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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science April 13
Prof. Albert R Meyer revised Tuesday 12" April, 2011, 20:42

In-Class Problems Week 10, Wed.

Problem 1.
The Tao of BOOKKEEPER: we seek enlightenment through contemplation of the word BOOKKEEPER.

(a) In how many ways can you arrange the letters in the word POKE?

(b) In how many ways can you arrange the letters in the word BO; O, K? Observe that we have subscripted
the O’s to make them distinct symbols.

(c) Suppose we map arrangements of the letters in BOj 02K to arrangements of the letters in BOOK by
erasing the subscripts. Indicate with arrows how the arrangements on the left are mapped to the arrangements
on the right.

0,BO K
KO, BO, BOOK
01B0O,K OBOK
KO,BO, KOBO
B0O,0,K
BO,OK

(d) What kind of mapping is this, young grasshopper?
(e) In light of the Division Rule, how many arrangements are there of BOOK?
(f) Very good, young master! How many arrangements are there of the letters in KE1 E; PE3R?

(g) Suppose we map each arrangement of KEE,PE3R to an arrangement of KEEPER by erasing
subscripts. List all the different arrangements of K E; E2 PE3 R that are mapped to REPEEK in this way.

(h) What kind of mapping is this?
(i) So how many arrangements are there of the letters in KEEPER?

(j) Now you are ready to face the BOOKKEEPER!
How many arrangements of BO1 02 K K2 E1 E; PE3 R are there?

(k) How many arrangements of BOOK K2 E1 E, PE3 R are there?
() How many arrangements of BOOKK E) E; PE3 R are there?

(m) How many arrangements of BOOKK EEPER are there?

Remember well what you have learned: subscripts on, subscripts off.
This is the Tao of Bookkeeper.

(n) How many arrangements of VOODOODOLL are there?

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 10, Wed.

(0) How many length 52 sequences of digits contain exactly 17 two’s, 23 fives, and 12 nines?

Problem 2.
Solve the following problems using the pigeonhole principle. For each problem, try to identify the pigeons,
the pigeonholes, and a rule assigning each pigeon to a pigeonhole.

(a) In a certain Institute of Technology, Every ID number starts with a 9. Suppose that each of the 75
students in a class sums the nine digits of their ID number. Explain why two people must arrive at the same
sum.

(b) In every set of 100 integers, there exist two whose difference is a multiple of 37.

(c) For any five points inside a unit square (not on the boundary), there are two points at distance less than

1/4/2.

(d) Show that if n + 1 numbers are selected from {1,2, 3,...,2n}, two must be consecutive, that is, equal
to k and k + 1 for some k.

Problem 3.
Here are the solutions to the next 10 problem parts, in no particular order.

o i n! n+m ni=ld-m n—1+m ymn
(n—m)! m m n

(a) How many solutions over the natural numbers are there to the inequality
Xi o A xg s iml

(b) How many length m words can be formed from an n-letter alphabet, if no
letter is used more than once?

(¢) How many length m words can be formed from an n-letter alphabet, if
letters can be reused?

(d) How many binary relations are there from set A to set B when |A| = m
and |B| = n?

(e) How many injections are there from set A to set B, where |A| = m and
|B| =n=m?

(f) How many ways are there to place a total of m distinguishable balls into n
distinguishable urns, with some urns possibly empty or with several balls?

(g) How many ways are there to place a total of m indistinguishable balls into n
distinguishable urns, with some urns possibly empty or with several balls?




In-Class Problems Week 10, Wed. 3

(h) How many ways are there to put a total of m distinguishable balls into n
distinguishable urns with at most one ball in each urn?

Problem 4.

Solve the following counting problems. Define an appropriate mapping (bijective or k-to-1) between a set
whose size you know and the set in question.

(a) An independent living group is hosting nine new candidates for membership. Each candidate must be
assigned a task: 1 must wash pots, 2 must clean the kitchen, 3 must clean the bathrooms, 1 must clean the
common area, and 2 must serve dinner. Write a multinomial coefficient for the number of ways this can be
done.

(b) How many nonnegative integers less than 1,000,000 have exactly one digit equal to 9 and have a sum
of digits equal to 177
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Massachusetts Institute of Technology
6.042J/18.062], Spring *11: Mathematics for Computer Science April 13
Prof. Albert R Meyer revised Thursday 14" April, 2011, 15:40

Solutions to In-Class Problems Week 10, Wed.

Problem 1.
The Tao of BOOKKEEPER: we seek enlightenment through contemplation of the word BOOKKEEPER.

(a) In how many ways can you arrange the letters in the word POKE?
Solution. There are 4! arrangements corresponding to the 4! permutations of the set { P, O, K, E}. |

(b) In how many ways can you arrange the letters in the word BO; O K? Observe that we have subscripted
the O’s to make them distinct symbols.

Solution. There are 4! arrangements corresponding to the 4! permutations of the set {B, 01, 02, K}. |

(c) Suppose we map arrangements of the letters in BO; 02K to arrangements of the letters in BO OK by
erasing the subscripts. Indicate with arrows how the arrangements on the left are mapped to the arrangements
on the right.

0,BO K
KO,BO,
0O1BO>2K
KO1BO,
B0O,02K
BO,O1 K

BOOK
OBOK
KOBO

(d) What kind of mapping is this, young grasshopper?

Solution. 2-to-1 ' o
(e) In light of the Division Rule, how many arrangements are there of BOOK?

Solution. 4!/2 a

(f) Very good, young master! How many arrangements are there of the letters in KEy E» PE3R?

Solution. 6! &

(g) Suppose we map each arrangement of KEyE>PE3R to an arrangement of KEEPER by erasing
subscripts. List all the different arrangements of KE| E PE3 R that are mapped to REPEEK in this way.

Solution. RE] PE2E3K, RE1PE3E2K, R52PE1E3K, REQPE3E1 K, RE3PE1E2K, RE3P52E1K
]

(h) What kind of mapping is this?

: S0) A
Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to In-Class Problems Week 10, Wed.

Solution. 3!-to-1
(i) So how many arrangements are there of the letters in KEEPER?
Solution. 6!/3!

(j) Now you are ready to face the BOOKKEEPER!
How many arrangements of 80102 K; K E1 E; PE3 R are there?

Solution. 10!

(k) How many arrangements of BOOK; K> E1 E; PE3R are there?
Solution. 10!/2!

(I) How many arrangements of BOOKK E E; PE3 R are there?
Solution. 10!/(2!-2!)
(m) How many arrangements of BOOKKEEPER are there?

Solution.

10 - 10! o
1,2,2,3,1,1) 7 12121311111 (223!

Remember well what you have learned: subscripts on, subscripts off.
This is the Tao of Bookkeeper.

(n) How many arrangements of VOODOODOLL are there?

10 P
(e e T T T )]

Solution.

(0) How many length 52 sequences of digits contain exactly 17 two’s, 23 fives, and 12 nines?

52 e 500
17,23 4244 17123112

Solution.

Problem 2.

Solve the following problems using the pigeonhole principle. For each problem, try to identify the pigeons,

the pigeonholes, and a rule assigning each pigeon to a pigeonhole.




Solutions to In-Class Problems Week 10, Wed. 3

(a) In a certain Institute of Technology, Every ID number starts with a 9. Suppose that each of the 75
students in a class sums the nine digits of their ID number. Explain why two people must arrive at the same
sum.

Solution. The students are the pigeons, the possible sums are the pigeonholes, and we map each student
to the sum of the digits in his or her MIT ID number. Every sum is in the range from 9+ 8 -0 = 9 to
9 + 8- 9 = 81, which means that there are 73 pigeonholes. Since there are more pigeons than pigeonholes,
there must be two pigeons in the same pigeonhole; in other words, there must be two students with the same
sum. ' |

(b) In every set of 100 integers, there exist two whose difference is a multiple of 37.

Solution. The pigeons are the 100 integers. The pigeonholes are the numbers 0 to 36. Map integer k
to rem(k, 37). Since there are 100 pigeons and only 37 pigeonholes, two pigeons must go in the same
pigeonhole. This means rem(ky, 37) = rem(k2, 37,), which implies that k1 — k5 is a multiple of 37. O

(c¢) For any five points inside a unit square (not on the boundary), there are two points at distance less than

1//2.

Solution. The pigeons are the points. The pigeonholes are the four subsquares of the unit square, each of
side length 1/2.

Pigeons are assigned to the subsquare that contains them, except that if the pigeon is on a boundary, it gets
assigned to the leftmost and then lowest possible subsquare that includes it (so the point at (1/2,1/2) is
assigned to the lower left subsquare).

There are five pigeons and four pigeonholes, so more than one point must be in the same subsquare. The
diagonal of a subsquare is 1/+/2, so two pigeons in the same hole are at most this distance. But pigeons must
be inside the unit square, so two pigeons cannot be at the opposite ends of the same subsquare diagonal. So
at least one of them must be inside the subsquare, so their distance is less than the length of the diagonal. W

(d) Show thatif n + 1 numbers are selected from {1,2, 3, ...,2n}, two must be consecutive, that is, equal
to k and k + 1 for some k.

Solution. The pigeonholes will be the n sets {1, 2}, {3,4},{5,6},...,{2n — 1,2n}. The pigeons will be the
n + 1 selected numbers. A pigeon is assigned to the unique pigeon hole of which it is a member. By the
Pigeonhole Principle, two pigeons must assigned to some hole, and these are the two consecutive numbers
required. Notice that we’ve actually shown a bit more: there will be two consecutive numbers with the
smaller being odd. O

Problem 3.
Here are the solutions to the next 10 problem parts, in no particular order.

ym " n! n+m n—1+m n—1+4+m ymn
(n —m)! m m n

(a) How many solutions over the natural numbers are there to the inequality
X1+ x24--+x, <m?




4 Solutions to In-Class Problems Week 10, Wed.

()

This is the same as the number of solutions to the equation the equality x; + x2 + ~+x, +y =m,and
which has a bijection to sequences with m stars and n bars. ( \ O
: lei 0 &}Wﬂ-"‘"

Solution.

(b) How many length m words can be formed from an n-letter alphabet, if no
letter is used more than once?

—_

Solution. £ [p. 7k

s o bd by Jueen (e
(n—m)!

There are n choices for the first letter, n = 1 choices for the second letter, ...n —m + 1 choices for the mth
letter, so by the Generalized Product rule, the number of words is

n-n—1---(n—m-1).

Pd\ {(’4

(01 ‘}9 T o =

(c) How many length m words can be formed from an n-letter alphabet, if
letters can be reused?

Solution. n™ by the Product Rule. |

(d) How many binary relations are there from set A to set B when |A| = m
and |B| =n?

Solution.
2mn

The graph of a binary relations from A to B is a subset of A x B. There are on 2™" such subsets because
|Ax B| =mn. o

(e) How many injections are there from set A to set B, where |A| = m and
|B|=n>m?

\ fJF{ ‘ ‘n'\
n!
._,-! (J(lev in Py

There is a bijection between the injections and the length m sequences of distinct elements of B. By the
Generalized Product rule, the number of such sequences is

e

Solution.

n-m=1--(n—m-++1).
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Solutions to In-Class Problems Week 10, Wed. 5

(f) How many ways are there to place a total of m distinguishable balls into n

distinguishable urns, with some urns possibly empty or with several balls?
/_/'_‘\‘___,__——

Solution.

nm

There is a bijection between a placement of the balls and length m sequence whose ith element is the urn
where the i th ball is placed. So the number of placements is the same as the number of length m sequences
of elements from a size-n set. O

(g) How many ways are there to place a total of m indistinguishable balls into n ( [ b gl
distinguishable urns, with some urns possibly empty or with several balls? HPrEe

n—14+m ‘
m .

This is the same as the number of selections of m donuts with n possible flavors, which is the number of
sequences with m stars and n — 1 bars. i3]
! .::f‘a -
s 4
{ [

Solution.

(h) How many ways are there to put a total of m distinguishable balls into n
distinguishable urns with at most one ball in each urn?

+ Tl ‘, [ al, ]
Solution. 9} o A(}L-'//] ‘ }f’g:fi' G

n!
(n —m)!
There is a bijection between a placement of balls and a length m sequence whose ith element is the urn

containing the ith ball. So the number of ball placements is the same as number of length m sequences of
distinct elements from a set of n elements. o

Problem 4.
Solve the following counting problems. Define an appropriate mapping (bijective or k-to-1) between a set
whose size you know and the set in question.

(a) An independent living group is hosting nine new candidates for membership. Each candidate must be
assigned a task: 1 must wash pots, 2 must clean the kitchen, 3 must clean the bathrooms, 1 must clean the
common area, and 2 must serve dinner. Write a multinomial coefficient for the number of ways this can be
done.

Solution. There is a bijection from sequences containing one P, two K’s, three B’s, a C, and two D’s. In
any such sequence, the letter in the ith position specifies the task assigned to the ith candidate. Therefore,
the number of possible assignments is:

9 L 1
1,2,3,1,2] 7 1121311121




6 Solutions to In-Class Problems Week 10, Wed.

(b) How many nonnegative integers less than 1,000,000 have exactly one digit equal to 9 and have a sum
of digits equal to 17?

Solution. We identify the nonnegative integers less than 1,000,000 with the length 6 strings of decimal
digits. Then there is a bijection with pairs:

(position of the 9, successive values of other 5 digits)

The sum of the other 5 digits is equal to 8, so the number of ways to choose their values is equal to the
number of solutions over the nonnegative integers to

X1+x2+x3+x4+x5=28, ey

namely, (lf). So by the product rule there are

such integers. B




6.042 Grade Report https://rimoll.scripts.mit.edu:444/6042/my_grades.php

6.042 Grade Report for Plasmeier, Michael

Problem Sets Class Participation
ida ::J;:-s:ed _-_c:,a: max statistics id a pts max pending makeup
CP.01 2.00 2.00
PS.01 35.15 28.00 50.00 CcP.02 2.00 2.00
PS.02 35.98 33.00 50.00 cP.03 2.00 200
PS.03 22.00 18.50 40.00 CP.04 2.00 2.00
PS.04 25,35 24.00 30.00 CP.05 2.00 2.00
PS.05 33.96 32.20 40.00 CP.06 2.00 2.00
PS.06 38.74 33.00 50.00 CP.07 2.00 2.00
Note: The psets’ adjusted scores reflect the psets scores after being CcP.08 200 =00
fjusted by its corresponding MQ's score. The adjusted scores will be CP.09 2,00 2.00
further increased according fo final exam's performance. CP.10 1.00 2.00
cP.1 2.00 2.00
CP.12 2.00 2.00
Mini Quizzes CP.13 1.00 2.00
CP.14 1.00 2.00
id a pts max statistics CP.15 2.00 200
MQ.01 13.00 20.00 link CP.16 1.00 2.00
MQ.02 7.00 20.00 link CP.17 2.00 2.00
MQ.03 9.00 20.00 link CP.18 2.00 2.00
MQ.04 13.50 20.00 li CP.19 2.00 2.00
CP.20 2.00 2.00
Reading Assignments ol =% &
CP.22 1.00 2.00
No grades available yet. CP.23 1.00 2.00
CP.24 2.00 2.00
Tutor Problems eE2 L .
id a pts max
T.01 1.00 1.00
T.02 1.00 1.00
T.03 1.00 1.00
T.04 1.00 1.00
T.05 1.00 1.00
T.06 1.00 1.00
T.07 1.00 1.00
T.08 1.00 1.00
Final Exam
No grades available yet.
Totals
id a pts max weight mean median stddev
Problem Set 194.56 250.00 0.25 21564 227.12 34.04
Final Exam 0.00 0.00 0.30 0.00 0.00 0.00
Class participation 36.00 38.00 0.20 36.82 38.00 3.47
Miniquiz 35.50 60.00 0.17 44,07 45.00 9.21
Reading Comments 0.00 0.00 0.03 0.00 0.00 0.00
Tutorial 8.00 8.00 0.05 7.40 8.00 1.28
Grand Total 53.46 67.00 1.00 58.05 59.86 6.81

Note: The totals only reflect grades that have been completely entered for the class. A grade with gray background signifies that the grade
has not been completely entered yet.

Note: A grade with red font signifies that the grade has been dropped.

Grade Quartile

Your current rank is: 4th quartile (79th - 101th) out of 101 students.

Grades compiled at: 4/13/11 7:10 PM

Please contact your TA if there is any problem with the grade report.

1 of ] 4/13/2011 7:35 PM



Massachusetts Institute of Technology

6.042J/18.0627J, Spring "11: Mathematics for Computer Science April 8
Prof. Albert R Meyer revised Wednesday 13 April, 2011, 14:49
Problem Set 8
Due: April 15

Reading: Chapter 15-15.9, Counting Rules

Problem 1.
Let X and Y be finite sets.

(a) How many binary relations from X to Y are there?

(b) Define a bijection between the set [X — Y] of all total functions from X to ¥ and the set ¥ X1 (Recall
Y is the cartesian product of Y with itself n times.) Based on that, what is | [X — Y]|?

(c) Using the previous part how many functions, not necessarily total, are there from X to Y7 How does
the fraction of functions vs. total functions grow as the size of X grows? Is it O(1), O(|X]), 0(2X1),...?

(d) Show a bijection between the powerset, (X ), and the set [X — {0, 1}] of 0-1-valued total functions
on X.

(e) Let X == {1,2,...,n}. In this problem we count how many bijections there are from X to itself.
Consider the set By, x of all bijections from set X to set X. Show a bijection from By x to the set of all
permuations of X (as defined in the notes). Using that, count Bx x.

Problem 2.

In this problem, all graphs will have vertices [1, n] ::= {1, 2, ..., n}; equivalently, all binary relations are on
this set [1, n].

(a) How many simple undirected graphs are there?
(b) How many digraphs are there?
(¢) How many asymmetric binary relations are there?

(d) How many path-total strict partial orders are there?

Problem 3.

There is a robot that steps between integer positions in 3-dimensional space. Each step of the robot incre-
ments one coordinate and leaves the other two unchanged.

(a) How many paths can the robot follow going from the origin (0, 0, 0) to (3, 4,5)?

(b) How many paths can the robot follow going from the origin (i, j, k) to (m,n, p)?

Problem 4.
Suppose you have seven dice — each a different color of the rainbow; otherwise the dice are standard, with

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



) Problem Set 8

faces numbered 1 to 6. A roll is a sequence specifying a value for each die in rainbow (ROYGBIV) order.
For example, one roll is (3, 1, 6, 1,4, 5, 2) indicating that the red die showed a 3, the orange die showed 1,
the yellow 6,....

For the problems below, describe a bijection between the specified set of rolls and another set that is
easily counted using the Product, Generalized Product, and similar rules. Then write a simple numerical
expression for the size of the set of rolls. You do not need to prove that the correspondence between sets
you describe is a bijection, and you do not need to simplify the expression you come up with.

For example, let A be the set of rolls where 4 dice come up showing the same number, and the other

3 dice also come up the same, but with a different number Let R be the set of seven rainbow colors and

S =11, 6] be the set of dice values. /c L) #

Define B ::= Pg > x R3, where Pg  is the set of 2-permutations of S and R3 is the set of size-3 subsets
of R. Then define a bijection from A to B by mapping a roll in A to the sequence in B whose first element
is an ordered pair consisting of the number that came up three times followed by the number that came up
four times, and whose second element is the set of colors of the three matching dice.

For example, the roll
p o ,;“77 (olovs

4,4,2,2,4,2,4) ¢ A
( ) i (= num hes
maps to / (o /ﬂ 2
((2,4), {yellow,green,indigo}) € B. \

Now by the Bijection rule |A| = |B|, and by the Generalized Product and Subset rules,

o1=o.(3)
5]
Vi

(a) For how many rolls do exactly two dice have the valu¢t 6}nd the remaining five dice all have different
values?

Example: (6,2,6,1,3,4,5) is a roll of this type, but (1, 1,2,6,3,4,5) and (6,6, 1,2, 4, 3, 4) are not.

(b) For how many rolls do two dice have the same value and the remaining five dice all have different
values?

Example: (4,2,4,1,3,6,5) is aroll of this type, but (1, 1,2,6,1,4,5) and (6, 6, 1,2, 4, 3, 4) are not.

(¢) For how many rolls do two dice have one value, two different dice have a second value, and the remain-
ing three dice a third value?

Example: (6,1,2,1,2,6,6) is aroll of this type, but (4,4,4,4,1,3,5) and (5,5, 5,6, 6, 1,2) are not.

Problem 5.
Answer the following questions with a number or a simple formula involving factorials and binomial coef-
ficients. Briefly explain your answers.

(a) How many ways are there to order the 26 letters of the alphabet so that no two of the vowels a, e, 1, o,
u appear consecutively and the last letter in the ordering is not a vowel?

Hint: Every vowel appears to the left of a consonant.

(b) How many ways are there to order the 26 letters of the alphabet so that there are at least two consonants
immediately following each vowel?

(¢) In how many different ways can 2n students be paired up?

(d) Two@?igit sequences of digits 0,1,...,9 are said to be of the same type if the digits of one are a
permutation of the digits of the other. For n = 8, for example, the sequences 03088929 and 00238899
are the same type. How many types of n-digit integers are there?
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Student’s Solutions to Problem Set 8

Your name: IM }C L!{f. { ( {9/ e )/
Due date:  April 15

Submission date: ( ’j

Table number { Z

Collaboration statement: Circle one of the two choices and provide all pertinent info.

Circle your TA/LA: Ali Nick Oscar \ i bshani

1. I worked alone and only with course materials.
2. I collaborated on this assignment with:
got help from:! N }1 d ,{-i O ﬂ
PLL

2 I [Desna rnd Ll
and referred to: / }; p{){.i,{ ) ( o | VAan N (o« T

L
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Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
!People other than course staff.
2Give citations to texts and material other than the Spring ’11 course materials.
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Massachusetts Institute of Technology
6.0421/18.062], Spring *11: Mathematics for Computer Science April 15
Prof. Albert R Meyer revised Thursday 14™ April, 2011, 15:10

Solutions to Problem Set 8

Reading: Chapter ??-??, Counting Rules

Problem 1.
Let X and Y be finite sets.

(a) How many binary relations from X to Y are there?

Solution. The set of all pairs X x Y has |X| - |¥| elements. Any subset of X x Y can be the graph of a
relation, hence there are 21X 1Y relations. |

(b) Define a bijection between the set [X — Y] of all total functions from X to ¥ and the set Y X1, (Recall
Y™ is the cartesian product of Y with itself n times.) Based on that, what is | [X — Y]|?

Solution. We can encode a given function from X to Y by first giving an ordering to elements in X, say,
calling them xy, x2, - -+, X| x|

Now given an element / € [X — Y] we can associate it with and element g € ¥ X! by following the rule
glil = f(xi), where g[i] is the i th entry of the vector.

This is a total, bijective function, since it is defined for every f € [X — Y]. It is also surjective and
injective, as we show next.

To prove it is surjective, suppose (y1, ¥2, ¥3,...,Y|x|) € Y X1 Now, the function h € X with h(x;) = y;
will map to it under our definition. To prove it is injective, suppose g,h € X map to the same vector
1, y2,¥3,--,9x) € Y X1 Then based on our rule we know g(x;) = y; = h(x;) forall x; € X. Hence
g=h

Based on this bijection we can easily count the number of total functions [X — Y] by counting the elements
of Y!XI. Since we know how to count cartesian products, we know the answer is |Y||X |, In fact, in many
book, the set of all total functions from a set X to a set Y is often denoted as Y X. |

(c) Using the previous part how many functions, not necessarily total, are there from X to ¥ ? How does
the fraction of functions vs. total functions grow as the size of X grows? Is it 0(1), O(|X]), 0(2!X1),...2

Solution. We can model this by adding a dummy element to Y, which indicates whether a given x € X has

an actual image or not. After using the previous part, we get there are (|¥ | + 1)/X! functions, not necessarily
| X1

total. By taking the ratio of this answer and the previous questions, we see the ratio is (lrl’lT+|1) so it is

not O(1) nor O(|X|) but exponential in | X|. Also, since |Y| 4+ 1 < 2|Y|, then the ratio above is indeed

o2\l o

(d) Show a bijection between the powerset, P(X), and the set [X — {0, 1}] of 0-1-valued total functions
on X.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to Problem Set 8

Solution. Consider bijection b : P(X) — [X — {0, 1}] defined as follows. For s € P(X), then let
bs(x;) x=1iff x; € §. We make bg(x;) = 0 otherwise. It can be shown this correspondence is a
bijection. Firstly, to show it is injective, we can consider two different elements in P(X), call them s; and
§2. According to the definition, these two are distinct sets with all their elements in X. Therefore we can
assume without losing generality there is an xq € 51 but xo & 2. So according to our mapping by, (xp) = 1
but by, (xo) = 0, so the two functions are not equal. Now we need to show it is surjective, and we know this
is the case because given any such binary function, we can construct a subset of X that maps to it. Namely,

{x e X|f(x) =1}

This and the previous part show why P(x) is sometimes denoted as 2% . O

(e) Let X == {1,2,...,n}. In this problem we count how many bijections there are from X to itself.
Consider the set By, x of all bijections from set X to set X. Show a bijection from By x to the set of all
permuations of X (as defined in the notes). Using that, count By x.

Solution. The main idea is we can encode a bijective function from X to X with an ordered list. For
example, if we let X = {1, 2, 3}, the function f : X — X with f(1) :=3, f(2) :=1and f(3) :=2is
bijective. We can encode it as (3, 1, 2). In this case f(i) = v;.

This is a valid bijection, because if we have an arbitrary bijective function we can always write down its
images in order, and two different bijections will have a different image. Also, given an ordered list, we can
reconstruct a bijection which when encoded produces the list.

Problem 2.
In this problem, all graphs will have vertices [1,n] ::= {1, 2, ..., n}; equivalently, all binary relations are on
this set [1, n].

(a) How many simple undirected graphs are there?

Solution. There are ('2’) potential edges, each of which may or may not appear in a given graph. Therefore,

the number of graphs is:
2(3)

(b) How many digraphs are there?

Solution. There are n? potential edges, each of which may or may not appear in a given graph. Therefore,

the number of graphs is:
2

2"

(c) How many asymmetric binary relations are there?

Solution. There are no self-loops in an asymmetric relation and for each of the (;) pairs of distinct elements
a and b, either

l.aRb,or
2.bRa,or
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3. neither,
but not both. Therefore, the number of asymmetric binary relations is

3(3).

(d) How many path-total strict partial orders are there?

Solution. n!.

Since the partial order is path-total, there is a unique listing of the elements in decreasing partial order. This
listing defines a bijection between the path-total strict partial orders and the permutations of [1, n].

Problem 3.
There is a robot that steps between integer positions in 3-dimensional space. Each step of the robot incre-
ments one coordinate and leaves the other two unchanged.

(a) How many paths can the robot follow going from the origin (0,0, 0) to (3, 4, 5)?

12
34,5

Solution.

O
(b) How many paths can the robot follow going from the origin (i, j,k) to (m,n, p)?
Solution.
m4+n+p—(>Gi+j+k)
m—i,n—j,p—k
[ |
Problem 4.

Suppose you have seven dice — each a different color of the rainbow; otherwise the dice are standard, with
faces numbered 1 to 6. A roll is a sequence specifying a value for each die in rainbow (ROYGBIV) order.
For example, one roll is (3, 1,6, 1,4, 5,2) indicating that the red die showed a 3, the orange die showed 1,
the yellow 6,....

For the problems below, describe a bijection between the specified set of rolls and another set that is
easily counted using the Product, Generalized Product, and similar rules. Then write a simple numerical
expression for the size of the set of rolls. You do not need to prove that the correspondence between sets
you describe is a bijection, and you do not need to simplify the expression you come up with.

For example, let A be the set of rolls where 4 dice come up showing the same number, and the other
3 dice also come up the same, but with a different number. Let R be the set of seven rainbow colors and
S =11, 6] be the set of dice values.

Define B ::= Pg 3 x R3, where Pg > is the set of 2-permutations of S and Rj is the set of size-3 subsets
of R. Then define a bijection from A to B by mapping a roll in 4 to the sequence in B whose first element
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is an ordered pair consisting of the number that came up three times followed by the number that came up
four times, and whose second element is the set of colors of the three matching dice.
For example, the roll

(4,4,2,2,4,2,4) e A

maps to
((2,4), {yellow,green,indigo}) € B.

Now by the Bijection rule |4| = | B|, and by the Generalized Product and Subset rules,

s}

(a) For how many rolls do exactly two dice have the value 6 and the remaining five dice all have different
values?

Example: (6,2,6,1,3,4,5) is aroll of this type, but (1, 1,2, 6,3,4,5) and (6,6, 1,2,4, 3, 4) are not.

Solution. As in the example, map a roll into an element of B ::= R, x Ps where Ps is the set of permu-
tations of {1,...,5}. A roll maps to the pair whose first element is the set of colors of the two dice with
value 6, and whose second element is the sequence of values of the remaining dice (in rainbow order). So
(6,2,6,1, 3, 4,5) above maps to ({red,yellow}, (2, 1,3, 4, 5)). By the Product rule,

1Bl = (Z) 51

(b) For how many rolls do two dice have the same value and the remaining five dice all have different
values?

Example: (4,2,4,1,3,6,5) is a roll of this type, but (1, 1,2,6,1,4,5) and (6,6,1,2, 4,3, 4) are not.

Solution. Map a roll into a triple whose first element is in S, indicating the value of the pair of matching
dice, whose second element is the set of colors of the two matching dice, and whose third element is the
sequence of the remaining five dice values (in rainbow order).

So (4,2,4,1,3,6,5) above maps to (4, {red,yellow}, (2, 1, 3, 6, 5)). Notice that the number of choices for
the third element of a triple is the number of permutations of the remaining five values, namely 5!. This
mapping is a bijection, so the number of such rolls equals the number of such triples. By the Generalized
Product rule, the number of such triples is
7
6- - 51

Alternatively, we can define a map from rolls in this part to the rolls in part (a), by replacing the value of the
duplicated values with 6’s and replacing any 6 in the remaining values by the value of the duplicated pair.
So the roll (4,2, 4, 1,3, 6,5) would map to the roll (6,2, 6,1,3,4,5). Now a type aroll, r, is mapped to by
exactly the rolls obtainable from r by exchanging occurrences of 6’s and i’s, fori = 1,..., 6. So this map
is 6-to-1, and by the Division rule, the number of rolls here is 6 times the number of rolls in part (a).

(¢) For how many rolls do two dice have one value, two different dice have a second value, and the remain-
ing three dice a third value?

Example: (6,1,2,1,2,6,6) is a roll of this type, but (4,4,4,4,1,3,5) and (5,5,5,6,6, 1, 2) are not.
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Solution. Map a roll of this kind into a 4-tuple whose first element is the set of two numbers of the two
pairs of matching dice, whose second element is the set of two colors of the pair of matching dice with the
smaller number, whose third element is the set of two colors of the larger of the matching pairs, and whose
fourth element is the value of the remaining three dice. For example, the roll (6, 1,2, 1,2, 6, 6) maps to the
triple

({1, 2}, {orange,green}, {yellow,blue}, 6).

There are (g) possible first elements of a triple, (;) second elements, (g) third elements since the second set

of two colors must be different from the first two, and 4 ways to choose the value of the three dice since
their value must differ from the values of the two pairs. So by the Generalized Product rule, there are

o)) 6)

possible rolls of this kind. |

Problem 5.
Answer the following questions with a number or a simple formula involving factorials and binomial coef-
ficients. Briefly explain your answers.

(a) How many ways are there to order the 26 letters of the alphabet so that no two of the vowels a, e, i, o,
u appear consecutively and the last letter in the ordering is not a vowel?

Hint: Every vowel appears to the left of a consonant.

Solution. The constraint on where vowels can appear is equivalent to the requirement that every vowel
appears to the left of a consonant. So given a sequence of the 21 consonants, there are (251) positions where
the 5 vowels can be placed. After determining such a placement, we can reorder the consonants and vowels
in any order. Thus, the number is:
21
-211- 50

(b) How many ways are there to order the 26 letters of the alphabet so that there are at least two consonants
immediately following each vowel?

Solution. The pattern of consonants and vowels in any permutation of the 26 letters of the alphabet can be
indicated by a binary string with 5 ones indicating where the vowels occur and 21 zeros where the consonants
occur. Patterns where every vowel has at least two consonants to its right can be constructed by taking a
sequence of 16 zeros and inserting “10” to the left of 5 of the 16 zeros. There are (156) ways to do this. For
any such pattern, there are 5! ways to place the vowels in the positions where ones occur and 21! ways to
place the consonants where the ones occur. Thus, the final answer is:

16
.51.211
(5) 51211

(c) In how many different ways can 2n students be paired up?
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Solution. Pair up students by the following procedure. Line up the students and pair the first and second,
the third and fourth, the fifth and sixth, etc. The students can be lined up in (2n)! ways. However, this
overcounts by a factor of 2", because we would get the same pairing if the first and second students were
swapped, the third and fourth were swapped, etc. Furthermore, we are still overcounting by a factor of n!,
because we would get the same pairing even if pairs of students were permuted, e.g. the first and second
were swapped with the ninth and tenth. Therefore, the number of pairings 1s:

2n)!
2% .n!

(d) Two n-digit sequences of digits 0,1,...,9 are said to be of the same type if the digits of one are a
permutation of the digits of the other. For n = 8, for example, the sequences 03088929 and 00238899
are the same type. How many types of n-digit integers are there?

Solution. The type of a string is determined by the numbers of occurrences of the 9 different digits in the
string. So there is a bijection between types of strings and strings with n 0’s and nine 1’s: the length of
the block of 0’s before the ith 1 equals the number of occurrences of the digit i (and the length of the final
block of 0’s equals the number of occurrences of the digit 9). Therefore, the number of different types is

("s°) L
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Maglc Tl"le

Abert R Meyer, Apei 15, 2011

ez 10F1

A Magic Trick

Let's do itl

A Magic Trick

audience chooses 5 cards
Assistant r'eveals 4 of them
Magician announces 5t card!

Abert R Meyer, Apri 33, 2011

lec 0F 7

¢ Assistant's Choices

Decide the order of the 4 cards:
4l = 24 orderings

—- but 48 cards remain
Decide which 4 cards to list

e 10F 3

Map hands to 4-Card lists

5-card hands {52 ivw | 4-card lists
(ng ardef-s Iiiin D :v:. (ordered)

list must come x L
from hand P

Which one fo pick?%"'efi

Jec 1OF S

s 10F 4

5-card hands [f%

4-card lists
(no order)

| (ordered)

How can we ensure

consistency?

Apri 13, 2014

lec 10F &




Map hﬂr_lff; to 4-Card lists

4-card lists

5-card hands
(ordered)

(no order)

Every hand must have
an identifying list!

Apedd 13, 2011 e 10F.Y

Abert R Meyer,

"% Match hands with 4-Card lists

;.
oEE T
deg = 52-4 = 48 %{ 6]

" deg=5-4-3-2=120

_perfect matching of the hands
’  ..is what we need

4-card lists

5-card hands
(ordered)

(no order)

Every hand must have

an identifying list!

Abert R Meyer,

A 19 2080 hec 10F 9

A Memomlgl_e_ Matching?
(52}2,598,960 hands to
> match

How will A & M
learn any matching this big?

Here's how:

Albert R Meyer,

Apeit 13, 2011 e 10F.31

Aprd 13, 2011 Jec 1F S

So graph is
degree-constrained
and hence has a matching

that A & M can use

Aped 13,2011 ctF

Hﬂ’l’ Z’i;l ‘L)ML

Magic Trick Revealed (T)
Among 5 cards chosen:

at least 2 have the same suit
(Pigeonhole Principle)®

A lists one of them 15t

Ahal Th@d has the
e suit as the hidden card!

ol

Aprd 13, 2011

C lemr



Magic Trick Revealed (II)
How does M figure out the
rank of the hidden card?

Aha! Look at the order
of the other 3 cards!

Alart R Mayer, April 15, 2011 e 1OF 13

Magic Trick Revealed (II)

o+
{= 1
oo -
=15}

%2 Magic Trick Revealed (IT)

Possible orders for the
remaining 3 cards: |

{SML SLM, MSL, MLS, LSM, LMS }

Apri 15, tec 10F13

le ordering of the deck
m <AM <
2% < 20<2'<24<

K < KO(KV( Ka

boc VO34

Magic Trick Revealed (II):.' :

Wait! Only have 6 sequences
of the remaining 3 cards,

~ but 12 possible hidden car'ds

~ of the known suit! -

Of two car ith the same su;f
choosin o reveal can give 1
more bit of information

Ahal

Alert R Meyer, Apedl 13, 2011 : lne 10F 16

é Clockwise Distance

The smaller clockwise distance
between 2 card ranks is at most 6:

Reveal the
o‘rhef"'curd

tec 10F1T

Clow ~ s Clgugy 5, d of;

Magic Trick Revealed (Finally)

» The first card determines the
hidden suit (& # & &) .

- Hid nk (A ... K)
: ﬁ?s?rfgr'd ran - offge'r (< 6).

- Offset given by order of
remaining 3 cards:
e

SML=1,5LM=2 MSL =3,
MLS =4 LSM=5,LMS= 6

Abart R Meyer, Aprd 13, 2011
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Massachusetts Institute of Technology
6.042J/18.062J, Spring *11: Mathematics for Computer Science April 15
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In-Class Problems Week 10, Fri.

Problem 1.
Section 15.13.3 explained why it is not possible to perform a four-card variant of the hidden-card magic
trick with one card hidden. But the Magician and her Assistant are determined to find a way to make a trick
like this work. They decide to change the rules slightly: instead of the Assistant lining up the three unhidden
cards for the Magician to see, he will line up all four cards with one card face down and the other three
visible. We’ll call this the face-down four-card trick.

For example, suppose the audience members had selected the cards 90, 10, Ad, 5&. Then the Assistant

could choose to arrange the 4 cards in any order so long as one is face down and the others are visible. Two
possibilities are:

Ade ? 10& || Sk

? S5& (| 9O || 10¢

(a) Explain why there must be a bipartite matching which will in theory allow the Magician and Assistant
to perform the face-down four-card trick.

(b) There is actually a simple way to perform the face-down four-card trick.!

Case 1. there are two cards with the same suit: Say there are two @ cards. The Assistant proceeds as in
the original card trick: he puts one of the @ cards face up as the first card. He will place the second & card
face down. He then uses a permutation of the face down card and the remaining two face up cards to code
the offset of the face down card from the first card.

Case 2. all four cards have different suits: Assign numbers 0, 1,2, 3 to the four suits in some agreed upon
way. The Assistant computes, s, the sum modulo 4 of the ranks of the four cards, and chooses the card
with suit s to be placed face down as the first card. He then uses a permutation of the remaining three
face-up cards to code the rank of the face down card.

Explain how in Case 2. the Magician can determine the face down card from the cards the Assistant shows
her.

(¢) Explain how any method for performing the face-down four-card trick can be adapted to perform the

regular (5-card hand, show 4 cards) with a 52-card deck consisting of the usual 52 cards along with a 53rd
card call the joker.

Problem 2.

A certain company wants to have security for their computer systems. So they have given everyone a name
and password. A length 10 word containing each of the characters:

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
!This elegant method was devised in Fall *09 by student Katie E Everett.




2 In-Class Problems Week 10, Fri.

a,d, e, f,i,Lo,p,r1s,

is called a cword. A password will be a cword which does not contain any of the subwords “fails”, "failed”
or ’drop”.
For example, the following two words are passwords:

£

adefiloprs, srpolifeda,
but the following three cwords are not:
adropeflis, failedrops, dropefails.
(a) How many cwords contain the subword “drop”?
(b) How many cwords contain both “drop” and “fails”?

(¢) Use the Inclusion-Exclusion Principle to find a simple formula for the number of passwords.

{
1 by , ok o)
Problem 3.

We want to count step-by-step paths between points in the plane with integer coordinates. Ony two kinds
of step are allowed: a right-step which increments the x coordinate, and an up-step which increments the y
coordinate.

(a) How many paths are there from (0, 0) to (20, 30)?
(b) How many paths are there from (0, 0) to (20, 30) that go through the point (10, 10)?

(c) How many paths are there from (0, 0) to (20, 30) that do not go through either of the points (10, 10)
and (15, 20)?

Hint: Let P be the set of paths from (0, 0) to (20, 30), N; be the paths in P that go through (10, 10) and N>
be the paths in P that go through (15, 20).
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Solutions to In-Class Problems Week 10, Fri.

Problem 1.
Solve the following problems using the pigeonhole principle. For each problem, try to identify the pigeons,
the pigeonholes, and a rule assigning each pigeon to a pigeonhole.

(a) In a certain Institute of Technolofy, Every ID number starts with a 9. Suppose that each of the 75
students in a class sums the nine digits of their ID number. Explain why two people must arrive at the same
sum.

Solution. The students are the pigeons, the possible sums are the pigeonholes, and we map each student
to the sum of the digits in his or her MIT ID number. Every sum is in the range from 9 + 8 -0 = 9to
9 + 8 -9 = 81, which means that there are 73 pigeonholes. Since there are more pigeons than pigeonholes,
there must be two pigeons in the same pigeonhole; in other words, there must be two students with the same
sum. |

(b) In every set of 100 integers, there exist two whose difference is a multiple of 37.

Solution. The pigeons are the 100 integers. The pigeonholes are the numbers O to 36. Map integer k
to rem(k, 37). Since there are 100 pigeons and only 37 pigeonholes, two pigeons must go in the same
pigeonhole. This means rem(k 1, 37) = rem(k2, 37,), which implies that k1 — k7 is a multiple of 37. |

(¢) For any five points inside a unit square (not on the boundary), there are two points at distance less than

1//2. '

Solution. The pigeons are the points. The pigeonholes are the four subsquares of the unit square, each of
side length 1/2.

Pigeons are assigned to the subsquare that contains them, except that if the pigeon is on a boundary, it gets
assigned to the leftmost and then lowest possible subsquare that includes it (so the point at (1/2,1/2) is
assigned to the lower left subsquare).

There are five pigeons and four pigeonholes, so more than one point must be in the same subsquare. The
diagonal of a subsquare is 1/+/2, so two pigeons in the same hole are at most this distance. But pigeons must
be inside the unit square, so two pigeons cannot be at the opposite ends of the same subsquare diagonal. So
at least one of them must be inside the subsquare, so their distance is less than the length of the diagonal. M

(d) Show that if 7 + 1 numbers are selected from {1,2, 3, ..., 2n}, two must be consecutive, that is, equal
to k and k + 1 for some k.

Solution. The pigeonholes will be the n sets {1,2},{3,4}, {5, 6},...,{2n — 1, 2n}. The pigeons will be the
n + 1 selected numbers. A pigeon is assigned to the unique pigeon hole of which it is a member. By the
Pigeonhole Principle, two pigeons must assigned to some hole, and these are the two consecutive numbers

required. Notice that we’ve actually shown a bit more: there will be two consecutive numbers with the
smaller being odd. |

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Problem 2.

A certain company wants to have security for their computer systems. So they have given everyone a name
and password. A length 10 word containing each of the characters:

a,d,e f,i,1,0,p, 1,5,

is called a cword. A password will be a cword which does not contain any of the subwords "fails”, “failed”,
or “drop”.
For example, the following two words are passwords:

adefiloprs, srpolifeda,
but the following three cwords are not:
adropeflis, failedrops, dropefails.

(a) How many cwords contain the subword “drop™?

Solution. Such cwords are obtainable by taking the word “drop” and the remaining 6 letters in any order.
There are 7! permutations of these 7 items. |

(b) How many cwords contain both “drop” and “fails™?

Solution. Take the words “drop” and “fails” and the remaining letter “e” in any order. So there are 3! such
cwords.

E
(¢) Use the Inclusion-Exclusion Principle to find a simple formula for the number of passwords.

Solution. There are 7! cwords that contain “drop”, 6! that contain “fails”, and 5! that contain “failed”. There
are 3! cwords containing both “drop” and “fails”. No cword can contain both “fails” and “failed”. The
cwords containing both “drop” and “failed” come from taking the subword “failedrop” and the remaining
letter ““s” in any order, so there are 2! of them. So by Inclusion-exclusion, we have the number of cwords
containing at least one of the three forbidden subwords is

7'+ 6!+50)—(3!'+0+2)+0=15!(49) —8.
Among the 10! cwords, the remaining ones are passwords, so the number of passwords is

10! =71 —6! =51 4 3! + 21 = 3,622, 928.

Problem 3.
Let’s develop a proof of the Inclusion-Exclusion formula using high school algebra.

(a) Most high school students will get freaked by the following formula, even though they actually know
the rule it expresses. How would you explain it to them?

[Ta-== Y ]]x. M

i=1 I1<{1,...,n} JEI

Hint: Show them an example.
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Solution. Let’s do an example. To “multiply out”

(1 = x1)(1 —x2)(1 ~ix3), )

you would form monomial products by selecting some of the (—x;)’s to multiply together. For example,
selecting (—x;)’s with

e i €{1,3} leads to the monomial (—x;)(—x3) = (=1)%x1x3 = x1x3,
e i €{1,2,3} leads to the monomial (—x1)(—x2)(—x3) = (—1)3x1x2x3 = —x1x2x3, and

e i € @ leads (by convention) to the monomial 1.

Then you sum up the monomials from all possible selections to get

(1—x)(1—=x2)(1—=x3)=1—=x] —x2 —Xx3 +X1X2 + X1X3 + X2X3 — X1X2X3.

Now we can decipher (1) as saying to do the same thing for the product of n different (1 — x;)’s: for any

selection of (—x;)’s with i in some subset, I C {1,...,n}, multiply the (—x;)’s to get the monomial
[T =TT,
iel iel

and sum up all such monomials obtained by every possible selection, I, to get the right hand side of equa-
tion (1). A

For any set, S, let M5 be the membership function of S:

1 ifxes,
Mg(x) = .
0 ifx¢gsS.
Let S1,..., S, be a sequence of finite sets, and abbreviate Mg, as M;. Let the domain of discourse, D,

be the union of the S;’s. That is, we let
n
D= U Si,
i=1

and take complements with respect to D, that is,

T:=D-T,
forT € D.
(b) Verify thatfor T € Dand I C {1,...n},
Mz=1— M7, 3
M(ﬂsef Si) ~ HMS:" 4
iel
M(Uie! 8;) = b H(l — M;). ®)
iel

(Note that (4) holds when 7 is empty because, by convention, an empty product equals 1, and an empty
intersection equals the domain of discourse, D.)
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Solution. To prove (3), we have forall u € D,

Myp@)=1 iff ueT iff Mr@)=0 iff 1—-Mpr@u)=1,
Myp@)=0 iff u¢T iff ueT iff Mr) =1 iff 1—Mru)=0,

so Mz(u) = 1 — Mt (u).
Similarly, to prove (4),

M, sy =1 iff ue()S iff Aues iff AM@) =1 iff (]’[Mf(u))=1.

iel iel iel iel
Finally, (5) follows from (3) and (4) by DeMorgan’s Law. |
(c) Use (1) and (5) to prove
Mp=""% " (DI FI'M;. (6)
BAIC{1,....n} jer

Solution.

MD = M(U?=1 Si)

=1-]Ja-m) by (5)
i=1
=1- Y ()] M, by (1)
Ic{1,...,n} jerl
=1—|1+ > )M (JMj==1
B£IC{l,...,n} JerI Jjed
= Y )M,
BF#I1c{1,...,n} Jjel
]
(d) Prove that
IT| =) Mr(. Q
uepD
Solution.
Y Mr@)y=) Mr@)+ ) Mr@) = (Z 1) + (Z 0) =|T|+0=]T|,
ueD ueT ueT uel ueTl
|

(e) Now use the previous parts to prove

Bl= ¥ EniECs| ®)

P£IC{1,...,n} iel
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Solution. Summing both sides of (6) over u € D, we have

|D| =" Mp(u) (by (7))

ueD

=N > DI My (by (6))
ueD \@#Ic{l,...,n} JjeI

=24 20 0 e IMe, 5 00 (by (4)
ueD \B#IC{1,...,n}

= Z (=pHi+1 (E My, Si (u)) (reversing the order of sums)
P#IC(1,...,n} ueD

= Y )N s (by (7))
BAIC{1,...,n} iel

(f) Finally, explain why (8) immediately implies the usual form of the Inclusion-Exclusion Principle:

1Dl 2oGD L Dy A Sl ©)

i=1 Ic{l,...n} jeI
|]=i

Solution. We obtain (9) from (8) by breaking up the sum over nonempty subsets, I C {1,...,n}, into

separate sums over all the subsets of size i, for1 <i <n. O

Problem 4. (a) How many solutions over the positive integers are there to the inequality:

Xy +x2+...4+x10 <100

90 + 10
10 '

There is a bijection between solutions and bit-strings 0¥1~110%2711 ., 0¥~110¥10=110k with x; > 0 and
k + Eio xi = 100. So the number of solutions is the same as the number of bit-strings with ten 1’s and
number of 0’s equal to

Solution.

10 10
k+2(x,-—1)= (k—l—Zx,-)—lO: 100 — 10 = 90.
1 1

|
(b) We want to count step-by-step paths between points in the plane with integer coordinates. Ony two
kinds of step are allowed: a right-step which increments the x coordinate, and an up-step which increments

the y coordinate.

(i) How many paths are there from (0, 0) to (20, 30)?
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Solution. (5g).

There is a bijection from 50-bit sequences with 20 zeros and 30 ones. The sequence (b1, ..., b3g)
maps to a path where the i-th step is right if b; = 0 and up if b; = 1. Therefore, the number of paths
is equal to (3J). u

(i) How many paths are there from (0, 0) to (20, 30) that go through the point (10, 10)?

Solution. (39) - (30)-
There is a bijection between the paths from (20, 30) that go through (10, 10) and set of pairs of paths

consisting of path from (0, 0) to (10, 10) and a path from (10, 10) to (20, 30). So the number of paths
through (10, 10) is the product of the sizes of these two sets of paths. O

(iii) How many paths are there from (0, 0) to (20, 30) that do nor go through either of the points (10, 10)
and (15,20)?

Hint: Let P be the set of paths from (0, 0) to (20, 30), N, be the paths in P that go through (10, 10)
and N2 be the paths in P that go through (15, 20).

)~ (o) ()55« () (£)-(5)

N1N N3 is the set of paths from (0, 0) to (20, 30) that go through both (10, 10) and (15, 20). So P—(N1UN>)
is the set of paths to be counted. Now we have

|P — (N1 UNz2)| =|P|—|NyUN,|
= |P|—|Ny1| = |N2| + |N1 N Ny| by Inclusion-Exclusion.

Part (ii) shows how to calculate |N;|. Also, there is a bijection between N3 N N> and the set of triples
consisting of a path (0, 0) to (10, 10), a path from (10, 10) to (15, 20), and a path from (15, 20) to (20, 30).
So the size of N N N5 is the product of the sizes of these three sets of paths.

(¢) In how many ways can Mr. and Mrs. Grumperson distribute 13 identical pieces of coal to their three
children for Christmas so that each child gets at least one piece??

(2)

There is an obvious bijection between distributions of coal to children and bit strings 09+1100+110¢+!
where (@ + 1) + (b + 1) + (c + 1) = 13, namely such a string corresponds to distributing @ + 1 coals to the
first child, b + 1 coals to the second, and ¢ + 1 coals to the third. There is also an obvious bijection between
such bit strings and bitstrings of the form 0210210¢ where a + b + ¢ = 10, that is, bit-strings with ten 0’s
and two 1’s. |

Solution.
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Massachusetts Institute of Technology
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Mini-Quiz Apr. 20

{(?/'

S

H 2@L.Q_€ ( /j [0 5h

Circle the name of your TA and write your table number:

Your name: )

~

i
Ali  Nick  Oscar Qshyii Table number_{ /

e This quiz is closed book. Total time is 30 minutes.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem. Please keep your entire answer to a problem on that problem’s page.

e GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem | Points | Grade | Grader

! s | Z oW1
4 7 U 0S

3 3 / NT
4 5 AK.

2
Total 20 ’:,’L

Creative Commons ©988 501 1, Eric Lehman, F Tom Leighton, Albert R Meyer .
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KvO(vz (ord 1o UL f%(?{}" ¥ Pd;f
Problem 1 (5 points). (a) Suppose two ical 52-card decks' are mixed together. Write a simple ex-
pression for the number of different arrangements-of the 104 cards that could possibly result from such a
mixing.

m L[ ’ p o Nalions
L04 - (B%-10]

Otl ))v“' ? (0({1,5 W;}} é{g _L‘}f:;/f,@ ?u 1, _)

04!
R

(b) Using only integers from the interval [1, n], how many different strictly increasing length-m sequences

d? - er (real 5ttt
can be forme (9{(&'{% )4‘] é—[/] P

@,7

A

biy o @ X,
1 a¢ (,< o 5 .-{/ i X
drs (ol (0] X(f\(

Xi "Xy, X,

I'Standard decks of playing cards, without jokers.
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Problem 2 (7 points).

For each pair of functions, f : N — Nand g : N* — N, in the table below, indicate which of the listed
asymptotic relations hold and which do not.

Fill every cell in the table. You may use che,ckmarksj. and crosses, “T” and “F”, “TRUE” and “FALSE”,
“Y” and “N”, or “YES” and “NO”. L 90 l ] lar e:l{ s ;"j ’[ipm/}

[/ [ e [/=0®][/=0@]s=00) s =00) din'f Ll

logy n Jn o X Vo NA Whil caller

n? 4 3" n> 4 2" W X X/ / \E_{/ e

ninn! n?logyon’ X v T / X \o / e

anos(Jrn/Z)+3 5”5 i 3”3 +n \\/ \/ .T__ V 7-\ Y / ¥ x

R Ie rf\ | ~r
. {{ : (vl i . % n
T\{ O (9} ’T .‘ ;! .("1"4 ,__E.T_I. m H/ “ }/‘ . I ji [
A ’
qu,;jc( l
\
|
1
b T _
() (400 [rodns O(%| {‘
( |1 W | '
= olf
g, ) &
!
{/ : ‘7.’ :
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Problem 3 (3 points).
Give an example of a pair of strictly increasing total functions, f : Nt — Nt and & N'*‘ — N¥, that
satisfy f ~ g butnot 3/ = O (33) (rmbe

E\_Sj = ‘}'o UPPW

W el

nafalt
Ao T 0 \)(Q\j/\

{"P/mg | = Cﬂff\g% .

290 . </ g/q { Yo ém“?. ‘("Z L-,Q [somets {K‘e
o 06 =2 bt % ._/ = 0

3 x>/ Aaﬁ( J
2 =0,

2 Not / &9
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Problem 4 (5 points).

A spacecraft is traveling through otherwise-empty three- dlmensmna] space. It can move along only one
dimension at a time, stepping precisely one unit in the positive direction along that dimension with each
movement. For any two points, P and Q, in space, let pp o denote the number of distinct paths the
spacecraft can follow to go from P to Q.

(a) Let P and Q have coordinates (xp.yp,zp) and (xg. Yo, zQ) respectwely Assummg that pp o is

positive, express pp o as a single multinomial coefficient. dd ol vl Va5 Pn PETT
) i’ (o X1 f{”’ f'F'/]:f('_,f.f/ / '{f OF £
( (\"{ 7 CQ AN u:‘- 0 ,{Flf’}/

)%‘Xp:’& Va v 2/ 2 7k ';

| ‘ rkyoles )y
E X : {(\/ 5 L’? .

FM\: oy koky € ke, Yok ( )i f

(b) Suppose there exist five points in space, A, B, C, D, and E, such that it is possible for the spacecraft
to travel from A to B, from B to C, from C to D, and from D to E. Write an expression for the number
of distinct paths the spacecraft can follow to go from A to £ while@ng B, C, and D-~Yqur expression
must be written entirely in terms of symbols of the form pp o, whef@\P, O é' {A,B,C,D, E}.

fﬂﬁ : EJ € ]LZP(E? ,{ (A /)
gt b e fo g0 o

Hint: Inclusion-Exclusion. \ jt o
mme—— }\Q‘f‘ (5 '( A ron df:.‘/,fo /}f ¢ /‘f
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Solutions to Mini-Quiz Apr. 20

Problem 1 (5 points). (a) Suppose two identical 52-card decks! are mixed together. Write a simple ex-
pression for the number of different arrangements of the 104 cards that could possibly result from such a
mixing.

Solution. In the mixed deck, there are precisely two copies of each of 52 distinct cards. By the Bookkeeper
Rule and the definition of multinomial coefficients, the number of possible arrangements of cards in the

mixed deck is therefore just
104!

(2052
|

(b) Using only integers from the interval [1, n], how many different strictly increasing length-m sequences

can be formed?
n
m

Justification: Given any m-element subset of {1, 2, ...,n}, listing its elements in increasing order yields a
sequence that is strictly increasing and has length m. By collecting in a set the terms of any strictly increasing
length-m sequence whose terms have been drawn from {1, 2, ..., n}, an m-element subset of {1,2, ...,n} is
formed. Thus there is a bijection between the set of all strictly increasing length-m sequences with terms
drawn from {1, 2, ..., n} and the set of all size-m subsets of {1, 2, ..., n}.

Solution.

Problem 2 (7 points).
For each pair of functions, f : N* — Nand g : NT — N, in the table below, indicate which of the listed
asymptotic relations hold and which do not.

Fill every cell in the table. You may use checkmarks and crosses, “T” and “F”, “TRUE” and “FALSE”,
65Y71 aIld ‘LN!'), 0[' $‘YES11 and $GNO"?.

| f(n) | g(n) | f=0@) | f=0@|g=0f)[g=0()]
log, n Jn
n? + 3" n> + 2"
nlnn! nzlogw n*
anns(J’m/Z)-{-S 513 i 353 +n

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
IStandard decks of playing cards, without jokers.
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Solution.
| f(n) | g(n) | f=0@) | f=0()][g=0()[g=0(f) ]|
logy n o/n YES YES NO NO
n* + 3" n - 27 NO NO YES YES
nlnn! n*log,on? YES NO YES NO
nZeosmn/+3 15,5 4 393 4 | YES NO NO NO
Justification:

fn) [gm) [ f=0(g) | f=o0()]|g=0(f)]g=0(f)]
lomer el XES., | GEES N NO. |, NCQ ;. |

Using either (1) I’Hopital’s Rule or (2) the fact that logn = o (n€) for all € > 0 (see the Notes), conclude
that f = o(g). This implies that f = O(g), g # o(f),and g # O(f).

| f) | e [f=0(@)]|f=0()]|g=0()]g=0(f)]
[nZ+3"[n3+2"] NO | NO | YES | YES

Intuitively, 3" grows far faster than n% and 2" grows far faster than n3, as n grows large. (Any power
of n is asymptotically smaller than any increasing exponential in n.) Also, 3" grows far faster than 2”.

(Given two increasing exponentials, the one with the smaller base will be asymptotically smaller.) A bit
more rigorously,

g(n) B L
m —— = um
n—o00 f(n) n—co p2 4 31

: 3 : 2\
Ilmn—)-oo % + ]lmn—)-oo (§)

Titn o0 25  limpLyoq]
040
T 0+1
=0

3 2

2 n
Where lim — and lim —— can be found to be zero by I'Hopital’s Rule, and lim (—) is zero because
n—oo 31 n—oo 3M n—oo \ 3

%l < 1. Thus g = o(f), which implies g = O(f), f # o(g),and f # O(g).

/W] g [f=0@]f=0@)]|g=0()]|g=0()]
|nlnnliinslowsme ] XES»=|  NO: | ¥ES | NO_ |

n n
Using Stirling’s formula, n! ~ +/2xn (—) , it is easy to show that Inn! ~ n Inn and hence that f(n) ~
e

nZInn. Now,

n? logp n? = 2n? logon
Inn
In10

=2n?

1t should be evident now that g(n) ~ ﬁf(n). Hence f # o(g) and g # o(f), but f = O(g) and
g = 0(f).
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LS | g [f=0@)][f=0k)]|g=0()]g=0()]
|n2cos@n/D+3 [ 505 433 +n| YES | NO | NO | NO |

Notice that

n° ifn =0mod4
fm)=4 n® ifn=1mod4orn=3mod4
n ifn =2 mod 4.

Because f(n) is thus clearly bounded above by n° and g(n) is a polynomial of degree 5, have f = O(g).
The behavior of f(n) when n is not a multiple of 4 leads to g 7 O(f). It is obvious that lim, — oo -ﬁ% and

limp—00 %% are both nonzero, so f # o(g) and g # o(f). O

Problem 3 (3 points).
Give an example of a pair of strictly increasing total functions, f : N* — N* and g : N* — N7, that
satisfy f ~ g but not 3/ = O (3%).

Solution. The pair

f()=n*+n
g(n) =n”

satisfies these criteria. Since n? is the term that dominates the behavior of #n2 + n as n grows large, it is
obvious that n? + n ~ n?. (Applying the limit definition of asymptotic equality readily establishes this
result) Clearly, 3/ = 3n%+n — 3131 while 38() = 37*  Thys 3/® = 3738 From this, it is
obvious that 3/ # O (38). (It is very easy to check that, in fact, 38 = 0(3”).) |

Problem 4 (5 points).

A spacecraft is traveling through otherwise-empty three-dimensional space. It can move along only one
dimension at a time, stepping precisely one unit in the positive direction along that dimension with each
movement. For any two points, P and Q, in space, let pp o denote the number of distinct paths the
spacecraft can follow to go from P to Q.

(a) Let P and Q have coordinates (xp, yp,zp) and (xg, yg,Zg), respectively. Assuming that pp o is
positive, express pp o as a single multinomial coefficient.

Solution. Because each of the spacecraft’s permissible atomic movements involves incrementing precisely
one of its three position coordinates, pp,g > 0 implies that xp — xp, yo — yp, and zg — zp are all
nonnegative integers. (The converse is also true.) To go from P to Q, the spacecraft must increment its
first position coordinate xg — x p times, its second yp — yp times, and its third zp — zp times. So it must
undergo precisely (xg —xp) + (yg — yp) + (zg — zp) atomic movements, xp — xp of them along the
first dimension, yg — yp of them along the second, and zg — zp of them along the third.

So, number the spacecraft’s atomic movements: 1,2,...,(xg —xp) + (yo — yp) + (2o — zp). Partition
theset T = {1,2,...,(xg —xp) + (yo — yp) + (zg — zp)} into three sets, T, Ty, and T, such that
|Tx| = xo—xp, lTy| = yo—yp,and |Tz| = zg—zp. Ty then specifies which atomic movements are along
the first dimension, T does the same for the second dimension, and 7 for the third. Each distinct partition
corresponds to a single permissible path from P to Q, and each permissible path from P to Q corresponds
to a single partition. So the number of permissible paths from P to Q is just the number of distinct partitions

—that is, the number of (xo—xp, yo—yp, zg—zp)-splits of the ((xg — xp) + (yo — yp) + (29 — zp))-
element set 7. And of course this number is just:
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TR (xo —xp)+ (yo —yp) +(zg —zp)
: X9 —Xp,Yyo—YP,ZQ —ZIp

Alternatively, consider a bijection between the set of possible paths from P to Q and the set of sequences
of length (xg —xp) + (yo — yp) + (zg — zp) that contain (xg — xp) 1s, (yo — yp) 2s, and (zg — zp)
3s. The kth term of each sequence specifies the dimension associated with the kth atomic movement in the
corresponding path. The Bookkeeper Rule then leads directly to the expression for pp o. O

(b) Suppose there exist five points in space, A, B, C, D, and E, such that it is possible for the spacecraft
to travel from A to B, from B to C, from C to D, and from D to E. Write an expression for the number
of distinct paths the spacecraft can follow to go from A to E while aveiding B, C, and D. Your expression
must be written entirely in terms of symbols of the form pp o, where P, Q € {4, B,C, D, E}.

Hint: Inclusion-Exclusion.

Solution. First, note that since it is possible for the spacecraft to travel from A to B, from B to C, from C
to D, and from D to E, therefore paths exist from A to each of A, B, C, D, and E, from B to eachof C, D,
and E, ..., and from E to E. Thus, because of the way in which the spacecraft must move, positive-length
paths cannot exist from E to 4, B, C, D, or E, from D to A, B, C,or D, ..., or from A to A. (This is
why, in what follows, terms like pp p appear, but terms like pp g do not. If B and D are distinct, pg p is
positive and pp, p is zero, so including pp g would affect nothing. If B and D are coincident, both pp p
and pp p are equal to one, but considering both would amount to counting every path through B twice.)
In a very loose sense, and if cases involving coincident points are ignored, this essentially means that the
spacecraft only moves “forward” and that B is “ahead” of A, C is “ahead” of B, D is “ahead” of C, and E
is “ahead” of D.

Let S denote the set of all paths from A to E. Clearly, |S| = p4,E.
Let Sy denote the set of all paths that go from A to E, through X, where X € {B,C, D}. Evidently,
|Sx| = pa,xPx,E-
Now, Sy N Sy is the set of paths that go from A to E, through both X and Y, where X,Y € {B,C, D}. Ob-
viously, |Sg N Sc| = pa,ppB,cPc,E.|1S8NSp| = pa,ppB,oPD,E,and |[Sc NSp| = pa,cpc,pPD,E-
Also, SpNSc NSp is the set of all paths that go from A to E, through all three of B, C, and D. Obviously,
|Ss NSc NSp| = pa,ePB,cPC,DPD,E-
Now, the set of paths that go from A to E and pass through at least one of B, C, and D, is just SpUSc USp.
By inclusion-exclusion,
|Sg U Sc U Sp| =|Sg|l +|Sc|+[Sp|=1Sg N Sc|—=|SsNSp|—[Sc NSp|+|Sg N Sc NSp|
=PA,BPB,E + PACPC,E + PA,DPD,E
— PA,BPB,CPC,E — PA,BPB,DPD,E — PA,CPC,DPD,E + PA,BPB,CPC,DPD,E
Let R denote the set of all paths from A to E that go through neither B, nor C, nor D. Evidently, S =

RU(SpUScUSp)and RN (Sp U Sc USp) = @. Therefore |S| = |R| + |Sp U Sc U Sp|, so the
number of distinct paths the spacecraft can follow to go from A to E while avoiding B, C, and D is

|IR| =|S| =SB U Sc U Sp]|
=DA.E — PA.BPB,E — PA,CPC,E — PA,DPD,E
+ pa,BPB,CPC,E + PA,BPB,DPD,E + PA,CPC,DPD,E — PA,BPB,CPC,DPD,E
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Pr‘%)lem 1 (Median: 4.0, Stdev: 1.0, N = 95) Pl;%alem 2 (Median: 4.0, Stdev: 1.4, N = 95)
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6.042 Grade Report for Plasmeier, Michacl

Problem Sets Class Participation
ida :«:Lu::ed scroar\: = statistics id a pts max pending makeup
CP.01 2.00 2.00
PS.01 35.15 28.00 50.00 link. CP.02 2.00 2.00
PS.02 35.98 33.00 50,00 link CP.03 2,00 2.00
PS.03 22.00 18.50 40.00 link CP.04 2.00 2.00
PS.04 26.02 24.00 30.00 link CP.0S 2.00 2.00
PS.05 34.83 32.20 40.00 link CP.06 2.00 2.00
PS.06 36.82 33.00 50.00 link Cp.07 2.00 2.00
PS.07 33.72 29.00 50.00 link CP.08 2.00 2.00
Note: The psets’ adjusted scores reflect the psels scores afier being il == —
adjusted by its corresponding MQ's score. The adjusted scores will be Cp.10 1.00 2.00
further increased according to final exam's performance. CP.1 2.00 2.00
CP.12 2,00 2.00
CP.13 1.00 2.00
Mini Quizzes CP.14 1.00 2.00
CP.15 2.00 2.00
id a pts e siatistics CP.16 1.00 200
MQ.01 13.00 20.00 link CP.17 2,00 2.00
MQ.02 7.00 20.00 link CP.18 2.00 2.00
MQ.03 13.50 20.00 link CP.19 2.00 2.00
MQ.04 9.00 20.00 link CP.20 2.00 2.00
MQ.05 7.00 20.00 link cP.21 2.00 2.00
CpP.22 1.00 2.00
A ) CP.23 1.00 2.00
Reading Assignments CP.24 200 2.00 Z
No grades available yet. CP.25 2.00 2.00
CP.26 2.00 2.00
Tutor Problems il i 200
CP.28 1.00 2.00
id a pts max
T.01 1.00 1.00
T.02 1.00 1.00
T.03 1.00 1.00
T.04 1.00 1.00
T.05 1.00 1.00
T.06 1.00 1.00
T.07 1.00 1.00
T.08 1.00 1.00
T.09 1.00 1.00
Final Exam
No grades available yet.
Totals
id a pts max weight mean median stddev
Problem Set 228.59 300.00 0.25 255.65 269.58 41,00
Final Exam 0.00 0.00 0.30 0.00 0.00 0.00
Class participation 36.00 38.00 0.20 36.82 38.00 3.47
Miniquiz 42.50 80.00 0.17 57.65 57.50 12.37
Reading Comments 0.00 0.00 0.03 0.00 0.00 0.00
Tutorial 9.00 9.00 0.05 8.23 9.00 1.55
Grand Total 52.03 67.00 1.00 57.51 59.04 6.94

Note: The totals only reflect grades that have been completely entered for the class. A grade with gray background signifies that the grade
has not been completely entered yet.

Note: A grade with red font signifies that the grade has been dropped.

Grade Quartile

Your current rank is: 4th quartile (79th - 101th) out of 101 students.

1 of2 4/21/2011 10:26 PM
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Grades compiled at: 4/21/11 8:28 AM

Please contact your TA if there is any problem with the grade report.

20f2 4/21/2011 10:26 PM



