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In-Class Problems Week 13, Fri.

The first three problems are carried over from Wednesday.

Problem 1. -

A recent Gallup poll found that 35% of the adult population of the United States believes that the theory
of evolution is “well-supported by the evidence.” Gallup polled 1928 Americans selected uniformly and
independently at random. Of these, 675 asserted belief in evolution, leading to Gallup’s estimate that the
fraction of Americans who believe in evolution is 675/1928 a2 0.350. Gallup claims a margin of error of 3
percentage points, that is, he claims to be confident that his estimate is within 0.03 of the actual percentage.

(a) What is the largest variance an indicator variable can have?

(b) Use the Pairwise Independent Sampling Theorem to determine a confidence level with which Gallup
can make his claim.

(c) Gallup actually claims greater than 99% confidence in his estimate. How might he have arrived at this
conclusion? (Just explain what quantity he could calculate; you do not need to carry out a calculation.)

(d) Accepting the accuracy of all of Gallup’s polling data and calculations, can you conclude that there is
a high probability that the number of adult Americans who believe in evolution is 35 == 3 percent?

Problem 2.

Yesterday, the programmers at a local company wrote a large program. To estimate the fraction, b, of lines
of code in this program that are buggy, the QA team will take a small sample of lines chosen randomly
and independently (so it is possible, though unlikely, that the same line of code might be chosen more than
once). For each line chosen, they can run tests that determine whether that line of code is buggy, after which
they will use the fraction of buggy lines in their sample as their estimate of the fraction b.

The company statistician can use estimates of a binomial distribution to calculate a value, s, for a number
of lines of code to sample which ensures that with 97% confidence, the fraction of buggy lines in the sample
will be within 0.006 of the actual fraction, b, of buggy lines in the program.

Mathematically, the program is an actual outcome that already happened. The sample is a random variable
defined by the process for randomly choosing s lines from the program. The justification for the statistician’s
confidence depends on some properties of the program and how the sample of s lines of code from the
program are chosen. These properties are described in some of the statements below. Indicate which of
these statements are true, and explain your answers.

1. The probability that the ninth line of code in the program is buggy is b.

(]

The probability that the ninth line of code chosen for the sample is defective, is b.

All lines of code in the program are equally likely to be the third line chosen in the sample.

bl

Given that the first line chosen for the sample is buggy, the probability that the second line chosen
will also be buggy is greater than b.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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5. Given that the last line in the program is buggy, the probability that the next-to-last line in the program
will also be buggy is greater than b.

6. The expectation of the indicator variable for the last line in the sample being buggy is b.

7. Given that the first two lines of code selected in the sample are the same kind of statement—they might
both be assignment statements, or both be conditional statements, or both loop statements,...—the
probability that the first line is buggy may be greater than b.

8. There is zero probability that all the lines in the sample will be different.

Problem 3.

A defendent in traffic court is trying to beat a speeding ticket on the grounds that—since virtually everybody
speeds on the turnpike—the police have unconstitutional discretion in giving tickets to anyone they choose.
(By the way, we don’t recommend this defense : -).)

To support his argument, the defendent arranged to get a random sample of trips by 3,125 cars on the
turnpike and found that 94% of them broke the speed limit at some point during their trip. He says that as a
consequence of sampling theory (in particular, the Pairwise Independent Sampling Theorem), the court can
be 95% confident that the actual percentage of all cars that were speeding is 94 + 4%.

The judge observes that the actual number of car trips on the turnpike was never considered in making
this estimate. He is skeptical that, whether there were a thousand, a million, or 100,000,000 car trips on the
turnpike, sampling only 3,125 is sufficient to be so confident.

Suppose you were were the defendent. How would you explain to the judge why the number of randomly
selected cars that have to be checked for speeding does not depend on the number of recorded trips? Remem-
ber that judges are not trained to understand formulas, so you have to provide an intuitive, nonquantitative
explanation.

Problem 4.

We want to store 2 billion records into a hash table that has 1 billion slots. Assuming the records are
randomly and independently chosen with uniform probability of being assigned to each slot, two records are
expected to be stored in each slot. Of course under a random assignment, some slots may be assigned more
than two records.

(a) Show that the probability that a given slot gets assigned more than 23 records is less than e 3.
Hint: For ¢ = 12, the value of ¢ In¢ — ¢ + 1 is greater than 18.

(b) Show that the probability that there is a slot that gets assigned more than 23 records is less than e ™15,
This is less than 1/3, 000, 000. Hint: In 10° < 21.

The Chernoff Bound: Let T be the sum of a finite number of mutually independent variables whose
codomain is the real interval [0, 1]. Then for all ¢ > 1,

Pr[T > c Ex[T]] < e A@EIT]

where B(c) :=clnc—c + 1.

Problem 5.
In this problem you will check a proof of:

Theorem (Murphy’s Law). Let Ay, Aa. ... A, be mutually independent events, and let T be the number of
these events that occur. The probability that none of the events occur is at most e~ FX[T1,
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To prove Murphy’s Law, note that
T=N+T+--+ T4, (1)
where T; is the indicator variable for the event A;. Also, remember that
1 +x <e* 2)

for all x.
Justify each line in the following derivation (without looking it up in the text):

Proof.

PriT =0l=A4;UAU---UA,
=Pr[A; N Az N---NA,]

= e~ ?:1 Pr[4;]

— T Yi—1 Ex[T7]

— T Ex[T]-
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Solutions to In-Class Problems Week 13, Fri.

The first three problems are carried over from Wednesday.

Problem 1.

A recent Gallup poll found that 35% of the adult population of the United States believes that the theory
of evolution is “well-supported by the evidence.” Gallup polled 1928 Americans selected uniformly and
independently at random. Of these, 675 asserted belief in evolution, leading to Gallup’s estimate that the
fraction of Americans who believe in evolution is 675/1928 & 0.350. Gallup claims a margin of error of 3
percentage points, that is, he claims to be confident that his estimate is within 0.03 of the actual percentage.

(a) What is the largest variance an indicator variable can have?

Solution.

By Lemma ??, Var[H] = pq.
Noting that d p(1— p)/dp = 2p —1is zero when p = 1/2, it follows that the maximum value of p(1 — p)
must be at p = 1/2, so the maximum value of Var[H] is (1/2)(1 — (1/2)) = 1/4. O

(b) Use the Pairwise Independent Sampling Theorem to determine a confidence level with which Gallup
can make his claim.

Solution. By the Pairwise Independent Sampling, the probability that a sample of size n = 1928 is further
than x = 0.03 of the actual fraction is at most

o\2 1 1 1
—) = ] <0144
(x) n=— (4(0.03)2 1928) -
so we can be confident of Gallup’s estimate at the 85.6% level. O

(c) Gallup actually claims greater than 99% confidence in his estimate. How might he have arrived at this
conclusion? (Just explain what quantity he could calculate; you do not need to carry out a calculation.)

Solution. Gallup’s sample has a binomial distribution By92g,, for an unknown p he estimates to be about
0.35. So he wants an upper bound on

Bio2g,p
Pr[| —= — 0.03
r[l 1028~ P|> 003

By part (a), the variance of By, p is largest when p = 1/2, which suggests that the probability that a sample
average differs from the actual mean will be largest when p = 1/2. This is in fact the case. So Gallup will
calculate

B 1 1928
Pr| %8‘/2 ~ 5| > 0.03] = Pr{| Bigas,1/2 — ——| > 0.03(1928)]
= PI'[906 =< 81928,1/2 =< ]021]
2, (%7
_ Zi=o0s Ui )
= St ~ 09912

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .
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Mathematica will actually calculate this sum exactly. There are also simple ways to use Stirling’s formula
to get a good estimate of this value. |

(d) Accepting the accuracy of all of Gallup’s polling data and calculations, can you conclude that there is
a high probability that the number of adult Americans who believe in evolution is 35 & 3 percent?

Solution. No. As explained in Notes and lecture, the assertion that fraction p is in the range 0.35 & 0.03
is an assertion of fact that is either true or false. The number p is a constant. We don’t know its value, and
we don’t know if the asserted fact is true or false, but there is nothing probabilistic about the fact’s truth or
falsehood.

We can say that either the assertion is true or else a 1-in-100 event occurred during the poll. Specifically,
the unlikely event is that Gallup’s random sample was unrepresentative. This may convince you that p is
“probably” in the range 0.35 = 0.03, but this informal “probably” is not a mathematical probability. |

Problem 2.

Yesterday, the programmers at a local company wrote a large program. To estimate the fraction, b, of lines
of code in this program that are buggy, the QA team will take a small sample of lines chosen randomly
and independently (so it is possible, though unlikely, that the same line of code might be chosen more than
once). For each line chosen, they can run tests that determine whether that line of code is buggy, after which
they will use the fraction of buggy lines in their sample as their estimate of the fraction b.

The company statistician can use estimates of a binomial distribution to calculate a value, s, for a number
of lines of code to sample which ensures that with 97% confidence, the fraction of buggy lines in the sample
will be within 0.006 of the actual fraction, b, of buggy lines in the program.

Mathematically, the program is an actual outcome that already happened. The sample is a random variable
defined by the process for randomly choosing s lines from the program. The justification for the statistician’s
confidence depends on some properties of the program and how the sample of s lines of code from the
program are chosen. These properties are described in some of the statements below. Indicate which of
these statements are true, and explain your answers.

1. The probability that the ninth line of code in the program is buggy is b.

Solution. False.

The program has already been written, so there’s nothing probabilistic about the buggyness of the
ninth (or any other) line of the program: either it is or it isn’t buggy, though we don’t know which.
You could argue that this means it is buggy with probability zero or one, but in any case, it certainly
isn’t b. O

2. The probability that the ninth line of code chosen for the sample is defective, is b.

Solution. True.

The ninth line sampled is equally likely to be any line of the program, so the probability it is buggy is
the same as the fraction, b, of buggy lines in the program. |

3. All lines of code in the program are equally likely to be the third line chosen in the sample.

Solution. True.

The meaning of “random choices of lines from the program” is precisely that at each of the s choices in
the sample, in particular at the third choice, each line in the program is equally likely to be chosen. H




Solutions to In-Class Problems Week 13, Fri. 3

4. Given that the first line chosen for the sample is buggy, the probability that the second line chosen
will also be buggy is greater than b.

Solution. False.

The meaning of “independent random choices of lines from the program” is precisely that at each of
the 5 choices in the sample, in particular at the second choice, each line in the program is equally
likely to be chosen, independent of what the first or any other choice happened to be. |

5. Given that the last line in the program is buggy, the probability that the next-to-last line in the program
will also be buggy is greater than b.

Solution. False.

As noted above, it’s zero or one. : i3]

6. The expectation of the indicator variable for the last line in the sample being buggy is b.

Solution. True.

The expectation of the indicator variable is the same as the probability that it is 1, namely, it is the
probability that the sth line chosen is buggy, which is b, by the reasoning above. O

7. Given that the first two lines of code selected in the sample are the same kind of statement—they might
both be assignment statements, or both be conditional statements, or both loop statements,...—the
probability that the first line is buggy may be greater than b.

Solution. True.

We don’t know how prone to bugginess different kinds of statements may be. It could be for example,
that conditionals are more prone to bugginess than other kinds of statements, and that there are more
conditional lines than any other kind of line in the program. Then given that two randomly chosen
lines in the sample are the same kind, they are more likely to be conditionals, which makes them more
prone to bugginess. That is, the conditional probability that they will be buggy would be greater than
b. O

8. There is zero probability that all the lines in the sample will be different.

Solution. False.

We know the length, r, of the program is larger than the “small” sample size, s, in which case the
probability that all the lines in the sample are different is

-1 r-2 —(s—1 !
.I_-. : E . 4 e : (S ) = - > 0.
r r r r (r—s)rs
Of course it would be true by the Pigeonhole Principle if s > r. 0

Problem 3.

A defendent in traffic court is trying to beat a speeding ticket on the grounds that—since virtually everybody
speeds on the turnpike—the police have unconstitutional discretion in giving tickets to anyone they choose.
(By the way, we don’t recommend this defense : -).)
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To support his argument, the defendent arranged to get a random sample of trips by 3,125 cars on the
turnpike and found that 94% of them broke the speed limit at some point during their trip. He says that as a
consequence of sampling theory (in particular, the Pairwise Independent Sampling Theorem), the court can
be 95% confident that the actual percentage of all cars that were speeding is 94 % 4%.

The judge observes that the actual number of car trips on the turnpike was never considered in making
this estimate. He is skeptical that, whether there were a thousand, a million, or 100,000,000 car trips on the
turnpike, sampling only 3,125 is sufficient to be so confident.

Suppose you were were the defendent. How would you explain to the judge why the number of randomly
selected cars that have to be checked for speeding does not depend on the number of recorded trips? Remem-
ber that judges are not trained to understand formulas, so you have to provide an intuitive, nonquantitative
explanation.

Solution. This was intended to be a thought-provoking, conceptual question. In past terms, although most
of the class could follow the derivations and crank through the formulas to calculate sample size and con-
fidence levels, many students couldn’t articulate, and indeed didn’t really believe that the derived sample
sizes were actually adequate to produce reliable estimates.

Here’s a way to explain why we model sampling cars as independent coin tosses that might work, though
we aren’t sure about this.

Of the approximately 36,000,000 recorded turnpike trips by cars in 2009, there were some
unknown number, say 35,000,000, that broke the speed limit at some point during their trip. So
in this case, the fraction of speeders is 35,000,000/36,000,000 which is a little over 0.97.

To estimate this unknown fraction, we randomly select some trip from the 36,000,000 recorded
in such a way that every trip has an equal chance of being picked. Picking a trip to check
for speeding this way amounts to rolling a pair dice and checking that double sixes were not
rolled—this has exactly the same probability as picking a speeding car.

After we have picked a car trip and checked if it ever broke the speed limit, make another pick,
again making sure that every recorded trip is equally likely to be picked the second time, and
so on, for picking a bunch of trips. Now each pick is like rolling the dice and checking against
double sixes.

Now everyone understands that if we keep rolling dice looking for double sixes, then the longer
we roll, the closer the fraction of rolls that are double sixes will be to 1/36, since only 1 out
of the 36 possible dice ouotcomes is double six. Mathematical theory lets us calculate us how
many times to roll the dice to make the fraction of double sixes very likely close to 1/36, but we
needn’t go into the details of the calculation.

Now suppose we had a different number of recorded trips, but the same fraction were speeding.
Then we could simply use the same dice in the same way to estimate the speeding fraction from
this different set of trip records.

So the number of rolls needed does not depend on how many trips were recorded, it just depends
on the fraction of recorded speeders.

Problem 4.

We want to store 2 billion records into a hash table that has 1 billion slots. Assuming the records are
randomly and independently chosen with uniform probability of being assigned to each slot, two records are
expected to be stored in each slot. Of course under a random assignment, some slots may be assigned more
than two records.
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(a) Show that the probability that a given slot gets assigned more than 23 records is less than ¢™3.

Hint: For ¢ = 12, the value of ¢ Inc — ¢ + 1 is greater than 18.

Solution. Let 7" be the number of records assigned to a particular slot, say the first one. So Ex[T] = 2.
Then by Chernoff

Pr[T > 24] = Pr[T > 12Ex[T]] < e PODEIT]  ,—182 _ =36
o

(b) Show that the probability that there is a slot that gets assigned more than 23 records is less than =13,
This is less than 1/3, 000, 000. Hint: In10° < 21.

Solution. By the Union Bound, the probability that some slot gets assigned more than 23 records is at most
1 billion times the probability that each particular slot gets assigned more than 23 records, and is therefore

1 1

<107 2730l g2 1736 — 15 o < ,
3,270,000 3,000,000

The Chernoff Bound: Let 7" be the sum of a finite number of mutually independent variables whose
codomain is the real interval [0, 1]. Then for all ¢ > 1,

PHT > ¢ Ex[T]] < ¢~ P ExIT]

where B(c) i==clnc—c + 1.

Problem 5.
In this problem you will check a proof of:

Theorem (Murphy’s Law). Let Ay, Az, ... Ay be mutually independent events, and let T be the number of
these events that occur. The probability that none of the events occur is at most e™ Ex[T],

To prove Murphy’s Law, note that
T=T1+T2+---+Tp, (D
where T; is the indicator variable for the event A;. Also, remember that
l1+x<e” (2)

for all x.
Justify each line in the following derivation (without looking it up in the text):




Solution. Proof.

Pr[T =0]=4,UA; U---U 4,
=Pr{A;1 N Az N---N Ay

= [T

— Pr4]

—Pr[4;]

IA

i=1

n
[Tt
i=1

n
[1e
i=1
—_ e_ Z:’=l PT[AJ]

o Yi=1 Ex[T;]

e Ex[T].
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(def. of T)
(De Morgan’s law)

(mutual independence of A;’s)

(complement rule)

(by (2))

(exponent algebra)
(expectation of indicator variable)

((1) & linearity of expectation)
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Bk Mathematics for Computer Science

Coa MIT 6.0423/18.0627
Very Great
Expectations,

Gambler's Ruin

Lac ik}

"%  Repeating Tails
1st try: TTH, must repeat
2" try: H, must repeat
3rd try: TH, must repeat
4th tpy: TTTH, donel
R = #repeats R = 4 here

Repeating Tails
Flip a fair coin until a head:;
F ii= #1ails. If flip TTTH
thenlE =3
Flip again until head. If flip
fewer than F tails, repeat.

i Repeating Tails
E[R|F=Kk] =

£
Pr[T*]

mean time to flip Tk=

E[R]= > E[R|F =K]-Pr[F =k]
k

A Repeating Tails
E[R|F=K] =
. . k: - 2k
mean time fo flip T B
1
E[R] = el =18
>~(k+1)

o i v

Ol oy, 200 Loc sems

Repeating Tails
E[R|F=k] =

i . k: o 2k
mean time to flip T e
E[R]= Y2 27D — Z% =
k k

fer sy, 20

€/§



Infinite Expectation

Can't use Law of Large Nums
what does sample data look like?
Infrequent large nums increase

the average.
BUFIFEIR]= = maybe E[VR

= 50

Infinite Expectation

Problems
1--3

g, 2001 Lax 47

"%  Gambler's Ruin

» Place $1 bets until going
broke or reaching target

* What is Pr[reach target]?

oy 9, 201

Lec Jasn

oBad
gﬁg Dow Jones Trend

Zoem:iid §d 1m 1= k= KID Ux G 18g Max

o

BB Gambler's Ruin

“target"

n "initial capital"

# of bets

Abert B Meyer, oy 9, 203

Bee Gambling: Fair Case
Suppose we're playing a fair game:
* Pr[win bet] = 1/2.

What is Pr[reach $200] if we start

i 1007
with $100?

What about Pr[reach $600] if we
start with $500?

Abart B Mevar, Moy 9 00




_ Gambling: Fair Case

In general, if we start with $n

 Prlreach S = n/iG

What about an unfair game?

Ez= —a S e

- QOE

o US Roulette

What is Pr[reach $500+100] starting
with $500? (5/6 when fair)

<1/ 37,000
What is Pr[reach $1,000,100] starting
with $1,000,000?2 (= 1 when fair)

<1/ 37,000
no matter how many $ at startl

At & M oy 9, 2001 Lac 14m16

Albert B Meyer, My 9, 2001 Lot ron]

Betting black in
US roulette

Albart B Maver, oy 9 2011 Lec Ha 13

EE Gambler's Ruin
Parameters

* p ::i= Pr{win $1 bet}

* n ::= initial capital

- T :i= gambler’s target
What is Pr[reach target]?

omad

ah-a Gambler’s Ruin
In unfair game (p < 3):
T-n
Priwin] < |2| >~
q intfended

profit
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Massachusetts Institute of Technology
6.042J/18.062], Spring ’11: Mathematics for Computer Science May 9
Prof. Albert R Meyer revised Monday 9™ May, 2011, 07:48

In-Class Problems Week 14, Mon.

Problem 1.

You have a biased coin with nonzero probability p < I of coming up heads. You toss until a head comes up,
and then, as in Section 18.8, you keep tossing until you get a long run of tails, but this time let “long run”
mean a run of tails that is wiL? 10 of the length your initial run. Prove that the expected number of times you
toss a head and start over istill infinite.

/
/
LV/%/,;
Problem 2.
Let R be a positive integer valued random variable such that
1
PDFgr(n) = e
cn

where
1

00
C = E —
3

n

n=1

(a) Prove that Ex[R] is finite.

(b) Prove that Var[R] is infinite.

Problem 3.
Let 7 be a positive integer valued random variable such that

1
PDFr(n) = —,
an

where

(a) Prove that Ex[T'] is infinite.

(b) Prove that Ex[+/T] is finite.

Problem 4.
In gambler’s ruin scenario, the gambler makes independent $1 bets, where the probability of winning a bet
p and of losing is ¢ ::= 1 — p. The gambler keeps betting until he goes broke or reaches a target of T dollars.
Suppose T = oo, that is, the gambler keeps playing until he goes broke. Let r be the probability that
starting with n > 0 dollars, the gambler’s stake ever gets reduced to n — 1 dollars.
(a) Explain why
r=gq+ pr2.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 In-Class Problems Week 14, Mon.

(b) Conclude thatif p < 1/2,thenr = 1.

(c) Conclude that even in a fair game, the gambler is sure to get ruined no matter how much money he
starts with!

Hint: If ry, is probability of ruin starting with stake n, then ry, = rp41p + rn—14, S0

r
'n+1 = = “‘"'rtflg- (1)
P P

(d) Let ¢ be the expected time for the gambler’s stake to go down by 1 dollar. Verify that
t =q+ p(l +2t).

Conclude that starting with a 1 dollar stake in a fair game, the gambler can expect to play forever!
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Massachusetts Institute of Technology
6.042J/18.062]J, Spring " 11: Mathematics for Computer Science May 9
Prof. Albert R Meyer revised Monday 9 May, 2011, 13:57

Solutions to In-Class Problems Week 14, Mon.

Problem 1.

You have a biased coin with nonzero probability p < 1 of coming up heads. You toss until a head comes
up, and then, as in Section 18.8, you keep tossing until you get a long run of tails, but this time let “long
run” mean a run of tails that is at least X — 10 when your initial run was length k. Prove that the expected
number of times you toss a head and start over is still infinite.

Solution. Let T be the length of your initial run of tails. If T = k&, then the expected number of tries until
getting k — 10 tails will be the mean time to “failure,” g¥~1°, because the probability of “failing” by tossing
k — 10 tails in a row is g~ *~19 where g ::= 1 — p. Letting R be the number of restarts, we have

Ex[R] = ZEKRIT_k]PrT k] = (Zq P)"'Z = loqp—constant+z 10=c>o.

ken k<10 k=109 k=107
B
Problem 2.
Let R be a positive integer valued random variable such that
PDFg(n) = —
RN = en3’
where -~
1
c = Z n—3
n=1
(a) Prove that Ex[R] is finite.
Solution. ’ . o 1 |
e ey - == e —dx =14+ — < oo.
ExiAl Z nens Pl +[1 exz + 2¢ =%
nenN+t nenNt
|
(b) Prove that Var[R] is infinite.
Solution. Since
Var[R] = Ex[R?] — Ex?[R],
and Ex?[R] < oo by part (a), we need only show that Ex[R?] = co. But
1 1 1
21 . gl R B =
Ex[R?]:= > n — > — = lim H, = oco.
nenNt nenNt
|

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .




2 Solutions to In-Class Problems Week 14, Mon.

Problem 3.
Let T be a positive integer valued random variable such that

1
PDFT(M) = m,

where

(a) Prove that Ex[T] is infinite.
Solution.

Ex[T] ::= Z nPDFr(n)
nez+t

|
(b) Prove that Ex[+/T] is finite.
Solution.
1
Ex[VT]= ) vn-—
nezZ+ ah
] (s 0]
zn§+ anoiz <[1 52 3g
||
Problem 4.

In gambler’s ruin scenario, the gambler makes independent $1 bets, where the probability of winning a bet
p and of losing is ¢ ::=1— p. The gambler keeps betting until he goes broke or reaches a target of 7" dollars.

Suppose T = oo, that is, the gambler keeps playing until he goes broke. Let r be the probability that
starting with n > 0 dollars, the gambler’s stake ever gets reduced to n — 1 dollars.

(a) Explain why
r=gq+ prk

Solution. By Total Probability

r="Pr [ever down $1 | lose the first bet] Pr[lose the first bet]+
Pr [ever down $1 | win the first bet| Pr{win the first bet]
= g + pPr[ever down $1 | win the first bet]




Solutions to In-Class Problems Week 14, Mon. 3

But

Pr [ever down $1 | win the first bet]
= Pr[ever down $2]
= Pr[being down the first $1] Pr[being down another $1]

=r2

(b) Conclude thatif p < 1/2, thenr = 1.

Solution. pr? —r + g hasroots ¢/p and 1. Sor = l orr = q/p. But r < 1, which implies r = 1 when
q/p =1, thatis, when p < 1/2.

In fact r = q/p when g/p < 1, namely, when p > 1/2, but this requires an additional argument that we
omit.

(¢) Conclude that even in a fair game, the gambler is sure to get ruined no matter how much money he
starts with!

Hint: If ry is probability of ruin starting with stake n, then r, = rp41 p + rp—14, so
T q
Tnl = = = Tn1-. 1
p p

Solution. The gambler gets ruined starting with initial stake n = 1 precisely if his initial stake goes down
by 1 dollar, so r; = r and r = 1 in the fair case. Also ro = 1 by definition. Assuming by strong induction
that r, = rp—1 = 1, the recurrence (1) implies that rpy = 1/p— (1 —p)/p=p/p=1.Sor, = 1for
all n > 0 by strong induction. |

(d) Let ¢ be the expected time for the gambler’s stake to go down by 1 dollar. Verify that
t =g+ p(l+21).

Conclude that starting with a 1 dollar stake in a fair game, the gambler can expect to play forever!

Solution. By Total Expectation

t = Ex[#steps to be down $1 | lose the first bet] Pr[lose the first bet]+
Ex[#steps to be down $1 | win the first bet] Pr{win the first bet]
= q + p Ex[1 + #steps to be down $1 | win the first bet].

But

Ex[#steps to be down $1 | win the first bet]

= Ex[#steps to be down $2]

= Ex[#steps to be down the first $1] + Ex[#steps to be down another $1]
= 21t.

This implies the required formulaz = g + p(1 +2t). If p = 1/2 we conclude that t = 1 + ¢, which means
t must be infinite.
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Random Walks

Lac WW 1

6raph With Probable
Transitions

: Outgoing-edge |
o /\3/3 probabilities

1/2

Lac WA

Distribution Over Nodes
FN/3

Dist after 1 step: (p's. P's. P'o)

only get places from B, (1 1 1
so 2
m e g Lec MwW?

Applications of Random Walk

- Physics — Brownian motion
* Finance — stocks, options

> Algorithms — web search,
clustering

Albert & Meyer, Moy 11, 2000 Las w2

Distribution Over Nodes

(Ps. Po. Pe)
Suppose you start at B: (1 o, 0)

What are p's, p'o, p; after 1 step?

Abert R Mayer, Moy 11, 200 Lee PWs

1/2 ‘@ .

_ 1 A
Dist after 1 step: [E' 7l
Dist after 2 steps: (p'a, b'o, P'e)




§§§E Distribution Over Nodes
N1/3

Dist affer 1 step: = |o: .
p'o = Pr{B to O|at B}-p'g
+ Pr{O to O|at O}-p/,
+ Pr{G to Olat G}-p';

Albert & Maeyer. Moy 11. 2010

g -« Distribution Over Nodes

distribution after 2 steps:

(Ps.Po. Pg)
1.9 7
2 24 24

e Stationary Distribution
£\1/3
1/4 ~(Po

distribution (pg, po, pg) is stationary
if next-step distribution is the same.
What is a stationary dist. here?

B Distribution Over Nodes

£N\1/3
@

1/2 ' e
Dist after 1 step: (;: o
Pig— = /4 & -ips .
+ 1/3 -114 =5/24
+ 0 -1/4

Abart RMeyer, Moy 1, 2000

BEgo
BrEE

Distribution Over Nodes

Aert R Meyer, Moy 11, 200

i®  Finding Stationary Dist.
i
oD

Ps = Pg = (1/2)pg + 1p;

Po = Po = (1/4)pg + (1/3)p,
P = Pe = (1/4)pg + (2/3)po
Ps* Po* Ps :,..lm

Albart B Mayer.




E;'EE Finding Staﬁon?ry Dist
£N\1/3
solving for [E 3 _.i]
(Pe. Po, Pe): (15" 15" 15

Questions on Stationary Dist

- Does a stationary dist exist?, gmph\ffigg
+ Is it unique? Sometimes
- Does a random walk
approach it fromany  Sometimes
starting distribution?
- How quickly? Varies
et e tinas

Team Problems
Problems
1--3

Albert R Meyer, May 112010 Lec 4wzt

A Google Page Rank

View the entire web as a graph

- vertices are webpages _

- edge (u,v) exists if link from page
u fo page v

* Pr{go to v from u} = 1/outdeg(u)

Find stationary distribution {p }

Rank u above v if p, > p,.

[=+]
an°6 Further Questions
0. d /3

va/ 2/3
; 12 @a. -
+ Pr{ever reach O | start at B}

» Pr{reach G before O | start at B}
- Average # steps for B to O

Albert R Mayer, Moy 11, 2000 - Lec Mwa
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Massachusetts Institute of Technology
6.042J/18.062], Spring "11: Mathematics for Computer Science May 11
Prof. Albert R Meyer revised Monday 9™ May, 2011, 08:23

In-Class Problems Week 14, Wed.

Problem 1. (a) Find a stationary distribution for the random walk graph in Figure 1.

1

Figure 1

(b) If you start at node x in Figure 1 and take a (long) random walk, does the distribution over nodes ever
get close to the stationary distribution? Explain.

(¢) Find a stationary distribution for the random walk graph in Figure 2.

1

0.9

Figure 2

(d) If you start at node w Figure 2 and take a (long) random walk, does the distribution over nodes ever
get close to the stationary distribution? You needn’t prove anything here, just write out a few steps and see
what’s happening.

(e) Find a stationary distribution for the random walk graph in Figure 3.

1/2
1/2 1/2
 Co—E _o—@!
1/2
Figure 3

(f) If you start at node b in Figure 3 and take a long random walk, the probability you are at node d will
be close to what fraction? Explain.

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2, In-Class Problems Week 14, Wed.

0.5 0.5 0.5
0.5 0.5 0.5
il 0.5 1
Figure 4 Which ones have uniform stationary distribution?

Problem 2.
For which of the graphs in Figure 4 is the uniform distribution over nodes a stationary distribution? The
edges are labeled with transition probabilities. Explain your reasoning.

Problem 3.
A Google-graph is a random-walk graph such that every edge leaving any given vertex has the same proba-
bility. That is, the probability of each edge (v — w) is 1/out-degree(v).

A directed graph is symmetric if, whenever (v — w) is an edge, so is {(w — v).

Given any finite, symmetric Google-graph, let

A out-degree(v),
e

where e is the total number of edges in the graph. Show that d is a stationary distribution.

Appendix

A random-walk graph is a digraph such that each edge, (x — y), is labelled with a number, p(x, y) > 0,
which will indicate the probability of following that edge starting at vertex x. Formally, we simply require
that the sum of labels leaving each vertex is 1. That is, if we define for each vertex, x,

out(x) ::={y |.(x—y) is an edge of the graph},

then

>, Py =1

y€Eout(x)

A distribution, d, is a labelling of each vertex, x, with a number, d(x) > 0, which will indicate the
probability of being at x. Formally, we simply require that the sum of all the vertex labels is 1, that is,

> A=
xeV

where V is the set of vertices.



In-Class Problems Week 14, Wed. 3

The distribution, Ei, after a single step of a random walk from distribution, d, is given by
E(x) = Z d(y)- p(y,x),
yein(x)

where
in(x) ::={y | (v —x) is an edge of the graph}.

A distribution d is stationary if d = d, where d is the distribution after a single step of a random walk
starting from d. In other words, d stationary implies

d(x) = Z d(y)- p(y,x).

yein(x)
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Solutions to In-Class Problems Week 14, Wed.

Problem 1. (a) Find a stationary distribution for the random walk graph in Figure 1.

Solution. d(x) =d(y) =1/2 |

1
1
Figure 1

(b) If you start at node x in Figure 1 and take a (long) random walk, does the distribution over nodes ever
get close to the stationary distribution? Explain.

Solution. No! you just alternate between nodes x and y. |

(¢) Find a stationary distribution for the random walk graph in Figure 2.

1

0.9

Figure 2

Solution. d(w) = 9/19, d(z) = 10/19. You can derive this by setting d(w) = (9/10)d(z), d(z) =
d(w) + (1/10)d(z), and d(w) + d(z) = 1. There is a unique solution. O

(d) If you start at node w Figure 2 and take a (long) random walk, does the distribution over nodes ever
get close to the stationary distribution? You needn’t prove anything here, just write out a few steps and see
what’s happening.

Solution. Yes, it does. -

(e) Find a stationary distribution for the random walk graph in Figure 3.

Solution. There are infinitely many, with d(b) = d(c) = 0, and d(a) = p and d(d) = 1 — p for any
p- O

Creative Commons 2011, Eric Lehman, F Tom Leighton, Albert R Meyer .



2 Solutions to In-Class Problems Week 14, Wed.

1/2
1/2 1/2
Clo—@ o—a )t
1/2

Figure 3
0.5 0.5 0.5
0.5 0.5 0.5
0.5 1

Figure4 Which ones have uniform stationary distribution?

(f) If you start at node b in Figure 3 and take a long random walk, the probability you are at node d will
be close to what fraction? Explain.

Solution. 1/3. |

Problem 2.
For which of the graphs in Figure 4 is the uniform distribution over nodes a stationary distribution? The
edges are labeled with transition probabilities. Explain your reasoning.

Solution. All except the last one (bottom right).
One way of approaching this problem is by performing a single update step according to the rule

dw) = ) dp),

u s.t. (u—v)

where d is the stationary distribution (1,2 for all vertices on the left graphs, 1/3 for all vertices on the right),
d is the distribution after one step, and p(u, v) is the edge probability. If d = d, then by definition, the
uniform distribution is stationary.

Alternatively, you could observe that the uniform distribution is stationary if and only if d (v) = d(v),
and hence dividing both sides by probability of being at each vertex, we get

(= Z p(u,v).
u s.t. (u—v)

In other words, the uniform distribution is stationary if and only if the incoming-edge probabilities sum to
1 O
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Problem 3.
A Google-graph is a random-walk graph such that every edge leaving any given vertex has the same proba-
bility. That is, the probability of each edge (v — w) is 1/out-degree(v).
A directed graph is symmetric if, whenever (v — w) is an edge, so is {w — v).
Given any finite, symmetric Google-graph, let
d(v) = out—degree(v)’
e

where e is the total number of edges in the graph. Show that d is a stationary distribution.

Solution. To show that d is a stationary distribution, we must show that
dw)= ) p.w)d(), (1)
ve€in(w)
where in(w) ::= {v | (v—w) is an edge}.

We have
Y P, w)d(v)

vein(w)

= 1 out-degree(v)
a Z (Out—degree(v)) ( e ) (by def p and d)

veEin(w)

:Zl

veEin(w)
) 1
= |in(w)|-
e

1
= in-degree(w) ”

1
= out—degree(w)g (by symmetry of the graph)
= d(w) .

Appendix

A random-walk graph is a digraph such that each edge, (x — y), is labelled with a number, p(x, y) > 0,
which will indicate the probability of following that edge starting at vertex x. Formally, we simply require
that the sum of labels leaving each vertex is 1. That is, if we define for each vertex, x,

out(x) :={y | {(x—y) is an edge of the graph},

then
Y pxy) =1

y€out(x)

A distribution, d, is a labelling of each vertex, x, with a number, d(x) > 0, which will indicate the
probability of being at x. Formally, we simply require that the sum of all the vertex labels is 1, that is,

> ==l

xeV



4 Solutions to In-Class Problems Week 14, Wed.

where V' is the set of vertices.
The distribution, d, after a single step of a random walk from distribution, d, is given by

dx)z= Y d@y)-py.x),
yein(x)
where
in(x) ::={y | {(y —x) is an edge of the graph}.

A distribution d is stationary if d = d, where d is the distribution after a single step of a random walk
starting from d. In other words, d stationary implies

dx)z= Y d)-p(y.x).

y€in(x)



