,gh,he,dh,bf}
Ge with Vg = {s,t,u,v,w,x, y,z}, Eg = {st,tu,uv,sv,wx,xy, yz, wz,sw, vz}

Solution. Not isomorphic: they have the same number of vertices, edges, and set of vertex degrees. But the

degree 2 vertices of G are all adjacent to two degree 3 vertices, while the degree 2 vertices of G5 are all
adjacent to one degree 2 vertex and one degree 3 vertex.



Solutions to In-Class Problems Week 7, Fri. 3

Problem 3.
There are four isomorphisms between these two graphs. List them.

1 a

e i

Solution. These are the vertex correspondences for the four isomorphisms:

1A, 2B, 3C, 4D, 5E, 6F

1A, 2B, 3D, 4C, 5F, 6E

1B, 2A, 3C, 4D, 5E, 6F

1B, 2A, 3D, 4C, 5F, 6E |

Problem 4.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students. .

What would be a rogue couple when matching medical students and hospitals?

Modify the definition of stable matching so it applies in this situation.

Solution. A matching is an assignment of medical students to residencies in each of the hospitals (an injec-
tion, A : students — residencies) such that every student has a residency (A is total), or every residency has
an assigned student (A is a surjection). A stable assignment is one with no rogue couples, where a rogue

couple is a hospital student pair (H, S) such that S is not assigned to one of the residencies at H, which she
prefers over her current assignment, and

e H has some students assigned to some of its residencies and prefers S to at least one of its assigned
students, or

e H has none of its residencies assigned.
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Stable
Matching:
Mating Ritual
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m_l’ Stable Marriage
a rogue couple

Joc 8443

ixl Stable Marriage

Stable Marriage
Problem:
Marry everyone without
any rogue couples!
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‘The Mating Ritual
(day by day)

i@f’ﬂ

Albert & Meyer.  farch 28, 2011 bec 804

Mating Ritual
Morning: boy serenades favorite girl
Afternoon: girl rejects all but favorite
[If you're no’r,Bri'ad]
take a hiliée! '

327



Mating Ritual

- Morning: boy serenades his favorite girl

+ Afternoon: girl rejects all but her
favorite boy

* Evening: rejected boy writes off girl

Billy Bob

(@I
Albert R Maysr.  March 28, 2011 les BM7
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Mating Ritual

Termination:

There exists a Wedding Day.
Partial Correctness:
Everyone is married.
Marriages are stable.

u
@ Albert R Mayer.  March 28, 2011 fec 25

Mating Ritual

Different gir'ls have different
favorites, because boys
serenade one girl at a fime.

©gss) g e e

Mating Ritual

Stop when no girl rejects.
Each girl marries her
favorite suitor (if any).

Albert R Mayer.  March 28, 2011 Lec BME

LE Stable Marriage: termination
fotal # remaining names
on boys' lists:
strictly decreasing
& N-valued

So 3 Wedding Day

‘HOS@ Albert R Meyer.  March 28, 2011 0

i Mating Ritual: girls improve
Lemma:

A girl's favorite tomorrow
will be at least as desirable
to her as today's.

..because today's favorite will

stay until she rejects him for
someone better.
Albart R Meyer.  March 28, 2011 les BALIZ




8 Mating Ritual: boys get worse
Lemma:

A boy's favorite fomorrow
will be no more desirable

to him than today's.
..because boys work
straight down their lists.

AR 2201 besasa

Mating Ritual: invariant

If G is not on B's list, then she
has a better current favorite.
Proof: When G rejected B she
had a better suitor (her favorite
that day), and her favorites
never get worse. |

STRTT
B
Sl

On Wedding Day

Each girl has < 1 suitor.
(by def of wedding day)

Each boy is married, or
has no girls on his list.

w Albert R Meyer. Maorch 28, 2011 lec 84

Albart B Mayer.  March 78, 2011 o 1M 14

84 Mating Ritual: stable marriages

Marriages are Stable:
Bob won't be in rogue couple with
case 1: a girl G on his final list,

since he's already married to the
best of them.

% Mating Ritual: everyone marries

Everyone is married on wedding day
Proof: By contradiction.

If B is not married, his list is empty.
By invarianf, all girls have favorites

better than B -- so they do have a
favorite. That is, all girls are mqr'r'ied,

so all boys are married.

WJ Albert R Meyer.  March 28, 2011 fac 4 16

@ﬁ Albert R Meyer.  March 28, 2011 lec 81T

8 Mating Ritual: stable marriages

Marriages are Stable:
Bob won't be in rogue couple with
case 2: a girl G not on his list,

since by invariant, G likes her
spouse better than Bob.

S0
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| Bipartite
~ Matching

Albert B Mever, Morch 28 2011

Mathematics for Computer Science

loc 8M-hail |

Compatible Boys & 6Girls

match each girl to a
unique compatible boy

foc B40-hatl 3

[a]slz
i

suppose this edge was missing
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Compatible Boys & Girls
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54 Not enough boys for these gjris!

No match is possible!

s ]N(S)

oty X \\ /

1S| =3 > 2= |N(S)|

| Si-o Abert Hover Horch 28 201)

3 girls like only 2 boys

fon=z AbertR Wever Harch 28 2011 fec B hote

Bottleneck Lemma

If there is a bottleneck,
then no match is possible,
obviously.

;@% Albert & Mever Morch 28 2011 RN L

Conversely, if there are
no bottlenecks, then
there is a match.

o
SLa22 Alert B Meyer March 28 2011 foc Sacball 12




Hall's Theor'gm
Hall's condition

_____________________________________

__________
_______

__________________________

‘rhere is a maTch._

~ (proof in Notes)

ol Abert @ Mever March 28 2011 Joc Sa-hall 13

If every girl likes = d boys, |
and every boy likes < d girls,
'_'Tﬁ‘é“ﬁ"ﬁa"ﬁé‘fﬂéfﬁé_éﬁé _______________

a degree-constrained
bipartite graph

Albert 8 Mever Morch 28 2011 loe bl is

il How to verify no bottlenecks?

fairly efficient mafchmg

procedure is known
(explained in algorithms subjects)

..but there is a special
SITUC(TIOI"I that ensures a
match...
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Massachusetts Institute of Technology
6.042]/18.062J, Spring "11: Mathematics for Computer Science March 28
Prof. Albert R Meyer revised Sunday 27" March, 2011, 13:19

In-Class Problems Week 8, Mon.

Problem 1.
Four Students want separate assignments to four VI-A Companies. Here are their preference rankings:

Student | Companies
Albert: | HP, Bellcore, AT&T, Draper
Nick: | AT&T, Bellcore, Draper, HP
Oshani: | HP, Draper, AT&T, Bellcore
Ali: | Draper, AT&T, Bellcore, HP

Company | Students
AT&T: | Ali, Albert, Oshani, Nick
Bellcore: | Oshani, Nick, Albert, Ali
HP: | Ali, Oshani, Albert, Nick
Draper: | Nick, Ali, Oshani, Albert

(a) Use the Mating Ritual to find two stable assignments of Students to Companies.

(b) Describe a simple procedure to determine whether any given stable marriage problem has a unique
solution, that is, only one possible stable matching.

Problem 2.
A preserved invariant of the Mating ritual is:

For every girl, G, and every boy, B, if G is crossed off B’s list, then G has a favorite suitor and
she prefers him over B.

Use the invariant to prove that the Mating Algorithm produces stable marriages. (Don’t look up the proof
in the Notes or slides.)

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 In-Class Problems Week 8, Mon.

Problem 3.

Because of the incredible popularity of Math for Computer Science, Rajeev decides to give up on regular
office hours. Instead, each student can join some study groups. Each group must choose a representative to
talk to the staff, but there is a staff rule that a student can only represent one group. The problem is to find a
representative from each group while obeying the staff rule.

(a) Explain how to model the delegate selection problem as a bipartite matching problem.

(b) The staff’s records show that no student is a member of more than 4 groups, and all the groups must
have at least 4 members. That’s enough to guarantee there is a proper delegate selection. Explain.

Problem 4.

Overworked and over-caffeinated, the Teaching Assistant’s (TA’s) decide to oust the lecturer and teach their
own recitations. They will run a recitation session at 4 different times in the same room. There are exactly
20 chairs to which a student can be assigned in each recitation. Each student has provided the TA’s with a
list of the recitation sessions her schedule allows and no student’s schedule conflicts with all 4 sessions. The
TA’s must assign each student to a chair during recitation at a time she can attend, if such an assignment is
possible.

Describe how to model this situation as a matching problem. Be sure to specify what the vertices/edges
should be and briefly describe how a matching would determine seat assignments for each student in a
recitation that does not conflict with his schedule. This is a modeling problem —you need not determine
whether a match is always possible.



In-Class Problems Week 8, Mon. ' 3

Appendix: The Mating Ritual

The Mating Ritual takes place over several days. The following events happen each day:

Morning: Each girl stands on her balcony. Each boy stands under the balcony of his favorite among the
girls on his list, and he serenades her. If a boy has no girls left on his list, he stays home and does his 6.042
homework.

Afternoon: Each girl who has one or more suitors serenading her, says to her favorite suitor, “We might
get engaged. Come back tomorrow.” To the others, she says, “No. I will never marry you! Take a hike!”

Evening: Any boy who is told by a girl to take a hike, crosses that girl off his list.

Termination condition: When every girl has at most one suitor, the ritual ends with each girl marrying
her suitor, if she has one.



Massachusetts Institute of Technology
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In-Class Problems Week 8, Mon.

Additional Problem

Problem 1.
Suppose that Harry is one of the boys and Alice is one of the girls in the Mating Ritual. Which of the
properties below are preserved invariants? Why?

d.

b.

Alice is the only girl on Harry’s list.
There is a girl who does not have any boys serenading her.

If Alice is not on Harry’s list, then Alice has a suitor that she prefers to Harry.

. Alice is crossed off Harry’s list and Harry prefers Alice to anyone he is serenading.

If Alice is on Harry’s list, then she prefers to Harry to any suitor she has.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Massachusetts Institute of Technology
6.0421/18.062], Spring *11: Mathematics for Computer Science March 28

Prof. Albert R Meyer revised Sunday 27" March, 2011, 13:57

Solutions to In-Class Problems Week 8, Mon.

Note: Only problems 1, 2, 4, and 5 were originally assigned. The additional problem later handed out in
class is here listed as problem 3.

Problem 1.
Four Students want separate assignments to four VI-A Companies. Here are their preference rankings:

Student | Companies
Albert: | HP, Bellcore, AT&T, Draper
Nick: | AT&T, Bellcore, Draper, HP
Oshani: | HP, Draper, AT&T, Bellcore
Ali: | Draper, AT&T, Bellcore, HP

Company | Students
AT&T: | Ali, Albert, Oshani, Nick
Bellcore: | Oshani, Nick, Albert, Ali
HP: | Ali, Oshani, Albert, Nick
Draper: | Nick, Ali, Oshani, Albert

(a) Use the Mating Ritual to find rwo stable assignments of Students to Companies.

Solution. Treat Students as Boys and the result is the following assignment:

Student | Companies | Rank in the original list

Albert: | Bellcore 2
Nick: AT&T 1
Oshani: HP 1
Ali: Draper 1

Treat Companies as Boys and the result is the following assignment:

Company | Students | Rank in the original list

AT&T: | Albert 2
Bellcore: Nick 2
HP: | Oshani 2
Draper: Ali 2

(b) Describe a simple procedure to determine whether any given stable marriage problem has a unique
solution, that is, only one possible stable matching.

Solution. See if the Mating Ritual with Boys as suitors yields the same solution as the algorithm with Girls
as suitors. These two marriage assignments are boy-optimal and boy-pessimal, respective. Obviously, if
every boy’s optimal and pessimal choices are the same, then every boy has an unique choice. The solution
1S unique.

O

Creative Commons GIoEle) 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 8, Mon.

Problem 2.
A preserved invariant of the Mating ritual is:

For every girl, G, and every boy, B, if G is crossed off B’s list, then G has a favorite suitor and
she prefers him over B.

Use the invariant to prove that the Mating Algorithm produces stable marriages. (Don’t look up the proof
in the Notes or slides.)

Solution. Proof. Let Brad be some boy and Jen be any girl that he is not married to on the last day of the
Mating Ritual. We claim that Brad and Jen are not a rogue couple. Since Brad is an arbitrary boy, it follows
that no boy is part of a rogue couple. Hence the marriages on the last day are stable.

To prove the claim, we consider two cases:

Case 1. Jen is not on Brad’s list. Then by invariant P, we know that Jen prefers her husband to Brad. So
she’s not going to run off with Brad: the claim holds in this case.

Case 2. Otherwise, Jen is on Brad’s list. But since Brad is not married to Jen, he must be choosing to

serenade his wife instead of Jen, so he must prefer his wife. So he’s not going to run off with Jen: the claim
also holds in this case. m

Problem 3.

Suppose that Harry is one of the boys and Alice is one of the girls in the Mating Ritual. Which of the
properties below are preserved invariants? Why?

a. Alice is the only girl on Harry’s list.

b. There is a girl who does not have any boys serenading her.

c. If Alice is not on Harry’s list, then Alice has a suitor that she prefers to Harry.

d. Alice is crossed off Harry’s list and Harry prefers Alice to anyone he is serenading.

e. If Alice is on Harry’s list, then she prefers to Harry to any suitor she has.
Solution. The 1st, 3rd, and 4th are preserved invariants.

a. A preserved invariant; no girl will be added to Harry’s list. If Alice got crossed off, there would be
no one for Harry to marry. So she must remain as the sole girl on his list. Reminder: A preserved
invariant need not be true all the time, as in this example. It only needs to stay true once it first
becomes true.

b. Not preserved; a girl may not have a suitor on the first day —if, for example, she’s not at the top of
any boy’s list —but every girl is guaranteed to have one at the end, namely, her husband.

c. A preserved invariant; this is the basic invariant used to verify the Ritual.

d. A preserved invariant; Harry crosses off the girls in his order of preference, so if Alice is crossed off,
Harry likes her better than anybody that’s left.

e. Not preserved. Suppose the preferences among two couples and a third boy are:

Harry: Alice, Elvira,
Billy: Elvira, Alice,
Wilfred: Elvira, =
Alice: Billy, Harry,
Elvira:  Wilfred, Billy,



Solutions to In-Class Problems Week 8, Mon. 3

The alleged invariant is true on the first day since Harry is Alice’s only suitor. But Elvira rejects Billy
in favor of Wilfred on the first afternoon, so on the second day, Billy and Harry are serenading Alice.
Since Alice prefers Billy to Harry, the alleged invariant is no longer true, so it was not preserved.

Problem 4.

Because of the incredible popularity of Math for Computer Science, Rajeev decides to give up on regular
office hours. Instead, each student can join some study groups. Each group must choose a representative to
talk to the staff, but there is a staff rule that a student can only represent one group. The problem is to find a
representative from each group while obeying the staff rule.

(a) Explain how to model the delegate selection problem as a bipartite matching problem.

Solution. Define a bipartite graph with the study groups as one set of vertices and students in the groups as
the other set of vertices. A group and a student are adjacent exactly when the student belongs to the group.
Now a matching of study groups to students will give a proper selection of delegates: every group will have
a delegate, and every delegate will represent exactly one club. |

(b) The staff’s records show that no student is a member of more than 4 groups, and all the groups must
have at least 4 members. That’s enough to guarantee there is a proper delegate selection. Explain.

Solution. The degree of every group is at least 4, and the degree of every student is at most 4, so the graph
is degree-constrained (Def. 11.5.5) which implies there will be no bottlenecks to prevent a matching. Hall’s
Theorem then guarantees a matching. |

Problem 5.

Overworked and over-caffeinated, the Teaching Assistant’s (TA’s) decide to oust the lecturer and teach their
own recitations. They will run a recitation session at 4 different times in the same room. There are exactly
20 chairs to which a student can be assigned in each recitation. Each student has provided the TA’s with a
list of the recitation sessions her schedule allows and no student’s schedule conflicts with all 4 sessions. The
TA’s must assign each student to a chair during recitation at a time she can attend, if such an assignment is
possible.

Describe how to model this situation as a matching problem. Be sure to specify what the vertices/edges
should be and briefly describe how a matching would determine seat assignments for each student in a
recitation that does not conflict with his schedule. This is a modeling problem —you need not determine
whether a match is always possible.

Solution. There will be one vertex for each student, and 20 vertices for each recitation time slot (one for
each chair). There is an edge between a student and all chair vertices for a particular recitation time slot if
that time slot does not conflict with her schedule. A matching for the students assigns a student to a chair in
a recitation that he can attend and assigns at most 20 students to any recitation.

It is possible to assign the students to recitations iff a matching exists. O



Massachusetts Institute of Technology
6.042]/18.062J, Spring *11: Mathematics for Computer Science March 14
Prof. Albert R Meyer revised Monday 14 March, 2011, 23:00

Problem Set 6

Due: March 30

Reading: Chapter 9.5-9.9, Partial Orders; Chapter 11-11.6, Simple Graphs.
Skip Chapter 10, Communication Nets, which will not be covered this term.

Problem 1.
Let Ry, R> be binary relations on the same set, A. A relational property is preserved under product, if
Ry x R; has the property whenever both Ry and R; have the property.

(a) Verify that each of the following properties are preserved under product.

1. reflexivity,
2. antisymmetry,

3. transitivity.

(b) Verify that if either of Ry or R is irreflexive, then so is R; x Ra.

Note that it now follows immediately that if if Ry and R, are partial orders and at least one of them is
strict, then R; x Rz is a strict partial order.

Problem 2.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students. Modify the definition of stable matching
so it applies in this situation, and explain how to modify the Mating Ritual so it yields stable assignments of
students to residencies.

Briefly indicate what, if any, modifications of the preserved invariant used to verify the original Mating
are needed to verify this one for hospitals and students.

Problem 3.

Scholars through the ages have identified twenty fundamental human virtues: honesty, generosity, loyalty,
prudence, completing the weekly course reading-response, etc. At the beginning of the term, every student
in Math for Computer Science possessed exactly eight of these virtues. Furthermore, every student was
unique; that is, no two students possessed exactly the same set of virtues. The Math for Computer Science
course staff must select one additional virtue to impart to each student by the end of the term. Prove that
there is a way to select an additional virtue for each student so that every student is unique at the end of the
term as well.

Suggestion: Use Hall’s theorem. Try various interpretations for the vertices on the left and right sides of
your bipartite graph.

-
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 6

Problem 4.

Determine which among the four graphs pictured in the Figures are isomorphic. If two of these graphs are
isomorphic, describe an isomorphism between them. If they are not, give a property that is preserved under
isomorphism such that one graph has the property, but the other does not. For at least one of the properties
you choose, prove that it is indeed preserved under isomorphism (you only need prove one of them).

B ‘

(@) G (b) Go
9 8 10
(©) G3 | @Ga

Figure 1 Which graphs are isomorphic?

Problem 5. (a) For any vertex, v, in a graph, let N(v) be the set of neighbors of v, namely, the vertices
adjacent to v:

N(v) ::={u | u—uv is an edge of the graph}.
Suppose f is an isomorphism from graph G to graph H. Prove that f(N(v)) = N(f(v)).

Your proof should follow by simple reasoning using the definitions of isomorphism and neighbors—no
pictures or handwaving.

Hint: Prove by a chain of iff’s that
heN(f(v)) iff he f(N({))
for every h € V. Use the fact that h = f(u) for some u € V.

(b) Conclude that if G and H are isomorphic graphs, then for each k € N, they have the same number of
degree k vertices.
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Massachusetts Institute of Technology Solutions cover sheet
6.0421/18.062J, Spring * 1 1: Mathematics for Computer Science March 14
Prof. Albert R Meyer

Student’s Solutions to Problem Set 6

Your name: m‘({ t -‘J(fl ‘) L}“.' ,mf:f?,f

Due date: March 30

- 2/
Submission date: N :4\)
{

Circle your TA/LA: Ali Nick Oscar @

it
T

Collaboration statement: Circle one of the two choices and provide all pertinent info.

1. I worked alone and only with course materials.

/{_l /]; A J,:\

2. Icollaborated on tmis assignment‘with:
got help from:! 7

O ich

P L |
and referred to:~ C 0/") {’i:-':[:;_;*i P [(_::;}H:.Alf nil / i,gf’;
B .-("0"“‘42 ’ ' 0?_{(!{ ot
6( aph p(opw,f--]y
4 | ‘

|‘ {1 i i \ {’ m ll‘l)‘. ‘(H P

DO NOT WRITE BELOW THIS LINE

Problem | Score

4
5
Total

- S0©) . .
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'People other than course staff.
2Give citations to texts and material other than the Spring *11 course materials.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring *11: Mathematics for Computer Science March 30
Prof. Albert R Meyer revised Thursday 31% March, 2011, 10:43

Solutions to Problem Set 6

Reading: Chapter 9.5-9.9, Partial Orders; Chapter ??-??, Simple Graphs.
Skip Chapter 10, Communication Nets, which will not be covered this term.

Problem 1.
Let Ry, R> be binary relations on the same set, A. A relational property is preserved under product, if
R1 x R, has the property whenever both R, and R have the property.

(a) Verify that each of the following properties are preserved under product.

1. reflexivity,
2. antisymmetry,
3. transitivity.

Solution. These facts follows directly from the definitions. We’ll write out just the case of antisymmetry.
So suppose R;, R, are antisymmetric.

Proof. To prove R; x R, is antisymmetric, suppose

(r1,r2) [Ry x R3] (s1,52) and also (D)
(51:32) [Rl X RZ] (‘rl’ rZ)' (2)

We need to show that (ry, s1) = (2, 52).

By (1) and the definition of Ry x Rp, we know that r; R; s; fori = 1,2. Similarly, by (1) s; R; r;. Since
R; is antisymmetric, it follows that r; = s; fori = 1, 2. That s, (r1, s1) = (r2, 52). [ |

(b) Verify that if either of Ry or R5 is irreflexive, then sois Ry x R».

Solution. We may as well assume R; is irreflexive. This means that NOT(ry R; ry) for every r; €
domain(R;). So by definition of relational product,

NOT[(r1,72) [R1 X R2] (r1, 52)]
for all r; € domain(R,) and r3, 52 € domain(R>). In particular
NOT[(r1,72) [R1 X Rz] (r1,r2)],

which implies that R; x R» is irreflexive. ]

Note that it now follows immediately that if if R; and R, are partial orders and at least one of them is
strict, then R; x R» is a strict partial order.

1 o)
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Problem Set 6

Problem 2.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students. Modify the definition of stable matching
so it applies in this situation, and explain how to modify the Mating Ritual so it yields stable assignments of
students to residencies.

Briefly indicate what, if any, modifications of the preserved invariant used to verify the original Mating
are needed to verify this one for hospitals and students.

Solution. The Mating Ritual can be applied to this situation by letting the students be the boys and each of
the residencies (not the hospitals) be the girls.

A matching is an assignment of students to residencies (an injection, A : students — residencies) such
that every student has a residency (A is total), or every residency has an assigned student (A is a surjection).
A stable assignment is one with no rogue couples, where a rogue couple is a hospital student pair (H, S)

such that S is not assigned to one of the residencies at /, which she prefers over her current assignment,
and

e H has some students assigned to some of its residencies and prefers S to at least one of its assigned
students, or

e [ has none of its residencies assigned,

Problem 3.
Scholars through the ages have identified rwenty fundamental human virtues: honesty, generosity, loyalty,
prudence, completing the weekly course reading-response, etc. At the beginning of the term, every student
in Math for Computer Science possessed exactly eight of these virtues. Furthermore, every student was
unique; that is, no two students possessed exactly the same set of virtues. The Math for Computer Science
course staff must select one additional virtue to impart to each student by the end of the term. Prove that
there is a way to select an additional virtue for each student so that every student is unique at the end of the
term as well.

Suggestion: Use Hall’s theorem. Try various interpretations for the vertices on the left and right sides of
your bipartite graph.

Solution. Construct a bipartite graph G as follows. The vertices on on the left are all students and the
virtues on the right are all subset of nine virtues. There is an edge between a student and a set of 9 virtues if
the student already has 8 of those virtues.

Each vertex on the left has degree 12, since each student can learn one of 12 additional virtues. The
vertices on the right have degree at most 9, since each set of 9 virtues has only 9 subsets of size 8. So
this bipartite graph is degree-constrained, and therefore, by Lemma ??, there is a matching for the students.
Thus, if each student is taught the additional virtue in the set of 9 virtues with whom he or she is matched,
then every student is unique at the end of the term. |

Problem 4.
Determine which among the four graphs pictured in the Figures are isomorphic. If two of these graphs are
isomorphic, describe an isomorphism between them. If they are not, give a property that is preserved under



Solutions to Problem Set 6 3

() G3
Figure 1 Which graphs are isomorphic?

isomorphism such that one graph has the property, but the other does not. For at least one of the properties
you choose, prove that it is indeed preserved under isomorphism (you only need prove one of them).

Solution. G; and G5 are isomorphic. In particular, the function f : ¥; — V3 is an isomomorphism, where

J)=1 f2)=2 f@3) =3 f@4) =8 fG=9
f(6) =10 f(7) =4 f@® =5 S =6 S(0) =7

G and G4 are not isomorphic to Gz: G has a vertex of degree four and neither G nor G4 has one.

G, and G4 are not isomorphic: G4 has a cycle of length four and G does not.

There are many examples of properties preserved under graph isomorphism. For example, we will prove
that the degree of each vertex is preserved under isomorphism.

Let G and H be isomorphic graphs. Since they are isomorphic, there is an edge-preserving bijection
between the vertices of G and H :

fw) e V(H) «— f(u) € V(G)

We let the set of vertices adjacent to u be N(u). Because f is an edge-preserving bijection, there is an
edge from f(u) to a vertex f(k) iff k € N(u). Thus |N(f(u))| = |N(u)| and the degree of each vertex is
preserved under isomorphism. O

Problem 5. (a) For any vertex, v, in a graph, let N(v) be the set of neighbors of v, namely, the vertices
adjacent to v:

N(v) ::={u | (u—v) is an edge of the graph}.



4 Solutions to Problem Set 6

Suppose f is an isomorphism from graph G to graph H. Prove that f(N(v)) = N(f(v)).

Your proof should follow by simple reasoning using the definitions of isomorphism and neighbors—no
pictures or handwaving.

Hint: Prove by a chain of iff’s that

heN(f) iff he f(NO))

for every h € V. Use the fact that h = f(u) for some u € V.

Solution. Proof. Suppose h € Vy. By definition of isomorphism, there is a unique u € Vg such that
f(u) = h. Then

heN(f(v) iff (h—f(v))eEn (def of N)
iff (f(u)—f(v)) € Ex (def of u)
iff (u—v)e Ey (since f is an isomorphism)
iff ue N(v) (def of N)
iff  f(u) e f(N(@)) (def of f-image)
iff he f(NV)) (def of u)

So N(f(v)) and f(N(v)) have the same members and therefore are equal.
73

(b) Conclude that if G and H are isomorphic graphs, then for each & € N, they have the same number of
degree k vertices.

Solution. By definition, deg(v) = |N(v)|. Since an isomorphism is a bijection, any set of vertices and its
image under an isomorphism will be the same size (by the Mapping Rule from Week 2 Notes), so part (a)
implies that an isomorphism, f, maps degree k vertices to degree k vertices. This means that the image
under f of the set of degree k vertices of G is precisely the set of degree k vertices of H. So by the Mapping
Rule again, there are the same number of degree k vertices in G and H. |
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Graph Connectivity
Trees & Coloring

Albert R Meyer, March 30 2011 o W1

Connected Components

13 12 26 16 66

; E17

E25

b o
10 4 8 Easf cknnpus Med Center

Infinite corridor
3 connected components

the more connected components,
the more "broken up" the graph is.

Connected Components

Every graph consists of
separate connected
pieces (subgraphs) called
connected components

Albert R Meyer, March 30, 2011 o 8.2

Albert R Meyer, March 30, 2011 bz 0W3

A {I'{héili g wing oy

F=1=17]
Connected Components

So a graph is connected
iff it has only
1 connected component

Connected Components

The connected component
of vertex v =

{w| v and w are connected}

ARert R Meyer, March 30, 2011 loc WA

ARert R Meyer, March 30, 2011 lec WS

Cut Edges

An edge is a cut edge if
removing it from the graph
disconnects two vertices.

Alert R Meyer, March 30, 2011 lec SW16




oacd
Cut Edges

B is a cut edge

hoc SW38

b

deleting B gives
Two components

Albert R Meyer, March 30, 2011 fec EW.20

Albert R Mayer, March 30, 2011 lec OW 19

Closed Walks
A closed walk is a walk that begins
and ends with the same vertex

i,

———— ~.
-~ SN .
’l . . ~,
‘l . EY

NS e

vertex sequence:
v--ob.-‘w---w...a...v

Albert R Meyer, March 30. 2011 Jc §W.Z3

Cut Edges

still connected with
edge A deleted

Albert B Meyer, March 30, 2011 ec W21

Cycles
A cycle is a closed walk
of length > 2 that doesn't
cross itself: vertex sequence:
Ve W

AS
v ‘w also:
\ ; w---a..-v-.-w

s
0 -

P

~

E‘xi Albart B Meyer, March 30, 2011 fac bW 24



Cycles

length > 2 implies that
going back & forth over
an edge is not a cycle

Alsert R Meyer, March 30, 2011 luc WIS

A free is a connected graph
with no cycles.
equivalently:

Cut Edges and Cycles
Lemma: An edge is a

not a cut edge iff
it is on a cycle.

Albert R Meyer, March 30, 2011 i

Abert R Meyer, March 30, 2011 toc BW.29

E Trees
A tree is a connected graph
with every edge a cut edge.

Albert R Meyer. March 30. 2011 e 8930

ARert R Meyer, March 30, 2011 lac B W31

Other Tree Definitions

* graph with a unique path
between any 2 vertices

» connected graph with n
vertices and n-1 edges

* an edge-maximal acyclic graph

Alert B Meyer. Morch 30, 2011 Jx §9 32
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:rEe  Spanning Trees

A spanning tree of a graph 6
is any subgraph T that is a
tree and contains all the
verticesof 6.

[~ AT
~M Albert R Meyer, March 30. 2011 s BW33

Ewod -
Spanning Trees
o \\

a spanning ree

Albert R Meyer, March 30, 2011 Juc B35

Spanning Trees

Albert B Meyer. March 30, 2011 loc w34

Spanning Trees

i

another spanning free
(can have many)

Alert R Meyer, March 30, 2011 boc S 36

Spanning Trees

Lemma: G connected implies

G has a spanning tree
Pf:Among connected subgraphs
with all the vertices of G:
those with the fewest edges
are spanning trees. (Why?)

YT
@L“,“:‘“@) Amert R Meyer, March 30, 2011 e w37

Mathematics for Computer Science
MIT 6.0423/18.0627

Graph Coloring

YT
g “'G.’ Alert R Meyer, March 30, 2011 lec BWI8




“& Flight Gates

flights need gates, but
Times overlap.
how many gates needed?

o BW09

& Conflicts Among 3 Flights

Needs gate at same fime
145

Altert R Mayer, March 30, 2011 e AW AL

=Fs  Color the vertices ,%’

ot
Color vertices so that adjacent
vertices have different colors.
min # distinct colors needed =
min # gates needed

Albert R Mayer, March 30. 2611 toc AW 43

ae
Zm:  Airline Schedule

| =

fime —F——

122
145
Flights | 67]

257 -

306 =

-, March 30, 2011

e B0

Model all Conflicts with a 6raph

257 122 145
306 g i i ; Z of
99

Albert R Meyer. March 30, 2011 B a2

oRod
:Bs Coloring the Vertices

252 145
assign
67 gafes:
306 @257, 67
0122145

4 colors ‘g9 9
@ 306
=5 gates

Alert R Meyer, March 30, 2011 loc S 44




QL+ 17 L
omag .
imd  Better coloring

257 122 145

306 67

3 colors 5

s BWAT

3.091

4 time slots OM 1pm
(best possible) 6.001 ® T 9am
eT lpm

Albert R Meyer, March 30, 2011 o SWAT

- Qoo
Planar Four Coloring

any planar map is 4-colorable.
1850's: false proof published

(was correct for 5 colors).
1970's: proof with computer
1990's: much improved

Aart B Meyer, March 30,2018 s

w1

O [5]7]

uamu

an o
{*]

ah.c Final Exams

subjects conflict if student
takes both, so

need different time slofs.
how short an exam period?

Albert R Meyer, March 30, 2011 lne BW.A

gRcH :
Map Coloring

Alsert R Meyer, March 30, 2011 bt BW 4D

-]
% Chromatic Number

min #colors for G is

chromatic number, x(G)
lemma:

x(ftree) = 2

Albert R Meyer, March 30, 2011 luc 4w 32




« DD
Trees are 2-colorable

Pick any vertex as "root.”

if (unique) path from root is
even length: @

odd length: @

Eeo Simple Cycles

B 8l -
i< ilie

Complete Graph K5

x(Kp) = n

Altert R Meyer, March 30, 2011 [

Albert R Meyer. March 30, 2011 Tac W5

Bounded Degree

all degrees < k, implies
x(6) < k1

very simple algorithm...

e 85T

owaH
e
]

-8 The Wheel W,

i

Ws  (W,4) = 4
X(Weven) = 3

Albert R Meyer, March 30, 2011 Boc EW36

“6reedy” Coloring

..color vertices in any order.

next vertex gets a color

different from its neighbors.
< k neighbors, so

k+1 colors always work

(c) DSE)

Albart B Meyer, Morch 30, 2011 e S 2A




e coloring arbitrary graphs
2-colorable? --easy to check
3-colorable? --hard fo check
(even if planar)
find x(6)? --theoretically
no harder than 3-color, but
harder in practice

[ D)

Altert R Meyer, March 30, 2011 hoc W b1

Tl : S
itae  Team Problems

Q10 -

Problems

() DOE)
Iz

1—4

Albert R Meyer, March 30, 2011

e
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Massachusetts Institute of Technology

6.042J/18.062], Spring " 11: Mathematics for Computer Science March 30

Prof. Albert R Meyer revised Wednesday 30™ March, 2011, 02:14

In-Class Problems Week 8, Wed.

Problem 1.

False Claim. If every vertex in a graph has positive degree, then the graph is connected.
(a) Prove that this Claim is indeed false by providing a counterexample.

(b) Since the Claim is false, there must be an logical mistake in the following bogus proof. Pinpoint the
first logical mistake (unjustified step) in the proof.

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition that if every vertex in an
n-vertex graph has positive degree, then the graph is connected.

Base cases: (n < 2). In a graph with 1 vertex, that vertex cannot have positive degree, so P(1) holds
vacuously.

‘-.‘—-_-—‘—“ - - . . . -
P(2) holds because there is only one graph with two vertices of positive degree, namely, the graph with an
edge between the vertices, and this graph is connected.

Inductive step: We must show that P(n) implies P(n 4 1) for all n = 2. Consider an n-vertex graph in
which every vertex has positive degree. By the assumption P(n), this graph is connected; that is, there is a
path between every pair of vertices. Now we add one more vertex x to obtain an (n 4 1)-vertex graph:

n-node
connected

graph

All that remains is to check that there is a path from x to every other vertex z. Since x has positive degree,
there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by going from x to
y and then following the path from y to z. This proves P(n + 1).

By the principle of induction, P(n) is true for all n = 0, which proves the Claim.

Problem 2.

Procedure create-spanning-tree

Given a simple graph G, keep applying the following operations to the graph until no operation
applies:

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 In-Class Problems Week 8, Wed.

1. If an edge (u—uv) of G is on a cycle, then delete (v—v).

2. If vertices u and v of G are not connected, then add the edge (v—v).

Assume the vertices of G are the integers 1,2,...,n for some n > 2. Procedure create-spanning-tree
can be modeled as a state machine whose states are all possible simple graphs with vertices 1,2, ..., n. The
start state is G, and the final states are the graphs on which no operation is possible.

(a) Let G be the graph with vertices {1, 2, 3, 4} and edges

{{1—2), (3—4}}
What are the possible final states reachable from start state G? Draw them.
(b) Prove that any final state of must be a tree on the vertices.

(¢) For any state, G', let e be the number of edges in G’, ¢ be the number of connected components it
has, and s be the number of cycles. For each of the derived variables below, indicate the strongest of the

properties that it is guaranteed to satisfy, no matter what the starting graph G is and be prepared to briefly
explain your answer.

The choices for properties are: constant, strictly increasing, strictly decreasing, weakly increasing, weakly
decreasing, none of these. The derived variables are

(i) e
(ii) ¢
(iii) s
(iv) e—s
V) c+e
(vi) 3¢ + 2e
(vii) ¢ + s

(viii) (c, e), partially ordered coordinatewise (the product partial order 9.9.1).

(d) Prove that procedure create-spanning-tree terminates. (If your proof depends on one of the answers
to part (c), you must prove that answer is correct.)

Problem 3.
Let G be the graph below'. Carefully explain why x(G) = 4.

1From Discrete Mathematics, Lovisz, Pelikan, and Vesztergombi. Springer, 2003. Exercise 13.3.1



In-Class Problems Week 8, Wed. 3

Problem 4.

A portion of a computer program consists of a sequence of calculations where the results are stored in
variables, like this:

Inputs: a,b
Step 1. c a+b
2 g =gk
3 e = ¢c+3
4 i = g=p
5 g = a+f
6 h = f+1
Outputs: d,g.h

A computer can perform such calculations most quickly if the value of each variable is stored in a register,
a chunk of very fast memory inside the microprocessor. Programming language compilers face the problem
of assigning each variable in a program to a register. Computers usually have few registers, however, so they
must be used wisely and reused often. This is called the register allocation problem.

In the example above, variables @ and b must be assigned different registers, because they hold distinct
input values. Furthermore, ¢ and d must be assigned different registers; if they used the same one, then the
value of ¢ would be overwritten in the second step and we’d get the wrong answer in the third step. On the
other hand, variables b and d may use the same register; after the first step, we no longer need b and can
overwrite the register that holds its value. Also, f and & may use the same register; once f + 1 is evaluated
in the last step, the register holding the value of f can be overwritten.(Assume that the computer carries out
each step in the order listed and that each step is completed before the next is begun.)

(a) Recast the register allocation problem as a question about graph coloring. What do the vertices cor-
respond to? Under what conditions should there be an edge between two vertices? Construct the graph
corresponding to the example above.

(b) Color your graph using as few colors as you can. Call the computer’s registers R1, R2, etc. Describe
the assignment of variables to registers implied by your coloring. How many registers do you need?

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below:

t=r+s
w=ut% 3
t=m-—k
v=t+u

How might you cope with this complication?
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Massachusetts Institute of Technology

6.042]/18.062], Spring *11: Mathematics for Computer Science March 30

Prof. Albert R Meyer revised Wednesday 30" March, 2011, 16:08

Solutions to In-Class Problems Week 8, Wed.

Problem 1.

False Claim. If every vertex in a graph has positive degree, then the graph is connected.
(a) Prove that this Claim is indeed false by providing a counterexample.

Solution. There are many counterexamples; here is one:

(b) Since the Claim is false, there must be an logical mistake in the following bogus proof. Pinpoint the
first logical mistake (unjustified step) in the proof.

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition that if every vertex in an
n-vertex graph has positive degree, then the graph is connected.

Base cases: (n < 2). In a graph with 1 vertex, that vertex cannot have positive degree, so P (1) holds
vacuously.

P(2) holds because there is only one graph with two vertices of positive degree, namely, the graph with an
edge between the vertices, and this graph is connected.

Inductive step: We must show that P (n) implies P(n + 1) for all n > 2. Consider an n-vertex graph in
which every vertex has positive degree. By the assumption P (n), this graph is connected; that is, there is a
path between every pair of vertices. Now we add one more vertex x to obtain an (n + 1)-vertex graph:

n-node
connected
graph

All that remains is to check that there is a path from x to every other vertex z. Since x has positive degree,

there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by going from x to
y and then following the path from y to z. This proves P(n + 1).

BOEE

Creative Commons &= s 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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By the principle of induction, P (n) is true for all n > 0, which proves the Claim.
|

Solution. This one is tricky: the proof is actually a good proof of something else. The first error in the proof
is only in the final statement of the inductive step: “This proves P(n + 1)”.

The issue is that to prove P(n + 1), every (n + 1)-vertex positive-degree graph must be shown to be
connected. But the proof doesn’t show this. Instead, it shows that every (n + 1)-vertex positive-degree graph
that can be built up by adding a vertex of positive degree to an n-vertex connected graph, is connected.

The problem is that not every (n + 1)-vertex positive-degree graph can be built up in this way. The coun-
terexample above illustrates this: there is no way to build that 4-vertex positive-degree graph from a 3-vertex
positive-degree graph.

More generally, this is an example of “buildup error”. This error arises from a faulty assumption that every
size n + 1 graph with some property can be “built up” in some particular way from a size n graph with the

same property. (This assumption is correct for some properties, but incorrect for others—such as the one in
the argument above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back” process in the inductive
step: start with a size n + 1 graph, remove a vertex (or edge), apply the inductive hypothesis P (n) to the
smaller graph, and then add back the vertex (or edge) and argue that P(n + 1) holds. Let’s see what would
have happened if we’d tried to prove the claim above by this method:

Inductive step: We must show that P (n) implies P(n + 1) for all n > 1. Consider an (n + 1)-vertex graph
G in which every vertex has degree at least 1. Remove an arbitrary vertex v, leaving an n-vertex graph G’
in which every vertex has degree... uh-oh!

The reduced graph G’ might contain a vertex of degree 0, making the inductive hypothesis P (n) inapplica-
ble! We are stuck—and properly so, since the claim is false! 3}

Problem 2.

Procedure create-spanning-tree
Given a simple graph G, keep applying the following operations to the graph until no operation
applies:
1. If an edge (u—v) of G is on a cycle, then delete (u—uv).

2. If vertices u and v of G are not connected, then add the edge (u—uv).

Assume the vertices of G are the integers 1,2, ...,n for some n > 2. Procedure create-spanning-tree
can be modeled as a state machine whose states are all possible simple graphs with vertices 1,2, ..., n. The
start state is G, and the final states are the graphs on which no operation is possible.

(a) Let G be the graph with vertices {1, 2, 3, 4} and edges
{{1—2), (3—4)}
‘What are the possible final states reachable from start state G? Draw them.

Solution. It’s not possible to delete any edge. The procedure can only add an edge connecting exactly one
of vertices 1 or 2 to exactly one of vertices 3 or 4, and then terminate. So there are four possible final
states. |
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(b) Prove that any final state of must be a tree on the vertices.

Solution. We use the characterization of a tree as an acyclic connected graph.

A final state must be connected, because otherwise there would be two unconnected vertices, and then a
transition adding the edge between them would be possible, contradicting finality of the state.

A final state can’t have a cycle, because deleting any edge on the cycle would be a possible transition. W

(c) For any state, G, let e be the number of edges in G’, ¢ be the number of connected components it
has, and s be the number of cycles. For each of the derived variables below, indicate the strongest of the
properties that it is guaranteed to satisfy, no matter what the starting graph G is and be prepared to briefly
explain your answer.

The choices for properties are: constant, strictly increasing, strictly decreasing, weakly increasing, weakly
decreasing, none of these. The derived variables are

G) e
Solution. none of these O
(i) ¢
Solution. weakly decreasing |
(iii) s
Solution. weakly decreasing O
(iv) e—s
Solution. weakly increasing |
V)c+e
Solution. weakly decreasing |
(vi) 3¢ + 2e
Solution. strictly decreasing O
(vil) ¢+ s
Solution. strictly decreasing O

(viii) (c, e), partially ordered coordinatewise (the product partial order 9.9.1).
Solution. none of these O

(d) Prove that procedure create-spanning-tree terminates. (If your proof depends on one of the answers
to part (c), you must prove that answer is correct.)
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Solution. If a value (a derived variable) associated with a process state is nonnegative integer-valued and
decreases at each step, then the process terminates after at most as many steps as the initial value of the
quantity. So we need only identify such a derived variable. There are two in the list above, namely (vi) and
(vii).

To show that the variable (vi) strictly decreases, note that the rule for deleting an edge ensures that the
connectedness relation does not change, so neither does the number of connected components ¢. Meanwhile
the number of edges e decreases by one when an edge is deleted. Therefore the variable 3¢ + 2e decreases
by 2. The rule for adding an edge ensures that the number of connected components ¢ decreases by one and
the number of edges e increases by one. Therefore the variable 3¢ + 2e decreases by 1.

To show that the variable (vii) strictly decreases, note that the rule for deleting an edge ensures that the
number of connected components ¢ does not change and the number of cycles s decreases by n, where
n > 1. Therefore the variable ¢ 4 s decreases by n. The rule for adding an edge ensures that the number

of connected components ¢ decreases by one and the number of cycles s does not change. Therefore the
variable ¢ + s decreases by one.

Problem 3.
Let G be the graph below!. Carefully explain why x(G) = 4.

Solution. Four colors are sufficient, so y(G) < 4.

red

white white

red green

Figure 1 A 4-coloring of the Graph

Now assume y(G) = 3. We may assume the top vertex is colored red. The top two triangles require 3
colors each, and since they share the top red vertex, they must have the other two colors, white and blue,
at their bases, as in Figure 1. Now the bottom two vertices are both adjacent to vertices colored white and
blue, and cannot have the same color since they are adjacent, so there is no alternative but to color one with
a third color and the other with a fourth color, contradicting the assumption that 3 colors are enough. Hence,
x(G) > 3. This together with the coloring of Figure 1 implies that y(G) = 4. O

'From Discrete Mathematics, Lovasz, Pelikan, and Vesztergombi. Springer, 2003. Exercise 13.3.1
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Problem 4.

A portion of a computer program consists of a sequence of calculations where the results are stored in
variables, like this:

Inputs: a,b

Step 1. c = a+b
2 & =.a%e

3 e = c+3

4 f = c—e

S g = a+f

6 h = f+1

Outputs: d,g.h

A computer can perform such calculations most quickly if the value of each variable is stored in a register,
a chunk of very fast memory inside the microprocessor. Programming language compilers face the problem
of assigning each variable in a program to a register. Computers usually have few registers, however, so they
must be used wisely and reused often. This is called the register allocation problem.

In the example above, variables a and b must be assigned different registers, because they hold distinct
input values. Furthermore, ¢ and d must be assigned different registers; if they used the same one, then the
value of ¢ would be overwritten in the second step and we’d get the wrong answer in the third step. On the
other hand, variables b and d may use the same register; after the first step, we no longer need b and can
overwrite the register that holds its value. Also, f and & may use the same register; once f -+ 1 is evaluated
in the last step, the register holding the value of f can be overwritten.(Assume that the computer carries out
each step in the order listed and that each step is completed before the next is begun.)

(a) Recast the register allocation problem as a question about graph coloring. What do the vertices cor-
respond to? Under what conditions should there be an edge between two vertices? Construct the graph
corresponding to the example above.

Solution. There is one vertex for each variable. An edge between two vertices indicates that the values of
the variables must be stored in different registers.

We can classify each appearance of a variable in the program as either an assignment or a use. In particular,
an appearance is an assignment if the variable is on the left side of an equation or on the “Inputs” line. An
appearance of a variable is a use if the variable is on the right side of an equation or on the “Outputs” line.
The lifetime of a variable is the segment of code extending from the initial assignment of the variable until
the last use.”> There is an edge between two variables if their lifetimes overlap. This rule generates the
following graph:

R1 R2 R2 R3 R4 R2 R1 R2
a b c d e f g h

2This definition is for the case that each variable is assigned at most once (see part (c)).
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(b) Color your graph using as few colors as you can. Call the computer’s registers R1, R2, etc. Describe
the assignment of variables to registers implied by your coloring. How many registers do you need?

Solution. Four registers are needed.

One possible assignment of variables to registers is indicated in the figure above. In general, coloring a
graph using the minimum number of colors is quite difficult; no efficient procedure is known. However, the
register allocation problem always leads to an interval graph, and optimal colorings for interval graphs are
always easy to find. This makes it easy for compilers to allocate a minimum number of registers. ]

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below:

t=r+s
u=t*3
t=m—k
v=1I+u

How might you cope with this complication?

Solution. Each time a variable is reassigned, we could regard it as a completely new variable. Then we
would regard the example as equivalent to the following:

t=r+s

u==t=*3
t'=m-k
v=1t"+u

We can now proceed with graph construction and coloring as before. |
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Albert R Meyer, April 1, 2011

o 871

gng.: Planar Graphs

A graph is planar if there
is a way to draw it in the
plane without edges crossing.

Alert R Meyer, Apeil 1,201

%] Region Boundaries

d

Aart B Meyer, Apeil 1, 2010

Planar Graphs

Albert R Meyer, Apeil 1, 2011

bac 577

[the outside face|

continuous face
::=connected region

Albert R Meyer, April 1. 2011

tec 85 4

Z Region Boundaries

Albert R Meyer,  Apeil 1, 2011

bec 8F 6

Y/



S Region Boundaries

b 7.9

Albert R Meyer. Apeil1, 2011

e 857

Albert R Meyer, Apeil 1,2011

* gog
& Region Boundaries: Bridge

Region Boundaries

Albert R Meyer, Apeil 1, 2011

b 8530

ARert R Meyer, Aped 1, 2011

= [s7]
Region Bou‘r_us:lar-ies‘g‘ Dongle

N,

-

U stvxyxvwvturs

Albert R Meyer,  April 1, 2011

lec 8519

Albart R Meyer, Aped 1,201

buc 8534



Planar Embedding
A planar embedding is a
connected graph along with
its face boundary walks
(same graph may have
different embeddings)

@ Albert R Meyer, Aped 1, 2011 a2 17

Recursive Def: Planar Embeddings
Base: a graph consisting of
* single vertex, v,
- with a single face:
length O walk from v to v,
is a PE.
ve v
graph face

2 length 5 faces length 3 face
length 7 face

Alsert R Meyer, Apeil 1, 2011 e 8738

EEE Adding an edge to an embedding
Two constructor cases:
1) Add edge across a face
(splits face in two)

2) Add bridge between
connected components
(merges 2 outer faces)

Abert B Meyer, Aprd 1,201 hetris

= 055 Albert B Meyer, Apeil 1, 2011 o 920

awxbyza — awxba, abyza

[ 060 Albart R Meyer, Apeil 1,201 tes 2821

Albert R Meyer, Apeil 1, 2011 : ec 422




Eﬁgﬁ Constructor: Add a Bridge

Abert R Meyer, Apeil 1,201

Team Problem

Problem 1

Albert R Meyer, April 1.2011

Albert R Meyer. April1, 2011 tac 87 24

hec 8723

Euler's Formula

If a planar embedding has
v vertices, e edges, and f
faces, then

v-e+f=2

Albert R Meyer, April 1. 2011 toc 8726

+ QoD
2 Euler's Formula

Proof by structural
induction on embeddings:

base case: 1 vertex
vl e=@ f -1
1-0+1=2&

Alert R Meyer,  Aped 1,2011

o 4527

Adding an edge to a drawing

Constructor case (split face):
v stays the same

e increases by 1

f increases by 1

so v - e + f stays the same

Albert R Meyer, Apel 1, 2011 e 8728




Adding an edge to a drawing
Constructor case (add bridge):
V= Vi+ Vs
ez ‘“(31 +e,+ 1)
f= f;+f,-1 (iwoouter faces
merge into one)
2= 210D

Alert R Meyer, Apeil 1, 2011 Ledaitid

Planar Properties

* an edge appears twice on faces
* face length > 3 (forv > 3)
3(e-v+2) = 3f < 2e

combining with Euler

e < 3v-6.

uuuuuuuuuuuuuuu

Albert R Meyer.  Apeil 1, 2011 e 37.20

§E§ Planar Properties
e < 3v-6
Cor: Ks is not planar
pf: v=5e=10
10 £ 35 - 6

Albart R Meyer, Apeid 1,201 fec $6.31

Z#  Planar Properties

e < 3v-6

Cor: Every planar graph has
a vertex of degree <5 '
pf: suppose all degrees > 6
Then

6v < > degrees = 2e < 6v-12
contradiction!

Albert R Meyer, Apeil 1, 2011 oc 822

Planar Properties

Cor: Every planar graph has

a vertex of degree <5
Therefore,

every planar graph
is 6-colorable

Albert R Meyer, April 1, 2011 luc 4533

Euler's Formula
cor: There are at most

5 regular polyhedra
(proof in Notes)

Albert 8 Meyer. April 1, 2011 hec BF 34




% Team Problems
Problems
2 &3

Albert R Meyer, Aped 1, 2011
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Massachusetts Institute of Technology
6.042J/18.062J, Spring "11: Mathematics for Computer Science April 1
Prof. Albert R Meyer revised Thursday 31%* March, 2011, 15:10

In-Class Problems Week 8, Fri.

Problem 1.
Figures 1-4 show different pictures of planar graphs.
b ¢ b
C
a (1 a 'd
figure 1 figure 2
b g b
o
a d a d
e e
figure 3 figure 4

(a) For each picture, describe its discrete faces (closed walks that define the region borders).

(b) Which of the pictured graphs are isomorphic? Which pictures represent the same planar embedding?—
that is, they have the same discrete faces.

planar embedding. For each application of a constructor rule, be sure to indicate the faces (cycles) to which
the rule was applied and the cycles which result from the application.

Problem 2.
Prove the following assertions by structural induction on the definition of planar embedding.

(a) In a planar embedding of a graph, each edge occurs exactly twice in the faces of the embedding.

(b) In a planar embedding of a connected graph with at least three vertices, each face is of length at least
three.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Problem 3.
A simple graph is triangle-free when it has no cycle of length three.

(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e edges,
e <2v—4. (1)

Hint: Similar to the proof that e < 3v — 6. Use Problem 2.
(b) Show that any connected triangle-free planar graph has at least one vertex of degree three or less.

(¢) Prove by induction on the number of vertices that any connected triangle-free planar graph is 4-
colorable.

Hint: use part (b).

Appendix

Definition. A planar embedding of a connected graph consists of a nonempty set of closed walks of the
graph called the discrete faces of the embedding. Planar embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex, v, then a planar embedding of G has one discrete
face, namely, the length zero closed walk, v.

Constructor case (split a face): Suppose G is a connected graph with a planar embedding, and suppose a
and b are distinct, nonadjacent vertices of G that appear on some discrete face, y, of the planar embedding.
That is, y is a closed walk of the form

a”p
where @ is a walk from @ to b and B is a walk from b to a.' Then the graph obtained by adding the edge
(a—b) to the edges of G has a planar embedding with the same discrete faces as G, except that face y is
replaced by the two discrete faces”

a” (b (b—a) a) and (a (a—b) b)"B
as illustrated in Figure 1.

Constructor case (add a bridge): Suppose G and H are connected graphs with planar embeddings and
disjoint sets of vertices. Let y be a discrete face of the embedding of G and suppose that y begins and ends
at vertex a.

Similarly, let § be a discrete face of the embedding of H that begins and ends at vertex b.

Then the graph obtained by connecting G and H with a new edge, (a—b), has a planar embedding whose
discrete faces are the union of the discrete faces of G and H, except that faces y and § are replaced by one
new face

¥y " (a {a—b) b)"§" (b (b—a) a).
This is illustrated in Figure 2, where the vertex sequences of the faces of G and H are:
G :{axyza, axya, ayza} H :{btuvwb, btvwb, tuvt},
and after adding the bridge (a—»5), there is a single connected graph whose faces have the vertex sequences

{axyzabtuvwba, axya, ayza, btvwb, tuvt}.

! If a walk f ends with a vertex, v, and a walk r starts with the same vertex, v, their merge, £7r. is the walk that starts with f and
continues with r. Two walks can only be merged if the first ends with the same vertex, v, that the second one starts with.

2There is a minor exception to this definition of embedding in the special case when G is a line graph beginning with a and
ending with . In this case the cycles into which y splits are actually the same. That’s because adding edge (a—b) creates a
cycle that divides the plane into “inner” and “outer” continuous faces that are both bordered by this cycle. In order to maintain the
correspondence between continuous faces and discrete faces in this case, we define the two discrete faces of the embedding to be
two “copies” of this same cycle.
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a

¥ b
Figure 1 The “split a face” case: awxbyza splits into awxyba and aby:za.

!

Figure 2 The “add a bridge” case.

Theorem 3.1 (Euler’s Formula). If a connected graph has a planar embedding, then
v—e+ f=2
where v is the number of vertices, e is the number of edges, and [ is the number of faces.
Corollary 3.2. Suppose a connected planar graph has v = 3 vertices and e edges. Then
e <3v—6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So suppose a connected
graph with v vertices and e edges has a planar embedding with f faces. By Problem 2.a, every edge is
traversed exactly twice by the face boundaries. So the sum of the lengths of the face boundaries is exactly
2e. Also by Problem 2.b, when v > 3, each face boundary is of length at least three, so this sum is at least
3f. This implies that

3f < 2e. (2)

But /' = e — v + 2 by Euler’s formula, and substituting into (2) gives
Je—v+2)<2e
e—3v+6<0

e<3v-—-06

Corollary 3.3. K5 is not planar.

Proof.
e=10>9=3v-—6.
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Massachusetts Institute of Technology
6.0421/18.0627J, Spring ’11: Mathematics for Computer Science April 1
Prof. Albert R Meyer revised Friday 1% April, 2011, 12:54

Solutions to In-Class Problems Week 8, Fri.

Problem 1.
Figures 1-4 show different pictures of planar graphs.
b ¢ b
c
a d a d
figure 1 figure 2
b ¢ b
c
a d a d
e - e
figure 3 figure 4

(a) For each picture, describe its discrete faces (closed walks that define the region borders).

Solution. Figs 1 & 2: abda, bedb, abeda. Fig 3: abcdea, adea,abda,bedb. Fig 4: abceda, abdea, bdcb,
adea. O

(b) Which of the pictured graphs are isomorphic? Which pictures represent the same planar embedding?—
that is, they have the same discrete faces.

Solution. Figs 1 & 2 have the same faces, so are different pictures of the same planar drawing. Figs 3 & 4

both have four faces, but they are different, for example, Fig 3 has a face with 5 edges, but the longest face
in Fig 4 has 4 edges. |

(¢) Describe a way to construct the embedding in Figure 4 according to the recursive Definition ?? of

planar embedding. For each application of a constructor rule, be sure to indicate the faces (cycles) to which
the rule was applied and the cycles which result from the application.

§ 5
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Solution. Here’s one way. (The constructor steps could actually be done in any order.)

recursive step faces
vertex a (base case) a
vertex b (base) b
(a—b) (bridge) aba
vertex ¢ (base) c
{(b—c) (bridge) abcba
vertex d (base) d
(c—d) (bridge) abcdcba
{a—d) (split) dabcd, dabcd
(b—d) (split) dabd, dbcd, abcda
vertex ¢ (base) e
(d—e) (bridge) dedabd, dbcd, abcda
(a—e) (splity  abdea, adea, dbcd, abcda

Problem 2.
Prove the following assertions by structural induction on the definition of planar embedding.

(a) In a planar embedding of a graph, each edge occurs exactly twice in the faces of the embedding.

Solution. Proof. The induction hypothesis is that if £ is a planar embedding of a graph, then each edge is
occurs exactly twice in the faces of £.

Base case: There is one vertex and no edges, so this case holds vacuously.

Constructor case (face-splitting): The only change is that one face of £ splits into two new faces, each
including the new edge once.

Constructor case (bridge between two connected graphs): The only change is that two faces merge into one
face that has two occurrences of the new bridging edge. So the occurrences of other edges are unchanged,
and the new edge occurs twice in the new face.

So in any case, all edges of £ are occur exactly twice. This completes the proof of the Constructor case. We
conclude by structural induction that for all planar embeddings, £, then each edge occurs exactly twice in
the faces of £.

(b) In a planar embedding of a connected graph with at least three vertices, each face is of length at least
three.

Solution. Proof. The induction hypothesis is that if £ is a planar embedding of a graph with at least three
vertices, then all faces in £ are of length at least three.

Base case: There is one vertex, so this case holds vacuously.

Constructor case: (face-splitting) An edge (a—»b) is added between nonadjacent vertices a, b on the same
face. This face is replaced by two new faces of the form abc ...a and abd ...a where ¢ # d are vertices
different from a and b. So both new faces are of length at least 3; no other faces change.

Constructor case: (bridge between two connected graphs)
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case 1: (both graphs have one vertex). Connecting these graphs with a bridge gives a graph with fewer than
three vertices, so this case holds vacuously.

case 2: (one graph has exactly two vertices and the other has at most two vertices). Connecting these graphs
with a bridge yields a line graph of length two or three whose unique embedding is a cycle of length four or
six going from one end of the graph to the other and back. In any case, the one face has length more than
three.

case 3: (one graph has at most two vertices and the other has at least three vertices). Connecting replaces
the face of the vertex graph with at most two vertices and a face of the other graph with a face of length at
least 2 + 3 = 5, and leaves all other faces unchanged. So all faces are indeed of length at least three.

case 4: (both graphs have at least three vertices). Connecting replaces two faces of length at least three by
a single face of length at least 2 4+ 3 4 3 = 8, and leaves all other faces unchanged. So all faces are indeed
of length at least three.

So in any case, all faces of connected planar embedding of graphs with at least three vertices are indeed of
length at least three. This completes the proof of the Constructor case and the structural induction.

O
Problem 3.
A simple graph is triangle-free when it has no cycle of length three.
(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e edges,
e <2v—4. (1)

Hint: Similar to the proof that e < 3v — 6. Use Problem 2.

Solution. The proof that e < 2v — 4 for any connected triangle-free planar graph G with more than two
vertices is identical to the proof of the same inequality for bipartite graph planar graphs:

Proof. By Problem 2.b, every face is of length at least 3. But in a triangle-free graph there are no faces of
size 3, so all must be of length at least 4.

Each edge is occurs exactly twice in the faces, so

2= Z length(f) > Z 4 =4f 2
f € faces S € faces
By Euler’s formula, f = e — v + 2, so substituting for f in (2), yields
2e = 4(e —v + 2),

which simplifies to (1).

(b) Show that any connected triangle-free planar graph has at least one vertex of degree three or less.

Solution. If v < 4, all vertices have degree at most three, so the claim is immediate for v < 4.

Also, by the Handshaking Lemma, the sum of degrees is 2e so the average degree is 2e/v. By part (a),

2e/v < (4v —8)/v < 4 for v > 2. But the average degree can be less than 4 only if at least one vertex has
degree less than 4.

It follows that for all v > 0, there is a vertex of degree three or less. |
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(¢) Prove by induction on the number of vertices that any connected triangle-free planar graph is 4-
colorable.

Hint: use part (b).
Solution.

Proof. By strong induction on the number of vertices with the induction hypothesis that if a graph is con-
nected, planar and triangle-free then it is 4-colorable.

base case: A planar graph with a single vertex is trivially connected, triangle-free and 1-colorable.

inductive step: Any connected triangle-free planar graph G with 2 or more vertices has a vertex of degree 3
or less. Removing this vertex and any incident edges results in a graph H whose connected components are
subgraphs of a planar graph and therefore planar. They are also triangle-free since removing vertices/edges
from a graph with no triangles cannot create triangles. Since the components have strictly fewer vertices than
G, the induction hypothesis implies each connected component is 4-colorable and thus H is 4-colorable.

A 4-coloring of G is then given by a 4-coloring of H where the removed vertex is colored with a color not
used for the (at most 3) adjacent vertices. B

Appendix

Definition. A planar embedding of a connected graph consists of a nonempty set of closed walks of the
graph called the discrete faces of the embedding. Planar embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex, v, then a planar embedding of G has one discrete
face, namely, the length zero closed walk, v.

Constructor case (split a face): Suppose G is a connected graph with a planar embedding, and suppose a
and b are distinct, nonadjacent vertices of G that appear on some discrete face, y, of the planar embedding.
That is, y is a closed walk of the form

a”p
where « is a walk from @ to b and B is a walk from b to a.! Then the graph obtained by adding the edge

(a—>b) to the edges of G has a planar embedding with the same discrete faces as G, except that face y is
replaced by the two discrete faces®

a” (b (b—a) a) and (a (a—b) b)"B

as illustrated in Figure 1.

Constructor case (add a bridge): Suppose G and H are connected graphs with planar embeddings and
disjoint sets of vertices. Let y be a discrete face of the embedding of G and suppose that y begins and ends
at vertex a.

Similarly, let § be a discrete face of the embedding of H that begins and ends at vertex b.

! If a walk f ends with a vertex, v, and a walk r starts with the same vertex, v, their merge, 1, is the walk that starts with f and
continues with r. Two walks can only be merged if the first ends with the same vertex, v, that the second one starts with.

2There is a minor exception to this definition of embedding in the special case when G is a line graph beginning with a and
ending with b. In this case the cycles into which y splits are actually the same. That’s because adding edge (a—b) creates a
cycle that divides the plane into “inner” and “outer” continuous faces that are both bordered by this cycle. In order to maintain the
correspondence between continuous faces and discrete faces in this case, we define the two discrete faces of the embedding to be
two “copies” of this same cycle.
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y b

Figure 1 The “split a face” case: awxbyza splits into awxyba and abyza.

Figure 2 The “add a bridge” case.

Then the graph obtained by connecting G and H with a new edge, (a—b), has a planar embedding whose
discrete faces are the union of the discrete faces of G and H, except that faces y and § are replaced by one
new face

vy (a {(a—b) b)"8 (b (b—a) a).

This is illustrated in Figure 2, where the vertex sequences of the faces of G and H are:
G :{axyza, axya, ayza} H : {btuvwb, btvwb, tuvt},
and after adding the bridge (a—b), there is a single connected graph whose faces have the vertex sequences

{axyzabtuvwba, axya, ayza, btvwb, tuvt}.

Theorem 3.1 (Euler’s Formula). If a connected graph has a planar embedding, then
v—e+ f=2
where v is the number of vertices, e is the number of edges, and f is the number of faces.
Corollary 3.2. Suppose a connected planar graph has v > 3 vertices and e edges. Then
e <3v—6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So suppose a connected
graph with v vertices and e edges has a planar embedding with f faces. By Problem 2.a, every edge is
traversed exactly twice by the face boundaries. So the sum of the lengths of the face boundaries is exactly
2e. Also by Problem 2.b, when v > 3, each face boundary is of length at least three, so this sum is at least
3f. This implies that

B =% 3
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But f = e — v 4+ 2 by Euler’s formula, and substituting into (3) gives

3e—v+2) <2e
e—=3v+6<0

e<3v—6

Corollary 3.3. Ks is not planar.

Proof.
e=10>9=3v-6.
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Massachusetts Institute of Technology

6.042]/18.062], Spring *11: Mathematics for Computer Science April 4
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In-Class Problems Week 9, Mon.

Problem 1.
You've seen this neat trick for evaluating a geometric sum:

S=fdzkasd, A
g8 =z fag®i . P el
§—z5=1-—z"1
1—2”+1

|-z

Use the same approach to find a closed-form expression for this sum:

T=1z+2z24+323+... +nz"

Problem 2.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with | gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2 /3 of a day back to the oasis—again arriving with no water to spare.

But what if the shrine were located farther away?

(a) What is the most distant point that the explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

(¢) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — | gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her n — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,
is the nth. Harmonic number:

1 1 1 1
Hyt=—4-4+-4-4 -
" 1 2 3 & g n
Conclude that she can reach the shrine, however far it is from the oasis.

Creative Commons 2288 201 1, Eric Lehman, F Tom Leighton, Albert R Meyer .




) In-Class Problems Week 9, Mon.

(d) Suppose that the shrine is d = 10 days walk into the desert. Use the asymptotic approximation
H, ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Problem 3.

There is a number a such that } 72

;=1 17 converges iff p < a. What is the value of a? Prove it.

Problem 4.
Suppose f,g: Nt - N*tand f ~ g.
(a) Provethat 2f ~ 2g.

(b) Prove that f2 ~ g2.

(¢) Give examples of f and g such that 2/ £ 28,
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Solutions to In-Class Problems Week 9, Mon.

Problem 1.

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk
from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1
gallon of water, which is enough for 1 day. However, she is free to make multiple trips carrying up to a
gallon each time to create water caches out in the desert.

For example, if the shrine were 2/3 of a day’s walk into the desert, then she could recover the Holy Grail
after two days using the following strategy. She leaves the oasis with 1 gallon of water, travels 1/3 day into
the desert, caches 1/3 gallon, and then walks back to the oasis—arriving just as her water supply runs out.
Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water
supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shrine, grabs the Holy
Grail, and then walks for 2/3 of a day back to the oasis—again arriving with no water to snare.-

But what if the shrine were located farther away?

(a) What is the most distant point that dre explorer can reach and then return to the oasis if she takes a total
of only 1 gallon from the oasis?

Solution. At best she can walk 1/2 day into the desert and then walk back. O

(b) What is the most distant point the explorer can reach and still return to the oasis if she takes a total of
only 2 gallons from the oasis? No proof is required; just do the best you can.

Solution. The explorer walks 1/4 day into the desert, drops 1/2 gallon, then walks home. Next, she walks
1/4 day into the desert, picks up 1/4 gallon from her cache, walks an additional 1/2 day out and back, then
picks up another 1/4 gallon from her cache and walks home. Thus, her maximum distance from the oasis is
3/4 of a day’s walk. |

(c) The explorer will travel using a recursive strategy to go far into the desert and back drawing a total of n
gallons of water from the oasis. Her strategy is to build up a cache of n — 1 gallons, plus enough to get home,
a certain fraction of a day’s distance into the desert. On the last delivery to the cache, instead of returning
home, she proceeds recursively with her n — 1 gallon strategy to go farther into the desert and return to the
cache. At this point, the cache has just enough water left to get her home.

Prove that with n gallons of water, this strategy will get her H, /2 days into the desert and back, where H,

is the nth Harmonic number: { 1 i i
Hyi=—4+—-+—-+--+ -
n 1 + 3 + 3 + + .

Conclude that she can reach the shrine, however far it is from the oasis.

Solution. To build up the first cache of n — 1 gallons, she should make n trips 1/(2n) days into the desert,
dropping off (n —1)/n gallons each time. Before she leaves the cache for the last time, she has n — 1 gallons
plus enough for the walk home. Then she applies her (n — 1)-day strategy. So letting D, be her maximum
distance into the desert and back, we have

1
Dn = .2—.'1 + Dn—]-

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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So
 MER O v TRRE . e B
2n 2(n—=1) 2(n-2) 2.2 2.1
1/1 1 1 1 1
=5(E+(n—1)+(n—2)+"'+3+7)
==

(d) Suppose that the shrine is d = 10 days walk into the desert. Use the asymptotic approximation
Hp ~ Inn to show that it will take more than a million years for the explorer to recover the Holy Grail.

Solution. She obtains the Grail when:
H, Inn
— =~ — > 10.
2 2

This requires n > e?® = 4.8 - 10® days > 1.329M years.

T |
Problem 2.
There is a number a such that } s, i? converges iff p < a. What is the value of a? Prove it.
Solution. a = —1.
For p = —1, the sum is the harmonic series which we know does not converge. Since the term i is
increasing in p for i > 1, the sum will be larger, and hence also diverge for p > —1.
For p < —1 there exists an € > 0 such that p = —(1 + €). By the integral method,
ot fos}
Y it <14 f ey
i=1 :
=1+e'—€! lim ¢
a—>00
=1+¢!
< 00
Hence the sum is bounded above, and since it is increasing, it has a finite limit, that is, it converges. ]
Problem 3.
Suppose f,g : Nt — N+t and f ~ g.
(a) Provethat2f ~ 2g.
Solution.
o L
28 o2

so they have the same limit as n — co.
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(b) Prove that f? ~ g2.

Solution.

foR _ S0 fe) L S

lim

lim

(c) Give examples of f and g such that 2/ £ 28,

Solution.

fm)yz=n+1
g(n)si=n.

Then f ~ g since lim(n + 1)/n = 1,but2f =27+l =2.2" =2.28 5o

2
11m2—g:27é1.

Problem 4.
You’ve seen this neat trick for evaluating a geometric sum:

S=14+z+2z2+...+2"
zS=z+z2+ ...+ 2" + "1
S—z8S=1-—z"1

T zn+l

S =

11—z

Use the same approach to find a closed-form expression for this sum:
T =1z+22 432> +... +nz"

Solution.

zT =122 4223 + 3z + ... + nz**1

T—zT =z+z%+23 ... + 2" —pz"t!
I—Z"+1

zﬁ—l—nz"

e i s
T (1-2)2 11—z

+1

T

f)
noo g(n)2  n—oo g(n) g(n)  n-—oo g(n) n—oo g(n)

1-

1=
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Mini-Quiz Apr. 6

"’.-‘4(.,[ 6J(O_E.Qf3(

Your name: H(( hU /

Circle the name of your TA and write your table number:

)
Ali Nick Oscar Table number ( (

e This quiz is closed book. Total time is 30 minutes.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader
1 6 f’) O3S

2 | 3 @ U3
3 3|2 |om

4 5 250 Alc

5 3 % e B
Total 20 f! g

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Problem 1 (6 points). (a) A simple graph has 8 vertices and 24 edges. What is the average degree per
vertex?

v \HC{”AG}‘]C{[{ b _Z O]% ) 2) lE}
Feavg < 2.7y
Uy

Avg = L Q/

2 Your name:

Mini-Quiz Apr. 6

(b) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?

Folod e -2
v | = =2

T 1f 59
1/

(¢) A connected simple graph has one more vertex than it has edges. Is it necessarily planar?
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(d) If your answer to the previous part was yes, then how many faces can such a graph have? If your answer
was no, then give an example of a nonplanar connected simple graph whose vertices outnumber its edges by

U,’eﬂ(*?

1 he\ds 0 WC:(:Z_”\[ te
VI W VRS A

one.

_ K |
vhen V7L (-7-910  f<2-Ar3 (=1

'
( ( \ (e) Consider the graph shown in Figure 1. How many distinct isomorphisms exist between this graph and
4 itself? (Include the identity isomorphism.) E—
~—— /
( \ ! ! a

c
Figure 1
Jost ] wlion K
% L LL/ (-/‘?{/ﬂ(f/ﬁ/f /Q
— C',/?{’(‘- I/ (;(fl \1 }"-f\l(:]‘:;(j 1'{{ L’/ f f(’ i"’/ '-i:?"’ > :;f ‘1
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Problem 2 (3 points).

/ The n-dimensional hypercube, Hy, is a simple graph whose vertices are the binary strings of length n. Two

vertices are adjacent if and only if they differ in exactly one bit. Consider for example H3, shown in Fig-

ure 2. (Here, vertices 111 and 011 are adjacent because they differ only in the first bit, while vertices 101

and 011 are not adjacent because they differ in both the first and second bits.) [ : d } dacd
% \fﬁ’lm‘fﬁ.@} N (&5

Explain‘why it is impossible to find two spanning trees of H3 that have no edges in common.
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Problem 3 (3 points).

Consider the graph shown in Figure 3. Determine a valid coloring of the graph, using as few colors as
possible. (Simply write your proposed color for each vertex next to that vertex. You may use R for red, G

for green, etc.) \/\/ [ (\ /90 Hj’w

ey

Figure 3
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Problem 4 (5 points). (a) Consider the bipartite graph G in Figure 4. Is it possible to find a matching
that covers L(G)? If yes, explain what property of the graph guarantees the existence of such a matching.
(Show that the graph @(llilgj_gst_lm._l)_{openy and what this implies. Full credit will not be given for merely
identifying a matching.) If no, identiments a matching.

£ 7 B
/a vy

— L(G) R(G) ~~

MO{{LM{/Q _ ((,{ g Figure} o
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(b) Consider the bipartite graph H in Figure 5. Is it possible to find a matching that covers L(H)? If
yes, explain what property of the graph guarantees the existence of such a matching. (Show that the graph
exhibits this property and what this implies. Full credit will not be given for merely identifying a matching.)
If no, identify a bottleneck that prevents a matching.
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Problem 5 (3 points).
In the Mating Ritual, suppose Tiger is one of the boys and Elin is one of the girls. Which of the following

) are preserved invariants in general?

1. Tiger is Elin’s only suitor.

/2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife!.

(
“3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him.
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Solutions to Mini-Quiz Apr. 6

Problem 1 (6 points). (a) A simple graph has 8 vertices and 24 edges. What is the average degree per
vertex?

Solution. By the Handshaking Lemma, the sum of the degrees of the vertices in any graph is equal to twice
the number of edges. So in this case, the sum of the degrees of the vertices is 2 x 24 = 48. With 8 vertices,
the average degree per vertex is % = 6. | |

(b) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?

Solution. Denoting the number of vertices by v, the number of edges by e, and the number of faces by £,
Euler’s Formula states that v — e + f = 2. But here, e = v + 5. Substituting givesv — (v +5) + f =2
and hence f = 7. O

(c) A connected simple graph has one more vertex than it has edges. Is it necessarily planar?

Solution. Let G denote any such graph. Now, any graph with v vertices but fewer than v — 1 edges cannot
possibly be connected. So every edge in G is a cut edge, and therefore G is acyclic. So G is a tree and must
be planar. B

(d) If your answer to the previous part was yes, then how many faces can such a graph have? If your answer
was no, then give an example of a nonplanar connected simple graph whose vertices outnumber its edges by
one.

Solution. Since the graph is connected and acyclic, it only has one face. |

(e) Consider the graph shown in Figure 1. How many distinct isomorphisms exist between this graph and
itself? (Include the identity isomorphism.)

Solution. Only vertex f has degree 1, so in any self-isomorphism, f must map to itself. b is the only vertex
to be adjacent to a degree-1 vertex, so b must also map to itself. @ and ¢ are both degree-3 vertices, and d
and e are both degree-2 vertices. It is clear from examining the graph that @ can be mapped to ¢ and ¢ to a,
or each of @ and ¢ can be mapped to itself. Independently, and similarly, d can be mapped to e and e to d,
or each of d and e can be mapped to itself. The only possible isomorphisms, then, are obtained by choosing
one of the two possible mappings for @ and ¢ and, independently, one of the two possible mappings for d
and e. The result is 2 x 2 = 4 possible isomorphisms. |

Problem 2 (3 points).

The n-dimensional hypercube, Hy, is a simple graph whose vertices are the binary strings of length n. Two
vertices are adjacent if and only if they differ in exactly one bit. Consider for example H3, shown in Fig-
ure 2. (Here, vertices 111 and 011 are adjacent because they differ only in the first bit, while vertices 101
and 011 are not adjacent because they differ in both the first and second bits.)

Explain why it is impossible to find two spanning trees of H3 that have no edges in common.

——
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Figure 1

Solution. H3 has 8 vertices, so any spanning tree must have 8 — 1 = 7 edges. But H3 has only 12 edges,
so any two sets of 7 edges must overlap. |

Problem 3 (3 points).

Consider the graph shown in Figure 3. Determine a valid coloring of the graph, using as few colors as
possible. (Simply write your proposed color for each vertex next to that vertex. You may use R for red, G
for green, etc.)

Solution. There are odd-length cycles in the graph, so at least three colors will be needed. So assume that
three colors are sufficient. (If we encounter a contradiction under this assumption, we will need to use more
colors.) Start with the length-3 cycle abda. All of its vertices must be colored differently, so assign red
to a, blue to b, and green to d. The length-3 cycle bdhb now forces A to be colored red. f must now be
colored green and g must be colored blue. The coloring is valid so far. ¢ is adjacent to a blue vertex and a
green vertex, and no others, it must be colored red. Finally, e is not adjacent to any other vertices, so it can
be assigned any of the three colors. Choosing red for e, the result is shown in Figure 4. There is no pair of
like-colored adjacent vertices, so this coloring is valid. |

Problem 4 (5 points). (a) Consider the bipartite graph G in Figure 5. Is it possible to find a matching
that covers L(G)? If yes, explain what property of the graph guarantees the existence of such a matching.
(Show that the graph exhibits this property and what this implies. Full credit will not be given for merely
identifying a matching.) If no, identify a bottleneck that prevents a matching.

Solution. It is not possible. One bottleneck is § = {a, b, ¢, e}, since N(S) = {v, x, y} and hence |S| =
4 >3 = |N(S)|. (It is easy to see that there are no bottlenecks of size 1, 2, 3, or 5.) O

(b) Consider the bipartite graph H in Figure 6. Is it possible to find a matching that covers L(H)? If
yes, explain what property of the graph guarantees the existence of such a matching. (Show that the graph
exhibits this property and what this implies. Full credit will not be given for merely identifying a matching.)
If no, identify a bottleneck that prevents a matching.
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Figure2 Hj.

Solution. A matching is guaranteed to exist. Each vertex in L(H) has degree at least 3, while each vertex
in R(H) has degree at most 3. Consequently, the graph is degree-constrained. There are therefore no
bottlenecks and a matching must exist by Hall’s Theorem. [

Problem 5 (3 points).
In the Mating Ritual, suppose Tiger is one of the boys and Elin is one of the girls. Which of the following
are preserved invariants in general?

1. Tiger is Elin’s only suitor.

2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife!.

3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him.
Solution. The statements that are preserved invariants in general appear in boldface below:

1. Tiger is Elin’s only suitor. (This would certainly make Tiger Elin’s favorite that day, but one or more
of the boys who got rejected by another girl that day may visit Elin the following day.)

2. On Tiger’s current list, the girl whom he prefers to all the others is his optimal wife. (The Mating
Ritual gives each boy his optimal wife. Tiger must therefore ultimately marry his optimal wife, so
once she becomes the most preferred girl on his list — and thus the girl he is serenading — she must
remain the top girl on his list.)

3. Elin’s name has been crossed off by Tiger and by everyone whom she prefers to him. (Note that
this is a preserved invariant because it cannot ever be true. Were it true on some day, Tiger would
have crossed Elin’s name off his list, so he would end up marrying a woman he finds less desirable.

His optimal wife in the usual sense: Given some particular instance of the Stable Marriage Problem, consider all possible stable
perfect matchings, including that which is generated by the Mating Ritual. In each of these, Tiger has a wife. Of these “possible
wives,” he prefers one to all the others. This girl, to whom he is married in one of the matchings but not necessarily all of them, is
his optimal wife.
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h

Figure 3

She would also have removed from contention everyone she finds more desirable than Tiger. So she
would end up marrying someone she finds less desirable than Tiger. Consequently, Tiger and Elin
would constitute would a rogue couple. Another way to think about it is this: If Elin’s name was
crossed off by Tiger and all the boys Elin prefers to him, then she must have a current favorite whom
she prefers to all of them. But Tiger and his betters in Elin’s eyes are the top boys on her list: there is
no one she prefers to them.)
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Figure4 A valid coloring.
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