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Massachusetts Institute of Technology 6.046J/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Handout 1

Course Information

This handout describes basic course information and policies. Most of the sections will be
useful throughout the course. The main items to pay attention to NOW are:

1. Please make sure you are signed up through Stellar, and talk to the TAs if there is a problem.
2. Please note the dates of the quizzes and make sure to keep these dates free.
3. Please note the collaboration policy for homeworks.

4. Please note the grading policy, and in particular, the penalty for missed problems.
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1 Staff

The lecturers for this course are Prof. Srini Devadas and Prof. Ronitt Rubinfeld. Please see the
stellar website for names and contact information for lecturers and teaching assistants.

The course website is at:
https://stellar.mit.edu/S/course/6/£al2/6.046J/

The staff e-mail is: 6046-tas@mit.edu

2 Registration for recitations

If you would like to switch the recitation assigned to you by the registrar, please contact Yotam
Aron (yyaron@mit.edu). In the first week of class, requests for changes will generally be approved
if space permits.

3 Prerequisites

This course is the header course for the MIT/EECS Engineering Concentration of Theory of Com-
putation. You are expected, and strongly encouraged, to have taken:

e Either 6.006 Introduction to Algorithms or 6.001 Structure and Interpretation of Computer
Programs, and

o Either 6.042J/18.062] Mathematics for Computer Science or 18.310 Principles of Applied
Mathematics

and received grades of C or better.
Petitions for waivers will be considered by the course staff. Students will be responsible for
material covered in prerequisites.

4 Lectures & Recitations

Lectures will be held in room 26-100 from 11:00 A.M. to 12:30 P.M. on Tuesdays and Thurs-
days. You are responsible for material presented in lectures, including oral comments made by the
lecturer.

Students must also attend a one-hour recitation session each week. You are responsible for
material presented in recitation. Attendance in recitation has been well correlated in the past with
exam performance. Recitations also give you a more personalized opportunity to ask questions
and interact with the course staff. Your recitation instructor will assign your final grade.

Recitations will be taught by the teaching assistants on Fridays.
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5 Problem sets

Six problem sets will be assigned during the semester. The course calendar, available from the
course webpage, shows the tentative schedule of assignments and due dates. The actual due date

will always be on the problem set itself. Homework must be turned in by 11:59 pm on the due
date.

e Late homework will generally not be accepted. If there are extenuating circumstances, you
should make prior arrangements with your recitation instructor. An excuse from the Dean’s
Office will be required if prior arrangements have not been made. In all cases, late homework
must be submitted online on the course website.

e Each problem must be written up separately, since problems may be graded by separate
graders. Mark the top of each sheet with the following: (1) your name, (2) the name of your
recitation instructor, and the time your recitation section meets, (3) the question number, (4)
the names of any people you worked with on the problem (see Section 8), or “Collaborators:
none” if you solved the problem completely alone.

e Answers should be submitted online to the Stellar website in PDF format. Formatting your
problem set in ISTEX will make it easier for us to read; however, any method of generating
the PDF is acceptable (including scanning handwritten documents) as long as it is clearly
legible.

e The problem sets includes exercises that should be solved but not handed in. These questions
are intended to help you master the course material and will be useful in solving the assigned
problems. Material covered in exercises will be tested on exams.

6 Guide to writing up homework

You should be as clear and precise as possible in your write-up of solutions. Understandability
of your answer is as desirable as correctness, because communication of technical material is an
important skill.

A simple, direct analysis is worth more points than a convoluted one, both because it is simpler
and less prone to error and because it is easier to read and understand. Sloppy answers will receive
fewer points, even if they are correct, so make sure that your handwriting and your thoughts are
legible. If writing your problem set by hand, it is a good idea to copy over your solutions to hand
in, which will make your work neater and give you a chance to do sanity checks and correct bugs.
If typesetting, reviewing the problem set while typing it in often has this effect. In either case,
going over your solution at least once before submitting it is strongly recommended.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:
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1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.
3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

7 Grading policy

The final grade will be based on six problem sets, one in-class quiz, one take-home quiz, a final
during final exam week, and participation during the weekly recitation sections. Quiz 1 will be in
class on Thursday, October 11, 11:00 A.M. to 12:30 P.M. in room 26-100. Quiz 2 will be given
out Thursday, November 8, at the end of lecture and will be due on Wednesday, November 14, at
5:00 p.M.

The grading breakdown is as follows:

Problem sets 25%
In-class quiz  20%
Take-home quiz  25%
Final exam 30%

Although the problem sets account for only 25% of your final grade, you are required to at least
attempt them. The following table shows the impact of failing to attempt problems:

Questions skipped Impact
0 None

1 One-hundredth of a letter grade
2 One-tenth of a letter grade

3 One-fifth of a letter grade

4 One-fourth of a letter grade

5 One-third of a letter grade
6

7

8

9

One-half of a letter grade
One letter grade
Two letter grades

or more Fail

Please observe that this table is for questions skipped, not problem sets.
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8 Collaboration policy

The goal of homework is to give you practice in mastering the course material. Consequently, you
are encouraged to collaborate on problem sets. In fact, students who form study groups generally
do better on exams than do students who work alone. If you do work in a study group, however,
you owe it to yourself and your group to be prepared for your study group meeting. Specifically,
you should spend at least 30-45 minutes trying to solve each problem beforehand. If your group
is unable to solve a problem, talk to other groups or ask your recitation instructor.

You must write up each problem solution by yourself without assistance, however, even if
you collaborate with others to solve the problem. You are asked on problem sets to identify your
collaborators. If you did not work with anyone, you should write “Collaborators: none.” If you
obtain a solution through research (e.g., on the web), acknowledge your source, but write up the
solution in your own words. It is a violation of this policy to submit a problem solution that
you cannot orally explain to a member of the course staff.

No collaboration whatsoever is permitted on quizzes or exams. The course has a take-
home exam for the second quiz which you must do entirely on your own, even though you will be
permitted several days in which to do the exam. More details about the collaboration policy for
the take-home exam will be forthcoming in‘the lecture on Tuesday, November 15. Please note that
this lecture constitutes part of the exam, and attendance is mandatory.

Plagiarism and other dishonest behavior cannot be tolerated in any academic environment that
prides itself on individual accomplishment. If you have any questions about the collaboration pol-
icy, or if you feel that you may have violated the policy, please talk to one of the course staff.
Although the course staff is obligated to deal with cheating appropriately, we are more understand-
ing and lenient if we find out from the transgressor himself or herself rather than from a third

party.

9 Textbook

The primary written reference for the course is the third edition of the textbook Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein. In previous semesters the course has used
the first or second edition of this text. We will be using material and exercise numbering from the
third edition, making earlier editions unsuitable as substitutes.

The textbook can be obtained from the MIT Coop, the MIT Press Bookstore, and at various
other local and online bookstores.

10 Course website

The course website contains links to electronic copies of handouts, corrections made to the course
materials, and special announcements. You should visit this site regularly to be aware of any
changes in the course schedule, updates to your instructors’ office hours, etc. You will be informed
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via the web page and/or email where and when the few handouts that are not available from the
web page can be obtained.
In addition, you should use the Stellar website to submit problem sets and check on your grades.

11 Extra help

Based on the desires of the students, the teaching staff will offer regular office hours. Details will
be discussed in recitation during the first week of class. You may attend the office hours of any TA
(not just your own).

Further help may be obtained through tutoring services. The MIT Department of Electrical En-
gineering and Computer Science provides one-on-one peer assistance in many basic undergraduate
Course VI classes. During the first nine weeks of the term, you may request a tutor who will meet
with you for a few hours a week to aid in your understanding of course material. You and your
tutor arrange the hours that you meet, for your mutual convenience. This is a free service. More
information is available on the HKN web page:

https://hkn.mit.edu/tutoring/index.php

Tutoring is also available from the Tutorial Services Room (TSR) sponsored by the Office of
Minority Education. The tutors are undergraduate and graduate students, and all tutoring sessions
take place in the TSR (Room 12-124) or the nearby classrooms. For further information, go to

http://web.mit.edu/tsr/www

This course has great material, so HAVE FUN!
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Mon Tue Wed Thu
B
Sep 3 4 5 6
11:00 a.m. - 12:30 p.m.
Lecture 1: Overview, Interval Scheduling
(Reading: CLRS 16.1)
10 |11 12 13
HW1 Out 11:00 a.m. - 12:30 p.m.
11:00 a.m. - 12:30 p.m. Lecture 3: Divide and Conquer, FFT
Lecture 2: Divide and Conquer: Median
Finding (Reading: CLRS 9.3)
17 18 19 20
11:00 a.m. - 12:30 p.m. 11:00 a.m. - 12:30 p.m.
Lecture 4: Randomized Algorithms Lecture 5: More Randomized Algorithms
(Reading: CLRS Ch. 5, Ch. 7) (Reading: CLRS 31.8)
24 25 26 27
HW1 Due 11:00 a.m. - 12:30 p.m.
HW2 Out Lecture 7: All Pairs Shortest Path (Reading:
CLRS Ch. 24-25)
11:00 a.m. - 12:30 p.m.
Lecture 6: Dynamic Programming
(Reading: CLRS Ch. 15)
SRR | 2 3 4
Oct 11:00 a.m. - 12:30 p.m. Lecture 9: Max Flow, Min Cut (Reading: CLRS
Lecture 8: Greedy Algorithms (Reading: Ch. 26)
CLRS Ch. 16, Ch. 23)
8 9 10 11
HW2 Due HW3 Out
11:00 a.m. - 12:30 p.m.
Quiz 1
15 16 17 18
11:00 a.m. - 12:30 p.m. 11:00 a.m. - 12:30 p.m.
Lecture 10: Matching (Reading: CLRS Lecture 11: P, NP and NP-Completeness
26.3) (Reading: CLRS Ch. 34)
22 23 24 25
11:00 a.m. - 12:30 p.m. HW3 Due
Lecture 12: Problem Reduction (Reading: HW4 Out

CLRS Ch. 34)

11:00 a.m. - 12:30 p.m.

9/10/2012 10:38 PM
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Mon Tue

29

Nov

12

19

26

Dec ;

10

17
24
31

30

11:00 a.m. - 12:30 p.m.
Lecture 14: Linear Programming Il
(Reading: CLRS Ch. 29)

6
HW4 Due
HWS5 Out

11:00 a.m. - 12:30 p.m.
Lecture 16: Amortized Analysis
(Reading: CLRS Ch. 17)

13

No Lecture

20

11:00 a.m. - 12:30 p.m.
Lecture 19: Parallel and Distributed
Algorithms (Reading: CLRS Ch. 27)

27
HWS5 Due
HW6 Out

11:00 a.m. - 12:30 p.m.
Lecture 20: Intro to Cryptography

4

11:00 a.m. - 12:30 p.m.
Lecture 22: Sublinear Algorithms

11

11:00 a.m. - 12:30 p.m.
Lecture 23: Interactive Proofs

18
25

Wed

31

14

Quiz 2
Due

21

28

12

19
26

http://stellar.mit.edwS/course/6/fal2/6.046J/calendar.html

Thu

Lecture 13: Linear Programming (Reading:
CLRS Ch. 29)

1

11:00 am. - 12:30 p.m.
Lecture 15: Randomized Algorithms I,
Hashing (Reading: CLRS 11.3, 11.5)

8
Quiz 2 Out

11:00 a.m. - 12:30 p.m.
Lecture 17: Approximation Algorithms
(Reading: CLRS Ch. 35)

15

11:00 a.m. - 12:30 p.m.
Lecture 18: Approximation Algorithms Il
(Reading: CLRS Ch. 34)

22

29

11:00 a.m. - 12:30 p.m.
Lecture 21: Clustering

6
HW6 Due

11:00 a.m. - 12:30 p.m.
Lecture 23: Compression

13

20
27

9/10/2012 10:38 PM
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Course Objectives and Outcomes

Course Objectives

This course assumes that students know how to analyze simple algorithms and data structures
from having taken 6.006, and introduces students to design of computer algorithms, as well as
analysis of sophisticated algorithms. Upon completion of this course, students will be able to do
the following:

e Analyze the asymptotic performance of algorithms.

Demonstrate a familiarity with major algorithms and data structures.

Apply important algorithmic design paradigms and methods of analysis.

Synthesize efficient algorithms in common engineering design situations.

Understand the difference between tractable and intractable problems, and be familiar with
strategies to deal with intractability.

Course Outcomes
Students who complete the course will have demonstrated the ability to do the following:
e Argue the correctness of algorithms using inductive proofs and loop invariants.

e Analyze worst-case running times of algorithms using asymptotic analysis. Compare the
asymptotic behaviors of functions obtained by elementary composition of polynomials, ex-
ponentials, and logarithmic functions. Describe the relative merits of worst-, average-, and
best-case analysis.

e Analyze average-case running times of algorithms whose running time is probabilistic. Em-
ploy indicator random variables and linearity of expectation to perform the analyses. Recite
analyses of algorithms that employ this method of analysis.

e Explain the basic properties of randomized algorithms and methods for analyzing them.
Recite algorithms that employ randomization. Explain the difference between a randomized
algorithm and an algorithm with probabilistic inputs.

e Describe the divide-and-conquer paradigm and explain when an algorithmic design situation
calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-conquer
algorithms. Derive and solve recurrences describing the performance of divide-and-conquer
algorithms.
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Describe the dynamic-programming paradigm and explain when an algorithmic design sit-
uation calls for it. Recite algorithms that employ this paradigm. Synthesize dynamic-
programming algorithms, and analyze them.

Describe the greedy paradigm and explain when an algorithmic design situation calls for it.
Recite algorithms that employ this paradigm. Synthesize greedy algorithms, and analyze
them.

Explain the major graph algorithms and their analyses. Employ graphs to model engineering
problems, when appropriate. Synthesize new graph algorithms and algorithms that employ
graph computations as key components, and analyze them.

Describe a linear program and cite problems that can be solved using linear programming.
Reduce problems to linear programming formulations. Understand the complexity of various
linear programming approaches.

Explain basic complexity classes such as P, NP, and NP-complete, and be able to use analysis
and reduction techniques to show membership or non-membership of a problem in these
classes.

Understand and explain approaches to dealing with problems that are NP-complete such as
the design of heuristic, approximation, or fixed-parameter algorithms.
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References
The principal text for this course is

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms (Third Edition), MIT Press, 2009.

The following books are additional references.

Texts on Algorithms
1. Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms, McGraw-
Hill, 2006.
2. Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.

Algorithms + Programming
1. Jon Bentley. Programming Pearls. Addison-Wesley, 1986. Applications of algorithm design
techniques to software engineering.

2. Jon Bentley. More Programming Pearls. Addison-Wesley, 1988. More applications of
algorithm design techniques to software engineering.

3. Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall, 1982. Performance hacking
extraordinaire.

4. Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1997.

5. G. H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley, 1984. Pascal
and C code, comparisons of actual running times, and pointers to analysis in research papers.

Pointers to materials on advanced topics

1. Shimon Even. Graph Algorithms. Computer Science Press, 1979. Broad treatment of graph
algorithms, including network flow and planarity.

2. Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., San Francisco, 1979. Reference book
devoted to NP-completeness. The second half contains an extensive list of NP-complete
problems and references to algorithms in the literature for polynomial-time special cases.

3. Dan Gusfield. Algorithms on Strings, Trees, and Sequences Cambridge University Press,
1997. General treatment of algorithms that operate on character strings and sequences.
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4. Eugene L. Lawler. Combinatorial Optimization. Holt, Rinehart, and Winston, 1976. (Dense)
graph algorithms, network flows, and linear programming. First few chapters are excellent.

5. Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982. Linear programming and its variants.

6. Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Co., 1997. A
good text on computability and complexity theory, with proof ideas to kick off each proof.

7. Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983. An advanced book with tons of good stuff.

Background Mathematics

1. Kai Lai Chung. Elementary Probability Theory with Stochastic Processes. Springer-Verlag,
1974. Intuitive introduction to probability.

2. William Feller. An Introduction to Probability Theory and Its Applications. John Wiley &
Sons, 1968 (Volume 1), 1971 (Volume 2). Excellent reference for probability theory.

3. C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968. Combinatorial
mathematics relevant to computer science. Excellent problems.

4. Ivan Niven and Herbert S. Zuckerman. An Introduction to the Theory of Numbers. John
Wiley & Sons, 1980. Readable introduction to number theory.
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6.046 Rec19/7/12

Class of problems

P: Class of problems solvable in polynomial time
NP: Class of problems verifiable in polynomial time
NP-Complete: Problems in NP that are as hard as any problem in NP.
(If any NP-C problem can be solved in polynomial time, ALL problems in NP can be solved in polynomial time)
Intractable: Not solvable in polynomial time

Interval Scheduling
Scheduling use of Resource (classroom, time) to grant Requests(classes, appointments)

R ={Ry, Rz, ..., Rn} : n requests
s(i) : start time
f(i) : finish time s(i) < f(i)

Find a schedule S S R, a set of compatible requests, that optimize some given criterion.

1. Interval Scheduling: As many requests as possible
Goal: select a compatible subset of R with maximum size

By brute force:
0(2") subsets of requests * O(n2) compatibility checks for each subset
Exponential time. Not good

Greedy algorithm:
Use simple rule to select a request i
Reject all requests incompatible with i
Repeat until all requests are processed

Greedy algorithm with first-to-finish rule gives an optimal schedule in polynomial time
-Add a request that has earliest finishing time into the schedule

-Reject all request that overlaps with the request

-Repeat

Proof

* suppose greedy algorithm returns S = {Riy, Riz, ... Rip}
* |S| = p, results are "in order” (R finishes first)
» LetS" ={Rp, Rp, ... Riq} be some optimal schedule (in order). |S*| = q = opt(R)
» There exists an optimal schedule S™* starting with Rj;.
(Relace Rj; with in Riy; OK since f{i1) < f(j) by the greedy algorithm rule.
e LetR*={RiE R | s(i) = x}
e Then {Rj, ... Rjg} must be optimal for Rf%},
otherwise we could replace it with better solution and S**wouldn't be optimal.
* Repeat the same steps, then there exists an optimal schedule that starts with Ry, Riz, ... Rip.
= Sshould be an optimal schedule, since S was returned by a greedy algorithm. There were no more compatible requests after f(R).

Running time: O(n Ig n)

-sort requests in order of increasing f(i)
-consider each in turn, adding it to S iff it's compatible with last interval added to S.

Unfiled Notes Page |



6.046 Rec19/7/12

2. Weighted Interval Scheduling: As much weight in the scheduled requests

Same as before, but now each request also has a "weight" w(i).
Goal: select a compatible subset of R with maximum combined weight

Greedy algorithm doesn't work. Counterexamples?

Dynamic programming:
Define subproblems
Find the solution for entire problem using subproblems, memoization

Subproblems: R*={R, € R | s(i) = x}

There are n different subproblems, one for each x = (i).

Save each subproblem once and save the solution for later use.

We don't have a rule telling us which interval to schedule first, so try each R; in turn as possible "first".

Let's assume R ={1, 2, ... n} sorted in increasing order of start times.

Now if | want to compute R¥, where x = f(i), then all | have to do is find the smallest index j such that s(j) >=f(i). And all subsequent indices/requests will
also have s(k) >= f(i).

We have a dictionary/memo-table M with a request-index as the key, and the value is the optimal solution. The request-index corresponds to a
subproblem with the request-index being the first request.

weighted_interval_scheduling(start = 1, num_req=n) {

if (start > n) return 0
Lookup M(start] = sol, if sol is not null, return sal.

best=0

for (i = start; i <= n; i++) {
/* Compute R0 */
Find smallest index t such that s(t) >= f(i)
tmp = w; + weighted_interval_scheduling(t, n)
if (best < tmp) best =tmp

}

M[start] = best

}

You can trace back to get the solution given the M array in O(n) time

3. "Multiple non-identical machines": Resources are multiple different things, more constraints on how to grant requests

Same as interval scheduling or weighted interval scheduling, but now with machine typesT ={T1,T2, T3, ..., Tm}
Q(i) € T: set of machines that request | can be served on.

Goal: Maximize number of jobs that are scheduled on m machines
Legality of solution: NP

Can k <= n requests be scheduled?: NP-Complete
Maximize the number of requests: NP-Hard

Unfiled Notes Page 2
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Design and Analysis of Algorithms Sep 14, 2012
Massachusetts Institute of Technology 6.046J/18.410J
Profs. Srini Devadas and Ronitt Rubinfeld Recitation 2

Recitation 2: Divide-and-Conquer

1 Convex hull and highest points
e Definitions:

— A planar polygon is convez if it contains all the line segments connecting any pair of its points.
In other words, P C R? is a polygon if for any z,y € P, tz + (1 —t)y € P for t € [0, 1].

— The convez hull of a set S of points, denoted CH(S), is the smallest convex polygon for which
each point in S is either on the boundary or in the interior.

See class notes for definitions on the upper/lower tangents, intercepts with the dividing line, and
details on the divide-and-conquer method for finding CH(S).

e The upper tangent is not always formed by connecting the two highest points, i.e. points with the
largest y-coordinates (counterexample shown in class).

e Also, it is not true that one of the two points forming the upper tangent is the highest point in the
subset. As a counterexample, consider the figure below, where the blue lines outline the convex hull.
Points a and b for the upper tangent, marked with a solid blue line, but neither a or b is the highest
point in their respective subsets.

e Claim: Consider all pairs of points a; € A,b; € B in the left- and right-subsets A and B, respectively.
Let p(4,5) = (z(4,5),y(, 7)) denote the intersection between the line segment (a;, b;) and the dividing
line L. Then (a;,b;) is the upper tangent of CH(S) if and only if it maximizes y(i, ).

Proof. First note that, by convexity, the intersection of L and any convex polygon is either empty,
or a continuous line segment (including the case of a single point).

Let (ai,b;) be the upper tangent, and let Ly = LNCH(S) be the line segment at which L intersects
CH(S). By definition of the upper tangent, all points in Ly have y-coordinates that are no greater
than (i, j). Now suppose there exists a segment (ay, by) such that y(¢, ') > y(4, j), where i # i’ or
7 # j'. By convexity, since p(4', j') is on the segment connecting ay and b;/, we have p(7, j') € CH(S).
Therefore, p(¥/, j') € LNCH(S), contradicting the fact that p(¢, j") ¢ Lo due to y(¢',j) > y(3, 7).

Conversely, let (a;,b;) be the segment that maximizes y(i,7). If it is not the upper tangent, then

p(%, 7) must be an interior point on Ly = LNCH(S). Therefore, the point at which the upper tangent
intersects L has a greater y-coordinate than p(7, j), a contradiction. O



2 Selection in worse-case linear time (Sec. 9.3)

e (See CLRS Section 9.3 for figures and details.)

e Dividing into groups of 7 elements:

The number of elements that are greater (or smaller) than the median-of-medians is at least

([3131] -2).

which is bounded below by 27” — 8. Therefore, the complexity is

O(].), n < 70,
70 {708 v (59 o, nam .

We show that T'(n) = O(n) by substitution. First, choose a positive scalar ¢ large enough such
that T'(n) < cn for all n < 70. Also, choose a positive scalar a such that the O(n) term above is
upper-bounded by an. Now given n > 70, suppose T'(k) < ck for all k < n. Then, by induction,

T(n)gc[$]+c(57”+8)+an

5
Sc($+l+7n+8)+an

which is no greater than cn if

g2 = = ‘
2-9 1-63/n

Note that the term on the right-hand side decreases with increasing n. For n = 70, we have 1_2—‘:‘,'/“ =

70a. Therefore, by choosing ¢ > 70a, we can ensure that the induction hypothesis holds for n, i.e.,
)= on:

¢ Dividing into groups of 3 elements: The number of elements that are greater (or smaller) than the

median-of-medians, is
1n
’ Uz H] *2)’

which is bounded below by 3 — 4. Therefore, the complexity is

0(1), n small,

T ( [%-') +T (QT" + 4) +O(n), otherwise. (2)

T(n) < {

The failure of substitution makes it clear that T'(n) is not linear time. (Indeed, 5 is the smallest odd
number for which the method works.)

(W]



Supplementary Material:
Fast Fourier Transform (Ch. 30)

e Representing polynomials of degree-bound n (i.e. degree strictly smaller than n):

— Coefficient representation: A(z) = Z?;& a;T’

— Point-value representation: {(zg,%o), .-+, (Tn—1,¥Yn-1)}
Ezample. f(z) = 2®+ 2z + 3
(Evaluation) Choose points 0,1, —1.
= f(z) can’be represented by {(0, £(0)), (1, £(1), (~1, F(=1))} = {(0,3), (1,6), (~1,2)}
= O(n?) time
(Interpolation) f(z) = az(z — 1)+ bz(z + 1) +c(z — 1)(z + 1)
= f(0)=—¢=8,f(1})=2b=8, f(-1)=2a=2
= O(n?) time
The fast Fourier transform (FFT) improves the time complexity of evaluation/interpolation to
O(nlogn), using a divide-and-conquer approach.

e Complex roots of unity: =
furf | =0,y —1} i=1w | w*=1}= {&*% | k=0,1syn~= 1}

Ezample. n =38

wi | k=0,..,7 W k=0,..,7 ={wk=0,1,2,3
8 8

Im Im

Re |:> Re

e Representing polynomials at complex roots of unity: (Assuming n = 2™)
Representing A(z) = Z;-:g a;z? with {(wk,yx) | k = 0,...,n — 1} requires the following calculations
for k= Liagn=1

n—1
Yk =A(wy) = Z a;(Wh) = ao + @} + ag(Wh)? + - + ap1(wy)™ !
3=0

=ap + az(wﬁ)2 + a4(wi)4 + -+ an_Q(wfi o=t

+wh(ay + ag(wh)? + as(Wh)* + -+ + an_1 (W) 7?)
= Aeven((wﬁ)z) F wﬁAodd((w::)Q)

where A.ye, and Ay are polynomials of degree-bound 7. Therefore, what we need is to compute
values of Agen and Aygg at the set of points

{@E? 1 k=0,..,n—1} = {w§ | k=0,..,5 - 1}.

[

3



Moreover, Yesn = Awyen((@n 2)2) +wh 2 Apaa(Wh 3)2) = Ayen((@)?) — W Agaa((wh)?). Therefore,

. 2 k+2Z k+2
computation results for point wk = (w¥)? = (wn ?)? can be reused for both w¥ and wy, 2.
2

Runtime analysis:
n
T(n) =27 (3) +O(n)
By the master theorem, T'(n) = O(nlogn).

Ezample. Evaluation of a polynomial of degree-bound 4
Given: A(z) = ag + a17 + axz® + azz® (coefficient representation)
Goal: Obtain A(1), A(¢), A(—1), A(—7) (point-value representation at points 1,7, —1, —1)

Level-1 subproblems:

Alz) = Ae(xz) + an(x2)
Level-2 subproblems:

Ae(y) = ap + azy = AL(y®) +yAL(v°)
Ao(y) = a1+ asy = AL(y®) + yAL(Y°)

Level-3 subproblems: (base cases)

e( ) = Qo
A:)(Z) = a2
A () =a
Ag(z) = as

The diagram below shows how the values are constructed. The lines indicate which subproblem

values were queried in the computation of each value. The calculation of each value takes constant
time. ‘

Level-1 subproblems Level-2 subproblems Level-3 subproblems
A1) = A:(12) +14,(1%) Ae(1) = A44(12) + yA5(1%) A4(1) = ao
A(0) = Ao(®) +iAo(i?) Ao(=1) = AL(-1)%) +yA5((-1)?) A1) =as
A(=1) = Au((-1)?) — 14,((-1)? Ao(1) = AL(1%) +yAL(1%) A =ay
A=) = A((—)%) — i4o((~)?) Ao(=1) = AL(-1)?) + yxaz((—a)ﬂzazm =ay

In each level, we are reducing the number of evaluation points by half, so there are O(logn) levels
of subproblems. At each level, two functions (even and odd) are created at each evaluation point, so
there are still n_values to calculate at each level. Therefore, we have a total of O(nlogn) values to calculate,
which is why the runtime complexity of the FFT is O(nlogn).
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Check your math with
randomized algorithms

(GEBIER
G
Prof. Ronitt Rubinfeld ‘
N
6.046 Lecture 5

Warning: see lecture notes for more details

Checking matrix products

G 1 1 1 3 4
(2 i 3)=(3 3 6)???
1 2 3/ \4 12 8

Today:
* Checking matrix products

* Checking polynomial identities

The question and an attempt

* Given 3 nxn matrices A,B,C:
— |s A-B=C??
e Afirst try:
— Compute A:B and compare result to C

Runtime:
O(n3) multiplications
+ O(n2) more work

]
)




Fast Matrix Multiplication

* Multiply 2x2 matrices with 7 multiplications gives O(n%81)
time [Strassen]

* Multiply 70x70 matrices with 143640 multiplications
gives O(n%795~) time [Pan ‘76]

* 0O(n?376-) time [Coppersmith-Winograd‘87]
* O(n?%372-) time [Virginia Williams ‘12]

Is O(n?) possible?

Freivald’s algorithm

* Pick random n-vector r

— Each entry independently and uniformly from
{0,1}

* IfA-B -r #C -r return “not equa

lH

Do we really need to compute A-B?

Sanity Checks:

* Did we use that entries are over a field?

* What if ris chosen from a larger set?
—i.e., vectors with entries from 0..q

* How can we improve error probability?



Freivald’s algorithm (improved error)

* Do k times:

— Pick random n-vector r
* Each entry independently and uniformly from {0,1}

—IfAb-r=C-r return “Not equal”
* Return “Pass”

Another example:

2x2

° |s Det(
4x

* Do you need to try all x? infinitely

many!

Checking Polynomial Identities

* |s it the case that
(7 + LR = 1P (=1 E
x8 — 2x* 4+ 2x%2 — 2x + 2 /‘\
/ \"\‘
/ N

i Notation: “="is “FOR ALL x” |

Recall from last time:

2 points determine a line
* 3 points determine a quadratic polynomial

* Given xg, X1, ... X, (distinct), and yy, ..., ¥,
(not necessarily distinct), there is EXACTLY
one degree < n polynomial p such that

f(x0) = ¥0, f(x1) = Y1, 000, (X)) = I



Important corollary

* Given degree < n polynomial f then either

1. fix)=0

2. Or f hasat most n roots
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Design and Analysis of Algorithms September 11, 2012

Massachusetts Institute of Technology 6.046J/18.410]
Profs. Srini Devadas and Ronitt Rubinfeld Handout 4
Problem Set 1

This problem set is due at 11:59pm on Tuesday, September 25, 2012.

Both exercises and problems should be solved, but only the problems should be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date and the names of any students with whom you collaborated.

Each problem must be turned in separately to stellar.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of the essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudo-code.
2. A proof (or indication) of the correctness of the algorithm.
3. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Full credit will be given only to correct solutions
which are described clearly. Convoluted and obtuse descriptions will receive low marks.

Exercise 1-1. Do Exercise 2.3-3 in CLRS on page 39.
Exercise 1-2. Do Exercise 2.3-4 in CLRS on page 39.
Exercise 1-3. Do Exercise 3.1-2 in CLRS on page 52.
Exercise 1-4. Do Exercise 3.1-3 in CLRS on page 53.
Exercise 1-5. Do Exercise 3.1-4 in CLRS on page 53.
Exercise 1-6. Do Exercise 4.3-6 in CLRS on page 87.
Exercise 1-7. Do Exercise 4.4-8 in CLRS on page 93.

Problem 1-1. Asymptotic Growth

Decide whether these statements are always true, never true, or sometimes true for asymptot-
ically nonnegative functions f and g. You must justify all your answers to receive full credit by
either giving a short proof (1-2 sentences) or exhibiting a counter-example.



2 Handout 4: Problem Set 1

@ f(n) =(g(n)) and f(n) = o(g(n))

(b) f(n) = O(g(n)) and g(n) = o(h(n)) implies h(n) = w(f(n))

(© f(n)+g(n) = w(max(f(n), g(n)))

(d) Rank the following functions by order of growth. In other words, find an arrangement

91, 92, - - - , 16 of the functions satisfying g1 = 2(g2), g2 = (g3), - -, 915 = 2(ge)-
Partition your list into equivalence classes such that f(n) and g(n) are in the same

class if and only if f(n) = ©(g(n)).

N\ 2 \ lgn \ 604%™ L.
\ n \ Dk \ 9(2%) \ Vnlgn
k=1
\ log’n \ n2" ~ log,n \ nlogn
\ loglogn \n21°‘5” \ 3" | n?

Problem 1-2. Recurrences

Give asymptotic upper and lower bounds for T'(n) in each of the following recurrences. For parts
(a)—(e), assume that 7'(n) is constant for n < 2. Make your bounds as tight as possible, and justify
your answers.



Handout 4: Problem Set 1 3

Problem 1-3. Adding Many Little Numbers

You have n numbers that are each a single bit (either 1 or 0). You wish to determine their sum.
However, you only have a one-bit adder (with carry). This means, in order to add an a-bit number

and a b-bit number, you will need to spend ©(maz(a, b)) time to add each pair of bits sequentially
starting from the least significant bit.

(a) Assume you simply go through the list adding each bit in turn to a running total.
Analyze the running time of this algorithm. What is the upper bound? What can we
say about the lower bound? What would you expect the typical running time to be if
the 1s and Os are approximately evenly distributed?

(b) Give a better algorithm to add the numbers together efficiently, and analyze your al-
gorithm’s running time.

(¢) Do you think a different algorithm can perform asymptotically better than the one you
P ¥
presented in part (b)? Why or why not?

Problem 1-4. Donut Building

The donut building is shaped like a circle of n connected rooms such that each classroom is next
to two other classrooms. The rooms are numbered 1 through 7 clockwise around the building such
that the room ¢ is next to 2 — 1 and 7 + 1, and room n and room 1 are next to each other. Each
classroom 1 < 7 < n has a capacity v;, which is the maximum number of students who can be
seated in the room. Unfortunately, the walls are not soundproof, and it is impossible to have classes
in two neighboring classrooms at the same time. We want to maximize the number of students who
can attend class at once. To do this, we wish to select a set of rooms of maximum total capacity.
Assume that v; # v; fori # j.

(a) Show by example that the “greedy” approach of selecting the highest capacity v; and
then continuing with what remains does not necessarily select the set of rooms of
maximum total capacity.

(b) Give an efficient algorithm to find the set of rooms with maximal total capacity. What
is the run time?
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O-Notation Visualizer
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Big O notation - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Big O notation

Big O notation RQUZd y 25 fc‘)%

From Wikipedia. the free encyclopedia

In mathematics, big O notation is used to describe the limiting behavior of a
function when the argument tends towards a particular value or infinity. usually in
terms of simpler functions. 1t isTmember of @ farger lamily ol notations That is . /
called Landau notation, Bachmann-Landau notation (after Edmund Landau
and Paul Bachmann), or asymptotic notation. In computer science, big O S‘M m‘ [{ Ca ﬁ
notation is used to classify umhow they respond (e.g., in their " V

processing time or working space requirements) to changes in input size.

Big O notation characterizes functions according to their growth rates: different j
functions with the same growth rate may be represented using the same O {
notation. A description of a function in terms of big O notation usually only .F(\F)

provides an upper bou the growth rate of the function. Associated with big O

notation are several related notations. using the symbols 0. Q. @, and ©, to

i N0
describe other kinds of bounds on asymptotic growth rates. (
Big O notation is also used in many other fields to provide similar estimates. [
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Formal definition

Let f(x) and g(x) be two functions defined on some subset of the real numbers. One writes

flx) =0(g(z)) as x — _
if and only if there l@ that for all sufficiently large values of x, f(x) is &L most M multiplied by g(x) in absolute valug. That
is. f{x) = O(g(x)) if andonly 1 there EXISIS A positive real number A/ and a real number xo such that

|f(2)] < M|g(x)] for all x > a.

In many contexts, the assumption that we are interested in the growth rate as the variable x goes to infinity is left unstated, and one writes more
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simply that f{x) = O(g(x)). The notation can also be used to describe the behavior of / near some real number a (often, a = 0): we say
flx)=0(g(z)) as x — a

if and only if there exist positive numbers ¢ and M such that
|f(x)] < M|g(z)| for |x —a| < 4.

1t g(x) is non-zero for values of x sufficiently close to a. both of these definitions can be unified using the limit superior:

flx)=0(g(x)) asx = a

et 157 o fond

lim sup JAC)) < o,

zsa | g(z] (d'\ é?. Hg},,.} Qr ’\01(

Example ‘ + \ }/V
pat o - Eighl
O m 7:1 func 0&&\') is derived by the following

In typical usage, the formal definition of O notation is not used directly: ratper, the O notation foy
simplification rules:

A

= t»‘ h }

= [ff{x) is a sum of several terms, the one with the largest growth rate is kept, and all lwrs o niﬂd.

= [ff{x) is a product of several factors, any constants (terms in the product that do not depend on x) are omitted.
For example, let f(;) = (o' — 227 4 5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x
approaches infinity. This function is the sum of three terms: 6, —._\'3, and 5. Of these three terms, the one with the highest growth rate is the one with
the largest exponent as a function of x, namely 6x*. Now one may apply the second rule: 6xtisa product of 6 and x* in which the first factor does not
depend on x. Omitting this factor results in the simplified form x*. Thus, we say that f{x) is a big-oh 01'(.\"‘) or mathematically we can write
flx)= O(.\'4). One may confirm this calculation using the formal definition: let f{x) = 6x* = 2% + 5.and glx)= o Applying the formal definition from
above, the statement that f{x) = O(.\“l) is equivalent to its expansion.

|f(x)] < Mlg(x)|
for some suitable choice of xp and M and for all ¥ > xg. To prove this, let xo = | and M = 13. Then, for all x > xq:

|62 — 22 + 5] < 62 + 223 + 5

< Gz + 22" + 5z 'a

< 1324 ( /

%13;.;-‘1 ag} #(UM& )\'\U{”5 0 v

& o (J Tfﬂrﬁ Yy ( 0/&517&; ](«QFW g
o = s (

I A

< 13|zY.

Usage LQ; P@ %&'

Big O notation has two main areas of application. In mathematics. it is commonly used to describe how closely a finite series approximates a given
function, especially in the case of a truncated Taylor series or asymptotic expansion. In computer science, it is useful in the dnalysi sarithms. In

both applications, the function g(x) appearing within the O(...) is typically chosen to be as simple as possible. omitting constant factors and lower

order terms. There are two formally close, but noticeably different, usages of this notation: infinite asymptoti infinitesimal asymptotics. This
distinction is only in application and not in principle, however—the formal definition for the "big O" is the saime for both cases. only with different
limits for the function argument.

o
X
-~
~
ot
A
I\

Infinite asymptotics

Big O notation is useful when analyzing algorithms for efficiency. For example, the time (or the number of steps) it takes to complete a problem of
size n might be found to be 7(rn) = 4n* - 2n+2. Asn grows large, the n term will come to dominate, so that all other terms can be neglected — for
instance when 1= 500, the term 4n” is 1000 times as large as the 2n term. Ignoring the latter would have negligible effect on the expression's value for
most purposes. Further, the coefficients become irrelevant if we compare to any other order of expression. such as an expression containing a term n’
or n"‘. Evenif T{n) = 1.000.000.'72. it Uln) = i the latter will always exceed the former once n grows larger than 1,000,000 (7(1,000,000) =
1.000,000°= U(1,000,000)). Additionally, the number of steps depends on the details of the machine model on which the algorithm runs. but different
types of machines typically vary by only ai%hcwr in the number of steps needed to execute an algorithm. So the big O notation captures what
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remains: we write either

T(n) = O(n*)

T et

T(n) € (-—)(”2]

or

and say that the algorithm Ims order ofnz time complexity. Note that "=" is not meant to express "is equal to" in its normal mathematical sense, but
rather a more colloqui o the second expression is technically accurate (see the "Equals sign” discussion below) while the first is a common

1
abuse of notation.!']

Infinitesimal asymptotics

Big O can also be used to describe the error term in an approximation to a mathematical function. The most significant terms are written explicitly.

and then the least-significant terms are summarized in a single big O term. For example.
‘)

: a 4 .
=142+ = Uz} as . —+ 0

-~ . o Bl
expresses the fact that the error, the difference % . (14 24+ a°/ /). is smaller in absolute value than some constant tmu,s, T i| when 1 is close

enough to 0.

Properties

I a function f{n) can be written as a finite sum of other functions. then the fastest growing one determines the order of /{n). For example
—_— Elf Vi o 3 L T S Y ¢
f(n)=Ylogn + 5(logn)” + 3n~ + 2n" = O(n”).

In particular, if a function may be bounded by a polynomial in 5, then as n tends to infinity, one may disregard lower-order terms of the polynomial.

O(n) and O(c") are very different. If ¢ is greater than one, then the latter grows much faster. A function that grows faster than 7 for any ¢ is called
superpolynomial. One that grows more slowly than any exponential function of the form " is called subexponential. An algorithm can require time
that is both superpolynomial and subexponential: examples of this include the fastest known algorithms for integer factorization. O(log 1) is exactly
the same as O(log(n“)). The logarithms differ only by a constant factor (since log(\ 1"} = ¢ log n) and thus the big O notation ignores that. Similarly,
logs with different constant bases are equivalent. Exponentials with different bases. on the other hand. are not of the same order. For example, 2" and
;3" are not of the same order. Changing units may or may not affect the order of the resulting algorithm. Channing units is equivalent to multiplying

the appropriate \"‘i]’l'lble bv a constant wherever it appears. For L\amplu if an algorithm runs in lhl.. ondLr of 1> u.phcing n by ¢n means the algorithm
runs in the order of -2 n- and the big O notation 1gnores the constant = 2. This can be written as ¢~ =~ © Oln ] If. however. an algorithm runs in

the order of 9", replacing n with cn gives 2" = (2"}". This is not equivalent to 2" in general. Changmb of variable may affect the order of the

resulting algorithm. For example, if an algorithm's running time is O(17) when measured in terms of the number n of digits of an input number x, then
its running time is O(log x) when measured as a function of the input number x itself. because n = O(log x).

Product

fi € O(gr) and fy € Olgs) = fifo € Olgry)
I U‘_f}‘.' Cc O(fqg)

Sum

f1 €0(gy) and fo &€ O(g) = fl + fo € O(|gi] + lg21)
This implies f; € O(g) and fo € Olg) = fi + f_, € (J( g} which means that ()( ;) is a convex cone,
If fand g are positive functions, [ 4 ()[q} (= () {(f+4q)

Multiplication by a constant
Let k be a constant. Then:
O(kqg) = O(g)ifk is nonzero,
FeO0(g)=kfeO(g)

Multiple variables

Big O (and little o, and ©...) can also be used with multiple variables. To define Big O formally for multiple variables, suppose f( ') and _q[jj-') are two

functions defined on some subset of 2. We say
‘ (
T T gt boter -
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f(@) is O(g(Z)) as ¥ — o0
iffand only if
3CAM > 0 such that [ f(7)] < Clg(F)| for all & with x; > M for all 4.
For example. the statement
f{n,m) = n? +md+0(n+ M) as n,m — o
asserts that there exist constants C and M such that
Yn,m > M:|g(n.m)| < C(n +m),
where g(n.m) is defined by
fln.m) = n® +m® + gln.m).
Note that this definition allows all of the coordinates of § to increase to infinity. In particular. the statement
fin,m)=0(n")asn.m = oo
(Le.. 3C" AN ¥ Y. . ) is quite different from
Ym: f(n,m) = O(n™) as n — o

(e ¥ AC M ¥n .. ).
Matters of notation
Equals sign

The statement 'fﬂ@(g(.\'))" as defined above is usually written as f{x) = O(g(x)). Some consider this to be an abuse of notation, since the use of the
equals sign could b€ misleading as it suggests a symmetry that this statement does not have. As de Bruijn says, O(x) = O(”) is true but O(.\'z) =0(x) is
not.”) Knuth describes such statements as "one-way equalities"”, since if the sides could be reversed, "we could deduce ridiculous things like n = "
from the identities n = O(nz) and n” = O(n?')."m [For these reasons, it would be more precise to use set notation and write f{x) € O(g(x)). thinking of
O(g(x)) as the class of all functions A(x) such that |h(x)| < Clg(x)| for some constant € Bl However, the use of the equals sign is customary. Knuth
pointed out that "mathematicians customarily use the = sign as they use the word 'is' in English: Aristotle is a man, but a man isn't necessarily
Aristotle."[!]

Other arithmetic operators

Big O notation can also be used in conjunction with other arithmetic operators in more complicated equations. For example, /1(x) + O(f(x)) denotes
the collection of functions having the growth of /i(x) plus a part whose growth is limited to that of f{x). Thus.

gla) = h(x) + O f(x))

expresses the same as
g(x) = h(zx) € O(f(x)).
Example

Suppose an algorithm is being developed to operate on a set of i elements. Its developers are interested in finding a function T(n) that will express
how long the algorithm will take to run (in some arbitrary measurement of time) in terms of the number of elements in the input set. The algorithm

~ . . . ~ . . . . 2
works by first calling a subroutine to sort the elements in the set and then perform its own operations. The sort has a known time complexity of O(n),
and after the subroutine runs the algorithm must take an additional 557, 4 25 -4 10 time before it terminates. Thus the overall time complexity of
the algorithm can be expressed as

T(n) = O(n®) + 55n° 4 2n + 10.

This can perhaps be most easily read by replacing O(n™) with "some function that grows asymptotically no faster than n” ". Again, this usage
disregards some of the formal meaning of the "=" and "+" symbols, but it does allow one to use the big O notation as a kind of convenient
placeholder.

Declaration of variables
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Another feature of the notation, although less exceptional. is that function arguments may need to be inferred from the context when several variables
are involved. The following two right-hand side big O notations have dramatically different meanings:

flm) = 0O(m"),
gln) =0(m").

|

The first case states that f{/m) exhibits polynomial growth, while the second, assuming m > 1, states that g(») exhibits exponential growth. To avoid
confusion, some authors use the notation

g(x) € O(f(x)).

rather than the less explicit
9 € 0(f),
Multiple usages

In more complicated usage. O(...) can appear in different places in an equation, even several times on each side. For example. the following are true
forn — ¢

(n+1)? =‘nj-l- O(n) .
(n+0(n'*)(n+O(logn))* = n* + O(n*?)
”CJEH - (.)(‘C'”}.

The meaning of such statements is as follows: for any functions which satisfy each O(...) on the left side, there are some functions satisfying each
O...) on the right side, such that substituting all these functions into the equation makes the two sides equal. For example. the third equation above
means: "For any function f{n) = (2(1). there is some function g(n) = O(e")such that nfi = g(n )" Interms of the "set notation" above,
the meaning is that the class of functions represented by the left side is a subset of the class of functions represented by the right side. In this use the
"="is a formal symbol that unlike the usual use of "=" is not a symmetric relation. Thus for example 5, ') O(e” ) does not imply the false

statement C)[ic‘”) —e ]

Orders of common functions

Further information: Time complexity#Table of common time complexities

Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case. ¢ is a constant and
n increases without bound. The slower-growing functions are generally listed first.

Notation e Name Example
Of1) const Determining if a number is even or odd: using a constant-size lookup table
- 7 . — Finding an item using interpolation search in a sorted array of uniformly distributed
O(loglogn) double logarithmic : .
: values.
i o Finding an item in a sorted array with a binary search or a balanced search tree as well as

Oflogn) Jogarithn SRR

S all operations in a Binomial heap.
O(n°), 0<ex1 fractional power Searching in a kd-tree
O(n) Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted

. e p— .

v array: Adding two n-bit integers by ripple carry.
oY, ) / linearithmic(Toglinear)or Performing a Fast Fourier transform; heapsort, quicksort (best and average case). or
O(nlogn) = Ollogn!) " b i o psort, quicksort ( SRR

* quasilinear merge sort
0 24 slisiti Multiplying two n-digit numbers by a simple algorithm: bubble sort (worst case or naive
quadrati : : E : : : :

() 1 implementation), Shell sort. quicksort (worst case). selection sort or insertion sort ¢

O(II"'), (o | ial or algebraic ~ Tree-adjoining grammar parsing; maximum matching for bipartite graphs n

Lyla,c], 0 < a < 1= L-notation or

] . . Factoring a number using the quadratic sieve or number field sieve
pletoll){lnn)t inlnn 1 sub-exponential actoring & 1L

: Finding the (exact) solution to the travelling salesman problem using dynamic f\
"), ¢ 1 exponentiz programming; determining if two logical statements are equivalent using brute-force C
search
O(n!) pctaial Solving the traveling salesman problem via brute-force search; generating all unrestricted C_Gcand-mf-
! actoria 4 : o A : ; ;
) permutations of a poset: finding the determinant with expansion by minors.

The statement f(n) = ((n!)is sometimes weakened to f(72) = () (1" ) to derive simpler formulas for asymptotic complexity. For any [ = ()
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and ¢ > (L. O(n"(logn )"‘"} is a subset of () n“* “) forany ~ = (). so may be considered as a polynomial with some bigger order.

Related asymptotic notations

Big O is the most commonly used asymptotic notation for comparing functions, although in many cases Big O may be replaced with Big Theta © for
asymptotically tighter bounds. Here, we define some related notations in terms of Big O. progressing up to the family of Bachmann—Landau notations
to which Big O notation belongs.

Little-o notation

The relation f () € o g (',1,')) is read as " f{ ) s little-o of ()", Intuitively, it means that () grows much faster than f( ), or similarly, the
growth of f(.+) is nothing compared to that of (). It assumes thal_/ and g are both functions of one variable. Formally, f(n) = O(g(f?)) asH — w
means that for every positive constant ¢ there exists a constant N such that

[f(n)] < elg(n)] for all n > ¥ P

Note the difference between the earlier formal definition for the big-O notation, and the present definition of little-o: while the former has to be true
for at least one constant M the latter must hold for every positive constant &, however small. Tn this way little-o notation makes a stronger statement
than the corresponding big-O notation: every function that is little-o of g is also big-O of g. but not every function that is big-O g is also little-o of g
(for instance g itself is not. unless it is identically zero near «).

If g(x) is nonzero. or at least becomes nonzero beyond a certain point. the relation f{x) = o(g(x)) is equivalent to

lim f(.‘:r)
fny @

= 0.

For example.

« 20 € o(a”)
= 222 & o(a?)
=1/re€o(l)

Little-o notation is common in mathematics but rarer in computer seience. In computer science the variable (and function value) is most often a
natural number. In mathematics, the variable and function values are often real numbers. The following properties can be useful:

= o f) +o(f) C o f)
= o f)olg) ol fy)
= o(o(f)) C o)

= o f} < O(f)(and thus the above properties apply with most combinations of 0 and ),

As with big O notation, the statement " f (1} is o ¢ () )" is usually written as f(.r) = of g() ), which is a slight abusc of notation.
Family of Bachmann—Landau notations

Informal definition: for

Notation Name Intuition i p ) Formal Definition Notes
sufficiently large 71...
[ is bounded
#’5 Big. ahaweby & Ak >0 Jng Vi > ng | f(n)] < |g(n) - k|

=

_./3’(

(n) e Of q(n)) Omlcron: wprto |f(n)] < g(n)-kforsomek  or

constant i Iy .
/ﬁé { o ‘){/h BIEOII factor) Ak >0 dng ¥ > ny f(n) < gln)-k
: asymptotically
9 Since the
beginning
of the 20th
[ is bounded century,
below by ¢ papell:, in
- O} . Big up to ‘() > gln) -k for some e L number
f(n) € Sgln)) Oniega Lo[;stam {)dsiii}\';kl}( : k> 03ng¥n >nggln)- k< f(n) theory have
factor) peen .
asymptotically lncrea§lllgiy
s and widely

60f9

using this
notation in
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the weaker
sense that /
=o(g) is
false.

[ is bounded

Ak > 03k > 03ng Vi > 1y

B N R bath above VoL e £ ’
fln)y e Olg(n)) Bie and below by ‘(:"f'“-} ke ?.'””J Sgln) ik - \
SV Theta g for some positive k1, k2 gln) -k < f(n)<gn)- ks
aisympmlicully
Small [is

Omicron; .dmgﬂ}_qlcd by
Small O; @
Small Oh asymptotically

f(n) € olg(n)) |f(n)} <

lg(n)| -z forevery = ¥z >0 Jng Vi > ng | f(n)| < lg(n) - 2|

Small
Omega

[ dominates g
“asymptotically

f(n) € w(g(n)) finy > gln)- klorevery k Vi >0 dngVn > ng gn) -k < f(n)

fln)

. , E
Ve o 00 3ng ¥ = ony |/
Lg()

Y sequaltoy f(n}/g(n) -1

asymptotically *

Bachmann-Landau notation was designed around several mnemonics. as shown in the AQ% 3 S -} eventually... column above and in the bullets
below. To conceptually access these mnemonics, "omicron” can be read "o-micron™ and 7a" can be read "o-mega". Also. the lower-case versus
capitalization of the Greek letters in Bachmann-Landau notation is mnemonic.

f(n) ~ g(n)

1] <

= The o-micron mnemonic: The o-micron reading of f{1) € O(g(n))andof f(n) & olg(n))can be thought of as "O-smaller than" and
"o-smaller than", respectively. This micro/smaller mnemonic refers to: for sui‘ﬁcienﬂy Izu'ge-inpm parameter(s), f grows at a rate that may
henceforth be less than €(f regarding ¢ & O{ forg & of f).

» The o-mega mnemonic: The o-mega reading of {1} & £2(g(n))and of f(n) & ;’,;;('g( 1)) can be thought of as "O-larger than". This
megallarger mnemonic refers to: for sufficiently large input parameter(s), [ grows at a rate that may henceforth be greater than () regarding
g € Q(f)org € w(f)

» The upper-case mnemonic: This mnemonic reminds us when to use the upper-case Greek letters in f(n) € O(g(n))and
[} € Qg(n)): for sufficiently large input parameter(s). f grows at a rate that may henceforth be equal to €4 regarding g = O f).

= The lower-case mnemonic: This mnemonic reminds us when to use the lower-case Greek letters in f(n) & o g{ n)jand f(n‘) [ o.-'(_rj{'u )):
for sufficiently large input parameter(s), f grows at a rate that is henceforth inequal to ¢§ regarding g = O( f).

Aside from Big O notation, the Big Theta © and Big Omega Q notations are the two most often used in computer science: the Small Omega
notation is rarely used in computer science.

Use in computer science

For more details on this topic, see Analysis of algorithms.

Informally, especially in computer science, the Big O notation often is permitted to be somewhat abused to describe an asymptotic tight bound where
using Big Theta ® notation might be more factually appropriate in a given context. For example. when considering a function
T(n)= 730" 4+ 22n° + 58 all of the following are generally acceptable, but tightnesses of bound (i.e.. numbers 2 and 3 below) are usually

. betl

1. T(n) = O(.'J]OO), which is identical to 7(n) € O{nmo)

2. Tn)= O(nS), which is identical to T{n) € O(r’)
3. T(n) ), which is identical to 7(n) € ©(1).

The equivalent English statements are respectively:

I. T(n) grows asymptotically no faster than '
2. 1(n) grows asymptotically no faster than »n”
3. T(n) grows asymptotically as fast as »”.

So while all three statements ar¢ True, progressively more information is contained in each. In some fields. however, the Big O notation (number 2 in
the lists above) would be used more commonly than the Big Theta natation (bullets number 3 in the lists above) because functions that grow more
slowly are more desirable. For example, if 7"( 12 ) represents the running time of a newly developed algorithm for input size 72, the inventors and users
of the algorithm might be more inclined to put an upper asymptotic bound on how long it will take to run without making an explicit statement about

the lower asymptotic bound. d M {‘ i( '
W \/WV[’

6 be "
Extensions to the Bachmann—Landau notations

Kows  fustr foun
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Another notation sometimes used in computer science is O (read soft-0): fin) = O(g(rr)} is shorthand for f{n) = O(g(n) logk g(n)) for some £,
Essentially, it is Big O notation. ignoring logarithmic factors because the growth-rate effects of some other super-logarithmic function indicate a
growth-rate explosion for large-sized input parameters that is more important to predicting bad run-time performance than the finer-point effects
contributed by the logarithmic-growth factor(s). This notation is often used to obviate the "nitpicking" within growth-rates that are stated as too tightly
bounded for the matters at hand (since logk n is always o(n®) for any constant & and any &> 0). The L notation, defined as

[’” [”' r[ sz ) ((_h'fmhl;iu 3 (i bt ") i

is convenient for functions that are between polynomial and exponential.

Generalizations and related usages

The generalization to functions taking values in any normed vector space is straightforward (replacing absolute values by norms). where /'and g need
not take their values in the same space. A generalization to functions g taking values in any topological group is also possible. The "limiting process”
x—xg can also be generalized by introducing an arbitrary filter base, i.e. to directed nets fand g. The o notation can be used to define derivatives and
differentiability in quite general spaces, and also (asymptotical) equivalence of functions,

f~g <= (f-9g) €olg)

which is an equivalence relation and a more restrictive notion than the relationship "f is ©(g)" from above. (It reduces to lii [/g = 1iffand gare
positive real valued functions.) For example. 2x is ©(x). but 2x — x is not o(x).

Graph theory

It is often useful to bound the running time of graph algorithms. Unlike most other computational problems, for a graph G = (V. £) there are two
relevant parameters describing the size of the input: the number |F] of vertices in the graph and the number |E| of edges in the graph. Inside asymptotic
notation (and only there), it is common to use the symbols J and E, when someone really means || and |E|. This convention simplifies asymptotic
functions and make them easily readable. The symbols /" and £ are never used inside asymptotic notation with their literal meaning, since the number
of vertices and edges must be non-negative. so this abuse of notation does not risk ambiguity. For example (){ /7 + V" log V') means

O((V.E) w— |E] + |V] - log |V]) for a suitable metric of graphs. Another common convention—referring to the values || and |£] by the
names n and m, respectively—sidesteps this ambiguity.

History (Bachmann-Landau, Hardy, and Vinogradov notations)

The notation was first introduced by number theorist Paul Bachmann in 1894, in the second volume of his book Analytische Zahlentheorie ("analytic
number theory™), the first volume of which (not yet containing big O notation) was published in 1892.5] The notation was popularized in the work of
number theorist Edmund Landau: hence it is sometimes called a Landau symbol. It was popularized in computer science by Donald Knuth, who

re-introduced the related Omega and Theta notations.'®) Knuth also noted that the Omega notation had been introduced by Hardy and Littlewood!”)
under a different meaning "#0" (i.¢ "is not an o of"). and proposed the above definition. Hardy and Littlewood's original definition (which was also
used in one paper by Landauls]) is still used in number theory.

Hardy's symbols were (in terms of the modern O notation)

29+ [€O0(g) ad f<yg < [€oly);
(Hardy however never defined or used the notation <, nor <&, as it has been sometimes reported). It should also be noted that Hardy introduces the
symbols = and < (as well as some other symbols) in his 1910 tract "Orders of Infinity", and makes use of it only in three papers (1910-1913). In the

remaining papers (nearly 400!) and books he constantly uses the Landau symbols O and o.

Hardy's notation is not used anymore. On the other hand, in 1947, the Russian number theorist Ivan Matveyevich Vinogradov introduced his notation
<&, which has been increasingly used in number theory instead of the ¢ ) notation. We have

f&Kg < feO(y)
and frequently both notations are used in the same paper.

The big-0, standing for "order of", was originally a capital omicron; today the identical-looking Latin capital letter O is used, but never the digit zero.

See also

= Asymptotic expansion: Approximation of functions generalizing Taylor's formula

= Asymptotically optimal: A phrase frequently used to describe an algorithm that has an upper bound asymptotically within a constant of a lower
bound for the problem

= Limit superior and limit inferior: An explanation of some of the limit notation used in this article

= Nachbin's theorem: A precise method of bounding complex analytic functions so that the domain of convergence of integral transforms can be

8 of 9 9/23/2012 3:16 PM
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Michael E Plasmeier

From: Katherine Fang <katfang@MIT.EDU>

Sent: Sunday, September 23, 2012 4:37 PM

To: Michael E Plasmeier

Cc: 6046-tas@mit.edu

Subject: Re: [6046-tas] What does it mean exactly to be an asymptotically tight bound?

Hi Michael,

You're correct in that an asymptotically tight bound refers to © and that O is a bound that may not be
tight. It's common to use O as an asymptotically tight upper bound in algorithms, but © is more
appropriate.

There is no notion of as an asymptotically tight upper-only bound. One way to think about this is say
you have the function f(n) = 3*n*3. Then the asymptotically tight upper bound O(f) = n*3. That is to
say, c*n”3 >= 3*n"3 for some c. If it's truly an asymptotic upper bound, then it would follow extremely
close (but above) to the function for large n. Were you to decrease this by a factor of 2, you would
suddenly get a lower bound.

-- Katherine

On Sun, Sep 23, 2012 at 3:59 PM, Michael E Plasmeier <theplaz@mit.edu> wrote:

What does it mean exactly to be an asymptotically tight bound?
Olis a asy. tight upper and lower bound. (/is an asy upper bound that may or may not be tight. What is a asy
tight upper-only bound?

Or am I confusing things?
fipsetl

6046-tas mailing list
6046-tas@lists.csail.mit.edu
hitps://lists.csail.mit.edu/mailman/listinfo/6046-tas
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Michael E Plasmeier

From: Nils Molina <nilsmolina@gmail.com>
Sent: Sunday, September 23, 2012 8:32 PM
To: Michael E Plasmeier

Subject: Re: Are you good at recurrences?

Here's a similar problem: http://math.stackexchange.com/questions/ 128503 /recurrence-tn-t-sqrt-n-theta-log-logn

So, substitute some things like the author did, getting as an intermediate step
S(m) = 4*S(m/2) + m”2
which can be solved using Master's theorem

On Sun, Sep 23, 2012 at 8:01 PM, Michael E Plasmeier <theplaz@mit.cdu> wrote:

I'm stuck on T(n) = 4T(sqrt(n)) + log”2(n) for 6.046

Are you around at any point today or tomorrow?

Thanks so much! -Plaz



Recurrence $T(n)=T(\sqrt n) + \Theta(\og(\log(n))$ - Mathematics

lof3

Recurrence 7'(n) = T(\ 1) + O(log(log(n))
I need to find the bounds of the above recurrence .
I've tried the following however got stuck :
T(n)=T( n)+ O(log(log(n)) =
n=2"_m=log(n)
T2")=T(N2")+ O(log(log(2™))) = 12" )) + O(log(m))
Now define: S(m) = I'(2"™) then:
S(m) = S(m/2) + log(m)
Now define : ¢ = log(m) , m = 29
And we get :S(27) = §(2/2) + O(g)
And finally , define : R(g) = SQ29) = R(g) = R(g — 1) + O(q)
But how can I continue from here ?
Regards
EDIT:
Rg=1)=R(g=2)+0(g—1) = R(g) = R(g—2)+ O(¢q) + O(g — 1)
R(g—2)=R(g=3)+O(q—2) = R(g) = Rig—3)+ Og) + O(g — 1) + B(g —2)
What am I suppose to do with all the : ©(g) + O(g— 1)+ O(g —2) ?
Thanks
(recurrence-relations)

edited Apr 5 at 21:54 z_t_s:ked Apr 5 at 20:51

HRF307 5
77% accept rate

You really shouldn't forgel the constant in the big-(J notation. The recurrence R you derive is one of the simplest
recurrences: I bet you actually have it memorized, but didn't think to think about it! If you really can't see it, try
writing out the first few terms explicitly in lerms of £(0) .... - Hurkyl Apr 5 at 21:21

@Hurkyl: I've made some changes , and would appreciate if you could check them out . — ron Aprj at 21:55

While your work is no longer wrong, you've laken a step backwards. You can't do anything with
O(q) +O(g — 1) + --- , because any strange thing could be happening with the constants hidden in the big-®
notation. You have to take advantage of the fact it all originated with the original @(log log #). L.E. that you know

http://math.stackexchange.con/questions/ 128503/ recurrence-tn-t-sqrt-n-...

9/23/2012 9:11 PM



Recurrence ST(n)=T(\sqrt n) + \Theta(\log(\log(n))$ - Mathematics http://math.stackexchange.com/questions/1 28503/recurrence-tn-t-sqri-n-...

there are M and N so that T(\ 1) + M loglogn < T'(n) < T(Nn)+NloglogN .- Hurkyl Apr5at23:59
@Hurky! : You mean that all the define S that I've made are not necessary ? — ron Apr 6 at 0:07
1 No, you have the right underlying idea. See Didier's answer where he finished up the proof, rather than suggesting

how you might see it for yourself. (The main thing I was hoping you'd notice is that you'd recognize
Cq+C(g—1)+C(g—2)+ -+ asbeingasum of consecutive integers) — Hurkyl Apr 6 at 0:49

feedback

2 Answers
You know that 7(\ 7) + A loglogn < T(n) < T(N n )+ Bloglogn  for some constants 4
and B. As in your post, let R(¢) = 7'(2*") , then
R(g— 1)+ A(gqlog2 + loglog?2) < R(q) < R(g— 1)+ A(glog2 + loglog2),

hence there exists 4" and B such that 4 ¢ < R(g) — R(g— 1) < B'g .Summing this from 1
to g, one gets

A' ; ) q ’ q '
S <4Y k<R@-RO)<BY k<B 7.
- k=1 k=1
Finally,
T'(n) = O((loglog n)z).
answered Apr 6 at 0:36
ched did
. 6 53 130
feedback
After you get S(m) = S(m/2) + log(m) , you can use the Master Theorem:
f(m) = logm = O(m"°22! x (logm)') = O(logm) . Therefore
S(m) = O(m'°&2! x (logm)z) = O((log m?)
Or:
T(n) = O((loglogn)*)
answered Apr 6 at 7:45
MNos
121 3

9/23/2012 9:11 PM
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Design and Analysis of Algorithms September 26, 2012
Massachusetts Institute of Technology 6.046J1/18.410]
Profs. Srini Devadas and Ronitt Rubinfeld Handout 6

Problem Set 1 Solutions

This problem set is due at 11:59pm on Tuesday, September 25, 2012.

Exercise 1-1. Do Exercise 2.3-3 in CLRS on page 39.
Exercise 1-2. Do Exercise 2.3-4 in CLRS on page 39.
Exercise 1-3. Do Exercise 3.1-2 in CLRS on page 52.
Exercise 1-4. Do Exercise 3.1-3 in CLRS on page 53.
Exercise 1-5. Do Exercise 3.1-4 in CLRS on page 53.
Exercise 1-6. Do Exercise 4.3-6 in CLRS on page 87.
Exercise 1-7. Do Exercise 4.4-8 in CLRS on page 93.

Problem 1-1. Asymptotic Growth

Decide whether these statements are always true, never true, or sometimes true for asymptot-
ically nonnegative functions f and g. You must justify all your answers to receive full credit by
either giving a short proof (1-2 sentences) or exhibiting a counter-example.

@ f(n) =Q(g(n)) and f(n) = o(g(n))

Solution: Never true. By defnition, f(n) = Q(g(n)) means that for some constant
c; > 0, it holds that f(n) > ¢;g(n) > 0 for large enough n. On the other hand,
f(n) = o(g(n)) would imply that for any constant ¢; > 0, it holds that cog(n) >
f(n) > 0 for large enough n. These statements are directly contradictory because if
we choose ¢, to take the value of ¢;, we will get ¢;g(n) > f(n), which contradicts

£(n) > crg(n).
(b) £(r) = O(g(n)) and g(n) = o((n)) implies h(n) = w(f(n))

Solution: Always true. By definition, f(n) = O(g(n)) means that for some constant
c1 > 0, cg(n) > f(n) > 0 for large n and g(n) = o(h(n)) means that for any
constant ¢, > 0, coh(n) > g(n) > 0 for large n. This implies that for a fixed constant
c1 > 0 and any constant ¢, > 0, we have ¢;coh(n) > f(n) > 0. Setting ¢jca = ¢, we
get ch(n) > f(n) > 0 for any ¢ > 0. This can be seen by setting c; = c¢/c;, which is
allowed because the relation between g(n) and h(n) holds for all ¢, > 0.



Handout 6: Problem Set 1 Solutions

() f(n) + g(n) = w(max(f(n), g(n)))

Solution: Never true. f(n)+g(n) = O(max(f(n), g(n))), so it cannot be w(max(f(n), g(n)))-

(d) Rank the following functions by order of growth. In other words, find an arrangement

g1,092,---,416 of the functions SatiSfying g1 = Q(Q?)? g2 = Q(gd)’ - J15 = Q(glﬁ)
Partition your list into equivalence classes such that f(n) and g(n) are in the same
class if and only if f(n) = ©(g(n)).

2

n lgn 606" n!

n Yk 2(") vnlgn
k=1
log n n2" logyn nlosn

loglogn n2logn g n?

Solution: The functions, grouped asymptotically from largest to smallest, are as fol-
lows (functions f, g on the same line are such that f(n) = ©(g(n))):

gt

2

on
n!
3n
n2"
T?,Z logn

nlog n

log®n
logsn lgn
loglogn
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60%

A few notes about how these results are obtained:

2" is asymptotically greater than n!, which can be seen since its logarithm is asymp-
totically greater (n* = w(nlogn), where the latter logarithm comes from Stirling’s
approximation, which is that n! =~ v/27n(n/e)").

_ (L otio o 3% 103 3 3y2 :
3" = Q(n2") because their ratio is ;57 = ~(5)". Since § > 1, (2)? grows faster than

n, which means that the original fraction grows without bound.

60467 despite being an unfathomably large number, is still a constant.

Problem 1-2. Recurrences

Give asymptotic upper and lower bounds for T'(n) in each of the following recurrences. For parts

(a)—(e), assume that T'(n) is constant for n < 2. Make your bounds as tight as possible, and justify
your answers.

(@) T(n) =3T(n/4) + 5n
Solution: T'(n) = ©(n). Case 3 of the master method.

(b) T(n) =9T(n/3) +n?
Solution: T'(n) = ©(n?log(n)). Case 2 of the master method.

(¢) T(n) =5T(n/2) + logn
Solution: T'(n) = ©(n'°2°%). Case 1 of the master method.

(d) T(n)=4T(v/n)+1g’n
Solution: Change variables. Assume that n is a power of 2, let n = 2™. We get
T(2™) = 4T(2™?) + m? If we define S(m) = T(2™), then we get S(m) =
45(m/2) + m?. By case 2 of the master method, S(m) = ©(m?lgm). Changing
the variable back (m = lgn), we have T'(n) = O(lg* nlglgn).

) T(n)=T(n—1)+n

Solution: ©(n?). This actually just becomes Y_7_, k, which is just O(n?).
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Problem 1-3. Adding Many Little Numbers

You have n numbers that are each a single bit (either 1 or 0). You wish to determine their sum.
However, you only have a one-bit adder (with carry). This means, in order to add an a-bit number
and a b-bit number, you will need to spend ©(max(a, b)) time to add each pair of bits sequentially
starting from the least significant bit.

(a) Assume you simply go through the list adding each bit in turn to a running total.
Analyze the running time of this algorithm. What is the upper bound? What can we
say about the lower bound? What would you expect the typical running time to be if
the 1s and Os are approximately evenly distributed?

Solution: At each step you add the next number to the total of the previous n— 1. The
previous n — 1 have a sum that is O(log n) bits. Thus, T'(n) = T'(n — 1) 4+ O(logn).
This has the solution T'(n) = O(nlogn). We can’t say that the algorithm always
takes O(n logn) time, though—if the numbers are all zeroes, then we only incur a cost
of ©(1) at each step (since the running total is 0). However, since we iterate through
a list of size n, we know the algorithm takes 2(n) time. Furthermore, if the 1s and Os
are about even, then the running total after n steps will be approximately n/2, which
takes ©(log n) bits to represent; thus, in this case the total running time is G(n logn).

(b) Give a better algorithm to add the numbers together efficiently, and analyze your al-
gorithm’s running time.

Solution: Use a standard divide-and-conquer strategy to add smaller numbers together
rather than always adding a single bit to an ever-growing number. Thus,

return L[0]

1

2

3

= else
5 return ADD(L(0 : size(L)/2 — 1]) + ADD(L[size(L)/2 : size(L) — 1])
6

Running Time: At each level, we perform two subcalls on equal-sized subprob-
lems, and we add the two results. Each result, however, is a value that is at most
one-half the size of this subproblem, and therefore can be expressed in the logarithm
of that many bits. This results in the recurrence T'(n) = 2T'(n/2) + O(logn). (Note
that the number of bits in the subproblem is at most log(n/2) = logn — 1, which is
O(logn).) Thus, T'(n) = ©(n) by Case 1 of the master method.
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(¢) Do you think a different algorithm can perform asymptotically better than the one you

presented in part (b)? Why or why not?

Solution: It takes ©(n) time to simply read all of the bits, let alone add them to
anything. Therefore any algorithm that adds them together must take 2(n) time. Thus,
the ©(n) algorithm is asymptotically optimal.

Problem 1-4. Donut Building

The donut building is shaped like a circle of n connected rooms such that each classroom is next
to two other classrooms. The rooms are numbered 1 through n clockwise around the building such
that the room 7 is next to ¢ — 1 and ¢ + 1, and room n and room 1 are next to each other. Each
classroom 1 < 7 < n has a capacity v;, which is the maximum number of students who can be
seated in the room. Unfortunately, the walls are not soundproof, and it is impossible to have classes
in two neighboring classrooms at the same time. We want to maximize the number of students who
can attend class at once. To do this, we wish to select a set of rooms of maximum total capacity.

Assume that v; # v; for i # j.

(a)

(b)

Show by example that the “greedy” approach of selecting the highest capacity v; and
then continuing with what remains does not necessarily select the set of rooms of
maximum total capacity.

Solution: Example v = {1,9,10,8}. The greedy approach would select the set
{10, 1} which is not optimal. The optimal set is {9, 8}.

Give an efficient algorithm to find the set of rooms with maximal total capacity. What
is the run time?

Solution: For each k& = 1---n, let C(k) be the maximum capacity which can be
chosen from the rooms {1,2,...,k} under the assumption that the first room is not
chosen

Gl )=

For 1 < k < n, C(k) can be calculated by the following recursive equation

C(k) = max{C(k — 1), C(k — 2) + v }.

Similarly, for each k = 1-- - n, let D(k) be the maximum capacity that can be chosen
from {1,2,- -, k} under the assumption that the first room is chosen
D(1) = vy and D(n) = D(n — 1)

since once the first room is chosen, the nth room cannot be chosen. For 1 < k < n,
D(k) can be calculated by the same recursive equation

D(k) = max{D(k — 1), D(k — 2) + v}
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The maximum number of students that can take classes at the same time can be calcu-
lated as

max{D(n), C(n)}

Running Time: O(n) because it takes O(1) to solve one subproblem for C' or D
and there are n subproblems for each C and D.
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