
Design and Analysis of Algorithms December 17, 2012
Massachusetts Institute of Technology 6.046J/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Final Exam Solutions

Final Exam Solutions
• Do not open this quiz booklet until you are directed to do so. Read all the instructions first.
• The quiz contains 12 problems, several with multiple parts. You have 180 minutes to earn

150 points.
• This quiz booklet contains 15 pages, including this one, and a sheet of scratch paper.
• This quiz is closed book. You may use two double-sided letter (81

2

′′ × 11′′) or A4 crib sheet.
No calculators or programmable devices are permitted. Cell phones must be put away.
• Write your solutions in the space provided. If you run out of space, continue your answer on

the back of the same sheet and make a notation on the front of the sheet.
• Do not waste time deriving facts that we have studied. Just cite results from class.
• When we ask you to “give an algorithm” in this quiz, describe your algorithm in English

or pseudocode, and provide a short argument for correctness and running time. You do not
need to provide a diagram or example unless it helps make your explanation clearer.
• Do not spend too much time on any one problem. Generally, a problem’s point value is an

indication of how many minutes to spend on it.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Please be neat.
• Good luck!

Problem Points Parts Grade Problem Points Parts Grade

0 3 1 7 10 1

1 22 20 8 20 1

2 10 2 9 10 1

3 10 2 10 5 1

4 15 3 11 10 2

5 10 1 12 15 2

6 10 1 Total 150

Name:
Circle your recitation:

F10 F11 F11 F12 F12 F1 F2 F3
R01 R02 R07 R03 R08 R04 R05 R06

Yotam Boon Teik Aizana Annie Aizana Annie Katherine Heejung

6.046J/18.410J Final Exam Solutions Name 2

Problem 0. Name. [3 points] Write your name on every page of this exam booklet! Don’t forget
the cover.

Problem 1. True or False. [22 points] (20 parts)

Circle T or F for each of the following statements to indicate whether the statement is true (T) or
false (F). No explanation is needed.

(a) T F Las Vegas algorithms are a class of randomized algorithms that always give the
correct answer.

Solution: True.

(b) T F A Monte Carlo algorithm runs in worst-case polynomial time.

Solution: True.

(c) T F Prim’s algorithm on a graph G(V,E) takes O(|V | log |V |) time if implemented
with a binary heap.

Solution: False. It takes O(|E| log |V |) time.

(d) T F If a flow f on a graphG has no augmenting paths, then |f | is equal to the capacity
of the minimum cut in G.

Solution: True.

(e) T F Paths along a minimum spanning tree are shortest paths.

Solution: False.

(f) T F Solving a linear program whose variables are constrained to be real numbers is
NP-hard.

Solution: False. ILP is NP-hard, while (real-valued) LP is in P.

(g) T F The simplex algorithm is a polynomial-time algorithm.

Solution: False. The worse-case running time is exponential time, although it is
often more efficient than known polynomial-time LP algorithms in practice.

6.046J/18.410J Final Exam Solutions Name 3

(h) T F [3 points] Consider the following snapshot of the simplex algorithm, where z
denotes the objective value, and x1, ..., x5 are variables constrained to be nonneg-
ative. The current basic variables are x4 and x5. If x2 is chosen as the entering
variable for the next pivoting operation, then x4 is the leaving variable.

z = x1 + 4x2 + x3
x4 = 6 − x1 − 2x2 − 3x3
x5 = 10 − 2x1 − 5x2 − x3

Solution: False. x5 is the leaving variable. The second equation gives x2 ≤ 3,
while the third equation gives x2 ≤ 2, a tighter bound.

(i) T F For NP-complete decision problems, there always exist certificates that can be
verified in polynomial time.

Solution: True.

6.046J/18.410J Final Exam Solutions Name 4

(j) T F NP-hard problems are problems that are strictly harder than all NP problems.

Solution: False. NP-hard problems are at least as hard as all NP problems.

(k) T F If problem A is NP-hard and can be reduced by Karp reduction to problem B,
then B is also NP-hard.

Solution: True.

(l) T F Let A and B be optimization problems where it is known that A reduces to B
in quadratic time. If there exists a polynomial-time 2-approximation for B, then
there also exists a polynomial-time 2-approximation for A.

Solution: False. Approximation factor is not necessarily carried over in polynomial-
time reduction. e.g., set cover vs. vertex cover.

(m) T F Assume P 6= NP. The general Traveling Salesman Problem has a polynomial-time
α-approximation algorithm for some constant α > 1.

Solution: False. Assuming P 6= NP, there is a polynomial-time approximation
algorithm for TSP with the triangular inequality, but not the general TSP. For
example, the case where all weights are 0 corresponds to the Hamiltonian Cycle
problem, which is NP-complete.

(n) T F If a sequence of n operations on a data structure cost T (n), then the amortized
runtime of each operation in this sequence is T (n)/n.

Solution: True. This is the aggregate method.

(o) T F The amortized cost of any single operation should always be greater than or equal
to the actual cost of that operation, in order to bound the total actual cost for any
sequence of operations.

Solution: False. It is true for the total cost of a sequence of operations, but not
necessarily for any single operation.

(p) T F Leader election in a bidirectional ring of n processes can be performed inO(log n)
rounds.

Solution: True. Use the hierarchical algorithm from lecture.

6.046J/18.410J Final Exam Solutions Name 5

(q) T F Using the simplified Luby’s algorithm presented in lecture, a maximal indepen-
dent set of vertices of an arbitrary undirected graph G(V,E) can be found in
expected O(|V | log |V |) time.

Solution: True. The maximum degree is bounded above by |V |.

(r) T F A hash function that is one-way (OW), target collision resistant (TCR) and non-
malleable (NM) is guaranteed to be collision resistant (CR).

Solution: False.

(s) T F There is an existing deterministic polynomial-time algorithm that determines
whether or not a number is composite.

Solution: True. Test if it is a prime, which takes polynomial time.

(t) T F A computational problem in P is guaranteed to have an interactive proof.

Solution: True. The execution of the polynomial-time algorithm itself is a legal
proof.

6.046J/18.410J Final Exam Solutions Name 6

Problem 2. Selection [10 points]

Consider the recursive expression for the running time T (n) of SELECT(A, i), an algorithm that
returns the ith smallest element in an array A of n distinct elements:

T (n) ≤
{
O(1) if n < 140,
T (dn/5e) + T (7n/10 + 6) +O(n) if n ≥ 140.

For each of the three terms in the latter case where n ≥ 140, specify which step(s) in the following
outline of SELECT contributed to the term. Briefly explain why.

SELECT(A, i)

1. Divide the n elements into groups of 5 elements each, sort each group, and find the
median within each group.

2. Use SELECT recursively to find the median x of the medians found in step 1.

3. Partition the input arrayA around x. Suppose x is the kth largest element, i.e., there
are k − 1 elements on the low side of the partition, and n− k elements on the high
side.

4. If i = k, then return x. Otherwise, use SELECT recursively to find the ith smallest
element on the low side if i < k, or the (i− k)th smallest element on the high side
if i > k.

Term Step(s) Brief explanation

T (dn/5e)

T (7n/10 + 6)

O(n)

Solution:

• T (dn/5e): from step 2, recursively finding the median-of-medians;
• T (7n/10 + 6): from step 4, recursively performing SELECT. The eliminated side contains

at least 3
(
d1
2
dn
5
ee − 2

)
≥ 3n

10
− 6 elements, so the chosen side contains at most 7n/10 + 6

elements.
• O(n): from step 1, sorting n groups of 5 elements each, and from step 3, partitioning the

input around the median-of-medians.

6.046J/18.410J Final Exam Solutions Name 7

Problem 3. Fast Fourier Transform [10 points] (2 parts)

The following diagram illustrates the outline of an efficient polynomial-multiplication process,
using the Fast Fourier Transform (FFT):

A(x) =
∑n−1

i=1 aix
i

B(x) =
∑n−1

i=1 bix
i

Ordinary multiplication
Θ()

//

FFT Θ()

��

C(x) = A(x)B(x)

=
∑n−1

i=1 cix
i

A(ω0
2n), A(ω1

2n), ..., A(ω2n−1
2n)

B(ω0
2n), B(ω1

2n), ..., B(ω2n−1
2n)

Pointwise multiplication
Θ()

// C(ω0
2n), C(ω1

2n), ..., C(ω2n−1
2n)

FFT−1 Θ()

OO

(a) Fill in the running times above.

Solution: Ordinary multiplication: Θ(n2), FFT and FFT−1: Θ(n log n), pointwise
multiplication: Θ(n).

(b) What is ωk2n, k ∈ {0, 1, ..., 2n−1}, in the lower two boxes? Describe it with a concise
verbal explanation or terminology, as well as a mathematical expression. (Caution:
Note that the expression involves 2n and not n.)

Solution: ωk2n is one of the 2n complex (2n)th roots of unity; in particular,

wk2n = e
2πik
2n .

6.046J/18.410J Final Exam Solutions Name 8

Problem 4. Modifying Paths [15 points] (3 parts)

You are given a weighted directed graph G = (V,E) with weights w : (u, v)→ R. Your friend has
already computed the all pairs shortest path problem for this graph.

How long would it take to recompute the all pairs shortest paths if you only changed the weight of
the (n− 1, n) edge in the following circumstances.

(a) Your friend gives you the answers to the subproblems from the O(n4) dynamic pro-
gramming algorithm.

Solution: O(n4) time. While the first two iterations (filling out d(1)uv and d(2)uv) can be
done without recalculating most of the entries, the third iteration onwards may have
many entries differing from the original problem. Thus, it will still take O(n4) time.
Using Johnson’s algorithm for a time of O(nm + n2 log n) or Floyd-Warshall for a
time of O(n3) was also acceptable.

(b) Your friend gives you the intermediate matrices from the fast matrix multiplication
algorithm.

Solution: O(n3 log n) time. After taking the matrix to the fourth power, all entries
may be different, which means that all the matrices have to be redone.
Using Johnson’s algorithm for a time of O(nm + n2 log n) or Floyd-Warshall for a
time of O(n3) was also acceptable.

(c) Your friend gives you the answers to the subproblems from the Floyd-Warshall algo-
rithm.

Solution: O(n2) time. For all u ∈ V , C(n−1)
u,n may use edge (n − 1, n). This changes

O(n) calculations. Subsequently, in calculating C(n)
uv , all pairs u, v ∈ V may use the

result from C
(n−1)
u,n . This changes O(n2) calculations. Finally, the distance between

n − 1 and n may be different. Since no paths may use vertex n − 1 or n − 1 in the
first n− 2 iterations, the algorithm can skip calculating Cn−1,n for these calculations.
It takes O(n) time to loop through the other vertices and find some intermediate value
for the path from n− 1 to n.

6.046J/18.410J Final Exam Solutions Name 9

Problem 5. Edge connectivity [10 points] (1 parts)

The edge connectivity is the minimum number k of edges that must be removed to disconnect the
graph into two or more components. Given an undirected, unweighted graph G with vertices V
and edges E, design an algorithm which computes the edge connectivity. Provide the runtime
analysis for your algorithm. You may give your runtime in terms of T (n,m), the best algorithm
for computing maximum flow values on a graph of n nodes and m edges.

Solution: This can be solved by making a flow network out of the graph, where all edges have
edge capacity of 1. Choose one of the vertices V as a source node S, and iterate through the
remaining vertices and set it as the sink node T. Running a maximum-flow algorithm with the
given source and sink yields the minimum cut of the flow network which is equivalent to minimum
number of edges that must be removed to disconnect the source from sink. Take the minimum
of the max flow value over the sink node choices. Running the Ford-Fulkerson algorithm takes
O(|E| ∗ k), which is bounded by O(|E| ∗ |V |). We run |V − 1| iterations of the algorithm, so the
entire algorithm has time complexity of O(|E| ∗ |V |2).

6.046J/18.410J Final Exam Solutions Name 10

Problem 6. Linear Program [10 points] (1 parts)

Consider the following linear program:

max
x,y

5x− 3y

subject to x− y ≤ 1

2x+ y ≤ 2

x, y ≥ 0

Show that x = 1, y = 0 is an optimal solution by writing down the dual problem and using duality
(i.e., select a dual feasible solution to provide an upper bound on the optimal primal objective
value).

Solution: The dual problem is

min
u,v

u+ 2v

subject to u+ 2v ≥ 5

v − u ≥ −3

u, v ≥ 0

The solution u = 1, v = 2 gives an objective value of 5. By duality, this objective value 5 of the
dual feasible solution is an upper bound on the objective value of any primal feasible solution. The
objective value of the primal feasible solution x = 1, y = 0 is also 5. Therefore, x = 1, y = 0 is a
primal optimal solution.

6.046J/18.410J Final Exam Solutions Name 11

Problem 7. ILP and Total Unimodularity [10 points] (1 parts)

For any integer n×nmatrixB and any integer 1×n vector c, prove that the following ILP (integer
linear program) can be solved in polynomial time:

max
x

cx

subject to xi − xj ≤ Bij ∀i ∈ {1, ..., n}, j ∈ {1, ..., n}
xi ≥ 0 ∀i ∈ {1, ..., n}
x = [x1 x2 · · · xn]T is an integer-valued vector

where Bij denotes the (i, j)-th entry in the matrix B.

Solution: The given linear program, without the integrality constraint, is of the form Ax ≤ B,
x ≥ 0, and can be solved in polynomial time. The matrix A is of size n2 × n where each row
corresponds to one contraint. It’s easy to show that AT satisfies the sufficiency constraints for
total unimodularity. The entries of AT are 0, 1 and −1. The columns of AT are the rows of A.
Therefore, each column of AT has exactly two non-zero entries: 1 and -1. We can partition the
rows of AT into M1 = ∅ and M2 = M , where M is the set of all rows of AT . We have that for
each column of AT , the sum of entries in each partition equals to 0. Since AT is TU, A also must
be TU. This means that the optimal solution is integral and can be found in polynomial time.

6.046J/18.410J Final Exam Solutions Name 12

Problem 8. Universal Hashing [20 points] (2 parts)

For a matrix A of size m× n with {0, 1} entries, define the hash function

hA(x) = Ax

where the input x is a binary column vector of length n and all operations are done mod 2. In
this problem you will show that the hash family H that consists of all such hash functions (for a
fixed m and n) is universal.

(a) [10 points] Let x and x′ be column vectors of length n where each entry is in {0, 1}
and x 6= x′. Let r be a random row vector of length n such that each entry is chosen
from {0, 1} uniformly and independently at random. Show that

Pr[rx = rx′ mod 2] =
1

2

Solution:
For any two inputs x 6= x′, there is a difference at least in one entry. Without loss of
generality, let there be a difference in the jth entry, i.e., let the index j be such that
xj 6= x′j . Consider all possible 1 × n rows with {0, 1} entries. It is possible to pair
them by difference in index j. For any such pair (r, r′), we have that

rx− rx′ 6= r′x− r′x′.

Therefore, for a randomly drawn row vector r,

Pr[rx = rx′] =
1

2
.

(b) [10 points] Using the result from part (a), show that H is a universal hash family.

Solution:
Using the result from part (a), for a random matrix A, we have that

Pr[Ax = Ax′] =

(
1

2

)m
because Ax = Ax′ only when each bit of the output is the same. Each output bit is
determined by a row in A and the output size is m. Therefore, we must have that H is
a universal hash family.

6.046J/18.410J Final Exam Solutions Name 13

Problem 9. Approximation [10 points] (1 parts)

Prove that there is no polynomial-time
(
1 + 1

2n

)
-approximation algorithm for Vertex Cover (unless

P = NP).

Solution: Solution: Assume that there exists an (1 + 1
2n

)-approximation algorithm A for Vertex
Cover. For a given graph G = (V,E), let S be a minimum vertex cover for G. Then A can decide
if G has a vertex cover of size at most

|S|
(

1 +
1

2n

)
< |S|+ 1

That implies that A can solve Vertex Cover in polynomial time. Contradiction.

6.046J/18.410J Final Exam Solutions Name 14

Problem 10. Second Best is Leader [5 points] (1 parts)

Suppose we have a ring of n processes connected using bidirectional links. Assume that the pro-
cesses have unique, strictly positive IDs. We wish to find the process with the second highest ID.
Give an algorithm that can do this using O(n2) messages. You can quote algorithms from lecture.

Solution: [5 points]

1.In the first phase, find the maximum ID using the algorithm shown in lecture.

2.The process with maximum ID should pretend its ID is 0 and merely pass along the IDs it
receives in the second phase (Step 3 below).

3.Find the process with the maximum ID in the remaining processes.

Since the algorithm given in lecture uses O(n2) messages, the above uses O(n2) messages.

6.046J/18.410J Final Exam Solutions Name 15

Problem 11. Ben Bitdiddle Tries Cryptography [10 points] (2 parts) Ben Bitdiddle proposes
the following public key scheme. Alice chooses a secret key x, and computes gx mod N as her
public key. g and N are public parameters known to all. If Bob wants to encrypt a message m, he
computes gx·m and sends it to Alice.

(a) Ignoring questions of efficiency, is this scheme secure? State what computational
problems need to be intractable for an adversary who knows g, N and gx·m to not be
able to discover m. The adversary does not know x.

Solution: [5 points] Very similar assumptions to Diffie-Hellman key exchange.

1. Discrete Log Problem is hard: Can’t compute discrete log to find x ·m from gx·m

and x from gx.
2. Diffie-Hellman-like problem is hard: Seeing gx and gx·m the adversary shouldn’t

be able to discover m.

(b) Explain what Alice has to do to discover m. Indicate whether you think this scheme
is efficient or not.

Solution: [5 points] Alice has x, and sees gx·m. She has to try to find m by raising
gx to some power so it equals gx·m which she sees. This is difficult to do efficiently.

6.046J/18.410J Final Exam Solutions Name 16

Problem 12. Duplicate customers [15 points] (2 parts)

Two servers 1 and 2 each have a list of customers, and they would like to figure out which customers
are in the intersection of their lists. In the following, the names of the customers are represented
as integers in {1, . . . , D}. Each server has n distinct customers. Let S denote the set of customers
in the intersection of the two lists.

(a) Server 1 sends a message to server 2, after which server 2 needs to produce the set S,
based on the message and server 2’s list. Show how the servers can do this in such a
way that server 1 only sends at most O(n log |D|) bits to server 2.

Solution: [5 points]
Server 1 sends server 2 the names of his n customers. Each name needs only log |D|
bits to specify.

(b) Server 1 sends a message to server 2, after which server 2 should be able to produce a
set C based on the message and its own list, such that S ⊆ C, and with probability no
less than 3

4
,

|C| < |S|+ 0.1n.

Show how the servers can do this so that the number of bits that server 1 sends to
server 2 is as efficient as you can achieve.
Hint: You may use Markov’s inequality for a non-negative random variable X and
a > 0:

Pr[X ≥ a] ≤ E[X]

a

Solution: [10 points]
Server 1 should send server 2 a Bloom filter of size O(n) with a false positive rate of
ε. Let X be the random variable that denotes the number false positives. Then,

E[X] ≤ nε

We want X < .1n. Using the Markov’s inequality:

Pr[X ≥ .1n] ≤ E[X]

.1n
≤ ε

.1

For ε ≤ .025, we have that ε
.1
≤ 1

4
. Then, with probability at least 3

4
, the server 2 can

produce the desired C.

SCRATCH PAPER

