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In-Class Problems Week 11, Fri.

Problem 1.
[A Baseball Series]
The New York Yankees and the Boston Red Sox are playing a two-out-of-three series. (In other words,
they play until one team has won two games. Then that team is declared the overall winner and the series
ends.) Assume that the Red Sox win each game with probability 3/5, regardless of the outcomes of previous
games.

Answer the questions below using the four step method. You can use the same tree diagram for all three
problems.

(a) What is the probability that a total of 3 games are played?
(b) What is the probability that the winner of the series loses the first game?

(c) What is the probability that the correct team wins the series?

Problem 2.

To determine which of two people gets a prize, a coin is flipped twice. If the flips are a Head and then a Tail,
“the first player wins. If the flips are a Tail and then a Head, the second player wins. However, if both coins
land the same way, the flips don’t count and whole the process starts over.

Assume that on each flip, a Head comes up with probability p, regardless of what happened on other flips.
Use the four step method to find a simple formula for the probability that the first player wins. What is the
probability that neither player wins?

Suggestions: The tree diagram and sample space are infinite, so you’re not going to finish drawing the
tree. Try drawing only enough to see a pattern. Summing all the winning outcome probabilities directly
is difficult. However, a neat trick solves this problem and many others. Let s be the sum of all winning
outcome probabilities in the whole tree. Notice that you can write the sum of all the winning probabilities
in certain subtrees as a function of s. Use this observation to write an equation in s and then solve.

Problem 3.
Suppose there is a system with » components, and we know from past experience that any particular com-
ponent will fail in a given year with probability p. That is, letting F; be the event that the ith component
fails within one year, we have

Pr[Fi] = p

for 1 < i < n. The system will fail if any one of its components fails. What can we say about the probability
that the system will fail within one year?

Let F be the event that the system fails within one year. Without any additional assumptions, we can’t
get an exact answer for Pr[F]. However, we can give useful upper and lower bounds, namely,

p < Pr[F] < np. (M

&
=
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In-Class Problems Week 11, Fri.

We may as well assume p < 1/n, since the upper bound is trivial otherwise. For example, if n = 100 and
p = 1073, we conclude that there is at most one chance in 1000 of system failure within a year and at least
one chance in 100,000.

Let’s model this situation with the sample space S ::= P({l,...,n}) whose outcomes are subsets of
positive integers < n, where s € S corresponds to the indices of exactly those components that fail within
one year. For example, {2, 5} is the outcome that the second and fifth components failed within a year
and none of the other components failed. So the outcome that the system did not fail corresponds to the
emptyset, @.

(a) Show that the probability that the system fails could be as small as p by describing appropriate proba-
bilities for the outcomes. Make sure to verify that the sum of your outcome probabilities is 1.

(b) Show that the probability that the system fails could actually be as large as np by describing appropriate
probabilities for the outcomes. Make sure to verify that the sum of your outcome probabilities is 1.

(¢) Prove inequality (1).

Problem 4.
Here are some handy rules for reasoning about probabilities that all follow directly from the Disjoint Sum
Rule in the Appendix. Prove them.

Pr[A — B] = Pr[A] — Pr[A N B] (Difference Rule)

Pr[A] = 1 — Pr[A] (Complement Rule)

Pr[A U B] = Pr[A] + Pr[B] — Pr[A N B] (Inclusion-Exclusion)
Pr[A U B] < Pr[A] + Pr[B]. (2-event Union Bound)

If A C B, then Pr[A] < Pr[B]. (Monotonicity)
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Appendix

The Four Step Method

This is a good approach to questions of the form, “What is the probability that
misleading, but this formal approach gives the right answer every time.

-7 Intuition can be

1. Find the sample space. (Use a tree diagram.)
2. Define events of interest. (Mark leaves corresponding to these events.)

3. Determine outcome probabilities:

(a) Assign edge probabilities.

(b) Compute outcome probabilities. (Multiply along root-to-leaf paths.)
4. Compute event probabilities. (Sum the probabilities of all outcomes in the event.)

Probability Spaces

A countable sample space, S, is a nonempty countable set. An element w € § is called an outcome. A
subset of & is called an event.
A probability space consists of a sample space, S, and a function Pr[] : § — [0, 1], called the probability

Jfunction, such that
Z Prlw] = 1.

wEeS

For any event, E C S, the probability of E is defined to be the sum of the probabilities of the outcomes
in E:
Pr(E] = ) Prlw].

wekE

Sum Rule & Union Bound

Let Eg. E1, ... be a (possibly infinite) sequence of events. These events are said to be pairwise disjoint if
E; N E; = @ whenever i # j.
If these events are pairwise disjoint, then

Pri| ) Ea] = D Pr{E]. (Disjoint Sum Rule)

n=>0 n=0

Even if they are not pairwise disjoint,

Pr[|_J En] < Pr{Eq]. (Union Bound)

n=0 i=n
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Solutions to In-Class Problems Week 11, Fri.

Problem 1.
[A Baseball Series]
The New York Yankees and the Boston Red Sox are playing a two-out-of-three series. (In other words,
they play until one team has won two games. Then that team is declared the overall winner and the series
ends.) Assume that the Red Sox win each game with probability 3/5, regardless of the outcomes of previous
games.

Answer the questions below using the four step method. You can use the same tree diagram for all three
problems.

(a) What is the probability that a total of 3 games are played?
(b) What is the probability that the winner of the series loses the first game?
/ Ko Lodks

(c) What is the probability that the correct team wins the series?

Solution. A tree diagram is worked out below. From the tree diagram, we get:

15t game 27d game 37d game outcome 3 games winner correct probability

winner  winner  winner played? lost 1st team
game? wins?
Y 425
YRY v 12/125
YRR v v v 18/125
RYY v v 12/125
RYR s 1825
RR v 9/25
Pr[3 Taed] 12 % 18 I 12 2 18 12
a = — — - m— |
o B PSS T 25T s, 25 1851, 25
Pr[winner lost first ] B + = 6
mner ISt game| = —— _—
2 125 125 25
] 18 18 9 81
Pr[correct team wins] = + 4+ — =

1257125725 125

Problem 2.
To determine which of two people gets a prize, a coin is flipped twice. If the flips are a Head and then a Tail,
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2 Solutions to In-Class Problems Week 11, Fri.

the first player wins. If the flips are a Tail and then a Head, the second player wins. However, if both coins
land the same way, the flips don’t count and whole the process starts over.

Assume that on each flip, a Head comes up with probability p, regardless of what happened on other flips.
Use the four step method to find a simple formula for the probability that the first player wins. What is the
probability that neither player wins?

Suggestions: The tree diagram and sample space are infinite, so you’re not going to finish drawing the
tree. Try drawing only enough to see a pattern. Summing all the winning outcome probabilities directly
is difficult. However, a neat trick solves this problem and many others. Let s be the sum of all winning
outcome probabilities in the whole tree. Notice that you can write the sum of all the winning probabilities
in certain subtrees as a function of s. Use this observation to write an equation in s and then solve.

Solution. In the tree diagram below, the small triangles represent subtrees that are themselves complete
copies of the whole tree.

caller’s other
disc disc

copy of
whole tree O

win, prob.=p(1—p)

lose, prob.=(1—p)p

copy of -
whole tree =

Let s equal the sum of all winning probabilities in the whole tree. There are two extra edges with proba-
bility p on thé'p*z'[fh_to each outcome in the top subtree. Therefore, the sum of winning probabilities in the
upper tree is p2s. Similarly, the sum of winning probabilities in the lower subtree is (1 — p)2s. This gives

the equation: L fzr.;’ 0l
s=ps+(A-p)s+pl-p) & wate (W [ho
The solution to this equation is s = 1/2, for all p between 0 and 1. L0/ * 4

By symmetry, the probability that the first player loses is 1/2. This means that the event, if any, of flipping
forever can only have probability zero.
Formally, the sample space is the (infinite) set of leaves of the tree, namely,

S :={TT,HH}* - {HT, TH}

where {TT, HH}* denotes the set of strings formed by concatenating a sequence of HH’s and TT’s. For
example,

TTTTH}(@, HHTT[H, HHHHHHHH@@_IP ELS |
B .’\i“ )3 {r

For any string s € S, fr nhy O . !
Pl’[S] #HsmS( _ p)#‘l"s in.!'." ol P AUl



Solutions to In-Class Problems Week 11, Fri. 3

To verify that is defines a probability space, we must show thggz ses Prls]-=_1. But the probability that
two tosses match is p + (1 — p)?, and that they don’t match is 2p(1 — p) so

ZPr[S] = Z Z Pr[s]

SES n>0|s|=2n+2

=Y (P + (1= p)?)" @p(1-p))

n>0

=2p(1-p) > _ (P2 +1-p)?)"
n>0
_ 2p(1—p)
L=(ps ekl = p)e)
_2p(l—p) _
C 2p-—2p?

Problem 3.
Suppose there is a system with n components, and we know from past experience that any particular com-
ponent will fail in a given year with probability p. That is, letting F; be the event that the ith component
fails within one year, we have

Pr{F]=p

for 1 <i < n. The system will fail if any one of its components fails. What can we say about the probability
that the system will fail within one year?

Let F be the event that the system fails within one year. Without any additional assumptions, we can’t
get an exact answer for Pr[F']. However, we can give useful upper and lower bounds, namely,

p <Pr[F] <np. (1

We may as well assume p < 1/n, since the upper bound is trivial otherwise. For example, if n = 100 and
p = 107>, we conclude that there is at most one chance in 1000 of system failure within a year and at least
one chance in 100,000.

Let’s model this situation with the sample space S ::= P({l,...,n}) whose outcomes are subsets of
positive integers < n, where s € S corresponds to the indices of exactly those components that fail within
one year. For example, {2, 5} is the outcome that the second and fifth components failed within a year
and none of the other components failed. So the outcome that the system did not fail corresponds to the
emptyset, 9.

(a) Show that the probability that the system fails could be as small as p by describing appropriate proba-
bilities for the outcomes. Make sure to verify that the sum of your outcome probabilities is 1.

Solution. There could be a probability p of system failure if all the individual failures occur together. That
is, let Pr[{l,...,n}] == p, Pr[d] ::= 1 — p, and let the probability of all other outcomes be zero. So
F;={seS|iestandPr[F;]=0+0+---4+0+Pr[{l,...,n}] =Pr[{1,...,n}] = p. Also, the only
outcome with positive probability in F is {1,...,n}, so Pr[F] = p, as required. ]

(b) Show that the probability that the system fails could actually be as large as np by describing appropriate
probabilities for the outcomes. Make sure to verify that the sum of your outcome probabilities is 1.
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Solution. Suppose at most one component ever fails at a time. That is, Pr[{i}] = pfor1 <i < n,
Pr[@] = 1—np, and probability of all other outcomes is zero. The sum of the probabilities of all the outcomes
is one, so this is a well-defined probability space. Also, the only outcome in F; with positive probability is
{i}, so Pr[F;] = Pr[{i}] = p as required. Finally, Pr[F] = np because F = {4 C {1,...,n} | A # @}, so
F in particular contains all the n outcomes of the form {i }. [ |

(c) Prove inequality (1).

Solution. F = J7_, F; so

p = Pr[F] (given)
< Pr[F] (since F; C F)
=P | A (def. of F)
<Y PiF] (Union Bound)

i=1
=np.

Problem 4.

Here are some handy rules for reasoning about probabilities that all follow directly from the Disjoint Sum
Rule. Prove them.

Pr[A — B] = Pr[A] — Pr[A N B] (Difference Rule)
Solution. Any set A is the disjoint union of A — B and A N B, so
Pr[A] = Pr[A — B] + Pr[A N B]
by the Disjoint Sum Rule. O
Pr{A] = 1 — Pi[A] (Complement Rule)
Solution. A ::= & — 4, so by the Difference Rule
Pr[A] = Pr[S] — Pr[A] = 1 — Pr[A].
O

Pr[A U B] = Pr[A] 4 Pr[B] — Pr[A N B] (Inclusion-Exclusion)

Solution. A U B is the disjoint union of A and B — A so

Pr[A U B] = Pr[A] + Pr[B — A]
= Pr[A] + (Pr[B] — Pr[A N B])

A L | ] {, 7 o
[50 "0 50 .‘l"-_'ic"n'.’-'-iq!.-;!‘;’ J

(Disjoint Sum Rule)
(Difference Rule)
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Pr[A U B] < Pr[A] + Pr[B]. (2-event Union Bound)
Solution. This follows immediately from Inclusion-Exclusion and the fact that Pr[4 N B] > 0. |
If A € B, then Pr[A] < Pr[B]. (Monotonicity)

Solution.

Pr{A] = Pr{B] — (Pt[B] — Pt[A])

= Pr[B] — (Pr[B] — Pr[A N B]) (since A = AN B)
= Pr[B] — Pr[B — 4] (difference rule)
< Pr[B] (since Pr[B — A] = 0).
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Appendix

The Four Step Method

This is a good approach to questions of the form, “What is the probability that ...?” Intuition can be
misleading, but this formal approach explains exactly what’s going on every time.

1. Find the sample space. (Use a tree diagram.)
2. Define events of interest. (Mark leaves corresponding to these events.)
3. Determine outcome probabilities:

(a) Assign edge probabilities.
(b) Compute outcome probabilities. (Multiply along root-to-leaf paths.)

4. Compute event probabilities. (Sum the probabilities of all outcomes in the event.)

Probability Spaces

A countable sample space, S, is a nonempty countable set. An element w € S is called an outcome. A
subset of S is called an event.

A probability space consists of a sample space, S, and a function Pr[] : S — [0, 1], called the probability
Jfunction, such that
Z Pr{w] = 1.

wesS

For any event, E C S, the probability of E is defined to be the sum of the probabilities of the outcomes

in E:
Pi[E]:= Z Pr{w].
wekE
Sum Rule & Union Bound
Let Eo, Ey,... be a (possibly infinite) sequence of events. These events are said to be pairwise disjoint if
Ei N Ej = @ wheneveri # j.
If these events are pairwise disjoint, then
Pri| ) Ea] =)  Pr{En]. (Disjoint Sum Rule)
n>0 n>0
Even if they are not pairwise disjoint,
Pr[U 0 EPr[E,,]. (Union Bound)

n=0 izn
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In-Class Problems Week 12, Mon.

Problem 1.

There are two decks of cards. One is complete, but the other is missing the ace of spades. Suppose you
pick one of the two decks with equal probability and then select a card from that deck uniformly at random.
What is the probability that you picked the complete deck, given that you selected the eight of hearts? Use
the four-step method and a tree diagram.

Problem 2.

There are three prisoners in a maximum-security prison for fictional villains: the Evil Wizard Voldemort,
the Dark Lord Sauron, and Little Bunny Foo-Foo. The parole board has declared that it will release two of
the three, chosen uniformly at random, but has not yet released their names. Naturally, Sauron figures that
he will be released to his home in Mordor, where the shadows lie, with probability 2/3.

A guard offers to tell Sauron the name of one of the other prisoners who will be released (either Voldemort
or Foo-Foo). Sauron knows the guard to be a truthful fellow. However, Sauron declines this offer. He reasons
that if the guard says, for example, “Little Bunny Foo-Foo will be released”, then his own probability of
release will drop to 1/2. This is because he will then know that either he or Voldemort will also be released,
and these two events are equally likely.

Using a tree diagram and the four-step method, either prove that the Dark Lord Sauron has reasoned
correctly or prove that he is wrong. Assume that if the guard has a choice of naming either Voldemort or
Foo-Foo (because both are to be released), then he names one of the two uniformly at random.

Problem 3.
Suppose that you flip three fair, mutually independent coins. Define the following events:

e Let A be the event that the first coin is heads.

e Let B be the event that the second coin is heads.

e Let C be the event that the third coin is heads.

e Let D be the event that an even number of coins are heads.

(a) Use the four step method to determine the probability space for this experiment and the probability of
eachof A, B,C, D.

(b) Show that these events are not mutually independent.

(¢) Show that they are 3-way independent.

Problem 4.
Let A, B, C be events. For each of the following statements, prove it or give a counterexample.

Creative Commons ©289 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 In-Class Problems Week 12, Mon.

(a) If A is independent of B, and A is independent of C, then A is independentof B N C.
(b) If A is independent of B, and A is independent of C, then A is independent of B U C.

(c) If A is independent of B, and A is independent of C, and A is independent of B N C, then A is
independent of B U C.

Appendix

The Four Step Method

This is a good approach to questions of the form, “What is the probability that ——-?" Intuition can be
misleading, but this formal approach gives the right answer every time.

I. Find the sample space. (Use a tree diagram.)
2. Define events of interest. (Mark leaves corresponding to these events.)
3. Determine outcome probabilities:

(a) Assign edge probabilities.

(b) Compute outcome probabilities. (Multiply along root-to-leaf paths.)
4. Compute event probabilities. (Sum the probabilities of all outcomes in the event.)
Conditional Probabilitiy

For events E, F such that Pr[F] # 0, the conditional probability of E given F is:

Pr[E N F]

B[ B ]G PilF]

Law of Total Probability

Here is the Law stated for three sets: suppose E, F, G are pairwise disjoint events, and

ACEUFUG.
Then
Pr[A] = Pr[A N E] + Pr[A N F] + Pr[4 N G]
=Pr[A| E]-Pr[E]+Pr[A | F]-Pt[F]+Pr[4| G]-Pr[G].
Independence

Events E, F are independent iff
Pr[E N F] = Pr[E] - Pr[F].

Events £y, Es, ..., E, are mutually independent if and only if
Pr((") Ei] = [ | PrlEi]
ieJ ieJ

for all subsets J C {1,...,n}.
Events £, E3, ..., are k-way independent iff every k of these events are mutually independent.
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Massachusetts Institute of Technology
6.0421/18.062J, Spring *11: Mathematics for Computer Science April 25
Prof. Albert R Meyer revised Monday 25" April, 2011, 02:15

Solutions to In-Class Problems Week 12, Mon.

Problem 1.

There are two decks of cards. One is complete, but the other is missing the ace of spades. Suppose you
pick one of the two decks with equal probability and then select a card from that deck uniformly at random.
What is the probability that you picked the complete deck, given that you selected the eight of hearts? Use
the four-step method and a tree diagram.

Solution. Let C be the event that you pick the complete deck, and let H be the event that you select the
eight of hearts. In these terms, our aim is to compute:
Pr[C N H]
PriC| H|=——+—
o[C.l.H] Pr{H]

A tree diagram is worked out below:

card
selected
— complete? 8 of hearts? probability
N 8 hearts
picked X X 1/104

X 51/104
D0\ 1/2 8 hearts X 11102
other 50/102

Now we can compute the desired conditional probability as follows:

Prf[C N H
pﬂc;y]:%

1

103
= 0.495146. ..

1
2
5)

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to In-Class Problems Week 12, Mon.

Thus, if you selected the eight of hearts, then the deck you picked is less likely to be the complete one. It’s
worth thinking about how you might have arrived at this final conclusion without going through the detailed
calculation.

Problem 2.

There are three prisoners in a maximum-security prison for fictional villains: the Evil Wizard Voldemort,
the Dark Lord Sauron, and Little Bunny Foo-Foo. The parole board has declared that it will release two of
the three, chosen uniformly at random, but has not yet released their names. Naturally, Sauron figures that
he will be released to his home in Mordor, where the shadows lie, with probability 2 /3.

A guard offers to tell Sauron the name of one of the other prisoners who will be released (either Voldemort
or Foo-Foo). Sauron knows the guard to be a truthful fellow. However, Sauron declines this offer. He reasons
that if the guard says, for example, “Little Bunny Foo-Foo will be released”, then his own probability of
release will drop to 1/2. This is because he will then know that either he or Voldemort will also be released,
and these two events are equally likely.

Using a tree diagram and the four-step method, either prove that the Dark Lord Sauron has reasoned
correctly or prove that he is wrong. Assume that if the guard has a choice of naming either Voldemort or
Foo-Foo (because both are to be released), then he names one of the two uniformly at random.

Solution. Sauron has reasoned incorrectly. In order to understand his error, let’s begin by working out the
sample space, noting events of interest, and computing outcome probabilities:

1/3 X X x
1/6 X X
1/6 X
1/3 X
released V b d . S
. prob. guard says oo-foo auron
guard says "Foo-foo™ released released

Define the events S, F, and “F” as follows:

“F” = Guard says Foo-Foo is released
F = Foo-Foo is released

S = Sauron is released

The outcomes in each of these events are noted in the tree diagram.
Sauron’s error is in failing to realize that the event F (Foo-foo will be released) is different from the event
“F” (the guard says Foo-foo will be released). In particular, the probability that Sauron is released, given
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that Foo-foo is released, is indeed 1/2:

Pr[S N F]

Pr[S| F]= PrF]

+

O\ | W=

Q=

But the probability that Sauron is released given that the guard merely says so is still 2/3:

Pr[S N“F]
P S l‘F” —
I [ I ] Pr[“Fn]
1

=2 i3
1, 1
3+8

2

3

So Sauron’s probability of release is actually unchanged by the guard’s statement. O

Problem 3.
Suppose that you flip three fair, mutually independent coins. Define the following events:

Let A be the event that the first coin is heads.

Let B be the event that the second coin is heads.

Let C be the event that the third coin is heads.

Let D be the event that an even number of coins are heads.

(a) Use the four step method to determine the probability space for this experiment and the probability of
eachof A, B,C, D.

Solution. The tree is a binary tree with depth 3 and 8 leaves. The successive levels branching to show
whether or not the successive events A, B, C occur. By definition of fair and independent, each branch out
of a vertex is equally likely to be followed. So the probability space has as outcomes the eight length-3
strings of H’s and T’s, each of which has probability (1/2)3 = 1/8.

Each of the events events A, B, C, D are true in four of the outcomes and hence has probability 1/2. |
(b) Show that these events are not mutually independent.

Solution.
PrfAN BN C N D] =0 # (1/2)* = Pr[A] - Pr[B] -Pr[C] - Pr[D].

(c) Show that they are 3-way independent.
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Solution. Because the coin tosses are mutually independent, we know:
Pr[A N B N C] = Pr[A] - Pr[B] - Pr[C].

What remains is to check that equality holds for the other subsets of three events: {4, B, D}, {4, C, D}, and
{B,C, D}. By symmetry, again, we need only check one, say the first one.

1
Pr{4 N BN D] =Pl{HHT}] = 2.
Since this is equal to Pr[A] - Pr[B] - Pr[D], these three events are independent.

‘We conclude that all four events are three-way independent. |

Problem 4.
Let A, B, C be events. For each of the following statements, prove it or give a counterexample.

(a) If A is independent of B, and A is independent of C, then A is independent of B N C.

Solution. This is false. To see why, consider the usual random experiment of rolling a die and let A, B,
C be the events that the die rolls less than 3, rolls an even number, or rolls a prime number, respectively,
namely,

A={1,2} B ={2,4,6} C ={2,3,5})

Then,
Pr{A] =1, Pr[B]=PiC] =1,
and
Pr[AN Bl =Pr{ANC]=Pi[BNC]=P{ANBNC]=Pr[{2}] = }.
Easily,

Pr[A| B]=Pr[A]| C]=¢/3 =% =Pr(4],

which proves A is independent of B and also independent of C. However,

Pr[A| BNC]=Pi{ANBNC]/PI[BNC] =%/ =1 Pr{A],

which implies A is not independent of B N C.

|
(b) If A is independent of B, and A is independent of C, then A is independent of B U C.
Solution. This is false using the same example as for part (a), where
Pr[BUC]=2, PrAN(BUC)]=%.
Hence,
Pr[A| BUC]=1%/2 =1 #PrA]
which again implies A is not independent of B U C.
|

(c) If A is independent of B, and A is independent of C, and A is independent of B N C, then A is
independent of B U C.
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Solution. This is true. To prove it, suppose 4 is independent of each of B, C, and B N C, so

Pr[A N B] = Pr{A] P[B] (1)

Pr{A N C] = Pr[A] Pt[C] )

Pr[4 N (B N C)] = Pr[A]Px{B N C]. 3)
@

Then,

PrfAN(BUC)]|=Pr[(ANB)U(ANC)]
=Pr[ANB]+Pr[ANC]—=Pr[(ANB)N(ANC)] (inclusion-exclusion)
=Pr[ANB]+Pi[ANC]—Pr[AN BNC]

= Pr[A] Pr[B] + Pr[A] Pr[C] — Pr[A4] Pt[B N C] (by (1), (2), 3))
= Pr[A](Pr[B] + Pr[C] — Pr[B N C])
= Pr[4] Pr[B U C]. (inclusion-exclusion)
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Analysis of Team 2 Strategy
So > 1/7 of time, sure win.
Rest of fime, win 1/2.

by Law of Total Probability

Aert B Meyer  dgrid 27,200 loe 12w

Annlysié of Team 2 Strategy
So > 1/7 of time, sure win.
Rest of time, win 1/2.
Pr{Team 2 wins} >

1 1 4
?4+@‘7}§=7

(&80 Albert R Meyer Apei 27, 2011 lec 12W9

Bt Analysis of Team 2 Strategy
So > 1/7 of time, sure win.
Rest of time, win 1/2.
Pr{Team 2 wins} =

Pr{win|Z good} Pr{Z good} +
Pr{win|Z no good}-Pr{Z no good}

Abert R Meyer Apedl 2T, 2011 lec 12W.10

B .
Analysis of Team 2 Strategy

Does not matter
what Team 1 does!

EEEE Team 1 Strategy |

..& Team 1 can 'play S0
Pr{Team 2 wins} < ;
whatever Team 2 does

Alpert B Meyer April 27,2011 lec 12W.12

| AbeiRMeyer  ApriZr,20n J Jec 1W1L

EEEE Random Variables

oo ¢

Informally: an RV is a number
produced by a random process:

+ threshold variable Z

* number of larger card

* number of smaller card
* number of exposed card

SleEl AbertBMeyer  April27,201 loc 12W13




Random Variables

Informally: an RV is a number
produced by a random process:

* #hours to next system crash

- #faulty chips in production run

- avg # faulty chips in many runs

» #heads in n coin flips .

Albert R Meyer Aprd 27, 2011 lec 1IW.14

==:8 Tntro to Random Variables
Specify events using values of variables
~ +[C=1]is event "exactly 1 head”
Ppic=sl}=23/8
*Pr{C>1}=7/8
* Pr{C-M > 0} = Pr{M>0 and C>0}
= Pr{all heads} = 1/8

Abart R Mayer Aped 27. 2008 lec 1ZW.16

Iniro fd Random Variables
'Example:':FEip 'rhr'éé fair ééins
C :i= # heads (Count)
1 if all Match,
{0 otherwise.

Aloert B Merer  Apeil 2T, 2011 Joc 1ZW.I5

EEQ ~ Independent Variables
random variables R,S
are independent iff

[R=al [[S=b]

are independent
events foralla, b

Albert R Meper Aprd 27_ 2011 lec 17W.18

"5 What is a Random Variable?

Formally, : e
RiS—R_

Sam IE space
e 1 (usually)

Abert R Meyer Aprid 27, 2011 g 1IWIT

Independent Var'iub_les

alternate version:
Pr{R = a aND S = b} =
Pr{R = a} : Pr{S = b}

Abert # Meyer Aprid 27, 2011 luc 12W.20




Independent Variables
Are Cand M
independent? NO:
Pr{M=1}-Pr{C=1} > O
Pr{M=1 and C=1} = O

Alsert B Mayer Apri 27, 2011 e 12w 21

A and B are independent.)

o Te]
ﬁﬁﬁg Indicator Variables

The indicator variable for

event A:
I __:{1 if A occurs,
A :

0 if A does not occur.

(Sanity check:
I, and I; are independent iff

ARert? R Mayer Aprd 27, 2011 les 1ZW3IT

g?g Mutally Independent Variables

Def: Rl, Rz, Sty Rn

are mutually indep RV's iff
[Rlzal]:_[RZ:GZ]l"'I[Rn:an]

are mutually indep events

forialllala> it ia-

Abert R Meysr Aped 27, 2018 lecizwas

Mutally Independent Variables
Pr{R;=a; AND R,=a, AND
-+ AND R =a,}
= Pr{Ry=as}- Pr{R,=a,} -
| " PelR=a ]}

Abart R Meyer April 27, 2011 lec 12W.25

EEE Binomial Random Variable

B, p:= # heads in n mutually indep flips.

Coin may be biased. So 2 parameters
n = # flips, p = Pr{head}

C is binomial for 3 flips: C is B3/,

for n=5, p=2/3

Pr{HHTTH} = :

Pr{H}-Pr{H}-Pr{T}-Pr{T}-Pr{H}
(by independence)

Alert & Meyer Aprd 77, 2011 Jac 12W 29

Binomial Random Variable
B, p+i= # heads in n mutually indep flips.
Coin may be biased. So 2 parameters
n = # flips, p = Pr{head}
C is binomial for 3 flips: C is B3/,
for n=5, p=2/3
Pr{HHTTH} =
2 2o

W=
w

3 3




§§§ - Binomial Random Variable ‘Binomial Random Variable

B, 0+:= # heads in n mutually indep flips. By pi= # heads.in n mutually indep flips.

Coin may be biased. So 2 parameters Coin may b/bias;§ So 2 paramefers
nu=#flips, p:= Pr{head} nu= #flipsT pi= Prthead)

Cis binomial for 3 flips: C is B3/, Pr{each sequence w/i H's, n-i T's} =

for n=5,p=2/3 (5)* (1) e
- 2 | ey

* Qoo ARG
i  Binomial Random Variable il  Binomial Random Variable

B, p+:= # heads in n mutually indep flips. By, p+:= # heads in n mutually indep flips.

Coin may be biased. So 2 parameters Coin may be biased. So 2 parameters
n:=# flips, pu= Pr{head} n:=# flips, pu= Pr{head)

Pr{get i H's, n-i T's} = #seq's pr[seq] Pr{ Bn 5 = | } = #seq's: pr{seq}

e oo

Abert RMeysr  Aprid 27,2011

e Density & Distribution #&  Uniform Distribution
Probability Density Function .all values equally likely.
of random variable R, “threshold” variable was uniform:
PDFy(a) = Pr{R = a} PDF(i) ::= Pr{Z = i} = =
- Wl fori=0,1,.,6
L 1 ) 1.6
PDFBH,,, (1) i p ( p




Uniform Distribution
R is uniform iff PDF; is constant
D :i= outcome of fair die roll
Pr{D=1} = Pr{D=2} == Pr{D=6} = 1/6
S :i= 4-digit lottery number
Pr{S = 0000} = Pr{S = 0001} = -
= Pr{S = 9999} = 1/10000

cach ~ Mutual Independence

Given mutually indep RV's Ri,Rz,....
[Ri=R,] indep of [R3=R4]?

Rlexe AbertQ Meyer  Aprid 77,7001 hac 12W.39
S
Mutual Independence

Given mutually indep RV's R R,,...
[Ri=R;] indep of [R3=R,] ?
YES as long as one of
the R/'s is uniform

- obviously!
Qe AbertRMerer  Apri 27,201 lec 17W A0
§§§E - Mutual Independence

Given mutually indep RV's R;,R,,...

[R=R;] indep of [R=R]]
for (i,j) = (k1) if one of
the R's is uniform '

O OO Alert R Meyer Aped Z7. 2011 lez 12W A1
AT
af-o Mutual Independence

Given mutually indep RV's Ry ,R,...
not 3-way independent

RIZRZ Gnd R3:R2 .
lmp“es RI:R3

=) D53 Aloert R Meyer April 27, 2011 Sec 12WAY

they are pairwise indep

’@1@2; Albart & Meyer April 27,201 e 12W.A2

§§§§ Team Problems

Problems
1—4

[E05 Abert RMeyer  April 27,2011 4 ez 12WA4
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In-Class Problems Week 12, Wed.

Guess the Bigger Number Game

Team 1:
e Write different integers between 0 and 7 on two pieces of paper.
e Put the papers face down on a table.
Team 2:
e Turn over one paper and look at the number on it.
e Either stick with this number or switch to the unseen other number.

Team 2 wins if it chooses the larger number.

Problem 1.

The analysis in section 17.3.3 implies that Team 2 has a strategy that wins 4/7 of the time no matter how
Team 1 plays. Can Team 2 do better? The answer is “no,” because Team | has a strategy that guarantees
that it wins at least 3/7 of the time, no matter how Team 2 plays. Describe such a strategy for Team 1 and
explain why it works.

Problem 2.
Suppose X1, X2, and X3 are three mutually independent random variables, each having the uniform distri-
bution

Pr(X; = k] equal to 1/3 foreachof k = 1,2, 3.

Let M be another random variable giving the maximum of these three random variables. What is the density
function of M ?

Problem 3. (a) Prove that if A and B are independent events, then so are A and B.

(b) Let 74 and /p be the indicator variables for events A and B. Prove that /4 and /g are independent iff
A and B are independent.

Hint: For any event, E, let E! ::= E and EV ::= E. So the event [/ = a] is the same as E¢.

Problem 4.
Let R, §, and T be random variables with the same codomain, V.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 In-Class Problems Week 12, Wed.

(a) Suppose R is uniform —that is,

forallb e V.

Suppose R is independent of S. We originally had the following argument in the class text:

The probability that R = § is the same as the probability that R takes whatever value S happens
to have, therefore
1
PR = 8] = —. (1)
VI

Are you convinced by this argument? We decided to replace it by a reference to this problem. We’d like
your advice on whether it should be put back it the text. Before advising us, write out a careful proof of (1).

Hint: The event [R = S]is the same as the disjoint union of events [R = b AND § = b|forb € V.

Definition. A random variable, R, is independent of a set {R;, R», ...} of random variables iff the event
[R = r] is independent of the event

[Ri =r1 AND R = r2 AND -+ -]
for all values r,ry,ra2, .. ..

(b) Now suppose R has a uniform distribution, and R is independent of {S., 7'}. How about this argument?

The probability that R = § is the same as the probability that R takes whatever value S and
T happen to have in common, and this probability remains equal to 1/|V| by independence.
Therefore the event [R = S] is independent of [S = T].

Write out a careful proof that [R = S] is independent of [S = T'].

(c) Let V ={1,2,3} and R, S, T take the following values with equal probability,
111,211,123,223,132,232.

Verify that

I. Risindependent of {S, T},
2. The event [R = S] is not independent of [S = T].

3. S and T have a uniform distribution,
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Solutions to In-Class Problems Week 12, Wed.

Guess the Bigger Number Game
Team 1:
e Write different integers between 0 and 7 on two pieces of paper.
e Put the papers face down on a table.
Team 2:
e Turn over one paper and look at the number on it.

e FEither stick with this number or switch to the unseen other number.

Team 2 wins if it chooses the larger number.

Problem 1.

The analysis in section 17.3.3 implies that Team 2 has a strategy that wins 4/7 of the time no matter how
Team 1 plays. Can Team 2 do better? The answer is “no,” because Team 1 has a strategy that guarantees
that it wins at least 3/7 of the time, no matter how Team 2 plays. Describe such a strategy for Team 1 and
explain why it works.

Solution. Team 1 should randomly choose a number Z € {0, ..., 6} and write Z and Z + 1 on the pieces
of paper with all numbers equally likely.

To see why this works, let N be the number on the paper that Team 2 turns over, and let OK be the event
that N € {1,...,6}. So given event OK, that is, given that N € {1,..., 6}, Team 1’s strategy ensures that
half the time N is the higher number and half the time N is the lower number. So given event OK, the
probability that Team 1 wins is exactly 1/2 no matter how Team 2 chooses to play (stick or switch).

Now we claim that P

Pr[OK] = 7 (1)
which implies that the probability that Team 1 wins is indeed at least (1/2)(6/7) = 3/7.

To prove Pr[OK] = 6/7, we can follow the four step method. (Note that we couldn’t apply this method
to model the behavior of Team 2, since we don’t know how they may play, and so we can’t let our analysis
depend on what they do.)

The first level of the probability tree for this game will describe the value of Z: there are seven branches
from the root with equal probability going to first level nodes corresponding to the seven possible values of
Z. The second level of the tree describes the choice of the number, N: each of the seven first-level nodes
has two branches with equal probability, one branch for the case that N = Z and the other for the case that
N = Z + 1. So there are 14 outcome (leaf) nodes at the second level of the tree, each with probability 1/14.

Now only two outcomes are not OK, namely, when Z = 6 and N = 7, and when Z = 0and N = 0.
Each of the other twelve outcomes is OK, and since each has probability 1/14, we conclude that Pr[OK] =
12/14 = 6/7, as claimed. O

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Valueof Z Value of N Nin{1, .., 6}

NOT OK

OK
OK

OK
OK
OK
OK
OK
OK
OK
OK
OK

OK
NOT OK

Problem 2.

Suppose X1, X2, and X3 are three mutually independent random variables, each having the uniform distri-
bution

Pr[X; = k] equal to 1/3 foreachof k = 1,2, 3.

Let M be another random variable giving the maximum of these three random variables. What is the density
function of M?

Solution.

PDF (1) = —

N

ol

PDFuy(2) = —

M(2) 57

19

PDFy(3) = —

m(3) 77

This can be hashed out by counting the possible outcomes. Alternatively, we can reason as follows:
The event M = 1 is the event that all three of the variables equal 1, and since they are mutually indepen-
dent, we have

s -
PriM =1] = Pr[X;=1]-PrlXa =1]-PrXz=1]=(=] ==.
3 27
To compute Pr[M = 2], we first compute Pr[M < 2]. Now the event [M < 2] is the event that all three
of the variables is at most 2, so by mutual independence we have

3
PiM <2] = Pi[X; <2] Pr[Xs <2]-PrX3<2] = G) =t

Therefore, 5 ; :
=01 = BN =Rt == s e
M=t M = 2] = Pr =% % =73
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Finally,
8 19
= = 1-PrfM <2]|=1——==—.
Pr[M = 3] (M < 2] 77 = 77
|
Problem 3. (a) Prove that if A and B are independent events, then so are 4 and B.
Solution. Proof.
Pr[A N B] = Pr[A] — Prf[A N B] (difference rule)
= Pr[A] — Pr[A] - Pr[B] (independence of A and B)
= Pr[A4](1 — Pr[B])
= Pr[A] - Pr[B] (complement rule).
O

(b) Let I4 and /g be the indicator variables for events A and B. Prove that /4 and [ p are independent iff
A and B are independent.

Hint: For any event, E, let E! ::= E and E° := E. So the event [/ g = a] is the same as EZ.

Solution. Proof. By part (a) and the fact that E=E , the following propositions are equivalent:

e A and B are independent,
e Jda,b € {0,1}.[A% and BY are independent],
e VYa,b €{0,1}.[A% and BY are independent].

Therefore, the following propositions are equivalent as well:

e /4 and Ip are independent,

e Va,b € {0,1}. [[/4 = a] and [ 4 = b] are independent events] —by definition of independence for
random variables,

e Va,b € {0,1}. [A% and B? are independent],

e A and B are independent —(by part (a)).

Problem 4.
Let R, S, and T be random variables with the same codomain, V.
(a) Suppose R is uniform —that is,
1
Pr[R =b] = —,
4
forallbe V.

Suppose R is independent of S. Originally this text had the following argument:

The probability that R = S is the same as the probability that R takes whatever value S happens

to have, therefore
1
Pr[R=S]=—. 2)
Vi :
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Are you convinced by this argument? We decided to replace it by a reference to this problem. We’d like
your advice on whether it should be put back it the text. Before advising us, write out a careful proof of (2).

Hint: The event [R = S] is the same as the disjoint union of events [R = b AND § = b] forb € V.

Solution. Proof.

PR =S]=Pr| J[R=bAND S =]

beV
= Z Pr[R = b AND S = b] (disjoint sum rule)
bev
= > Pr{R=b]-Pi[S =] (R, S independent)
bev
1
=5 7 il = 5] (R is uniform)
bev Vi
1
=" PrS =]
¥ beV
1 1
V] Vi
This proves (2). O

We’re now leaning toward putting the argument back in the text —along with a reference to a problem
asking for the proof above.

Definition. A random variable, R, is independent of a set {R;, R, ...} of random variables iff the event
[R = r] is independent of the event

[Ry =r] AND R; =r2 AND ---]
for all values r,ry,ra,....
(b) Now suppose R has a uniform distribution, and R is independent of {S, 7'}. How about this argument?

The probability that R = § is the same as the probability that R takes whatever value S and
T happen to have in common, and this probability remains equal to 1/|V| by independence.
Therefore the event [R = S] is independent of [S = T].

Write out a careful proof that [R = S] is independent of [S = T].

Solution. We must show that:

Pri[R = S]N[S =T]) =P[R = S]-Pr[S = T1. 3)
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Proof.
Pr[R = S]N[S =T]|
=Pr[R=SAND S =T]
=Pr[U[R=bAND S = b AND T=b]]
bev
= E Pr[R =b AND S =b AND T = b] (disjoint sum rule)
beV
=Y PR =b]-Pr[S =bAND T =b] (R independent of {S, T'})
beV
1
=, o Pr{S =bAND T =] (R is uniform)
beV I |
1
_W-ZPr[S—bAND T = b]
beV
1 —
= —.Pr U [S=bAND T = b] (disjoint sum rule)
lVl beV
=——-PI[§=T
vy P =1
=Pr[R=S]-Pi[S =T], (part (a))
which proves (3). ]

(c) Let V ={1,2,3}and R, S, T take the following values with equal probability,
111,211,123,223,132,232.
Verify that

1. R isindependent of {S, T},
2. The event [R = S] is not independent of [S = T].

3. S and T have a uniform distribution,

Solution. To prove independence, note that 1,s,¢ is a possible sequence of values R, S, T iff 2,s,7 and
1,¢, s are also possible. This implies that

mm:u:mm:m:é

It also implies that if s, t are possible values for S, T', then

1
Pr[S=SANDT=r]=§.

Soifi,s,t are possible values for R, S, T, then

1

Pr[R=iANDS=sANDT=t]=g= =Pr[R=1i]-Pr[S=sANDT =1].

B =
W -

Likewise, if i, s, are not possible values for R, S, T, then either Pr[R = i] = 0 because i = 3, or else
Pr[S = s AND T = ¢t] = 0 because s, ¢ are not possible values for S, 7. So in this case

Pr[R=iANDS =5ANDT =t]=0=Pr[R=i]-Pr[S =5AND T =1].
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This proves 1.

Finally, there are two outcomes out of six with R = § and and two outcomes with with S = T, so
Pr[R = §] = 1/3 = Pr[S = T]. But the only outcome in [R = S]N[S = T]is 111, so

Pr[[R:S]ﬂ[S=T1]=—é-7£$=Pr[R=S]-Pr[S=T].

This proves 2.

There are two outcomes with S =i foreachi € V,so Pr[S =i] = 1/3foralli € V, thatis, S is uniform.
Likewise for T'. This proves 3.
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Problem Set 10
Due: April 29
Reading: Chapter 16, Intro to Probability; Chapter 17, Random Variables

Problem 1.
[The Four-Door Deal]

Let’s see what happens when Let’s Make a Deal is played with four doors. A prize is hidden behind one
of the four doors. Then the contestant picks a door. Next, the host opens an unpicked door that has no prize
behind it. The contestant is allowed to stick with their original door or to switch to one of the two unopened,
unpicked doors. The contestant wins if their final choice is the door hiding the prize.

Let’s make the same assumptions as in the original problem:

1. The prize is equally likely to be behind each door.

]

. The contestant is equally likely to pick each door initially, regardless of the prize’s location.

3. The host is equally likely to reveal each door that does not conceal the prize and was not selected by
the player.

Use The Four Step Method of Section 16.2 to find the following probabilities. The tree diagram may
become awkwardly large, in which case just draw enough of it to make its structure clear.
(a) Contestant Stu, a sanitation engineer from Trenton, New Jersey, stays with his original door. What is
the probability that Stu wins the prize?

(b) Contestant Zelda, an alien abduction researcher from Helena, Montana, switches to one of the remain-
ing two doors with equal probability. What is the probability that Zelda wins the prize?

Now let’s revise our assumptions about how contestants choose doors. Say the doors are labeled A, B, C,
and D. Suppose that Carol always opens the earliest door possible (the door whose label is earliest in the
alphabet) with the restriction that she can neither reveal the prize nor open the door that the player picked.

This gives contestant Mergatroid —an engineering student from Cambridge, MA —ijust a little more
information about the location of the prize. Suppose that Mergatroid always switches to the earliest door,
excluding his initial pick and the one Carol opened.

c 1at 1s the probabili at Mergatroid wins the prize?
(c) What is the probability that Mergatroid the prize?

Problem 2.

You are organizing a neighborhood census and instruct your census takers to knock on doors and note the
sex of any child that answers the knock. Assume that there are two children in a household and that girls
and boys are equally likely to be children and to open the door.

A sample space for this experiment has outcomes that are triples whose first element is either B or G
for the sex of the elder child, likewise for the second element and the sex of the younger child, and whose
third coordinate is E or Y indicating whether the elder child or younger child opened the door. For example,
(B, G, Y) is the outcome that the elder child is a boy. the younger child is a girl, and the girl opened the door.

BIE8 011,

Creative Commons
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(a) Let T' be the event that the household has two girls, and O be the event that a girl opened the door. List
the outcomes in T and O.

(b) What is the probability Pr [T | O], that both children are girls, given that a girl opened the door?

(c) Where is the mistake in the following argument?

If a girl opens the door, then we know that there is at least one girl in the household. The
probability that there is at least one girl is

1 — Pr[both children are boys] = 1 — (1/2 % 1/2) = 3/4. ()
So,
Pr [T | there is at least one girl in the household] (2)
__ Pr[T N there is at least one girl in the household] 3
~ Prfthere is at least one girl in the houschold] )
B Pr[T] %)
~ Prfthere is at least one girl in the household] (
= (1/4)/3/9 = 1/3. &)
Therefore, given that a girl opened the door, the probability that there are two girls in the house-
hold is 1/3.
Problem 3.

There is a course —not Math for Computer Science, naturally —in which 10% of the assigned problems
contain errors. If you ask a Teaching Assistant (TA) whether a problem has an error, then they will answer
correctly 80% of the time. This 80% accuracy holds regardless of whether or not a problem has an error.
Likewise when you ask a lecturer, but with only 75% accuracy.

We formulate this as an experiment of choosing one problem randomly and asking a particular TA and
Lecturer about it. Define the lollowing events:

E ::= “the problem has an error,”
T ::= “the TA says the problem has an error,”
L ::= “the lecturer says the problem has an error.”

(a) Translate the description above into a precise set of equations involving conditional probabilities among
the events £, T, and L.

(b) Suppose you have doubts about a problem and ask a TA about it, and they tell you that the problem
is correct. To double-check, you ask a lecturer, who says that the problem has an error. Assuming that
the correctness of the lecturers’ answer and the TA's answer are independent of each other, regardless of
whether there is an error', what is the probability that there is an error in the problem?

(¢) Ts the event that “the TA says that there is an error”, independent of the event that “the lecturer says that
there is an error”™?

I"This assumption is questionable: by and large. we would expect the lecturer and the TAs to spot the same glaring errors and to
be fooled by the same subtle ones.
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Problem 4.
Suppose you have a biased coin that has probability p of flipping heads. Let J be the number of heads in n
independent coin flips. So J has the general binomial distribution:

PDF, (k) = (:) kgn—k

where g :=1— p.
(a) Show that

PDF;(k — 1) < PDF, (k) fork <np+ p,
PDF;(k — 1) > PDF, (k) fork > np + p.

(b) Conclude that the maximum value of PDF is asymptotically equal to

1
2anpq

Hint: For the asymptotic estimate, it’s ok to assume that np is an integer, so by part (a), the maximum value
is PDF;(np). Use Stirling’s formula (14.30):

nan
n'~ ~2mn (—) :
e

Problem 5.

Let R and S be independent random variables, and f ard g be any functions such that domain( f) =
codomain(R) and domain(g) = codomain(S). Prove that f(R) and g(S) are independent random vari-
ables. Hint: The event [ f(R) = a] is the disjoint union of all the events [R = r] for r such that f(r) = a.
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Solutions cover sheet

Massachusetts Institute of Technology
April 22

6.042J/18.062]. Spring "1 1: Mathematics for Computer Science
Prof. Albert R Meyer

Student’s Solutions to Problem Set 10

Your name: m ;(/L]& @‘ P (@5}»‘?;0[
Due date:  April 29

Submission date

: q / /(,9
Circle your TA/LA: Al Nick Oscar Table number | /Z

Collaboration statement: Circle one of the two choices and provide all pertinent info.
1. T worked alone and only with course materials.
2. Icollaborated on this assignment with:

[
got help from:' Sl 9 7

and referred to:>

DO NOT WRITE BELOW THIS LINE

Problem | Score

[S]

= w

J
Total

| ( 30 . . ~ -
Creative Commons @46&% 2011, Eric Lehman. F Tom Leighton, Albert R Meyer .
People other than course staff.
>Give citations to texts and material other than the Spring "1 course materials.
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Solutions to Problem Set 10

Reading: Chapter 16, Intro to Probability; Chapter 17, Random Variables

Problem 1.
[The Four-Door Deal]

Let’s see what happens when Let’s Make a Deal is played with four doors. A prize is hidden behind one
of the four doors. Then the contestant picks a door. Next, the host opens an unpicked door that has no prize
behind it. The contestant is allowed to stick with their original door or to switch to one of the two unopened,
unpicked doors. The contestant wins if their final choice is the door hiding the prize.

Let’s make the same assumptions as in the original problem:

1. The prize is equally likely to be behind each door.
2. The contestant is equally likely to pick each door initially, regardless of the prize’s location.

3. The host is equally likely to reveal each door that does not conceal the prize and was not selected by
the player.

Use The Four Step Method of Section 16.2 to find the following probabilities. The tree diagram may
become awkwardly large, in which case just draw enough of it to make its structure clear.

(a) Contestant Stu, a sanitation engineer from Trenton, New Jersey, stays with his original door. What is
the probability that Stu wins the prize?

Solution. A partial tree diagram is shown below. The remaining subtrees are symmetric to the fully-
expanded subtree. The probability that Stu wins the prize is:

T I ) O g M g
lidibit e Sovindtl W TIAT ST Bany

We multiply by 4 to account for the four subtrees, of which we’ve only drawn one.

Notice that we expanded the tree out to the third (“door revealed™) level to spell out the outcomes, but in this
case we could, in fact, have stopped at the second level (“player’s initial guess”™). This follows because the
win/lose outcome is determined by the prize location and Stu’s selected door, regardless of what happens
after that. o

(b) Contestant Zelda, an alien abduction researcher from Helena, Montana, switches to one of the remain-
ing two doors with equal probability. What is the probability that Zelda wins the prize?

Solution. A partial tree diagram is worked out below. The probability that Zelda wins the prize is:

Lo o i o i o 0 AX, B
Bl Saming) =l e G D S S
fiEddpin] (64+64+64+64+64+64) g

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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door revealed outcome Stu wins?
AAB X
| 13 B
player’s
initial 13 C ARC X
guess
1/3
D AAD X
A
1/4
12 C ABC
B
114 12 ABD
location
of prize (o 12 B ACB
1/4
N Vs 12 p ACD
D
B 1/4
1/4 12 B ADB
- 1/2
1/4 C ADC
D
1/4

Now let’s revise our assumptions about how contestants choose doors. Say the doors are labeled A, B, C,
and D. Suppose that Carol always opens the earliest door possible (the door whose label is earliest in the
alphabet) with the restriction that she can neither reveal the prize nor open the door that the player picked.

This gives contestant Mergatroid —an engineering student from Cambridge, MA —just a little more
information about the location of the prize. Suppose that Mergatroid always switches to the earliest door,
excluding his initial pick and the one Carol opened.

(c) What is the probability that Mergatroid wins the prize?

Solution. A tree diagram is worked out below.
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location  player’s door
of prize initial revealed
guess
B1/3
C1/3
D1/3
A/1/4 C1/2
C1/4
/ B1/2
B1/4
D \I/4
C1/4 B1/2
Cl1/2
D\ 1/4 /
player's
initial guess

prize
location

The probability that Mergatroid wins is:

player’s  probability

final guess
Cl1/2

D1/2
B1/2
D1/2
B1/2
Cl1/2
A1)2
D12
A1
Cl1/3
Al)3
D1/3
Alp2
B1/2
A1
C1/2
A2
B1/2

1/96
1/96
1/96
1/96
1/96
1/96
1/64
1/64
1/64
1/64
1/64
1/64
1/64
1/64
1/64
1/64
1/64
1/64

zelda wins?

door Mergatgoid probability

opened wins?
B
X
X
X
X
X
X
X
X

116
1/16
116
116
116
116
116
1/16
116
116
116
116
116
1/16
116
1/16
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Problem 2.

You are organizing a neighborhood census and instruct your census takers to knock on doors and note the
sex of any child that answers the knock. Assume that there are two children in a household and that girls
and boys are equally likely to be children and to open the door.

A sample space for this experiment has outcomes that are triples whose first element is either B or G
for the sex of the elder child, likewise for the second element and the sex of the younger child, and whose
third coordinate is E or Y indicating whether the elder child or younger child opened the door. For example,
(B, G, Y) is the outcome that the elder child is a boy, the younger child is a girl, and the girl opened the door.

(a) Let T be the event that the household has two girls, and O be the event that a girl opened the door. List
the outcomes in T and O.

Solution. T = {GGE,GGY}, 0 = {GGE,GGY,GBE, BGY} O
(b) What is the probability Pr [T | O], that both children are girls, given that a girl opened the door?

Solution. 1/2 ]
(¢) Where is the mistake in the following argument?

If a girl opens the door, then we know that there is at least one girl in the household. The
probability that there is at least one girl is

1 — Pr[both children are boys] = 1 —(1/2 x 1/2) = 3/4. (1)
So,
Pr [T | there is at least one girl in the household] (2)
__ Pr[T N there is at least one girl in the household] 3)
~ Prfthere is at least one girl in the household]
v Pr[T] @
" Prfthere is at least one girl in the household]
=(1/49/G/4) =1/3. (5)
Therefore, given that a girl opened the door, the probability that there are two girls in the house-
hold is 1/3.

Solution. The argument is a correct proof that
Pr [T | there is at least one girl in the houschold] =13
The problem is that the event, H, that the household has at least one girl, namely,
H ::= {GGE, GGY, GBE, GBY, BGE, BGY},
is not equal to the event, O, that a girl opens the door. These two events differ:
H — O = {BGE, GBY},

and their probabilities are different. So the fallacy is in the final conclusion where the value of Pr [T | H ]
is taken to be the same as the value Pr [T | O]. Actually, Pr[T | O] = 1/2. [
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Problem 3.
There is a course —not Math for Computer Science, naturally —in which 10% of the assigned problems
contain errors. If you ask a Teaching Assistant (TA) whether a problem has an error, then they will answer
correctly 80% of the time. This 80% accuracy holds regardless of whether or not a problem has an error.
Likewise when you ask a lecturer, but with only 75% accuracy.

We formulate this as an experiment of choosing one problem randomly and asking a particular TA and
Lecturer about it. Define the following events:

E ::= “the problem has an error,”
T ::= “the TA says the problem has an error,”
L ::= “the lecturer says the problem has an error.”

(a) Translate the description above into a precise set of equations involving conditional probabilities among
the events E, T, and L.

Solution. The assumptions above tell us:

Pr[E] :£= L,
100 10

80 4

3

4

75
Pr[L | E]=PYE|EJ=ﬁ:

]

Also, T and L are independent given E, and given E:
Pr(TNL| E]=Pr[T| E]Pc[L | E]
Pe[TNL | E)=P[T | E]Pe[L | E]

Note that while we know that T and L are independent given E or given E, they are not independent by
themselves, see part (c). O

(b) Suppose you have doubts about a problem and ask a TA about it, and they tell you that the problem
is correct. To double-check, you ask a lecturer, who says that the problem has an error. Assuming that
the correctness of the lecturers’ answer and the TA’s answer are independent of each other, regardless of
whether there is an error', what is the probability that there is an error in the problem?

Solution. We want to calculate
Pe[E | TNL].

From the definition of conditional probability (this is known as Bayes’ rule):

P[TNL| E]

Pr[T N L] ©

Pr[E | TN L] =Pr[E]

!'This assumption is questionable: by and large, we would expect the lecturer and the TA’s to spot the same glaring errors and to
be fooled by the same subtle ones.
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By the independence assumptions, we have:

Pe[TNL| E]=P[T | E]Pr]L | E]:é%:%,

Pi[TnL|E]= Pr[_|jpr[L|j__._=
PrT NL]=Pr[TNL| E]PE]+Pr[T NL | E|Pt[E]
g oL gl Dingn

20107510 200

W] -

Substituting these values in equation (6), we get

T
Pr[E | TNL] : e 0,077,
(2] ~ 10 39/200 13

So this contradictory information has decreased the probability of an error from 10% to about 7.7%.

The calculations here support the common-sense rule that when two people make contradictory statements,
you should be influenced more by the most “authoritative” person —the one who is right more often. But
note that this does not mean that you should believe in what the most authoritative person says, since the
probability of an error remains uncomfortably large. O

(¢) Is the event that “the TA says that there is an error”, independent of the event that “the lecturer says that
there is an error”?

Solution. The answer is no. Because the TA is usually right, when the TA says that the problem has an error,
the likelihood that there really is an error is increased. But the lecturer is also usually right, so increasing
the likelihood of there being an error also increases the likelihood that the lecturer will report an error.

We verify this informal argument by actually calculating the probability of each of these events and their
conjunction, and observing that the probability that the two events occur is different from the product of the
probabilities. Let events E, T, L be as above.

Pr[T] = Pr[T N E] + Pr[T N E]
=Pr[T | E] Pr[E] + Pr [T ] j Pr(E]

41
= io+a-Dha-H=2,
Pr{L] —Pr[LﬂE]-!—Pr[LﬁE]
31
ZE+(1__)( ——)_

Pr[LﬂT]=Pr[LﬂTﬂE}+Pr[Lr1TﬂE]
=Pr[LNT | E]PHE]+Pr[LNT | E]Pi[E]
=Pr[L | E]Pe|T | E]Pr[E]+Pr[L | E]Pc[T | E]Pr[E]
e i e 2 oo

which is higher than

1
Pr[L]Pr[T] = 13—0 - 5—3 = .078.
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Problem 4.
Suppose you have a biased coin that has probability p of flipping heads. Let J be the number of heads in n
independent coin flips. So J has the general binomial distribution:

n =
PDF, (k) = (k)p"q" g
where g ::=1—p.
(a) Show that

PDF;(k — 1) < PDF; (k) fork <np + p,
PDF;(k —1) > PDF, (k) fork > np + p.

Solution. Consider the ratio of the probability of k£ heads over the probability of k£ — 1 heads.

PDF;(k) (Prfq"*
PDF;(k—1)  (,",)pF 1gm*+1

L
I
tI—15!8:—E+15! 4
a=k+)p

kq
This fraction is greater than 1 precisely when (n —k + 1)p > kg = k(1 — p), that is when k < np + p.
So for k < np + p, the probability of k£ heads increases as k increases, and for kK > np + p, the probability
decreases as k increases. |
(b) Conclude that the maximum value of PDF is asymptotically equal to
1
J2rnpq’

Hint: For the asymptotic estimate, it’s ok to assume that np is an integer, so by part (a), the maximum value
is PDF (np). Use Stirling’s formula (14.30):

n\n
n! ~ +/2mxn (—) ;
e
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Solution.

PDF, (np) ::= (n”p) PGP

n!

—_ " W np.ng
) g ?

AT — (":»")" 2;!1@ pnpqnq
() vamnp) () 2ema)

n
LEN2mn

7 nhp php nﬂq' ngq p
(—Le,,p «/Znnp) (—q—e,,q 1/271’!19')
nﬂ
ety e 2mn pnpqnqpnpqnq
T pnhpngpnpgng
n—g,,;ﬁqq—ﬁﬂzmpthnq
:—:\/Zn'n
Sr2nnp2mng
1

J2wnpq

npqnq

Problem 5.

Let R and S be independent random variables, and f and g be any functions such that domain( f) =
codomain(R) and domain(g) = codomain(S). Prove that f(R) and g(S) are independent random vari-
ables. Hint: The event [ f(R) = a] is the disjoint union of all the events [R = r] for r such that f(r) = a.

Solution. By the hint and the Sum Rule
Bif(R)=a]l=- ) PR=1]
{rlf(r)=a}

Also, the event [ f(R) = a AND g(S) = b] is the disjoint union of the events [R = r AND S = ] for pairs
(r,s) such that f(r) = a and g(s) = b. Hence,

Pr[f(R) = a AND g(S) = b]

= E Pr[R =r AND § =]
{(r,$)| f(r)=a anD g (s)=b}
= Z Pr[R =r] -Pr[S = 5] [R, S independent]

{(r;8)1 f(r)=a anD g (5)=b}

. Z Pr[S=s]( Z Pr[R=r])

{slg (s)=b} {rlf(r)=a}
= ), PiS=slPdf(R) =a])
{slg (s)=b}
=Prf(R)=a] ) PrS=3]
{slg (s)=b}

= Pr{f(R) = a] - Pr[g(S) = b].
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