PS1: Implementing an HTML/Javascript Application http://courses.csail.mit.edw/6.831/2012/handouts/ps 1 -translate_game...

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION
Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

PS1: IMPLEMENTING AN HTML/JAVASCRIPT APPLICATION

Due at 11:59pm, Sunday, March 4, 2012, by uploading your submission to Stellar. i

This problem set is for the undergraduate 6.813 class only.

This problem set asks you to build a little game consisting of a small user interface which asks the user to translate words from a
language to another. You'll be using the set of core technologies that drive most modern web applications, namely HTML, CSS, and
Javascript. We specify the design of the user interface. Your job is to implement it using HTML, CSS, and Javascript.

To do this assignment, you'll need to know how to:

e write HTML: create correct HTML pages that display in modern browsers

e yse HTML form elements (like <buttons, <inputs>) to create a web application / —T‘/

® use CSS to layout and style HTML elements M @ @{JJ
e use Javascript and jQuery to add event handlers and bindings to respond to user input; = @{

® use jQuery Ul to augment the standard HTML <input> with an autocomplete feature.

Here are some useful reference sources for HTML/CSS/Javascript/jQuery/jQueryUl:

HTML Dog (a fairly good guide for both HTML and CSS)
CSS Tutorial (a tutorial for learning CSS)
How jQuery Works (a beginning tutorial on jQuery, the Javascript library we are using for this assignment)

jQue_ry_U_I_’;_Ai_i!ﬁQéQmplete Documentation (jQuery Ul lets you create widgets using a higher lever of abstraction than jQuery
alone. For part 4, you'll need to use the jQuery Ul autocomplete widget) -
OReilly Safari has several e-books on HTML, CSS, and Javascript that are free for MIT students to read (MIT certificate

required). Dynamic HTML: The Definitive Reference, 3rd Edition is a good one to start with.

e © o o o

Provided Resources
We provide you with the following:
® psi.zip: a zip file containing the code you will be editing for this problem set.

You can import this zip file directly into Eclipse using File/Import/Existing Projects into Workspace/From Archive file, or use
whatever text editor you would like. In the contents folder of the project are the following files and folders:

e jquery: the code for jQuery and jQuery Ul, the Javascript libraries you will be using for this assignment.

e dicts.json: a set of bilingual dictionaries, containing words without accents or capital\lil;;ers, extracted from English
Wiktionary dumps, in JSON notation.

e translate_game.html: a skeleton file for your user interface HTML code.

e translate_game.css: a skeleton file for your user interface CSS code.

e translate_game.js: a skeleton file for your user interface JS code.

Feel free to change these files as you see fit.

If you are using Eclipse to edit these files, we highly recommend installing the appropriate plug-ins for web development support.
On the latest release of Eclipse (Indigo), you can do this by going to Help/Install New Software..., then selecting the Indigo update
site, then selecting Web, XML, and Java EE Development/Eclipse Web Developer Tools and Javascript Development Tools.

v e

1- Basic Layout (20%)

First, build an interface that looks like figure 1. In particular:

—— .
e There should be margins of at least 10px between and around the elements
e The instruction message on top should be quite large and aligned with the elements below it
e A three-column layout should be used in order to align the row containing the labels ("Spanish”, "English”, "Answer”) with the
row containing the current entry ("espejo”, <input> element and See Answer button), and with the rows containing the past

e

1 of 3 2/24/2012 11:00 PM

PS1: Implementing an HTML/Javascript Application http://courses.csail.mit.edw6.831/2012/handouts/ps1-translate_game...

entries

Jewm- | Translate from Spanish to English

static past gaps
entries. One |
for a correct

translation | {Spanish English Answer

("calabaza”, : : ‘
"pumpkin”) | espe_]o | l | See Answer
using a blue gap

font color, and .
a check mark calabaza pumpkin |v
postmodernidad phone postmodernism

(Hint: jQuery
Ul comes with
plenty of
symbols, and
you can just
inspect them

G \ (
to see which alignments (be((@l{‘i h/? (‘/\(/ﬂ

CSS class to
use). The
other for an
incorrect
translation

("postmodernidad”, "phone”) using a red font color, crossing out the incorrect entry (Hint: think CSS...), and displaying the
correct translation on the third column. i

Figuré”im

No behavior is required to earn the points for this part, just a static layout.

2- Adding Behavior (20%)
Improve your interface so that when the program is first run:

® The names of the languages you need to translate from (Spanish) and to (English) should now come from variables on the JS
code (namely, lang_from and lang_to). Note that jQuery makes those kind of tasks particularly easy.

e The program chooses a random word from the dictionary for the user to translate (instead of espejo, on figure 1)

® The input element has focus, so that the user can start typing as soon as the page is loaded.

® (Clicking on the See Answer button prompts for another word, and clears the <input>. Don't check if the answer was right or
wrong for now: just move on to the next word.

® Note: For now, just keep your 2 static answers from part 1 in the list of previous answers
3- Displaying Answers (20%)
Update your code so that instead of the two static answers you entered in part 1, the list of previous answers list gets populated
with the user entries. The entry which was submitted last should appear at the top of the list. Use the styles you defined in Part 1

for correct and incorrect entries. When deciding whether an entry is correct, only perform exact matches: synonyms,
capitalization differences etc... should be reported as incorrect translations.

4- Adding Autocomplete (20%)

The input field contains the user’s guess. Use jQuery Ul to make this field an autocomplete widget (see Figure 2), so that:
® |t offers suggestions as soon as the user types two or more characters. Those selections should be the English words from the

dictionary which contain the letters that the user has typed so far.
® Selecting a suggestion has the same behavior as clicking on the See Answer button

This & ptth slc B ohat T hae dow bibe

2 of 3 2/24/2012 11:00 PM

PS1: Implementing an HTML/Javascript Application http://courses.csail.mit.edw'6.831/2012/handouts/ps1-translate_game...

Translat'énfrom Sb'énish to Enghsh |

Spanish English Answer
escarabajo bed | | SeeAnswer |
beetle
manganeso i manganese

} aireé i beef o4
n o)
aranj Lo orange
beer
beech
Figure 2

5- Improving usability (20%)

Make changes to your code so that pressing enter submits the user’s reply even if the user didn't select a match from the
autocomplete menu. Make sure that:

e Pressing enter when selecting a item from the autocomplete menu doesn’t submit that item twice (don't forget to test that
behavior on several browsers).

e The input field is empty and has focus immediately after submitting an entry, so that the user can submit an new entry for
the next word

e The autocomplete widget closes properly even if the user ends up not using it in order to select an item.

Further (Optional) Improvements

If you found this assignment easy and you're inclined to go further, here are some ideas for optional improvements:

e et the user choose the what language to translate from and to. The dicts. json file also contains dictionaries for English-
French and German-Italian. If you'd like to add more choices, one possibility is to generate your own dicts. json file by

e Display the user's score. Have a timed mode so that the user can only enter words during, say, 1 minute. Display a
countdown of how much time is left.

e Highlight the matching substring of each word in the list box, so that the user can see at a glance how the word matches the
query.

e Use cookies to remember statistics, such as best score across multiple games. This could also be used so that words the user
often gets wrong can be prompted more often in order improve memorization.

What to Hand In

Package your completed assignment as a zip file that contains all of your HTML, JS, and CSS files (including the JSON data).

List your collaborators in the comment at the top of translate_game.html. Collaborators are any people you discussed this
assignment with. This is an individual assignment, so be aware of the course’s collaboration policy.

Here's a checklist of things you should confirm before you hand in:

. Make a fresh folder and unpack your zip file into it

. Make sure your collaborators are named in translate_game.html

. Make sure all assets (images, JS files, CSS files, etc.) used by your code are found in the fresh folder and load successfully

. Make sure that the page renders correctly on Firefox (which we'll be using for evaluating your projects) and in another
modern, standards-compliant web browsers (Chrome, Safari or Opera).

W=

Submit your zip file on Stellar.

3of3 2/24/2012 11:00 PM

DQ: g Pj j

R " .=

Tadlde wds | [a&g .

ﬂ'\ts LS Lw‘acﬁqjli WM* I ({«o)
OL\ A l/\jw‘ fom 5(/001%[:

M%i /3 (ol [cwu]l
_,-.he{ 00 q/f(f@& W’(W?

L

61/ msed 0))Q w‘:(H o]c (0"36511‘ (/‘/0/&

LH@W Ly)ﬂ\ﬂtf* JM dq
Vld}('h Cu/)m

Y L@{J/G}
99 e n@@({ fornt(f

Tp‘% N@ M Nov CWH
T(ﬁ UOW4 5 MM* i+ ooleL {wacrl

(/ %\L«/

)

J
MMJW Z%QL Jg@ka/‘tﬂ/
@\"V(H\(A(,Q ((wpfo :B 1%5 v, ».%
6({/

[Qah I 7
0 0{‘ (kj

— s @ wod)
/’QUL’ 7S Lv@((J, (n ﬁt ()(C(,YLQW |

T ixedes .

A A

Jﬁ o Sope Again”
@Dﬁm OUM beL\KV@f
W Wt/
hy any

*’4/+ +o
n (’Q(QPM(L /\OL dpﬂo/((

@Wﬂl [/\/m/[ixv @wwy

s T sth it o (.

2N

0

Nov/ (LU"\\O (0,{)]@#(

6@ @Qng Nk@

Tl A W dyray (eat"bean

& Ve ~fckind — bt (nst 4
ﬂ”\d/ + 90005 n (ea’eo]L~~~

O(\ P@_‘f(‘ | Jhowr ¢l
R CWU ol o

Now Ct‘(/ @

And oy L Y

B nob Jut pellx
Camltd Y e

l
g—“/& LR gl e -

DzL | fo bel’@ oV Te AT
Nugt clear (e @nfle. @ &fz [3

0

Does st semm o ealt fe
T4 i ol lly ok n TF
Ly s - rot gd o

@ Thal all o

6&1 Oukf/ &V(’, évf\
- gwm dwiw mWy

al ot Fo b iboa ;e 0

Lafge o |eamahill Chtflsy
ok - dlveq
gduv wlwleL @rnmmo’ﬁ be?d ﬁg&f}e/

Lo

sk todd cevle Tl

L‘ﬂ(’lf 0 he g
k@ﬁ} L%-y looaii 5}\0/HAL}
\lV\(Lt (M‘*

‘lmp\ﬁ afod

Nano U:Z”

/Q"" An‘“dl‘t&(fm 4 PL“(CL‘(’W{
Mg s

£ ~Vier g

[ovble Bdfoing ~Qreer Elubiong Lo mcomplofe
AFQW/I’@;

%(@ fmkﬁ@ﬁ n /6900/15 ds Q m

Tobt T

Wt ae B sppish,y Piags 1w OUL fo) L

TnM cLGJ\UE 5 & E'ag) sl wadhin
)/»ey lmy ol [l bifs of skl

691\ @/7) M5 ¢ 5}@%{
L% 3 mose bt
V‘WQ(: S%JM%) ’TOVCLL @“Qﬂb

blton press 9 eleasy 2 JIE glato

= &/L Tool),& ftassliles into %zqwf ZM/ el

~(lik
1 Jou})‘u} tb\t\

~ gy g
= Mowse it mosst [enf

C’Em& daging

@ |

\tbctO{)CﬂL\l \1 r((o c\’w\k ‘m A 6“#04 ’ L(JM/ }?6{“8 évh(ﬂf//f é’/%l‘,
Joea I hHoa fir

NI E«:”W Fesk (/D{mﬂ 55{m€€/€€

Dzégrﬁﬂﬁdz Fl Sﬂr\f,ﬂ.w;; JP 9‘/54{ f\/l Ctéd(ga ﬂ&ﬂl@”
%y \\,/oVHQ (/pwhl

DOVH& (/L‘Uik Jro(’,? not - (ot

Deay + coleme s nd~ Gt Gy

lﬁt\ﬂ)@a{i {ocm »ob}vﬁ [ln [/luv f/ee E‘me

B e pgals

HTM 6[5 Cant l\uyﬁ ZCCyboC/J_ o by dotat!
N gomg Specd Tabinde (o4

P(PPQ(\UL&) 0{ s
- moust Pl b shie
""5pu‘wl (/4,7
\—%‘(rvm\"qu)

— G Meght be W’Mi
= b dt ﬂ\é)f ngjnlg cluh

b‘w Qesy = I/dew 1= [&7 (/‘/D
,gw ptlen mt b M'm% (s ofsalf

l/{’ﬂ[Presy ﬂf@b }961[0(@ L@7 a‘p
i il G ol fires i 't Dol o

:mu@fz lbn/nn‘mg a L/Own g v U(M
ety boton e,

}’M/I"% tllL L\Wcl '}Lo ﬁpmg/cm d dm/'ﬂ

Wy 4
Jﬂwn t /ﬁfe/ fo P]ﬂybtc%) 'L‘ﬂytﬂﬂqd ")}’f@éh{)
i ASQT

A press gues Yoo adal fofly a i

T4 Caps‘ ol 9
b get g s fo b

ey oy ds At o ~((a;f Lady
bt fol— 4 &Q‘(0%

0\\0\& ¢

ﬂ:fw Can be C%’ﬂb(@d ,',,ha a Sz’/t@[(, eral /2 ﬂ< U

C(kf\ g Mdu/{‘f/ W beltrg dﬂw e
(aves ghulgt o bl s

malhy Lk Xy)Olw;f s

]Bujr] dola
ps / (0q l/ €5se) Pf’f’lb_gat lestpt

G it Pz
sdalght Vo o |
& A ,‘“&h l&:% vl @Lﬁ{“%ﬁﬁw
W/ sl dag ctons (bl

bl o B € G TS

(Om]M'M i O QVWL veve ‘
5{# % @ i
b G i hdsy 3

f (‘(@l\ l@nfel hoUMﬁ do %4‘6{,«4//[/
0w lwal ot s i ours i€

Q}ub'@n " K‘]f\‘bP“ﬂLU‘Vl TP-/OP%W‘M Jfte

s M .1

~ fends lﬁeylaawcl b b@.{bﬂéff(z, Lous

—pave ot o 74/7 ,90)

— MoV (aptue |
/T@VQBU{EIF Olﬂ(/) [flg’}‘ dmpH? &/‘DPOA*

- HL@ M ovat L[ocw

- 1(9(WVL &rf)p)

— o mobcie dioppr \
i = d(a,td {@l(of [SL/ol%,l/DOV - WLC’\ Jowae O%a/*i(z' |
- [ﬂb‘l‘(’ﬂ/l‘ P} (/P 19 j'E[’TO{%pC(M/L Vitw db/gof

fo cat owrsthey

-P[O@Md/“ﬂf\
-/(?\/Lml bch» a/omd 111 kbffr‘tfaﬂﬁtf

(MWWA{;
/
LAt 6%095 P@P&ﬂ‘w’“ﬂ i Gone {aﬂ{JmL

0

Eu@q}s P/Oﬂj«fﬁfe &l{f@&ﬂ] P /’q yff 10(01,%/

/téﬁ(diﬂﬁ Mdv\aﬂw{’m\ ‘{ - W\”r;‘jr dﬂwﬂk,(/é
~(onbred f/ﬂpcga/ffm of Celetino

W Defoculwt ~ pett U pwad |
WO dil by Jﬂwa/CW@ abfdﬂ’“éh/@
T G G owade g

V[6\04}\[04 \lq ‘@Je//
\/Q-— 0/}{7 OJJIOM@ ALLES
-y quﬂvfg Ae95

“hbbles op fl Tree

@/MV;{ QL)V"’]
A moese un

— (ol ot A fom ot ffing el whin_ Chdk #1 Y

- O”LT @ 96‘3% move moe €u0q (3 WW'L z(qﬂ
- When tang gul[{ euats stop
&h(ﬁ/\b C an Q/H‘cuk H W)’Wl{ W‘M,(“H/

movE_

@ L;t 66{’ L /V\ng WC/NL) wLQq 1,4 A/lez/dW
Mi LIL Jﬂﬁ ?4 {tgo WL ﬁ{/ “ g mwe mone (gt/@ﬂ/b

for h e Sueer

—

A\bo {‘mg@”) (:Plﬂm)
“Moce Compley

Whea Emplwf\ﬁ n ,M ~)]'\WL (. Stafe i
_M\Ludzuy dﬁm« :,IL

L10: Input

GR2 out, due next Sun

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?
Ty s R - = -
S i | Tt Pt it ptege b Srvipn L
) Ve e, a D e T
':’3." domedve e ANl EE sl v AN
= :
u:u,.lan-a.-,f;.‘-z-A [5 & § B8 SHE RN R TN m«fu
perws 5 Foew 2 Sargpaen % A T
- - RS ORI PRI,
e
|
14
Spang 2011 8.813/6 831 User Inlerface Design and Implementation 2

Our Hall of Fame or Shame candidate for today is the command ribbon, which was introduced in Microsoft
Office 2007. The ribbon is a radically different user interface for Office, merging the menubar and toolbars
together into a single common widget. Clicking on one of the tabs (“Home”, “Insert”, “Page Layout”, etc)
switches to a different ribbon of widgets underneath. The metaphor is a mix of menubar, toolbar, and tabbed
pane. Notice how Uls have evolved to the point where new metaphorical designs are riffing on existing GUI
objects, rather than physical objects. Expect to see more of that in the future.

Needless to say, strict external consistency has been thrown out the window — Office no longer has a menubar
or toolbar. But if we were slavishly consistent, we’d never make any progress in user interface design.

Despite the radical change, the ribbon is still externally consistent in some interesting ways, with other
Windows programs and with previous versions of Office. If you look carefully at the interface, they are
consistent in some important ways: (1) critical toolbar buttons still look the same, like Save, Cut, Copy, and
Paste; (2) the command tab buttons resemble menubar menus, in both location and naming; (3) the ribbons
look and act like rich toolbars, with familiar widgets and familiar affordances. So even though some new
learning has to happen for Office 12 users, the knowledge transfer from other apps or previous Office is likely
to be substantial.

One thing Office 12’s developers did very effectively is task analysis. In fact, they signed up thousands of
Office users to a special program that collected statistics on how frequently they used Office commands and in
which order — huge amounts of data that directly drove how commands were grouped into the command tabs,
and which commands appear on command tabs as opposed to being buried in deeper dialogs. When a user
interface designer can get this kind of data, you can do a lot to improve the usability for an average user. Web
site designers are lucky, in this sense, because server logs give it to them for free! Microsoft had to do a lot
more work to get it.

Office 2007 also provides more feedback about what a command will do, by showing a preview of its effect
right in the document while you’re mousing over the command. So if you hover over the Heading 2 option,
your document will reformat to show you what the selection would look like with that new style. As long as
your computer is fast enough to do it within 100ms, this would be a tremendous improvement to the visibility
and feedback of the interface.

Today’s Topics

* Input events
« Event dispatch & propagation
» State machines

Spring 2011 6.813/6.831 User Interface Design and Implementation 5

Today’s lecture finishes our look into the mechanics of implementing user interfaces, by examining input in
more detail. We’ll look mainly at keyboard and mouse input, but also multitouch interfaces like those on
modern smartphones and tablets. This lecture has two key ideas for thinking about input. First, that state
machines are a great way to think about and implement tricky input handling (like direct manipulation
operations). Second, that events propagate through the view tree, and by understanding this process, you can
make good design choices about where to attach the listeners that handle them.

Raw Input Events

» The usual input hardware has state:
— ~100 keys on the keyboard (down or up)
— (x,y) mouse cursor position on the screen
— one, two, or three mouse buttons (down or up)

- A “raw” input event occurs when this state

changes

jQuery event
— key pressed or released ~ keydown, keyup
— mouse moved mousemove

— button pressed or released mousedown, mouseup

Spring 2011 6.813/6.831 User Interface Design and Implementation 6

There are two major categories of input events: raw and translated.

A raw event comes from a state transition in the input hardware. Mouse movements, mouse button down and
up, and keyboard key down and up are the raw events seen in almost every capable GUI system. A toolkit that
does not provide separate events for down and up is poorly designed, and makes it difficult or impossible to
implement input effects like drag-and-drop or game controls. And yet some toolkits like that did exist at one
time, particularly in the bad old days of handheld and mobile phone programming.

Translated Events
» Raw events are franslated into higher-level
events jQuery event
— Clicking click
— Double-clicking dblclick
— Character typed keypress
— Entering or exiting mouseenter,
an object's bounding box mouseleave
Spring 2011 6.813/6.831 User Interface Design and Implementation 7

For many GUI components, the raw events are too low-level, and must be translated into higher-level events.
For example, a mouse button press and release is translated into a mouse click event -- assuming the mouse
didn’t move much between press and release — if it did, these events would be interpreted as a drag rather than
a click, so a click event isn’t produced.

Key down and up events are translated into character-typed events, which take modifiers (Shift/Ctrl/Alt) and
input methods (e.g. entering for Chinese characters on a standard keyboard) into account to produce a Unicode
character rather than a physical keyboard key. In addition, if you hold a key down, multiple character-typed
events may be generated by an autorepeat mechanism (usually built into the operating system or GUI toolkit).
When a mouse movement causes the mouse to enter or leave a component’s bounding box, entry and exit
events are generated, so that the component can give feedback — e.g., visually highlighting a button, or
changing the mouse cursor to a text I-bar or a pointing finger.

State Nachines Translate Events

mousemove
< threshold

mousedown

mousemove "\ Pragging

> threshold

mouseup

click

oS

timeout

Spring 2011 6.813/6.831 User Interface Design and Implementation 8

Here’s our first example of using state machines for input handling. Inside the GUI toolkit, a state machine is
handling the translation of raw events into higher-level events. Here’s how the click event is generated — after
a mousedown and mouseup, as long as the mouse hasn’t moved (much) between those two events. Question
for you: what is the threshold on your favorite GUI toolkit? If it’s measured in pixels, how large is it? Does
the mouse exiting the bounding box of the graphical object trigger the threshold regardless of pixel distance?

In this case, the raw events (down, up, move) are still delivered to your application, along with the translated
event (click). This means that if your application is handling both the raw events and the translated events, it
has to be prepared to expect this. This often comes up with double-click, for example: your application will
see two click events before it sees the double-click event. As a result, you can’t make click do something
incompatible with double-click.

But occasionally, low-level events are consumed in the process of translating them to higher-level events. 1t’s
a difference you have to pay attention to in your particular toolkit.

Exercise: Mouse Event Translation

+ Try this code at htmledit.squarefree.com
+ Code at http://pastebin.com/jQzhLZiS
<script src="hitp://code.jquery.com/jquery-1.7.min.js"></script>
<div id="A" style="width:100px; height:100px; background:lightYellow; padding:5px™></div>
<script>
S(function() {
$("#A").mousedown(function() { console.log("A down") })
${"#A").mouseup(function() { console.log("A up”} })
$("#A").click(function() { conscle.log("A dlicked") })
$("#A").dblclick(function{) { console.log("A double-clicked”) })
h
</script>
» What sequence of events do you see when you double click?

* When does a mouse down and up fail to produce a click? Try to
deduce the translation rules used by your browser.
» When does two clicks fail to produce a double click?

Spring 2012 6.813/6.831 User Interface Design and Implementation g

Keyboard Focus

= An object in the view tree has the keyboard focus

jQuery event
— Keyboard focus gained focusin,
or lost focusout

« Changing keyboard focus
— by user input event: e.g. mouse down, Tab
— programmatically by a method call
» Not all HTML elements can have keyboard
focus by default
<div tabindex="-1"> to force ability to take focus

Spring 2011 6.813/6.831 User Interface Design and Implementation 10

The keyboard focus is also part of the state of the input system, but it isn’t in the input hardware — instead, the
keyboard focus is a particular object in the view tree that currently receives keyboard events. On some X
Windows window managers, you can configure the keyboard focus to follow the mouse pointer — whatever
view object contains the mouse pointer has the keyboard focus as well. On most windowing systems (like
Windows and Mac), however, a mouse down is the more common way to change the focus.

10

Properties of an Iinput Event

Mouse position (X,Y)

Mouse button state

Modifier key state (Ctrl, Shift, Alt, Meta)
Timestamp

— Why is timestamp important?

Keyboard key, character, or mouse button
that changed

— jQuery event.which overloads this for mouse
events and key events

Spring 2011 6.813/6.831 User Interface Design and Implementation 1

Input events carry with them some or all of these properties, which represent the state of the input hardware
immediately after the event occurred.

On most systems, all events include the modifier key state, since some mouse gestures are modified by Shift,
Control, and Alt. Some systems include the mouse position and button state on all events; some put it only on
mouse-related events.

The timestamp indicates when the input was received, so that the system can time features like autorepeat and
double-clicking. It is essential that the timestamp be a property of the event, rather than just read from the
clock when the event is handled. Events are stored in a queue, and an event may languish in the queue for an
uncertain interval until the application actually handles it, so it’s necessary for the time of the event to be
captured as close to the event’s actual occurrence (the press or release in the event object itself).

Keyboard events can be trickier to handle than mouse events because identifying the key involved in the event
is not always easy. Particularly for cross-platform toolkits (HTML, Flash, Java), there may be a variety of
different keyboard hardware with different sets of keys, and in HTML/Javascript, different browsers may work
differently. There is the further complication that translated key events (the “character typed” event) do not
represent a keystroke (like Shift or PgUp or the A key), but rather a character (like “a” or “A” or “%”).
Keystrokes are identified by physical keys on the keyboard; characters are identified by values in a character
set (like Unicode or ASCII). In jQuery, do not treat keydown/keyup and keypress as interchangeable; their
names may be similar, but the parameters of the events are different.

11

Exercise: Keyboard Events

» Try this code at htmledit.squarefree.com

= Code at http://pastebin.com/pgW8vTwQ
<script sre="hitp://code.jquery.com/jquery-1.7.min.js"></script>
<textarea id="A"></textarea>
<script>
S(function() {
$("#A").keydown(function(event) { console.log(*A down " + event.which) })
${"#A").keyup(function(event) { console.log("A up " + evenlLwhich) })
S{"#A").keypress(function(event) { console.log("A press " + event.which) })
)il
<iscript>
= Type a letter key. What sequence of events do you see? What do the
values mean?

* Press a modifier key, like Shift. What events do you see?
* Hold down a letter key. What events do you see?

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

12

Event Queue

« Events are stored in a queue
— User input tends to be bursty
— Queue saves application from hard real time
constraints (i.e., having to finish handling each
event before next one might occur)
» Mouse moves are coalesced into a single
event in queue

— If application can't keep up, then sketched lines
have very few points

Spring 2011 6.813/6.831 User Interface Design and Implementation 13

User input tends to be bursty — many seconds may go by while the user is thinking, followed by a flurry of
events. The event queue provides a buffer between the user and the application, so that the application doesn’t
have to keep up with each event in a burst. Recall that perceptual fusion means that the system has 100
milliseconds in which to respond.

Edge events (button down and up events) are all kept in the queue unchanged. But multiple events that
describe a continuing state — in particular, mouse movements — may be coalesced into a single event with the
latest known state. Most of the time, this is the right thing to do. For example, if you’re dragging a big object
across the screen, and the application can’t repaint the object fast enough to keep up with your mouse, you
don’t want the mouse movements to accumulate in the queue, because then the object will lag behind the
mouse pointer, diligently (and foolishly) following the same path your mouse did.

Sometimes, however, coalescing hurts. If you’re sketching a freehand stroke with the mouse, and some of the
mouse movements are coalesced, then the stroke may have straight segments at places where there should be a
smooth curve. If something running in the background causes occasional long delays, then coalescing may
hurt even if your application can usually keep up with the mouse.

13

Exercise: Mouse Coalescing

» Try this code at htmledit.squarefree.com

* Code at http://pastebin.com/xR1hP0f4
<script src="hitp://code.jquery.comfjquery-1.7.min.js"></script>
<canvas id="A" width="400" height="300" style="border: 1px dashed"></canvas>
<script>
S(function() {
var ctx = $("#A").get(0).getContext("2d")
var pos = $("#A").offset()
cbx.translate(-pos.left, -pos.top) // move origin of canvas to origin of document, so we can
use event.pageX/pageY directly

${"#A"). mousemove(function{event) { sleep(0); cix.lineTo(event.pageX, event.pageY);
cbx.stroke() })

function sleep(ms) { var wake = now() + ms; while (now() < wake) {}}
function now() { retun new Date().getTime() }
N
<Iscript>
+ Change the sleep(0) to sleep(100). What happens to your scribbling?
Explain it in terms of event coalescing. '

Spring 2012 6.813/6.831 User Interface Design and Implementation ~&——————==~

JISLZEN

14

Example: Without Coalescing

» Can't turn off event coalescing in Javascript
— So we'll simulate our own event queue
— Code at hitp://pastebin.com/PANDuYmj

* Try it first, then increase DELAY to 100 ms.

What happens?

Spring 2011 6.813/6.831 User Interface Design and Implementation 15

Event coalescing can’t be easily disabled in HTML/Javascript, so we’ll simulate what life would be like
without coalescing by creating our own queue of mouse points (queue and pushEvent() in the code below) and
an event handler that reads from it (eventLoop()). Try the code as given first, and then try increasing DELAY
to 50 milliseconds. What happens?

15

Event Loop

» While application is running

Block until an event is ready

Get event from queue

Translate raw event into higher-level events

* Generates double-clicks, characters, focus, enter/exit, etc.
= Translated events are put into the queue

Dispatch event to target component

* Who provides the event loop?
— High-level GUI toolkits do it internally (Java Swing, VB, C#,
HTML)
— Low-level toolkits require application to do it (MS Win, Palm,
Java SWT)

Spring 2011 6.813/6.831 User Interface Design and Implementation 16

The event loop reads events from the queue and dispatches them to the appropriate components in the view
hierarchy. On some systems (notably Microsoft Windows), the event loop also includes a call to a function
that translates raw events into higher-level ones. On most systems, however, translation happens when the raw
event is added to the queue, not when it is removed.

Every GUI program has an event loop in it somewhere. Some toolkits require the application programmer to
write this loop (e.g., Win32); other toolkits have it built-in (e.g., Java Swing).

16

Event Dispatch & Propagation

» Dispatch: choose target component for event
— Key event: component with keyboard focus
— Mouse event: component under mouse (hit testing)

« Mouse capture: any component can grab mouse temporarily
so that it receives all mouse events (e.g. for drag & drop)

- Propagation: event bubbles up hierarchy

— If target component doesn’t handle event, the event passes
up to its parent, and so on up the tree

» Consumption: event stops propagating

— May be automatic (because some component finally handles
it) or manual (keeps going unless explicitly stopped)

Spring 2011 6.813/6.831 User Interface Design and Implementation 17

Event dispatch chooses a component to receive the event. Key events are sent to the component with the
keyboard focus, and mouse events are generally sent to the component under the mouse, using hit testing to
determine the visible component that contains the mouse position and is topmost (in z order).

An exception is mouse capture, which allows any component to grab all mouse events after a mouse button
was pressed over that component, for as long as the button is held down. This is essentially a mouse analogue
for keyboard focus. Mouse capture is done automatically by Java when you hold down the mouse button to
drag the mouse. Other UI toolkits give the programmer the ability to tumn it on or off — in the Windows API, for
example, you’ll find a SetCapture function.

If the target component has no handler for the event, the event propagates up the view hierarchy looking for
some component able to handle it. If an event bubbles up to the top without being handled, it is discarded.

In many GUI toolkits, the event stops propagating automatically after reaching a component that handles it;
none of that component’s ancestors see the event. Java Swing behaves this way; an event propagates up
through the tree until it finds a component with at least one listener registered for the event, and then
propagation stops automatically. (Note that this doesn’t necessarily mean that only one listener sees the event.
The component that finally handles the event may have more than one listener attached to it, and all of those
listeners will receive the event, in some arbitrary order. But no listeners attached to components higher in the
tree will see it.)

In some toolkits, however, event propagation is under the control of the programmer, and events continue

propagating up the tree unless explicitly stopped. HTML/Javascript behaves this way, as does Adobe Flex. In
these toolkits, an event can be stopped by calling stopPropagation() on its event object.

17

Hit Testing and Event Propagation

Edge A-C
R
Label A

Spring 2011 6.813/6.831 User Interface Design and Implementation 18

Here are some examples of how mouse events are dispatched and propagated. The window on the left has the
view hierarchy shown on the right, in which each graph node is represented by a Node component with two
children, a Circle (displaying a filled white circle with a black outline) and a text Label (displaying a text
string, such as “A” or “B”).

First consider the green mouse cursor; suppose it just arrived at this point. Then a mouse-move event is
created and dispatched to the topmost component whose bounding box contains that point, which is Label A.
If Label A doesn’t handle the mouse-move event, then the event is propagated up to Node A; if that doesn’t
handle the event either, it’s propagated to Window, and then discarded. Notice that Circle A never sees the
event, because event propagation goes up the tree, not down through z-order layers.

Now consider the blue mouse cursor. What component will be the initial target for a mouse-move event for
this point? The answer depends on how hit-testing is done by the toolkit. Some toolkits support only
rectangular bounding-box hit testing, in which case Edge A-C (whose bounding box contains the mouse point)
will be the event target. Other toolkits allow hit testing to be overridden and controlled by components
themselves, so that Edge A-C could test whether the point actually falls on (or within some small threshold of)
the actual line it draws. Java Swing supports this by overriding Component.contains(). If Edge A-C rejects
the point, then the next component in z-order whose bounding box contains the mouse position is the window
itself, so the event would be dispatched directly to the window.

18

Javascript Event Models

» Events propagate in different directions on
different browsers
— Netscape 4: downwards from root to target
— Internet Explorer: upwards from target to root

— W3C standardized by combining them: first
downwards (“capturing”), then upwards
(“bubbling”)

« Firefox, Opera, Safari

Spring 2011 6.813/6.831 User Interface Design and Implementation 19

The previous slides describe how virtually all desktop toolkits do event dispatch and propagation. Alas, the
Web is not so simple.

Early versions of Netscape propagated events down the view hierarchy, not up. On the Web, the view
hierarchy is a tree of HTML elements. Netscape would first determine the target of the event, using mouse
position or keyboard focus, as we explained earlier. But instead of sending the event directly to the target, it
would first try sending it to the root of the tree, and so forth down the ancestor chain until it reached the target.
Only if none of its ancestors wanted the event would the target actually receive it.

Alas, Internet Explorer’s model was exactly the opposite — like the conventional desktop event propagation, IE
propagated events upwards. If the target had no registered handler for the event (and no default behavior
either, like a button or hyperlink has for click events), then the event would propagate upwards through the
tree.

The W3C consortium, in its effort to standardize the Web, combined the two models, so that events first
propagate downwards to the target (a phase called “event capturing”, not to be confused with mouse capture),
and then back upwards again (“event bubbling”). You can register event handlers for either or both phases if
you want. Modern standards-compliant browsers, like Firefox and Opera, support this model; so does Adobe
Flex.

One advantage of this two-phase event propagation model is that it gives you a lot more flexibility as a
programmer to override the behavior of other components. By attaching a capturing listener high up in the
component hierarchy, you can handle the events yourself and prevent other components from even seeing
them. For example, if you want to implement an “edit mode” for your UI, in which the user can click and drag
around standard widgets like buttons and textboxes, you can do that easily with a single capturing listener
attached to the top of your Ul tree. In the traditional desktop event propagation model, it would be harder to
prevent the buttons and textboxes from trying to interpret the click and drag events themselves, and you would
have to add listeners to every single widget.

19

Exercise: Event Propagation

= Try this code at htmledit.squarefree.com

+ Code at http://pastebin.com/pF3w9nw0
<script src="http://code.jquery.com/jquery-1.7.min.js"></script>
<div id="A" style="width:100px:height:100px;background:lightYellow;padding:5px">A
<div id="B" style="margin: 20px; padding:5px; background:lightPink;">B</div>
</div>
<script>
$(function() {
$("#8").on (*mousedown mouseup ", function{event) { console.log(this.id +* got " +
eventarget.id + " + event.type) })
${"#A").on("mousedown mouseup ", function(event) { console.log(this.id +* got " +
event.larget.id + * + event.type) })
/1$(window).on("mousedown mouseup ~, function{event) { console.log("window got * +
event.target.id + " " + evenl.lype) })
»
</script>
* Click on the B node. Which nodes get the events?
- Try consuming the event in B's listener with event.stopPropagation().

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

20

Exercise: Mouse Capture

+ Use the same code from the previous slide

« Add mousemove to the "mousedown mouseup” list. Then click
and drag the B node.
— Can you implement drag-and-drop or a scrollbar with this behavior?
* Now uncomment the window event binding, and drag the B
node again — in particular, drag it outside the entire browser
window. What happens?

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

21

Multitouch Dispatch (iPhone)

» Multitouch input events have more than one
(x,y) point (fingers on screen)
— Touch-down event dispatches to the component

containing it (which also captures future touch-
moves and touch-up for that finger)

— Touch events carry information about all fingers
currently touching

— A component can turn on “exclusive touch” to
receive all touch-down events even if they fall
outside it

Spring 2011 6.813/6.831 User Interface Design and Implementation 22

Multitouch interfaces like the Apple iPhone introduce a few wrinkles into the event dispatch story. Instead of
having a single mouse position where the event occurs, a multitouch interface may have multiple points
(fingers) touching the screen at once. Which of these points is used to decide which component gets the event?

Here’s how the iPhone does it. Each time a finger touches down on the screen, the location of the new touch-
down is used to dispatch the touch-down event. All events carry along information about all the fingers that
are currently touching the screen, so that the component can recognize multitouch gestures like pinching
fingers together or rotating the fingers. (This is a straightforward extension of keyboard and mouse events, in
fact — most input events carry along information about what keyboard modifiers are currently being held down,
and often the current mouse position and mouse button state as well.)

Two kinds of event capture are used in the iPhone. First, after a touch-down event is dispatched to the
component that it touched first, that component automatically captures the events about all future moves of that
finger, even if it strays outside the bounds of the component, until the finger finally leaves the screen (touch-
up). This is similar to the automatic mouse capture used by Java Swing when the mouse is dragged.

Second, a component can also turn on its “exclusive touch” property, which means that if the first touch on the
screen (after a period of no fingers touching) is dispatched to that component, then all future touch events are
captured by that component, until all fingers are released again. (Apple, “Event Handling”, iPhone Application
Programming Guide, 2007).

22

Designing a Controller

« A controller is a finite state machine
» Example: push button

-

&

mouse enter

X
= leave
=
A
Spring 2011 6.813/6.831 User Interface Design and Implementation 23

Now let’s look at how components that handle input are typically structured. A controller in a direct
manipulation interface is a state machine. Here’s an example of the state machine for a push button’s
controller. Idle is the normal state of the button when the user isn’t directing any input at it. The button enters
the Hover state when the mouse enters it. It might display some feedback to reinforce that it affords
clickability. If the mouse button is then pressed, the button enters the Armed state, to indicate that it’s being
pushed down. The user can cancel the button press by moving the mouse away from it, which goes into the
Disarmed state. Or the user can release the mouse button while still inside the component, which invokes the
button’s action and returns to the Hover state.

Transitions between states occur when a certain input event arrives, or sometimes when a timer times out.
Each state may need different feedback displayed by the view. Changes to the model or the view occur on
transitions, not states: e.g., a push button is actually invoked by the release of the mouse button.

23

Drag & Drop

Mouse move
(over illegal target)

Mouse down

B

Dragging

\V

Can't Drop

—
Mouse up

(do the drop)

——
Mouse move
(over legal target)

Escape keypress
(cancel drop)

Mouse up,
Escape keypress
(cancel drop)

Spring 2011 6.813/6.831 User Interface Design and Implementation 24

Here’s a state machine suitable for drag & drop.

Notice how each state of the machine produces different visual feedback, in this case the shape of the cursor.
(The pushbutton on the last page had the same property.) This is a common case in input implementation,
since different states of an input controller often represent different modes from the user’s point of view, and
distinguishing those modes with visual feedback helps reduce mode errors,

Visual feedback can also happen on the transitions, but it may have to be animated to be effective, because the
transitions are very brief (like pressing or releasing a button).

Modeling the Input Device ltself

Mouse move
through air

Mouse move

on table Button press

Tracking *» Engaged
—
Button release

D —
Mouse lifted
from table

Finger move
hrough air Finger move

on scree
Finger press R ﬂ
» Engaged -

Finger release

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

25

Exercise: Touch Scrolling

* Find a smartphone
* Go to www.mit.edu with its web browser

» Draw the state diagram for single-touch
events

Spring 2012 6.813/6.831 User Interface Design and Implementation

26

26

Summary

* Input events are raw and translated

» Events are dispatched to a target view and
propagated up (or down then up) the view
hierarchy

« State machines are a useful pattern for
thinking about input

Spring 2011 6.813/6.831 User Interface Design and Implementation 27

ZF

LI Py 317

DA de st 4
08 b M, | qit ¢,

P2 of Ao da af end £ Sl 1,
/U{}/ | —/WL/ he a 5307 SM;O lbycuﬁc(f«qz/‘Q for Ohus
CF e

(:UW {@M’i} MO*}LZ {W 6f¢&/. SM&LB
350 for by M«j Pdoe ,W)Lﬂ*(ﬂ@ Iy

“PG{W) G;QWS/ Moo av('Wf'

WQL Fi]Lu,f P/@quﬂ{
W Walke Wm

UT ol of Fon/sb fafhandle) ol

- My 6&0“}»05
= (an C“dﬂ\ i (ij

0

Qlfdk@ Qb g 7 &/&3 g l‘fhgb
— et O
&{,/onmg Wiadory (Phorp
] e dragqiny @lt@ Lk Jraggllaj fege in Aoobif.
e MJ ‘0 %50 ol P muﬁﬁ Lisn sconll e
Ol 09 X gulukel Lobot hall ba it o

S
hotl o foll 9, Jiffeee
Mol Ciors @mmn wf people Bt ol Ox (/o

by gl S Nm G
More (Omp(

Mon](0/ /vm l [’ﬂ
Do 6 Gk n bk ae e ps

Now Swollb [me,zhi\ (6 W{ dfagemj and

Jells o /enqmt of dongrh

®

H oh & 613 w5 71,7 %, (e ‘WM{ Yool by
“hd ﬂ“‘l’ s \’W(’)WF d/” eabres
~ il fWLﬁL] {M\j uiw«b“z [/42("/’"‘

O.f (fv\f\d} |L5 Jﬂptml) ’M\i wl\(l/f' Liﬁ haM
~do Tnb ﬁ)f't@L»F

/\/) &’\L%
i onéu/m‘mg 424 /l/b

C@ Mot Jg(a,\[buals S0 WY &3 fo dale Cﬂo(é

+1VVQ PQ/{@J -t Mt/b]l [Vq/;]L 60/ (JIJI/ML C/(ch

60 @ @{:F(L@/l{[
(@ P@/ce/M[lt(ét{ofz “uenls T a [oa,g fim
| " apear | /(g0 M apiens s faatareny

P 0/\0% pKJ%‘;bk odos
[common ;) sl o wel
oy “0f n path 9n g
L2 e ot bl oy UL, S, ur

D Xzx ewvy
F £x2 enl

v

ey

1ot e Caplat
B l)?/ﬂﬁf {0{ f{bpo%‘w/ d/aff ~ d/M

Y oY e gom

e sl

TO&U; | p[OJFO'IL»/ [)\ g

LAy
- Pup(lr
g OmP“)Ef

- Wli‘ﬂj& o{ 0+

b4t Logd bu eatsr e
/

Em%” fo Cl“‘“{ﬁ/ﬂ\owaﬁ

(ode & had b full

€

Fdalby 6 M éfuﬁa&m/

- %&W I Aedues M@é
D - duge o Godiealy

§(€m’m
J

LOWM T\/ @ﬁ'((dr{
i} (O]Lo H‘Q,

& Sl - o fud Chllo

7

04 a Tk €
\(e,v {ed{v/} OWl\ 4

Gc i\ powfd
[Aovir 1)

Lﬂﬁ LM d’&w

frod -k naflal gt & o
ﬁ(C?M‘ {é(‘fUhl@]Lj

m@ 78 ‘afhflw
o s Ourged

Vi ! f)
B Ué'ng L LWW\]Lo Mg amd plec

S poy ' pep boxgs

bl 1 qukly
“du't gl F o ICWT
= lnodegaden ohill
~ ot s work of art

B ’/QMDIUMHY G\MP“
C sy b gl (/l/um@@s

._Ml(cd}l{‘ ;v&Jr bt an‘ﬂ/l d“%d(’,
fowss g M by pubap

“1ob difulls < e o Goah
[10n ﬁ)mgmmmrg Can)
. dEb'(ﬁ/@(s on Your 7L€aw1

() Mo
PO& i+l e |
- iale daghlag fabo a potoF

T[G P(M@ﬂér

7\/—\;1;@ i+ Lt Than e

“ nle s St pho
" i Tun 'b'cg b \v Cdn Gee e oo
M0 of e

No &M}MHO’\
~ deshe O/M[7
Cavl _L_/De’ P‘r\m‘t“/“ 4 (Qo'/’ 5(/%6‘“/5
0 e 4 (g b
Mak it L‘L@ \l
“3?‘“ b e foo 5“4” fo 4 nedo

(@\'\ Cu+ 1[(ubirt) ((1'(ffOP]((/0'# wgal

) |
(/ A‘Q/M\ uoch A%WML

v off i foside o
PQopZQ wll zw/e Jift vy
Tl B what ({,\wﬂ(‘“z 54y
0 00
0.0
040
4 I
Mt ¢ do ald vey
% ahan 5§00 > Sef alam

— e e e

\N)% Yo/ C[/Laach pfofﬁype ()/3 Yy psalle

L11: Prototyping

* GR2 due next Sun

« Next week’s unusual schedule
« lectures for 6.831 G (optional for 6.813 U)
+ M 3-5 pm paper prototype building
+ WF 3-5 pm prototype testing & RS2 testing

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

et | ;
L Y
ot — [UTaTST—
Lt |
Cinraent ! .
- .
e

Acrobat

Spnng 2012 6.81/6 831 User Interface Design and Implementation 2

On the left is Ghostview, a Unix program that displays Postscript files. Ghostview has no scrollbars; instead, it
scrolls by direct manipulation of the page image. Clicking and dragging on the page scrolls it around, and it
turns out that dragging downward moves the page image upward. That is, when you drag the mouse down,
more of the page image come into view at the bottom of the window. Does this make sense? What mental
model, or physical analogy, does this correspond to?

On the right is Acrobat, which displays PDF files. Acrobat has scrollbars, but you can also directly manipulate
the page image, as in Ghostview — only now clicking and dragging downward moves the page downward,
revealing more page image at the top of the window. What mental model does this correspond to?

What if you used both Acrobat and Ghostview frequently (one for PDF, say, and the other for Postscript)?

The Ghostview model is like a glass window that you’re dragging around on top of the page. You’re pressing
on the glass and pushing it to the left should indeed make more of the page become visible on the left.

The Acrobat model treats the window like an empty frame, and you’re actually reaching through and pushing
the page itself around. Pushing it to the left should make more of the page visible on the right.

So two different physical analogies are possible here. Principles of direct manipulation alone don’t help us
decide. And Ghostview at least uses a consistent model —the light gray rectangle in the leftside toolbar
(underneath the Save Marked button) is a miniature representation of the position of the glass window over the
page, and you push it around using the same dragging direction that you use on the page image itself.

If you had to use both Acrobat and Ghostview frequently, however, the inconsistency between them would be
very painful. Yet we do have to use *both* models these days: direct-touch scrolling (smartphones and tablets)
uses one model, and scrollbars and mouse scrollwheels use the opposite model. The directness vs. indirectness
of the interaction and differences in the low-level muscle interaction may give enough cues to keep the model
straight. But touchpads on laptops may be the hardest point of overlap, since they are indirect, and yet use the
same finger swiping motion as direct touch. Apple decided to make a significant transition recently with Mac

OS X Lion, switching its default touchpad scrolling from one mental model (the scrollwheel) to the other
(direct touch).

Ul Hall of Fame or Shame?

¥+l

Xerox Star ﬂ original =] current

scrollbar Macintosh Macintosh
— scrollbar scrollbar
Les
5|
[~
Z I
Spring 2012 6.813/6.831 User Interface Design and Implementation 3

Let’s look at scrolling some more. Scrollbars have evolved considerably over the history of graphical user
interfaces.

The Xerox Star offered the earliest incarnation of a graphical user interface, and its scrollbar already had many
of the features we recognize in modern scrollbars, such as a track containing a scrollbar thumb (the handle
that you can drag up and down). Even its arrow buttons do the same thing — e.g., pushing on the top button
makes more of the page appear at the top of the window, just like the modern scrollbar. But they’re labeled the
opposite way — the top button has a down arrow on it. Why is that? What mental model would lead you to call
that button down? Is that consistent with the mental model of the scrollbar thumb?

Another interesting difference between the Star scrollbar and modern scrollbars are the - and + buttons, which
move by whole pages. This functionality hasn’t been eliminated from the modern scrollbar; instead, the
modern scrollbar just drops the obvious affordance for it. You can still click on the track above or below the
thumb in order to jump by whole pages.

The button labels actually refer to the page-pushing model of scrolling — when you click on the top button, the
page itself moves down. Alas, this is completely inconsistent with the thumb, which uses the glass-pane model
of scrolling — the thumb represents the glass pane, and you can drag it up and down the document. So the
Xerox Star scrollbar couldn’t make up its mind about which model to represent.

Removing the +/- buttons makes the scrollbar simpler, by forcing the track to do double-duty. But it also
makes the page-jumping functionality less visible, so new users are unlikely to discover it on their own.

We can also say something about natural mapping here — the arrow buttons are on opposite sides of the
scrollbar, so their positions map appropriately to the direction that they move the thumb. (But, alas, the Xerox
Star’s arrow labels disagree with the natural mapping.)

Another improvement in the scrollbar is that the height of the thumb now indicates what fraction of the whole
document is visible.

Ul Hall of Fame or Shame?
—_e et S S + by by
ey 0 i £n o Sy S vy o w5 b win o S 3 s o ey
| B THLL Sonstrn . sl ba AL
1]
= T A bt g ye + THRCO Npuies B ey D8 Bt
'f" 8 o e B o = TR Spatten i o e T e
’ i ded e A "t Dt § e L | oy o adats b e
= PR r— R iy * Gt Parvus Ansiyma
T e — .“gw T e b St b B e
—_ o FE e R e L nant
L e Tl mmn
i oy ko o Lot Now 1t s Y04 Ay A)
0 cx i prskemanaan fmaece. . roun! ::..:.un—'::-:_
i M
Spring 2012 6.813/6.831 User Interface Design and Implementation

Flash designers love to reimplement scrollbar widgets — and they do it wrong. Today we’ll pick on http://
spotfire.tibco.com/Demo/. What parts of the scrollbar did they get right, and what parts did they get wrong?
The problems are associated with learnability (i.e. consistency with other scrollbars), efficiency, and visibility.

Ul Hall of Fame or Shame?

VRat &ind of customer svartad i tere between Traver's ad ths
“argar tomtecy sornt

on bedt Loy stiwe?

Wosdd cuntamars o A% ol {hais §op shopping oF Trewar's o Phs
wrrs b of16F Dok s AR Negd G Enys ¥

eamznmy
Tite Geciet Jane

wasch Vi 18 tocuired (o 40 Svarage Loy waspag TH 10 &
IO G 4R (S, (eSpet 4T))

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

Here’s another example of a Flash scrollbar that lacks clear affordances (from http://www.bcg.com/join_bcg/
interview_prep/interactive_case/default.aspx). It turns out that the bright, highly salient part of this scrollbar is
NOT the thumb, but the track! The thumb is a dark color — in fact, it’s the same dark color that’s used as a
background color of some of the widgets on the right (Used and Remaining). (example suggested by Eryn
Maynard)

Today’s Topics

= Paper prototypes
» Computer prototypes
» Wizard of Oz prototypes

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

Today we’re going to talk about protototyping: producing cheaper, less accurate renditions of your target
interface. Prototyping is essential in the early iterations of a spiral design process, and it’s useful in later
iterations too.

Why Prototype?

« Get feedback earlier, cheaper
« Experiment with alternatives
» Easier to change or throw away

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

We build prototypes for several reasons, all of which largely boil down to cost.

First, prototypes are much faster to build than finished implementations, so we can evaluate them sooner and
get early feedback about the good and bad points of a design.

Second, if we have a design decision that is hard to resolve, we can build multiple prototypes embodying the
different alternatives of the decision.

Third, if we discover problems in the design, a prototype can be changed more easily, for the same reasons it
could be built faster. Prototypes are more malleable. Most important, if the design flaws are serious, a
prototype can be thrown away. It’s important not to commit strongly to design ideas in the early stages of
design. Unfortunately, writing and debugging a lot of code creates a psychological sense of commitment
which is hard to break. You don’t want to throw away something you’ve worked hard on, so you’re tempted to
keep some of the code around, even if it really should be scrapped. (Alan Cooper, “The Perils of Prototyping”,
1994. http://www.cooper.com/journal/1999/09/the_perils_of prototyping.html)

Most of the prototyping techniques we’ll see in this lecture actually force you to throw the prototype away.
For example, a paper mockup won’t form any part of a finished software implementation. This is a good
mindset to have in early iterations, since it maximizes your creative freedom.

Prototype Fidelity

» Low fidelity: omits details
» High fidelity: more like finished product

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

An essential property of a prototyping technique is its fidelity, which is simply how similar it is to the finished
interface. Low-fidelity prototypes omit details, use cheaper materials, or use different interaction techniques.
High-fidelity prototypes are very similar to the finished product.

10

Fidelity is Multidimensional

» Breadth: % of features covered
— Only enough features for certain tasks
« Depth: degree of functionality
— Limited choices, canned responses, no error

handling
front end horizontal
prototype
vertical \. .
totype scenario
ro
back end P
—— different features
Spring 2012 6.813/6.831 User Interface Design and Implementation 1

Fidelity is not just one-dimensional, however. Prototypes can be low- or high-fidelity in various different ways
(Carolyn Snyder, Paper Prototyping, 2003).

Breadth refers to the fraction of the feature set represented by the prototype. A prototype that is low-fidelity in
breadth might be missing many features, having only enough to accomplish certain specific tasks. A word
processor prototype might omit printing and spell-checking, for example.

Depth refers to how deeply each feature is actually implemented. Is there a backend behind the prototype
that’s actually implementing the feature? Low-fidelity in depth may mean limited choices (e.g., you can’t print
double-sided), canned responses (always prints the same text, not what you actually typed), or lack of
robustness and error handling (crashes if the printer is offline).

A diagrammatic way to visualize breadth and depth is shown (following Nielsen, Usability Engineering, p. 94).
A horizontal prototype is all breadth, and little depth; it’s basically a frontend with no backend. A vertical
prototype is the converse: one area of the interface is implemented deeply. The question of whether to build a
horizontal or vertical prototype depends on what risks you’re trying to mitigate. In user interface design,
horizontal prototypes are more common, since they address usability risk. But if some aspect of the
application is a risky implementation — you’re not sure if it can be implemented to meet the requirements —
then you may want to build a vertical prototype to test that.

A special case lies at the intersection of a horizontal and a vertical prototype. A scenario shows how the
frontend would look for a single concrete task.

11

More Dimensions of Fidelity

» Look: appearance, graphic design
— Sketchy, hand-drawn
* Feel: input method

— Pointing & writing feels very different from mouse
& keyboard

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Two more crucial dimensions of a prototype’s fidelity are, loosely, its look and its feel. Look is the appearance
of the prototype. A hand-sketched prototype is low-fidelity in look, compared to a prototype that uses the same
widget set as the finished implementation. Feel refers to the physical methods by which the user interacts with
the prototype. A user interacts with a paper mockup by pointing at things to represent mouse clicks, and
writing on the paper to represent keyboard input. This is a low-fidelity feel for a desktop application (but it
may not be far off for a tablet PC application).

12

Comparing Fidelity of Look & Feel

Spring 2012 6.813/6.831 User Interface Design and Implementation

13

Here’s the same dialog box in both low-fi and high-fi versions. How do they differ in the kinds of things you

can test and get feedback about?

13

Paper Prototype

Interactive paper mockup

— Sketches of screen appearance

— Paper pieces show windows, menus, dialog boxes
Interaction is natural

— Pointing with a finger = mouse click

— Writing = typing
+ A person simulates the computer’s operation
— Putting down & picking up pieces
— Writing responses on the “screen”

— Describing effects that are hard to show on paper

Low fidelity in look & feel
High fidelity in depth (person simulates the backend)

L]

L]

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Paper prototypes are an excellent choice for early design iterations. A paper prototype is a physical mockup
of the interface, mostly made of paper. It’s usually hand-sketched on mutiple pieces, with different pieces
showing different menus, dialog boxes, or window elements.

The key difference between mere sketches and a paper prototype is interactivity. A paper prototype is brought
to life by a design team member who simulates what the computer would do in response to the user’s “clicks”

and “keystrokes”, by rearranging pieces, writing custom responses, and occasionally announcing some effects

verbally that are too hard to show on paper. Because a paper prototype is actually interactive, you can actually
user-test it: give users a task to do and watch how they do it.

A paper prototype is clearly low fidelity in both look and feel. But it can be arbitrarily high fidelity in breadth
at very little cost (just sketching, which is part of design anyway). Best of all, paper prototypes can be high-
fidelity in depth at little cost, since a human being is simulating the backend.

Much of the material about paper prototyping in this lecture draws on the classic paper by Rettig et al,
“Prototyping for tiny fingers” (CACM 1994), and Carolyn Snyder’s book Paper Prototyping: The Fast and
Easy Way to Design and Refine User Interfaces (Morgan Kaufmann, 2003).

14

Why Paper Prototyping?

Faster to build
— Sketching is faster than programming
Easier to change

— Easy to make changes between user tests, or even during a
user test

— No code investment- everything will be thrown away (except
the design)

» Focuses attention on big picture

— Designer doesn't waste time on details

— Customer makes more creative suggestions, not nitpicking
« Nonprogrammers can help

— Only kindergarten skills are required

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

But why use paper? And why hand sketching rather than a clean drawing from a drawing program?

Hand-sketching on paper is faster. You can draw many sketches in the same time it would take to draw one
user interface with code. For most people, hand-sketching is also faster than using a drawing program to create
the sketch.

Paper is easy to change. You can even change it during user testing. If part of the prototype was a problem for
one user, you can scratch it out or replace it before the next user arrives. Surprisingly, paper is more malleable
than digital bits in many ways.

Hand-sketched prototypes in particular are valuable because they focus attention on the issues that matter in
early design without distracting anybody with details. When you’re sketching by hand, you aren’t bothered
with details like font, color, alignment, whitespace, etc. In a drawing program, you would be faced with all
these decisions, and you might spend a lot of time on them — time that would clearly be wasted if you have to
throw away this design. Hand sketching also improves the feedback you get from users. They’re less likely to
nitpick about details that aren’t relevant at this stage. They won’t complain about the color scheme if there
isn’t one. More important, however, a hand-sketch design seems less finished, less set in stone, and more open
to suggestions and improvements. Architects have known about this phenomenon for many years. If they
show clean CAD drawings to their clients in the early design discussions, the clients are less able to discuss
needs and requirements that may require radical changes in the design. In fact, many CAD tools have an
option for rendering drawings with a *“sketchy” look for precisely this reason.

A final advantage of paper prototyping: no special skills are required. So graphic designers, usability
specialists, and even users can help create prototypes and operate them.

15

Tools for Paper Prototyping

White poster board (11”x14")
— For background, window frame
» Big (unlined) index cards (4"x6", 5"x8")
— For menus, window contents, and dialog boxes
» Restickable glue
— For keeping pieces fixed
= White correction tape
— For text fields, checkboxes, short messages
« Overhead transparencies
— For highlighting, user “typing”
» Photocopier
— For making multiple blanks
« Pens & markers, scissors, tape

Spring 2012 6.813/6,831 User Interface Design and Implementation 16

Here are the elements of a paper prototyping toolkit.

Although standard (unlined) paper works fine, you’ll get better results from sturdier products like poster
board and index cards. Use poster board to draw a static background, usually a window frame. Then use
index cards for the pieces you’ll place on top of this background. You can cut the index cards down to size for
menus and window internals.

Restickable Post-it Note glue, which comes in a roll-on stick, is a must. This glue lets you make all of your
pieces sticky, so they stay where you put them. You can find this glue at Pearl Arts in Central Square; it’s not
found in the Coop.

Post-it correction tape is another essential element. It’s a roll of white tape with Post-it glue on one side.
Correction tape is used for text fields, so that users can write on the prototype without changing it permanently.
You peel off a length of tape, stick it on your prototype, let the user write into it, and then peel it off and throw
it away. Correction tape comes in two widths, “2 line” and “6 line”. The 2-line width is good for single-line
text fields, and the 6-line width for text areas. You can get correction tape at the Office Max in East
Cambridge.

Overhead transparencies are useful for two purposes. First, you can make a selection highlight by cutting a
piece of transparency to size and coloring it with a transparency marker. Second, when you have a form with
several text fields in it, it’s easier to just lay a transparency over the form and let the users write on that, rather
than sticking a piece of correction tape in every field. Pearl Arts in Central Square sells colored
transparencies that you can use for selection highlighting.

If you have many similar elements in your prototype, a photocopier can save you time.

And, of course, the usual kindergarten equipment: pens, markers, scissors, tape.

16

Tips for Good Paper Prototypes

Make it larger than life

Make it monochrome

Replace tricky visual feedback with audible
descriptions

— Tooltips, drag & drop, animation, progress bar
- Keep pieces organized

— Use folders & open envelopes

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

A paper prototype should be larger than life-size. Remember that fingers are bigger than a mouse pointer, and
people usually write bigger than 12 point. So it’ll be easier to use your paper prototype if you scale it up a bit.
It will also be easier to see from a distance, which is important because the prototype lies on the table, and
because when you’re testing users, there may be several observers taking notes who need to see what’s going
on. Big is good.

Don’t worry too much about color in your prototype. Use a single color. It’s simpler, and it won’t distract
attention from the important issues.

You don’t have to render every visual effect in paper. Some things are just easier to say aloud: “the basketball
is spinning.” “A progress bar pops up: 20%, 50%, 75%, done.” If your design supports tooltips, you can tell
your users just to point at something and ask “What’s this?”, and you’ll tell them what the tooltip would say. If
you actually want to test the tooltip messages, however, you should prototype them on paper.

Figure out a good scheme for organizing the little pieces of your prototype. One approach is a three-ring
binder, with different screens on different pages. Most interfaces are not sequential, however, so a linear
organization may be too simple. Two-pocket folders are good for storing big pieces, and letter envelopes (with
the flap open) are quite handy for keeping menus.

17

Hand-Drawn or Not?

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Here are some of the prototypes made by an earlier class. Should a paper prototype be hand-sketched or
computer-drawn? Generally hand-sketching is better in early design, but sometimes realistic images can be
constructive additions. Top left is a prototype for an interface that will be integrated into an existing program
(Eclipse), so the prototype is mostly constructed of modified Eclipse screenshots. The result is very clean and
crisp, but also tiny — it’s hard to read from a distance. It may also be harder for a test user to focus on
commenting about the new parts of the interface, since the new features look just like Eclipse. A hybrid hand-
sketched/screenshot interface might work even better.

The top right prototype shows such a hybrid — a interface designed to integrate into a web browser. Actual
screenshots of web pages are used, mainly as props, to make the prototype more concrete and help the user
visualize the interface better. Since web page layout isn’t the problem the interface is trying to solve, there’s
no reason to hand-sketch a web page.

The bottom photo shows a pure hand-sketched interface that might have benefited from such props -- a photo
organizer could use real photographs to help the user think about what kinds of things they need to do with
photographs. This prototype could also use a window frame — a big posterboard to serve as a static
background.

18

Both of these prototypes have good window frames, but the big one on the right is easier to read and

manipulate.

Size Matters

Spring 2012 6.813/6.831 User Interface Design and Implementation

19

19

The Importance of Writing Big and Dark

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

This prototype is even easier to read. Markers are better than pencil. (Whiteout and correction tape can fix
mistakes as well as erasers can!) Color is also neat, but don’t bother unless color is a design decision that
needs to be tested, as it is in this prototype. If color doesn’t really matter, monochromatic prototypes work just
as well.

Post-it Glue and Transparencies are Good

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

The prototype on the left has lots of little pieces that have trouble staying put. Post-it glue can help with that.

On the right is a prototype that’s completely covered with a transparency. Users can write on it directly with
dry-erase marker, which just wipes off — a much better approach than water-soluble transparency markers.
With multiple layers of transparency, you can let the user write on the top layer, while you use a lower layer for
computer messages, selection highlighting, and other effects.

21

Paper Prototypes

Paper is great for prototyping features that would be difficult to implement. This project (a contact manager)
originally envisioned showing your social network as a graph, but when they prototyped it, it turned out that it
wasn't too useful. The cost of trying that feature on paper was trivial, so it was easy to throw it away. Trying it
in code, however, would have taken much longer, and been much harder to discard.

22

Make a Paper Prototype

« Make a low-fi prototype of your own alarm clock
- clock radio, analog clock, phone; whatever wakes you up every day
* Prototype just enough to support these tasks:
~ show & change alarm time
- turn alarm on/off
« Take turns simulating your prototype on your neighbor with
these tasks:
— set the alarm to wake me at 9 am

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

23

Low-Fidelity Prototypes Aren’t Always Paper

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

The spirit of low-fidelity prototyping is really about using cheap physical objects to simulate software. Paper
makes sense for desktop and web Uls because they’re flat. But other kinds of UI prototypes might use
different materials. Jeff Hawkins carried a block of wood (not this one, but similar) around in his pocket as a
prototype for the first PalmPilot. hitp://www.designinginteractions.com/interviews/JeffHawkins

24

Multiple Alternatives Generate Better Feedback

{ Sunmer weekdays

V-

. 5

| N e [EmesEcEn
el e mnflm v e ey
Sy

_ A ¥
A e parshre.
Spring 2012 6.813/6.831 User Interface Design and Implementation 25

Doing several prototypes and presenting them to the same user is a great idea. When a design is presented
with others, people tend to be more ready to criticize and offer problems, which is exactly what you want in
the early stages of design. These three paper prototypes of a house thermostat were tested against users both
singly and as a group of three, and it was found that people offered fewer positive comments when they saw
the designs together than when they saw them alone.

Pictures from Tohidi, Buxton, Baecker, Sellen. “Getting the Right Design and the Design Right: Testing Many
Is Better Than One.” CHI 2006.

25

How to Test a Paper Prototype

* Roles for design team
— Computer
+ Simulates prototype
+ Doesn't give any feedback that the computer wouldn't
— Facilitator
» Presents interface and tasks to the user
» Encourages user to “think aloud” by asking questions
= Keeps user test from getting off track
— Observer
» Keeps mouth shut, sits on hands if necessary
» Takes copious notes

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

Once you’ve built your prototype, you can put it in front of users and watch how they use it. We’ll see much
more about user testing in a later lecture, including ethical issues. But here’s a quick discussion of user testing
in the paper prototyping domain.

There are three roles for your design team to fill:

The computer is the person responsible for making the prototype come alive. This person moves around the
pieces, writes down responses, and generally does everything that a real computer would do. In particular, the
computer should not do anything that a real computer wouldn’t. Think mechanically, and respond
mechanically.

The facilitator is the human voice of the design team and the director of the testing session. The facilitator
explains the purpose and process of the user study, obtains the user’s informed consent, and presents the user
study tasks one by one. While the user is working on a task, the facilitator tries to elicit verbal feedback from
the user, particularly encouraging the user to “think aloud” by asking probing (but not leading) questions. The
facilitator is responsible for keeping everybody disciplined and the user test on the right track.

Everybody else in the room (aside from the user) is an observer. The most important rule about being an
observer is to keep your mouth shut and watch. Don’t offer help to the user, even if they’re missing something
obvious. Bite your tongue, sit on your hands, and just watch. The observers are the primary note takers, since
the computer and the facilitator are usually too busy with their duties.

26

What You Can Learn from a Paper Prototype

Conceptual model

— Do users understand it?
Functionality

— Does it do what's needed? Missing features?
Navigation & task flow

— Can users find their way around?
— Are information preconditions met?
Terminology

— Do users understand labels?

« Screen contents

— What needs to go on the screen?

Spring 2012 6.813/6.831 User Interface Design and Implementation 27

Paper prototypes can reveal many usability problems that are important to find in early stages of design.
Fixing some of these problems require large changes in design. If users don’t understand the metaphor or
conceptual model of the interface, for example, the entire interface may need to be scrapped.

27

What You Can’t Learn

Look: color, font, whitespace, etc
Feel: efficiency issues
Response time

Are small changes noticed?

— Even the tiniest change to a paper prototype is
clearly visible to user

Exploration vs. deliberation

— Users are more deliberate with a paper prototype;
they don’t explore or thrash as much

Spring 2012 6.813/6.831 User Interface Design and Implementation 28

But paper prototypes don’t reveal every usability problem, because they are low-fidelity in several dimensions.
Obviously, graphic design issues that depend on a high-fidelity look will not be discovered. Similarly,
interaction issues that depend on a high-fidelity feel will also be missed. For example, problems like buttons
that are too small, too close together, or too far away will not be detected in a paper prototype. The human
computer of a paper prototype rarely reflects the speed of an implemented backend, so issues of response time
— whether feedback appears quickly enough, or whether an entire task can be completed within a certain time
constraint -- can’t be tested either.

Paper prototypes don’t help answer questions about whether subtle feedback will even be noticed. Will users
notice that message down in the status bar, or the cursor change, or the highlight change? In the paper
prototype, even the tiniest change is grossly visible, because a person’s arm has to reach over the prototype and
make the change. (If many changes happen at once, of course, then some of them may be overlooked even in a
paper prototype. This is related to an interesting cognitive phenomenon called change blindness.)

There’s an interesting qualitative distinction between the way users use paper prototypes and the way they use
real interfaces. Experienced paper prototypers report that users are more deliberate with a paper prototype,
apparently thinking more carefully about their actions. This may be partly due to the simulated computer’s
slow response; it may also be partly a social response, conscientiously trying to save the person doing the
simulating from a lot of tedious and unnecessary paper shuffling. More deliberate users make fewer mistakes,
which is bad, because you want to see the mistakes. Users are also less likely to randomly explore a paper

prototype.

These drawbacks don’t invalidate paper prototyping as a technique, but you should be aware of them. Several
studies have shown that low-fidelity prototypes identify substantially the same usability problems as high-
fidelity prototypes (Virzi, Sokolov, & Karis, “Usability problem identification using both low- and hi-fidelity
prototypes”, CHI *96; Catani & Biers, “Usability evaluation and prototype fidelity”, Human Factors &
Ergonomics 1998).

28

Computer Prototype

« Interactive software simulation
» High-fidelity in look & feel
» Low-fidelity in depth

— Paper prototype had a human simulating the
backend; computer prototype doesn’t

— Computer prototype may be horizontal: covers
most features, but no backend

Spring 2012 6.813/6.831 User Interface Design and Implementation 29

So at some point we have to depart from paper and move our prototypes into software. A typical computer
prototype is a horizontal prototype. It’s high-fi in look and feel, but low-fi in depth — there’s no backend
behind it. Where a human being simulating a paper prototype can generate new content on the fly in response
to unexpected user actions, a computer prototype cannot.

29

What You Can Learn From Computer
Prototypes

L

Everything you learn from a paper prototype, plus:
+ Screen layout
— Is it clear, overwhelming, distracting, complicated?
— Can users find important elements?
» Colors, fonts, icons, other elements
— Well-chosen?
Interactive feedback

— Do users notice & respond to status bar messages, cursor
changes, other feedback

- Efficiency issues

— Controls big enough? Too close together? Scrolling list is too
long?

Spring 2012 6.813/6.831 User Interface Design and Implementation 30

Computer prototypes help us get a handle on the graphic design and dynamic feedback of the interface.

30

Why Use Prototyping Tools?

Faster than coding

No debugging

Easier to change or throw away

Don't let your Ul toolkit do your graphic design

Spring 2012 6.813/6.831 User Interface Design and Implementation 31

One way to build a computer prototype is just to program it directly in an implementation language, like Java
or C++, using a user interface toolkit, like Swing or MFC. If you don’t hook in a backend, or use stubs instead
of your real backend, then you’ve got a horizontal prototype.

But it’s often better to use a prototyping tool instcad. Building an interface with a tool is usually faster than
direct coding, and there’s no code to debug. It’s easier to change it, or even throw it away if your design turns
out to be wrong. Recall Cooper’s concerns about prototyping: your computer prototype may become so
elaborate and precious that it becomes your final implementation, even though (from a software engineering
point of view) it might be sloppily designed and unmaintainable.

Also, when you go directly from paper prototype to code, there’s a tendency to let your UI toolkit handle all
the graphic design for you. That’s a mistake. For example, Java has layout managers that automatically
arrange the components of an interface. Layout managers are powerful tools, but they produce horrible
interfaces when casually or lazily used. A prototyping tool will help you envision your interface and get its
graphic design right first, so that later when you move to code, you know what you’re trying to persuade the
layout manager to produce.

Even with a prototyping tool, computer prototypes can still be a tremendous amount of work. When drag &
drop was being considered for Microsoft Excel, a couple of Microsoft summer interns were assigned to
develop a prototype of the feature using Visual Basic. They found that they had to implement a substantial
amount of basic spreadsheet functionality just to test drag & drop. It took two interns their entire summer to
build the prototype that proved that drag & drop was useful. Actually adding the feature to Excel took a staff
programmer only a week. This isn’t a fair comparison, of course — maybe six intern-months was a cost worth
paying to mitigate the risk of one fulltimer-week, and the interns certainly learned a lot. But building a
computer prototype can be a slippery slope, so don’t let it suck you in too deeply. Focus on what you want to
test, i.¢., the design risk you need to mitigate, and only prototype that.

31

Computer Prototyping Techniques

« Storyboard

— Sequence of painted screenshots

— Sometimes connected by hyperlinks (“hotspots”)
* Form builder

— Real windows assembled from a palette of widgets
(buttons, text fields, labels, etc.)

* Wizard of Oz

— Computer frontend, human backend

Spring 2012 6.813/6.831 User Interface Design and Implementation 32

There are two major techniques for building a computer prototype.

A storyboard is a sequence (a graph, really) of fixed screens. Each screen has one or more hotspots that you
can click on to jump to another screen. Sometimes the transitions between screens also involve some animation
in order to show a dynamic effect, like mouse-over feedback or drag-drop feedback.

A form builder is a tool for drawing real, working interfaces by dragging widgets from a palette and
positioning them on a window.

A Wizard of Oz prototype is a kind of hybrid of a computer prototype and a paper prototype; the user interacts
with a computer, but there’s a human behind the scenes figuring out how the user interface should respond.

32

Storyboarding Tools |[E2fVE— 1O
EEE = e
=1l u.,_j
Doessm [TE oL

* Photoshop oreeree
+ Balsamiq Mockup i = E N

- Mockingbird e ——

X IH

O

s
WV
A

SERITITE

Ly

ABlgTiHe &= OO s 5.

me=

G

Spring 2012 6.813/6.831 User Interface Design and Implementation 33

Photoshop is classically used for storyboarding (also called “wireframe” prototypes), but here are some other
tools that are increasing in popularity. Balsamiq Mockup and Mockingbird each offer a drawing canvas and a
palette of graphical objects that look like widgets that can be dragged onto it. These tools are different from
form builders, however, in that the result is just a picture — the widgets aren’t real, and they aren’t functional.

These wireframe tools strive for some degree of “sketchiness” in their look, so these are really medium-fidelity
tools. Not as low fidelity as hand sketch, but still not what the final interface will look like.

33

Pros & Cons of Storyboarding

* Pros
— You can draw anything

« Cons
— No text entry
— Widgets aren’t active
— “Hunt for the hotspot”

Spring 2012 6.813/6.831 User Interface Design and Implementation 34

The big advantage of storyboarding is similar to the advantage of paper: you can draw anything on a
storyboard. That frees your creativity in ways that a form builder can’t, with its fixed palette of widgets.

The disadvantages come from the storyboard’s static nature. Some tools let you link the pictures together with
hyperlinks, but even then all you can do is click, not really interact. Watching a real user in front of a
storyboard often devolves into a game of “hunt for the hotspot”, like children’s software where the only point
is to find things on the screen to click on and see what they do. The hunt-for-the-hotspot effect means that
storyboards are largely useless for user testing, unlike paper prototypes. In general, horizontal computer
prototypes are better evaluated with other techniques, like heuristic evaluation (which we’ll discuss in a future
lecture).

34

Form Builders

* FlexBuilder

« Silverlight

+ Visual Basic

* Mac Interface Builder
« Qt Designer

« Tips
— Use absolute positioning for now

Spring 2012 6.813/6.831 User Interface Design and Implementation

35

Here are some form builder tools.

35

Pros & Cons of Form Builders

* Pros
— Actual controls, not just pictures of them

— Can hook in some backend if you need it
= But then you won't want to throw it away

+ Cons
— Limits thinking to standard widgets
— Less helpful for rich graphical interfaces

Spring 2012 6.813/6.831 User Interface Design and Implementation 36

Unlike storyboards, form builders use actual working widgets, not just static pictures. So the widgets look the
same as they will in the final implementation (assuming you’re using a compatible form builder — a prototype
in Visual Basic may not look like a final implementation in Java).

Also, since form builders usually have an implementation language underneath them — which may even be the
same implementation language that you’ll eventually use for your final interface -- you can also hook in as
much or as little backend as you want.

On the down side, form builders give you a fixed palette of standard widgets, which limits your creativity as a
designer, and which makes form builders far less useful for prototyping rich graphical interfaces, e.g., a circuit-
drawing editor. Form builders are great for the menus and widgets that surround a graphical interface, but
can’t simulate the “insides™ of the application window.

36

Wizard of Oz Prototype

Software simulation with a human in the loop
to help

“Wizard of Oz" = “man behind the curtain”
— Wizard is usually but not always hidden

Often used to simulate future technology

— Speech recognition

— Learning

Issues

— Two Uls to worry about: user’s and wizard's

— Wizard has to be mechanical

L]

Spring 2012 6.813/6.831 User Interface Design and Implementation 37

Part of the power of paper prototypes is the depth you can achieve by having a human simulate the backend.
A Wizard of Oz prototype also uses a human in the backend, but the frontend is an actual computer system
instead of a paper mockup. The term Wizard of Oz comes from the movie of the same name, in which the
wizard was a man hiding behind a curtain, controlling a massive and impressive display.

In a Wizard of Oz prototype, the “wizard” is usually but not always hidden from the user. Wizard of Oz
prototypes are often used to simulate future technology that isn’t available yet, particularly artificial
intelligence. A famous example was the listening typewriter (Gould, Conti, & Hovanyecz, “Composing letters
with a simulated listening typewriter,” CACM v26 n4, April 1983). This study sought to compare the
effectiveness and acceptability of isolated-word speech recognition, which was the state of the art in the early
80’s, with continuous speech recognition, which wasn’t possible yet. The interface was a speech-operated text
editor. Users looked at a screen and dictated into a microphone, which was connected to a typist (the wizard)
in another room. Using a keyboard, the wizard operated the editor showing on the user’s screen.

The wizard’s skill was critical in this experiment. She could type 80 wpm, she practiced with the simulation
for several weeks (with some iterative design on the simulator to improve her interface), and she was careful to
type exactly what the user said, even exclamations and parenthetical comments or asides. The computer
helped make her responses a more accurate simulation of computer speech recognition. It looked up every
word she typed in a fixed dictionary, and any words that were not present were replaced with X’s, to simulate
misrecognition. Furthermore, in order to simulate the computer’s ignorance of context, homophones were
replaced with the most common spelling, so “done” replaced “dun”, and “in” replaced “inn”. The result was an
extremely effective illusion. Most users were surprised when told (midway through the experiment) that a
human was listening to them and doing the typing.

Thinking and acting mechanically is harder for a wizard than it is for a paper prototype simulator, because the
tasks for which Wizard of Oz testing is used tend to be more “intelligent”. It helps if the wizard is personally
familiar with the capabilities of similar interfaces, so that a realistic simulation can be provided. (See Maulsby
et al, “Prototyping an intelligent agent through Wizard of Oz”, CHI 1993.) It also helps if the wizard’s
interface can intentionally dumb down the responses, as was done in the Gould study.

A key challenge in designing a Wizard of Oz prototype is that you actually have two interfaces to worry about:
the user’s interface, which is presumably the one you’re testing, and the wizard’s.

37

Summary

 Prototype fidelity
— Depth, breadth, look, feel
« Kinds of prototypes
— Paper
— Computer: storyboard, forms
— Wizard of Oz
« Don't get attached to a prototype
— Because it may need to be thrown away

Spring 2012 6.813/6.831 User Interface Design and Implementation 38

38

LID LIZ Yo
o ero*\l/t
£ i 1 b el

M éfeehaj o

Polo ot e~ ¢l mm@
Vel 0detag sym drT)
Unalefsao(da 1 VVMJM@ l\? P

U&] (s DUfW"y

hD (’\(pl 2 UM

(ouw/ ﬂ‘v -h‘L M@

eaning vt g = oy Tell Don ket 4 4
(onplor Logy Wl h

Mjfﬂﬁ — Vs hae moe fie Thid

W‘t%a/é '0€ _/OE' ’(fonlr Q/d L"; a COMP/JL?/
! LSo 001{45 (13)771

W ond o 4 hmeq
hgh fidohly o d

0 .
% / Uﬁ(’f TL%T@

Efi s

Bl tabghi

Foitle. gl - 6,4 sitns
(\/&"HL Jro &Lﬁcover 1’100& Us/'bz’/;}t; /9/05//@

C?ﬁfong(l. Q}ﬂ()") a&ﬁ Tlom 7(0 té]ta,&&ks ({/) Vour [aQ

—

b ,
- }'\umdr\' 6/10;80{3 thel o bﬂ PQZL
(/h“’ dies hlt) /6{@\% % UP)

= Non infomyg (nent
'ﬁéﬂfﬁ\m/\

"\l&- aﬁaq/“f GIHﬂMZé

“bt cales ohicaly |l of sty
Tty o Mliey 01 pypolentns

Q

M (B@lmofnt R{?pml)
Q@M for P09
- Vil
= aforgd gt
~ Podelon of yulele patuipmb
BPV\E,\UUWC@
do o hon
~ ok ve beaftt
Justieo
~tar Stlethn of oy y

— & mostly pgdlil
= Tl i é’ale 4 d/u

o
(\%‘W@é at all £ el)7 fond 2

PWM% f)fmf¢[i%¢b)a Llnau/czgc&“ﬁ

_{W'} R Pfa)g(,fb

Uy Gl (OB Us8

0

p/ QYA W q U% 4
e—

’peffo/mqncg amfél/
~fagls et sl
= Conpuing 4 [f W/ Ohe ¢ iiect
~ iy mght {ep] 5ld
"(qupﬁﬂnﬂ W st el
/- Don]vl @mb 50MO I /MJML/
). Didn) Say oyl W g)ﬁ/&z qam

Lq Nw (I
3, W Pl OArgory w} f'tgLnL 0[0/%(")
Y, Don ¥ e hosy g Obse, ber
S POkt eyt O Dot

e Do /avgh Gt L

—doat sl
“ff\[et lebre

Cﬁﬁxﬁ)/?L
’Obuﬂw hdm }jo go }0 M

|
@(W ‘
\@, = HOJ[‘h(/&t r b495 TaN /ﬂbn’)

C@M
~m &OP Wl Ay g

C r
J vy 'hll/t@s 70;/ (dn ({0 ™ ﬁe Slt]d,f?/(

*})lw hﬁ 5%1‘%(4#11(V1%
) T Pey @ loae
~ o acr oo GMPHM,

Aj%i d@brl@)c ~hat v oyl
*@%W@f 'h_@(” C{/U

©

Reag) T leceplion
)BTS\L PM\%M to e w}o}@o/ uugiﬂ

Lomalive Fl

\1 jZ m/tl, V) }
~[0precentie i
’Z [P B M Can QEVWQ “\// Coqvl)f’rzc@ L& s
g 6/\/@ h,g,(u

3o Vil by vies & B, Lol
@m@

" U

Fap\l‘lbllé)f
Ohstr

Vst s e

Olold ik glad

ot s m‘{w il lohalor
“ 00 P of s
=00 elospeclg

’”/Qvliﬂw Utﬁﬂm
- Gk o fnmm{/}e Pla7 by /))a/

0
Ob@@fﬂ/
V\Cﬂfb Jfﬂ 6M W —m }\6'?;

0[LQ I ﬁb@fb’ l My m)/m/ (0w m
)ﬁbl\@ hOh‘d - \Mclda/\ing Sy e85

Do o o faollebr i he o

Notodvy
\/&QP”\ Nl € D AL

\/Heo ~ ool b rowahh

L12: User Testing

Spring 2012

GR2 due Sun
GR3 out Mon, due next Sun
PS2/RS2 out Mon, due at end of spring break
Next week:
+ lectures for 6.831 G (optional for 6.813 U)
» M 3-5 pm paper prototype building (Walker)
+ WF 3-5 pm prototype testing & RS2 testing (Walker)

6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?
Enter a Card ireetlng [Ty v‘
Message ipe e i)
Click to select .
There is a 210 character limit To i ‘Yom_Kippur
for your message due to the i Sweetest_Day
size of the card. Note: please l53]*.'.\:!.|i'1_H|:-IS*I'ianel -
do notuse any special other_In_Laws_Day
symbols like "&". Mes3nge E Labor_Day
| ‘ Grandparants_Day
§ 'Bosss_Day
Ata loss for words? We can From sl :Thank You
help you exprass your E{ i Others
sentiments. Click here 1 view 210 oharacter maximum | ANNIVEISary
Maternity
. Holiday
| Businass Gifts
i Birtthday
liness/Gat_Well
Suggested by Ryan Damico
Spring 2010 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the Hall of Shame is this entry form from the 1800Flowers web site. The purpose of the
form is to enter a message for a greeting card that will accompany a delivered flower arrangement. (So you
can see the whole interface, I've moved the Greeting Type drop-down menu to the right. In the real interface,
it appears where you’d expect, right under the Greeting Type drop-down box.)

The 210 character limit is probably necessary for backend reasons (e.g. size of the card delivered with the
flowers), but hard for a user to check. Suggest a dynamic progress bar showing how much of the quota you’ve
used. (error prevention, flexibility & efficiency)

Special symbols like & is vague. What about asterisk and hyphen — are those special too? What am I allowed
to use, exactly? (user control & freedom)

The underscores in the Greeting Type drop-down menu look like technical identifiers, and some even look
mispelled because they’ve omitted other punctuation. Bosss_Day? (match the real world)

How does Greeting Type actually affect the card? (visibility) This is related to a Hall of Fame we had a little
while ago: the Domino’s pizza ordering site does a much better job of showing you how your choices actually
affect the final product.

Today’s Topics

« User testing
« Ethics
» Formative evaluation

Spring 2010 6.813/6.831 User Interface Design and Implementation 5

In this lecture, we’ll talk about user testing: putting an interface in front of real users. There are several kinds
of user testing, but all of them by definition involve human beings, who are thinking, breathing individuals
with rights and feelings. When we enlist the assistance of real people in interface testing, we take on some
special responsibilities. So first we’ll talk about the ethies of user testing, which apply regardless of what kind
of user test you’re doing.

The rest of the lecture will focus on one particular kind of user test: formative evaluation, which is a user test
performed during iterative design with the goal of finding usability problems to fix on the next design iteration.

Kinds of User Testis

+ Formative evaluation
— Find problems for next iteration of design
— Evaluates prototype or implementation, in lab, on chosen tasks
— Qualitative observations (usability problems)
» Field study
— Find problems in context
— Evaluates working implementation, in real context, on real tasks
~ Mostly qualitative observations
+ Controlled experiment
— Tests a hypothesis (e.g., interface X is faster than interface Y)

— Evaluates working implementation, in controlled lab environment,
on chosen tasks

- Mostly quantitative observations (time, error rate, satisfaction)

Spring 2010 6.813/6.831 User Interface Design and Implementation 6

Here are three common kinds of user tests.

You’ll be doing formative evaluations with the prototypes you build in this class. The purpose of formative
evaluation is finding usability problems in order to fix them in the next design iteration. Formative evaluation
doesn’t need a full working implementation, but can be done on a variety of prototypes. This kind of user test
is usually done in an environment that’s under your control, like an office or a usability lab. You also choose
the tasks given to users, which are generally realistic (drawn from task analysis, which is based on observation)
but nevertheless fake. The results of formative evaluation are largely qualitative observations, usually a list
of usability problems.

A key problem with formative evaluation is that you have to control too much. Running a test in a lab
environment on tasks of your invention may not tell you enough about how well your interface will work in a
real context on real tasks. A field study can answer these questions, by actually deploying a working
implementation to real users, and then going out to the users’ real environment and observing how they use it.
We won’t say much about ficld studies in this class.

A third kind of user test is a controlled experiment, whose goal is to test a quantifiable hypothesis about one
or more interfaces. Controlled experiments happen under carefully controlled conditions using carefully-
designed tasks — often more carefully chosen than formative evaluation tasks. Hypotheses can only be tested
by quantitative measurements of usability, like time elapsed, number of errors, or subjective ratings. We’ll talk
about controlled experiments in a future lecture.

Ethics of User Testing

» Users are human beings
— Human subjects have been seriously abused in
the past
+ Nazi concentration camps
+ Tuskegee syphilis study
= MIT Fernald School study
= Yale electric shock study
— Research involving user testing is now subject to
close scrutiny

= MIT Committee on Use of Humans as Experimental
Subjects (COUHES) must approve research-related user
studies

Spring 2010 6.813/6.831 User Interface Design and Implementation T

Let’s start by talking about some issues that are relevant to all kinds of user testing: ethics. Human subjects
have been horribly abused in the name of science over the past century. Here are some of the most egregious
cases:

In Nazi concentration camps (1940-1945), doctors used prisoners of war, political prisoners, and Jews as
human guinea pigs for horrific experiments. Some experiments tested the limits of human endurance in
extreme cold, low pressures, or exposure. Other experiments intentionally infected people with massive doses
of pathogens, such as typhus; others tested new chemical weapons or new medical procedures. Thousands of
people were killed by these experiments; they were criminal, on a massive scale.

In the Tuskegee Institute syphilis study (1932-1972), the US government studied the effects of untreated
syphilis in black men in the rural South. In exchange for their participation in the study, the men were given
free health examinations. But they weren’t told that they had syphilis, or that the disease was potentially fatal.
Nor were they given treatment for the disease, even as proven, effective treatments like penicillin became
available. Out of 339 men studied, 28 died directly of syphilis, 100 of related complications. 40 wives were
infected, and 19 children were born with congenital syphilis.

In the 1940s and 1950s, MIT researchers cooperated with the Fernald School for mentally disabled children in
Waverly, Massachusetts to gave radioactive isotopes to some of the children in their milk and cereal, to study
how the isotopes were taken up by the body. Permission letters were obtained from their parents, but neither
parents nor children were warned that radioactive materials were being used.

In the 1950s, a famous study done at Yale told subjects to give painful electric shocks to another person. The
shocks weren’t real, and the person they were shocking was just an actor. But subjects weren’t told that fact in
advance, and many subjects were genuinely traumatized by the experience: sweating, trembling, stuttering.

These cases have led to several reforms. The Nazi-era experiments led to the Nuremberg Code, an international
agreement on the rights of human subjects. The Tuskegee study drove the US government to take steps to
ensure that all federally-funded institutions follow ethical practices in their use of human subjects. In
particular, every experiment involving human subjects must be reviewed and approved by an ethics committee,
usually called an institutional review board. MIT’s review board is called COUHES.

Pressures on a User

Performance anxiety

Feels like an intelligence test

« Comparing self with other subjects
Feeling stupid in front of observers
Competing with other subjects

°

Spring 2010 6.813/6.831 User Interface Design and Implementation B

Experiments involving medical treatments or electric shocks are one thing. But what’s so dangerous about a
computer interface?

Hopefully, nothing — most user testing has minimal physical or psychological risk to the user. But user testing
does put psychological pressure on the user. The user sits in the spotlight, asked to perform unfamiliar tasks on
an unfamiliar (and possibly bad!) interface, in front of an audience of strangers (at least one experimenter,
possibly a roomful of observers, and possibly a video camera). It’s natural to feel some performance anxiety,
or stage fright. “Am I doing it right? Do these people think I’'m dumb for not getting it?” A user may regard
the test as a psychology test, or more to the point, an IQ test. They may be worried about getting a bad score.
Their self-esteem may suffer, particularly if they blame problems they have on themselves, rather than on the
user interface.

A programmer with an ironclad ego may scoff at such concerns, but these pressures are real. Jared Spool, a
usability consultant, tells a story about the time he saw a user cry during a user test. It came about from an
accumulation of mistakes on the part of the experimenters:

1. the originally-scheduled user didn’t show up, so they just pulled an employee out of the hallway to do the
test;

2. it happened to be her first day on the job;

3. they didn’t tell her what the session was about;

4. she not only knew nothing about the interface to be tested (which is fine and good), but also nothing about
the domain — she wasn’t in the target user population at all;

5. the observers in the room hadn’t been told how to behave (i.e., shut up);

6. one of those observers was her boss;

7. the tasks hadn’t been pilot tested, and the first one was actually impossible.

When she started struggling with the first task, everybody in the room realized how stupid the task was, and
burst out laughing — at their own stupidity, not hers. But she thought they were laughing at her, and she burst
into tears. (story from Carolyn Snyder, Paper Prototyping)

A Case Study of Ethics in User Studies

Spring 2010 6.813/6.831 User Interface Design and Implementation 9

See Venkman, P. “The Effect of Negative Reinforcement on ESP Ability.” Unpublished monograph, 1984.

Treat the User With Respect

Time

— Don‘t waste it

Comfort

— Make the user comfortable
Informed consent

— Inform the user as fully as possible
Privacy

— Preserve the user’s privacy
Control

— The user can stop at any time

*

*

Spring 2010 6.813/6.831 User Interface Design and Implementation 10

The basic rule for user testing ethics is respect for the user as a intelligent person with free will and feelings.

We can show respect for the user in 5 ways:

Respecting their time by not wasting it. Prepare as much as you can in advance, and don’t make the user
jump through hoops that you aren’t actually testing. Don’t make them install the software or load the test
files, for example, unless your test is supposed to measure the usability of the installation process or file-

loading process.

Do everything you can to make the user comfortable, in order to offset the psychological pressures of a
user test.

Give the user as much information about the test as they need or want to know, as long as the information
doesn’t bias the test. Don’t hide things from them unnecessarily.

Preserve the user’s privacy to the maximum degree. Don’t report their performance on the user test in a
way that allows the user to be personally identified.

The user is always in control, not in the sense that they’re running the user test and deciding what to do
next, but in the sense that the final decision of whether or not to participate remains theirs, throughout the
experiment. Just because they’ve signed a consent form, or sat down in the room with you, doesn’t mean
that they’ve committed to the entire test. A user has the right to give up the test and leave at any time, no
matter how inconvenient it may be for you.

10

Before a Test

* Time
— Pilot-test all materials and tasks
» Comfort
- "We're testing the system; we're not testing you.”

- "Any difficulties you encounter are the system’s fault. We
need your help to find these problems.”

* Privacy
— “Your test results will be completely confidential.”
Information
— Brief about purpose of study
— Inform about audiotaping, videotaping, other observers
— Answer any questions beforehand (unless biasing)
» Control
- "“You can stop at any time.”

Spring 2010 6.813/6.831 User Interface Design and Implementation 1

Let’s look at what you should do before, during, and after a user test to ensure that you’re treating users with
respect.

Long before your first user shows up, you should pilot-test your entire test: all questionnaires, briefings,
tutorials, and tasks. Pilot testing means you get a few people (usually your colleagues) to act as users in a full-
dress rehearsal of the user test. Pilot testing is essential for simplifying and working the bugs out of your test
materials and procedures. It gives you a chance to eliminate wasted time, streamline parts of the test, fix
confusing briefings or training materials, and discover impossible or pointless tasks. It also gives you a chance
to practice your role as an experimenter. Pilot testing is essential for every user test.

When a user shows up, you should brief them first, introducing the purpose of the application and the purpose
of the test. To make the user comfortable, you should also say the following things (in some form):

+“Keep in mind that we’re testing the computer system. We’re not testing you.” (comfort)

+“The system is likely to have problems in it that make it hard to use. We need your help to find those
problems.” (comfort)

*“Your test results will be completely confidential.” (privacy)
*“You can stop the test and leave at any time.” (control)

You should also inform the user if the test will be audiotaped, videotaped, or watched by hidden observers.
Any observers actually present in the room should be introduced to the user.

At the end of the briefing, you should ask “Do you have any questions I can answer before we begin?” Try to
answer any questions the user has. Sometimes a user will ask a question that may bias the experiment: for
example, “what does that button do?” You should explain why you can’t answer that question, and promise to
answer it after the test is over.

11

During the Test

+ Time

— Eliminate unnecessary tasks
« Comfort

— Calm, relaxed atmosphere

— Take breaks in long session

— Never act disappointed

—~ Give tasks one at a time

— First task should be easy, for an early success experience
* Privacy

— User’s boss shouldn‘t be watching
» Information

— Answer questions (again, where they won't bias)
» Control

— User can give up a task and go on to the next

— User can quit entirely

Spring 2010 6.813/6.831 User Interface Design and Implementation 12

During the test, arrange the testing environment to make the user comfortable. Keep the atmosphere calm,
relaxed, and free of distractions. If the testing session is long, give the user bathroom, water, or coffee breaks,
or just a chance to stand up and stretch.

Don’t act disappointed when the user runs into difficulty, because the user will feel it as disappointment in their
performance, not in the user interface.

Don’t overwhelm the user with work. Give them only one task at a time. Ideally, the first task should be an
easy warmup task, to give the user an early success experience. That will bolster their courage (and yours) to
get them through the harder tasks that will discover more usability problems.

Answer the user’s questions as long as they don’t bias the test.

Keep the user in control. If they get tired of a task, let them give up on it and go on to another. If they want to
quit the test, pay them and let them go.

12

After the Test

« Comfort
— Say what they've helped you do
* Information

— Answer questions that you had to defer to avoid
biasing the experiment

» Privacy
— Don't publish user-identifying information

— Don’t show video or audio without user’s
permission

Spring 2010 6.813/6.831 User Interface Design and Implementation 13

After the test is over, thank the user for their help and tell them how they’ve helped. It’s easy to be open with
information at this point, so do so.

Later, if you disseminate data from the user test, don’t publish it in a way that allows users to be individually
identified. Certainly, avoid using their names.

If you collected video or audio records of the user test, don’t show them outside your development group
without explicit written permission from the user.

Formative Evaluation

* Find some users

— Should be representative of the target user class
(es), based on user analysis

« Give each user some tasks

— Should be representative of important tasks,
based on task analysis

= Watch user do the tasks

Spring 2010 6.813/6.831 User Interface Design and Implementation 14

OK, we’ve seen some ethical rules that apply to running any kind of user test. Now let’s look in particular at
how to do formative evaluation.

Here are the basic steps: (1) find some representative users; (2) give each user some representative tasks; and
(3) watch the user do the tasks.

14

Roles in Formative Evaluation

« User
» Facilitator
« Observers

Spring 2010 6.813/6.831 User Interface Design and Implementation 15

There are three roles in a formative evaluation test: a user, a facilitator, and some observers.

15

User’s Role

» User should think aloud
— What they think is happening
— What they're trying to do
— Why they took an action
* Problems
— Feels weird
— Thinking aloud may alter behavior
— Disrupts concentration
» Another approach: pairs of users

— Two users working together are more likely to
converse naturally

— Also called co-discovery, constructive interaction

Spring 2010 6.813/6.831 User Interface Design and Implementation 16

The user’s primary role is to perform the tasks using the interface. While the user is actually doing this,
however, they should also be trying to think aloud: verbalizing what they’re thinking as they use the interface.
Encourage the user to say things like “OK, now I’'m looking for the place to set the font size, usually it’s on the
toolbar, nope, hmm, maybe the Format menu...” Thinking aloud gives you (the observer) a window into their
thought processes, so you can understand what they’re trying to do and what they expect.

Unfortunately, thinking aloud feels strange for most people. It can alter the user’s behavior, making the user
more deliberate and careful, and sometimes disrupting their concentration. Conversely, when a task gets hard
and the user gets absorbed in it, they may go mute, forgetting to think aloud. One of the facilitator’s roles is to
prod the user into thinking aloud.

One solution to the problems of think-aloud is constructive interaction, in which two users work on the tasks
together (using a single computer). Two users are more likely to converse naturally with each other,
explaining how they think it works and what they’re thinking about trying. Constructive interaction requires
twice as many users, however, and may be adversely affected by social dynamics (e.g., a pushy user who hogs
the keyboard). But it’s nearly as commonly used in industry as single-user testing.

16

Facilitator’s Role

Does the briefing

Provides the tasks

Coaches the user to think aloud by asking
questions

- “What are you thinking?”

- “Why did you try that?”

Controls the session and prevents
interruptions by observers

Spring 2010 6.813/6.831 User Interface Design and Implementation 17

The facilitator (also called the experimenter) is the leader of the user test. The facilitator does the briefing,
gives tasks to the user, and generally serves as the voice of the development team throughout the test. (Other
developers may be observing the test, but should generally keep their mouths shut.)

One of the facilitator’s key jobs is to coax the user to think aloud, usually by asking general questions.

The facilitator may also move the session along. If the user is totally stuck on a task, the facilitator may
progressively provide more help, e.g. “Do you see anything that might help you?”, and then “What do you
think that button does?” Only do this if you’ve already recorded the usability problem, and it seems unlikely
that the user will get out of the tar pit themselves, and they need to get unstuck in order to get on to another
part of the task that you want to test. Keep in mind that once you explain something, you lose the chance to
find out what the user would have done by themselves.

17

Observer’s Role

* Be quiet!
— Don't help, don't explain, don't point out mistakes
— Sit on your hands if it helps

+ Take notes

— Watch for critical incidents: events that strongly
affect task performance or satisfaction
— Usually negative
« Errors
+ Repeated attempts
» Curses
— May be positive
s "Cool!”
¢ “Oh, now | see.”

Spring 2010 6.813/6.831 User Interface Design and Implementation 18

While the user is thinking aloud, and the facilitator is coaching the think-aloud, any observers in the room
should be doing the opposite: keeping quiet. Don’t offer any help, don’t attempt to explain the interface. Just
sit on your hands, bite your tongue, and watch. You’re trying to get a glimpse of how a typical user will
interact with the interface. Since a typical user won’t have the system’s designer sitting next to them, you have
to minimize your effect on the situation. It may be very hard for you to sit and watch someone struggle with a
task, when the solution seems so obvious to you, but that’s how you learn the usability problems in your
interface.

Keep yourself busy by taking a lot of notes. What should you take notes about? As much as you can, but focus
particularly on eritical incidents, which are moments that strongly affect usability, either in task performance
(efficiency or error rate) or in the user’s satisfaction. Most critical incidents are negative. Pressing the wrong
button is a critical incident. So is repeatedly trying the same feature to accomplish a task. Users may draw
attention to the critical incidents with their think-aloud, with comments like “why did it do that?” or “@%!@#
$!” Critical incidents can also be positive, of course. You should note down these pleasant surprises too.

Critical incidents give you a list of potential usability problems that you should focus on in the next round of
iterative design.

18

Example: Think Aloud

Spring 2010 6.813/6.831 User Interface Design and Implementation 19

Let’s practice observing a user test, listening to think-aloud, and watching for critical incidents. This isn’t
really a user test — it’s even better, it’s a user interacting naturally in the wild! Watch this video of somebody
using a NYC subway fare machine:

http://www.youtube.com/watch?v=mfCQbZR-nhk

Why is the user thinking aloud? Did you note any critical incidents?

Example: Watching for Critical Incidents

Spring 2010 6.813/6.831 User Interface Design and Implementation

Now here’s one from the DC Metro:
http://www.youtube.com/watch?v=7TOsJCA7DHw

Note the critical incidents with their timepoints, and we’ll talk about them.

20

Recording Observations

= Pen & paper notes

— Prepared forms can help
* Audio recording

— For think-aloud
+ Video recording

— Usability labs often set up with two cameras, one for user’s
face, one for screen

User may be self-conscious
Good for closed-circuit view by observers in another room
Generates too much data
Retrospective testing: go back through the video with the
user, discussing critical incidents
« Screen capture & event logging

— Cheap and unobtrusive

— Camtasia, CamStudio

Spring 2010 6.813/6.831 User Interface Design and Implementation 21

Here are various ways you can record observations from a user test. Paper notes are usually best, although it
may be hard to keep up. Having multiple observers taking notes helps.

Audio and video recording are good for capturing the user’s think-aloud, facial expressions, and body
language. Video is also helpful when you want to put observers in a separate room, watching on a closed-
circuit TV. Putting the observers in a separate room has some advantages: the user feels fewer eyes on them
(although the video camera is another eye that can make users more self-conscious, since it’s making a
permanent record), the observers can’t misbehave, and a big TV screen means more observers can watch. On
the other hand, when the observers are in a separate room, they may not pay close attention to the test. It’s
happened that as soon as the user finds a usability problem, the observers start talking about how to fix that
problem — and ignore the rest of the test. Having observers in the same room as the test forces them to keep
quiet and pay attention.

Video is also useful for retrospective testing — using the videotape to debrief the user immediately after a test.
It’s easy to fast forward through the tape, stop at critical incidents, and ask the user what they were thinking, to
make up for gaps in think-aloud.

The problem with audio and video tape is that it generates too much data to review afterwards. A few pages of
notes are much easier to scan and derive usability problems.

Screen capture software offers a cheap and easy way to record a user test, producing a digital movie (e.g. AVI
or MPG). It’s less obtrusive and easier to set up than a video camera, and some packages can also record an
audio stream to capture the user’s think-aloud. The course wiki has a page with recommendations for screen
capture software.

21

Summary

» Formative user testing tries to uncover
usability problems to fix in next iteration

« Treat users with respect

« Facilitor and observers should play their roles
correctly to maximize the value of the test

Spring 2010 6.813/6.831 User Interface Design and Implementation 22

22

URZI Designs ~ap:/lcourses.csail. mit.edu/6.831/2012/handouts/gr2-designs/gr2.shtml

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION

Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

GR2: DESIGNS

Due at 11:59 pm on Sunday, March 11, 2012, by updating your group’s wiki page. . é

In this group assignment, you will start designing your term project.

Designs

Scenario. Write a scenario that involves all three of the tasks you identified in GR1. Where your task descriptions in task analysis
were abstract, your scenario should be concrete, complete with imaginary users' names and imaginary details.

Storyboard designs. Generate three different preliminary designs for your user interface. Explain each design and include a
storyboard showing how it works for your scenario. The storyboard should combine words with sketches showing how the interface
would look over the course of the scenario. After the storyboard, you should have an analysis that considers the design's good and
bad points for learnability, efficiency, and safety.

Your designs will be judged on how well you've described them, how well you analyze them, and how diverse they are. Three
designs that differ only in small ways will not receive much credit.

Take time to brainstorm a variety of different interface designs, sketching them by hand on paper or a whiteboard. You should play
with many more than three designs, but we only require you to record three on your wiki page.

When you draw your sketches, don't get bogged down in details like wording, graphical appearance, or layout. Keep things simple.
Focus on the conceptual model you're trying to communicate to the user, and think about your task analysis: what the user needs
to do and how they can do it. Putting too much time into designing low-level details is pointless if big things have to change on the
next design iteration.

Hand-drawn sketches are preferred. There are a number of ways to get hand-drawn sketches into your wiki page. You can draw
on paper and use a scanner to convert it to electronic form. There are scanners located around campus; the Scanners page on the
wiki lists the ones we know about; add more if you know of any. Make sure your sketches are readable, and crop them and size
them appropriately so that your wiki presentation has good usability.

What to Hand In

Update your group's wiki page so that it contains a section GR2 Designs, with subsections for:

® Scenario
® Designs

Put your GR2 as a new page on the wiki, with a link to it from your main project page.

We will grade the version that exists at the moment of the deadline.

1 of 1 2/24/2012 11:01 PM

(315 R ‘%o

/\’_’/

Ganatio ~ohat o uadly T Tl o shy-b ey dhy!

gll&@l gmpH hocl ity 7 \[/@]Ut(q,{ Cotuge
beeuy d(pty

\ " 7 ‘SulO l@é@/‘
Oﬁdd@ L vide o el

ECU/Ll qé Vo ({faﬁL 3@&66(@% .Eo[h(3[)6{@(/}

Scenarios - 6.813/6.831 User Interface Design - MIT Wiki Service hitps://wikis.mit.edw/confluence/display/6DOT813sp12/Scenarios

1 of 1

I'llr Scenarios

Added by Michael Plasmeier, last edited by Michael Plasmeier on Mar 10, 2012 13:58

Poster Creator: Create a Poster

Alice is an administrative assistant in the EECS department at MIT. Alice is in charge of running department
events, including the distinguished lecture series. Alice is currently designing a poster for a talk by noted Ul
researcher, Bob, in 2 weeks. Alice wants people to see the poster and attend the event. In addition, Alice would
like to know know how many people are planning to attend, in order to order food for the event. Currently
estimating is@@inexact science because Alice does not know how popular the event will be.

Alice is designing the poster for the event in the program she always uses for designing posters, Adobe Publisher.
Alice just heard about a new service, RScanVP. RScanVP allows Alice to put a QR code on her posters to make
it easy for people to add the event to her calendar and give Alice statistics on how many people added the event
to their calendars. Alice goes to RScanVP.com. She then clicks on "Create a QR code." She enters the title of
the event, the location, as well as the start and end times of the event. Alice then hits save, and a QR code is
generated. Alice can change the color of the QR code to match the design of her poster. Alice then downloads
the QR code as a PNG file and imports it into Adobe Publisher. Alice also receives an email with a link to edit the
QR code in the future, as well as a website where she or a colleague can see how many people RSVPed to the
event. Alice then prints 100 copies of the poster and posts it around MIT.

Poster Viewer: Add event to calendar

Charlie is a student in EECS at MIT. He is walking down the hall when a poster catches his eye. It's an
advertisement for a talk given by a Ul Researcher named Bob next week. Charlie is intrigued; he is interested in
Bob's work. Charlie whips out his Android to add the event to his calendar. Charlie notices the QR code on the
poster has the label "Add this event to your calendar." Charlie was going to enter all the details manually, but he
thinks the QR code might be faster. Charlie launches his Barcode Scanner app and takes a picture of the QR
code. Charlie is then brought to a mobile page on RScanVP.com. He clicks a button to add the event to his
calendar. The link opens up his phone's Calendar app and adds the event to his calendar.

View RSPVs

A day before the event, Alice needs to place an order for food. She goes back in her email and finds the link from
RScanVP.com. She opens the link and sees that 50 people have added the event to her calendar. She knows that
not everyone used RScanVP and that some people who added the event to their calendars might not attend, so
Alice decides to order food for 75 people. Alice is happy because she previously had no clue how popular the
event would be.

Get Help Resources

User Guide Training Terms of Service Stellar
Confluence Help Contact the Help Desk Supported Browsers WebSIS
Knowledge Base Request a Wiki Space MIT Touchstone

3/10/2012 1:59 PM

dgan

mﬂJﬁL h Hp& o ot

—\f tﬁ\‘oﬂ of aany

loc | M@

pe

] @OQ{U (th/\d()/

— €l

~R5

— (g1
)

S—

(ls
) a7 Bed D
v{_ ﬂ
%\fqh\\]\u DCWJ

?:\\
éCf'omaq) W\‘%@J\ ‘}9 v:()w Oual>
R@W\M\X e ya 9lt(ﬂ\‘//g OWLC@ 5 ‘lf’

&& G locatloy

RSeanVP

Mo ke \our (005 #ers

with oo Scananlle

Eéﬁﬂﬂh;(%w"’Bh“’“ff”U‘)

TLA‘ i e
Sb Cio ‘

/\]4 ‘f*wm }(

RS up

¢ /r'c (<6Lu€

Q{Q LCJJ‘(—

B /&ﬁw —\\—C’;‘gﬁ | 3__@—@—

12012.

BEQ

whas" 2062 ees
wheee' Kre.s’g,e Lawm
When @ 3/17 Meon

Scon te RSVP

&

or ema:
————

o ren@ m-'tduj

T ——————
e ——— e

C (C‘LC ac«zl‘f lﬁ‘m

//______ S

/VZOL }‘ﬁ. A
QRR (Je

——

S'Frffcxj
T_lqeof[
Lectuce
3//3 ;;00-2130\
=270

esve EER

S\I—tﬁo {' @'woose_ on evem"l'..ﬂ

= > I

/[/(akﬂ O Q 0Q CoJe Lo core 1
/jowi Everl |
\ /‘Aouf'eh

;C)H\cr

Stp ¢ RsvP Rev;f{f Yec T AN, U
D ate

p/ac-&. l J
[[me Z’Q\JUOPM[}

5/{/03'. /40(01 ‘t‘> Ca/-t’m,JPr]

lect B
S;pp_ En"ﬁ\lll USer me.'./li((' Lj

Cr’{th /Ohoﬂe fflﬂ"rlﬂﬂlir ng‘

Sle, 4.
r
(Cftq#l‘_ QQ Cbo’l‘e

H; U_Se(.l

\/}(W I/\)gUP)S (C/n'c(< on (uen‘D

(ET;“’- SGC[C{] /U-(_‘Lwo-r k“ /Mow'c,
Bl 2012 BBQ- Fod Event ool
below.

C i ke 7 an eueﬂ")‘
'l"ls‘, r/!Cb

@iu ff_f“ "(7 ﬁ‘<0¢/' Lcc‘LUre - L_ef—""u‘fe-
Qreach /[/Cw @,Q Co.ie ‘J

E‘Jc‘ﬂ"}: T}\L SDCr'a’ /Uf_‘lt\NCJrk"MG iy €
Wenber ot psufs [83]

R L_;‘f‘ o fwmtts

/VDMé{!’ O'p \gcans', ll’&q} l
c,]a'c,L Qur Ir's"L o‘p (wu['}f c lr.
Sea
. LO? 7';/” 0@- Sczms

DaLﬁ + _Jr-c ang E'qup,

-St.am

CET <ot

: r

& _ w
/ g N

/]
/];;l /A// o | 1apmzbm 4”6 O 15 e 2 H C 8 5
§ ¥ 7 T L3
I ime

Gl
3/z0 3/2' 3/2; 3/13

L ouﬁhon r_'n'{' Sccm&

/‘Am{‘ ;popu)or,'
D) Infi‘a;'Lt He HW
2 f»oL!’y 7
) Lobhky (0
,_‘) 5‘,L‘,,0LM?— C\en’ff

d Bdi/ﬂl? SP

Qgécm \/]O .y altendes Nose page

S e T
'(\-9 m\tr C&[Eﬂdf/)

— G‘L‘/ﬁ/p oV d M{‘ 24 QHMJ%

No Sv (1

&Q\é@“

-

- PG s
@mai/% ,,QS? an m@i

§ Bobs UT Ledve

Man [l (OAR- I

Uudb by io b

ﬁwz?m ?%&r& T

e . (el a0 Bt

Cyer (aabed!
A [k his oo owarfed B You

\ i b
_,, %DE

t 0. RGYP,

xﬁ& %é\a& _\Q\N

EWe cald hge i}

Am.x La\r?\
It of g

fonal]

br 6,913

Il

e o%@

Raan |

Bob UT Tk |
-9
Ay, 310 1080 - Ay

Tlh k] | < lod
1S
A 0Py o %\gm

_. m%mW (dede ﬁ

—

RbcanP & Vi, oAPs

77 Qb
Mwo Ceuns

Do

b

S%\\a

/1

. - < ————

{- C A (len + é‘b
Prq \

\{}L b"?’ @0\ e
TN %’é/ﬁtlwcf' ’()U/f‘ n €A e

SRR

LSemgn (P

wen n‘s
\fw hag S ceffeps £

T (pae® a2
(io puet [ow
}79‘0 ’E;u(f\o-"e"* {
\(_u,l’\']' 16‘-*‘6—

BT

A o
\f H Q !7 lorcviwg guen Ty
ov |

—

N
4 21 1) g0

- —

attll’

s

B ses
5'7 3

Losdicn
=5
[N J

——

—
—

(;_5;./\\)?

- — ce l e WL A NP o
‘-—-—-—-'7

)ZSC'@]NVP

Q @ Codo ¢ feetr

| S

.

———

Wy Cictar

] ild N-;c f

vl =)
By} m m P lg o S‘Ehr.p il LTS gO\UC \
2¢| y 1y G

) Casten

é 703 L% iz

(Opﬂmwi 6&%'19’]) \IW{M (De“ﬂ']

ULt Fae [shn " Offe 2003 e
JLf\y;qj bomak e e ba
bot- chqaﬂ@ o5t
Gl oA hidde,
Or ffe Wil ”@L 5w
@(O“(%c[/ " ﬁlwdz
Uy leond e To g for ﬁq«mf M@

'

N0 Ny CW

(um Couh l“ﬂl@ M*}

Sy
Ohfrae

Un ahlusi

)
O \/\é\) Wpiggh AC

Chion t T
ey, Toe [d ting

(ool Bpiorst
|, Teshube hyp
VT Vonahly
3. Tease O@f L
Uk Gl Tes 4 (o1 //f’/{ﬁ’of

IW@@ JEP (/MM@
(0055 -—ﬁ
— ¥

LG L Vi
Unlisiom
Vaahles

¢
Y=t +¢

@A]/\/Q {/Wp@ 0 ¢ 'hZK/vg M (0({2((&7(6 W/ X 7[6’/@

m” e /g(m'ff
Pae /
Nidedvess !
Rpriee of (06

Hw ;/’rpfmmuf | ~
] i o Codl

Uy b gt SHE v dil nd P
&Mlh “‘MC %’(Lbb\g/f (

Mo oftn do o do Tahe
Ul cffen gt e Mv\ f)d«b’

Vs fh\éal\L b Qe in (te| it

JU\M ghart / stop ﬂml"lf\

(onoeis

/’inll(’m wl \/a)?d}}

- ae resvlg Casel b 7 '(’4([/W/(/fvb/eﬁ &
E}Jr@ma, | (& IZ d tlfy’ |
“(W\ (€SVH§ }DQ ﬂ,C’IQ(q,llVéec{ s barld Uﬂlmff —ﬁﬁ [al,?

R% l‘mb‘;m Y 2
~ ol VD\/QM'_ { @9'{(Gare /@5“% (

0

69, ufiloe —meas 55 s ib il fil

WWH‘* Chamle 1 sl’,éd

TAGE Fe Yoy

Vs i, Sane bot
Measie dmple of muchfy,

P

(omwm Db B Vi WY

. O(W}mg) Qﬂ@b
=¥ @P\f \‘an
=~ (qn \T‘ uhleam
(OVH (Mdm(?e older
I 49k cion UIC pﬁ(]Plg
~Male Ve w/ friead) (}“"""P" n)
MSQLM(\' qu&wgp

QP‘P({ m@/\h’/)WOS

_}/Ot/ Mn)r onL EO [4\/!4

——LW’CL fﬂ b a CLWMQ Mffﬂi

Y

BN D & Bt vt

POP\MFIM
_ Ugup/h? van PM MIT chdeaby

o &QVEMU Q/m 1{ HLL
Edbyel
- lub s lik an offie
e }))r :{ Qomﬁ;lqj {ilse (/nmb}k/ﬁvj

T/W\M\Mj‘ ‘

TOLSZW, g
~ Qoes 1} aflo foq] Tashs

—_—

~Sawe (oAl (oom, ok
Thd Gt corol ety Thiy
— Vs \Jary ‘OM’M ¥ palenct

o)a(ge JLHG@N{ ;n Vadr

— odw skt person Stops to L/dw hu'/mg'g,

P

Eplund Mol

V{)fmp’} '/mjr (Muf (6@({(J‘[(’
Uggfs M\(%}ﬂL P\LL{‘WQ [Mﬁ{'wd

Ztam My ha OVl s

Sty rabioy
— oftm @ ﬂopd Mflj to e for Ay

B }QS‘LcA o{ Meqas

e fehls

- Showg (o ?L/d)f,y
5 ww (m ('f[ﬂl‘cLa, H
A {qmqDZe fs Jode)ik prupvufém il /Q/je,

B(’)Ll/“een 5\/’0&@@‘5 V5 W}WA év@‘%
Phatt to conge "ok o v
Voer f 49 {'o lean For

Uer B 2 o

L13: Experiment Design

Spring 2012

No nanoquiz today

GR3 out, due next Sun

PS2/RS2 out, due at end of spring break

Today 3-5 pm paper prototype building (Walker)
WF 3-5 pm prototype testing & RS2 testing (Walker)

6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?
He [E3t: Yeu et Fomat Tods De | LK | Yo et Fomet Toos
CeEerEe : @ [la
Al o x| _ﬂ;: e
i) cut coiex LU
< iy Cage o
B s cur4y e B OBcn O
Paste Speci..,) B paste Chisy
- i } Pasts Specal..,
Ck‘! »
Qeiete. 5} »
M =5d.. Ciri+# { Cex d
| peete.
' | oo
A AT I 9 . Move or Copy Sheet...
‘ | #4 B Culer
: Repiace... Cben
goTo... CoheG
Spring 2012 6.813/6.831 User Interface Design and Implementation 2

Today’s candidate for the Hall of Fame or Shame is adaptive menus, a feature of Microsoft Office 2003.
Initially, a menu shows only the most commonly used commands. Clicking on the arrow at the bottom of the
menu expands it to show all available commands. Adaptive menus track how often a user invokes each
command, in order to display frequently-used commands and recently-used commands.

Let’s discuss the usability of this idea.

This interface is striving for a compromise between simplicity (i.e., providing as few features as possible) and
task analysis (supporting the tasks required by many users, and trying to adapt to the common tasks of each
individual user). Both properties are important for usability. Unfortunately they also compete with each other.
Adaptive menus are an interesting hybrid technique that’s trying to satisfy both.

The downside is lack of predictability. Because the menu may change in complex and unpredictable ways —
with new items appearing and underused items disappearing for no visible reason — the user can no longer rely
on a lot of useful cues to find menu items. One of these cues that’s lost is spatial memory — Paste may be
found at different distances down the menu each time the menu appears. Another missing cue is context:
Paste’s neighbors may change as well.

Another downside is lack of user control. The adaptation happens automatically; the user can’t manually fixate
or remove items from a menu.

This particular implementation of adaptive menus has some specific usability problems. When the full menu
appears, the new items are inserted into place, and there’s very little contrast in the graphic design to
distinguish between the old items and the new items. So the user has to search through the entire menu again.

But this particular implementation addresses other usability problems very well. When the user is hunting
through all the menus, looking for a command, the full menu only has to be requested once; then all
subsequent menus are fully displayed.

Ul Hall of Fame or Shame?

i ' Times New Romnan
." Arfal Black
% Coutier New
o Abarcn I TN
B Adois jem Sl
B s
W AspraalC
W aat Trospwert) o Al
W Arial
% Aral Black

T Adial Narrow -
T T T R T

Spring 2012 6.813/6.831 User Interface Design and Implementation 3

Here’s an alternative approach to providing easy access to high-frequency menu choices: a split menu. You
can see it in Microsoft Office’s font drop-down menu. A small number of fonts that you’ve used recently
appear in the upper part of the menu, while the entire list of fonts is available in the lower part of the menu.
The upper list is sorted by recency, while the lower part is sorted alphabetically.

Let’s discuss the split menu approach too.

These menu approaches are particularly relevant to today’s lecture because they’ve been tested by a couple of
excellent controlled experiments. The split menu idea was evaluated by Sears & Shneiderman, “Split menus:
effectively using selection frequency to organize menus”, ACM TOCHI, March 1994. And the adaptive menu
was tested by Findlater & McGrenere, “A comparison of static, adaptive, and adaptable menus”, CHI 2004.

Sears & Shneiderman: compared alphabetic, frequency-ordered, and split menus (with up to 4 high-frequency
items at top of menu, ordered in same way as rest of menu, removed from the rest of menu — so not the same
as Office’s font split menu). 15-item menus (randomly selected from a dictionary of 1000 common words).
Three different frequency distributions across the alphabetic menu (end of menu, middle of menu, top of
menu). 36 subjects, within-subjects, each saw 3x3 menus (random unique items) counterbalanced. Pulldown
menus, timed from mouse press on menu bar until selection of item. 100 trials per menu, chosen from
frequency distribution of menu. Measured time and ranked preference of menu type (1-3). Subjective ranking
had split (1.4) > alphabetic (2.0) > frequency (2.6). Selection time for frequent items at end of menu had split
(1.4s) > freq (1.5s) > alphabetic (1.7s); for frequent items at start of menu had split, alphabetic (1.4s) > freq
(1.5s). Also proposed and fitted a cognitive model that high-frequency menu items take time logarithmic in
item position (a la Fitts’s Law) while low-frequency items take linear time in position (visual scan).

Findlater & McGrenere: compared split menus that were static (unchanging), adaptive (changed by system),
and adaptable (changed by user). Adaptive menu has two most recent and two most frequent items in the split
part. Adaptable had arrow buttons next to each item to promote or demote it. Used frequency distributions
from three most frequently-used Word menus (File, Format, Insert), collected from one user over 20 weeks, but
changed all item names to mask them. Measured time and ranked preference (on several dimensions: overall,
efficiency, ease, error, frustration, etc.). 27 subjects, within-subjects 3x3. Selection time had static (1.5),
adaptable (1.6) >> adaptive (1.65). Overall preference had adaptable >> adaptive >> static.

Research Methods in HCI

» Lab experiment
» Field study
» Survey

Spring 2012 6.813/6.831 User Interface Design and Implementation 4

We’ll start by talking about the main kinds of research methods in human-computer interaction. Here we mean
empirical methods, techniques for investigating the world and collecting evidence to prove or disprove our
hypotheses about how people interact with computers, and about the usability of interfaces. These methods are
widely used across other kinds of research involving people, including psychology, cognitive science,
sociology, and economics. When we talk about an HCI research paper and look for the evaluation of the
paper’s claim, we will often find one of these methods. Note that these are not the only acceptable kinds of
evaluation in human-computer interaction. In particular, this picture (and this lecture) largely ignore
evaluation methods that are relevant to the computer side of the human-computer interface: issues like
performance, reliability, security; proof that a system or toolkit is broadly applicable; etc.

A lab experiment is an artificial situation, created by and highly controlled by the experimenter, that typically
compares alternative user interfaces or measures how usability varies with some design parameter. One
example might be a test of font readability, done by bringing subjects into the experimenter’s lab, asking them
to read texts displayed with different fonts, and timing their reading speed.

A field study is a real situation, happening in the actual environment where people use the interface under
consideration, and using real tasks (rather than tasks concocted by the experimenter). Social scientists make
distinctions between pure field studies (where the researcher acts like an anthropologist or ethnographer,
intervenes as little as possible, hiding in the bushes, so to speak) and field experiments (where the researcher
introduces something new, like a new system, new process, or new UI). In HCI, which is still a young field
and still striving to make something new, these distinctions end up being a matter of when the study happens to
be done in the evolution of your project. Initial field studies just observe without intervening (contextual
inquiry, which we discussed in the task analysis lecture, is a technique like this). Final field studies deliver the
new UI and see how it’s used.

A survey is a questionnaire, conducted by paper, phone, web, or in person.

Research Methods in HCI
Precision
Lab Abstract
experiment
Realism S
Generalizability
~— —_—
Obtrusive Unobtrusive
Spring 2012 6.813/6.831 User Interface Design and Implementation 5

The picture shows how these methods compare on several interesting dimensions. In the vertical dimension,
lab experiments often use highly abstract tasks, which are simplified and highly controlled in order to make
strong statistical claims, but also farther removed from the real-world. An example is the classic Fitts’s Law
experiment, which measures the time it takes to hit targets on the screen by using plain rectangles rather than
realistic pointing targets like buttons, menus, and hyperlinks. Field studies and surveys, by contrast, can use
more concrete, real-world examples.

In the horizontal direction, lab experiments and surveys are obtrusive: people need to be interrupted and
forced to give their attention to the study. Because they’re aware they’re being studied, their behavior can
change; we’ll mention some of the ways that can happen later in this lecture. Field studies, on the other hand,
can be far less obtrusive, since the subjects are doing their own tasks in their own environment, and so the
likelihood of obtaining natural behavior is much higher.

Finally, the picture also shows how the three methods compare on three criteria which are all desirable but
virtually impossible to obtain at once from a single method. Realism means whether the phenomena captured
are actually what happens in the real world (in real contexts on real tasks); field studies are strongest on that.
Generalizability concerns whether the results apply to the whole population of people relevant to the study; a
survey is strongest on that, because it’s far cheaper to survey a large number of people, and good statistical
sampling techniques exist to make the results generalizable. Precision means control over measurement error
and extraneous factors that might introduce noise into the results; lab experiments are strongest on that,
because they can tightly control the tasks and environment to eliminate as much error as possible.

(This picture actually omits one important class of methods, which is occasionally but not widely used in HCI
research: a theoretical model or computer simulation of human behavior. We talked about some theoretical
models for HCI, like KLM and GOMS, in the efficiency lecture.)

Quantifying Usability

 Usability: how well users can use the
system’s functionality

» Dimensions of usability
— Learnability: is it easy to learn?
— Efficiency: once learned, is it fast to use?
— Safety: are errors few and recoverable?

Spring 2012 6.813/6.831 User Interface Design and Implementation [

In this lecture, we’ll be focusing on controlled experiments — particularly those that try to measure the
usability of alternative user interface designs. Recall our definition of usability, and how we broke it down
into several dimensions. We can quantify all these measures of usability, which will be essential to doing an
experiment. Just as we can say algorithm X is faster than algorithm Y on some workload, we can say that
interface X is more learnable, or more efficient, or less error-prone than interface Y for some set of tasks and
some class of users, by designing an experiment that measures the two interfaces.

Controlled Experiment

Start with a testable hypothesis

— e.g. Mac menu bar is faster than Windows menu
bar

Manipulate independent variables
— different interfaces, user classes, tasks
— in this case, y-position of menubar

* Measure dependent variables

— times, errors, # tasks done, satisfaction

Use statistical tests to accept or reject the
hypothesis

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Here’s a high-level overview of a controlled experiment. You start by stating a clear, testable hypothesis. By
testable, we mean that the hypothesis must be quantifiable and measurable. Here’s an example of a hypothesis
that we might want to test: that the Macintosh menu bar, which is anchored to the top of the screen, is faster to
access than the Windows menu bar, which is separated from the top of the screen by a window title bar.

You then choose your independent variables — the variables you’re going to manipulate in order to test the
hypothesis. In our example, the independent variable is the kind of interface: Mac menubar or Windows
menubar. In fact, we can make it very specific: the independent variable is the y-position of the menubar
(either y =0 ory = 16, or whatever the height of the title bar is). Other independent variables may also be
useful. For example, you may want to test your hypothesis on different user classes (novices and experts, or
Windows users and Mac users). You may also want to test it on certain kinds of tasks. For example, in one
kind of task, the menus might have an alphabetized list of names; in another, they might have functionally-
grouped commands.

You also have to choose the dependent variables, the variables you’ll actually measure in the experiment to
test the hypothesis. Typical dependent variables in user testing are time, error rate, event count (for events
other than errors — e.g., how many times the user used a particular command), and subjective satisfaction
(usually measured by numerical ratings on a questionnaire).

Finally, you use statistical techniques to analyze how your changes in the independent variables affected the
dependent variables, and whether those effects are significant (indicating a genuine cause-and-effect) or not
(merely the result of chance or noise). We’ll say more about statistical tests in the next lecture.

Schematic View of Experiment Design
Y=f(X)+¢
—p] Epn
independent __,| dependent
variables Process —» variables
—
x e A A A 4 A A Y
unknown/uncontrolled
variables
E
Spring 2012 6.813/6.831 User Interface Design and Implementation 8

Here’s a block diagram to help you visualize what we’re trying to do with experiment design. Think of the
process you’re trying to understand (e.g., menu selection) as a black box, with lots of inputs and a few outputs.
A controlled experiment twiddles some of the input knobs on this box (the independent variables) and observes
some of the outputs (the dependent variables) to see how they are affected.

The problem is that there are many other input knobs as well (unknown/uncontrolled variables), that may
affect the process we’re observing in unpredictable ways. The purpose of experiment design is to eliminate the
effect of these unknown variables, or at least render harmless, so that we can draw conclusions about how the
independent variables affect the dependent variables.

What are some of these unknown variables? Consider the menubar experiment. Many factors might affect
how fast the user can reach the menubar: the pointing device they’re using (mouse, trackball, isometric
joystick, touchpad); where the mouse pointer started; the surface they’re moving the mouse on; the user’s level
of fatigue; their past experience with one kind of menubar or the other. All of these are unknown variables that
might affect the dependent variable (speed of access).

Design of the Menubar Experiment

* Users
— Windows users or Mac users?
- Age, handedness?
- How to sample them?
+ Implementation
— Real Windows vs. real Mac
- Artificial window manager that lels us control menu bar position
+ Tasks
— Realistic: word processing, email, web browsing
= Artificial: repeatedly pointing at fake menu bar
+ Measurement
— When does movement start and end?

» Ordering
- of tasks and interface conditions
+ Hardware

- mouse, trackball, touchpad, joystick?
- PC or Mac? which particular machine?

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Here are some of the issues we’d have to consider in designing the menubar experiment.

First, what user population do we want to sample? Does experience matter? Windows users will be more experienced with
one kind of menu bar, and Mac users with the other. On the other hand, the model underlying our hypothesis (Fitts’s Law
for pointing tasks) is largely independent of long-term memory or practice, so we might expect that experience doesn’t
matter. But that’s another hypothesis we should test, so maybe past experience should be an independent variable that we
select when sampling.

How do we sample the user population we want? The most common technique (in academia) is advertising around a
college campus, but this biases against older users and less-educated users. Any sampling method has biases; you have to
collect demographic information, report it, and consider whether the bias influences the generalizability of your results.
What implementation should we test? One possibility is to test the menu bars in their real context: inside the Mac
interface, and inside the Windows interface, using real applications and real tasks. This is more realistic, but the problem is
now the presence of confounding variables — the size of the menu bars might be different, the reading speed of the font, the
mouse acceleration parameters, etc. We need to control for as many of these variables as we can. Another possibility is
implementing our own window manager that holds these variables constant and merely changes the position of the menu
bar.

What tasks should we give the user? Again, having the user use the menu bar in the context of realistic tasks might provide
more generalizable results; but it would also be noisier. An artificial experiment that simply displays a menu bar and cues
the user to hit various targets on it would provide more reliable results. But then the user’s mouse would always be in the
menu bar, which isn’t at all realistic. We’d need to force the user to move the mouse out of the menu bar between trials,
perhaps to some home location in the middle of the screen.

How do we measure the dependent variable, time? Maybe from the time the user is given the cue (“click Edit”) to the time
the user successfully clicks on Edit.

What order should we present the tasks and the interface conditions? Using the same order all the time can cause both
learning effects (e.g., you do better on the interface conditions because you got practice with the tasks and the study
protocol during the first interface condition) and fatigue effects (where you do worse on later interface conditions because
you’re getting tired).

Finally, the hardware we use for the study can introduce lots of confounding variables. We should use the same computer
for the entire experiment — across both users and interface conditions.

Concerns Driving Experiment Design

* Internal validity

— Are observed results actually caused by the
independent variables?

» External validity

— Can observed results be generalized to the world
outside the lab?

» Reliability

— Will consistent results be obtained by repeating
the experiment?

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Unknown variation is the bugaboo in experiment design, and here are the three main problems it can cause.

Internal validity refers to whether the effect we see on the experiment outputs was actually caused by the
changes we made to the inputs, or caused by some unknown variable that we didn’t control or measure. For
example, suppose we designed the menubar experiment so that the Mac menubar position was tested on an
actual Mac, and the Windows menubar position was tested on a Windows box. This experiment wouldn’t be
internally valid, because we can’t be sure whether differences in performance were due to the difference in the
position of the menubar, or to some other (unknown) difference in two machines -- like font size, mouse
acceleration, mouse feel, even the system timer used to measure the performance! Statisticians call this effect
confounding; when a variable that we didn’t control has a systematic effect on the dependent variables, it’s a
confounding variable.

v

One way to address internal validity is to hold variables constant, as much as we can: for example, conducting
all user tests in the same room, with the same lighting, the same computer, the same mouse and keyboard, the
same tasks, the same training. The cost of this approach is external validity, which refers to whether the effect
we see can be generalized to the world outside the lab, i.e. when those variables are not controlled. But when
we try to control all the factors that might affect menu access speed — a fixed starting mouse position, a fixed
menubar with fixed choices, fixed hardware, and a single user — then it would be hard to argue that our lab
experiment generalizes to how menus are used in the varying conditions encountered in the real world.

Finally, reliability refers to whether the effect we see (the relationship between independent and dependent
variables) is repeatable. If we ran the experiment again, would we see the same effect? If our experiment
involved only one trial — clicking the menubar just once — then even if we held constant every variable we
could think of, unknown variations will still cause error in the experiment. A single data sample is rarely a
reliable experiment.

10

How Many Marbles in Each Box?

A B
o
: ®®@©@®@

» Hypothesis: box A has a different number of balls than box B
« Reliability
~ Counting the balls manually is reliable only if there are few balls
— Repeated counting improves reliability
« Internal validity
— Suppose we weigh the boxes instead of counting balls
- What if an A ball has different weight than a B ball?
— What if the boxes themselves have different weights?
« External validity
- Does this result apply to all boxes in the world labeled A and B?

Spring 2012 6.813/6.831 User Interface Design and Implementation 1

Here’s a simple example to illustrate internal validity, external validity, and reliability.

Suppose we have two boxes labeled A and B, and each box has some marbles inside. We want to test the hypothesis that
these two boxes have different numbers of marbles. (For example, maybe each box is from a different manufacturer, but
both boxes are the same price, and we want to claim that one box is a better deal than the other.) In this case, the
independent variable is the identity of the box (the brand of the manufacturer), and the dependent variable we’re trying
to measure is the number of marbles inside the box.

This hypothesis is testable because we can do measurements on the boxes to test it. One measurement we might do is
open the boxes and count the marbles inside each one. If we counted 3 marbles in one box, and 5 marbles in the other box,
then we’d have strong evidence that A has fewer marbles than B. But if we counted 99 marbles in A and 101 marbles in B,
would we be just as confident? No, because we know that our counting may have errors -- we may skip marbles, or we
may double-count marbles. If we counted A again, we might come up with 102 marbles. The reliability of a single
measurement isn’t good enough. We can fix this reliability problem by better experiment design: counting each box several
times, and computing a statistic (a summary of the measurements) instead of using a single measurement. The statistic is
often the mean of the measurements, but others are possible.

Counting is pretty slow, though, so to make our experiment cheaper to run, suppose we weigh the boxes instead. If box A
is lighter than box B, then we’ll say that it has fewer marbles in it. It’s easy to see the possible flaws in this experiment
design: what if each marble in box A is lighter than each marble in box B? Then the whole box A might be lighter than B
even if it has more marbles. If this is true, then it threatens the experiment’s internal validity: the dependent variable
we’ve chosen to measure (total weight) is a function not only of the number of marbles in the box, but also of the weight of
each marble, and the weight of the marble also varies by the independent variable (the identity of the box).

Suppose the weight of marbles is regulated by an international standard, so we can argue that A marbles should weigh the
same as B marbles. But what if box A is made out of metal, and box B is made out of cardboard? This would also threaten
internal validity — the weight of the box itself is a confounding variable. But now we can imagine a way to control for this
variable, by pouring the marbles out of their original boxes into box C, a box that we’ve chosen, and weighing both sets of
marbles separately in box C. We’ve changed our experiment design so that the weight of the box itself is held constant, so
that it won’t contribute to the measured difference between box A and box B.

But we’ve only done this experiment with the box A and box B we have in front of us. What confidence do we have in
concluding that all boxes from manufacturer A have a different number of marbles than those from manufacturer B — that if

we went to the store and picked up new boxes of marbles, we’d see the same difference? That’s the question of external
validity.

11

Threats to Internal Validity

* Ordering effects
— People learn, and people get tired
— Don't present tasks or interfaces in same order for all users
— Randomize or counterbalance the ordering

» Selection effects

— Don't use pre-existing groups (unless group is an independent
variable)

— Randomly assign users to independent variables
» Experimenter bias
— Experimenter may be enthusiastic about interface X but not Y
— Give training and briefings on paper, not in person
— Provide equivalent training for every interface

— Double-blind experiments prevent both subject and experimenter
from knowing if it's condition X or Y

« Essential if measurement of dependent variables requires judgement

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Let’s look closer at typical dangers to internal validity in user interface experiments, and some solutions to them. You’ll notice that the
solutions tend to come in two flavors: randomization (which prevents unknown variables from having systematic effects on the dependent
variables) and control (which tries to hold unknown variables constant).

Ordering effects refer to the order in which different levels of the independent variables are applied. For example, does the user work
with interface X first, and then interface Y, or vice versa? There are two effects from ordering: first, people learn. They may learn
something from using interface X that helps them do better (or worse) with interface Y. Second, people get tired or bored. After doing
many tasks with interface X, they may not perform as well on interface Y. Clearly, holding the order constant threatens internal validity,
because the ordering may be responsible for the differences in performance, rather than inherent qualities of the interfaces. One good
solution to this threat is randomization: present the interfaces, or tasks, or other independent variables in a random order to each user.
Another good solution is counterbalancing (sce a later slide).

Selection effects arise when you use pre-existing groups as a basis for assigning different levels of an independent variable. Giving the
Mac menubar to artists and the Windows menubar to engincers would be an obvious selection effect. More subtle selection effects can
arise, however, Suppose you let the users line up, and then assigned the Mac menubar to the first half of the line, and Windows menubar
to the second half. This procedure scems “random”, but it isn’t — the users may line up with their friends, and groups of friends tend to
have similar activities and interests. The same thing can happens even if people are responding “randomly” to your study advertisement —
you don’t know how “random” that really is! The only safe way to eliminate selection effects is honest randomization.

A third important threat to internal validity is experimenter bias. After all, you have a hypothesis, and you’re hoping it works out —
you're rooting for interface X. This bias is an unknown variable that may affect the outcome, since you're personally interacting with the
user whose performance you’re measuring. One way to address experimenter bias is controlling the protocol of the experiment, so that it
doesn’t vary between the interface conditions. Provide equivalent training for both interfaces, and give it on paper, not live.

An even better technique for eliminating experimenter bias is the double-blind experiment, in which neither the subject nor the
experimenter knows which condition is currently being tested. Double-blind experiments are the standard for clinical drug trials, for
example; neither the patient nor the doctor knows whether the pill contains the actual experimental drug, or just a placebo. With user
interfaces, double-blind tests may be impossible, since the interface condition is often obvious on its face. (Not always, though! The
behavior of cascading submenus isn’t obviously visible, for example.)

Experimenter-blind tests are essential if measurement of the dependent variables requires some subjective judgement. Suppose you’re
developing an interface that’s supposed to help people compose good memos. To measure the quality of the resulting memos, you might
ask some people to evaluate the memos created with the interface, along with memos created with a regular word processor. But the
memos should be presented in random order, and you should hide the interface that created each memo from the judge, to avoid bias.

12

Threats to External Validity

Population

— Draw a random sample from your real target
population

Ecological

— Make lab conditions as realistic as possible in
important respects

Training

— Training should mimic how real interface would be
encountered and learned

» Task
— Base your tasks on task analysis

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

Here are some threats to external validity that often come up in user studies. If you’ve done a thorough user
analysis and task analysis, in which you actually went out and observed the real world, then it’s easier to judge
whether your experiment is externally valid.

Population asks whether the users you sampled are representative of the target user population. Do your
results apply to the entire user population, or only to the subgroup you sampled? The best way to ensure
population validity is to draw a random sample from your real target user population. But you can’t really,
because users must choose, of their own free will, whether or not to participate in a study. So there’s a self-
selection effect already in action. The kinds of people who participate in user studies may have special
properties (extroversion? curiosity? sense of adventure? poverty?) that threaten external validity. But that’s an
inevitable effect of the ethics of user testing. The best you can do is argue that on important, measurable
variables — demographics, skill level, experience — your sample resembles the overall target user population.

Ecological validity asks whether conditions in the lab are like the real world. An office environment would
not be an ecologically valid environment for studying an interface designed for the dashboard of a car, for
example.

Training validity asks whether the interfaces tested are presented to users in a way that’s realistic to how they
would encounter them in the real world. A test of an ATM machine that briefed each user with a 5-minute
tutorial video wouldn’t be externally valid, because no ATM user in the real world would watch such a video.
For a test of an avionics system in an airplane cockpit, on the other hand, even hours of tutorial may be
externally valid, since pilots are highly trained.

Similarly, task validity refers to whether the tasks you chose are realistic and representative of the tasks that
users actually face in the real world. If you did a good task analysis, it’s not hard to argue for task validity.

13

Threats to Reliability

+ Uncontrolled variation
— Previous experience
- Novices and experts: separate into different classes, or use only one class
~ User differences
+ Fastest users are 10 times faster than slowest users
— Task design
Do tasks measure what you‘re trying to measure?
— Measurement error
= Time on task may include coughing, scratching, distractions
+ Solutions
— Eliminate uncontrolled variation
- Select users for certain experience (or lack thereof)
+ Give all users the same training
+ Measure dependent variables precisely
— Repetition
+ Many users, many trials
« Standard deviation of the mean shrinks like the square root of N (i.e., quadrupling
users makes the mean twice as accurate)

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Once we’ve addressed internal validity problems by either controlling or randomizing the unknowns, and external validity
by sampling and experiment protocol design, reliability is what’s left.

Here’s a good way to visualize reliability: imagine a bullseye target. The center of the bullseye is the true effect that the
independent variables have on the dependent variables. Using the independent variables, you try to aim at the center of the
target, but the uncontrolled variables are spoiling your aim, creating a spread pattern. If you can reduce the amount of
uncontrolled variation, you’ll get a tighter shot group, and more reliable results.

One kind of uncontrolled variation is a user’s previous experience. Users enter your lab with a whole lifetime of history
behind them, not just interacting with computers but interacting with the real world. You can limit this variation somewhat
by screening users for certain kinds of experience, but take care not to threaten external validity when you artificially
restrict your user sample.

Even more variation comes from differences in ability — intelligence, visual acuity, memory, motor skills. The best users
may be 10 times better than the worst, an enormous variation that may swamp a tiny effect you’re trying to detect.

Other kinds of uncontrolled variation arise when you can’t directly measure the dependent variables. For example, the
tasks you chose to measure may have their own variation, such as the time to understand the task itself, and errors due to
misunderstanding the task, which aren’t related to the difficulty of the interface and act only to reduce the reliability of the

test. Time is itself a gross measurement which may include lots of activities unrelated to the user interface: coughing,
sneezing, asking questions, responding to distractions.

One way to improve reliability eliminates uncontrolled variation by holding variables constant: e.g., selecting users for
certain experience, giving them all identical training, and carefully controlling how they interact with the interface so that
you can measure the dependent variables precisely. If you control too many unknowns, however, you have to think about

whether you’ve made your experiment externally invalid, creating an artificial situation that no longer reflects the real
world.

The main way to make an experiment reliable is repetition. We run many users, and have each user do many trials, so that
the mean of the samples will approach the bullseye we want to hit. As you may know from statistics, the more trials you
do, the closer the sample mean is likely to be to the true value. (Assuming the experiment is internally valid of course!
Otherwise, the mean will just get closer and closer to the wrong value.) Unfortunately, the standard deviation of the sample
mean goes down slowly, proportionally to the square root of the number of samples N. So you have to guadruple the
number of users, or trials, in order to double reliability.

14

Example: Ephemeral Adaptation Study

Task

The experimental task was a sequence of menu selections
from an cxperimental system. A prompt across the top of
the screen displayed the name of the item to be sclected and
the menu in which it was located. Three menus were
positioned just below the prompt. Once the participant had
correctly sclected the target item, the prompt for the next
trial would be displayed.

To mitigate the cffect of an individual sclection sequence,
the same underlying sequence was used for all conditions
and task blocks for a given participant, but the location of
the menus was permuted for each condition to reduce
lcaming across conditions. For cxample, if the first
selection in the first condition was Menu 1, Item 3, then in
the second condition it would be Item 3 of cither Menu 2 or
Menu 3. The underlying sclection sequences were then
masked with different menu item names in each task block
and condition. Each menu was genersted by randomly
sclecting 4 groups of 4 semantically related items from a set
of 72 such groups, so that cach group appeared only once.

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

To help understand threats to internal validity, external validity, and reliability, let’s talk about a study from the
HCI research literature. These quotes are from L. Findlater, K. Moffat, J. McGrenere, J. Dawson. "Ephemeral
Adaptation: The Use of Gradual Onset to Improve Menu Selection Performance". CHI 2009.

15

Quantitative and Qualitative Measures

Speed was measured using the median selection time,
calculated as the time from opening the menu to selecting
the comrect item. The median was used to reduce the
influence of outlier trials. We used an implicit crror penalty
in the specd measures; that is, participants could not
advance to the next trial until they correctly completed the
current trial. For completeness, we also recorded the error
rate. Finally, subjective data was collected using 7-point
Likert scales on difficulty, satisfaction, cfficiency and
frustration. At the end of the study, a questionnaire asked
for comparative rankings of the menu conditions.

Spring 2012 6.813/6.831 User Interface Design and Implementation

16

Apparatus

A 2.0GHz Pentium M laptop with 1.5 GB of RAM and
Microsoft Windows XP was used for the experiment. The
system was connected to an 18" LCD monitor with
1280x1024 resolution and the cxperiment was coded in
Java 1.5. The system recorded all timing and error data.

Participants

Twenty-four participants (12 females) were recruited
through on-campus advertising. All were regular computer
users, were between the ages of 19-45 (M = 25.5) and were
reimbursed $10 per hour to participate.

Spring 2012 6.813/6.831 User Interface Design and Implementation

17

13

Procedure

The procedure was designed to fit into a single 1-hour
scssion. Participants were first given a background
questionnaire to collect demographic information. Then, for
cach condition participants completed a short B-trial
practice block of selections to familiarize themselves with
the behavior of the menus before completing two longer
126-trial task blocks. Short breaks were given in the middle
of cach block and between blocks. After both task blocks,
participants completed a questionnaire with the subjective
Likert scale questions for that condition. Once all
cxperimental tasks were complete, a comparative
questionnaire was given.

Before cach adaptive menu condition, participants were
given a bricf description of the adaptive behavior: they
were told that some of the items would appear sooner than
others, and that these were the items the system predicted
would be most likely nceded by the uscr. However,
participants were not told the level of prediction accuracy,

6.813/6.831 User Interface Design and Implementation

18

18

Blocking

» Divide samples into subsets which are more
homogeneous than the whole set

— Example: testing wear rate of different shoe sole material
— Lots of variation between feet of different kids
— But the feet on the same kid are far more homogeneous
— Each child is a block
= Apply all conditions within each block
— Put material A on one foot, material B on the other
» Measure difference within block
— Wear(A) - Wear(B)
» Randomize within the block to eliminate internal
validity threats
— Randomly put A on left foot or right foot

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Blocking is another good way to eliminate uncontrolled variation, and therefore increase reliability. The basic
idea is to divide up your samples up into blocks that are more homogeneous than the whole set. In other
words, even if there is lots of uncontrolled variation between blocks, the blocks should be chosen so that there
is little variation within a block. Once you’ve blocked your data, you apply all the independent variable
conditions within each block, and compare the dependent variables only within the block.

Here’s a simple example of blocking. Suppose you’re studying materials for the soles of childrens’ shoes, and
you want to see if material A wears faster or slower than material B. There’s much uncontrolled variation
between feet of different children — how they behave, where they live and walk and play — but the two feet of
the same child both see very similar conditions by comparison. So we treat each child as a block, and apply
one sole material to one foot, and the other sole material to the other foot. Then we measure the difference
between the sole wear as our dependent variable. This technique prevents inter-child variation from swamping
the effect we’re trying to see.

In agriculture, blocking is done in space. A field is divided up into small plots, and all the treatments
(pesticides, for example) are applied to plants in each plot. Even though different parts of the field may differ
widely in soil quality, light, water, or air quality, plants in the same plot are likely to be living in very similar
conditions.

Blocking helps solve reliability problems, but it doesn’t address internal validity. What if we always assigned
material A to the left foot, and material B to the right foot? Since most people are right-handed and left-footed,
some of the difference in sole wear may be caused by footedness, and not by the sole material. So you should
still randomize assignments within the block.

19

Between Subjects vs. Within Subjects

+ “Between subjects” design
— Users are divided into two groups:
+ One group sees only interface X
+ Other group sees only interface Y
— Results are compared between different groups
= Is mean(xi) > mean(yj)?
— Eliminates variation due to ordering effects
= User can’t learn from one interface to do better on the other
» “Within subjects” design
— Each user sees both interface X and Y (in random order)
— Results are compared within each user
+ For user i, compute the difference xi-yi
= |Is mean(xi-yi) > 0?
— Eliminates variation due to user differences
+ User only compared with self

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

The idea of blocking is what separates two commonly-used designs in user studies that compare two interfaces.

Looking at these designs also gives us an opportunity to review some of the concepts we’ve discussed in this
lecture.

A between-subjects design is unblocked. Users are randomly divided into two groups. These groups aren’t
blocks! Why? First, because they aren’t more homogeneous than the whole set — they were chosen randomly,
after all. And second, because we’re going to apply only one independent variable condition within each
group. One group uses only interface X, and the other group uses only interface Y. The performance of the X
group is then compared with the performance of the Y group. This design eliminates variation due to interface
ordering effects. Since users only see one interface, they can’t transfer what they learned from one interface to
the other, and they won’t be more tired on one interface than the other. But it suffers from reliability problems,
because the differences between the interfaces may be swamped by the innate differences between users. Asa
result, you need more repetition — more users — to get reliable and significant results from a between subjects
design.

A within-subjects design is blocked by user. Each user sees both interfaces, and the differential performance
(performance on X — performance on Y) of all users is averaged and compared with 0. This design eliminates
variation due to user differences, but may have reliability problems due to ordering effects.

Which design is better? User differences cause much more variation than ordering effects, so the between-
subjects design typically needs more users than the within-subjects design. But the between-subjects design
may be more externally valid, because users in the real world will probably end up using only one interface (X
or Y), not both.

20

Counterbalancing

- Defeats ordering effects by varying order of
conditions systematically (not randomly)
» Latin Square designs
— randomly assign subjects to equal-size groups
— A,B,C,... are the experimental conditions
- Lal:n Square ensures that each condition occurs in every

WW

AlC| B A bpjc|B |
B A } Cc | l B A iDiC ‘
cle|a] ! C B A D et
3x3 D clB|a]
4x4
Spring 2012 6.813/6.831 User Interface Design and Implementation 21

Within-subjects designs suffer from ordering effects (particularly learning, which makes people get better, and
fatigue, which makes them do worse). Randomizing the order of tasks and experimental conditions is one way
to deal with these effects. Another way, particularly when the number of users is small, is counterbalancing,
which ensures that every experimental condition occurs the same number of times at each position in the order.
You counterbalance your experiment with the help of a Latin square, which is an NxN matrix with the
property that a symbol occurs exactly once in each row and each column, A few Latin squares are shown here;
it’s not hard to recognize the pattern and reproduce it for higher N.

To use counterbalancing, you first determine N, the number of experimental conditions you have, which is
done by taking the product of the different values of each independent variable you are using. For example,
the Windows vs. Mac menubar experiment has one independent variable with two values, hence two
experimental conditions. If we also decided to test how the speed of access varied with starting distance from
the menu (say, 50 pixels, 500 pixels, and 1000 pixels), then we’d have 6 experimental conditions (2 menubars
x 3 distances). Given the number of conditions N, we divide the users randomly into N equal groups
(G1...GN), and present each group with the conditions in the order of a different column from the Latin square.

Note that it’s important for the number of users to be a multiple of N, so that the groups are equal in size.
Otherwise the conditions won’t occur the same number of times at each position in the order.

The simple Latin squares shown here have a flaw — pairwise learning effects are not controlled. In the 3x3
matrix, for example, B appears after A two-thirds of the time. In the 4x4 matrix, B follows A three-quarters of
the time. So high performance on B may be due to practice on A, rather than inherent to B. This problem can
be fixed by a balanced Latin square, left as an exercise for the reader. (Or see I. Scott MacKenzie, “Research
Note: Within-subjects vs. Between-subjects Designs: Which to Use?”, 2008, http://www.yorku.ca/mack/RN-
Counterbalancing.html).

21

Example: Ephemeral Adaptation Paper

Design

A 2-factor mixcd design was used: adaptive accuracy (Low
or High) was a between-subjects factor and menu type
(Control, Short-Onsct or Long-Onsct) was a within-subjects
factor. Order of presentation was fully counterbalanced and
participants were randomly assigned to conditions.

Spring 2012 6.813/6.831 User Interface Design and Implementation

22

Kinds of Measures

Self-report
Observation

— Visible observer
— Hidden observer
Archival records
— Public records

— Private records

* Trace

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

One thing we’ve glossed over a bit is how to measure the dependent variables we’re interested in. Different
measurement approaches have different kinds of noise, and some have biases induced by the user’s awareness
that their behavior is being studied. These biases are generally called reactivity effects by the social science
community. Here’s a simple taxonomy from the McGrath paper (“Methodology Matters”, cited earlier), ranked
by the obtrusiveness (and hence susceptibility to reactivity) of the method.

Self-report means asking the user to provide the data. Examples might be “How many times a day do you
check email?” or “How much did you like this interface?” Self-reports are applicable to many different
questions, and very cheap to collect. They are also noisy (particularly where quantitative data is requested),
and may be biased by a variety of reactive effects, like politeness (trying to please the experimenter) and social
desirability (saying what they think they should say, rather than the truth). Surveys generally exclusively use
self-reported measures, though carefully-designed surveys can eliminate some of the biases. Lab experiments
must resort to self-reports for some variables, particularly satisfaction, but better alternatives can often be
found.

Observation means either the experimenter or an instrument (stopwatch, logging, screen capture, camera) is
capturing the data. Observation is more expensive, but also more objective and controlled. A key distinction is
whether the observation is visible (known to the subject) or hidden. Visible observation can produce distorting
effects, like the classic “Hawthorne effect”, in which people perform better simply because they know they’re
being studied. Hidden observation raises ethical questions of informed consent. Usually in lab experiments,
the dilemma is resolved by using visible observation (or at least informed consent about observation), but
using it on a// conditions, and making it as unobtrusive as possible so that users stop thinking about it.

The last two measures are not used in lab experiments, because they use data that was not created solely for the
purpose of the experiment, so they cannot be controlled. Archival records are records of past behavior, not
made expressly for the purpose of the current research. Like observation, archival records can be distinguished
by whether the user was aware that the records might be studied or read by another person (public) or not
(private). Comments on a blog are public archival records; files on your hard drive are private. Finally, traces
are laid down by behavior without the people involved even being aware that they are leaving something
behind. The classic example of a trace is “read wear”, the dogears and damage to books that indicate where
and how they’ve been used. Web server access logs probably also fall into this category, since the vast
majority of users are probably unaware that their page visits are being recorded.

23

Triangulation

< Any given research method has advantages and
limitations
— lab experiment not externally valid
— field study not controlled
— survey biased by self-report

« For higher confidence, researchers triangulate

— try several different methods to attack the same question;
see if they concur or conflict

« Triangulation is rarely seen in a single HCI paper

— More important that triangulation be happening across the
field

— encourage a diversity of research methods from different
researchers aimed at the same question

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

Let’s conclude the lecture by returning to the main kinds of research methods in HCI (lab experiments, field
studies, and surveys). We’re focusing on lab experiments in this course, because there’s much to say about
them that isn’t covered by any other course in the EECS curriculum. But frankly, each of these methods has
advantages and disadvantages. Lab experiments are abstract and obtrusive, and may not be representative of
the real world. Field studies can’t be controlled, so it’s hard to make strong, precise claims about comparative
usability. Surveys are biased by reactivity.

So a research program that depends entirely on only one of these methods as a source of data and validation is
likely to be biased and incomplete. One way to deal with this problem is by triangulation — using multiple
methods (usually at least three, so that they can vote) to tackle the same research question. If they all support
your claim, then you have much stronger evidence, without as many biases.

Triangulation is rarely seen in a single paper, but is not uncommon in a single researcher’s whole research
program (the series of papers generated by their work), and is frankly essential for the HCI field as a whole. A
diversity of research methods is necessary for producing reliable knowledge. There’s an active debate right
now in the HCI community about this question, because of a sense that the flagship conference (CHI) has
become dominated by papers using controlled lab experiments.

Summary

» Research methods in HCI include lab experiments,
field studies, and surveys

» Controlled experiments manipulate independent
variables and measure dependent variables

= Must consider and defend against threats to internal
validity, external validity, and reliability

= Blocking, randomization, and counterbalancing
techniques help

Spring 2012 6.813/6.831 User Interface Design and Implementation

25

25

033 LI

(@ /}kvz 1of % of OP}‘O’WI EW/””’”L fadl o1
Tobey # i Wl m

(/I Mo qu/h,w D{P%ﬁ%/z Engi

\/Q/Y J?’lﬁe (/-j-
“donl e wer B gt

]AW‘ €7‘Pwl P%}z\ Gue
“h Qcp@(,[m fm Of W’lj 01 MOW

Mo 1 il

l\/mcm C&Ja%e%d b db)
M‘l‘ M‘ML JM 'Ilmﬁc%
%V@lft/f ot qugntadie

{ [Q/ §U/t/e/
\(J COrm{L t

toé(’/ Y/?’ (ml VG/Z(I
hW Ly Yo Musvip exadt %/)
by Sl

7
O é«W@Z N €Xa($ g'm(g égb[/e/’f)/é@(

{@L st — p euse as Yw (o gef
Doty behuem s.bjeds ¢ L b shab

P@P V‘f/l} ;{7 O Wo Pxfona) V@/z’d;/t/

iy oty @

[’\/Jt"’b [dﬂ% @ - T WtW’! évé/e/,f} (5 ébf/{?
Lﬁ“ﬂ () 0«1@[@ ottt

befueen -sibed 4 ﬁd; i Oder ﬁﬂ? %

/d(ﬂéu]* Me‘a LD/ M)LQM V%[£/;/7
€X7[€/AC&! \/0{«13/‘7 @

/’ﬂlWll 17 '4{, }7 gP(ﬂple (ot L/\ gwﬁé &/d!/

THM prv (xeas ﬁf&f j

Gro\[ola ny T @ E

T ot
RUOUA ﬁ)J

—_—

b

o gum Ot s (st flo
W hae 9w dak
OOLJUL dﬂ)e) W,‘ {m[)\ (M([MSL/{

MJF = Hid o

— Gummatee Satiflc

24& A@Idi A ﬁaﬁl;b“wi fesl
7Lv+@b]r - e lzw. foo Meas JA%/;M

Al - e Hhee O Mog womy ot
T Teds Pals @ P value
% e reped N | b, e
* fob M[ot e gor by Chare
, We vig Loplo
b p L5 i V5 (ol

0

F(rg\ f\m’ ortor bazfj (@ﬂf e 1olovel T landond @/f'wi?w/
i \ Lle :
~F as oy 5 ot Concludy “ed b o4,

f&jwv/cf (.'c;e 7 C‘)
L

L/g A(M’. A ek %ﬁn\d& a{ ﬁw; % Meqq

[/t
—_—

Lit /y:m//o) //0’30

roy
(9 mad(ﬂ ;[/b@ Py

C@”{ide%@ lmjrwqw) 0ur
\

H(‘/ (otomendy
- 61% Pekeqe

"W-CLWUW /Cmgu@gg
" ol o oon o, g

M(/q

(
S

J Hoss

2
O mso La(i ﬂg (Hﬂ LZ Are €)creoﬁ~z ﬁa Sard.

ke by
s WL Mgy

@OX ok gho 20, J5h /Oefémﬂ/ﬁ
NO)L 0 5\/[30'}”1/& 60(157[4/}5 60, VQJH{‘&Z@

Shivtl _Tah
} A]'}P/Aﬂ/l[}l/e H\/}Ob hwtyb ! H{
g Nd” ﬂy,f) Mdﬂ,[l’/,‘,}] KM@WC 0/ Ho

=100 b tshable
“onte it dfalt gl of woll apent o L

;\Vﬂ Caa;t fefé“y d\tdpf"“@ nuU lW)

Ihed e age b g o sty 4
o\‘ﬂ 5w gl g Oxfan O vary oo
f adl Ay B e

Myl chy i b Gk
L}& Fte Lo

Y
&%ﬂoﬂcwl Wﬁ,

K< pan (v - e)

M)‘ =X) HO}

1 Pmk (W dssug HG s fre

/7
 ' MWWQ P(D\D o ﬂ”ﬁ(r«j Sang oc 9/@7@ Julberng

| 0)([X 7@)(() (Hn? s SNH ook
l.\ ,ZP [X7lXoHHO 2 ﬂ’df}i)L&p}’

\
\
\

\“9&5\[@”1 '(é H? WS +/_/€,

/50y

§Y,

/{)\)u“k ot Pfo& :5 af 0

L6 b bl 1 o o fsty)

bt ity

@ Qi & T o)
Uik, el e dine | O

h O&E@h \J% 205 m[Froq
P-VW, " proby all by (am Wspife ccjenont

L14: Experiment Analysis

Today & Friday 3-5 pm prototype testing & RS2 testing
(Walker)

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Spring 2011 6.813/6.831 User Interface Design and Implementation 2

This is Password Engine, an iPhone app (http://appshopper.com/utilities/password-engine). Its purpose is to
generate passwords

This UI has some simplicity challenges. The screen is packed and complex. Are all these features necessary?
Do we need “Other Criteria”? The very name suggests unimportance. Why are these features on the main
screen, instead of bundled off to an Options screen? And once you bundle a feature off to Options, where
many users won’t even find it, it’s important to ask whether you need it at all. Aggressive removal of features
that are unnecessary to the user’s task is a great way to improve usability.

The UI also has some learnability challenges. What should be done first? There’s no natural ordering in a
screen as complex as this.

What about the Save and Revert buttons? This app has taken the interesting approach that the user has to
explicitly save any changes to options— and yet it isn’t using the conventional dialog pattern to do that (i.e., a
temporary window with OK/Cancel buttons). This is likely to lead to lapses on the part of the user — failures to
remember to save — so the app goes to extra effort to make changes visible (see the message “No Changes to
Save”). Unfortunately this message is hardly salient — it’s unlikely to be in the user’s attention. Fewer things
on the screen would make it more salient; but even better would be either automatic save or a less error-prone
dialog structure.

Today’s Topics

°

Hypothesis testing
Graphing with error bars
T test

ANOVA test

L]

Spring 2011 6.813/6.831 User Interface Design and Implementation 5

This lecture continues the stream on research methods. Our last lecture in the stream concerned experiment
design -- how to design controlled experiments to answer a research question. Today’s lecture is about the
second part of that process, how to analyze the data from the experiment to determine the answer to the
question. We’ll discuss the principles of hypothesis testing, which is the basis for analysis. We’ll talk about a
cheap and easy way to get a feel for your data, by graphing it with error bars, which is not hypothesis testing
but is always good practice to do anyway. And we’ll discuss two statistical tests commonly used in HCI
research: the t test and the ANOVA (Analysis of Variance) test.

This is only a very brief introduction to statistical methods and experiment analysis. There’s much more to be
said on this topic, which is outside the scope of this class. There are other good MIT classes that cover it in
much more depth, particularly 9.07 Statistical Methods in Brain & Cognitive Sciences and 16.470/ESD.756
Statistical Methods in Experimental Design. Also see http://statistics.mit.edu/, a clearinghouse site for classes
and research in statistics at MIT.

Experiment Analylsis

» Hypothesis: Mac menubar is faster to access
than Windows menubar

— Design: between-subjects, randomized
assignment of interface to subject

Windows Mac
625 647
480 503
621 559
633 586
Spring 2011 6.813/6.831 User Interface Design and Implementation 6

Let’s return to the example we used in the experiment design lecture. Suppose we’ve conducted an experiment
to compare the position of the Mac menubar (flush against the top of the screen) with the Windows menubar
(separated from the top by a window title bar).

For the moment, let’s suppose we used a between-subjects design. We recruited users, and each user used
only one version of the menu bar, and we’ll be comparing different users’ times. For simplicity, each user did
only one trial, clicking on the menu bar just once while we timed their speed of access. (Doing only one trial is
a very unreliable experiment design, and an expensive way to use people, but we’ll keep it simple for the
moment.)

The results of the experiment are shown above (times in milliseconds; note that this is fake, randomly-
generated data, and the actual experiment data probably wouldn’t look like this). Mac seems to be faster (574
ms on average) than Windows (590 ms). But given the noise in the measurements — some of the Mac trials are
actually much slower than some of the Windows trials -- how do we know whether the Mac menubar is really
faster?

This is the fundamental question underlying statistical analysis: estimating the amount of evidence in support
of our hypothesis, even in the presence of noise.

Statistical Testing

. gompute a statistic summarizing the experimental
ata
mean(Win)
mean(Mac)

« Apply a statistical test
— ttest: are two means different?

— ANOVA ,SANaIys'rs Of VAriance): are three or more means
different

» Test produces a p value

— p value = probability that the observed difference happened
purely by chance

- If p <0.05, then we are 95% confident that there is a
difference between Windows and Mac

Spring 2011 6.813/6.831 User Interface Design and Implementation 7

Here’s the basic process we follow to determine whether the measurements we made support the hypothesis or
not.

We summarize the data with a statistic (which, by definition, is a function computed from a set of data
samples). A common statistic is the mean of the data, but it’s not necessarily the only useful one. Depending
on what property of the process we’re interesting in measuring, we may also compute the variance (or standard
deviation), or median, or mode (i.e., the most frequent value). Some researchers argue that for human
behavior, the median is a better statistic than the mean, because the mean is far more distorted by outliers
(people who are very slow or very fast, for example) than the median.

Then we apply a statistical test that tells us whether the statistics support our hypothesis. Two common tests
for means are the t test (which asks whether the mean of one condition is different from the mean of another
condition) and ANOVA (which asks the same question when we have the means of three or more conditions).

The statistical test produces a p value, which is the probability that the difference in statistics that we observed
happened purely by chance. Every run of an experiment has random noise; the p value is basically the
probability that the means were different only because of these random factors. Thus, if the p value is less than
0.05, then we have a 95% confidence that there really is a difference. (There’s a more precise meaning for this,
which we’ll get to in a bit.)

Standard Error of the Mean

EEREEEEEE

N=4: N=10:
Error bars overlap, so can't Error bars are disjoint, so
conclude anything Windows may be different
from Mac
Spring 2011 6.813/6.831 User Interface Design and Implementation 8

Let’s talk about a simple, rough method for judging whether an experiment might support its hypothesis or not,
if the statistics you’re using are means.

The standard error of the mean is a statistic that measures how close the mean statistic you computed is
likely to be to the true mean. The standard error is computed by taking the standard deviation of the
measurements and dividing by the square root of n, the number of measurements. (This is derived from the
Central Limit Theorem of probability theory: that the sum of N samples from a distribution with mean u and
variance V has a probability distribution that approaches a normal distribution, i.e. a bell curve, whose mean is
Nu and whose variance is V. Thus, the average of the N samples would have a normal distribution with mean
u and variance V/n. Its standard deviation would be sqrt(V/Ng, or equivalently, the standard deviation of the
underlying distribution divided by sqrt(n).)

The standard error is like a region of likelihood around the computed mean — the region around the computed
mean in which the friue mean of the process probably lies. Think of the computed mean as a random selection
from a normal distribution (bell curve) around the true mean; it’s randomized because of all the uncontrolled
variables and intentional randomization that you did in your experiment. With a normal distribution, 68% of
the time your random sample will be within +/-1 standard deviation of the mean; 95% of the time it will be
within +/- 2 standard deviations of the mean. The standard error is the standard deviation of the mean’s normal
distribution, so what this means is that if we draw an error bar one standard error above our computed mean,
and one standard error below our computed mean, then that interval will have the true mean in it 68% of the
time. It is therefore a 68% confidence interval for the mean.

To use the standard error technique, draw a bar chart of the means for each condition, with error bars
(whiskers) stretching 1 standard error above and below the top of each bar. If we look at whether those error
whiskers overlap or are substantially different, then we can make a rough judgement about whether the true
means of those conditions are likely to be different. Suppose the error bars overlap — then it’s possible that the
true means for both conditions are actually the same — in other words, that whether you use the Windows or
Mac menubar design makes no difference to the speed of access. But if the error bars do not overlap, then it’s
likely that the true means are different.

The error bars can also give you a sense of the reliability of your experiment, also called the statistical power.
If you didn’t take enough samples — too few users, or too few trials per user — then your error bars will be large
relative to the size of the data. So the error bars may overlap even though there reafly is a difference between
the conditions. The solution is more repetition — more trials and/or more users — in order to increase the
reliability of the experiment.

Quick Intro to R

» R s an open source programming environment for data manipulation
- includes stalistics & charting

.

Get the data in
data1 = read.csv(file.choose())

+ Compute with it

means = mean(datal)

stderrs = sd(data1)/sqrt(nrow(data1))
+ Graphit
x = barplot(means, ylim=c(0,800))
arrows(x, means-stderrs, x, means+stderrs, code=3, angle=90, length=.1)

Spring 2011 6.813/6.831 User Interface Design and Implementation 9

R is a good choice for a lot of statistical processing, because it’s free and very powerful. A good introduction
to R is online at http://cran.r-project.org/doc/manuals/R-intro.html.

Here’s how you can use R to create simple bar charts with error bars.

Graphing Techniques

max

«—— 75" percentile

<«—— median

25% percentile
Windows Max min
Error bars Tukey box plots

* Pros
— Easy to compute
— Give a feel for your data

» Cons
— Not a substitute for statistical testing

Spring 2011 6.813/6.831 User Interface Design and Implementation 10

Plotting your data is the first step you should do after every experiment, to eyeball your results and judge
whether statistical testing is worthwhile, or whether you need more data. It’s said that John Tukey, the
Stanford statistician who gave his name to one of the statistical tests we’ll be talking about, refused to help
anybody who hadn’t first gone off and plotted their data on a big piece of paper. Tukey’s excellent book
Exploratory Data Analysis introduced the notion of a “box plot” (shown here on the right) which is even richer
than a simple bar with error whiskers, showing 5 useful statistics about the spread of each data set in a single
graphic. Don’t discount the value of your perceptual system for detecting patterns and really appreciating the
size of effects.

If you want to publish the results of your experiment, you’ll need to do some statistical tests as well, like the t
tests or ANOVAs we’ll talk about in the rest of this lecture. But your paper should still have plots with error
bars in it. Some researchers even argue that the error-bar plots are more valuable and persuasive than the
statistical tests (G.R. Loftus, “A picture is worth a thousand p values: On the irrelevance of hypothesis testing
in the microcomputer age,” Behavior Research Methods, Instruments & Computers, 1993, 25(2), 250—256),
though this view is far from universally held.

Be warned that nonoverlapping error bars is only a rough indicator; it does not imply a statistically significant
difference (i.e., p < 0.05). For that, g{ou have to actually do the t test or ANOVA test, which is what we’ll turn
to now. (For more explanation, see Harvey Motulsky, “The link between error bars and statistical
significance”, http://www.graphpad.com/articles/errorbars.htm, 2002; and Dave Munger, “Most researchers
don’t understand error bars,” http://scienceblogs.com/cognitivedaily/2008/07/
most_researchers_dont_understa_1.php#more, March 2007.)

10

Hypothesis Testing

= Qur hypothesis: position of menubar matters
— i.e., mean(Mac times) < mean(Windows times)
— This is called the alternative hypothesis (also called H1)
» If we're wrong: position of menu bar makes no
difference
— i.e., mean(Mac) = mean(Win)
— This is called the null hypothesis (HO)
+ We can't really disprove the null hypothesis

- Instead, we argue that the chance of seeing a difference at
least as extreme as what we saw is very small if the null
hypothesis is true

Spring 2011 6.813/6.831 User Interface Design and Implementation 1

Our hypothesis is that the position of the menubar makes a difference in time. Another way of putting it is that
the (noisy) process that produced the Mac access times is different from the process that produced the
Windows access times. Let’s make the hypothesis very specific: that the mean access time for the Mac menu
bar is less than the mean access time for the Windows menu bar.

In the presence of randomness, however, we can’t really prove our hypothesis. Instead, we can only present
evidence that it’s the best conclusion to draw from all possible other explanations. We have to argue against a
skeptic who claims that we’re wrong. In this case, the skeptic’s position is that the position of the menu bar
makes no difference; i.e., that the process producing Mac access times and Windows access times is the same
process, and in particular that the mean Mac time is equal to the mean Windows time. This hypothesis is
called the null hypothesis. In a sense, the null hypothesis is the “default” state of the world; our own
hypothesis is called the alternative hypothesis.

Our goal in hypothesis testing will be to accumulate enough evidence — enough of a difference between Mac
times and Windows times — so that we can reject the null hypothesis as very unlikely.

11

Statistical Significance

« Compute a statistic from our experimental data
X = mean(Win) - mean(Mac)

» Determine the probability distribution of the statistic assuming
HO is true
Pr(X=x | HO}

* Measure the probability of getting the same or greater difference
Pr(X>x0|H0) one-sided test
2Pr (X >[x0| | HO) two-sided test

« If that probability is less than 5%, then we say

- "We reject the null hypothesis at the 5% significance level”

— equivalently: “difference between menubars is statistically
significant (p < .05)”

+ Statistically significant does not mean scientifically important

Spring 2011 6.813/6.831 User Interface Design and Implementation 12

Here’s the basic idea behind statistical testing. We boil all our experimental data down to a single statistic (in
this case, we’d want to use the difference between the average Mac time and the average Windows time). If
the null hypothesis is true, then this statistic has a certain probability distribution. (In this case, if HO is true
and there’s no difference between Windows and Mac menu bars, then our difference in averages should be
distributed around 0, with some standard deviation).

So if HO is really true, we can regard our entire experiment as a single random draw from that distribution. If
the statistic we computed turned out to be a typical value for the HO distribution — really near 0, for example —
then we don’t have much evidence for arguing that HO is false. But if the statistic is extreme — far from 0 in
this case — then we can quantify the likelihood of getting such an extreme result. If only 5% of experiments
would produce a result that’s at least as extreme, then we say that we reject the null hypothesis — and hence
accept the alternative hypothesis H1, which is the one we wanted to prove — at the 5% significance level.

The probability of getting at least as extreme a result given HO is called the p value of the experiment. Small p
values are better, because they measure the likelihood of the null hypothesis. Conventionally, the p value must
be 5% to be considered statistically significant, i.e. enough evidence to reject. But this convention depends
on context. An experiment with very few trials (n<10) may be persuasive even if its p value is only 10%.
(Note that a paper reviewer would expect you to have a good reason for running so few trials that the standard
5% significance wasn’t enough...) Conversely, an experiment with thousands of trials won’t be terribly
convincing unless its p value is 1% or less.

Keep in mind that statistical significance does not imply importance. Suppose the difference between the
Mac menu bar and Windows menu bar amounted to only 1 millisecond (out of hundreds of milliseconds of
total movement time). A sufficiently large experiment, with enough trials, would be able to detect this
difference at the 5% significance level, but the difference is so small that it simply wouldn’t be relevant to user
interface design.

12

T test

T test compares the means of two samples A and B

Two-sided:
— HO: mean(A) = mean(B)
— H1: mean(A) <> mean(B)

One-sided:
— HO: mean(A) = mean(B)
— H1: mean(A) < mean(B)

» Assumptions:

— samples A & B are independent (between-subjects,
randomized)

— normal distribution
— equal variance

Spring 2011 6.813/6.831 User Interface Design and Implementation 13

Let’s look at some of the more common statistical tests that are used in user interface experiments.

The T test is what you’d use to compare two means in a between-subjects experiment, like the hypothetical
Mac/Windows menubar experiment we’ve been discussing. The T statistic computes the difference between
the Mac average and the Windows average, divided by an estimate of the standard deviation. If the null
hypothesis is true, then this statistic follows a T distribution (which looks very similar to a normal distribution,
a hump centered at 0). You can look up the value of the T statistic you computed in a table of the T distribution
to find out the probability of getting a more extreme value.

There are two forms of the T test, with different alternative hypotheses. In the more conservative, two-sided
T test, your alternative hypothesis is merely that the means are different, so an extreme t value (either positive
or negative) counts as evidence against the null hypothesis. The other form is the one-sided test, in which
your alternative hypothesis expects the difference to go one way or the other — e.g., if there’s any difference
between Mac and Windows at all, the Mac should be faster. It’s conventional to use the two-sided test unless
you (and the skeptic you’re arguing against) are completely certain which way the difference should go, if the
difference exists at all.

Using the T test requires a few assumptions. First, your samples should be independent, so you need to use
good experiment design with randomization and controls to prevent inadvertent dependence between samples.
Second, the T test also assumes that the underlying probability distribution of the samples (e.g., the access
times) is a normal distribution, and that even if the alternative hypothesis is true, both samples have equal
variance. Fortunately the T test is not too sensitive to the normality and equal-variance assumptions: if your
sample is large enough (N > 20), deviations don’t affect it much. There’s also an “unequal variances” version
of the T test, which uses a slightly different statistic, but with weaker assumptions come less power (i.e., it
takes a larger N to reach the same level of significance with the unequal variances T test).

13

Running a T Test

- t.test(data1$win, data1$mac)

Welch Two Somple t-test

data: win and mac
t = 2.1322, df - 17.6823, p-value - 9.084733
alternative hypothesis: true difference in meons is not equal to @
95 percent confidence interval:
9.9992005 151.0007295
sample estimates:
mean of x mean of y
584 5908

Spring 2011 6.813/6.831 User Interface Design and Implementation 14

The actual calculation of the t statistic and the proof that it’s a valid test are beyond the scope of this course;
the statistics courses mentioned earlier cover it. In practice, nobody computes their own t statistic; they use a
statistical package to do the computations. So for the sake of this class, we’ll focus on understanding when to
use a t test (that was the last slide), and then how to read the report of the test produced by a stats package.

Running a t test in R to compare two conditions, represented as vectors of numbers, is almost trivial. For more
information, look at http://www.statmethods.net/stats/ttest.html

Here’s the result of applying the t test (assuming equal variances) to the 10-observation Windows/Mac
menubar experiment we’ve been using.

The most important numbers are highlighted in yellow. T is the actual t statistic value computed from your
data. df (degrees of freedom) is a measure of the power of the test; it’s directly related to the number of

observations you have (n-2 in the case of the t test, but other statistical tests have different ways to calculate
their degrees of freedom).

Finally, the p value for the t test is 0.047, which means that the observed difference between the Windows and
Mac menubar is only 4.7% likely to happen purely by chance. Assuming we decided to use a 5% significance
level from the outset, we would now say that the difference is statistically significant (two-tailed t =2.13, df =
18, p < 0.05). Often researchers will write just “p<0.05” or “p<0.01” instead of giving the actual p value.

14

Summary

» Use statistical tests to establish significance
of observed differences

» Graphing with error bars is cheap and easy,
and great for getting a feel for data

Spring 2011 6.813/6.831 User Interface Design and Implementation

15

0 Bl ol
6@3 (M Sm Myd‘u
AN
~ (g é‘[P(m]#?ﬁ’- «f&r hm[

M/S O{{ (.t H(b“ ﬁ@/ﬁuwg
L e p/a/tevz

"‘%v%ﬁkiz prw‘ﬂ'/ i Desh brash
L)J+ Jaf Mﬂ

Itﬁ 0o Wass don WMP ﬁoac{

M /\ﬁ)]F Pm«wb

}/U(/” L & /l (m(9JFCL5W
“‘—“73},\3 47) quP(OVQ
/ﬁr\l\{ﬁi &@[m mcgh\t 7& oy

bu{\ w t(kz L ot e fﬂl%ém};

) opdale of st g
W o ok of peaple
08 Sl dieens Wl vey Low P

0

/\Tcu, Vs L/;ﬂdovvj MQ éCV

g" m Ho Na J%M’“{’

Mein s = [Mean e
HI AH]/\7/’

@ (fom + o — ¢lle zft’o*/
o (0%%@7‘6‘/{/ YLWL'(L ﬁ(Y, 1/((,[4(

2 me@l v <7 Mean W
Lééw Fitl folls e fa
(043 %m@dj

T—-%J@‘th\c
T
(|
Ut of Vowes Jiaded by o Uzatl
+ < PMeant - maapy
0/
(Hs who si2¢ festiay

bl b e pab dl i
Ji{é (I\ ;f H,

J

R Jﬂ
mjr i

§
Tsw*lc swyy 19 (edidd 04 O

lb@@ J(’S}wjrs @00&) {)19 (er(f@ﬁ’“@

(Q’\ (Cbk P“(yt(}‘ i Possélﬂlé[;f“g ot il'_

6““ 0017 LW& 0w 1L aghd* (/d,[/(ﬂ
/DWUL Pﬂb}) Olé If\;tiinj Q ZW@Q, ‘[L) W{,& (15 sm@y

N
(v gyl Pf@b

\N\‘M 'tu/o TLM'M

Qﬁ;m £ ot of s

A
TE 5% -l Sl ’04{7 5% chae w0

0(e (\L&)(L

0

T
It
1
m
0/
l l
i
1
i
Way me
{ion
Th
7
d
(s

A
i
;
!
| (q
1‘3
p
o
s
| (et
(0
ut

T
et

O/_\L
Oy
”\1/
0
§dod

l(’/ / WQM
;D;)q):m
GMM)
P‘:chﬁ/
f n @/

Aésv%
ja: é
mf
mP
0@
d{ Cj
Vi
lﬁfl(@

3
s
¥y
o
1%
m)

Y [0
JM’ &Je@/%ﬁ of {roedy :QQ

J/ @CM!I] (:5 pucl
St 10 degyey e preg
JF = MUy, - o W

[

]['/Z%)r F looge

O //n
A C it fun ddla WL)

(

Subhandls
y ! d Q@/@Z.‘)

- 0F feddm

) Spullec w/ less H
QM 6/‘14”f/ a5 b\/{’/l/

Lw(l 1Lo Mb)l{ Sllfmg C{(gurvmf* a?m& C/;/Lc'(,

Fados
\)eW b hue | fulle W/ Jca’ st Tk (0diHon

Rauj[o #Qcﬂtb 6%2‘435 AS (CUL@M:“)

la n 14 o el o el
Ljfuy{“[/uj 0 moJ&{ of N process

P@‘(/QA/)r#@\ﬁ
==

ANOU A (_\/a/ifm@)
&JWPW@} Mo TM | rws (Lk Z_Z)

Hﬁ M\ lf\ MUy G0 —
M; 2 m wa s (e CLM (‘9 M t/af‘(a-bl*?’)
ho«M@)
bt T£ F high (2! } 3 4, g, Teslt

o Al Q (d w/ e bho Ut
Lmluh Ty mvlw! 000 fosm

Wee dhowe af st | cond diff oy
-ht Oh% “ Vw]‘ l, QAL

fo Tobey HD
— (4n %lr Pw/o{/[/ﬁ [o/m/ (@mpf{(('c%

W "“)c{/lfm?L 7 @cw
2% 9 be o “ 0 52‘74,%04#

L15:

Spring 2012

Experiment Analysis (continued)

GR3 due Sun
RS2 due two weeks from Sun

6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Spang 2012 6.813/6.831 User Interface Design and Implementation 2

Today’s Hall of Fame or Shame example is a feature of Microsoft Office 2007 that gives a preview of what a
style command will do to the document while you’re mousing over it. Here, the mouse is hovering over the
54-point choice on the font-size drop-down, and PowerPoint is showing what the selection would look like
with that new style.

Let’s discuss the pros and cons of this approach from a usability point of view.

Today’s Topics

* T test
+ ANOVA test

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

This lecture continues the stream on research methods. Our last lecture in the stream concerned experiment
design -- how to design controlled experiments to answer a research question. Today’s lecture is about the
second part of that process, how to analyze the data from the experiment to determine the answer to the
question. We’ll discuss the principles of hypothesis testing, which is the basis for analysis. We’ll talk about a
cheap and easy way to get a feel for your data, by graphing it with error bars, which is not hypothesis testing
but is always good practice to do anyway. And we’ll discuss two statistical tests commonly used in HCI
research: the t test and the ANOVA (Analysis of Variance) test.

This is only a very brief introduction to statistical methods and experiment analysis. There’s much more to be
said on this topic, which is outside the scope of this class. There are other good MIT classes that cover it in
much more depth, particularly 9.07 Statistical Methods in Brain & Cognitive Sciences and 16.470/ESD.756
Statistical Methods in Experimental Design. Also see http://statistics.mit.edu/, a clearinghouse site for classes
and research in statistics at MIT.

Experiment Analylsis

» Hypothesis: Mac menubar is faster to access
than Windows menubar

— Design: between-subjects, randomized
assignment of interface to subject

Windows Mac
625 647
480 503
621 559
633 586
Spring 2012 6.813/6.831 User Interface Design and Implementation 6

Let’s return to the example we used in the experiment design lecture. Suppose we’ve conducted an experiment
to compare the position of the Mac menubar (flush against the top of the screen) with the Windows menubar
(separated from the top by a window title bar).

For the moment, let’s suppose we used a between-subjects design. We recruited users, and each user used
only one version of the menu bar, and we’ll be comparing different users’ times. For simplicity, each user did
only one trial, clicking on the menu bar just once while we timed their speed of access. (Doing only one trial is
a very unreliable experiment design, and an expensive way to use people, but we’ll keep it simple for the
moment.)

The results of the experiment are shown above (times in milliseconds; note that this is fake, randomly-
generated data, and the actual experiment data probably wouldn’t look like this). Mac seems to be faster (574
ms on average) than Windows (590 ms). But given the noise in the measurements — some of the Mac trials are
actually much slower than some of the Windows trials -- how do we know whether the Mac menubar is really
faster?

This is the fundamental question underlying statistical analysis: estimating the amount of evidence in support
of our hypothesis, even in the presence of noise.

Hypothesis Testing

= Qur hypothesis: position of menubar matters
- i.e., mean(Mac times) < mean(Windows times)
— This is called the alternative hypothesis (also called H1)
» If we're wrong: position of menu bar makes no
difference
- i.e., mean(Mac) = mean(Win)
— This is called the null hypothesis (H0)
* We can't really disprove the null hypothesis

— Instead, we argue that the chance of seeing a difference at
least as extreme as what we saw is very small if the null
hypothesis is true

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Our hypothesis is that the position of the menubar makes a difference in time. Another way of putting it is that
the (noisy) process that produced the Mac access times is different from the process that produced the
Windows access times. Let’s make the hypothesis very specific: that the mean access time for the Mac menu
bar is less than the mean access time for the Windows menu bar.

In the presence of randomness, however, we can’t really prove our hypothesis. Instead, we can only present
evidence that it’s the best conclusion to draw from all possible other explanations. We have to argue against a
skeptic who claims that we’re wrong. In this case, the skeptic’s position is that the position of the menu bar
makes no difference; i.e., that the process producing Mac access times and Windows access times is the same
process, and in particular that the mean Mac time is equal to the mean Windows time. This hypothesis is
called the null hypothesis. In a sense, the null hypothesis is the “default” state of the world; our own
hypothesis is called the alternative hypothesis.

Our goal in hypothesis testing will be to accumulate enough evidence — enough of a difference between Mac
times and Windows times — so that we can reject the null hypothesis as very unlikely.

Statistical Significance

= Compute a statistic from our experimental data
X = mean(Win) - mean(Mac)

» Determine the probability distribution of the statistic assuming
HO is true
Pr(X=x | HO)

« Measure the probability of getting the same or greater difference
Pr(X>x0|HO) one-sided test
2Pr(X>|x0|| HO) two-sided test

» If that probability is less than 5%, then we say
— “We reject the null hypothesis at the 5% significance leve

— equivalently: “difference between menubars is statistically
significant (p <.05)"

;u

« Statistically significant does not mean scientifically important

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

Here’s the basic idea behind statistical testing. We boil all our experimental data down to a single statistic (in
this case, we’d want to use the difference between the average Mac time and the average Windows time). If
the null hypothesis is true, then this statistic has a certain probability distribution. (In this case, if HO is true
and there’s no difference between Windows and Mac menu bars, then our difference in averages should be
distributed around 0, with some standard deviation).

So if HO is really true, we can regard our entire experiment as a single random draw from that distribution. If
the statistic we computed turned out to be a typical value for the HO distribution — really near 0, for example —
then we don’t have much evidence for arguing that HO is false. But if the statistic is extreme — far from 0 in
this case — then we can quantify the likelihood of getting such an extreme result. If only 5% of experiments
would produce a result that’s at least as extreme, then we say that we reject the null hypothesis — and hence
accept the alternative hypothesis H1, which is the one we wanted to prove — at the 5% significance level.

The probability of getting at least as extreme a result given HO is called the p value of the experiment. Small p
values are better, because they measure the likelihood of the null hypothesis. Conventionally, the p value must
be 5% to be considered statistically significant, i.e. enough evidence to reject. But this convention depends
on context. An experiment with very few trials (n<10) may be persuasive even if its p value is only 10%.
(Note that a paper reviewer would expect you to have a good reason for running so few trials that the standard
5% significance wasn’t enough...) Conversely, an experiment with thousands of trials won’t be terribly
convincing unless its p value is 1% or less.

Keep in mind that statistical significance does not imply importance. Suppose the difference between the
Mac menu bar and Windows menu bar amounted to only 1 millisecond (out of hundreds of milliseconds of
total movement time). A sufficiently large experiment, with enough trials, would be able to detect this
difference at the 5% significance level, but the difference is so small that it simply wouldn’t be relevant to user
interface design.

T test

T test compares the means of two samples A and B

» Two-sided:
— HO: mean(A) = mean(B)
— H1: mean(A) <> mean(B)

» QOne-sided:
— HO: mean(A) = mean(B)
— H1: mean(A) < mean(B)

= Assumptions:

— samples A & B are independent (between-subjects,
randomized)

— normal distribution
— equal variance

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Let’s look at some of the more common statistical tests that are used in user interface experiments.

The T test is what you’d use to compare two means in a between-subjects experiment, like the hypothetical
Mac/Windows menubar experiment we’ve been discussing. The T statistic computes the difference between
the Mac average and the Windows average, divided by an estimate of the standard deviation. If the null
hypothesis is true, then this statistic follows a T distribution (which looks very similar to a normal distribution,
a hump centered at 0). You can look up the value of the T statistic you computed in a table of the T distribution
to find out the probability of getting a more extreme value.

There are two forms of the T test, with different alternative hypotheses. In the more conservative, two-sided
T test, your alternative hypothesis is merely that the means are different, so an extreme t value (either positive
or negative) counts as evidence against the null hypothesis. The other form is the one-sided test, in which
your alternative hypothesis expects the difference to go one way or the other — e.g., if there’s any difference
between Mac and Windows at all, the Mac should be faster. It’s conventional to use the two-sided test unless
you (and the skeptic you’re arguing against) are completely certain which way the difference should go, if the
difference exists at all.

Using the T test requires a few assumptions. First, your samples should be independent, so you need to use
good experiment design with randomization and controls to prevent inadvertent dependence between samples.
Second, the T test also assumes that the underlying probability distribution of the samples (e.g., the access
times) is a normal distribution, and that even if the alternative hypothesis is true, both samples have equal
variance. Fortunately the T test is not too sensitive to the normality and equal-variance assumptions: if your
sample is large enough (N > 20), deviations don’t affect it much. There’s also an “unequal variances” version
of the T test, which uses a slightly different statistic, but with weaker assumptions come less power (i.e., it
takes a larger N to reach the same level of significance with the unequal variances T test).

Running a T Test

- t.test(data1$win, data1$mac)

Welch Two Somple t-test

data: win and mac
t = 2.1322, df - 17.623, p-value - 9.04733
aglternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
0.9992005 151.00070895

sample estimates:
mean of x mean of y

584 508

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

The actual calculation of the t statistic and the proof that it’s a valid test are beyond the scope of this course;
the statistics courses mentioned earlier cover it. In practice, nobody computes their own t statistic; they use a
statistical package to do the computations. So for the sake of this class, we’ll focus on understanding when to
use a t test (that was the last slide), and then how to read the report of the test produced by a stats package.

Running a t test in R to compare two conditions, represented as vectors of numbers, is almost trivial. For more
information, look at http://www.statmethods.net/stats/ttest.html

Here’s the result of applying the t test (assuming equal variances) to the 10-observation Windows/Mac
menubar experiment we’ve been using.

The most important numbers are highlighted in yellow. T is the actual t statistic value computed from your
data. df (degrees of freedom) is a measure of the power of the test; it’s directly related to the number of

observations you have (n-2 in the case of the t test, but other statistical tests have different ways to calculate
their degrees of freedom).

Finally, the p value for the t test is 0.047, which means that the observed difference between the Windows and
Mac menubar is only 4.7% likely to happen purely by chance. Assuming we decided to use a 5% significance
level from the outset, we would now say that the difference is statistically significant (two-tailed t=2.13, df =
18, p<0.05). Often researchers will write just “p<0.05” or “p<0.01” instead of giving the actual p value.

10

Running a T Test

» smalldata = data1[1:4,]
+ t.test(smalldata$win, smalldata$mac)

Welch Two Sample t-test

data: smalldata$win and smalldata$mac

bt = 0.3381, df =~ 5.767, p-value = 9.7472
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:

-100.9362 132.9362
sample estimates:
mean of x mean of y

589.75 573.75

Spring 2012 6.813/6.831 User Interface Design and Implementation 11

Now let’s look at the subset of the data we graphed earlier — just the first four observations for each condition.
This will let us see an example of a failing statistical test.

In this case, the two-tailed t test had p value 0.75, which means that the difference in means between the
Windows sample and the Mac sample was 75% likely to happen by pure chance even if the Windows and Mac
conditions actually had the same true mean (the null hypothesis). That’s way too high a chance, so we say that
this data showed no significant difference between the Windows and Mac menubars (two-tailed t=0.336,
df=6, p = 0.75). The part in parentheses is important when you’re writing this result in a paper — it gives the
type of statistical test used (two-tailed t), the actual value of the statistic (0.336), the degrees of freedom, and
the resulting p value. (Many researchers would omit it for a failing test like this one, but it’s essential to
include it when the test succeeds).

11

condition time
H - win 625
Using Factors in R - pos
win 621
win 633
win 634
" i iai i 599
+ Instead of representing the win/mac conditions o <05
as columns, it's better to represent them by a i et
factor (categorical variable) win 505
mac 537
+ data2 = read.csv(file.choose()) mac 503
§ i 559
+ ttest(data2Stime ~ data2$condition) - e
mac 458
mac 380
fielch Two Somple t-test mac a7
mac 409
mac 589
data: all by allf e a2
bt - -2.1322, df - 17.623, p-value - 8.04733
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
-151.0007095 -3.9992905
sample estimates:
meéan in group moc mean in group win
508 584
Spring 2012 6.813/6.831 User Interface Design and Implementation 12

There’s another way to run this t test in R, which we’ll look at because it introduces an important concept that
we’ll need for more sophisticated tests in a bit: a factor. A factor is a vector of values of a categorical
independent variable. In this case, the condition can be either win or mac, so we first construct a vector of
strings (10 “win” and 10 “mac”, matching the 20 measurements in the vector time), and then convert it from a
vector of strings into a factor of enumerated values.

Once we’ve used a factor to identify the two groups in our t test, we can run the t test against an explicit model
of the process. That’s what time ~ condition means: that we believe that the dependent variable time is a
function of the (two-valued variable) condition, and we want the t test to test this model against the null
hypothesis that time is independent of condition.

Paired T Test

« For within-subject experiments with two
conditions

» Uses the mean of the differences (each user
against themselves)

* HO: mean(A_i—B_i)=0
* H1: mean(A_i—B_i) <> 0 (two-sided test)
ormean(A_i—B_i)>0 (one-sided test)

Spring 2012 6.813/6.831 User Interface Design and Implementation

13

What if we had run a within-subjects experiment instead? Then we would need to compare each subject with
themselves, by computing the difference between each subject’s Macintosh access time and the same subject’s
Windows access time. We would then use a t test for the hypothesis that the mean of these differences is

nonzero, against the null hypothesis that the mean of the differences is zero. This test is called a paired t test.

Why is a paired t test more powerful? Because by computing the difference within each user, we’re canceling
out the contribution that’s unique to the user. That means that individual differences between users are no

longer contributing to the noise (variance) of the experiment.

13

Running a Paired T Test (in R)

- ttest(data2$times ~ data2$condition, paired=TRUE)

data: win and mac
t - 2.6758, df - 9, p-value - 93.,02538
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
11.74872 149.25128
sample estimates:
mean of the differences
76

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Here’s an analysis of a within-subjects menubar experiment. Each subject did a trial on each menubars
(counterbalanced to control for ordering effects, so half the subjects used the Windows menubear first and half
used the Mac menubar first). The data is ordered by subject, so subject #1’s times were 625ms for the
Windows menubar and 647ms for the Mac menubar. The t test is actually applied to the differences (e.g., 625 —
647 = -22 for subject 1). The p value for the two-tailed t test is now 0.025, which means that the observed
difference between the Windows and Mac menubar is only 2.5% likely to happen purely by chance. So we
would be justified in concluding that the difference is statistically significant.

Note the paired=TRUE parameter to t.test; that’s what makes R pair up the observations. See http://
www.statmethods.net/stats/ttest.html

14

Analysis of Variance (ANOVA)

« Compares more than 2 means

* One-way ANOVA
— 1 independent variable with k >= 2 levels
— HO: all k means are equal

— H1: the means are different (so the independent
variable matters)

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

So far we’ve only looked at one independent variable (the menu bar position) with only two levels tested (Mac
position and Windows position). If you want to test means when you have more than one independent
variable, or more than two levels, you can use ANOVA (short for Analysis of Variance).

One-way ANOVA (also called “single factor ANOVA”™) addresses the case where you have more than two
levels of the independent variable that you’re testing. For example, suppose we wanted to test a third menu bar
position at the bottom of the screen. Then we’d have three samples: top (Mac), below title (Windows), and
bottom. One-way ANOVA can simultancously compare all three means against the null hypothesis that all the
means are equal.

ANOVA works by weighing the variation between the independent variable conditions (Mac vs. Windows vs.
bottom) against the variation within the conditions (which is due to other factors like individual differences and
random noise). If the null hypothesis is true, then the independent variable doesn’t matter, so dividing up the
observations according to the independent variable is merely an arbitrary labeling. Thus, assuming we
randomized our experiment properly, the variation between those arbitrary groups should be due entirely to
chance, and identical to the random variation within each group. So ANOVA takes the ratio of the between-
group variation and the within-group variation, and if this ratio is significantly greater than 1, then that’s
sufficient evidence to argue that the null hypothesis is false and the independent variable actually does matter.

Like the t test, ANOVA also assumes that the samples are independent, normally distributed, and have equal
variance.

15

Running ANOVA (in R)

data3 = read.csv(file.choose())
+ fit = aov(data3$time ~ data3$condition)
» summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
menubar 2 41553 208776.5 3.6909 9.03828
Residuals 27 151984 5629.1

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

Here’s an example of running an ANOVA test. The fictitious experiment here is a between-subjects
experiment with three conditions: Windows menubar, Mac menubar, and menubar at bottom of screen. So our
condition factor in this dataset now has three different values in it (win, mac, btm). The aov function
(“analysis of variance”) does the test, and returns an object with the results. If we just display that object
directly, however, it doesn’t give us the information we want, like the F statistic and the p value. We have to
use the summary() function to get out the critical stuff. See http://www.statmethods.net/stats/anova.html

Here’s how to read the output. Sum Sq shows the sum of the squared deviations from the mean, which is how
ANOVA measures how broadly a sample varies. The residual SumSq shows the deviation of each sample from
its group’s mean, so the first Windows sample would contribute (625-584.0)? to the within-groups SS. The
condition SumSq replaces each sample with its group’s mean and then uses the deviation of these group means
from the overall mean of all samples; so the same Windows sample would contribute (584.0-531.5)? to the
between-groups SS. df is the degrees of freedom of each SumSq statistic, and Mean Sq is the mean sum of
squared deviations (SS/df). Finally the F statistic is the ratio of the between-groups MS and the within-groups
MS. Tt is this ratio that tells us whether there is more variation between the three menubar conditions than
within the samples for each (due to other random uncontrolled variables, like user differences). If the F
statistic is significantly greater than 1, then the p-value (Pr>F) will show significance

In this case, the p value is 0.038, so we say that there is a significant difference between the three menubars
(one-way ANOVA, F, ,,=3.69, p < 0.05). Note that degrees of freedom for the F statistic are usually shown as
subscripts, as shown.

It turns out that ANOVA is equivalent to the t test when the number of conditions is 2; in that case, the F
statistic used in ANOVA is related to the t statistic simply as F=t%, and you get the same p value from both
tests.

16

Running Within-Subjects ANOVA (in R)
condition time subject
win 625 ul
win 480 u2
win 621wl
» data4 = read.csv(file.choose()) win 53 W
. - wi 654 15
« fit = aov(data4$time ~ datad$condition + win mw
Error(datad$subject/data4$condition)) el
. win 651 o9
summary(fit) win i .
mac 647 ul
Error: dotad$subject x :2::;
Df Sum Sq Mean Sq F value Pr(>F)
Residuals O 88203 9300.3 e e
mac 380 6
Error: dotod43subject:dota4$condition mac 477 u?

Df Sum Sq Mean Sq F value Pr(>F) mac 49 8
dato4$condition 2 41553 20776.5 5.8634 ©.91004 * mac 589 w9
Residuals 18 63782 3543.4 me 472 ulD

bm 435 ul
btm 436 w2
btm 512 W3
bum 564 v
bm 560 uS.
bm 537 U6
btm 391 o7
Spring 2012 6.813/6.831 User Interface Design and Implementation 17

Within-subjects ANOVAs are possible in R, but require more information. First, we need to create a factor for
the subject — which subject provided each measurement? That factor now becomes one of the independent
variables of the experiment. But when we write the model, we use this factor not as part of the process, but in
a special Error term, as shown.

http://www.statmethods.net/stats/anova.html

17

Tukey HSD Test

» Tests pairwise differences for significance
after a significant ANOVA test

— More stringent than multiple pairwise t tests

T00.0
600.0
500.0
4000
300.0

« Be careful in general about applying multiple
statistical tests

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

So the ANOVA test told us that the choice of menubar affects time. But how? By itself the test doesn’t say
which differences are significant. Is Windows significantly worse than the other two, but Mac and Bottom are
basically the same? Or are all three different from each other? Graphing with error bars can give a rough
answer; it looks like Mac and Bottom are within their error bars of each other, while Windows is beyond. For

a statistical test of this question, we can use the Tukey HSD (Honestly Significant Difference) test, which is
also sometimes called the Tukey post-hoc test.

Not every stats package can do this test, but there are web sites that do, and the calculation of the Tukey
statistic uses data that is already included in an ANOVA report (like the means for each group, the within-
group degrees of freedom, and the within-group MS), so it’s straightforward. The larger the Tukey statistic is,
the better. In this case (for n=10 and df=27), the critical value for 5% significance is roughly 3.5. None of the
pairwise comparisons reach that level, so even though we can say that the choice of menubar significantly
affected time at a 5% level, we don’t have enough evidence to say that the Windows menubar was actually
worse at the 5% level.

Why don’t we just apply a t test between each pair of conditions? That’s a risky thing to do. Statistical testing
is only sound when you apply just one test to any given set of data. Roughly speaking, any given test has a 5%
chance of lying to you and indicating a significant difference at the 5% level even when there isn’t one.
(Statisticians call this a “type I error.”) The more tests you do, the more likely you are to fall into this trap. This
is why you need to choose your statistical tests before you collect your data, rather than just dredge around
through the data afterwards to see what tests work. Sometimes experimenters plan to run multiple tests on the
same data; when they do this, however, they use a stricter level of significance than 5% for each test, so that
the overall (“familywise™) risk of making the type I error is still bounded by 5%. This stricter significance is
called “Bonferroni adjustment”; you’ll see it in seriously empirical HCI papers from time to time.

The Tukey HSD test is an example of a post-hoc test, one that you didn’t originally plan to run (because your
decision to run it was triggered by the successful ANOVA), and so you didn’t adjust your significance level for
it. So the Tukey test is designed to be much more stringent than a t test — you need bigger differences in your
data to get 5% significance. You may have noticed that the data in all these fake experiments happens to be
identical — but where the t test comparing Win vs. Mac was significant, the Tukey HSD test was not.

18

Tukey HSD Test (in R)

» TukeyHSD(fit)

Tukey multiple comparisons of means
95% fomily-wise confidence level

Fit: aov(formula = time ~ menubar)

$menubar
diff
mac-btm 5.6
win-btm 81.6
win-mac 76.9

Spring 2012

lwr upr p adj

-77.592144 88.79214 0.9847683

-1.592144 164.79214 9.8553394
-7.192144 159.19214 9.0783231

6.813/6.831 User Interface Design and Implementation

19

Two-Way ANOVA

» 2 independent variables with j and k levels,
respectively

» Tests whether each variable has an effect
independently

» Also tests for interaction between the
variables

Spring 2012 6.813/6.831 User Interface Design and Implementation 20

ANOVA can be extended to multiple independent variables, by looking at the variation between different
levels of one independent variable (while holding the other independent variable constant). This is two-way
(or two-factor) ANOVA.

Two-way ANOVA can be used to analyze a within-subjects experiment, where one independent variable is the
variable we were testing (e.g. menubar position), while the other independent variable is the user’s identity.

This can really only be done in a real stats package like R — Excel and online statistical caluclators don’t
support multiway ANOVAs. See http://www.statmethods.net/stats/anova.html for more about how to do it in
R.

20

Two-way Within-Subjects ANOVA (in R)

time =[625, 480, ..., 647, 503, ..., 485, 436, ...]
menubar = [win, win, ..., mac, mac, ..., btm, btm, ...]
device = [mouse, pad, ..., mouse, pad,..., mouse, pad, ...]

subject =[ul,ul,u2,u2, .., ul,ul,u2,u2 ..., ul,ul, u2, u2,..]

= fit = aov(time ~ menubar*device + Error(subject/
menubar*device))

« summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
menubar 2 41553 29776.5 3.4086 9.08498
Residuaols 8 48763 6095.3

Spring 2012 6.813/6.831 User Interface Design and Implementation

21

http://www.statmethods.net/stats/anova.html

21

Other Tests

» Two discrete-valued variables
— “"does past experience affect menubar preference?”
+ independent var { WinUser, MacUser}
+ dependent var {PrefersWinMenu, PrefersMacMenu}

— contingency tablepreferswin PrefersMac
WinUser 25 9
MacUser 8 19

— Fisher exact test and chi square test

» Two (or more) scalar variables
— Regression

Spring 2012 6.813/6.831 User Interface Design and Implementation 22

The t test and ANOVA are designed for cases where your independent variable is discrete-valued (e.g. two or
three menubar conditions) and your dependent variable is a scalar quantity (in fact, a normally distributed
scalar). This is very common, but other kinds of variables sometimes appear in UI experiments.

When both variables are discrete-valued, you end up visualizing your data as a table of occurrence frequencies
(called a contingency table) rather than a bar graph. There are two statistical tests for this kind of relationship:
the Fisher exact test works best when the numbers are small (some frequencies in the table are less than 10)
and the table is 2x2 (i.e., each variable has only two possible values). It can be computed for larger table sizes,
but not by hand. The chi-square test is more suitable for large table dimensions, and when the frequencies in
each cell are big enough (all greater than 5). Excel doesn’t have these tests, but the web does.

When both variables are scalar, the right tool is regression. If our menubar experiment varied the starting
distance from the menu, for example, and measured the time to access, then we might use regression to “fit a
model” to the data that actually quantifies the relationship between these two variables — i.e., that time varies
with the log of starting distance. Regression can do this fitting, and tell us how well the model fits the data
(the analog of statistical significance for hypothesis testing) as well as the constant factors of the relationship.
Regression is beyond the scope of this class (get it in a statistical methods course), but you’ll see it from time
to time in empirical HCI papers, particularly work on low-level input like Fitts’s Law.

22

Tools for Statistical Testing

« Web calculators
* Excel
- Statistical packages

— Commercial: SAS, SPSS, Stata
— Free: R

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

There are many free calculators on the web for running simple t tests, ANOVAs, and the other tests mentioned
in this lecture. Search for “T test calculator” and “ANOVA calculator”, for example, to find good ones. The
calculators only really need summary statistics about your data (means, standard deviations, counts), which
you can easily compute yourself in a spreadsheet, so it isn’t necessary to enter all your data in a web form.

Microsoft Excel also has some support for the common tests. It requires installing the optional Analysis

Toolpak (go to Options/Add-ins/Manage Excel Add-ins); once installed, go to the Data tab and look for the
Data Analysis button.

Full-fledged stats applications have much richer support for these tests, at the cost of a greater learning curve.
MIT has some discounts for SPSS and Stata. There’s also a free GNU stats system called R which is rapidly
growing in popularity.

23

Summary

» Use t test to compare two means

+ Use ANOVA to compare 3 or more means

Spring 2012

6.813/6.831 User Interface Design and Implementation

24

24

GR3: Paper Prototyping http://courses.csail.mit.edw/6.831/2012/handouts/gr3-paper-prototypi...

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION

Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

GR3: PAPER PROTOTYPING

| Prototype building Monday, March 12, 2012, 3-5 pm, in Walker Memorial 3rd floor gym

Prototype testing Wednesday, March 14, 2012, 3-5 pm, in Walker Memorial 3rd floor gym |
Friday, March 16, 2012, 3-5 pm, in Walker Memorial 3rd floor gym

|
!
|
|
|
i

Final hand-in Due at 11:59 pm on Sunday, March 18, 2012, on the wiki. ,

In this group assignment, you will do your first implementation of your term project, which will be a
paper prototype.

There are several class meetings associated with this assignment (days and times shown above):

® The building session offers you an opportunity to start building a paper prototype. The course
staff wimme to make suggestions, and some materials will be providesd-

® The testing sessions will allow you to test a paper prototype on your classmates. For part of the
time, you will also serve as a user for somebody else’s paper prototype.

—_—

You must do two rounds of testing, with a revision of your paper prototype in between. Each round
must involve at least 3 users. Note that if yomn’serrduﬁng’th‘e in-class testing
sessions, you will have find users outside of class as well. After the first round, revise your paper
prototype to address the critical usability problems and explore possible design alternatives.

Preparing for Testing

Before testing your prototype, you should:
® Build your prototype.

Draw the static background, menus, dialog boxes, and other windows. Decide how to implement

the dynamic parts of your interface. Hand-sketching is encouraged. You don't have to prepare

every possible screen in advance; it may be much easier to write responses on the fly.
___.————'__——_-—'_“_—‘

P

® Prepare a briefing for test users.

This should be at most a page of information about the purpose of your application and any
background information about the domain that may be needed by your test users (who may be
classmates) to understand it. These are your notes for the briefing, so make them short, simple
and clear, not dense wordy paragraphs. This is not a manual or quick-reference card. It should
not describe how to use the interface.

e

® Write your scenario tasks on separate index cards.

Your scenario should have involved at least three tasks. You should write these tasks down to

give to your users. Just write the concrete goat(s) of the task (e.g. "buy milk, tomatoes, and
bread"). Don't write the specific steps to follow, since that's for your users to figure out. The

1 of 3 3/10/2012 6:35 PM

GR3: Paper Prototyping http://courses.csail.mit.edw/6.83 1/20 12/handouts/gr3-paper-prototypi...

tasks should be brief, roughly 5 minutes to run.
® Choose roles for your team members.

F_'-—_—___
One person must play the computer. The other team members (if any) will be observers. We

won't bother with a facilitator for these pilot tests. It may be useful for you to swap roles after
every user on during the testing sessions, so that each of you gets a chance to try each role, but
decide how you'll do it in advance.

® Practice running your paper prototype.

Every team member should practice playing the learning the steps involved in making
the prototype functional, such as rearranging pieces and writing responses. It isn't important to

be fast, just competent and confident. A few trials are enough. Make sure your prototype can
handle the tasks involved in your scenario.

Running the Tests

When you run your prototype on a user, you should do the following things:
® Brief the user. \

Use the briefing you wrote up to describe orally the purpose of the application and background
information about the domain. Don't waste too much time on this: 1 minute should be enough.

® Present one task.

Hand the index card to the user and let them read it. Make sure they understand the task.
® Watch the user do the task.

Take notes from your observations.
e Repeat with the other tasks.

Run as many tasks on the user as you have time for.

Bring extra materials to your testing sessions. Having extra blank Post-it notes, correction tape, and
index cards on hand will help you improvise if a user does something unexpected, or help you make
small fixes to your prototype between users.

Playing a User for Your Classmates

During the testing sessions, when you are serving as a user, you should:
e Relax and enjoy yourself.

You're not being tested -- the interface is. Part of the point of this experience is to feel what it's
like to be users in a user test, so that you can empathize with them.

® Be cooperative.

Don't be intentionally dense, e.g. looking for Exit everywhere but the File menu. Interact with
the interface as you would if you were really using it.

R S
® Think aloud.
Jh————

20f 3 3/10/2012 6:35 PM

GR3: Paper Prototyping http://courses.csail.mit.edw/6.831/2012/handouts/gr3-paper-prototypi...

Help the observers understand what you're thinking by verbalizing your thought process. "Let's
see, | want to enter this bottle of milk, so where’s the scanner... oh, here it is. I'll scan the bottle
like this, oops that didn't work, let me find the bar code...” You get the idea.

What to Hand In

Update your group's wiki page so that it contains a section GR3 Paper Prototyping, containing the
following subsections:

® Prototype photos.

Digital photos of the pieces of your prototype. Show the prototype in interesting states; don't just
shew a Blank window. Although you will iterate your paper prototype during this assignment, the
photos only need to show one iteration.

e Briefing.

The briefing you gave to users.
® Scenario Tasks.

The tasks you gave to users, as you wrote them on the cards.
e Observations.

Usability problems you discovered from the testing. Describe what users did, but don't record
users' names.

® Prototype iteration.

You did two rounds of paper prototyping. Describe how your prototype changed between those
two rounds.

e

3of3 3/10/2012 6:35 PM

\ |
o Legnian
| (/mjef r mﬁ/ ;Wﬂ@
| o)
i

7
[8({/@ 644 JJ&H
o

WL
o
does M:jﬂé
¢

_ 1)
'
] l% R
A e | ﬁj

y 1
%(5[6«51/@5

J .

| /(W oY

n
gjuﬂ/ﬂ(ca(
/Y

fill
d €4é (MF@

oﬁﬁhqfﬂo@n - Bobble Corsgr
d__ch;ij — Mg

(Q2eQ

UL 6
G et

G‘a, V\f | ajL pﬁfﬂ
P%Jf@(c Aot ha e o
7 sl 4 File - g@/ P“gfz/i%
Y ngf{ﬂ/zf’

M Jme Mf neel b wale
woite v

o

ﬂ“rftg dl Oé F
(4

o uUntitled

Briefing:

RScanvpP 1s a system that allows event organizers to add QR codes to their
posters. Attendees can scan these QR codes to add the events to their
calendars. Event orgnizers can view the history of scans and RSVPs to help

with their event planning.

You are the event chair of HKN and you are planning a lecture called Bob
S UI Lecture. You are making a poster for the event. You want people to

be able to easily add the event to their calendars, so you add a RScanvP QR
code.

scenario:
- Create a QR code

Observations:)
- Subject is unsure about how to begin. (beacuse of paper)
- Subject did not notice the download button (because of piece of paper

related to email?)

Scenario:]
- You are taking a picture of a QR code on a poster.

Observations:)))] '
- Subject asks about phone interface, not so obvious it was Subject's

calendar.))
- Subject didn't notice the Yes/No slider (not drawn well); thought it

would perform an action
Scenario: .)))
- User recieves an email with an admin link to view results several days

later.

Observations:) o))

- Subject didn't notice the Tink in the email (was not underlined)

- Subject did not know the purpose of the admin page (describe it in an

email))]
- User wants a complaint 1ink...

Page 1

We [(—DWQ; (.Z‘-S-S-C{]%—QL.{‘

R SeanVlF

Zocfc and re Lral la uJ0\7 lLo ja;,\ Qj(/lp

f#q%/g?th &Zoou /ﬁvf U/Com;‘y eu-m'[.!.
C /rek TMQ bo b, Ga F

/ 747} 7<G A,Cj,'n/ 75

J in e Uiew)/CJUF resolts,

TR P Crente o QR (e

JM |

Qf‘Ca.Lf. &CC_oUn]L Ie?t‘n
v

/V[ak&. A

Q R
C ode

|
1

|

Z uekecbee L.”;Lure_
/Vzom. 3/29 @L{'UO’M

" uffbf {<f55j.e_

RSVP pow.

Qg@m bp 7(/64/}6 A QQ Gﬂ(
Sty | Ende Jotuls

M—

THe | __j
Loabon ||
Gl Cal
e L [Tt
Ead

I e

(/\/ o 7(
(Mg[

AP 7 Cedk o QL
%P 1, Deb\tgn Q@ (ale

Yoo @ b chag T lafe ', L“’F _‘OWWW

O L Llpxl “Gm\

QSCMVD 7 E(ec&e QA Qp\ C@\JC
W\L) sun Lol
o Dnebad (ke 2R [P]

7 Toad il Podw M
\/5;45 Yove {ou/o e fijﬂv‘c dgi;fl pgm

Pin am /w——)eem sent 4 W wilh g }ml 1(9
tut M (R ol mo[boview ROV

Cong LDW{ 77

Task 2

n QR cod? with yoour

© Sean

,O}wm’, ond /QSV}ﬂ 1/*0 an evm#.

%@b (5 UI L€</JR)/€

Mon L{//Z =4 PY
77 -3

Gfaq m? Qﬁ Cv(f ’J"‘J @JJ

J[O \[AV
B}

. J—

€ C{/[t’qdﬁ/

5y

\

Iask 3

« View iQSU)Os fo one of
Vour evem 60 Cdn O[dof #M(’,

R IP
Bohs)T ledve

Moo 9y <
32-113

RSP)

AH Mﬁwd)
Goegle (

Mo, Al 4 207

0

Bob_s UL Ledue '

B LOhes == F

Zasx: 3

: \/}C\/\/ IQSVPS ““o onée e)ﬂ
Vour evem So Can O(d(’/ 1(00(],

EMU‘I l

————__'-/

9

F(Omkl &SC&VL\/P
6\/&&}1 Bol)l, Ul Ledue Adni “nla

HW, ‘L‘J ‘h{ @Q‘h(l'] “/_L_L\ é,\
Bobs MI Z?/Of‘//Q

Hik o @M{
Vitw Qo

/Vumloer O'P gc-aﬂ']s @
9“6/\5 {0? 0’7

oo
" "
\'\\
, PR
/ ~
& — ’ p
moooT v R
O <

-

—
—~—
—
e

E[ﬂ}'{r@l@(oole\

We((ome, USQ r“,l

le\oo;a_ a.n -(_VQW{'-

6 (o J L&‘Lfoﬂ

b &
5#0rTrgl<

L-L C
///cow'ﬁ

B yh

[Bsb |

WL
Letoce

Ll Gl Dei 3p

—

9 (e ab end of épf'f) Beok
Ut Fo/ S, Googly o P

h @ KJIMPLL‘(/L(7
o LM/M/HIQF
- {066/1:(A ohal o
- l/\/\wnL {5 ! I{m ’F(ief}“}ﬂ [UOIW\\C
wUloolwlkp ¢
- 6)"0»/ [(’,W”ﬁ T)‘M CHUCK 01 lﬁ} ot

[V hefp
D~ e 1 Ahat fory'e

by o sk for 4

-

)

k R DR et e ey

\
0 GJL

bk L

M= Nzl # Syl e fedey
Ub@/ tall T pugd " {ondl}- 04

F/Ofmfd‘éft QW(/{ “}ng‘“x[y l/éﬂ'ibl//ﬁz_ f’fob/é’m)
T,{{O(M‘Mﬁ § e w\\

b

ol ity
B dovue dJ-).7 ﬁ@tﬁl{%/g

— About e L%(df/;ﬁ
“Sgdat Tool
e |
' |

“ iss 4 i

™ (Cmovp ;ﬂésﬁmf@! Q[@/Wq,/j
0o el Loy

"t T e d fo T hae ik 5/%7?

~ el (s YAk %\
&

’Jyoas Ojf %IH (Cm\+ Aoy Mg,
=Tl enote

@ WQ a/|/7

ma/k Sene Qocis 01 Agofbﬁv
lll{ o doa'tgnnw Bﬂm)

L’IDU{?&E‘U
S

ﬂpmto'f The ézjm girv@) mahf}e /a/%

Do ol
R Juh
~ et Vo ()qu dw
- m if/{\‘a Yov e which Wiy douc Ofw
Cuoll b 4 b

- [EE Yo Mg

’\)ujf (rbltﬂ }ﬁg \/0\/ Spe l‘mw [aﬁ(’/ q QCL% :5

Y
,Riu\ box WJ 4@ JgﬁwH ’}Q&

Dead .
pAYL #9
(onfast
_/

Mo thags b pop aof
Mc}@ 5&[5& Th:aﬁﬁ 5#6?4(:{ M[

\/‘\/@W_ ko

"]‘Pnfa/e jE -
B ”(/68 to e / ’
)WQ - Golr - 55 (elovadt in UT e
= QM{JQ
_ P%Z L
~ Ocenallon

\// é}?’e

i% ,D(’/CWEi @W) T)LM #& or (words

\ .)
WO/MW’ (i (O'{f)afﬂ 01 ’7 ‘{m @gml//‘/
Oduf, — gn pe >

Qvanhﬁm = (0 (mpol gaf o dc¥€€/€-zc<

[4
M@l \(5 Oulyy ‘}D Peciie !
/rdb H& flrt ”“Jf@

(1t o ando , puode i €omes i clay
D\lbﬂnﬂm foo b gy | b we J oo
tHve ' not ordoed o c{mfwﬁ/f,
PQQOIQ I QO\{é BRIV Seedriy
B\/t /hub%% /\W,?Lq,l W[‘Ppiy ‘»% 5(4/6
S e e i
(M s bl /sqfyafin itoens
(Q”\ 5{9(@/}? 'é/ ‘@Oé/'%llm\ = IOO[(ﬁ (F’ff‘”(/’ 1‘””7[(/eﬁ WQ“W/
| Olor ~5e0 ¢od etk

B‘* ot~ ol fo s ~mel S o s G s ad
- ~Ogme eah obled : b@qﬁ!&

M7 = (0 alfoon be Loused 29

A%o;af}/e - (cm Va)L’cW be Zgnm@(/ Whn [ook
ot e oy v whle

= —_—

—)_e(/\\n‘ 9
g8 o
'Cl/\wose o(fl{mﬂ/ I%}Fﬁ VMJ /augh/@
~ Gl Jreb‘r
T/ ”(nbe /{ eya

U{ mlh/ Ju(o(/J
- \:be 5ee éo)&/@‘f% ot ned emauly

\ (
A iy gme ‘{)

- Va\ve‘. \O@L(M@ Hadw

~ bk aa deey et 6#@4@7 (op ot .,
ﬂ 5(€vm+ "'%J
el o) o
—small 5 éfg
- wh’n& %, gr@m

A)

IWLO | 5 [dgg[b ﬂhfy

b ..
THe, —
SWIM/Z\l 8 ~ 6082%&,/[’5

- (obgj
—~/0051f }4’7
— Wl

e !
“hold (l/d,{vﬂ)

ele

o vor dab deoorbe tholf)
Yoo @ gebcd of it ad it ofil i,

/—_

&f&{ﬂiqn MOV1®} //‘Sf\
p\@ﬂlcﬂ(m# 041 %7

L16:

.

Spring 2012

Graphic Design

PS2/RS2 due at end of spring break
GR4 (computer prototype) starts right after spring break
consider doing more paper prototyping in the meantime

6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Google

B e e L

Ristgm Charn bickimund s Ametniy Fugust Duerems Besen Puary -Owde Jded leege

Spang 2012 68138 B31 User Interface Design and Implementation 2

Google is an outstanding example of simplicity. Its interface is as simple as possible. Unnecessary features
and hyperlinks are omitted, lots of whitespace is used. Google is fast to load and trivial to use.

But maybe Google goes a little too far! Take the perspective of a completely novice user coming to Google for
the first time.

*What does Google actually do? The front page doesn’t say.
*What should be typed into the text box? It has no caption at all.

*The button labels are almost gibberish. “Google Search” isn’t meaningful English (although it’s gradually
becoming more meaningful as Google enters the language as a noun, verb, and adjective). And what does “I’m
Feeling Lucky” mean?

*Where is Help? Turns out it’s reachable from About Google, but the scent isn’t too strong for that.

Although these problems would be easy for Google to fix, they are actually minor, because Google’s interface
is simple enough that it can be learned by only a small amount of exploration. - (Except perhaps for the I'm
Feeling Lucky button, which probably remains a mystery until a user is curious enough to hunt for the help.
After all, maybe it does a random choice from the search results!)

Notice that Google does not ask you to choose your search domain first. It picks a good default (web pages),
includes a mix of results if they seem relevant (e.g. images & videos & maps too, not purely web pages), and
makes it easy to change.

Today’s Topics

= Simplicity
— reduction
— regularity
— double-duty
» Contrast
— visual variables
— associativity & selectivity
— squint test

Spring 2012 6.813/6.831 User Interface Design and Implementation

SIMPLICITY

Spring 2012 6.813/6.831 User Interface Design and Implementation 6

Simplicity

+ “Perfection is achieved not when there is nothing more to add,
but when there is nothing left to take away.”
- Antoine de St-Exupery

+ “Simplicity does not mean the absence of an?(decor... It only
means that the decor should belong intimately to the design
proper, and that anything foreign to it should be taken away.”

— Paul Jacques Grillo

= “Keep it simple, stupid.” (KISS)
+ “Less is more.”

* “When in doubt, leave it out.”

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Okay, we’ll shout some slogans at you now. You’ve probably heard some of these before. What you should
take from these slogans is that designing for simplicity is a process of elimination, not accretion. Simplicity is
in constant tension with task analysis, information preconditions, and other design guidelines, which might
otherwise encourage you to pile more and more elements into a design, “just in case.” Simplicity forces you to
have a good reason for everything you add, and to take away anything that can’t survive hard scrutiny.

Techniques for Simplicity: Reduction

« Remove inessential elements

Spring 2012 6.813/6.831 User Interface Design and Implementation 8

Here are three ways to make a design simpler.

Reduction means that you eliminate whatever isn’t necessary. This techhique has three steps: (1) decide what
essentially needs to be conveyed by the design; (2) critically examine every element (label, control, color, font,
line weight) to decide whether it serves an essential purpose; (3) remove it if it isn’t essential. Even if it secems
essential, try removing it anyway, to see if the design falls apart.

Icons demonstrate the principle of reduction well. A photograph of a pair of scissors can’t possibly work as a
32x32 pixel icon; instead, it has to be a carefully-drawn picture which includes the bare minimum of details
that are essential to scissors: two lines for the blades, two loops for the handles. The standard US Department
of Transportation symbol for handicapped access is likewise a marvel of reduction. No element remains that
can be removed from it without destroying its meaning.

We’ve already discussed the minimalism of Google. The Tivo remote is another notable example, about
minimalizing functionality. It’s much simpler than comparable remote controls, which tend to be dense arrays
of tiny rectangular buttons, all alike. Tivo’s designers aggressively removed functions from the remote, to
keep it as simple as possible (“Now Preening on the Coffee Table”, New York Times, Feb 19, 2004, http://
query.nytimes.com/gst/fullpage.html?res=9¢c0de2d6123df93aa25751c0a9629¢c8b63).

Techniques for Simplicity: Regularity

* Use a regular pattern
» Limit inessential variation among elements

Text Layouts | Vertical alignment

= ” | FEF) =) o
e

=| =)= 2 Ll

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

For the essential elements that remain, consider how you can minimize the unnecessary differences between
them with regularity. Use the same font, color, line width, dimensions, orientation for multiple elements.
Irregularities in your design will be magnified in the user’s eyes and assigned meaning and significance.
Conversely, if your design is mostly regular, the elements that you do want to highlight will stand out better.

PowerPoint’s Text Layouts menu shows both reduction (minimalist icons representing each layout) and
regularity. Titles and bullet lists are shown the same way.

Techniques for Simplicity: Double-Duty

» Combine elements for leverage
— Find a way for one element to play multiple roles

title bar scrollbar thumb

o aloix] :
i et T 4 2|
1§ PP N =]

‘help prompt

Type a question for help I+

breadcrumbs pagination
Results Page:
Travel > Guides > North America 1234586783910 » Next
Spring 2012 6.813/6.831 User interface Design and Implementation 10

Another technique for simplicity is to combine elements, making them serve multiple roles in the design.
Desktop and web interfaces have a number of patterns in which elements have multiple duties. For example,
the “thumb” in a scroll bar actually serves three roles. It affords dragging, indicates the position of the scroll
window relative to the entire document, and indicates the fraction of the document displayed in the scroll
window. Similarly, a window’s title bar plays several roles: label, dragging handle, window activation
indicator, and location for window control buttons. In the classic Mac interface, in fact, even the activation
indicator played two roles. When the window was activated, closely spaced horizontal lines filled the title bar,
giving it a perceived affordance for dragging.

The breadcrumbs pattern and the pagination pattern also do double duty, not only showing you where you are
but also providing an affordance for navigating somewhere else. Pagination links, like a scrollbar, may also
show you how many pages there are.

10

CONTRAST

Spring 2012 6.813/6.831 User Interface Design and Implementation

1

11

Contrast & Visual Variables

» Contrast encodes information along visual
dimensions

value hue shape position orientation size

o0, O o ()
ON W O O
O @® OO & o

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Contrast refers to perceivable differences along a visual dimension, such as size or color. Contrast is the
irregularity in a design that communicates information or makes elements stand out. Simplicity says we
should eliminate unimportant differences. Once we’ve decided that a difference is important, however, we
should choose the dimension and degree of contrast in such a way that the difference is salient, easily
perceptible, and appropriate to the task.

Crucial to this decision is an understanding of the different visual dimensions. Jacques Bertin developed a
theory of visual variables that is particularly useful here (Bertin, Graphics and Graphics Information
Processing, 1989). Visual variables identified by Bertin are shown above. Bertin called these dimensions
retinal variables, in fact, because they can be compared effortlessly without additional cognitive processing, as
if the retina were doing all the work.

Each column in this display varies along only one of the six variables. Most of the variables need no
explanation, except perhaps for hue and value. Hue is pure color; value is the brightness or luminance of
color. (Figure after Mullet & Sano, p. 54).

12

Characteristics of Visual Variables

« Scale = kinds of comparisons possible
— Nominal (can compare only for equality)
— Ordered (can compare <, >)
— Quantitative (can compare amount of difference)

« Length = number of distinguishable levels

Value Hue Shape Position Orient Size
Nominal v v v v v v
Ordered v v 4
Quantitative v v
Scale ~10 ~10 very very ~4 ~10
long long
Spring 2012 6.813/6.831 User Interface Design and Implementation 13

The visual variables are used for communication, by encoding data and drawing distinctions between visual
elements. But the visual variables have different characteristics. Before you choose a visual variable to express
some distinction, you should make sure that the visual variable’s properties match your communication. For
example, you could display a temperature using any of the dimensions: position on a scale, length of a bar,
color of an indicator, or shape of an icon (a happy sun or a chilly icicle). Your choice of visual variable will
strongly affect how your users will be able to perceive and use the displayed data.

Two characteristics of visual variables are the kind of scale and the length of the scale.

A nominal scale is just a list of categories. Only comparison for equality is supported by a nominal scale.
Different values have no ordering relationship. The shape variable is purely nominal. Hue is also purely
nominal, at least as a perceptual variable. Although the wavelength of light assigns an ordering to colors, the
human perceptual system takes no notice of it. Likewise, there may be some cultural ordering imposed on hue
(red is “hotter” than blue), but it’s weak, doesn’t relate all the hues, and is processed at a higher cognitive level.

An ordered scale adds an ordering to the values of the variable. Position, size, and value are all ordered.

With a quantitative variable, you can perceive the amount of difference in the ordering. Position is
quantitative. You can look at two points on a graph and tell that one is twice as high as the other. Size is also
quantitative, but note that we are far better at perceiving quantitative differences in one dimension (i.e., length)
than in two dimensions (area). Value is not quantitative; we can’t easily perceive that one shade is twice as
dark as another shade.

The length of a variable is the number of distinguishable values that can be perceived. We can recognize a
nearly infinite variety of shapes, so the shape variable is very long, but purely nominal. Position is also long,
and particularly fine-grained. Orientation, by contrast, is very short; only a handful of different orientations
can be perceived in a display before confusion starts to set in. The other variables lie somewhere in between,
with roughly 10 useful levels of distinction, although size and hue are somewhat longer than value.

13

Hue Is Not Ordered or Quantitative

Average Temperature (°F)
Sept. 13 - 19, 1998

0 4 R
O Ll 90
i
60
% 50
) o
=\ 3 20
- = id
/N 2
X ’; g 1-1¢
#sotherms 20
-3
g
Spring 2012 6.813/6.831 User Interface Design and Implementation 14

14

Selectivity & Associativity

= Selective perception

— Can attention be focused on one value of the variable,
excluding other variables and values?
+ Shape doesn't “pop out”

» Associative perception

— Can variable be ignored while looking at other variables?

= Small size and low value interfere with ability to perceive hue,
value, and shape

Value Hue Shape Position Orient Size

Selective v v v v v
Associative v v v v
Spring 2012 6.813/6.831 User Interface Design and Implementation 15

There are two ways that your choice of visual variables can affect the user’s ability to attend to them.

Selectivity is the degree to which a single value of the variable can be selected from the entire visual field.
Most variables are selective: e.g., you can locate green objects at a glance, or tiny objects. Shape, however, is
not selective in general. It’s hard to pick out triangles amidst a sea of rectangles.

Associativity refers to how easy it is to ignore the variable, letting all of the distinctions along that dimension
disappear. Variables with poor associativity interfere with the perception of other visual dimensions. In
particular, size and value are dissociative, since tiny or faint objects are hard to make out.

15

K
M Z W i Z N
N K M N Kz
KN K 2z M
Spring 2012 6.813/6.831 User Interface Design and Implementation 16

Ask yourself these questions:

- find all the letters on the left edge of the page (position)
- find all the red letters (hue)

- find all the K’s (shape)

Which of these questions felt easy to answer, and which felt hard? The easy ones were selective visual
variables.

16

Techniques for Contrast

Choose appropriate visual variables

Use as much length as possible

Sharpen distinctions for easier perception
— Muiltiplicative scaling, not additive

— Redundant coding where needed

— Cartoonish exaggeration where needed

Use the “squint test”

®

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

Once you’ve decided that a contrast is essential in your interface, choose the right visual variable to represent
it, keeping in mind the data you’re trying to communicate and the task users need to do with the data. For
example, consider a text content hierarchy: title, chapter, section, body text, footnote. The data requires an
ordered visual variable; a purely nominal variable like shape (e.g., font family) would not by itself be able to
communicate the hierarchy ordering. If each element must communicate multiple independent dimensions of
data at once (e.g., a graph that uses size, position, and color of points to encode different data variables), then
you need to think about the effects of associativity and selectivity.

Once you’ve chosen a variable, use as much of the length of the variable as you can. Determine the minimum
and maximum value you can use, and exploit the whole range. In the interests of simplicity, you should
minimize the number of distinct values you use. But once you’ve settled on N levels, distribute those N levels
as widely across the variable as is reasonable. For position, this means using the full width of the window; for
size, it means using the smallest and the largest feasible sizes. ’

Choose variable values in such a way as to make sharp, easily perceptible distinctions between them.
Multiplicative scaling (e.g., size growing by a factor of 1.5 or 2 at each successive level) is makes sharper
distinctions than additive scaling (e.g., adding 5 pixels at each successive level). You can also use redundant
coding, in several visual variables, to enhance important distinctions further. The title of a document is not
only larger (size), but it’s also centered (position), bold (value), and maybe a distinct color as well.
Exaggerated differences can be useful, particularly when you’re drawing icons: like a cartoonist, you have to
give objects exaggerated proportions to make them easily recognizable.

The squint test is a technique that simulates early visual processing, so you can see whether the contrasts
you’ve tried to establish are readily apparent. Close one eye and squint the other, to disrupt your focus.
Whatever distinctions you can still make out will be visible “at a glance.”

17

Choosing Visual Variables for a Display
o5t = [sender :] oste |
“d)Coneiicrone 8 TpynoycTpoiicTse. chao * 10/15/2004 4:26_
V4 JAsronnanensuan Aarolpann » 10/15/2004 4:45...
(] Chyeree Terancy ot . I/15£2004 738 AN
% -] PITTSBURGH PA Silverton Home Services for... Erica Gallenbeck @ 10/15/20047:21
4 :])156 - 00 - 00 н8#107 3,841096; &21... XJXFXLXmXgX@tdb.com @ 10/15/2004 10:4...
W (21550000 budkstarEOFN + 10/15/2004 1112,
% 10 A Library A Dream... Arthur GuoBin Yin @ 10/15/2004 6:38...
e] SAVE 20% on holiday cards by shopping early Snapfish @ 518AM
d)How are you Anncumon K. s 1124 AH
Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Let’s look at an email inbox to see how data associated with email messages are encoded into visual variables
in the display. Here are the data fields shown above, in columns from left to right:

Spam flag: nominal, 2 levels (spam or not)
Subject: nominal (but can be ordered alphabetically), infinite (but maybe only ~100 are active)

Sender: nominal (but can be ordered alphabetically), infinite (but maybe ~100 people you know + everybody
else are useful simplifications)

Unread flag: nominal, 2 levels (read or unread)

Date: quantitative (but maybe ordered is all that matters), infinite (but maybe only ~10 levels matter: today,
this week, this month, this year, older)

This information is redundantly coded into visual variables in the display shown above, for better contrast.
First, all the fields use position as a variable, since each is assigned to a different column. In addition:
Spam: shape, hue, value, size (big colorful icon vs. little dot)

Subject: shape

Sender: shape

Unread: shape, hue, value, size (big green dot vs. little gray dot) and value of entire line (boldface vs. non)
Date: shape, size (today is shorter than earlier dates), position (list is sorted by date)

Exercise: try designing a visualization with these encodings instead:
Spam: size (this takes advantage of dissociativity)

Subject: shape

Sender: position

Unread: value

Date: position

18

Designing Information Displays

Title: HCI Bibliography : Human-Computer Interaction / User Interface ...

Summary: The HCI Biblography (HCIBIB) is a free-access bibliography on Human-Computer
Interaction, with over 20000 records in a searchable database. . Leam about HCI. ..

Kevwords: HCI

URL: www heibib org

Size: 14k

HCI Bibliography - Human-Computer Interaction / User Interface ...

The HCI Bibliography (HCIEIB) is a frae-access bibliography on Human-Camputar interaction.
with over 20000 racords in a searchabls database ... Leam about HCI. ...

wvaw heibib.erg/ « 14k - Cachad - Similar pagss

Human-Computer Interaction Resources on the Net

... This is a collection of information related to Human-Computer Interaction (HCI). ...
Ccllections of resources for HCI researchers and practitioners ...

wvaw ida hu sefiabsiaslab/groups/um/helf - Sk - Cachad - Similar peoas

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Here’s another example showing how redundant encoding can make an information display easier to scan and
easier to use. Search engine results are basically just database records, but they aren’t rendered in a simplistic
caption/field display like the one shown on top. Instead, they use rich visual variables — and no field labels! -
to enhance the contrast among the items. Page titles convey the most information, so they use size, hue, and
value (brightness), plus a little shape (the underline). The summary is in black for good readability, and the
URL and size are in green to bracket the summary.

Take a lesson from this: your program’s output displays do not have to be arranged like input forms. When
data is self-describing, like names and dates, let it describe itself. (This is yet another example of the double
duty technique for achieving greater simplicity — data is acting as its own label.) And choose good visual
variables to enhance the contrast of information that the user needs to see at a glance.

19

Let’s Redesign This

Spring 2012 6.813/6.831 User Interface Design and Implementation

20

Let’s Redesign This

'Hong Kong Cafe

Weekends:
11am- 11pm
i s I PYEEKIATES
11am- 10pm
Yiew restaurant
Spring 2012 6.813/6.831 User Interface Design and Implementation 21

21

Contrast in Publication Styles

Title
Heading

This is body text. It’s smaller than the heading, lighter in weight, and longer in
line length. We've also changed its shape to a serif font, because serifs make
small text casier to read. Redundant encoding produces an effective contrast
that lmakcs it easy to scan the headings and distinguish headings from body
text.

Figure 1. This is a caption, which is
smaller than body text. and set off by
position, centering, and line length.

'This is a foowmote. It's even smaller. and positioned at the bottom of the page.

Spring 2012 6.813/6.831 User Interface Design and Implementation 22

Titles, headings, body text, figure captions, and footnotes show how contrast is used to make articles easier to
read. You can do this yourself when you’re writing papers and documentation. Does this mean contrast should
be maximized by using lots of different fonts like Gothic and Bookman? No, for two reasons — contrast must
be balanced against simplicity, and text shape variations aren’t the best way to establish contrast.

22

Simplicity vs. Contrast

max ’ ’
75% |
50% d l
25%

min

Tukey Tufte #1 Tufte #2
Spring 2012 6.813/6.831 User Interface Design and Implementation 23

Conversely, here’s a case where simplicity is taken too far, and contrast suffers. Simplicity and contrast seem to
fight with each other. The standard Tukey box plot shows 5 different statistics in a single figure. But it has
unnecessary lines in it! Following the principle of simplicity to its logical extreme, Edward Tufte proposed
two simplifications of the box plot which convey exactly the same information — but at a great cost in contrast.
Try the squint test on the Tukey plot, and on Tufte’s second design. What do you see?

23

Contrast Problems

Fom Tiths - [appsass sbove URL in most browsers and & used by WWW search | Backgound Color_ E
1D Soltware Deveconen Oider Ded FFFBFD =1
Form Headng - [appeas ot top of Web page in bold ype] Text Color: 58
020 Soitwars Development Order Desk. R Cenee 000080 =1
E-Mad respanes to [will not sppest on Akemate [for madto forms only) [Batk o Graprae
[dverschi@g-d com
Texd to appear n Submet button Texd to appeat n Resel button CMalo
[Gend Order (e Fom GMm
Scroling Status Bat Mezsage [max length = 200 chasactsrs) 2
""" ebMarsa 1 5b with Image Map \Waad i3 heet! ™ 2
[T it e]

Source: Interface Hall of Shame

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

Here’s an example of too little contrast. It’s important to distinguish captions from text fields, but in this
design, most of the visual variables are the same for both:

- the position is very similar: the box around each caption and text field begins at the same horizontal position.

The text itself begins at different positions (left-justified vs. aligned), but it isn’t a strong distinction, and some
of the captions fill their column.

- the size is the same: captions and text fields fill the same column width

- the background hue is slightly different (yellow vs. white), but not easily differentiable by the squint test
- the background value is the same (very bright)

- the foreground hue and value are the same (black, plain font)

- the orientation is the horizontal, because of course you have to read it.

The result is that it’s hard to scan this form. The form is also terribly crowded, which leads us into our next
topic...

24

Summary

= Strive for simplicity
— Reduce features and data displayed
— Regularize visual properties that aren't important
— Make elements perform double-duty
* Enhance contrast
— Choose visual variables carefully
— Use the squint test

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

25

6.9

WO Cmqwlf&'mh
(Hw! GW

Wl e fohurg Gl Hbmed Souch gy .

6¢ Cmmpw ol boxe,

/lg]t ﬁblt W
—\/(MW’ of g(mﬂcc"()'

L}L Spue tﬂlf’o](1

mew ’, (MMH f has 5(!1,,9 bvon (eﬂ"d/
H}(awtt/ 13 iy
(an (b of fob@ pogle osqd
-t (mu Doy rob ad Yo b

(it g ¢! i plr
wol@b Shor
]/\@[p ’]?\HL
hoght bk o st

(enoed Tt gol6 i Jons?

— (ool at Swwtr e fHL
~0aly duplws same fin

9

M;d&’\a‘ d@\/%lﬂ 6,/'37 -’6}\0% Sov YPW C(/fefﬂ({6//7
(obbasts v (ot of 429
—

N e u\tlz NDJF @{ﬁ%f‘c‘/e for M ({(/arnL @,,,)W(;,,
$ l"
<2
}w@
Ay

\/dtJE ‘0(k {o/ O(Q((’/(IAJ/ &,}L qa} @m‘ﬂfﬂ/f:)c?]

Lout galatie |
ﬂxapﬁ ”l\wd 1o ,O't(/L\ ot Jisfeut 61&6{,@

Geonit 0~ ~bomenre G locki
gf Iy
:mp\m ‘
— (edul

(egluitf
Jokle 7

Y
Joby
Lok
- 6[0\1”,\9 F{/} WC{!’J{/
- Wike s) billy o
})a [dnse *97;4%5/ §tmp wz /

Utﬁnwm‘ F /i
Lﬂzoﬁ () W’l}wﬁng

s 5 T

é;a%H (g~ lowledl oot 5 Bhsee Bugs ac o o
X \ promfal/ Sl Conting, }7

(n 00 O (0000

‘m\PD&M\Y fQOIL/ W00q (. ’)ﬁéﬂf@@

lﬁlm
% T 80 : 0000 “of " Pty
J&é‘@f\ L 05\/6 Ry Skf/WtM/’j 56’/-!94(,
Congle
p]’f@ LM}"‘_’) | Mw m%/d \»/qqf -{ & ¢

u/ Jap> 0(ﬁt@h\mﬂs loﬂl\ YW}?

Qyperute

oy Hlraacy
H(fWP J[of)@xfwf relited (lews
e a hewrehy of ot of g

M\H‘E S‘Ofu@
//mlfjfe e b 6)10»/ Pmﬂlmzf/
~ ot e

Oé& V‘szns b Vaw (e

Tﬂﬁ?g/@& ﬁ@b’@ C@ QWQ
D@n‘lf (fov)t Caﬂt/fﬂ L5 }ﬂaﬁhﬂ/

~(wt | Y] o tar
T4 hml 5 3(%4}5

-
Exi O fahbol ol Diskg

e
Lol Coploy ~not Wil §pu

n\lﬂ‘{mkff/ Voe 0‘(1)0 W M@;

5

O UbE, \/VL\HQ Yag j@ ﬂ[{bfﬂL lwble)
6\) Ir;q,d MM})}Q
L)) 600({ g\mw\pl{

Nla,\& C oy T S
) Ml b MJ 7"9 K ‘da

L)CM {w on J&H dWWWS Gtﬁddblfyq

Rl[9{6 @66 lyns
U peoted s / ﬁPl

Vs whibeypue 05 i o

i
ol ¥ Sl

Un s et @irast

O’\ oobe A
LUW%M \/Qd I

{’{Vﬂ;\m Mdsy ON L)o‘Ht é\ftl@

b

W d]LO LQAJW 72 \(Mms

NUF (@m‘m& QJFJH pops i
—~ 5\(\0\[P@/b (of’*’a‘}

A gt

/

Al lables oh [efF o /Q%W
AH@V\ G }eﬁL q(_n,&_ pl,ﬂh#

CI \)u:(w“T (Jo {)‘L on ay [JW‘J)

VAT & geld bl dear
- alyn Conltat T b b
~ Nows Plgty ved b G dedey

) D‘l“ﬂj (n 990’1\ Vm/”i?lﬁ’ (ﬁl}

D{m@ [o@ 190 X euendle

P Iy olde
vidabes gt g Bl

IM{D]QMWW\ | |
lulde é%;ﬁ t pos (5(oy 00 Sy
—Jost

wdedl

—CC{/“&L a omqff“c [MML

~ highe ool
Py /r sof 5,06(/{(’7 Cmghm’mlj

M‘Pﬂ‘“‘} Q(b'tgr()/j | w/&L 4 gn(/}b(?)

- [‘M UoUs (i féoles'tgn, sLrers
— (8S\%
"’VL(\{{* M(Jn‘tﬁyj
"lm’Jgp,fb wl” O/EFM/
= inbnat ntzabiog
—’uv{f%(’, chack
- 66/1“&/\ lmhg!

- Q’Jd New :"{0/4@{7 i Jymm(((, M)Jt[

Y

(/és{s de{ayif & lfnll]rg
—(pod ‘LZOr Jo(dnﬂwb

~pok for UT

Dis defalt i bhls

(an hwe alie -bleks

Pl ph Bl o0 [l 0l

H(; /ecwmls ¥ fwblt
— Mhop mhml

A(?/ @fOPOW\o ZfL .b\t MJ/(LS {W 066)/ 6”(‘! Lagoﬂg

Cow\ 60 t/H ﬁ%&f 0 5ZLJﬁ(
&d% pog, Pl

gpm* H/Z'mg ¢ f})z@nm«oﬁ
7

\/Q/{L(,W\ 4'(cp/| Moy ¢ M(Le Vp 7‘dw/|
/Jﬂ\mkb fl 51'\0“ @“ % QAN [76159,{4(

| dble /]l

L17: Layout

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Goog[e Advanced Search Starch Ty | Abod Cossfe
s P]) 1 Kresly

‘wth (e gt phesss

W At ast one of the words

without the wonds.
Langusge Rty pages antien »
File Format {Ony %ineommetnoittaSebome weglewe v
Date Rturm s pages uptatad & the
Humsaic Nange Retun wth pacyes. £ oe vt wutoton botweon | o] i

3 Canyahem inBapage v
Domain [Ondy] rvim vt $om S 140 04 dimaa L e ;
3 E
Usage Righi Retum remutts th arm i e by Irnses "
Sabe Search 2 Hatterrg T Fiowe usng SsleSench
Page-Specific Search
Slamsilos Fred pages sl 1o the page e
Links Fd pages s ik 20 the page 3
Spring 2010 6.813/6.831 User Interface Design and Implementation 2

Today’s Hall of Fame and Shame is a comparison of two generations of Google Advanced Search. This is the
old interface.

Ul Hall of Fame or Shame?

GOOSie Advanced Search Etancad Semen Trs | Abed By

Find weh pages that have...
2 these words

13 gxact wordng or pheaie ;
T T T N L S !

But don't show pages that have..

any of thats urantsd werds

Hesd mors tooks?
Resuls per page
Language:
Fiatype

Search vithn p ste or donan

£ yueds sr sta

EDaa,_i1age pibty, uniens 1ange and inge

Advaaced Seach

Spring 2010 6.813/6.831 User Interface Design and Implementation 3

And this is the new interface.

Let’s compare and contrast these two interfaces in terms of:
- visibility (specifically self-disclosure)

- graphic design

- task analysis

- efficiency

Today’s Topics

= Layout principles
— Grouping & hierarchy
— Whitespace
— Balance & symmetry
— Alignment & grids
« Layout implementation
— Box, flow, grid layouts
— Margins & padding
— Space-filling & alignment rules

Spring 2012 6.813/6.831 User Interface Design and Implementation

The Gestalt Principles of Grouping

- Gestalt principles explain how the eye creates a
whole (gestalt) from parts

proximity similarity continuity
O O 0]0]0]0)
OCNONONG®, e
OFEPRERS) 0000
O00O0 ©000

closure area symmetry

"
&9 | -

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

The power of white space for grouping derives from the Gestalt principle of proximity. These principles,
discovered in the 1920’s by the Gestalt school of psychologists, describe how early visual processing groups
elements in the visual field into larger wholes. Here are the six principles identified by the Gestalt
psychologists:

Proximity. Elements that are closer to each other are more likely to be grouped together. You see four vertical
columns of circles, because the circles are closer vertically than they are horizontally.

Similarity. Elements with similar attributes are more likely to be grouped. You see four rows of circles in the
Similarity example, because the circles are more alike horizontally than they are vertically.

Continuity. The eye expects to see a contour as a continuous object. You primarily perceive the Continuity

example above as two crossing lines, rather than as four lines meeting at a point, or two right-angles sharing a
vertex.

Closure. The eye tends to perceive complete, closed figures, even when lines are missing. We see a triangle
in the center of the Closure example, even though its edges aren’t complete.

Area. When two elements overlap, the smaller one will be interpreted as a figure in front of the larger ground.
So we tend to perceive the Area example as a small square in front of a large square, rather than a large square
with a hole cut in it.

Symmetry. The eye prefers explanations with greater symmetry. So the Symmetry example is perceived as
two overlapping squares, rather than three separate polygons.

A good paper about perceptual grouping in HCI and information visualization is Rosenholtz et al, “An Intuitive
Model of Perceptual Grouping for HCI Design”, CHI 2009.

Grouping & Hierarchy

= Group together related items
* Make a hierarchy of importance among items

Spring 2012 6.813/6.831 User Interface Design and Implementation

White Space

Use white space for grouping, instead of lines
Use margins to draw eye around design

Integrate figure and ground

— Object should be scaled proportionally to its
background

Don't crowd controls together

— Crowding creates spatial tension and inhibits
scanning

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

White space plays an essential role in composition. Screen real estate is at a premium in many graphical user
interfaces, so it’s a constant struggle to balance the need for white space against a desire to pack information
and controls into a display. But insufficient white space can have serious side-effects, making a display more
painful to look at and much slower to scan.

Put margins around all your content. Labels and controls that pack tightly against the edge of a window are
much slower to scan. When an object is surrounded by white space, keep a sense of proportion between the
object (the figure) and its surroundings (ground). Don’t crowd controls together, even'if you’re grouping the
controls. Crowding inhibits scanning, and produces distracting effects when two lines (such as the edges of
text fields) are too close. Many UI toolkits unfortunately encourage this crowding by packing controls tightly
together by default, but Java Swing (at least) lets you add empty margins to your controls that give them a
chance to breathe.

Crowded Dialog

Seclion B
Start: | New Page {{'-1 Oinelude Endnotes
Page Number Line Numbers r—
Cancel
futo By Page r—.::_m‘
Restart at | Apply |
From Tent: Auto Satoeraul
from Top: {0.5in
from Right: |0.5in rHeader/Footer =
From Top: .5i
Columns Loy L
Number: From Bottom: |0.5in
Spacing: I First Page Special
Source: Mullet & Sano,p. 110
Spring 2012 6.813/6.831 User Interface Design and Implementation

Here’s an example of an overcrowded dialog. The dialog has no margins around the edges; the controls are
tightly packed together; and lines are used for grouping where white space would be more appropriate.
Screen real estate isn’t terribly precious in a transient dialog box.

The crowding leads to some bad perceptual effects. Lines appearing too close together — such as the bottom of
the Spacing text field and the group line that surround it — blend together into a thicker, darker line, making a
wart in the design. A few pixels of white space between the lines would completely eliminate this problem.

10

Using White Space to Set Off Labels

=y e o
[a—
secesios CERERTS =1
ot
(naast Wb w
-
Dacwment _tomest)] Source 2: | compprd w] [WAN -
thanmer it %]
sestimation: [vew | [whb =
Sowtie
Secwarat. |_tomeptt)
thannes i) 5
 imin (b)

Batmment | Sew -

I

(2)
Source: Mullet & Sano, p. 96

Spring 2012 6.813/6.831 User Interface Design and Implementation 11

A particularly effective use of white space is to put labels in the left margin, where the white space sets off and
highlights them. In dialog box (a), you can’t scan the labels and group names separately; they interfere with
each other, as do the grouping lines. In the redesigned dialog (b), the labels are now alone on the left, making
them much easier to scan.

For the same reason, you should put labels to the left of controls, rather than above.

White Space Avoids Visual Noise

e
i | ||
]

o 3 ¥ ¥ & &

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

Here’s an interesting idea from Tufte: get rid of the grid rules on a standard bar chart, and use whitespace to
show where the grid lines would cross the bars. It’s much less noisy. (But alas, impossible to do automatically
in Excel.)

Balance & Symmetry

» Choose an axis (usually vertical)

» Distribute elements equally around the axis
— Equalize both mass and extent

Goog

v R— Gyt
1 - tewnd Sewe
P .
Ty T

faborinn oot Uy - Duareesy Sebiow - Seeacen b Yook - baba, Seus B b

AIDEE e By 1T L et bt

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

Balance and symmetry are valuable tools in a designer’s toolkit. In graphic design, symmetry rarely means
exact, mirror-image equivalence. Instead, what we mean by symmetry is more like balance: is there the same
amount of stuff on each side of the axis of symmetry. We measure “stuff” by both mass (quantity of nonwhite
pixels) and extent (area covered by those pixels); both mass and extent should be balanced.

An easy way to achieve balance is to simply center the elements of your display. That automatically achieves
balance around a vertical axis. If you look at Google’s home page, you’ll see this kind of approach in action.
In fact, only one element of the Google home page breaks this symmetry: the stack of links for Advanced
Search, Preferences, and Language Tools on the right. This slight irregularity (a kind of contrast) actually
helps emphasize these links slightly.

13

Alignment

Advanced FAX Setimgy (=i
* Align labels on 5 oo et o -
left or right _'-;—;-fﬁ%mm e
« Align controls on R Kl
left and right il "m
et

— Expand as needed

Mo Yy st sate | 14400 bou *|

« Align text baselines et [Lom e 11y 2]

I Usn jrorcinn wlon: [se € \Phosmia\lan_inst ™ !_._.___;

| smseeroum | ¥ | s csseotng |] s o |

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Finally, simplify your designs by aligning elements horizontally and vertically. Alignment contributes to the
simplicity of a design. Fewer alignment positions means a simpler design. The dialog box shown has totally
haphazard alignment, which makes it seem more complicated than it really is.

Labels (e.g. “Wait” and “Retry after”). There are two schools of thought about label alignment: one school
says that the left edges of labels should be aligned, and the other school says that their right edges (i.e., the
colon following each label) should be aligned. Both approaches work, and experimental studies haven’t found
any significant differences between them. Both approaches also fail when long labels and short labels are used

in the same display. You’ll get best results if you can make all your labels about the same size, or else break
long labels into multiple lines.

Controls (e.g., text fields, combo boxes, checkboxes). A column of controls should be aligned on both the left
and the right. Sometimes this seems unreasonable -- should a short date field be expanded to the same length
as a filename? It doesn’t hurt the date to be larger than necessary, except perhaps for reducing its perceived
affordance for receiving a date. You can also solve these kinds of problems by rearranging the display, moving
the date elsewhere, although be careful of disrupting your design’s functional grouping or the expectations of
your user.

So far we’ve only discussed left-to-right alignment. Vertically, you should ensure that labels and controls on
the same row share the same text baseline. Java Swing components are designed so that text baselines are
aligned if the components are centered vertically with respect to each other, but not if the components’ tops or
bottoms are aligned. Java AWT components are virtually impossible to align on their baselines. The dialog
shown here has baseline alignment problems, particularly among the controls in the last row: the checkbox
“Use custom editor”, the text field, and the Browse button.

14

Grid-Based Design

i
Ehc.&’cﬂ ork Tines

#M.ani ™)

axe ' Lo Bzt

i foren ol 2 cnmni s and an 5 - v ' b b kne foe e choh,

i | ~oepieiirieiond | . - oyl | Ll i

. o : T Sovkem progres for everyong | Yiade

— —'n-"-'\ﬂm mw, Lmsrting the secoary :::}:—L,hh
dems Er Gp Ed The UM Nearty

Coroprin R i Ay

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

A grid is one effective way to achieve both alignment and balance, nearly automatically. A grid means that you
divide the user interface into equal-width columns (separated by gaps, and with margins on both sides of the
window), and align content and controls on the column boundaries. Some elements may span multiple
columns, but they align (start or end at) column boundaries.

Newspapers are famous for designing with grids, but if you look carefully at magazines, posters, and many
other print designs, you’ll often see a grid guiding the design.

15

Grids Are Effective

Source: Mullet & Sano, p. 165

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

Here’s a grid in a user interface. Notice the four-column grid used in this dialog box (excluding the labels on
the left). The only deviation from the grid is the row of three command buttons at the bottom which are
nevertheless still balanced. In fact, their deviation from the grid helps to set them off, despite the minimal
white space separating them from the rest of the display.

One criticism of this dialog is false grouping. The controls for Size, All Caps, and Superscript tend to adhere
because of their proximity, and likewise for the next two rows of the display. This might be fixed by pushing
the toggle buttons further to the right, to occupy columns 3 and 4 instead of 2 and 3, but at the cost of some
balance.

16

LAYOUT
IMPLEMENTATION

Spring 2012 6.813/6.831 User Interface Design and Implementation

17

17

Automatic Layout

+ Layout determines the sizes and positions of
components on the screen

— Also called geometry in some toolkits
» Declarative layout

— CSS styles
» Procedural layout

— Write Javascript code to compute positions and
sizes

Spring 2011 6.813/6.831 User Interface Design and Implementation 18

In HTML/CSS, automatic layout is a declarative process. First you specify the graphical objects that should
appear in the window, which you do by creating instances of various objects and assembling them into a view
tree. We’ve seen how HTML does this. Then you specify how they should be laid out by attaching styles.

You can contrast this to a procedural approach to layout, in which you write Javascript code that computes
positions and sizes of objects in the view tree.

18

Reasons to Do Automatic Layout

» Higher level programming
— Shorter, simpler code

» Adapts to change
— Window size
— Font size
— Widget set (or theme or skin)
— Labels (internationalization)
— Adding or removing nodes

Spring 2011 6.813/6.831 User Interface Design and Implementation 19

Here are the two key reasons why we like automatic layout — and these two reasons generalize to other forms
of declarative Ul as well.

First, it makes programming easier. The code that sets up layout managers is usually much simpler than
procedural code that does the same thing.

Second, the resulting layout can respond to change more readily. Because it is generated automatically, it can
be regenerated any time changes occur that might affect it. One obvious example of this kind of change is
resizing the window, which increases or decreases the space available to the layout. You could handle window
resizing with procedural code as well, of course, but the difficulty of writing this code means that programmers
generally don t. (That’s why many Windows dialog boxes, which are often laid out using absolute coordinates
in a GUIT builder, refuse to be resized! A serious restriction of user control and freedom, particularly if the
dialog box contains a list or file chooser that would be easier to use if it were larger.)

Automatic layout can also automatically adapt to font size changes, different widget sets (e.g., buttons of
different size, shape, or decoration), and different labels (which often occur when you translate an interface to
another language, e.g. English to German). These kinds of changes tend to happen as the application is moved
from one platform to another, rather than dynamically while the program is running; but it’s helpful if the
programmer doesn’t have to worry about them.

Another dynamic change that automatic layout can deal with is the appearance or disappearance of nodes from
the view tree-- if the user is allowed to add or remove buttons from a toolbar, for example, or if new textboxes
can be added or removed from a search query.

19

Flow Layout

* Left-to-right, automatically-wrapping
» CSS calls this “inline” layout

display: inline

* Many elements use inline layout by default

<button>People</button>

<button>Places</button> {(People} (Places) {Things) (New)
ZoutoneNowamtons (50 (B0
<button>Save</button>
<button>Print</button>
Spring 2012 6.813/6.831 User Interface Design and Implamentation 20
<button>People</button>
<button>Places</button>
<button>Things</button>
<button>New</button>
<button>Save</button>
<button>Print</button>

Author:

<input type="text" />
Comment:
<textarea></textarea>
<button>0OK</button>

<button>Cancel</button>

20

Box Layout

+ Blocks are laid out vertically
— display: block
— divs default to block layout

» Inline blocks are laid out in flow
— display: inline-block
<div>
<button>People</button> Peop! Pl Thi
<button>Places</button> (op e) (aces) (angs)
<button>Things</button> (New) (Save) (Print)
</div>
<div>
<button>New</button>
<button>Save</button>
<button>Print</button>

Splﬁ[&iﬂﬁ 6.813/6.831 User Interface Design and Implementation

21

21

Float Layout
+ Float pushes a block to left or right edge

<style>

.navbar { float: left; }

.navbar button { display: block; }
</style>

<div class="navbar">
<button>People</button>

<button>Places</button> (People) (New) (Save) (Print)

<button>Things</button> { Places)

= (Things)
Things

<div>
<button>New</button>
<button>Save</button>
<button>Print</button>
</div>
Spring 2012 6.813/6.831 User Interface Design and Implementation

22

22

Grid Layout

 Blocks & floats are typically not enough to
enforce all the alignments you want in a Ul

» CSS grid layout is coming but not quite here
» For now, use tables for 2D alignment instead

<table>
<tr><td>Name:</td>
<td><input type="text" /></td>

Name:

<ftr> Groups:

<tr><td>Groups:</td>
<td><textarea></textarea></td>

</tr>

</table>

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

23

Absolute Positioning

» Setting position & size explicitly
— in coordinate system of entire window, or of node's parent
— CSS has several units: px, em, ex, pt
— mostly useful for popups

<style>
button { position: absolute; —
left: 5px; (Print}s)the user interface goes here
top: 5px; }
</style>
Spring 2012 6.813/6.831 User Interface Design and Implementation 24

24

Margins, Borders, & Padding

Margin

Padding

Content

Spring 2012 6.813/6.831 User Interface Design and Implementation

25

25

Space-Filling & Alignment

« width: 100% , height: 100% consumes all of
the space available in the parent

« vertical-align moves a node up and down in
its parent’s box
— baseline is good for lining up labels with textboxes
— top and bottom are useful for other purposes

+ Centering
— margin: auto for boxes
— text-align: center for inlines

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

26

Summary

 Layout should establish grouping of items

* Use whitespace & alignment to preserve
simplicity

» Automatic layout adapts to changes in Ul

Spring 2012 6.813/6.831 User Interface Design and Implementation

27

27

b0 T Fu
()Rl /6&3 /Qu;&»/

@(ewbﬁ\wq ’ pat of 9[@46’,
— Hwi fo (ea
- 9@;; [P ﬂ;j

- Wc %%ﬂqm on 1 ﬁj
DOWVM)L ,\O)L f@ou[wb
6(0405 L\ui W - MQ 61[/‘/4?/6

[

Lgafmvz EI{ZM 6@0/
pc THg e /b

GQQ*S% (€90 for (II[Q(M[(J'M

Q;AM/ d,lddh/)L Zoao (\V]
—po- ptoof pedut

W
O(m{’\w\m ;mp[owe, \/o)&b}/(‘f[)

/E @33@%@& more 61(&/0*%& 7[@547

How mh mé Yoy pre Jp
T NV

Conguet Mu(

(3 L0
(ohy

ol Fang [Gpae w?;m

-"m (M[L/'(/oss swe Golor are ﬁ@ a0
L "6@241[ot

T

Wam v: 4

Mﬂ{ﬁ

— Uty ({Golw‘("’”/ﬂ W Pfoof«mm},\
B +(ole/qﬂ+ 7

- (%
Q@L hib> slile
Gm,:lwf,[T
P(O\(;m‘d‘z

ot kle(wcbh/

123

Y
Tﬂﬂ COW

N \/Laﬂf)
“’(o](r \M@O(j
- l\mfatﬂaﬂy
W Ee
il /(0¥
4
(o \ opl
Pl nowe
Mollo (et
Wy
- low {(U‘ﬂL
0n[~[| lnd
‘[("/ﬁl (Lspry (nhorod qm//:cf 7
(s
Jﬂﬂfﬂld[l:yw
(olor
3 o W@W/ - lweah {% (esporse — He

~ glees
[Mﬂ — ol /@‘\)

@ Nﬂﬁg de moJr &(ﬁ% éd wgl/
le& S/blL wl\@(@, op a, e @
Lie §il iF = prddy

AR . o

M%wﬂv

e {—A)FWIOPM 6;%@”%!4) 514,{* (05
§9 Umlyl— (ﬁﬁg oA l[f 50/07

S it Xfbe lyht -paple low B gostir
Oabe Tl o clok iy chadve com

Ned geon fesks 1n shie

C&/\?Q QWC Cola{j
& lw}«@ (ol - e

(/l/\(of’\(ﬂ (2 /4 (m/ M’\

‘_-/,’-—"—'__'_‘—-———

J@m[v Cod on AM hd_

| B\a@v Atﬁl[;a ﬂW lw L+ /e?fj‘/@
bl Gk fo illon a o gof ¢ oy
TP dyh bj

e by
R/ B cegors g

QﬂL N0 PW(WQ Jp(o JJ{W/{L/
wgs loh Ji U g

0
CM W/ Cve clmpﬂ(’f foo

e

C‘o\@(ﬂo@b

M
Hﬂw . [Q'D[@&JAP 60/0/5

QCQ -l o gms (RT, LAY
(MY L& - l(f)tu/ &Mﬂdf - P’;d@
HoV - H prdiee coloe
CQIOr match 34M

ACMOM
(T (4% gyt

hat Celars BT i
Lo of WP (M

ﬂ(&J&WZ Pmdwﬁ CO{O/ 61 //lne

3 Coters -y P”/'Wf (olos for ot (7

VNN

D6 dowss bee JEF - guad
Wiy G s aa obste [Gant-

,ﬁF[Q Om (ﬂ!"r‘ oty
—JE ank of S B b Gly
Mie pef(eaM{

6\/6‘ bel ‘W)4
TRl el el

~ Vs o (QL)()
— B Cm&b%# w/ QweJW@

“Yo Pudee SIA cfﬂm%l?

)ll‘lL vv/ ﬁvﬂg(&%@j

SOV{'WQ’H@».@)

= skl paghyl
“Eput L sl poh @ G Jnby geeas

6(6@1 lfﬂﬂl\> Oeonr aﬁt’f lw"ftg if ed

——

Us@, QW w]% l‘fL ((ca/p
IK}(MUL» (L HHJQ él‘i’ @F [(’,{, /PLC”@)
ﬁl“‘ds éﬂok au*L e

)BC (4)(@/}

—pale cor lean e b ol b

“waont @lask w fed
B &m‘ 1995 %L(Z(’L‘P’ > Nd Cm#mb”

QQA ~ ﬁop, (o, het
06&/\ (a”‘maz d@f

—e

5q (1 pltok / ao[ﬂr and beve/a/[&}Mi@ Lag g/c/
b Wille ey £ by

OK P\{L/lk (olfarj F(OnL P)NHID)

L18: Color

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

CD Creation Process - Untitied

Recodng Phase

CO created successfuly.
% sEEEEENRENRENEENARN

Lanen) Detai 5>
| |

Source: Ul Hall of Shame

D Creation Procass - Untitled

Recoidng Phase
2 E Encts reported by oulput davce

R 1' View enots i Detads 5> I

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

Our Hall of Shame candidate for the day is this dialog box from Adaptec Easy CD Creator, which appears at
the end of burning a CD. The top image shows the dialog when the CD was burned successfully; the bottom
image shows what it looks like when there was an error.

What does the squint test tell you about these dialogs?

The key problem is the lack of contrast between these two states. Success or failure of CD burning is
important enough to the user that it should be obvious at a glance. But these two dialogs look identical at a
glance. How can we tell? Use the squint test, which we talked about in the graphic design lecture. When
you’re squinting, you see some labels, a big filled progress bar, a roundish icon with a blob of red, and three
buttons. All the details, particularly the text of the messages and the exact shapes of the red blob, are fuzzed
out. This simulates what a user would see at a quick glance, and it shows that the graphic design doesn’t
convey the contrast.

One improvement would change the check mark to another color, say green or black. Using red for OK seems
inconsistent with the real world, anyway. But designs that differ only in red and green wouldn’t pass the
squint test for color-blind users.

Another improvement might remove the completed progress bar from the error dialog, perhaps replacing it
with a big white text box containing a more detailed description of the problem. That would clearly pass the
squint test, and make errors much more noticeable.

Today’s Topics

» Color
— Human vision
— Color models
— Design guidelines

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

Today’s lecture is about choosing colors for a user interface. We’ll discuss some of the properties of human
vision that affect this decision, particularly the limitations of color vision. We’ll go over some models for
representing colors, not just the familiar RGB model. And we’ll discuss some guidelines for choosing colors.
The most important guidelines will be applications of rules we already discussed in graphic design: simplicity
as much as possible, contrast where important. :

A good reference about color is Colin Ware, Information Visualization: Perception for Design, Morgan
Kaufmann, 2000 (which we also mentioned in the graphic design lecture).

An aside about why we’re learning this. This lecture is effectively part 2 of the graphic design lecture, and
many of the guidelines in both lectures are more about aesthetics than pure usability. Serious mistakes in
graphic design certainly affect usability, however, so we’re trying to help you avoid those pitfalls. But there’s
a larger question here: in practice, should software engineers have to learn this stuff at all? Shouldn’t you just
hire a graphic designer and let them do it? Some people who teach Ul to CS students think that the most
important lesson a software engineer can learn from a course like this is "UI design is hard; leave it to the
experts." They argue that a little knowledge can be a dangerous thing, and that a programmer with a little
experience in UI design but too much self-confidence can be just as dangerous as an artist who's learned a little
bit of HTML and thinks they now know how to program. But I prefer to believe that a little knowledge is a
step on the road to greater knowledge. Some of you may decide to become Ul designers, and this course is a
step along that road.

In a commercial environment, you should hire experienced graphic designers, just as you should hire an
architect for building your corporation's headquarters and you should contract with a licensed building firm.
Big jobs for big bucks require experts who have focused their education and job experience on those problem.
One reason this course is useful is that you can appreciate what UI experts do and evaluate their work, which
will help you work on a team with them (or supervise them).

But it's also worth learning these principles because you can apply them yourself on smaller-scale problems.
Are you going to hire a graphic designer for every PowerPoint presentation you make, every chart you draw,
every web page you create? Those are all user interfaces. Many problems in life have a user interface, and
many of them are up to you to do-it-yourself. So you should know when to leave it to the experts, but you
should be able to do a creditable job yourself too, when the job is yours to do.

The Eye
Conjunctiva
= - -~
Zonulal —— Retiny
glile] 2 '?/]
A
Aqueous humour i *fkfﬁ\
-
'
i of
Lens -
Pupil N
>
Comeaa .
Irts
Optic ner
Figure 3: The human eye.
Spring 2012 6.813/6.831 User Interface Design and Implementation 6

Here are key parts of the anatomy of the eye:
*The cornea is the transparent, curved membrane on the front of the eye.

*The aqueous humor fills the cavity between the cornea and the lens, and provides most of the optical power
of the eye because of the large difference between its refractive index and the refractive index of the air outside
the cornea.

*The iris is the colored part of the eye, which covers the lens. It is an opaque muscle, with a hole in the center
called the pupil that lets light through to fall on the lens. The iris opens and closes the pupil depending on the
intensity of light; it opens in dim light, and closes in bright light.

*The lens focuses light. Under muscle control, it can move forward and backward, and also get thinner or
fatter to change its focal length.

*The retina is the surface of the inside of the eye, which is covered with light-sensitive receptor cells.

*The fovea is the spot where the optical axis (center of the lens) impinges on the retina. The highest density of
photoreceptors can be found in the fovea; the fovea is the center of your visual field.

Figure from Lilley, Lin, Hewitt, & Howard, “Colour in Computer Graphics”, University of Manchester.

Photoreceptors

* Rods
— Only one kind (peak response in green wavelengths)
— Sensitive to low light ("scotopic vision”)
« Multiple nearby rods aggregated into a single nerve signal
— Saturated at moderate light intensity (“photopic vision”)
« Cones do most of the vision under photopic conditions
+ Cones
— Operate in brighter light
Three kinds: S(hort), M(edium), L(ong)
S cones are very weak, centered in blue wavelengths
M and L cones are more powerful, overlapping
M centered in green, L in yellow (but called “red")

I

Spring 2012 6.813/6.831 User Interface Design and Implementation 7

There are two kinds of photoreceptor cells in the retina. Rods operate under low-light conditions — night
vision. There is only one kind of rod, with one frequency response curve centered in green wavelengths, so
rods don’t provide color vision. Rods saturate at moderate intensities of light, so they contribute little to
daytime vision. Cones respond only in brighter light. There are three kinds of cones, called S, M, and L after
the centers of their wavelength peaks. S cones have very weak frequency response centered in blue. M and L
cones are two orders of magnitude stronger, and their frequency response curves nearly overlap.

Rods & Cones

» Cones are
mostly in the
center of the
eye.

* Rods are
mostly on the
edges.

of DOOET sq mm

N T NGmber ol odsTor Cones in an dren
- £

Spring 2012 6.813/6.831 User Interface Design and Implementation

Rods and cones aren’t distributed evenly in the eye.
Most of the cones are in the center, most of the rods are on the edge.

Rods, since they’re on the edge and pick up very coarse-grained information, are what we use for most of our
peripheral vision. In fact, if you’re trying to spot shooting stars at night, you often pick out more things in your

peripheral vision.

You can also see the blind spot in this poorly-scanned photo (from http://www.unc.edu/~ejw/rod-cone-
dist.html). The blind spot is where the optic nerve is located on the back of the eye.

Signals from Photoreceptors

* Brightness
M + L + rods

* Red-green difference
L-M
* Blue-yellow difference
weighted sum of S, M, L

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

The rods and cones do not send their signals directly to the visual cortex; instead, the signals are recombined
into three channels. One channel is brightness, produced by the M and L cones and the rods. This is the only
channel really active at night. The other two channels convey color differences, red-green and blue-yellow.
For the red-green channel, for example, high responses mean red, and low responses indicate green.

These difference channels drive the theory of opponent colors: red and green are good contrasting colors
because they drive the red-green channel to opposite extremes. Similarly, black/white and blue/yellow are
good contrasting pairs.

Color Blindness

» Red-green color blindness (protanopia &
deuteranopia)
— 8% of males
— 0.4% of females

« Blue-yellow color blindness (tritanopia)
— Far more rare (~50 people in a million)

« Guideline: don’t depend solely on color
distinctions
— use redundant signals: brightness, location, shape

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Color deficiency (“color blindness™) affects a significant fraction of human beings. An overwhelming number
of them are male.

There are three kinds of color deficiency, which we can understand better now that we understand a little about
the eye’s anatomy:

*Protanopia is missing or bad L cones. The consequence is reduced sensitivity to red-green differences (the
L-M channel is weaker), and reds are perceived as darker than normal.

*Deuteranopia is caused by missing or malfunctioning M cones. Red-green difference sensitivity is reduced,
but reds do not appear darker.

*Tritanopia is caused by missing or malfunctioning S cones, and results in blue-yellow insensitivity.

Red/green color blindness affects about 8% of males and 0.4% of females; blue/yellow color blindness is much
much rarer.

But since color blindness affects so many people, it is essential to take it into account when you are deciding
how to use color in a user interface. Don’t depend solely on color distinctions, particularly red-green
distinctions, for conveying information. Microsoft Office applications fail in this respect: red wavy underlines
indicate spelling errors, while identical green wavy underlines indicate grammar errors.

Traffic lights are another source of problems. How do red-green color-blind people know whether the light is
green or red? Fortunately, there’s a spatial cue: red is always above (or to the right of) green. Protanopia
sufferers (as opposed to deuteranopians) have an additional advantage: the red light looks darker than the green
light.

There are online tools for checking your interface against various kinds of color blindness; one good one is
Vischeck (http://www.vischeck.com/vischeck/).

Henry Sturman is a red-green colorblind software developer who has written a good article about what it’s like
(http://henrysturman.com/english/articles/colorvision.html).

10

Color Blindness

Spring 2012 6.813/6.831 User Interface Design and Implementation 1

One of the most common ways to detect colorblindness is using the Ishihara plates. Let’s look at a few — can
you see the numbers hidden in each of the circles? These test red-green colorblindness.

If you’re colorblind, you can’t see the bottom of the left pair, the top of the middle pair, and neither of the right
pair.

Don’t depend solely on color distinctions, particularly red-green distinctions, for conveying information.
Microsoft Office applications fail in this respect: red wavy underlines indicate spelling errors, while identical
green wavy underlines indicate grammar errors.

Traffic lights are another source of problems. How do red-green color-blind people know whether the light is
green or red? Fortunately, there’s a spatial cue: red is always above (or to the right of) green. Protanopia
sufferers (as opposed to deuteranopians) have an additional advantage: the red light looks darker than the green
light.

11

Color Blindness

CD Creation Process - Untitied
Recording Phate
4 Enmots reported by output device
Eq.:.:

View eniors l Detads 5> I

CD Creation Process - Untitled

Recording Phase
@ Enots 1eported by output device

![__UE il y’nmoumi Detads »> !

Spring 2012 6.813/6.831 User Interface Design and Implementation 12

There are online tools for checking your interface against various kinds of color blindness; one good one is
Vischeck (http://www.vischeck.com/vischeck/).

Henry Sturman is a red-green colorblind software developer who has written a good article about what it’s like
(http://henrysturman.com/english/articles/colorvision.html).

Here we can see the hall of fame or shame example.

Color Blindness

Spring 2012 6.813/6.831 User Interface Design and Implementation

13

And this cube of colors basically loses the red and green!

13

Chromatic Aberration

« Different wavelengths focus differently

— Highly separated wavelengths (red & blue) can’t
be focused simultaneously

» Guideline: don't use red-on-blue text
— It looks fuzzy and hurts to read

= Explorer i
¥ Colive
D GraphicConverter
£ iTunes

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

The refractive index of the lens varies with the wavelength of the light passing through it; just like a prism,
different wavelengths are bent at different angles. So your eye needs to focus differently on red features than it
does on blue features.

As a result, an edge between widely-separated wavelengths — like blue and red — simply can’t be focused. It
always looks a little fuzzy. So blue-on-red or red-on-blue text is painful to read, and should be avoided at all
costs.

Apple’s ForceQuit tool in Mac OS X, which allows users to shut down misbehaving applications,
unfortunately fell into this trap. In the dialog, unresponding applications are helpfully displayed in red. But the
selection is a blue highlight. The result is incredibly hard to read.

Here's an experiment you can try to demonstrate chromatic aberration. Put a small purple dot on a piece of
paper. Hold it close to your eye; it should look blue in the center, surrounded by a red halo. Then move it
farther away; the colors should switch places, so that red is in the center and blue is the halo.

14

Blue Details Are Hard to Resolve

» Fovea has few S cones

— Can't resolve small blue features (unless they
have high contrast with background)

+ Lens and aqueous humor turn yellow with
age
— Blue wavelengths are filtered out

+ Lens weakens with age
— Blue is harder to focus

» Guideline: don’t use blue against dark
backgrounds where small details matter
(text!)

Spring 2012 6.813/6.831 User Interface Design and Implementation 15

A number of anatomical details conspire to make blue a bad color choice when small details matter.

First, the fovea has very few S cones, so you can’t easily see blue features in the center of your vision (unless
they have high contrast with the background, activating the M and L cones).

Second, older eyes are far less sensitive to blue, because the lens and aqueous humor slowly grow yellower,
filtering out the blue wavelengths.

Finally, the lens gets weaker with age. Blue is at one extreme of its focusing range, so older eyes can’t focus
blue features as well.

As a result, avoid blue text, particularly small blue text.

15

Color Constancy

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

Color constancy is another thing that can modify our color perceptions.

You’ve probably seen this image before. The color of A and the color of B are identical, but our brain sees
them as different because of the shadow. We perceive colors as constant, if we have reason to, even if they are
under different light.

Color Constancy

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

You can see an example of this in these two images. Do any of those sheets of paper look like the same color?

We see the red lighting of the second picture and adapt our assumptions about the colors accordingly. In reality,
the second sheet from the left is the same color in both pictures.

We can explore this using an eyedropper tool or the Digital Color Meter in OS X or your OS.

17

Color Constancy

Spring 2012 6.813/6.831 User Interface Design and Implementation 18

These two rectangles are rectangles made (using the eyedropper in color selection) from the second sheet from
each photo.

18

Color Models

* Red-Green-Blue (RGB)
- Red: 0% - 100%
— Green: 0% - 100%
- Blue: 0% - 100%

+ Cyan-Magenta-Yellow
— Used for printing

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

Now let’s look at how colors are represented in GUI software. At the lowest level, the RGB model rules. The
RGB model is a unit cube, with (0,0,0) corresponding to black, (1, 1, 1) corresponding to white, and the three
dimensions measuring levels of red, green, and blue. The RGB model is used directly by CRT and LCD
monitors for display, since each pixel in a monitor has separate red, green, and blue components.

The CMYK (cyan, magenta, yellow, and sometimes black) is similar to the RGB model, but used for print
colors, where pigments absorb wavelengths instead of generating them.

K stands for key.

19

More Color Modeis

» Hue-Saturation-Value (HSV)
— Hue is wavelength of color
— Saturation is amount of pure color
» 0% = gray, 100% = pure
— Value is brightness
» 0% = dark, 100% = bright

* Hue-Lightness-Saturation (HLS)
— White has lightness 1.0
— Pure colors have lightness 0.5

Spring 2012 6.813/6.831 User Interface Design and Implemeiiwuui e

HSV (hue, saturation value) is a better model for how humans perceive color, and more useful for choosing
colors in user interface design. HSV is a cone. We’ve already encountered hue and value in our discussion of
visual variables. Saturation is the degree of color, as opposed to grayness. Colors with zero saturation are
shades of gray; colors with 100% saturation are pure colors.

HLS (hue, lightness, saturation) is a symmetrical relative of the HSV model, which is elegant. It basically
pulls up the center of the HSV cone to make a double-ended cone.

Many applications have a color picker that lets you pick HSV values as an alternative to RGB.

Let’s look at a website that helps you test your color matching skills across hue, saturation, and value.

http://color.method.ac

20

Obtaining Accurate Color

Y

Spring 2012 6.813/6.831 User Interface Design and Implementation 21

Although RGB and HSV are commonly used for implementing graphical user interfaces, they are not in fact
standardized. The way that a color like pure red (RGB=1,0,0) actually looks depends strongly on the display’s
characteristics, so your application can’t be sure it will get exactly the right color.

The science of colorimetry is concerned with accurate measurement and reproduction of color. Most of it is
outside the scope of this course, but here are a few things you should know. Colorimetry starts with a 3D space
based on three primary colors, called XYZ, chosen so that all human-visible colors are bounded within the
positive octant -- so that any visible color can be made as a mix of positive amounts of X, Y, and Z. The solid
area on the left shows the visible colors perceivable to the human eye; black is of course at the origin. Note
that X, Y, and Z are imaginary colors in the sense that they cannot be produced by a physical light source or
perceived by the human eye; but they’re useful bases for the space, much like imaginary numbers are useful.
To consider hue and saturation in isolation, we look at a plane of constant intensity, shown on the right.

The wedge-shaped figure shows the whole space of human-perceivable colors (with fully-saturated, pure-
wavelength colors around its perimeter).

21

Obtaining Accurate Color

Y1 ,» human-visible colors
2 .

230

output
intensity
input voltage
Spring 2012 6.813/6.831 User Interface Design and Implementation 22

Any given display device can produce some triangle of colors on this plane (called the device’s gamut), where
the corners are the three colors used by the device as its primary colors — e.g., the exact colors of red, green,
and blue in a CRT’s phosphors. The triangle here shows a typical cathode-ray television’s gamut. Devices
with different gamuts will produce different colors from the same RGB value. This problem can be addressed
by calibrating the display device, producing an ICC profile that specifies how the device’s RGB space maps
into a standardized space like XYZ.

Different devices have different gamuts, so if you make something that uses a specific range of colors, some
devices may not be able to see this.

22

Color Gamuts and YOU

o3 o7 o5 de of

Spring 2012 6.813/6.831 User Interface Design and Implementation 23

Different devices have different gamuts, so if you make something that uses a specific range of colors, some
devices may not be able to see this.

This is a picture of some ultramarine pigment, which is my favorite color, International Klein Blue. While the
picture looks pretty intense, odds are good it’s not actually reproducing what it looks like in person, because
it’s outside of the gamut of my computer. The projector doesn’t help either — and if you look at it on your
computer it probably looks slightly different too.

Other Color Spaces

oo

e Oyttt
60 01 d2 @3 04 a5 a6 o7

Spring 2012 6.813/6.831 User Interface Design and Implementation 24

This is a comparison of the CIE 1931 model on the left, and the CIE LUV model on the right.

CIE is the International Committee on Illumination. The new model, which is one of two current standards, is
easier to compute, and is used more frequently in computer graphics. One of the goals of this new model was
to have the sizes of each area better conform to our perceptual mappings.

Other standardized color spaces exist. One drawback of XYZ is that it’s not perceptually uniform — green
occupies a huge chunk at the top of the wedge, while yellow is a narrow little line; it would be preferable if the
distance in color space produced the same difference in perception in both areas. LUV is an alternative model
that addresses that by distorting the projection. But neither XYZ or LUV is particularly useful for
programming because they’re imaginary colors; sSRGB aims to fix that by standardizing the RGB color space
instead (http://www.w3.org/Graphics/Color/sRGB.html).

Another issue in accurate color reproduction is the intensity (value) of the color. Different display devices
have different response curves. When the red component of an RGB value (0-1) is mapped directly to a
voltage applied to an electron gun, the intensity of light produced does not vary linearly from 0 to 1, but
typically follows a power curve (y=x"gamma, for some gamma > 1). Gamma correction is the process of
standardizing the intensity so that a linear response is obtained.

All these issues also apply to cameras as well as displays, of course. Cameras have gamuts (for the hues and
saturations they can record) and response curves (1o intensity) that require calibration and correction. To learn
more about human perception and color, take 6.098/6.882 Computational Photography.

24

Color Guidelines

* Avoid saturated colors
« Use few colors
» Be consistent with expectations

Spring 2012 6.813/6.831 User Interface Design and Implementation 25

25

Avoid Saturated Colors

Ty
-

¥ Chat
® Reb Wile:

24l SIS heie
oy Asdtons
v Labals

Ecit labsis|

Spring 2012 6.813/6.831 User Interface Design and Implementation 26

In general, avoid strongly saturated colors — i.e., the colors around the outside edge of the HSV cone. Saturated
colors can cause visual fatigue because the eye must keep refocusing on different wavelengths. They also tend
to saturate the viewer’s receptors (hence the name). One study found that air traffic controllers who viewed
strongly saturated green text on their ATC interfaces for many hours had trouble seeing pink or red (the other
end of the red/green color channel) for up to 15 minutes after their shift was over.

Use less saturated, “pastel” colors instead, which mix gray or white into the pure color.

The examples on top use colors with high saturation; on the bottom, low saturation. Shades of gray have
minimum saturation.

When saturation is cool

« When your cones get saturated with one
color, you can use that to make other colors
seem brighter.

+ Epcot in Disney World uses this — they make
their sidewalks pink-tinted, which slowly
fatigues your eyes, so the grass looks
greener.

Spring 2012 6.813/6.831 User Interface Design and Implementation 27

Saturating one color in your vision can have a temporary effect on your perception of other colors. Think of
when you take off colored sunglasses, for instance. You can use this to change perception in cool ways — for
instance, making grass look greener — but it can also be detrimental.

To see what this feels like, look at a full screen of bright red for a little bit. Then look at a full screen of green.
The green that you see will be more green than you can normally perceive, because your red-perceiving cones
won’t be firing at all. This green is an imaginary color. It’s visible light, but it’s greener than the range of
normal human vision.

vy

Use Few Colors

EpE kL EEEED

sEEERE BB EE

Spring 2012 6.813/6.831 User Interface Design and Implementation 28

In general, colors should be used sparingly. An interface with many colors appears more complex, more
cluttered, and more distracting. Use only a small number of different hues.

The toolbar on top uses too many colors (many of them highly saturated), so none of the buttons stand out, and
the toolbar feels hard to scan. In contrast, the toolbar at the bottom uses only a handful of colors. It’s more
restful to look at, and the buttons that actually use color (like the Open File button) really pop out.

A simple and very effective color scheme uses just one hue (like blue or green, weakly saturated and in various
values), combined with black, white, and shades of gray. On top of a scheme like that, a bit of red in an icon
will pop out wonderfully.

28

Background Colors

Spring 2012 6.813/6.831 User Interface Design and Implementation 29

Background colors should establish a good contrast with the foreground. White is a good choice, since it
provides the most contrast; but it also produces bright displays, since our computer displays emit light rather
than reflecting it. Pale (desaturated) yellow and very light gray are also good background colors. Dark
backgrounds are tricky; it’s too easy to mess up the contrast and make text less legible, as shown in this
example.

Be Consistent With Expectations

CD Creation Process - Untitled

Recording Phase

CD created successtully.
@ FARAFRNERESEREREOED

Eancal I | Details >> |

Spring 2012 6.813/6.831 User Interface Design and Implementation 30

Finally, match expectations. One of the problems with the Adaptec dialogs at the beginning of this lecture was
the use of red for OK. Red generally means stop, warning, error, or hot. Green conventionally means go, or
OK. Yellow means caution, or slow.

(But note that these conventional meanings for colors are culturally dependent, and what works in Western
cultures may not work for all users.)

Choosing Good Colors

» Copy colors from other interfaces
— FireBug, EclipsePalette, Digital Color Meter
+ Pick colors out of a photograph with natural colors
+ Pick one color and several shades of gray (safe
choice)

— Or pick two colors that seem coordinated (ask for other
opinions on this)

Spring 2012 6.813/6.831 User Interface Design and Implementation 31

Given all these rules about what colors not to choose, what colors should you choose? There are no hard-and-
fast rules here, but there are a few heuristics. The first heuristic is an old standby — use color schemes that
seem to work well for other interfaces on the desktop or the web. There are several tools you can use to probe
your web browser (Firebug for Firefox) or desktop screen (EclipsePalette for Windows, Digital Color Meter
for Mac) to determine what color is being used by a particular display element.

Another effective heuristic is to find a photograph of a natural scene that looks appealing to you, and extract
colors from it (using the same tools, or using the eyedropper tool in a paint program). The intuitive basis for
this heuristic is that our visual systems evolved to easily perceive and appreciate the natural world.

Keep your choices simple. You can’t go far wrong by choosing one weakly saturated color and a few shades of
gray. As soon as you choose two colors, however, you run the risks of an aesthetic clash between them; it’s
good to get some other opinions on your choice, particularly if you might be somewhat colorblind yourself.

31

Tools

» Use browser developer tools to look at CSS
style

+ DigitalColorMeter (Mac), ColorPic (Win)
identifies colors from screen

» ColourLovers (crowdsourced palettes)
* NASA Color Tool

Spring 2012 6.813/6.831 User Interface Design and Implementation 3z

There are also some sites out there that help you choose colors. Colour Lovers (http://www.colourlovers.com/)
is a large collection of user-contributed color schemes, with ratings and votes. The NASA Color Tool (http://
colorusage.arc.nasa.gov/ColorTool.php) helps select a palette of colors using HLS and view them side-by-side
on sample data.

Color in CSS

* You can declare CSS colors in a few different
ways:
— With the actual color name (ie red, blue, green)
— With the hex code (#ffffff)
— With the RGB value rgh(67,250,90);

Spring 2012 6.813/6.831 User Interface Design and Implementation

33

33

Summary

« Don't rely solely on color distinctions
— Color blindness is common

» Keep your color design simple
— Use few colors, weakly saturated

Spring 2012 6.813/6.831 User Interface Design and Implementation

34

PS2: Output http://courses.csail.mit.edu/6.831/2012/handouts/ps2-checkerboard-o...

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION

Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

PS2: OuTtpuT

Due at 11:59pm, Sunday, April 1st, 2012, by uploading submission to Stellar.

This assignment explores the following topics related to GUI output:

the object approach;

the stroke approach (also called vector graphics);
the pixel approach;

handling events sent from a model to a view.

In this problem set, you will implement a view that displays a checkers game. You'll implement using a
mix of component, stroke, and pixel techniques. In this problem set, you'll only be concerned with
output. In the next problem set, you'll add input handling to your views, so that the user can click and
drag checkers using the mouse.

You will need to use HTML5 Canvas on this assignment, and this reference may be helpful:

e Mozilla Canvas tutorial

Black Turn ;

{ New Game | .

! Auto Move]

10of3 3/3/2012 2:22 PM

PS2: Output

20f3

http://courses.csail.mit.edw6.83 1/2012/handouts/ps2-checkerboard-o...

Provided Resources

We provide you with a lot of existing code for this assignment. You can get it all at once here:
® ps2.zip: a zip file containing a main page, stylesheet and javascript libraries for this problem set.

You can import this zip file directly into Eclipse using File/Import/Existing Projects into Workspace, or
use whatever text editor you would like. In the root folder of the project are the following files:

e index.html: a skeleton file for your user interface

® mainLayout.css: a stylesheet file for index.html

e checker.js: a javascript file containing the Checker class

® board.js: a javascript file containing the Board class

® boardEvent.js: a javascript file containing the BoardEvent class
® graphics: a folder containing all the graphics files

The board model actually has pieces on it, but you won't see them until you've implemented the pieces
display.

Problem 1: Board (30%)

Fill in the skeleton of index.html so that it displays a 400x400-pixel checkerboard. The upper left square
should be white. The number of squares across the board should be dynamically determined by the
BOARD SIZE variable in the code. This size defaults to 8x8, but you can change it to any value n by
adding ?size=n to the end of the URL, e.g. index.html?size=16. No matter how many squares are
in the checkerboard, it should always be 400x400 pixels.

You can use either canvas (the stroke approach) or HTML elements (the object approach) to solve this
problem.

Problem 2: Checkers (40%)

Display all the checkers on the board using HTML elements (the object approach). Four pictures are
provided for you (red-piece.png, black-piece.png, red-king.png, and black-king.png, found in the
graphics folder). Please don't replace them with different pictures.

Your view must update when the board changes so that it displays the current state of the board at all
times. You can test this by clicking on the buttons, which produce various legal board configurations in

the model. Be sure to also keep track of who's turn it is, along with a respective visual cue above the
buttons. Remember, black moves first.

Problem 3: Move Feedback (30%)

When a checker moves from one place to another, draw a yellow arrow from the center of its old

square to the center of its new square, appearing above all checkers. This arrow should persist until the
next change to the board.

Going Further

If you found this assignment easy and you're inclined to go further, try the following:

3/3/2012 2:22 PM

PS2: Qutput

3of3

http://courses.csail.mit.edw/6.831/2012/handouts/ps2-checkerboard-o...

® Animate checkers when they move

e Draw the checkerboard in perspective, so that it's more obvious to the user which side theyre

playing.

What to Hand In

Package your completed assignment as a zip file that contains all of your files.

List your collaborators in the comment at the top of index.html. Collaborators are any people you

discussed this assignment with. This is an individual assignment, so be aware of the course’s
collaboration policy .

Here's a checklist of things you should confirm before you hand in:

Make a fresh folder and unpack your zip file into it
Make sure your collaborators are named in index.html
Make sure all assets used by your code are found in the fresh folder and load successfully

Make sure that the page renders correctly in at least two modern, standards-compliant web
browsers (Firefox, Chrome, Safari)

Wb

Submit your zip file on Stellar.

3/3/2012 2:22 PM

P9 Opt 7%

~——

0&)\)@0‘%, 5+(OL-Q/ P:?K@{ C[WWA 7% ﬁ\(b
Tﬁhwll el dmt (s

(P fill fhle = "csh [209,0,)
Cf\((ﬁ'll(\)eof (ZO/ (0, 57}5’0]
L)OJ{ dnlow& = ([/c;w ()

6(l(i Coord e 0 X

L

C}O@G/ﬁ‘a (vewe To (/

bl e mide (, y, wdt, bish)
6+(0L(, < l@ﬂf d@(

Move TO (“/\/) Pima Jeae
&)r Pdﬂ5
Or l(‘% Td

S, h///@f ¢lse

e[%y s len, she g, by ond hyll, i
bem‘@f (e

L inages
]M O PVF b 0 g bex 641

(c chw 01 1L"P 2

ltfdf\»@a/em‘,,/ e ohyle, gadwd of, .
Ol GMGLgh of ﬁrd/f

6

Budd
e—uo

HIfL o Cans
? nare Con forfuble «/
0 e o By e

He vt fples.

R

Work j o+ ’
AL My (0w (&//5 L/ﬂ//eé dq /[(/éjlfy/

7{47:/5/3 w/ c[(rspﬂqf //r?//"’@
[(- feft- boltter

L‘/C(/C/ 64&&6/@0/{ m;/b’ﬂ/&
(/v/ @/(,gaﬁ,,(o /]

| 5('1(6 _Z %P /’M"fy f

Olbe

ht 14,/ ¢ 0 0(46’6/(5#’/
U Pl
Y

y

(/90 fo éﬁ S cfcmlwy Clov
@IDM Ml‘

MW

%ﬂay e Chilors o/ My (1771 Uone s
‘sl diglyy o0 aby S gy 7
% o guf- of ol pioudef
| et b e dl wdo
83 gy st ety g&ﬁ?/%/@

o el AU i)
4y

P(@ec (ko Pl o]

) O

6 b/r-eof g ety f%
Color %

\m?!aﬁ 7(@/6[{/ /\epe Mé b9 ﬁu'?‘e«

UM LF 54 L((/TL

{s w/ Connas

ok Tl sl b A~k
T Wil e P

e
A/On/ Move

Doy (421 4o
;/"7 Not~ d/[l({/itﬂ .t

or fld

¢ /’Wfilﬂ v
_é/aL (e N Mgy

) ponafe. di W&/t’:fy

Vol 6 Fad 1ohop fm g/

(/M I;f%& (\ s
Tﬁf/pfl(} L i Pt

[@e:ewk% A4k [%&fo’% Ctn g@ 74

@ E‘&{ Wjﬂde fw’ﬁ
/VQW A;Sﬁ(a/

- 0/0;4 9 Ploper /[/4/ /':’15

@ @0@«(

€V€fo7;;«J 6{//% /z" é(W//A—/?

[
Pecey Caple
{ W}% pmmﬁ/*(

G omg 1} r;j wrid He

of Pondles ol cvids
fﬂ €/)(s d?’l‘% o d«;f;;{v} W/ /71;54 ///'g

W
/V{)w ﬂ‘ pfam/ﬂ) e it /C"/9
-5 Tyl loret

@U&L g/ pif L

M

[we_fead buk
9(@‘/ dn QoW &Lé?“@ 0@/[@(61&014/5
g'\IV(H/{ Conv)

/‘

b e nl £ b e b iy flon”

0

004 il VTSR b ot Sl fo e [et

Oh bl
\/‘,ol alod éepw{/ffan p//'«w},a[g

Dy wt hua 1o X

L
il wait for Puzea_dusw—

60@59 ned (Ui
oc / a 757# SAF = //;/&er,/
(b, pae}f/y,, b gl wtof dec

@&7/‘ Canws o GAM«/ (%

601L A0
él/% ﬁNL §l’lav"£19 ue ~..

Why gt 7
TP
01\ el JMLQ()

NP’N nel fo Clew |

e |
A{ér’@mw‘?' "}M/ @
(e Chows ()

PS3: Input http://courses.csail.mit.edw6.831/2012/handouts/ps3-checkerboard-i...

6.813/6.831 ¢ USER INTERFACE DESIGN AND IMPLEMENTATION

Spring 2012 Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

PS3: INPUT

Due at 11:59pm, Sunday, April 8, 2012, by uploading submission to Stellar.

This assignment explores the following topics related to GUI input:

event handling

hit detection

dragging

undo and redo

enabling/disabling commands based on view state

In this problem set, you will implement input handling for the checkerboard you created in PS2, so that
the user can pick up checkers with the mouse and drag them around. We provide a class which
implements the rules of checkers that gives you feedback about the legality of the user's moves. You
will use this object to implement turn order, undo, and redo. After this problem set, you should have a
basic but functional checkers game.

Provided Resources

This assignment builds on top of the code you wrote for PS2.

In addition to the Board object provided in board. s, you will be
using the Rules object found in rules.js. The Rules object
wraps the Board object and provides an interface to the board
that constrains your manipulations to those which fall into the
rules of checkers.

Manipulate the board state Manipulate the
according to the rules of Checkers board state

rules.js beard.js

The Rules class has two methods you'll need: one which attempts

a pre-selected move for a player and one which attempts to randomly move for a player. Both of these
methods return null if the move was invalid (or no moves were possible for that player, in the latter
case). On success, they return an object containing the results of the move if successful (any jumped
pieces, etc). See the rules. js file for detailed documentation.

Problem 1: Dragging Checkers (40%)

Add input handling to your Checkerboard, so that the user can drag checkers around.

I of3 3/17/2012 1:24 AM

PS3: Input

2of3

http://courses.csail.mit.edw/6.831/2012/handouts/ps3-checkerboard-i...

Pressing and dragging in a square containing a checker should pick up the checker from the board. The
checker should not make any abrupt jumps — neither when the user presses the mouse button, nor
when the user starts moving the mouse. The checker should move smoothly with the mouse pointer,
hovering over the other checkers on the board.

Hints:

If the user releases the mouse button when the mouse pointer is over an empty square, the
checker should be moved to that square using Board.move (). The board model should not be
changed until then. If the mouse pointer is over a filled square, then the dropped checker should
be put back where it was taken from. (note: we'll change this to use the Rules object on the next
step)

If the mouse pointer leaves the checkerboard during the drag operation, the dragged checker
may either follow it or stop wherever it is on checkerboard — the behavior is up to you. But if
the mouse pointer moves back into the checkerboard, the checker should resume following the
mouse. If the mouse button is released when the mouse pointer is off the checkerboard, the
checker should be put back where it was taken from.

Be aware of z-order, since you want the dragged component to hover on top. (note: HTML5-
compatible browsers may not require adjusting z-order)

You will need to do mouse capture correctly to handle cases where the mouse pointer leaves the
whole browser window. You can either attach mouse listeners to the root of the view tree
(document or window object), or (on HTML5-compatible browsers), simply listening to drag and
drop events on the game objects may be sufficient.

Problem 2: Turn-based Play and Following the Rules (20%)

To make the checkers game actually playable, you'll need to constrain the user’s inputs those that
respect turn order and the rules of the game. You've already implemented turn order tracking in P51, so
this should be an easy step.

Hints:

Modify the code from Problem 1 so that checker movements are performed through the Rules
object instad of the Board object.
O If the Rules object returns a null value, you should return the piece to its original position
and not advance to the next turn.
O If the Rules object returns a non-null value, advance to the next turn.
Keep the "Auto Move" button from PS2 -- that way you can play against the (randomly moving)
computer.

You'll need to keep track of both whose turn it is (red or black) and what direction that player is
moving. When you attempt to make a move, you'll need to pass the Rules object the turn
direction and the player direction. Both of these are either +1 or -1. Turn direction represents
whose turn it is. Player direction represents which color piece is trying to move. For example, if
red is +1 and black is -1, and on red's turn, the user moves a black piece, then turn direction
would be +1 and player direction would be -1. See the documentation in rules.js for details.

Problem 3: Undo (20%)

What's a game without the ability to take a move back?

Add an "Undo" button that, each time it is pressed, goes one step backwards in history.

3/17/2012 1:24 AM

PS3: Input http://courses.csail.mit.edw/'6.831/2012/handouts/ps3-checkerboard-i...

® The "Undo" buttons should only be enabled when that action is possible. For example, "Undo”
should be disabled upon game start.

Hints

e When you make a move, either randomly or specific, the Rules object returns a data structure
with sufficient information to implement the undo and redo functionality.

e Undo is outside the rules of checkers. That means you'll have to implement it using direct
operations on the Board object. Don't worry about Rules -- it takes whatever the current state of
the board is, even if you've manipulated the board behind its back.

Problem 3: Redo (20%)
Add a redo button that plays the undo stack foward.
Hints:

® Think about what should happen to the redo stack when the user makes a move (either manually
or by pressing automove)
e The Redo button should only be enabled when that action is possible

Going Further

If you found this assignment easy and you're inclined to go further, here are some ideas for optional
improvements:

® Do hit testing for the true area of a checker, so that clicking in the corner of a square doesn't
pick up the checker.

What to Hand In

Package your completed assignment as a zip file that contains all of your files.

List your collaborators in the comment at the top of index.html. Collaborators are any people you
discussed this assignment with. This is an individual assignment, so be aware of the course's
collaboration policy .

Here's a checklist of things you should confirm before you hand in:

Make a fresh folder and unpack your zip file into it
Make sure your collaborators are named in index.html
Make sure all assets used by your code are found in the fresh folder and load successfully

Make sure that the page renders correctly in at least two modern, standards-compliant web
browsers (Firefox, Chrome, Safari)

f. Wk

Submit your zip file on Stellar.

3 of3 3/17/2012 1:24 AM

Uiy 5
GOWJ % %(({ rLM CW)

D(Ohb d @(op
<§0 (4 Pt"{ i‘JF a5 (nam«w[ils Gud
Rl% IE Sy A tmase (/quf
P\/\/\x §€|° Cllk';ﬁey ﬁ? Ple Sola, V5 /afufm/z
Lgew@{@,) A [datLJ”l Mavid I 3(/405
DGD J(aﬁ T d/‘“v’
L Mfoh ({@av;ﬂj Af@wﬁéf W;/z dow
Whole e clickable C}sﬁl Tt Me/f)

G i seoms Chal&,«

Hﬂw %o ij ¥ c,/(op j
LUGP, A H)/c{(,//

ﬁp ()!0 0N Ovr wal/; \,v/ edgn')' /(f)ﬁp/)
/(QQM7 “t{ e f\/uqtl 7‘50 (\\\JLI] fd&}*ﬂm 47(‘/6[:l[f

o [‘(Lmh/

527

¢
-Rwﬂ/h J (ltry drag ~ dop
\P!M?O\ ”% \(ov rully skl pl vse 4 /’%/
Y y
ét, Mavse g;)\ﬂﬂ %0 U/WW@LW (}) [!/_

Over

60 Mavép, cfawn on Tlc ﬁw/{
QW‘{E ‘f‘\k Mov L

Ton oep o o @b %
Mgty ¥ Joo Tl (Cl@ol\ wes s)

bE e 4 ik s o oo

I NN P'w&ém an ﬁdb
#1090 N eants fon (s

Last
Iﬁ‘ dﬁeb" l 241 ﬁ’\(;/{’ Y
Q@r\ Cale Ol‘%o&

Canvts (R

thm ML?, OW 624/&4/ (/P/(
C‘D“U s ey /Mrw[—un, Cltn):)
CI e/ (%ﬁzed, Le('@)a]t H/e‘@nl c)nl7 [/erV (ﬁl@mﬂ J”/y

mem

1 e Bils s ol augh)
Bt T Thibl TQWT Loty {71(5

09\05 ﬂ;ﬂré (ow H¢))
}/\IWL Q('/Cs @/opglz !

 Why
Wit N Checlers % 6”014/ Iy Mage alou)
LX/‘/ Lead o

@D@”ﬂ D(cuée;/lj

’nl Wy & aﬁq}/ M* @

Y
M’W ((((op,/&\(/%
() by

BL}\' Wg& (e P on \e

) Deps!

(. mm" T SUPP(\%@({ A M/L»«))
@ (e b (Joes ‘)Qc{/e, pad Corect],
@ mk ,Jr {6“% L\/z’ 1 Co//@of/ 7

<

DQ(IL Z Rm B&JU{ m&‘/ f ﬁ)/’ﬂw"‘p T /(/Ze)

MQD, /5 [\c@ 2 Mmd)
’H'Iteo] &

— Mt 4 mndém Mye

[Readon Myve @//m{, Wt
D@z de q,((n\/”

&

f o vt Page X ak (X 4, sl

‘-"'—-—_____

Qvl%.d'g Sl dyes oot gl

Mld‘l ae 14/4 ()/l‘fﬁ,ﬁm + P('lﬂ’/ Jmf f“’ﬂ
Ol'\ éaﬂt dre T

(OFy

MOW ohﬂ«g@ le!még 28

Ol

&d st Says wiing Jir
@ F‘K@(‘. Wiy v
%y oy

MW" f‘um I\L;;ILW7
/%{0»’1 /u{f.’a Ob/%F

= buthoa éra;a(QA 5{ naﬁ‘“’ﬁ

'"“Obu J[hfo’@\‘\ bw\/(‘J{'j

Im Joz.&g (/Vlqu I [640 M bﬂh« QF In(e A/;JC(

!/W{ (win wﬂo 6\/ 1 h 0((‘%«4/31

LWI 71/&/. ﬁpé@ M (:4 Wa?z&

(ﬂ](’fr (’7 na'L a/t?/»)r C[eom ﬁd(’ /M' ot 72 Iﬁoé,,;l
7 (lass))

oo ngl B b Fe ey

-

Comee a0

@0{)&, o J

T ——— e ————————————————

M -y | Redo
% Ao Moo g migt Lol by
li

N@W%QYL Vi ‘{ﬂ

e (rwiay i

Op(% A Qame LA stb bluks e

(/)o w Aeedl B le "
j:’{} 4o W/ No
00’\ (wL cvarﬂL b ﬂb[\ |
m%h i papely bill sholl e sinple y

Ot\ (\ZC'J":L "("Me (03 72\ c{/fa marp
iy ohy
R

NO+ 6%‘ {J:’b C% (0//’6(/?[[7
(/ﬂdo 5{10\//! f@ 710%/{/ fura

7 b Made
QW@

Ep(lfﬁi@ 3eims % l/m/“

W all g Chngtd o |
lote @V@/‘{ Jane!

% "y ;460/(6()7/// 64,0/%//}@5{

S {} O«/ﬂ/é\

g 7 £v‘gj/

0

Siefos 2 1ol pefectly
I()HC(M N L‘/ﬁ‘j

l@%% l+ 0’0.@ /

g”fj o (pa bchble |
T(7 }‘L 1 morg "H/‘@
61\ 11[Vi V/dﬂ M éMLa Mot ﬁﬂq 7%@/6) 724,1{,44

h T wsfed oo

o) Faok

6/47 o Coy whia ado moc
— kil #e rod oF T ("j

) Figg
\—’//l
@ orls

T%J' Cﬁ/()w& _
Tt It fpﬁwwfb

Wl e s g o is s

p j 3 O\/IL]L(J(Lo}) (Zn/g/ 6¢¢
Cust P

6&1 kj/ﬁ (/" @?, Wetls

Hall of Fw,/ Qang, < Gonge. Dou; el

) {Oh of e qme oo

—all @ s o (b Hoe
~Cep moe |l fefor %f/ Cﬂwmg@

Mﬂmétut%
\NHL(/{'\ GOLV Pobifj ot (/G.L& /66260/15 “6)/* VM% Mgtlwz/
(P%Plﬂ Coa,(vw&)

(thlle ok "t

Ca /‘Q@V\ (‘H =N
ble ol —ves , less gt

L
O dea / UM\ ’5‘17@ yg[(am'/zy }/L 0&@/

u)a,/ Wb g uv chamatc b
@{eeq/\f@l(w & ajr (.

/WIO(M/{\ (jdr(k gy CD@Y(’(UJ

waﬁ (St
FFOQ 00 - e

FF 00 FF ~paple
Mot Groy s T , \/VI/VH’Q/ iz IO(‘L y
\

ﬁmiw
-~ Tuks

/\/\/ +€,ﬂ()a£()

[db]r ch/ 4 ’L 3/0(19%& &wm
L -al habed o,
L‘\Q ([,Of%ﬂi" L(M. 0 (Q/PGIM

Reada o 7
£ivalios i surcaly &
(’GM‘{A 9 Iom(@/c C\ii“ C@v’f}{'f@w
*&JZV&]’M }Jf”'f/f]f\ /s C/M(y
- acall Jmp 3 ooy

j Lqpa of mqﬁ i Sy z’m,oﬂ/f@nk

"
(,cgebfhb« Tl o cakaructon
Caldily = e, Ve fhoy f o,

Nebies 6}9@@&) COijfﬂwM
Sub jﬁa‘f/& P/g(mc(j

W of & Bl

(cee étﬁib B € aod

L0 g

A@"Qﬂk an i“‘\w}dﬂy

AQH/AQ/) for mog [Afl h@/z duado
Lod s - i atel [k o ot loe

ko = Whike spue th i, lefle

SPUUQ, sﬂ/u/ “V@ —mare gpue = Qcé;aef fo yLWP

‘f_‘LL ool el = fouk gpuce
lhe & |He Lo
| b b do !
TTRS 0% e bt
(?&ML ngfm and PP
% = etfa Gee bl ling

Y
T@_ o
Yot w| quib e b

Me @Cue oe/(ﬂwa (’/sz(i,

§Wl5 ”fcu‘d(s Lgp/#(’/ on Z&h/ —(Cy 51y
’“fdz“" dpwi

\/CF/(WIOIQ v {(%@i WL(HQ
T’omt#f 60/ ca)éQ
vt (o
(e L

e

/0 lo[& Hallc
man, BOVE /L Come o/@atj‘@d

7P0F ¢ dJ\ e ﬁam tfd(tc,
Heade fed

\ '
" Luba J‘ﬁP(ﬁw ford
. Wl tod

ol caps ?aq\mﬂ) fo (oqf,
WU & Mo, mb bl

(

(e Loy own hae)MMJ\
Lt Fowlcw w1905, 100>

[

(ol phen onbeded @ Tl

ntf (ol of s
RN Q/]Lgﬁ'm W
I
Fu
C(A(Jf 0
- A9t
~L@% Q

b wM&,
/\M ob“ @fﬂl& /rmph?wt a/“ @WAM
Inded b ane gtk]

ﬂu[} wa €”{Ib »{?f\tot}ﬂ‘/xﬁ 1L9 ‘e, cx/ble {‘o [

WJA

Y

/E“‘u}q 14596
=
D S/ 2 m/l?ﬁ#l? oy
on " (c?
() I U Cﬁuo@ v G
Oui

e i s o ot
—Ade Onz? ,",‘ Laﬁ,\ _/].
- ﬂ@']‘ ;r\ A’S(JI

'_50. k(awﬁ?f f€4d% l/u//oy

HYﬂefw T IDW@
C =l o vwlatn / J[@‘(’fvia?
- L\zﬂhq = highn g
N eﬂ‘(l“blv ~ (drys
=~ O~ dush

4

nabq

& O

opans
’()/L%)F”[PQ 9& W HpULE)

= s Non ~ by eaking >

?MJ[Swfm

o

—dgid WiE ML Phay zw?]Lﬂﬂz{w

"l@tdﬂ’ H‘”{f
_0/}(‘{ | ﬁm Sum (at

'“j‘}«m L Jw;e"/b
— bkl Wt . 45

(4

—

{m{ ’%&ﬂ\”\(/g]lt

Cihonsits 1a ng ¥

(a1 ploide fwl Liles
LGG@@}{ ’/onjr 6(1%6

A
Q(omf (48 ff”éﬂdﬂf

By Tdutitnd -70 gty
W(Mb‘{ m F@’”L s f[vm,ﬂe/ [goh//

L19: Typography

Spring 2012 6.813/6.831 User Interface Design and Implementation

Ul Hall of Fame or Shame?

Google Docs notify@@google.com
to me i~

See the changes in your Google Document "nanoquiz makeups 8.813/8.831 spring 2012°: Click hers
A user made changes from 3/18/12 6:59 PM to 2:30 AM (Eastem Daylight Time)
* Form submit (6)

Open the current version of your Google Document “nanoquiz makeups 8.813/6.831 spring 2012°: Clicx here
Powered by Google Docs
Want to stop receiving this emall? Click here

Spring 2012 6.813/6.831 User Interface Design and Implementation 2

Google Spreadsheets has a nice feature that allows you to track changes made to the spreadsheet —e.g., when a
form submission adds a new row to the worksheet, or when somebody edits cells in the worksheet. Here’s an
example of an email that Google Spreadsheets sends you to report changes made recently. (Does an email
message have a user interface? Yes!)

Let’s talk about what’s good or bad in the usability of this email. Some points to ponder:
- simplicity
- information scent

- what does a squint test show?

Today’s Topics

+ Readability
* Fonts
* Whitespace

Spring 2012 6.813/6.831 User Interface Design and Implementation 5

Typography is the art and science of displaying text (or “setting type” as print designers call it). The key
decisions of typography concern font (the shapes of letters and other characters) and spacing (the white space
around letters, words, lines, and paragraphs). Both are important to successful text display; without adequate
spacing, the shape of the text is much harder for the eye to discriminate.

For typography, an outstanding book is Robert Bringhurst, The Elements of Typographic Style,
Hartley & Marks, 2002. Also useful is “Principles of Typography for User Interface Design” by Paul
Kahn and Krzysztof Lenk, interactions, which you can find online.

Readability

» Reading process consists of fixations and
saccades
» Readability vs. legibility
» Metrics of readability
— Speed
— Comprehension
— Subjective preference

Spring 2012 6.813/6.831 User Interface Design and Implementation 6

In keeping with our brief tours of cognitive science for each design topic, let’s say a bit about what’s known
about reading. Note that these high-level comments are applicable to most written languages, not just English.
Most of the rest of the lecture will be specific to languages that use the Latin alphabet and its corresponding
fonts, however.

First, reading is not a smoothly linear process, even though it may feel that way to introspection. The eye does
not move steadily along a line of text; it proceeds in fits and starts, called fixations (stopping and focusing on
one place to recognize a word or several words at a time) and saccades (an abrupt jump to the next fixation
point). At the end of a line, the eye must saccade back to the beginning of the next line.

Researchers studying reading and typography often make a distinction between legibility, which is low-level
and concerns how easy it is to recognize and distinguish individual letter shapes, and readability, which
concerns the effectiveness of the whole reading process. A single fixation can consume whole words or
multiple words, so fluent readers recognize the shape of an entire word, not necessarily its individual letters.
Readability can be measured by several metrics, including speed, comprehension, error rate, and subjective
preference. Readability is essentially the usability of a display of text.

Dimensions of a Font

x-height

"""" /3

I ine
m-width
descender y
serif
Spring 2012 6.813/6.831 User Interface Design and Implementation 7

Now a few definitions. Characters in the Latin alphabet all sit on a common baseline. Some characters have
descenders dipping below the baseline; others have ascenders rising above the typical height of a lowercase
character (the x-height). Capital letters also ascend above the x-height. The typical height of ascenders above
the baseline is called the ascent, and the typical height of descenders below it is called the descent of the font.

The font size is typically ascent + descent (but not always, alas, so two fonts with the same numerical size but
using different typefaces may not line up in height!). Font size is denoted in points; a point is 1/72 inch, so a
12-point font occupies 1/6 of an inch vertically.

X-height, m-width, and n-width are useful font-dependent length metrics. You can find them used in CSS, for
example. They allow specifying lengths in a way that will automatically adapt when the font is changed.

More font terminology can be found at http://www.davidairey.com/images/design/letterform.gif.

Measurements in CSS

+ Device-dependent
- px
» Resolution-dependent
—in, cm, mm
—pt=1/72in
— pc (“pica”) = 12pt = 1/6 in
» Font-dependent
— em = font size
— ex = x-height

Spring 2012 6.813/6.831 User Interface Design and Implementation

Spacing
Four score and seven years ago,
our forefathers brought forth upon

20/20 this continent a new nation, conceived in
liberty and dedicated to the proposition
that all men are created equal.

Four score and seven years ago,

our forefathers brought forth upon
20/24 this continent a new nation, conceived in
J liberty and dedicated to the proposition

that all men are created equal.

Four score and seven years ago,

our forefathers brought forth upon
r I I I I I 20/28 this continent a new nation, conceived in
liberty and dedicated to the proposition

that all men are created equal.

Spring 2012 6.813/6.831 User Interface Design and Implementation 9

Several kinds of spacing matter in typography. At the lowest level is character spacing. The gaps between
characters must be managed to prevent uneven gaps or characters appearing to run into each other. Kerning is
the process of adjusting character spacing for particular pairs of characters; sometimes it needs to be narrowed
(as V and o shown here), and sometimes widened (e.g. to keep “rn” from looking too much like “m™). A good
font has kerning rules built into it, and a good GUI toolkit uses them automatically, so this is rarely something
GUI programmers need to worry about, except when choosing a font. Note that the top Vott is displayed in
Georgia, which at least on my system appears not to have any kerning for V and o. The second Vott is
displayed in Times New Roman.

Spacing between words and lines matters too. Words must have adequate space around them to allow the word
shape to be easily recognized, but too much space interferes with the regular rhythm of reading. Similarly,
adequate line spacing is necessary to make word shapes recognizable in a vertical dimension, but too much line
spacing makes it harder for the eye to track back to the start of the next line. Line spacing is also called
leading; technically speaking, the leading is the distance between baselines of adjacent lines. Both font size
and leading are important. Print designers say, for example, “12 point type on 14 points of leading” (or
“12/14™) to indicate that the font size is 12 points (typically ascent + descent) with 2 points of space between
the descent of one line and the ascent of the next. Using the same line height as font size (like 20/20) is almost
always a mistake; characters from adjacent lines touch each other, and the paragraph is much too crowded.
Note that leading also strongly affects the overall value of the body text (which type designers somewhat
confusingly call the “color” of the text; historically print is mainly black-and-white, of course, but it’s
confusing when talking about modern printing and modern computer displays). Tight spacing looks much
darker than loose spacing.

In most toolkits, choosing a font size implicitly chooses a leading, but the default leading may not always be
the best choice. Look at it and adjust if necessary. CSS makes this possible using the line-height property.

Spacing Guidelines

» Use whitespace

— Always leave margins around body text; never
pack it tightly against an edge

» Use generous leading
— Make sure body text is not overcrowded
— e.g. CSS: line-height: 120%;
+ Keep text paragraphs narrow
— About 80-75 characters / 12 - 15 words / 30-45 em

Spring 2012 6.813/6.831 User Interface Design and Implementation 10

Here is some advice for choosing spacing for body text (text set in paragraphs). Always leave margins around
body text; never pack it tightly against a rule, an edge, or a window boundary. The margin helps frame the text
and also helps the reader find the ends of the lines, which is essential for the saccade back to the beginning of
the next line.

Use generous leading, but not too generous. 120% of the font size is a good rule of thumb; this would
correspond to the 20/24 leading shown on the previous slide.

Line length (or equivalently, paragraph width) is another important consideration. Hundreds of years of
experience from print typography suggest that fairly short lines (3-4 inches) are both faster to read and
preferred by users. Unfortunately the studies of onscreen reading yield mixed answers; apparently, on screen,
longer lines (about twice the ideal length for print) help users read faster, but users still prefer the short lines
(perhaps because their consistent feel with print). These same studies show that onscreen reading is slower
than print reading, however, and recent studies have shown less and less effect of line length on speed, possibly
because display and font technology is improving rapidly. So it’s possible that making the lines longer merely
offsets the poorer resolution and legibility of computer displays relative to print, and as the displays approach
print in quality, this distinction will go away. (Bailey, “Optimal Line Length: Research Supporting How Line
Length Affects Usability”, December 2002, http://webusability.com/article_line_length 12_2002.htm)

Translating the 3-4 inch rule into characters or m-widths for typical 10-point to 12-point type gives 60-75
characters or 30-45 em widths.

10

Typeface

Abc

g Abc

g Abcg

Georgia Verdana Gill Sans MT
Abcg Abcg Abcg
Times New Ro Arial Trebuchet MS
Abce Abcg Ab
Garamond Cg Tahoma Courier Newc g

Spring 2012 6.813/6.831 User Interface Design and Implementation 11

After spacing, a key decision is what typeface to use. Typeface refers to a family of fonts sharing the same name, like
“Arial” or “Georgia.” A font is a choice of typeface and size and style, like roman, italic, oblique, boldface, etc.

Typefaces can be classified in many ways, and can convey strong associations that influence how the user perceives the
text. One important classification you should know is between serif fonts, like Georgia and Times, and sans serif fonts,
like Verdana and Arial. Historically, in print typography, serif fonts have been used for body text (text set in paragraphs),
because they offer stronger cues to word shape that allow measurably faster reading. Sans serif fonts were generally used
for display text (text that stands alone, like headings and labels), for which reading speed is less important and contrast
from body text is useful.

In the early days of computer typography, sans serif fonts were often preferred for all uses, because their simpler letter
shapes were far more legible on low-resolution displays. As displays become higher resolution, however, serif text may
once again assert itself; even now, there is evidence that serif fonts are faster to read on screen (Bernard et al, “A
Comparison of Popular Online Fonts: Which is Best and When?”, Usability News, 2001, http://www.surl.org/
usabilitynews/32/font.asp).

Another key distinction is between proportional fonts (in which each character has a different width) and monospace fonts
(in which all characters have the same width, like Courier New shown here). Monospace fonts waste screen space and
generally look worse than well-designed proportional fonts, so avoid them unless you have a good reason.

Your choice of font family conveys a tone. Some designers think Times and Arial look cheap because they’re so widely
used; using Georgia or Garamond will give your UI a more “designed” look (i.e., you actually made an informed choice,
rather than choosing a default). Another consideration is whether the font was designed for screen use. On this slide,
Verdana, Georgia, Tahoma, and Trebuchet were commissioned by Microsoft primarily for onscreen use. Most of the other
fonts shown here are digital updates of old fonts originally designed for print. Note some distinct features of Georgia/
Verdana/etc. relative to the others — larger x-height (as a fraction of total ascent) and generous bowls and apertures,
intended to make the fonts more legible at small sizes on lower-resolution displays.

All the fonts shown here are appropriate and useful for body text (though they aren’t the only possibilities, of course).
Fonts for body text are designed to have evenly-distributed “color” (the value of the text in a squint test) so that they look
good in bulk. You will find many other fonts installed on your computer, some of them very wacky. Some of these may be
useful for occasional display text, but certainly not body text. Unfortunately today’s word processors give users many fonts
but very little help selecting the right one for the right use. Instead we get a long undifferentiated list of installed fonts that
hides gems like Garamond and Georgia in a sea of Comic Sans, Goudy Stout, and Old English Text MT -- some of which
probably should not be used in any imaginable circumstance.

11

Style

Abc Abcg

roman style roman style
italic style |lahc s:mulated b ique
bold style small caps
Spring 2012 6.813/6.831 User Interface Design and Implementation 12

We said that a font consists of typeface, size, and style. Here are a few common styles you can use to establish
contrast.

Italic and boldface create contrast in orientation and value, respectively, without substantially changing the
shape of the typeface. Some typefaces lack a true italic, and instead substitute an obligue font which is just a
slanted version of the normal roman style (sometimes even automatically-transformed from the roman font, not
hand-designed). Georgia, shown on the left, has a true italic — notice that the b loses its lower serif, and the g
actually changes shape. Sans serif fonts have an oblique rather than italic; look at Arial for an example.

Small caps is another useful style. Small caps are uppercase letters that are as tall as the x-height, rather than
the full ascent of the font. Like italic, small caps are sometimes a hand-designed font included with the
typeface family (often slightly wider and lighter than capital letters), and sometimes simply automatically
generated by shrinking the font.

12

All Caps vs. Mixed Uppercase/Lowercase

LEDGER 0123456789

all caps uppercase digits

Ledger 0123456789

mixed case lowercase digits

Spring 2012 6.813/6.831 User Interface Design and Implementation 13

While we’re talking about capital letters, it’s worth discussing when it’s appropriate to set text in all capitals.
All-caps has very little variation in word shape, because all the letters have the same top (the full ascent of the
font) and the same bottom (the baseline, with almost no descenders). For this reason, it’s both slow and
unsatisfying to read body text set in all-caps. All-caps should be reserved only for display text (headings,
labels, etc), and even then used very sparingly.

Older print typography actually had lowercase digits, not just letters. Notice that the lowercase digits
predominantly follow the x-height, with ascenders and descenders for certain digits, just like lowercase letters.
You may have seen typesetting like this in older books, published in the first half of the 20" century or earlier.
Lowercase digits fell out of fashion in print in favor of more uniform uppercase digits, which may be
monospaced horizontally as well, so that columns of digits line up easily; all the digits in Times New Roman
have equal width, for example, even though the rest of the typeface is proportional. But lowercase digits are
worth some consideration. They are more readable in body text than uppercase digits, for the same reasons as
lowercase letters, and they convey a feel that is simultaneously retro and “designed.” Unfortunately the
character sets we use (ASCII and Unicode) make no distinction between lowercase 5 and uppercase 5 (unlike a
and A), so when you choose a typeface, you either get only lowercase digits (like Georgia on the bottom) or
only uppercase digits (like Times on top).

13

Character Sets and Encodings

+ Character sets
— ASCII: A-Z, a-z, 0-9, punctuation, control characters
— Latin-1: ASCII + accented Latin alphabet
— Unicode: Latin-1 + Greek, Cyrilic, CJK, math symbols, ...

» Fonts map characters to visual appearance

+ Encodings map characters to numbers
— ASCII: A-Z map to 65-90
- Latin-1: A maps to 192
— UCS-2: each character maps to 2 bytes
— UTF-8: each character maps to 1-3 bytes

Spring 2012 6.813/6.831 User Interface Design and Implementation 14

Note the difference between character sets and fonts. The Unicode character ‘A’ doesn’t actually say how to
draw A on the screen; a font does that. So even though you can represent many different alphabets in a single
Unicode string, the font you’re drawing the string with doesn’t necessarily know how to draw all those
characters. The appearance of a particular character in a font is called a glyph. Many fonts only have glyphs
for a small subset of Unicode. For characters that aren’t supported by the font, you’ll see an error glyph, which
might look like a little empty square or a question mark.

Note also the difference between character sets and encodings. A character set is an abstract set of possible
characters. ASCII had 128 characters; Latin-1 had 256 characters, and Unicode has thousands of characters.
An encoding maps each character in a character set to a number (or a small sequence of numbers). Internally,
Java uses a 16-bit encoding for Unicode characters, representing each character by two bytes in memory. But
the most common encoding for Unicode text in files and web pages is UTF-8, which does not use two bytes
per character. Instead, UTF-8 uses 1, 2, or 3 bytes to represent each character. Single bytes are used to
represent all the 7-bit ASCII characters, so UTF-8 can be thought of as an extension to ASCII.

There are other encodings as well. ASCII maps its characters to the numbers 0-127, which are stored in bytes.
Latin-1 (also called ISO 8859-1 after its ISO standard) maps its characters to 0-255 (compatibly).

In general, you cannot correctly interpret a text file or web page without knowing its encoding. If your
code ignores encodings and assumes everything is ASCII, you will find that it mostly works as long as you
only use English, because encodings generally strive for backwards compatibility with ASCII. In other words,
an English text would probably look identical in ASCII, UTF-8, and Latin-1. But it may break horribly on text
in other languages. Even English text has problems when the author uses punctuation that isn’t available in the
basic ASCII character set. For example, ASCII only had one kind of double-quote mark (a vertical one), but
many word processors now use left and right double quotes that are available in Unicode and other character
sets, which often turn into garbage characters when you load the text into encoding-ignorant programs.

For more about encodings, Joel Spolsky has a good article (http://www.joclonsoftware.com/articles/
Unicode.html).

14

Tricky Characters in Online Typesetting

Asterisk vs. multiply * x

* Quotes Yl T T

— ASCII only has the straight quotes, not the curly ones
» Hyphens & dashes - - —

— hyphens, en-dashes, em-dashes
» Spaces

— nonbreaking spaces are different from ordinary spaces

Spring 2012 6.813/6.831 User Interface Design and Implementation

15

15

Font Selection

« Simplicity & contrast

— Don't use more than 2 or 3 typefaces
+ E.g., one for body text, one for display text

— Don't use two faces from the same font category
* e.g. only one sans serif

— Use size, weight, style (e.g. italic/small caps), hue

to establish essential contrasts

* But 4-5 font varieties should be enough

Spring 2012 6.813/6.831 User Interface Design and Implementation 16

In general, decisions about typography are like other decisions in graphic design: use font selection to make
important contrasts, and otherwise keep your font choices simple. Don’t use more than 2 or 3 typefaces (if
that many). You might use a serif face for body text, and a sans serif face for display text. Many interfaces
have no real need for body text at all, in which case you can easily get away with a single typeface.

Within the typefaces you chose, use variation of size and style (and color) to establish the necessary contrasts.
Size, in particular, makes it easy to establish a hierarchy, such as headings and subheadings. Even so, 4-5 fonts
in all should be all you need.

16

Font Properties in CS8S

« font-family: Georgia, “Times New Roman”, serif
— listed in order of priority
— generic families include serif, sans-serif, monospace
+ font-weight: bold
+ font-style: italic
 line-height: 120%

+ @font-face {
font-family: ‘Droid Sans';
src: local('Droid Sans’), url(‘http://...")
}

+ Google web fonts

Spring 2012 6.813/6.831 User Interface Design and Implementation 17

17

Tools

« Use browser developer tools to examine CSS
style

* Indentifont (20 questions about fonts)
» WhatTheFont (image lookup)

Spring 2012 6.813/6.831 User Interface Design and Implementation

18

Summary

+ Whitespace matters for text
— Use generous margins, line spacing, short lines

« Keep font choices simple
— Few typefaces, few sizes and styles

Spring 2012 6.813/6.831 User Interface Design and Implementation 19

19

1)

———

DD fu m
. |
(Y de w7 betks

UT Hall 4 Fo[Ghane T1iprosh

Can ﬁp& or ik
FQMM - Cofor /11(3]/;[% Lﬂl@
il \(i”’d’ C”!(p ots C[W/ fo 7% howe fo

éqﬂq €05 —(ga 7L Lot [(Q /o«w‘
OAO{W [@1 ébfﬂw i soletghle
(n foe 1 /)

L naf disota b

§3@ ﬁaﬁf (0/1{? {&YWQ/ — 6(’\(’, &)/;M){
Cﬂl()r V‘M{Y/L\‘) @:/ t\lr@, éé(ﬁd({/lj

M\{ fio, J(\wﬁ (ofa/ed
56@, L'G G[‘LM' WY 3
0/ d@/ L\{ P/ ;dl

o Od 4 e Lose (it
“Clmphbed by bl

NO Mj
ﬁdm (ud’v‘”‘ é&ﬂl /) PFQO‘Q?/
Tool Wy

(0"19’9(%61/6 {}Hef;fﬁ
I "«Ul‘/(l@ M'm)

<ﬂn',s iuy VT I\:CQ\ [W{:H S (;][f/ft/’f,’)

g \
i\)ou\a 6\%
N—— (om o I
¥ (a0 ahtf e b 6£)

l&)@lﬂﬂ "S}WL B/w ﬁ“a)

——

W ’Cé\urubes Vala r
< Adds moe WWF

)
Mikypate = | gfps coogelze eyy

1 ot
T =t Vet i b haslie

Lol Luldy bagle

nggj@ 5 hob rey L bt
X

€M = {o”‘ S{ZQ

%M MGQML to dwmt JL"’M’/{}/((%MW/
) LSJ A saly has Aoaf
iy i

s " Vmgmc/@ 'Qﬁ‘k CMcwf%

ol be g entall
Oc faal o ”)T?PLL 1(°r4 %‘L‘racfﬁf

v

Tﬂ({# M‘J*’:mﬁ on ((0/’1 @//Olﬂltt d&i’M
NOW /Od)h\i‘/‘(ﬂ Od‘ J:fé M,;({j of d(i;éﬂfl KO@VZ@’/‘({@;’
M NDM Lpobx;«g @]L % 6&‘/6’@, Lo fof)v[a/%'?

Ohodl Jaa gt o gy

\\

)&ME of d&%m@@h

ﬂf%:bﬂvg M
Agtosilly 4oy

—

I

[aton tagudns Atk 4t a)

\(.‘m/dv'k

- (0'0/ ﬂf(%@p{}g/’
_ Rk vab, (H‘n(’m&)

~ Yokl L'\Wfab)
HQM@
- U{ H?/? Vf)(//\t@ u/ ﬁ%

Vo
oM GI/MMS

— 5 pikyUrs
_ f\icle Nan Gone | shot

— f(/mfp:;

\ | \
(agutie i
L L

Corpre
Frainy
= visul twnly
i l\ewlay [”(’5

— At

O@po/w/e
“Meise iadeed otng Lo

— T
g : %/ml lfmq/ ‘

e
J/\t"”ﬂgf & (u
L[K\E{VE ﬂ/w&/\ i)”T(%/ﬂd,
Qineg {om!acp o ditdny

b

Vsl i

)M’ jm Sut A/ / \}o C/ altcm Tér 0/t foy
N o+ alt wag — a4l 1 Q(gw,/vdﬂ/(? hay
5‘[dewaM\ (ur b v L

g 600& 1[0[)uggoth
— 5/\@;};@
/W"/:’E‘f
\]/\ (oot of Q[ﬂP}OYV@ML 524(9 7y éé«e(ai/)
diods o yniﬂ-z Yy

big gep

OJ}M

— Qeon mugh Lo,
~Ye 1 (eady
~beatle i e

— 5(Cam {[%[ﬂfqg on Gonf

- 9ve O L‘Mi Hatlo
T ad s

Mg (Mp

T\f M

h._./-/

0 Y lyhedds

“ il Wy y
= spuec recayrifion

(}\/“(l/@‘fftg o slretn /€«cd€f

H/(% . L(%MF mC 7{/ (c{k)
(J‘L‘Q {;Qaﬂ}k 60/ /0]’10"0, éf’
/()\li[/ {Am&, Lmh, ‘[I‘g %z 52“[:0

JD {6&7 st % {%ﬁ
Br et Ay

h JFTF"‘ heaf s v g hal for

A U (Qads,

L(O‘Lg ('j(ﬁc(?-’tv] S{Qv ({@\M\ R 50} Y@[

ey //]17 b e
é@(/Hm §O?3
W3 gutlel

St bhand s
— Pth l)P/H*W !/4 M”f‘{o“’ﬁ ’m,((q OSX

\D(o\/;&a Qf{v:t/ "lQHL Wﬁﬂ%

mwoes 3 @H‘
OYI l{][0/ ;'”!Pﬁ/?tm% :

imud) s

Wﬂlﬂ id 46k

Tl vey ewy b edif
LﬂM{L Wf mﬂo’»ﬁx{ L[/L LUL(

T()o‘l : 0 083}3”@/
V‘: 5\/68“1'%) P“@ﬂ T%/‘ M’fq,i pesm
Shaws Ao et infs 5 1n A, Puge

C““ e Mo Mrzﬁé as f/\m&w)
§U€m Q%i@/) i/rJ/hp F‘D /1L

ANOV %% TLo p;ocx [g/a/
TOOWN'LB hawe)’mz‘}

