Massachusetts Institute of Technology
6.042]/18.062J, Spring *11: Mathematics for Computer Science March 14
Prof. Albert R Meyer revised Monday 14 March, 2011, 23:00

Problem Set 6

Due: March 30

Reading: Chapter 9.5-9.9, Partial Orders; Chapter 11-11.6, Simple Graphs.
Skip Chapter 10, Communication Nets, which will not be covered this term.

Problem 1.
Let Ry, R> be binary relations on the same set, A. A relational property is preserved under product, if
Ry x R; has the property whenever both Ry and R; have the property.

(a) Verify that each of the following properties are preserved under product.

1. reflexivity,
2. antisymmetry,

3. transitivity.

(b) Verify that if either of Ry or R is irreflexive, then so is R; x Ra.

Note that it now follows immediately that if if Ry and R, are partial orders and at least one of them is
strict, then R; x Rz is a strict partial order.

Problem 2.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students. Modify the definition of stable matching
so it applies in this situation, and explain how to modify the Mating Ritual so it yields stable assignments of
students to residencies.

Briefly indicate what, if any, modifications of the preserved invariant used to verify the original Mating
are needed to verify this one for hospitals and students.

Problem 3.

Scholars through the ages have identified twenty fundamental human virtues: honesty, generosity, loyalty,
prudence, completing the weekly course reading-response, etc. At the beginning of the term, every student
in Math for Computer Science possessed exactly eight of these virtues. Furthermore, every student was
unique; that is, no two students possessed exactly the same set of virtues. The Math for Computer Science
course staff must select one additional virtue to impart to each student by the end of the term. Prove that
there is a way to select an additional virtue for each student so that every student is unique at the end of the
term as well.

Suggestion: Use Hall’s theorem. Try various interpretations for the vertices on the left and right sides of
your bipartite graph.

-
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Problem Set 6

Problem 4.

Determine which among the four graphs pictured in the Figures are isomorphic. If two of these graphs are
isomorphic, describe an isomorphism between them. If they are not, give a property that is preserved under
isomorphism such that one graph has the property, but the other does not. For at least one of the properties
you choose, prove that it is indeed preserved under isomorphism (you only need prove one of them).

B ‘

(@) G (b) Go
9 8 10
(©) G3 | @Ga

Figure 1 Which graphs are isomorphic?

Problem 5. (a) For any vertex, v, in a graph, let N(v) be the set of neighbors of v, namely, the vertices
adjacent to v:

N(v) ::={u | u—uv is an edge of the graph}.
Suppose f is an isomorphism from graph G to graph H. Prove that f(N(v)) = N(f(v)).

Your proof should follow by simple reasoning using the definitions of isomorphism and neighbors—no
pictures or handwaving.

Hint: Prove by a chain of iff’s that
heN(f(v)) iff he f(N({))
for every h € V. Use the fact that h = f(u) for some u € V.

(b) Conclude that if G and H are isomorphic graphs, then for each k € N, they have the same number of
degree k vertices.
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Massachusetts Institute of Technology Solutions cover sheet
6.0421/18.062J, Spring * 1 1: Mathematics for Computer Science March 14
Prof. Albert R Meyer

Student’s Solutions to Problem Set 6

Your name: m‘({ t -‘J(fl ‘) L}“.' ,mf:f?,f

Due date: March 30

- 2/
Submission date: N :4\)
{

Circle your TA/LA: Ali Nick Oscar @

it
T

Collaboration statement: Circle one of the two choices and provide all pertinent info.

1. I worked alone and only with course materials.

/{_l /]; A J,:\

2. Icollaborated on tmis assignment‘with:
got help from:! 7

O ich

P L |
and referred to:~ C 0/") {’i:-':[:;_;*i P [(_::;}H:.Alf nil / i,gf’;
B .-("0"“‘42 ’ ' 0?_{(!{ ot
6( aph p(opw,f--]y
4 | ‘

|‘ {1 i i \ {’ m ll‘l)‘. ‘(H P

DO NOT WRITE BELOW THIS LINE

Problem | Score

4
5
Total

- S0©) . .
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
'People other than course staff.
2Give citations to texts and material other than the Spring *11 course materials.
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Massachusetts Institute of Technology
6.042J/18.062J, Spring *11: Mathematics for Computer Science March 30
Prof. Albert R Meyer revised Thursday 31% March, 2011, 10:43

Solutions to Problem Set 6

Reading: Chapter 9.5-9.9, Partial Orders; Chapter ??-??, Simple Graphs.
Skip Chapter 10, Communication Nets, which will not be covered this term.

Problem 1.
Let Ry, R> be binary relations on the same set, A. A relational property is preserved under product, if
R1 x R, has the property whenever both R, and R have the property.

(a) Verify that each of the following properties are preserved under product.

1. reflexivity,
2. antisymmetry,
3. transitivity.

Solution. These facts follows directly from the definitions. We’ll write out just the case of antisymmetry.
So suppose R;, R, are antisymmetric.

Proof. To prove R; x R, is antisymmetric, suppose

(r1,r2) [Ry x R3] (s1,52) and also (D)
(51:32) [Rl X RZ] (‘rl’ rZ)' (2)

We need to show that (ry, s1) = (2, 52).

By (1) and the definition of Ry x Rp, we know that r; R; s; fori = 1,2. Similarly, by (1) s; R; r;. Since
R; is antisymmetric, it follows that r; = s; fori = 1, 2. That s, (r1, s1) = (r2, 52). [ |

(b) Verify that if either of Ry or R5 is irreflexive, then sois Ry x R».

Solution. We may as well assume R; is irreflexive. This means that NOT(ry R; ry) for every r; €
domain(R;). So by definition of relational product,

NOT[(r1,72) [R1 X R2] (r1, 52)]
for all r; € domain(R,) and r3, 52 € domain(R>). In particular
NOT[(r1,72) [R1 X Rz] (r1,r2)],

which implies that R; x R» is irreflexive. ]

Note that it now follows immediately that if if R; and R, are partial orders and at least one of them is
strict, then R; x R» is a strict partial order.

1 o)
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to Problem Set 6

Problem 2.
The most famous application of stable matching was in assigning graduating medical students to hospital
residencies. Each hospital has a preference ranking of students and each student has a preference order of
hospitals, but unlike the setup in the notes where there are an equal number of boys and girls and monog-
amous marriages, hospitals generally have differing numbers of available residencies, and the total number
of residencies may not equal the number of graduating students. Modify the definition of stable matching
so it applies in this situation, and explain how to modify the Mating Ritual so it yields stable assignments of
students to residencies.

Briefly indicate what, if any, modifications of the preserved invariant used to verify the original Mating
are needed to verify this one for hospitals and students.

Solution. The Mating Ritual can be applied to this situation by letting the students be the boys and each of
the residencies (not the hospitals) be the girls.

A matching is an assignment of students to residencies (an injection, A : students — residencies) such
that every student has a residency (A is total), or every residency has an assigned student (A is a surjection).
A stable assignment is one with no rogue couples, where a rogue couple is a hospital student pair (H, S)

such that S is not assigned to one of the residencies at /, which she prefers over her current assignment,
and

e H has some students assigned to some of its residencies and prefers S to at least one of its assigned
students, or

e [ has none of its residencies assigned,

Problem 3.
Scholars through the ages have identified rwenty fundamental human virtues: honesty, generosity, loyalty,
prudence, completing the weekly course reading-response, etc. At the beginning of the term, every student
in Math for Computer Science possessed exactly eight of these virtues. Furthermore, every student was
unique; that is, no two students possessed exactly the same set of virtues. The Math for Computer Science
course staff must select one additional virtue to impart to each student by the end of the term. Prove that
there is a way to select an additional virtue for each student so that every student is unique at the end of the
term as well.

Suggestion: Use Hall’s theorem. Try various interpretations for the vertices on the left and right sides of
your bipartite graph.

Solution. Construct a bipartite graph G as follows. The vertices on on the left are all students and the
virtues on the right are all subset of nine virtues. There is an edge between a student and a set of 9 virtues if
the student already has 8 of those virtues.

Each vertex on the left has degree 12, since each student can learn one of 12 additional virtues. The
vertices on the right have degree at most 9, since each set of 9 virtues has only 9 subsets of size 8. So
this bipartite graph is degree-constrained, and therefore, by Lemma ??, there is a matching for the students.
Thus, if each student is taught the additional virtue in the set of 9 virtues with whom he or she is matched,
then every student is unique at the end of the term. |

Problem 4.
Determine which among the four graphs pictured in the Figures are isomorphic. If two of these graphs are
isomorphic, describe an isomorphism between them. If they are not, give a property that is preserved under



Solutions to Problem Set 6 3

() G3
Figure 1 Which graphs are isomorphic?

isomorphism such that one graph has the property, but the other does not. For at least one of the properties
you choose, prove that it is indeed preserved under isomorphism (you only need prove one of them).

Solution. G; and G5 are isomorphic. In particular, the function f : ¥; — V3 is an isomomorphism, where

J)=1 f2)=2 f@3) =3 f@4) =8 fG=9
f(6) =10 f(7) =4 f@® =5 S =6 S(0) =7

G and G4 are not isomorphic to Gz: G has a vertex of degree four and neither G nor G4 has one.

G, and G4 are not isomorphic: G4 has a cycle of length four and G does not.

There are many examples of properties preserved under graph isomorphism. For example, we will prove
that the degree of each vertex is preserved under isomorphism.

Let G and H be isomorphic graphs. Since they are isomorphic, there is an edge-preserving bijection
between the vertices of G and H :

fw) e V(H) «— f(u) € V(G)

We let the set of vertices adjacent to u be N(u). Because f is an edge-preserving bijection, there is an
edge from f(u) to a vertex f(k) iff k € N(u). Thus |N(f(u))| = |N(u)| and the degree of each vertex is
preserved under isomorphism. O

Problem 5. (a) For any vertex, v, in a graph, let N(v) be the set of neighbors of v, namely, the vertices
adjacent to v:

N(v) ::={u | (u—v) is an edge of the graph}.



4 Solutions to Problem Set 6

Suppose f is an isomorphism from graph G to graph H. Prove that f(N(v)) = N(f(v)).

Your proof should follow by simple reasoning using the definitions of isomorphism and neighbors—no
pictures or handwaving.

Hint: Prove by a chain of iff’s that

heN(f) iff he f(NO))

for every h € V. Use the fact that h = f(u) for some u € V.

Solution. Proof. Suppose h € Vy. By definition of isomorphism, there is a unique u € Vg such that
f(u) = h. Then

heN(f(v) iff (h—f(v))eEn (def of N)
iff (f(u)—f(v)) € Ex (def of u)
iff (u—v)e Ey (since f is an isomorphism)
iff ue N(v) (def of N)
iff  f(u) e f(N(@)) (def of f-image)
iff he f(NV)) (def of u)

So N(f(v)) and f(N(v)) have the same members and therefore are equal.
73

(b) Conclude that if G and H are isomorphic graphs, then for each & € N, they have the same number of
degree k vertices.

Solution. By definition, deg(v) = |N(v)|. Since an isomorphism is a bijection, any set of vertices and its
image under an isomorphism will be the same size (by the Mapping Rule from Week 2 Notes), so part (a)
implies that an isomorphism, f, maps degree k vertices to degree k vertices. This means that the image
under f of the set of degree k vertices of G is precisely the set of degree k vertices of H. So by the Mapping
Rule again, there are the same number of degree k vertices in G and H. |
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Graph Connectivity
Trees & Coloring

Albert R Meyer, March 30 2011 o W1

Connected Components

13 12 26 16 66

; E17

E25

b o
10 4 8 Easf cknnpus Med Center

Infinite corridor
3 connected components

the more connected components,
the more "broken up" the graph is.

Connected Components

Every graph consists of
separate connected
pieces (subgraphs) called
connected components

Albert R Meyer, March 30, 2011 o 8.2

Albert R Meyer, March 30, 2011 bz 0W3

A {I'{héili g wing oy

F=1=17]
Connected Components

So a graph is connected
iff it has only
1 connected component

Connected Components

The connected component
of vertex v =

{w| v and w are connected}

ARert R Meyer, March 30, 2011 loc WA

ARert R Meyer, March 30, 2011 lec WS

Cut Edges

An edge is a cut edge if
removing it from the graph
disconnects two vertices.

Alert R Meyer, March 30, 2011 lec SW16
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Cut Edges

B is a cut edge

hoc SW38

b

deleting B gives
Two components

Albert R Meyer, March 30, 2011 fec EW.20

Albert R Mayer, March 30, 2011 lec OW 19

Closed Walks
A closed walk is a walk that begins
and ends with the same vertex

i,

———— ~.
-~ SN .
’l . . ~,
‘l . EY

NS e

vertex sequence:
v--ob.-‘w---w...a...v

Albert R Meyer, March 30. 2011 Jc §W.Z3

Cut Edges

still connected with
edge A deleted

Albert B Meyer, March 30, 2011 ec W21

Cycles
A cycle is a closed walk
of length > 2 that doesn't
cross itself: vertex sequence:
Ve W

AS
v ‘w also:
\ ; w---a..-v-.-w

s
0 -

P

~

E‘xi Albart B Meyer, March 30, 2011 fac bW 24



Cycles

length > 2 implies that
going back & forth over
an edge is not a cycle

Alsert R Meyer, March 30, 2011 luc WIS

A free is a connected graph
with no cycles.
equivalently:

Cut Edges and Cycles
Lemma: An edge is a

not a cut edge iff
it is on a cycle.

Albert R Meyer, March 30, 2011 i

Abert R Meyer, March 30, 2011 toc BW.29

E Trees
A tree is a connected graph
with every edge a cut edge.

Albert R Meyer. March 30. 2011 e 8930

ARert R Meyer, March 30, 2011 lac B W31

Other Tree Definitions

* graph with a unique path
between any 2 vertices

» connected graph with n
vertices and n-1 edges

* an edge-maximal acyclic graph

Alert B Meyer. Morch 30, 2011 Jx §9 32
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:rEe  Spanning Trees

A spanning tree of a graph 6
is any subgraph T that is a
tree and contains all the
verticesof 6.

[~ AT
~M Albert R Meyer, March 30. 2011 s BW33

Ewod -
Spanning Trees
o \\

a spanning ree

Albert R Meyer, March 30, 2011 Juc B35

Spanning Trees

Albert B Meyer. March 30, 2011 loc w34

Spanning Trees

i

another spanning free
(can have many)

Alert R Meyer, March 30, 2011 boc S 36

Spanning Trees

Lemma: G connected implies

G has a spanning tree
Pf:Among connected subgraphs
with all the vertices of G:
those with the fewest edges
are spanning trees. (Why?)

YT
@L“,“:‘“@) Amert R Meyer, March 30, 2011 e w37
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Graph Coloring

YT
g “'G.’ Alert R Meyer, March 30, 2011 lec BWI8




“& Flight Gates

flights need gates, but
Times overlap.
how many gates needed?

o BW09

& Conflicts Among 3 Flights

Needs gate at same fime
145

Altert R Mayer, March 30, 2011 e AW AL

=Fs  Color the vertices ,%’

ot
Color vertices so that adjacent
vertices have different colors.
min # distinct colors needed =
min # gates needed

Albert R Mayer, March 30. 2611 toc AW 43

ae
Zm:  Airline Schedule

| =

fime —F——

122
145
Flights | 67]

257 -

306 =

-, March 30, 2011

e B0

Model all Conflicts with a 6raph

257 122 145
306 g i i ; Z of
99

Albert R Meyer. March 30, 2011 B a2

oRod
:Bs Coloring the Vertices

252 145
assign
67 gafes:
306 @257, 67
0122145

4 colors ‘g9 9
@ 306
=5 gates

Alert R Meyer, March 30, 2011 loc S 44




QL+ 17 L
omag .
imd  Better coloring

257 122 145

306 67

3 colors 5

s BWAT

3.091

4 time slots OM 1pm
(best possible) 6.001 ® T 9am
eT lpm

Albert R Meyer, March 30, 2011 o SWAT

- Qoo
Planar Four Coloring

any planar map is 4-colorable.
1850's: false proof published

(was correct for 5 colors).
1970's: proof with computer
1990's: much improved

Aart B Meyer, March 30,2018 s

w1

O [5]7]

uamu

an o
{*]

ah.c Final Exams

subjects conflict if student
takes both, so

need different time slofs.
how short an exam period?

Albert R Meyer, March 30, 2011 lne BW.A

gRcH :
Map Coloring

Alsert R Meyer, March 30, 2011 bt BW 4D

-]
% Chromatic Number

min #colors for G is

chromatic number, x(G)
lemma:

x(ftree) = 2

Albert R Meyer, March 30, 2011 luc 4w 32




« DD
Trees are 2-colorable

Pick any vertex as "root.”

if (unique) path from root is
even length: @

odd length: @

Eeo Simple Cycles

B 8l -
i< ilie

Complete Graph K5

x(Kp) = n

Altert R Meyer, March 30, 2011 [

Albert R Meyer. March 30, 2011 Tac W5

Bounded Degree

all degrees < k, implies
x(6) < k1

very simple algorithm...

e 85T

owaH
e
]

-8 The Wheel W,

i

Ws  (W,4) = 4
X(Weven) = 3

Albert R Meyer, March 30, 2011 Boc EW36

“6reedy” Coloring

..color vertices in any order.

next vertex gets a color

different from its neighbors.
< k neighbors, so

k+1 colors always work

(c) DSE)

Albart B Meyer, Morch 30, 2011 e S 2A




e coloring arbitrary graphs
2-colorable? --easy to check
3-colorable? --hard fo check
(even if planar)
find x(6)? --theoretically
no harder than 3-color, but
harder in practice

[ D)

Altert R Meyer, March 30, 2011 hoc W b1

Tl : S
itae  Team Problems

Q10 -

Problems

() DOE)
Iz

1—4

Albert R Meyer, March 30, 2011

e




6042 Gap (et <ol o
fvx Givacal %fqph ol comnegtyl

Em oot Tt g Connat? ! % CM!MAB“

Vet all Peooy onnced bk ofir
et |

Eb\/} Vad W o Cﬂnﬂ@fﬁdj

ﬂd’ CQR«”’Q(/+6[{ ‘HC qnl/ l

) /4007[@@/ Coom /3947/-/’

@i@& ~d comap 7 e o fo Ly Congefeq
o 20 (omatted gomporgnts
Clotd b ~ ke g + 0 ot s o

= ZBAﬁ?M 2
— Uges Mot ¢oss gl
— doa} ﬁ)‘mk ot 663'\4;’3/ érml/ 7

Jrectinn
“ o o g ap})



@ '
L%MI )47\ ed(jﬁ 25 nt @ Cu'iL edgg élﬁ( E G
e [6
on « %‘?@/ Cye
b )f/ tn gyl 997( MW/L\Q/Q

“lhide. Gls Lo dof
@*(ﬁﬂn&fed @&g{pi\ W/ ho C%/QS
= })fé’d;f& any €dg€/ ["l -,[4/[5 q{)‘ﬁl
CWe g pah b Ju day L paats
_%mph o/ | Vile, 0dag / o e

‘“COnmeJ[e,d ﬁfdpl) ‘v/ h l/ﬂ/?l\(((fs t -l Gdﬁ‘e)
T (o |, noles

m& B méﬂ(‘/p%/
1 be. Conerhg

,‘p\/ﬂ«e ﬁ/bogr on 6[2&65

9%t of e Fal allo fff/?/}%(ﬂ

Py feo an



s G comded 3 Gl ey 0o
T oe o wféu&fed,@ 5 %50“"’"@ bt

()(qp]f\ Cglorz‘/\ﬂ

By
JQUL\QMMJ
~ (b ”\‘”ﬂ Conflifs

_,}\W Many CM}@ ae reeded

o edge bl Flighly gu goad ot S b
—at ane MOt

Co(or e vl % &@( Ve have JHF Coloss
“twh oty I ol
T That i &S o Qlors o5 gt Ques needdd
m&\( pot @e Clght ~his it bey had I Colos
Did k@@(lfl for 9
Dobley 1§ Find mia # Colirs

 Fhal Fron soherlg

ot an '
Ho shot ;- Cuam peiod Can vay ge% Auay o)t



q |
v ly gph )
/ﬂr)w‘ Mmap Cola;fy
I b bode . Colas
~ (9ners do.a 1] (o]
}%w Mo[p an gl

WAL )D& (l/O/tQ /‘q (//
“Waik

'-/l a’l M;YL /[9 r“égé/
L

Nebls GO0 (ases for ot 1

Ne—

m\m #— 60(0/5 ‘For‘ C ;5
( hromatt # X ( ()
T/e% e 2 B (Ch,
T Cﬂémﬁ/@

0
o oy pr ]&/{;[

Mo %S?L@H ,
~Puon N 0d¢ / LJ(

eyt lenght
7=

Crles_odd ¢ =3

(ol g

wlm L ﬁo’” (g



Mosiit | Conlet b
K Conplet _grh

‘*5/’4((2 bery Virke qd; o Cach  oay

9 g-c.piofﬁ "@dbh ae s 0/6‘%@/5";
Cmple

4 %(Ln) <
el

%i Jﬂwﬁ( does Vw“lL coathf- W/ /ufjfbéy



2 Colora,bfe check

e ——
= @&JT

’g CO!ﬂr@b]Q Chacly
~y bl )

—lun Pla/lgf

—

v L{ 6 QV\OV

Lo Fuk Yaphs  ink

D +
SolAuwn 4

)

AR

“Tb&ordlav% YR A

d S 2*(0/0/

)0 dates [ fud g



Massachusetts Institute of Technology

6.042J/18.062], Spring " 11: Mathematics for Computer Science March 30

Prof. Albert R Meyer revised Wednesday 30™ March, 2011, 02:14

In-Class Problems Week 8, Wed.

Problem 1.

False Claim. If every vertex in a graph has positive degree, then the graph is connected.
(a) Prove that this Claim is indeed false by providing a counterexample.

(b) Since the Claim is false, there must be an logical mistake in the following bogus proof. Pinpoint the
first logical mistake (unjustified step) in the proof.

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition that if every vertex in an
n-vertex graph has positive degree, then the graph is connected.

Base cases: (n < 2). In a graph with 1 vertex, that vertex cannot have positive degree, so P(1) holds
vacuously.

‘-.‘—-_-—‘—“ - - . . . -
P(2) holds because there is only one graph with two vertices of positive degree, namely, the graph with an
edge between the vertices, and this graph is connected.

Inductive step: We must show that P(n) implies P(n 4 1) for all n = 2. Consider an n-vertex graph in
which every vertex has positive degree. By the assumption P(n), this graph is connected; that is, there is a
path between every pair of vertices. Now we add one more vertex x to obtain an (n 4 1)-vertex graph:

n-node
connected

graph

All that remains is to check that there is a path from x to every other vertex z. Since x has positive degree,
there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by going from x to
y and then following the path from y to z. This proves P(n + 1).

By the principle of induction, P(n) is true for all n = 0, which proves the Claim.

Problem 2.

Procedure create-spanning-tree

Given a simple graph G, keep applying the following operations to the graph until no operation
applies:

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 In-Class Problems Week 8, Wed.

1. If an edge (u—uv) of G is on a cycle, then delete (v—v).

2. If vertices u and v of G are not connected, then add the edge (v—v).

Assume the vertices of G are the integers 1,2,...,n for some n > 2. Procedure create-spanning-tree
can be modeled as a state machine whose states are all possible simple graphs with vertices 1,2, ..., n. The
start state is G, and the final states are the graphs on which no operation is possible.

(a) Let G be the graph with vertices {1, 2, 3, 4} and edges

{{1—2), (3—4}}
What are the possible final states reachable from start state G? Draw them.
(b) Prove that any final state of must be a tree on the vertices.

(¢) For any state, G', let e be the number of edges in G’, ¢ be the number of connected components it
has, and s be the number of cycles. For each of the derived variables below, indicate the strongest of the

properties that it is guaranteed to satisfy, no matter what the starting graph G is and be prepared to briefly
explain your answer.

The choices for properties are: constant, strictly increasing, strictly decreasing, weakly increasing, weakly
decreasing, none of these. The derived variables are

(i) e
(ii) ¢
(iii) s
(iv) e—s
V) c+e
(vi) 3¢ + 2e
(vii) ¢ + s

(viii) (c, e), partially ordered coordinatewise (the product partial order 9.9.1).

(d) Prove that procedure create-spanning-tree terminates. (If your proof depends on one of the answers
to part (c), you must prove that answer is correct.)

Problem 3.
Let G be the graph below'. Carefully explain why x(G) = 4.

1From Discrete Mathematics, Lovisz, Pelikan, and Vesztergombi. Springer, 2003. Exercise 13.3.1



In-Class Problems Week 8, Wed. 3

Problem 4.

A portion of a computer program consists of a sequence of calculations where the results are stored in
variables, like this:

Inputs: a,b
Step 1. c a+b
2 g =gk
3 e = ¢c+3
4 i = g=p
5 g = a+f
6 h = f+1
Outputs: d,g.h

A computer can perform such calculations most quickly if the value of each variable is stored in a register,
a chunk of very fast memory inside the microprocessor. Programming language compilers face the problem
of assigning each variable in a program to a register. Computers usually have few registers, however, so they
must be used wisely and reused often. This is called the register allocation problem.

In the example above, variables @ and b must be assigned different registers, because they hold distinct
input values. Furthermore, ¢ and d must be assigned different registers; if they used the same one, then the
value of ¢ would be overwritten in the second step and we’d get the wrong answer in the third step. On the
other hand, variables b and d may use the same register; after the first step, we no longer need b and can
overwrite the register that holds its value. Also, f and & may use the same register; once f + 1 is evaluated
in the last step, the register holding the value of f can be overwritten.(Assume that the computer carries out
each step in the order listed and that each step is completed before the next is begun.)

(a) Recast the register allocation problem as a question about graph coloring. What do the vertices cor-
respond to? Under what conditions should there be an edge between two vertices? Construct the graph
corresponding to the example above.

(b) Color your graph using as few colors as you can. Call the computer’s registers R1, R2, etc. Describe
the assignment of variables to registers implied by your coloring. How many registers do you need?

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below:

t=r+s
w=ut% 3
t=m-—k
v=t+u

How might you cope with this complication?
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Massachusetts Institute of Technology

6.042]/18.062], Spring *11: Mathematics for Computer Science March 30

Prof. Albert R Meyer revised Wednesday 30" March, 2011, 16:08

Solutions to In-Class Problems Week 8, Wed.

Problem 1.

False Claim. If every vertex in a graph has positive degree, then the graph is connected.
(a) Prove that this Claim is indeed false by providing a counterexample.

Solution. There are many counterexamples; here is one:

(b) Since the Claim is false, there must be an logical mistake in the following bogus proof. Pinpoint the
first logical mistake (unjustified step) in the proof.

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition that if every vertex in an
n-vertex graph has positive degree, then the graph is connected.

Base cases: (n < 2). In a graph with 1 vertex, that vertex cannot have positive degree, so P (1) holds
vacuously.

P(2) holds because there is only one graph with two vertices of positive degree, namely, the graph with an
edge between the vertices, and this graph is connected.

Inductive step: We must show that P (n) implies P(n + 1) for all n > 2. Consider an n-vertex graph in
which every vertex has positive degree. By the assumption P (n), this graph is connected; that is, there is a
path between every pair of vertices. Now we add one more vertex x to obtain an (n + 1)-vertex graph:

n-node
connected
graph

All that remains is to check that there is a path from x to every other vertex z. Since x has positive degree,

there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by going from x to
y and then following the path from y to z. This proves P(n + 1).

BOEE

Creative Commons &= s 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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By the principle of induction, P (n) is true for all n > 0, which proves the Claim.
|

Solution. This one is tricky: the proof is actually a good proof of something else. The first error in the proof
is only in the final statement of the inductive step: “This proves P(n + 1)”.

The issue is that to prove P(n + 1), every (n + 1)-vertex positive-degree graph must be shown to be
connected. But the proof doesn’t show this. Instead, it shows that every (n + 1)-vertex positive-degree graph
that can be built up by adding a vertex of positive degree to an n-vertex connected graph, is connected.

The problem is that not every (n + 1)-vertex positive-degree graph can be built up in this way. The coun-
terexample above illustrates this: there is no way to build that 4-vertex positive-degree graph from a 3-vertex
positive-degree graph.

More generally, this is an example of “buildup error”. This error arises from a faulty assumption that every
size n + 1 graph with some property can be “built up” in some particular way from a size n graph with the

same property. (This assumption is correct for some properties, but incorrect for others—such as the one in
the argument above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back” process in the inductive
step: start with a size n + 1 graph, remove a vertex (or edge), apply the inductive hypothesis P (n) to the
smaller graph, and then add back the vertex (or edge) and argue that P(n + 1) holds. Let’s see what would
have happened if we’d tried to prove the claim above by this method:

Inductive step: We must show that P (n) implies P(n + 1) for all n > 1. Consider an (n + 1)-vertex graph
G in which every vertex has degree at least 1. Remove an arbitrary vertex v, leaving an n-vertex graph G’
in which every vertex has degree... uh-oh!

The reduced graph G’ might contain a vertex of degree 0, making the inductive hypothesis P (n) inapplica-
ble! We are stuck—and properly so, since the claim is false! 3}

Problem 2.

Procedure create-spanning-tree
Given a simple graph G, keep applying the following operations to the graph until no operation
applies:
1. If an edge (u—v) of G is on a cycle, then delete (u—uv).

2. If vertices u and v of G are not connected, then add the edge (u—uv).

Assume the vertices of G are the integers 1,2, ...,n for some n > 2. Procedure create-spanning-tree
can be modeled as a state machine whose states are all possible simple graphs with vertices 1,2, ..., n. The
start state is G, and the final states are the graphs on which no operation is possible.

(a) Let G be the graph with vertices {1, 2, 3, 4} and edges
{{1—2), (3—4)}
‘What are the possible final states reachable from start state G? Draw them.

Solution. It’s not possible to delete any edge. The procedure can only add an edge connecting exactly one
of vertices 1 or 2 to exactly one of vertices 3 or 4, and then terminate. So there are four possible final
states. |
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(b) Prove that any final state of must be a tree on the vertices.

Solution. We use the characterization of a tree as an acyclic connected graph.

A final state must be connected, because otherwise there would be two unconnected vertices, and then a
transition adding the edge between them would be possible, contradicting finality of the state.

A final state can’t have a cycle, because deleting any edge on the cycle would be a possible transition. W

(c) For any state, G, let e be the number of edges in G’, ¢ be the number of connected components it
has, and s be the number of cycles. For each of the derived variables below, indicate the strongest of the
properties that it is guaranteed to satisfy, no matter what the starting graph G is and be prepared to briefly
explain your answer.

The choices for properties are: constant, strictly increasing, strictly decreasing, weakly increasing, weakly
decreasing, none of these. The derived variables are

G) e
Solution. none of these O
(i) ¢
Solution. weakly decreasing |
(iii) s
Solution. weakly decreasing O
(iv) e—s
Solution. weakly increasing |
V)c+e
Solution. weakly decreasing |
(vi) 3¢ + 2e
Solution. strictly decreasing O
(vil) ¢+ s
Solution. strictly decreasing O

(viii) (c, e), partially ordered coordinatewise (the product partial order 9.9.1).
Solution. none of these O

(d) Prove that procedure create-spanning-tree terminates. (If your proof depends on one of the answers
to part (c), you must prove that answer is correct.)
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Solution. If a value (a derived variable) associated with a process state is nonnegative integer-valued and
decreases at each step, then the process terminates after at most as many steps as the initial value of the
quantity. So we need only identify such a derived variable. There are two in the list above, namely (vi) and
(vii).

To show that the variable (vi) strictly decreases, note that the rule for deleting an edge ensures that the
connectedness relation does not change, so neither does the number of connected components ¢. Meanwhile
the number of edges e decreases by one when an edge is deleted. Therefore the variable 3¢ + 2e decreases
by 2. The rule for adding an edge ensures that the number of connected components ¢ decreases by one and
the number of edges e increases by one. Therefore the variable 3¢ + 2e decreases by 1.

To show that the variable (vii) strictly decreases, note that the rule for deleting an edge ensures that the
number of connected components ¢ does not change and the number of cycles s decreases by n, where
n > 1. Therefore the variable ¢ 4 s decreases by n. The rule for adding an edge ensures that the number

of connected components ¢ decreases by one and the number of cycles s does not change. Therefore the
variable ¢ + s decreases by one.

Problem 3.
Let G be the graph below!. Carefully explain why x(G) = 4.

Solution. Four colors are sufficient, so y(G) < 4.

red

white white

red green

Figure 1 A 4-coloring of the Graph

Now assume y(G) = 3. We may assume the top vertex is colored red. The top two triangles require 3
colors each, and since they share the top red vertex, they must have the other two colors, white and blue,
at their bases, as in Figure 1. Now the bottom two vertices are both adjacent to vertices colored white and
blue, and cannot have the same color since they are adjacent, so there is no alternative but to color one with
a third color and the other with a fourth color, contradicting the assumption that 3 colors are enough. Hence,
x(G) > 3. This together with the coloring of Figure 1 implies that y(G) = 4. O

'From Discrete Mathematics, Lovasz, Pelikan, and Vesztergombi. Springer, 2003. Exercise 13.3.1
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Problem 4.

A portion of a computer program consists of a sequence of calculations where the results are stored in
variables, like this:

Inputs: a,b

Step 1. c = a+b
2 & =.a%e

3 e = c+3

4 f = c—e

S g = a+f

6 h = f+1

Outputs: d,g.h

A computer can perform such calculations most quickly if the value of each variable is stored in a register,
a chunk of very fast memory inside the microprocessor. Programming language compilers face the problem
of assigning each variable in a program to a register. Computers usually have few registers, however, so they
must be used wisely and reused often. This is called the register allocation problem.

In the example above, variables a and b must be assigned different registers, because they hold distinct
input values. Furthermore, ¢ and d must be assigned different registers; if they used the same one, then the
value of ¢ would be overwritten in the second step and we’d get the wrong answer in the third step. On the
other hand, variables b and d may use the same register; after the first step, we no longer need b and can
overwrite the register that holds its value. Also, f and & may use the same register; once f -+ 1 is evaluated
in the last step, the register holding the value of f can be overwritten.(Assume that the computer carries out
each step in the order listed and that each step is completed before the next is begun.)

(a) Recast the register allocation problem as a question about graph coloring. What do the vertices cor-
respond to? Under what conditions should there be an edge between two vertices? Construct the graph
corresponding to the example above.

Solution. There is one vertex for each variable. An edge between two vertices indicates that the values of
the variables must be stored in different registers.

We can classify each appearance of a variable in the program as either an assignment or a use. In particular,
an appearance is an assignment if the variable is on the left side of an equation or on the “Inputs” line. An
appearance of a variable is a use if the variable is on the right side of an equation or on the “Outputs” line.
The lifetime of a variable is the segment of code extending from the initial assignment of the variable until
the last use.”> There is an edge between two variables if their lifetimes overlap. This rule generates the
following graph:

R1 R2 R2 R3 R4 R2 R1 R2
a b c d e f g h

2This definition is for the case that each variable is assigned at most once (see part (c)).
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(b) Color your graph using as few colors as you can. Call the computer’s registers R1, R2, etc. Describe
the assignment of variables to registers implied by your coloring. How many registers do you need?

Solution. Four registers are needed.

One possible assignment of variables to registers is indicated in the figure above. In general, coloring a
graph using the minimum number of colors is quite difficult; no efficient procedure is known. However, the
register allocation problem always leads to an interval graph, and optimal colorings for interval graphs are
always easy to find. This makes it easy for compilers to allocate a minimum number of registers. ]

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below:

t=r+s
u=t*3
t=m—k
v=1I+u

How might you cope with this complication?

Solution. Each time a variable is reassigned, we could regard it as a completely new variable. Then we
would regard the example as equivalent to the following:

t=r+s

u==t=*3
t'=m-k
v=1t"+u

We can now proceed with graph construction and coloring as before. |
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Albert R Meyer, April 1, 2011

o 871

gng.: Planar Graphs

A graph is planar if there
is a way to draw it in the
plane without edges crossing.

Alert R Meyer, Apeil 1,201

%] Region Boundaries

d

Aart B Meyer, Apeil 1, 2010

Planar Graphs

Albert R Meyer, Apeil 1, 2011

bac 577

[the outside face|

continuous face
::=connected region

Albert R Meyer, April 1. 2011

tec 85 4

Z Region Boundaries

Albert R Meyer,  Apeil 1, 2011

bec 8F 6

Y/



S Region Boundaries

b 7.9

Albert R Meyer. Apeil1, 2011

e 857

Albert R Meyer, Apeil 1,2011

* gog
& Region Boundaries: Bridge

Region Boundaries

Albert R Meyer, Apeil 1, 2011

b 8530

ARert R Meyer, Aped 1, 2011

= [s7]
Region Bou‘r_us:lar-ies‘g‘ Dongle

N,

-

U stvxyxvwvturs

Albert R Meyer,  April 1, 2011

lec 8519

Albart R Meyer, Aped 1,201

buc 8534



Planar Embedding
A planar embedding is a
connected graph along with
its face boundary walks
(same graph may have
different embeddings)

@ Albert R Meyer, Aped 1, 2011 a2 17

Recursive Def: Planar Embeddings
Base: a graph consisting of
* single vertex, v,
- with a single face:
length O walk from v to v,
is a PE.
ve v
graph face

2 length 5 faces length 3 face
length 7 face

Alsert R Meyer, Apeil 1, 2011 e 8738

EEE Adding an edge to an embedding
Two constructor cases:
1) Add edge across a face
(splits face in two)

2) Add bridge between
connected components
(merges 2 outer faces)

Abert B Meyer, Aprd 1,201 hetris

= 055 Albert B Meyer, Apeil 1, 2011 o 920

awxbyza — awxba, abyza

[ 060 Albart R Meyer, Apeil 1,201 tes 2821

Albert R Meyer, Apeil 1, 2011 : ec 422




Eﬁgﬁ Constructor: Add a Bridge

Abert R Meyer, Apeil 1,201

Team Problem

Problem 1

Albert R Meyer, April 1.2011

Albert R Meyer. April1, 2011 tac 87 24

hec 8723

Euler's Formula

If a planar embedding has
v vertices, e edges, and f
faces, then

v-e+f=2

Albert R Meyer, April 1. 2011 toc 8726

+ QoD
2 Euler's Formula

Proof by structural
induction on embeddings:

base case: 1 vertex
vl e=@ f -1
1-0+1=2&

Alert R Meyer,  Aped 1,2011

o 4527

Adding an edge to a drawing

Constructor case (split face):
v stays the same

e increases by 1

f increases by 1

so v - e + f stays the same

Albert R Meyer, Apel 1, 2011 e 8728




Adding an edge to a drawing
Constructor case (add bridge):
V= Vi+ Vs
ez ‘“(31 +e,+ 1)
f= f;+f,-1 (iwoouter faces
merge into one)
2= 210D

Alert R Meyer, Apeil 1, 2011 Ledaitid

Planar Properties

* an edge appears twice on faces
* face length > 3 (forv > 3)
3(e-v+2) = 3f < 2e

combining with Euler

e < 3v-6.

uuuuuuuuuuuuuuu

Albert R Meyer.  Apeil 1, 2011 e 37.20

§E§ Planar Properties
e < 3v-6
Cor: Ks is not planar
pf: v=5e=10
10 £ 35 - 6

Albart R Meyer, Apeid 1,201 fec $6.31

Z#  Planar Properties

e < 3v-6

Cor: Every planar graph has
a vertex of degree <5 '
pf: suppose all degrees > 6
Then

6v < > degrees = 2e < 6v-12
contradiction!

Albert R Meyer, Apeil 1, 2011 oc 822

Planar Properties

Cor: Every planar graph has

a vertex of degree <5
Therefore,

every planar graph
is 6-colorable

Albert R Meyer, April 1, 2011 luc 4533

Euler's Formula
cor: There are at most

5 regular polyhedra
(proof in Notes)

Albert 8 Meyer. April 1, 2011 hec BF 34




% Team Problems
Problems
2 &3

Albert R Meyer, Aped 1, 2011
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