6.858 Fall 2012 Lab 7: Final project http://css.csail.mit.edw6.858/2012/labs/1ab7.html

6.858 Fall 2012 Lab 7: Final project

Piazza idea discussions due: Monday, October 29, 2012

Proposals due: Monday, November 5, 2012
Presentations due: Wednesday, December 12, 2012 (in class)
Code and write-up due: Friday, December 14, 2012 (5:00pm)

Introduction

In this lab, you will work on a mewuhaice. Unlike in previous labs, you may work
in groups the final proj€ct. You will be required to turn in both your code and a short
write-up describing the design and implementation of your project, and to make a short in-class
presentation about your work.

— _
The primary requirement is that your project be something interesting. Your project should also have
something to do with security, but that's relatively easy, and it's much more important for your project

to be interesting.
g {ol

—_—

Below are some ideas for final projects that you might use as inspiration, including some of the
projects from past years. We encourage you to come up with your own ideas for what you would like
to work on; there's no need to restrict yourself to this list.

e Build a static analysis tool to find bugs in real web applications. It would be great to have a
static analysis tool for Python programs, even if it's not perfectly sound, much like the PHP
static analysis tool we discussed in lecture. In addition to the standard XSS bugs, can you find
bugs where application developers forget to perform permission checks, or inadvertently leak
sensitive data? Such a tool might also be useful to find non-security bugs in Python programs.
One existing tool that's quite limited is PyLint.
* Find bugs in real C code. Take a look at some recent research papers on finding real bugs in the
Linux kernel and other C-based programs, involving integer errors or undefined behavior. We
can give you access to our source code to these tools; you can apply them to existing software
to see what bugs you can find, and also think about ways to extend the tools to make them more
accurate, to make them find other kinds of bugs, etc.
e Extend program analysis tools used by Linux kernel developers, such as sparse and smatch, to
catch different kinds of bugs in the kernel.
e Use the KLEE symbolic execution system to build an analysis tool that finds interesting bugs in
C programs.
e Explore the extent to which covert channels / side channels matter, e.g. in shared VMs like
EC2, vs. shared OS, vs. other environments. See this paper for some background information.
Add Capsicum support to Linux.
Port an interesting application to use Capsicum (on FreeBSD). c I ‘ ;L{ ﬁl YL
Analyze the security of MIT's single-signon system, Touchstone / Shibboleth. A
Find an interesting application / use case for Webathena (site, code), or extend it to support 0/@
non-DES enctypes (AES, etc).
e Implement Kerberos for Android. We can put you in touch with some folks at the Kerberos

1 of 4 10/28/2012 1:34 AM

6.858 Fall 2012 Lab 7: Final project http://css.csail.mit.edu/6.858/2012/1abs/lab7.html

Consortium that are working on this. It would be interesting to implement a Kerberos ficket
caching service, accessed via Android intents, so that an application can use Kerberos tickets
for a specific service without being able to steal the user's entire TGS ticket.

e Implement progressive authentication: instead of requiring the user to log in to do anything,
require different levels of credentials for specific tasks. For example, on Athena, perhaps
running a web browser should not require any credentials, but accessing your personal files (or
your browser accessing your google.com cookie that gives access to gmail) should require your
Kerberos password, etc. The same would apply on an Android phone: checking the weather or
the map should not require any credentials, but accessing the mail app should prompt for a PIN,
swipe pattern, or password. A paper from Microsoft Research might give you some things to
think about, although it may not be worthwhile to implement all of the environment monitoring
done in that work.

e Examine the security of Android applications. Look at some previous studies for inspiration
(one, two).

» Improve sandboxing for Android applications. Is there something that you could do to prevent a
malicious application from exploiting kernel bugs? Consider recent improvements to seccomp,
using Linux KVM, or using Native Client.

e Audit interactions between Android applications, perhaps by tracing all intents sent via the
reference monitor. When something goes wrong, can your system tell the user why an
application might be broken?

e Implement an environmental key generation system. /

e Build a password manager for Android applications, perhaps by implementing a virtual
keyboard that can automatically enter passwords into an application. The virtual keyboard can
know exactly what application if's.entering passwords into, which can guard against
phishing-style attacks. T, USs 0e5

e Provide more fine-grained network access control in Android, to };,otect an internal corporate

il aenlatiy
network from possibly wpphcatlons on a phone. / J b@_ (oo _25 A/" 4 M(/

e Allow users to control application permissions in Android. For example, a user may wa
install some application that requires access to the current GPS location, but the user doesnt
actually want to give the app this permission. Would it suffice to s sunplz remove the permission
from the manifest, or is it necessary to provide dummy services that give back fake data? r:

e Implement more efficient sandboxing support for Python, so that it's possible to import an
untrusted Python module without giving it full access to your system or your application, and
without having to run the entire application in a separate PyPy sandbox. Python already
provides some basic memory safety guarantees (although you might need to implement some
mechanism to restrict introspection).

e Speed up PyPy's sandbox mode. 2

* Implement a more fully-featured PyPy sandbox. Can you run all of zoobar in the sandbox, to
avoid any need for uid-based privilege isolation? g{‘ W&s 6 app — Ci’) Y/ /’QOJ G/ lﬁ

e Implement a buffer overflow protection scheme, perhaps similar to aggy bounds checki 5{{ (}/ £
building on top of Clang and LLVM. 'JXGU
e Use DynamoRIO's binary instrumentation to implement some cool security mechanism for
unmodified binaries. For example, you could implement a binary-level taint tracking system,
QM similar to Resin, that prevents secret files from being sent out over the network. You can look at
a previous lab we used to have involving DynamoRIO from a few years ago here.
05~ ——>» Use Resin's taint tracking for Python to enforce some interesting properties in zoobar.
e Find ariinteresting use for trusted hardware, and figure out how to expose trusted hardware
safely to applications. Linux should already have a basic device driver for a TPM.
e Write a tool to help privilege-separating Python applications.

20f4 10/28/2012 1:34 AM

6.858 Fall 2012 Lab 7: Final project http://css.csail.mit.edu/6.858/2012/labs/lab7.html

3of4

(J’V{A{‘ ;5 ngq 0‘?

e Evaluate how hard it is to privilége-separate a reai appiication (pick argé application and fry to

privilege-separate it yourself; there should be many examples of Django-based Python apps).

e Implement more flexible protection mechanisms for Linux (so that any user can create

additional protection domains -- sub-users -- to run code with less privileges, without having to
be root). You can build upon a class project from a previous year, UserFS.
Based on Google's ¢ajalibrary, sandbox existing Javascript mashups/applets (what to do about
existing uses of globals in the Javascript environment?)
Write a browser plugin to prevent cross-site scripting attacks when both the server and the
client are following some rules (e.g. explicitly annotating privileged JS code). Bonus points for
allowing untrusted JS code using something like caja!
Improve the security of HTTPS in web browsers in the face of possibly compromised CAs. For
example, define a new URL syntax that includes the server's certificate public key in the URL
itself, so that one site can unambiguously include a link to another site without relying on CAs.
Or, include the CA name in the URL, so that another CA cannot subvert security. See SSL
observatory, perspectives, and<CertPatrol. ¢4 z s
Implement an encrypted file system with plausible deniability (i.e. where there can be multiple
encrypted file system images within a single FS, and without the right password, you don't know
if unused blocks are free or part of another encrypted FS you don't have the password for.) See
paper on deniable file systems and TrueCrypt.
Auditing support for web applications. For instance, suppose someone broke into your blog or
forum, added a user account for themselves, changed permissions, and posted garbage
messages. How can you track down all of the changes made by the attacker? Could be done
with the help of a language runtime, such as Resin.
Examine the security of Google's Chromebook laptops. We can loan out some CR-48 laptops to
interested students. (90]t
Integrate zoobar with single-signon protocols like OAuth or OpenlD.
Figure out how to integrate password-authenticated key exchange protocols into a web browser.
Note that such protocols could be used to both authenticate the user to the server (thus avoiding
phishing attacks), and to authenticate the server to the user (thus avoiding compromised CA
attacks). For references, look up SRP and PAKE.
The Tor Project has some ideas for possible Tor-related projects here.
Analyze the Bitcoin transaction graph. How hard is it to anonymize Bitcoin exchanges? Here's
one recent paper analyzing the Bitcoin data set, which might give you ideas for other things to

!

try. -
O 5 fon

We encourage final projects that combine some ideas you have learned in 6.858 with other classes or
projects you are already working on. For example, implementing some aspects of a capability design
from Capsicum in the JOS kernel from 6.828 might make a good final project that you could use in
both classes. Extending some system you are already working on to add better security mechanisms
would also be a good candidate project.

Several final projects from last year's class ended up being subsequently published as research papers
(e.g., UserE'S, BStore, and LXFT). If this sounds interesting to you, try to pick an ambitious class
project that you might want to continue working on afterwards!

There are four concrete steps to the final project, as follows:

: Form a group. Decide on the project you would like to work on, and post short summary

10/28/2012 1:34 AM

6.858 Fall 2012 Lab 7: Final project http://css.csail.mit.edw/6.858/2012/labs/lab7.html

4 of4

i of your idea (one to two paragraphs) or Riazza. Discuss ideas with others in comments on

i their Piazza posting. Use these postings to help find other students interested in similar

i ideas for forming a group. Course staff will provide feedback on project ideas on Piazza; if
i you'd like more detailed feedback, come chat with us in person.

! Project proposal. Discuss your proposed idea with course staff over the next week, before
: the proposal deadline, to flesh out the exact problem you will be addressing, how you will

: go about doing it, and what tools you might need in the process. By the proposal deadline,

{ you must submit a one-to-two-page proposal describing: your group members list, the

i problem you want to address, how you plan to address it, and what are you proposing to

i specifically design and implement.

Submit your proposal to the submission web site.

.............................

. Project presentation. Prepare a short in-class presentation about the work that you have
i done for your final project. We will provide a projector that you can use to demonstrate
{ your project.

..

Write-up and code. Write a document describing the design and implementation of your
i project, and turn it in along with your project's code by the final deadline.

..

10/28/2012 1:34 AM

T o lab)

/XM’V{) u I hltﬁg{ @ﬁ/&‘@/
Lo got aledby

QQW@JW'% &\PMRL ‘oasfmc/)
PRI jan]
(,L/AC/ ‘Lﬂ;“g / p@@/ E/\ plosmol {

\m
61:\@1{ éi&y\ On(;
BRL Pucgood i
\P}\\t@h}/\ﬂ TKMQ/ (

(L st oure — gl extpein—

IOOL‘ :/Wlﬁ %0%5{?’@
C(vaML &9/ @Hlﬂ) OAT/ﬁ’l

P(09 /@972\/6 ;(,/'{W EM%M Se0ms C@o/

b hay bl o

KL\/K?W&WL
B:‘ilw;r\
(T bl o flig o)
Qgp N 6@}&»{
&Qn Y+ [k/vw f/@%ﬁﬂlftg M '!]W«
\@J} ool o dl o glogs
Mﬁf Ve dan L oeadh boe To (il
Db 5@@/(’}7
I
{FID

Y

S\/\/
{ MGIP ({"w
e /l
7{70[ou/hmrf 1 o0
((¢ [:4/1
M ‘/{€

e
0 616@’
My
/8

P [@@(@99’
15 Oﬂ@;: | MWM
) ;Mi

y &

T
o
o "
/\40/ on idUL w;j/d
Pl |
5,7
==
&«

o
Wl &/mo/ Y[
qn ﬂ:/@ !
[Z }g@
9

ﬂf
(sl
L
i

d
ol

o,
écw;(m/ él,ww [MMW f WJ
\/V/o M@”{/ %Xrt ILIL

(10 pw’ﬁe it

‘)\/.[‘AQ,
l’\/\j Ul"e i % 1 !E
& -G

6.858 (112 unread) https://piazza.com/class#fall2012/6858/212

unanswered question 1 views

Final Project: Novel Password Systems Where Enter Derivation of
Password instead of Actual Password

We propose exploring systems where the user enters a representation of their password, instead of their actual
password.

A basic example of this is ING Direct's PIN pad where the user enters the letters corresponding to their PIN
instead of the PIN itself. The mapping between numbers and letters is randomly generated every log in.
Obviously if the attacker had the mapping then the game is over - but this requires more than a simple
keylogger.

For example, what if every time you logged in, you were given a grid like system of 26x26 letters - each letter
only once per row and column (a Latin Square - like Sudoku). You are given a start point. Then you trace out
your password alternating between rows and columns. You enter the directions (up, down, left, right) that you
follow. The system can easily verify your password. However an attacker with knowledge of the grid and
directions can not easily determine your password, especially if it is not a dictionary word. Now there are quite a
few limitations - like knowing a lot of grids, and storing the password in plain text on the server, but like the vast
array of proposed passwords ideas - it is locally optimal for a specific case. (The original inspiration is from
https://www.gre.com/otg/operation. htim)

Still we think ideas like these would be interesting to explore even if we don't come up with a revolutionary new
password scheme.

-theplaz and jwang7

#final_project_idea
edit save to favorites 0 Just now by IMichazi Plasmeier 1 edit v

the students' answer, where students collectively construct a single answer

Click to start off the students' answer

followup discussions, for lingsring questions and comments

lofll 10/30/2012 1:02 AM

oyt

Ta Sl sptod p(dm pusgurd
Mﬂv\/ meh oy We wait o Wl{o(f/ M/l

M \Lb W’Jf WM v F/HL# N /W%Wﬂf
st A1

|
r(6@/%“@,

(
/697

Novel Password Systems Where Enter
Derivation of Password instead of Actual
Password

T Pfaéosaf —— — e s e

Michael Plasmeier <theplaz>
Jonathan Wang <jwang7>
Miguel Flores <mflores>

We propose exploring systems where the user enters a representation of their password, instead of
their actual password.

The Problem

The problem with many password systems is that users must type their entire, full password each time
they log on. This makes the password vulnerable to key logging and interception during transmission.

How we plan to address it

We seek to explore systems in which the user does not enter their direct password, but a derivation of
the password which changes on each log in. The user proves that he or she knows the password
without subsequently ever providing the password itself.

ING Password Keyboard

A simple example is ING Direct's PIN pad. Under ING’s system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Windows 8 Picture Passwords

Our proposal does not cover systems such as Windows 8's new “Picture Passwords” feature. With
Picture Passwords, the user’s password is a series of user selected vectors which a user draws on top of
a user specified picture. However, the vector must be repeated exactly the same each time. We
propose to concentrate on systems where the user enters a different derivation of their password each
time.

Trace the Grid

Under this system the user chooses a password from a lower case Latin alphabet. However, instead of
entering the password each time the user logs in, the user is presented with a randomized grid of 26x26
letters with each letter only once per row and column (this is called a Latin Square. Sudoku is the most
famous example of a Latin Square). The user then enters a derivation, called a trace of their password
which is transmitted back to the server.

The server first randomly generates a 26x26 Latin square and a start row or column. These are
transmitted to the user. The user then visually traces out his or her password on the grid, alternating
between rows and columns. For example, the user would locate the first letter of their password on the
start row or column. The user would then look for the next letter of his or her password in either the
column (if the start was a row) or row (if the start was a column) that contained the user’s first
character. The user would then continue alternating for the length of their password.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
The user should include the direction from the start marker. This combination of directions that the
user inputs is referred to as a trace. The trace is then sent from the client to the server, and the server
can easily verify that a trace corresponds to the correct password.

Example: entering the password Amazon with the 5 column as the start row/column. The grid as well
as the start row/column are randomly generated be the server for each log in.
Start

glt|n]a Ir e miwli fulx|viz|j|d|b|h|p|r|o|s|c|f|y]|lqg]l

s |q|lwlc [flat |d jlulm|v | x|o|p|ly|lglel|l |k|r |z |i|h|b
L In|x |f | |mljc|s|e|k]|g|lu|y|b|vi|o|la|d|p]|r |w|g]|j |h]|t]|z
hfy [d]|r c [x |k|v | f[b|s|i|e|p|lulo|wl|j|qlz|n]|l |gl|la]|t

vk |z |t blj|o|r|p|w]i|u|ls]a|m|g|n|l |d|f|g|h|el|y]|c
klwly(blg|n|u|l |sleli|r|ofc|glz|[f|x]|h]|v|d|la|m|t |p]]

elg |l |y[y]liJz|h|g|lo|p|flc|w|b|v|kla|s|m|ul|x|n|r]|j|d
dlb|fiwl3d |y |tle|x|alc|g]|p|i|m|nfu|r|k|h|l |j|s|o]|lg]|v
nlfo|g|i glpfr|ujv |l |w|d|flc|j |x|m|t|k|a|e|y]|b|z]|h
plhla|s|bld|r|x|wil |v|t|n|o|k]|i|z|g|lcl|lel|ly|lulg]l|j |f|m
ol |j |x |b s|viz|la| mjr|y|w|n|g|h|d|b]|i|c|g|t |k |f|e]|u
blj|t]|h|dglaly]|[n]ol]li gle|x |rjull |[p|f v iw|m|z]|c|s |d]|k
q|s |k |e ujd| m|z |x|o|h|a|t |y |w|c]|j |b|g]|r|i|p]|l |n]|f

i |z |e|lk|¢|wlofg|h|t]|d]|j|b|p]|r|f|m|s|uly|[x]|v|a|n]|l |qg
alejufv|di|l [glb|p|r|y|k]j|lz|w|c]|i|h|n]|f]|g]|s |t |x]|m]|o
z lamjo|f |h]ijc|blg|k|n|g|lul|j |r|v]|t]|y|pl|le]|l |d|lw]|x]|s

ulx|s|j|g|k]|blyl|l |[n|t]z|h]|qg]|i]|d|r|vi|g|la|c|f |w|m|lo]|p
x |dlplz |4]j|! |[q]t]|s|n|c|m|g|f|y|e|k|w]|i|o|h|v]|a]|b]r

yvicli |gl|]|p|nsmtrT"TtgTdTt—Tx7T|o|z |b|v | w|e|k|u]|a
fli|v|d rlslalylzl|i|x|l |k|h|g|b|{d|lg|n|t | m|lu|p|wl|e
tlpla{n|y|v|e|lulg |y |f|lo|r|a——d—T={z |m|j |h|d|b|c]|i |x
wim|r |g|lllo|h]j |k|bjla|d|s |Ale|g|t |i |flu|ln|p|x]|z]|c]|y
jlv b m|h|g |[f |i|c|d]|z |a]|k II X |s|wjel|lolt|p|lyl|lglulr |n
rlflc|l |Y]|z]|g]|v jlw|imip |t hinle qlula|x|b|k|o]|d]|s |i

c|r |h|u|axTwWwTpTmrToTe T 2 m|s |t | Yy d |z] o |i v |k g
mjul|o|p|j |t|k|d]|f|c|hlglelylz|a|n|l |x|s|i |b|r|g]|lv|w

The resulting trace would be: Down, Left, Up, Right, Up, Left.
Figure 2 A trace of the password “amazon”

An attacker with knowledge of the grid, including the start location and the trace, cannot easily
determine your password.

Some limitations of the system include:

e an attacker can eventually figure out the password by observing enough grids and traces

e passwords are stored in plain text on the server

e auser moving the mouse pointer or finger to manually trace out the password on the grid could
be observed by an “over the shoulder” adversary

However, this scheme allows for the trace to be observed.

What we plan to build

We plan to build implement of at least one of the systems we describe. We will build a library for
Python Flask which would allow developers to easily adopt this authentication system. The library
would insert the grid of letters into the login page that it serves, and it would process the user input to
verify that it correctly traces out the password in the grid. The system will also impose restrictions on
the passwords that a user can have in order to lower the chance of randomly guessing a correct trace.

Building the system would help us better understand the amount of effort needed to implement the
system. We will also run usability testing to evaluate the system which we implement. This would help
us comment on how easy it is for users to adopt the new system.

6857

Foa Pojert
@/Es [2/ ﬁ i
(ode +wideup (2/[‘/ @§W(

0&9‘% T W e ation

[Gtk
g @flg\wk st @/L&

2& GJ/ M’ p/opﬂﬁqj

3o T 6 e 04
écw/‘a |
Pob ot gesang i
— bk foe

”MMWQ Tedngmishion
— vty Yo sholdes

- b/owﬁq/

~(ae v OV fe
T w0y vy cqadom

@
“UT clig
_—% &w{'&/ﬁ ;4(77\4(0%/%/%
~0ase. o pliuhitis
~ 0-3) facks
~ Wk v epak e

~ Wyt e 0 { O
| /# &Hﬂe bﬁéﬂfe (ﬂaLM

Ho P ched m batkend
= gy

CO&Q, (Lg P/E/H“{ rech &0"(/
o reads)@ ‘ogpu\fu{t [6% ‘/”‘fi ;

M/aunef
ol s Y

7

b alt- Pore

s

(4 hie ot lelhes Lebe o,
o

HM(// (ﬁl[*éﬁi "6@‘;&7
okl W e fran W@ o tpok of

W@D é\{&ll?m / { lLyp‘Q ¢ Nﬂy‘%{}

@ TWc{Aﬂ f ﬁ({/&
Bir - wike g e
“(/52&”(7
— oM fackrs

MZM/[= @KOB of gveas‘vy

(s

i W

flask
oL alhars
mde(7

@/aﬂ Q/We/ ﬁ%[z/z

)/pm/ély [Z// 0

O n %J/Z/C

Michael E Plasmeier

From: Nickolai Zeldovich <nickolai@csail. mit.edu>

Sent: Monday, November 12, 2012 11:39 AM

To: Michael E Plasmeier; Jonathan Wang; Miguel A Flores
Cc: 6.858-staff@amsterdam.lcs.mit.edu

Subject: 6.858 project proposal

Hi,

Below are some comments on your 6.858 final project proposal from the course staff. Feel free to send us email if
anything is unclear.

Nickolai, David, Taesoo, and Frank.

Novel Password Systems Where Enter Derivation of Password instead of Actual Password

Cute! I'd encourage you to think about how secure / usable / deployable your scheme is. If any of you have taken Rob
Miller's Ul class, perhaps you can actually say something more intelligent than me about usability.

At the very least, the "Quest for password replacement” paper should give you some things to consider, and pointers to
prior schemes that work in a similar way, so that perhaps you can improve on them.

WORK IN

https://www.grc.com/OffTheGrid.htm
PROGRESS

Off The Gri

A paper-based system for encrypting

domain names into secure passwords.
Sample Grid Only — See page links belowfor usage instructions and personal grid creation

WORK IN
PROGRESS

covH i~ N B~~~ - % AN~ ~ T 0
— < |0 Il =0 B[AL 3|Z N& EloQOx| o~ >0~
&~ DO =N —| % 2l ol @QHK|E~Z >0 o 2|0 Moo
RS <o «|®Oladm|= O~ o= N|=Q|> M Z|lo D TlozZzwn
B o= B = % >NT Ol <= ZAQ o~ ElOTx
o oNEw ol >l BlARedo o M S —m—E X e
e X Oolea—— O =S 0»n~duno ol G NKZ SV
&~ oloaX>nle El2@m0 —|a sl -~ g2(w NO RO =[O =
A oMz sl ale 2|0 O =N TS 2 %m A~ =0 o
o M|> olN>BEHleSloAal~ sk ealm sl Ao X e - o
o TS <A N o= Dv B s p|m X > 0|0 m ~
o M almle %N olOoAlz ~|loAlaolems o2 =S HND = -
~ =0 aEH[—mmM—|N=>MA0 oo}~ aDaOlnE —
O = A= =M< B2 > ool 00 3| R 0| K Nl=E = R
n S E>o 0l nXOlaN|d 0 o~ AT v =-wZAal~23@
o+ O o 3|l N|O =|— n|< ~|lom> >0~ =502 22X
N > -3 ol [m nDZ.erxCTS o ®|0 = O|l— = -
N = AN =D w0 =S|} 0Z|0AE < =N~ >~ S ola -+
— [== T2 ol =A ol S >lvn DM KON e — <
© =~Ule Mol om—~ExAmlo XD «~E ol NEKZlv>—
—~ O s A0A%|oM ET B RO FXCO*» H—=DOl= <N v
— =M B M- O o>)N KT E|~ OO Q> BZ 0
! i O|lapm>EQo gl XeEclo N o= = 2Ol —~a
NA BINAOlo—=D o | % T nnd Z|— | E@Q--0O|0 >|o &~
o~ B~ glr~T el HNE ElwoQ o= 00 o m= N A
— N @ Bl Z|vn 4o o—O K B~ B> RO =0 oo
+ 2 X Slo slm>lvmlo oesO ofs g|N ~|x >Q |~ o~

~e ot A~~~ I o NP VAN - - O

GRC | Off The Grid

12/2/2012 12:51 AM

@ Watch it Work
@ Get it Done

————

modern encryption technology relies upon software running in your computer, your

per.

—

- Re-Generate Encryption Grid -

The grid above contains a highly random arrangement of characters,
but with very special properties. It can be used to encrypt
website domain names into secure passwords.
secure encryption using nothing but aSpecially designed piece of

This “Off The Grid” technology is the only known system to provide
technology of any kind is used to perform.-the encryption. Every other strong and

Although this system initially uses software to design and print the grid, no

Why is this useful?

1of2

GRC | Off The Grid https://www.grc.com/Off TheGrid.htm

2of2

browser, your phone, or some other device to encrypt, decrypt, or store your
passwords. And as everyone knows, any software-based system can be
compromised by malware . . . and sooner or Tater, most are.

We designed this “"Off The Grid” system to provide Internet users a@ni&ﬂ@z‘ and
provably secure alternative to simply hoping that malicious software hasn't, or
won't, infiltrate their personal password keeper, online password storage system,
on-the-fly password generator, computer-hosted password storage vault, or /
whatever convenience technology is being employed to generate and/or store the
passwords used to authenticate the user's identity to remote Internet websites.

“Off The Grid” converts any website's name into a secure password that you never
need to write down, store, or remember because you can easily re-create the same
secure password from the same website name the next time, and every time, you
need it. ’ B

Websites are routinely compromised with their users' logon identity (eMail address
and password) stolen. So reusing the same password on separate websites creates a
tremendous risk because bad guys could obtain your eMail address and password
from one site, then logon as you somewhere else with your reused password.

The “Off The Grid” system securely and uniquely encrypts each website's domain
name into your personal password for that one site, so it automatically creates a
different secure password for each website and reuse never occurs.

Once you know how to use your own unique personal grid, you will be able to easily
create secure passwords that are “Off The Grid” so that no possible compromise of
your computers, phones, “the cloud”, or any other devices can compromise your
security.

Even though we can no longer live “off
the grid” . . . at least our passwords can!

The pages linked below thoroughly explain the system's security goals and
operation, and allow you to create, print and begin using your own customized OTG
grid:

Off The Grid Resource Pages:
“Off The Grid” Introduction 6 Frequently Asked Questions
Security Goals and Design 7 Technical Details and Docs
How to use the OTG system 8 Security & Attack Analysis
Enhanced Security Options 9 Latin Squares Workbench
Create/Print Your Own Grid 10 “Off The Grid” Feedback

u b WNE

. GRC's Ultra-High Entropy Pseudo-Random Number Generatorji

Gibson Research Corporation is owned and operated by Steve Gibson. The contents
of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShieldsUP, Jump
NanoProbe, and any other indicated trademarks are registered trademarks of Gibson ToTop
Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

o
T 4

12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design https://www.grc.com/otg/goals.htm

1of6

WORK IN _ ' WORK IN
PROGRESS Off The Grid PROGRESS

Security Features, Goals & Design

...

AN UNFORTUNATE TRUTH: The ongoing problem is website security breaches
i conclusively demonstrates that sites which require us to login and authenticate

i our identities cannot be trusted to keep our passwords secret. This makes
password reuse at multiple sites extremely unsafe. If one site leaks our name,

i eMail address, and password to a hacker they attempt to reuse that
authentication to impersonate us on other sites.

Or, as the infamous Lulz Security hacking group, “LulzSec”, tweeted at
10:34am, Friday, June 24th, 2011 ... phrasing it somewhat less delicately:

...

i @LulzSec: Reusing passwords is kind of like owning ;
multiple houses and using the same key for each one.
i Don't expect people not to steal your shit. '
Fri 24 Jun 10:34 via web (received via TweetDeck)

..

Until an industry-wide, coherent identity authentication solution is \
established, the responsibility for creating a potentially limitless d)/ld, 'fZQ
number of separate website tidentities” rests, with each individual. A

WHAT WE NEED: =

We need to somehow arrange to use a@iﬁerﬁ, strong, secure and complex
password for each site that requires us to invent an identity so that we can
reauthenticate our identity upon our subsequent return.

Security conscious users know that passwords need to be complex and long to be
safe. And GRC's Password Haystacks password padding approach offers one solution
in this battle to construct secure and memorable passwords. But the trouble is, we
need to create a potentially unlimited numbwmrds. It's one
thing to create and memorize and/or record a strong and unique password where
we have to, for our most important sites, such as banking and eCommerce. But
today we're asked to create passwords even for “throwaway” sites we visit once and

may never return to, just to post some feedback in a forum or blog. And if we do
return, what was that password we created the last time?

The problem has been so intractable and pervasive that many “high-tech” and
highly useful solutions, such as LastPass, KeePass, and SuperGenPass have been
created to lift some of the password management burden from overwhelmed users.
But all of these solutions also have liabilities. In mid 2011, LastPass users had a
scare when it was revealed that some of its users' database may have escaped
LastPass' control. It's convenient to have all of ciu(rauthgntication information
stored "“in the cloud” . . . but only so long as it ig'neverstolen. And it has been
demonstrated that SuperGenPass users may be exposing their critical master
password to malicious websites.

We have seen over and over that anything which

12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design https://www.grc.com/otg/goals.htm

relies upon technology can be compromised.

The other concern with cloud-based storage is availability. It's convenient. .. as
long as the service is available. Also T mid-26+11, the United States FBI (Federal
Bureau of Investigation) confiscated three “rackS:_",ﬂQl:’Eh_OL\ALEb servers, reportedly
because they could not be bothered to determine which single server among them
was believed to be violating the law. In the process, several score of unrelated web
sites disappeared from the Internet. We would not be happy if the cloud-based

password manager we depend upon was among them.wﬂ Q /
Wl (¢

For these reasons, among others, many users b f L{ﬁl (‘é/
refuse to centralize their password management. v _ 4%
Faced with these many, and growing, problems . . . a new solution was (L d‘/ﬂ%ﬂ
needed.

Immediately after finishing the work on the Password Haystacks password padding

could design a secure cryptographic “paper cipher” requiring, for its use, no
instrumentality, no technology, no ccﬁnﬁ@rﬁ,—h_o software, no wires — only
simple piece of paper of some kind. A computer would certainly be required to
design and print any instance of the Cipher. But once that was done, no computer
would be required to use it.

This is the core of the idea I started with:

The domain name we're 4 copioumpiicd esiono Gpten A per-domain password cre
visiting (e.g. "amazon”) L R e O by encrypting the domain n:
i : s : Eat on paper, without a computer. = ks :

The idea of using a computer to encrypt a domain name to create a per-domain
password is not new. That's the idea underlying SuperGenPass and others. Its
obvious benefit is that instead of needing to record, store, or memorize random
passwords that we invent per domain — with the potential problems that invites —
we employ an @ of some sort to create — and recreate in the future —
domain-name-based passwords. Then we don't need to record, store, or memorize
them because we can simply recreate the same password from the same domain
name any time it's needed. It's a great idea with no obvious drawbacks . . . except
that all available solutions are “online” (in one sense or another) and suffer from
the potential of worrisome privacy and security breach problems.

What would such a system look like?
What would its requirements be?

Here were my requirements:

» Easy to use

I wasn't doing this as an intellectual curiosity. My absolute goal was to create a
solution that anyg_r]g_interested in creating secure passwords could learn to use
quickly, and would then find to be useful and even fun to use.

e Secure

2 of6 12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design

https://www.grc.com/otg/goals.htm

The system's security was, of course, as crucial as ease of use. This new system
needed to be at least as secure as anything and everything it was replacing so
that users could be confident that they were generating passwords that could not
be “reverse engineered” to learn anything that might render the system less
than absolutely secure. And by assisting its users to create much more secure
passwords than they were normally likely to, it would be proactively increasing

their security.

What EXACTLY do we mean by “high security”?

o The encrypted password output must be long enough to thwart brute forc

30of6

attacks. The Off The Grid (OTG) expands every case-insensitive input character (
a pair of unpredictable characters. The first six (input) characters of a domain nar
therefore expanded into 12 output characters:™

Alice’s
[“ amazon” Personal
Paper Cipher

“&|Fum_aMqU(

Actual output for the string "ama:

A very short domain name such as “grc” can be enciphered as “grc.co”, using the
dot (.) and some of the top level domain name to obtain six input characters. And
see, even shorter domain names can also be expanded into 12 enciphered charac

The enciphered output depends upon ALL input characters. This is an impor
property for high security. A minimal change to the input must result in a maximt
unpredictable change in the enciphered output. Inthe two examples below — whic
generated by the OTG system - only the first and the last character was changed
domain name “amazon”:

Alice’s

('bmazon”}—>| resonal (—>{ “9LiPG3CcOM-.

Paper Cipher

Actual output for the string "bma:

e Alice’s - -
" 0 ”-’——) Personal -ﬁl “TOc*

:$r%BxSh
Actual output for the string "ama:
VW G St

Every user’'s enciphered output is completely different from that of every .
When any user enciphers a domain name — even the same domain name — usine
own OTG cipher, they will obtain a completely unique result, different from any ol
user:

12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design https://www.grc.conv/otg/goals.htm

4 of 6

e Compatible

Alice's

{“a mazon” heates _>[“&| Fum_aMqU(

Paper Cipher

Identical input . Completely differ
domain names output passwo

["amazon” > Gme Ferserdit—s{ “d.3$=8hQ!cO0!

= T Charlie's = _ =
[amazon }—> Personal —>[m?10[Rc@%i)

Paper Cipher

\ (
L d L{ﬁ g(4({)
o Disclosure of SOME domain names and enciphered passwords must NOT
compromise the security of ANY other passwords. Even if an attacker knew
were generating your passwords with the OTG system — and that is not obvious f
output — and if an attacker were to somehow acquire_some of your passwords gel
by the OTG system, it is imperative that so little aboumer could be
determined that none of your other passwords would be weakened. As we will se¢
OTG system achieves this by embedding an extremely Targe amount of “entropy” A/?K /
(randomly determined data) into each instance of a user's personal, custom ciphe 57(

9 Resistance to “computational” attack. Today's computer hobbyists (and attacg
have access to phenomenal computing power thanks to the awesome power built O/Q
modern PC graphics processing units (GPUs). OTG resists computational attacks b L
drawing upon a large “pool of entropy” that is unknown to attackers. Its design
significantly obscures each cipher grid instance's configuration details even when
operation of the OTG system itself is known.

o Everything about the OTG system can be fully disclosed. The design of the (
system compliant with Kerckhoff's Principle, which states that: “The security of a
cryptosystem must not be dépendent upon the nondisclosure of the algorithm; it «
only depend upon the nondisclosure of the key.” Everything about the design and
operation of OTG is disclosed here. Nothing is kept secret and nothing needs to be
attackers gain nothing that ?%:t help them to crack any user's password sets.

/ | /
(9/ cd fﬁf% Q/%,@/ /g’an é
If the Cipher produced a password that a website cdli!d not acge\pt we'd be in /
trouble. If we were simply making up a password, we would adapt what we've

made up to the website's rules and restrictions and store the result. But the OTG

system's goal is to free us of having to remember anything. We solve this by

using the system's Grid to generate a secure lowest-common-denominator

password, and additionally provide a means for optionally_adding special

characters for those websites which allow them. By femem‘s

output (unlike the somewhat extreme examples above) to upper and lowercase

alphabetic characters, we obtain maximum compatibility with all websites — with

12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design https://www.grc.con/otg/goals.htm

5of6

sufficient security provided by the password's length. (At one hundred billion
attempts per second, 127 years to crack.) While that doesn't provide as much
security as including special characters, this provides compatibility with the great
number of sites that still do not allow the use of any special characters. And
adding special characters is also explicitly and fully supported by the OTG
system. (And note that any other password generator would face the same
limitations while providing a less user-friendly solution.)

Variable security :

Today's websites have differing rules for password length. For reasons of their
own, some sites place lower and/or upper limits on the lengths of the passwords
they will accept. So any robust password ciphering system should be able to

generate domain-name-based password strings of thh. The OTG system
can.

Flexible & powerful

A flexible password generating system should be able, when needed, to generate
“alternate” passwordsforagiven domain name. This might be useful if the
primary password is compromised, or if a site's password policies requires its
passwords to be changed periodically. A system that cannot generate alternate
passwords on demand would prove too limited. OTG readily produces up to 52
unique and completely different passwords for every domain name. R—ZFTV =

/
Everlasting & future proof

Technology moves at a rapid pace, often obsoleting older technologies. How
many people are still able to play 33 RPM vinyl record albums or 8-track tapes
with the equipment they have in their homes or in their cars? Sometimes a
solution that does not depend upon technology is superior because you'll never
find yourself unable to “play” it. Because it is just a carefully constructed piece of

paper, the OTG system can be used fifty yearsWre stuck using
passwords until then.

Utterly reliable

The OTG system requires no instrumentality, uses no power, no batteries, no
computers. It cannot be rendered obsolete by some future upgrade. You won't be
without it if a web browser upgrade no longer supports its earlier plug-ins (as
does often happen), or if the company providing a free service starts charging for
it, is acquired by another company, or goes out of business. It's yodrs forever.
There's nothing to break.

Universal

Since OTG can encipher ANY textual input into a deterministic string of
encrypted output, which can be readily recreated at any future time, it can be
used for any other purposes as well. For example, if a file must be encrypted
with a secret key known only to the sender and one or more receivers, all parties
could have an identical instance of a single OTG grid used just for this purpose.
The sender encrypts a (plaintext) string of six to eight characters, which is then
used as the key to encrypt the file. The user sends the file along with the
plaintext string in the clear without any concern about eavesdroppers. Only the
recipient with the same instance of the OTG grid can take the plaintext string
and encipher it into the same key to decrypt the file.

See the next page “"How to use the OTG system”
for an understanding of how the system works.

12/2/2012 12:51 AM

GRC's | Off The Grid Security Goals & Design https://www.grc.com/otg/goals.htm

Off The Grid Resource Pages:

“Off The Grid” Introduction 6 Frequently Asked Questions
Security Goals and Design 7 Technical Details and Docs
How to use the OTG system 8 Security & Attack Analysis
Enhanced Security Options 9 Latin Squares Workbench
Create/Print Your Own Grid 10 “Off The Grid” Feedback

u b WN K

GRC's Ultra-High Entropy Pseudo-Random Number Generator

4 ‘ Gibson Research Corporation is owned and operated by Steve Gibson. The contents

i of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShieldsUP, Jump
. NanoProbe, and any other indicated trademarks are registered trademarks of Gibson ToTop

‘ Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

Last Edit: Aug 16, 2011 at 10:30 (473.47 days ago) Viewed 3 times per day

60of6 12/2/2012 12:51 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

1 of 9

WORK IN , WORK IN
PROGRESS Off The Grid PROGRESS

How to use the OTG gLrid

How It Works

Memory:

In order to support several of its important security features, such as its ability to
have all characters of the input affect all characters of the output, the OTG system
must have some form of "memory”. In other words, its future must be affected by

its past omputer jargon we would say that it must be “stateful”, or able to
Thave state.

State: F&b‘!_ 6hf"€ 6(1@6(/{3 (.(/fcmL S‘M(C g

The OTG system has a finite number of states. In fact, it has exactly 676 (26x26)
states, and it can be in exactly one of them at any time. In computer jargon the

OTG system would be described as

Location:
How do we create a simple system having "memory” and “state”? We do it by using

a grid on a piece of paper, where at any point in time we are I(F)_g_a!g;_d at one specific
position on the grid.

But let's back up for a moment since we're getting ahead of ourselves. Consider this
(simplified for clarity) grid containing a very special arrangement of lowercase
alphabetic characters:

glelajmjo|n|z|k|i|r|c
klajnjcm|z|o|r|g|i|e
nkjiclzlajm|r|g|o|e|i
z|lo|ilaln|g|e|c|r|k|m
mrizinglalkli|le|c|o
algle|i|z|r|n|o|cim|k
ric|gl/k|e|liimn|z|o|a
e nlk|g|i|jo|jc|z/m|a|r
imjo|e|lr|c|glalk|n|z
cli|r|iolk|le|lajm|n|z|g
olzim|r|clk|i|e|la|g|n

12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

Even after studying it for some time it probably looks rather random. It actually IS
very random (which is a good thing for our purposes). But it was also deliberately
and carefully designed by some clever software to have exactly ONE very important
property. Can you see what it is? If you have a theory, or if you give up, click the

button below to add some highlighting to just the 'a' characters and study their
relationship.

Toggle 'a' Highlighting

Do you see what's so special?

What's very special about the grid of characters above, is that EVERY character,
not just the 'a's, appears exactly ONCE in every row and column of the grid. This
special grid organization is called a@fm;?wm if you're curious to
know more) and it lies at the heart o ion of the OTG system. In computer
jargon we would say that the OTG system is a finite state machine defined by a

Latin Square. REit s
N2

...

LATIN SQUARES

Although knowledge of squares having this special property of “exactly one of

i each symbol in each row and column” extends as far back into history as
medieval Islam, their systematic analysis was not undertaken until 1779, by the
i Swiss mathematician and physicist Leonhard Euler (pronounced: “Qiler”). Euler
i dubbed such grids “Latin Squares” because he used Latin language characters to
populate their cells. Amazingly, the many fascinating properties of Latin Squares
i have occupied mathematicians ever since, and continue to, even today. For

i example, even today with all of the mathematical analytical capabilities and
computers at our disposal, we only know how many different Latin Square

i configurations can be made from grids up to 11x11. N6 ome-knows how many

i Latin Square configurations can be made from grids of 12x12 or larger! No one.
This is partly because the number is so large. What is known, however, is the

...........

During the early development of the OTG
cipher system, we needed to develop, prove,
and demonstrate a number of theories of Latin
Square manipulation (in order to make them
for ourselves). To aid in this research we
created an interactive "Latin Squares

; Workbench” to allow for the comfortable
manipulation and experimentation with Latin Squares from 3x3 to 6x6. You are

i invited to experiment with these intriguing mathematical constructions which
have fascinated mathematicians for centuries.

Why do Latin Squares matter? ... Because they allow us to do this:

20f9 12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

(a) dmazon

(2%0)
®

.4

(m) >

Note that for illustration purposes we are using a reduced

size 11 by 11 Latin Square, containing only 11 of the 26

lowercase characters of the English alphabet. The actual
Off The Grid system uses a full size 26 by 26 grd.

Toggle Legend

THE KEY PRINCIPLE of the “Off The Grid” cipher is that given
a 26x26 Latin Square containing the 26 characters of the Roman
(English) alphabet, a domain name can be used to direct a unique
path through the Square, where the path taken is determined by
the domain name and the Latin Square's specific configuration.

This was the key breakthrough I had when I was working to invent a means for
creating "memory” and “state” for a domain name to password encryption system:
If every row and column has exactly one of each character, then it is possible to
move throughout the grid, alternating between movement along rows and columns.
In each case, moving to the next character that occurs in the domain name. In this

fashion our location depends upon the history of all previous characters, and where
we end up is determined by every character.

The use of the Off The Grid cipher system proceeds in the following two separate
phases: v

-—

Phase 1: Trace a path to the Phase 2 starting point

@ The OTG system employs tw@or the

3 of9 12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

encryption of a domain name into a secure
domain-specific password: The first phase
determines the starting location for the second phase
by traciig the first six of the domain name's characters
through the Grid, as shown to the left and (larger)
above. Once the first phase has determined the
starting point, the second phase is used to emit the
enciphered password characters. (We answer the
question “Why only the first six characters of the
domain name?” on the Tech Detail;;jnd FAQ page.)

As shown in the diagram, each step alternates between following along a column or
a row. Although you could start from any of the Grid's 26 columns, or any of the
Grid's 26 rows, the most important tonsideratior-is consistency. So choose a
method and stick to it, otherwise you will obtain results from one use to
the next. But, at the same time, this flexibility can come in very handy. If you
should need to generate alternate passwords for the same domain (such as when a
domain's password policies require that passwords are changed), a total of 26426,
or 52, different passwords are readily available simply by starting in a different row

or column. \,\/Q eLl Sl

The general rule for standard OTG operation is to start along the top row, locating
the first character of the domain's name there, then finding the domain's second
_ﬁ character in the column below .. . and so on. You should study the larger diagram

above for the six-character domain name “amazon” until this makes sense to you.
(Remember, this is only a reduced-size demonstration OTG grid. The OTG
introduction page contains a full randomly generated 26x26 Latin Square for
reference if you want to practice tracing out other domain names.)

Phase 2: Trace another path while outputting characters

The second phase of the encryption process very similar to the first, but with a few
additions: e T

4 of9 12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

50f9

8

o
) 4
Q
=)

“amazon” enciphers to
‘gcznegmacmzg’

As shown in the simplified diagram above, the second phase path BEGINS where
the first phase path ends. In this way, the path traced during tht.rmﬁase
determines the starting point for the second phase. Therefore, the first six
characters of the domain name participate in determining the starting point for the
domain name's encoding during Phase 2. The row or column where the phase one
path ends is the location where the first character of the domain name is found to
begin the second phase's path. peEmEE——ru,, |

During Phase 2, we use an “overshoot method” to select the two enciphered output
characters for each single domain name input character. If you examine the
diagram above you can probably figure this out for yourself.

Starting Phase 2 where Phase 1 left off, at the final “n” of “amazon”, we move
horizontally (since just previously we had moved vertically to reach the “*n”) to the

first character of the domain name “a”. We then continue moving in the same
direction, skipping over the character we're seeking, and outputting the next 0
two characters we encounter, !n order, along our direction of travel. @
y (CG’,
@ N Lk
4r s
Thus, the first “a” of amazg_m:pgggm@_“gc_"jince, after skipping past the “a” we 717%%
first encounter a “g” followed by a “c”
Q9
h Next, havmg skipped two characters past the first “a” character
i of "famazon”, we are now located at the “c” character, the

12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

v a second character past the “a”.
Since we always alternate between moving horizontally and
A vertically, and we just moved horizontally, we now move
vertically.

In the vertical row of our current location (containing the “c¢”
where we are currently located) we move to the next character
of the domain name, which is “m”.

As before, we now overshoot the character we are moving to
(the "m” of amazon at this point), continuing to travel in the

C g same direction and outputting the two characters that follow it,
in the sequence we encounter them.
Therefore, the *m” of "amazon” encodes into the two characters
“zn", in that order.

The encoding of the remaining four of the first six characters of
the domain name continues in this fashion, alternating between
moving along horizontal rows and vertical columns, finding each
successive domain name character, skipping past it, and
outputting the two characters that follow in the sequence they
are encountered.

Before proceeding, please review the Phase 2 encoding diagram above
to make sure that the procedure described so far makes sense to you.

A Few Details:

o Since Phase 2 enciphering requires that we “overshoot” our target
character, outputting the two characters that folfow it, it is possible that
there might not be any characters to follow if our target character is
either on the edge or just one character away from it. When we encounter
that situation we “wrap around” to the opposite edge of the grid, in the
same row or column, to find the one or two characters past our target.

Most of the time, the two

characters past our target (—m
will be right next to it. But...

When the target character

is too close to an edge, 3(—{1_1] @ When movemen
the two output characters off one edge, we
will be found by "“wrapping : the opposite sid
around" to the other side .(——-ra I g € sameroworcol

of the grid.

e e Imagine that instead of enciphering the domain
. name “amazon” we wish to encipher the domain

name “amazom” (ending in the letter "m”). As we
_‘________.-—-——'__—‘_—

6 0of 9 12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

o
i can see from our example grid, this ié a bit tricky
because after encoding the “0”, skipping past it and

moving across the two following characters which we
output (“em”) we are left at the location of second
character, which is an "m”. But now we need to
encode an “m”. Since the grid we're using is a Latin
Square, we know that the column we're in only

contains one “m"” character, and we're already standing on it, so we
cannot move along the column to it.

The solution is simple: We move one more character in the same direction
we were moving to the next row or column (wrapping around if this would
cause us to fall off the grid) and locate the character we wish to encode in
that row or column. As we can see from the example to the left, the final
"m” of "famazom” would encode into “ie”.

| T i i | e, e T S |

e 1 Zl P :j :] T V_\‘J 1 Mixed UPPER and lower case:
SICEhk1ajrMu For the sake of simplicity and

clarity, the examples we have

xswFB Ll gP Y HF ghownabove have used only
J b ual QWCTF x N |owercase characters. The actual
L' H T x v ED w u'qg OTG system mixes upperwith-lower
p Oy U s T nv aFE casecharacters to create much
2 go HDmU C K s Stronger (4096 times stronger) | *
B0 L NKER s cU passwords than if its passwords /Vﬁ
e e e were all either upper or lower case. @WC(’M[Z

The rule for using the OTG
mixed-case grid (see the sample to the left) is to simply ignore the case of
the grid's characters when looking up characters, and output the
character's upper or lower case when recording the enciphered output.

Note that the grid's horizontal lines and vertical coloration has no

meaning of its own. Those are merely intended to serve as dividers to aid
the user in keeping their place when scanning horizontally across the rows
or vertically up and down the columns.

Numbers, hyphens
(-) and dots (.):
Internet domain
names may contain
numbers, hyphens,
and separating dots.
But if these additional twelve characters were included in the main body of
the grid, giving them weight equal to the 26 alphabetic characters, the
grid would be expanded from 26 by 26 to 38 by 38, and the grid's area
would be increased from 676 cells to 1,444, more than doubling the grid's
size. Mixing these twelve seldom appearing characters into every row and
column of the 26 often appearing characmme difficulty

of finding the characters most often being searched for.

70t9 12/2/2012 12:52 AM

GRC's | How to use “Off The Grid” https://www.grc.com/otg/operation.htm

These seldom used characters can be accommodated-without increasing
the grid's size by creating a simple “substitution table” located at the top
center of every OTG grid. (See the sample above/left: i

number, a dash, or a dot is encountered when examining the domain
name's first six characters, that character is located in the center of the
top border, in the grey region and the alphabetic character appearing
immediately below it is used instead. e o ke

Referring to the sample above, the digit '0' appearing in a domain name de/f/
would be treated as if it were the letter “c¢” so a “c” would be searched for
in the current row or column. Similarly, if a name-separating dot (.)

character was encountered, it would be treated exactly as if it was a "u
while tracing the domain name's path.

That's The System.

What does it all mean?

You should now understand how the “Off'_l'_r@_grmwperates. Using an OTG
grid, the instructions above enable you to securely convert any string of characters,
such as from an Internet domain name, into twice as many mixed-case alphabetic
characters for use as that domain name's corresponding password. You need not
write down the password if you choose, since you can easily recreate the same
password from the same domain name at any time in the future.

If the recommended six input characters are used, a new password string consisting
of twelve mixed-case characters will be produced from out of
191,102,976,000,000,000,000 different possible 12-character passwords. Since
“bad guys*Hiave no way of determining which one of those your own personal grid
produced, the result is very good security. Even so, you may wish to consider some
enhancements to further increase the system's security: Check out the Enhanced
Security Options page. But either way . ..

Once you have used the Create/Print Your Own Grid page to create your own)\L '
personal custom grid (which NO ONE ELSE will ever have) you will have Qmﬂfl%fi)
everything you need to create secure domain-based website passwords using a ™
simple "no tech" paper-based system that needs no batteries, can't be hacked, can ét//{ fj@TL

be used forever, will never be incompatible with web browser upgrades, and on and

on. 5]L/C£

There are a number of pages shown in the link block below that you may wish to
examine for additional background and information about this "Off The Grid”
system:

Off The Grid Resource Pages:

“Off The Grid” Introduction 6 Freguently Asked Questions
Security Goals and Design 7 Technical Details and Docs
How to use the OTG system 8 Security & Attack Analysis
Enhanced Security Options 9 Latin Squares Workbench
Create/Print Your Own Grid 10 “Off The Grid” Feedback

u bh WN e

8 of 9 12/2/2012 12:52 AM

GRC's | Options for Enhanced Security with “Off The Grid”

1 of5

https://www.grc.com/otg/enhancements.htm

WORK IN _ WORK IN
PROGRESS Off The Grid PROGRESS

Options for Enhanced Security

In security system design, it's
impossible to be too paranoid.

No security system deserves to be trusted without a careful and critical examination
of that system’s potential vulnerabilities. For that reason, the Off The Grid security

and attack analysis page examines the system's strength against various forms of
active attack.

During the development and extensive discussions of the system, a number of
possible enhancements were tossed around, examined, explored and considered.
Although they do further strengthen the system in various ways, we concluded that
on balance the simple base system, as described on the How to use the OTG system

page, was already so strong that the additional strengthening didn't return enough
to justify the additional difficulty.

However, since we did develop the extra strength approaches, it's worth sharing
what we came up with in case they might be something you would like to consider.
As we wrote above . .. it's impossible to be too paranoid.

Adding Non-Alphabetic Characters

1 = P To the security aware password user, especially any
user who is already familiar with GRC's other
% « | password-related work, .including our Password

~ | Haystacks password strength evaluation system, the
single biggest surprise might be that the standard Off
; The Grid system does not incorporate the generation
3 ' ~ | of passwords containing non-alphabetic digits and

1 | other special characters.
~t During the development of OTG, we experimented
£l e » | with designs that did generate passwords having
] F 25 6 0 much larger character sets [see:26x26 1.

But the trouble, aside from maki e fina
much more noisy visually (and no way around that), was that there was then no
way not to generate passwords without special characters. You got what you got.
And that would be a problem any time a website refused to accept passwords
containing special characters. A recent analysis of websites showed that a surprising
percentage still refuse to allow complex passwords. So we needed another

approach. SL‘LP " (Né’c(\"TO (l/]ﬂh/

You may have noticed that the grid shown on the OTG introductory page contained (L 61<\
an inner Latin Square region surrounded by a border of digits and special & (‘O
characters. As with the grid's inner composition, an important ner-ebvious property

governs the design of that border: every row and column has a digit at one end and

a special character at the other, and all of those border mmly

chosen and arranged, with the exception of theW,dash and dot at the

12/2/2012 12:52 AM

GRC's | Options for Enhanced Security with “Off The Grid” https://www.grc.com/otg/enhancements.htm

2 of 5

center of the top border (which form the translation table). And even there, the rule
of a digit and a special character at each end holds. Thus, as you are moving
through the rows and columns of the grid, randomly chosen digits and special
characters are continually available to you for whatever purpose you might wish.

There are no hard and fast rules for their use, but here are some example
strategies for incorporating them into the resulting password:

e Letting the grid CHOOSE:
The password encoding scheme defines a current row or column and a direction
of travel. This means that there is always a “border character” out at the end of
the current row or column in the last direction of travel. So a potent scheme for
embellishing OTG passwords with grid-chosen digits and non-digit special
characters is to output the two characters following the target character as
usual, then scan in the same direction to the end of that Fow or column out to
the border and output whatever charaeter s found there. Thiswotttd generate
passwords of the form <alpha><alpha><non-alpha> with three characters
output for every domain name character input. Since eighteen characters might
be longer than some sites allow, you might opt to reduce the OTG path lengths
from six down to five or perhaps even four. This would result in passwords of
fifteen or twelve characters respectively, but incorporating a great deal of

entropy due to their inclusion of randomly chosen digits afd non-digit special
characters. R

(Remember that you can quickly and easily use our Password Haystacks page to
quickly evaluate the attack resistance of any password format you are
developing.)

o Letting the grid @ry
As detailed above, letting the grid choose is terrific as long as the target website

allows the use of non-digit special characters. The chances are 63 out of 64

(98.4%) that a password containing six randomly chosen digits and non-digits l I
will contain at least one non-digit. Unfortunately, some sités thratdo allow digits 0
don't also allow non-diglts"—_ﬁec:i’él characters. Since adding digits, when possible,

is better than not adding anything at all, we can easily modify our “Let the grid
choose” approach to “Let the grid help”: Since each row and column always

contains one digit and one non-digit special character, we simply output the
numerical digit out at the one of the ends of the current row or column. As

before; the same comments about overall length and strength evaluation are

relevant here. So C{@/ el

» Tack something onto the END:

A third possibility that represents a useful compromise would be to simply tack
on the final row's digit and non-digit special character, or perhaps just the final
numerical digit. As the Password Haystacks page demonstrates, this significantly
strengthens any alpha-onlypassword while not increasing its length significantly.
You could use the border character pointed to by final row traversal, or just
always the digit that appears on that ending row.

Are special characters necessary?

Do we need more security?

To answer that (1) question, let's look at the complexity of the character sequences
generated by the standard OTG grid system: As we know, each domain name input

12/2/2012 12:52 AM

GRC's | Options for Enhanced Security with “Off The Grid”

3 of5

chgracter generates two password output characters. Using the “overshoot” method,
neither of the output characters can be the same as_ﬁma% So

that means that the first output character could be any one of the remainir@)

alphabetic characters and the second output character could be any one of the)
remainin,\g’Z eRaracters. Since each could be either upper or lower case, this yields

any one of 50 possibilities for the first and any of 48 possibilities for the second ZQp
giving us a total of 2400 possible character pairs output for every character input. W}é

Assuming that we use six characters from the domain name, that yields 2400 raised 2%

to the power of six (24006) possible combinations, which is exactly J’ﬂ, @;
191,102,976,000,000,000,000 possible twelve-character (six character-pair)

passwords. (You can use our web based “Big Number Calculator” to confirm this for /
yourself if you wish.) If we assume that an online attacker is able to try 1,000 3 t?y
guesses per second, with 31,557,600 seconds per year, then 6,055,687,885 years >
would be required to try all possibilities. A million guesses pér second reduces that[/ %

to 6,055,688 years. And a billion guesses per second drops it all the way down to 44/(6/{ . (0
approximately 6,056 years. /)/(_/ 4/67
Therefore, while it certainly is possible for us to increase the strength of the 5/45.
standard alphabet-only OTG system by adding non-alpha characters, the twelve é ‘ﬂtﬂ
random alphabetic characters produced by the standard use of the grid provides / %/

ample strength. And, if you stick with alpha-only, you don't ever need to worry
abouf Whether websites will accept more complex passwords.

Note that if a website requires the use of at least one digit, as some do, you could
always simply add one somewhere. Even if you were to always do the same thing,
even if your approach was known to an attacker, you would still have at least as

much strength as you do without using any digits . . . which we have already seen

is more than sufficient. -f Ne ord x 9 v[o(
B A s

If you wanted more security WITH full compatibility...

You could also have that easily by simply encoding more of a domain name's
characters. Even the very short domain name "GRC.COM” consists of seven
characters which could be encoded, and most domain names are longer. So there
are usually plenty of domain name characters to encode. As we have seen, each
additional character-pair addgj/ilpceases—trheattack,strength by 2400 times. So
simply using seven domain name input characters to produce 14 alphabetic-only
output characters yields 24007 = 458,647,142,400,000,000,000,000 possible
combinations, which would require 14,533,651 years to test at one billion

attempts per second. L/\%% ({% @fl/['}./? QL?M(MI'Q /15(/0 MU /@ f{:{{

Thus, the simplest and most universally compatible means of increasing the
system's security is to make your passwords longer. (Though we think that 12
output characters is already very good security!) But if you do want to embellish
your passwords with non-alphabetic characters, the Off The Grid system makes that

possible too.
(V [5 O(’kO,lCG/) OU/{/A’I/ _é;?, pfo«‘ (U@ MJQQ/ 48(/({

Further obscuring an individual grid's structural details

The Off The Grid security and attack analysis page examines the OTG system from
the perspective of an attacker who might somehow obtain one or more (or many)
secret domain name and OTG password pairs of a given user. On that page we
attempt to determine to what degree the system's security could be compromised in
such a way that additional passwords might be determined for other domain names.

12/2/2012 12:52 AM

https://www.grc.com/otg/enhancements.htm

@é

GRC's | Options for Enhanced Security with “Off The Grid”

4 of 5

4

)

https://www.grc.com/otg/enhancements.htm

. In other words, how much of a grid's secret structure is revealed by an attacker
knowing the specific passwords generated by specific domain names? Please see

/that page for the details of that analysis. However, as you probably expect, this

entire OTG system would never have been disclosed and published if the system
hadn't survived that analysis with plenty of margin to spare. (It did!) In fact, so
little useful information about the structure of any individual user's OTG grid is
leaked when existing domain names and their associated passwords are discovered
that everyone who participated in that analysis is comfortable with using the system
as it is, without additional enhancement(s).

But you may also know by now that I always want to explore all possible avenues
for improvement . . . because you never know what you might find until you look.

So here's the theoretical structural leakage concern: An attacker who obtains
one or more matching domain name and password pairs generated by an OTG grid
obtains multiple three-character “triples” of character sequences occurring in the
user's grid. The attacker knows the first character of each triple, since it comes
directly from the domain name. And the attacker knows the two characters that lie
directly adjacent to it on the grid, since those are the two characters of the output.
By assembling each character of the domain name with each character pair of the
associated password, the attacker can generate a set of “triples” which are known to
occur somewhere within the user's grid. As you can see, this reveals pieces of the
composition of a user's OTG grid. As mentioned above, the security and attack
analysis page examines what an attacker might be able to do with one or more sets
of these triples, i.e. is this a problem?

However, here we will examine a means of hiding even that (small and unusable)
amount of our grid's composition.

We've already seen that every OTG grid has a Latin Square in its center,
surrounded by a border of carefully designed special characters such that every row
and column always contains one of each. Every OTG grid has one additional
non-obvious property: In any direction of travel, up, down, left or right, including
wrapping around an edge, continuous runs of the same capitalization are limited to
three characters. If you look back at the grid on the introduction page you'll see
that nowhere, in any direction, are there ever more than three characters together

all with the same case. The capitalization is still locally random and unpredictable,
but it also has this significant property. e

Okay...so0??

This special property makes it practical to enhance the “overshoot” method of
finding our output character pair: After encountering the target character we are
scanning to, instead of taking the next two characters adjacent to it while travelling
in the same direction, we hold off until we have first encountered one of each
alphabetic case of intervening characters. il unrac

4aP(Ox L r J - \
In the example above, we were scanning to the right for the next domain name
character 0", which we found. Then, instead of outputting the two characters “xI”
that follow, we continue scanning until we have encountered at least one lowercase

character and at least one uppercase. In this example, the first "x” we encounter
satisfies our search for a lowercase character, and the uppercase “J” satisfies our

12/2/2012 12:52 AM

GRC's | Options for Enhanced Security with “Off The Grid”

50f5

https://www.grc.com/otg/enhancements.htm

search for the first uppercase character. With both searches satisfied, we then
output the next pair of characters encountered, which is “F2".

The power of this approach is that it “repurposes” the grid's variable capitalization

in a way that cannot be known to an attacker. Since we wait'fo—r_aﬁea_s%ﬁ of each

case before outputting, and since continuous runs of the same case are limited to ;

three characters, the two characters that are eventually outputted are always M (7[}‘“
spaced between two and six characters away from the domain name target 6 L1
character. And since we don't output the characters we are skipping over, their case 'ﬁc]'(,’ a
information is not contained in our output and attackers can never know what the o (4 }/
spacing was. The three letter “triples” are thus broken up so that the attacker no

longer gets this information. b()/f(rfj

It's true that this scheme still reveals pairs of characters that are adjacent since
successive output characters are adjacent. If we wished to eliminate even that, we ‘%J@ 7[
could output only one character after encountering both cases, then output the Y
second character only after again encountering both cases. This would completely p é
break up the “triples” with an unknowable number (2 to 6) of separating characters. {4 ‘/ﬁ‘ﬁ

But once again, as the security and attack analysis page demonstrates, none of
these additional enhancement measures are necessary for the Off The Grid system
to deliver extremely good security. They were presented here for completeness,
because they were developed and considered during the development of the OTG
systemjng:tﬂtiqzate]x proved to be unnecessary. The simpler the system is to use,

for rfore it will be . The creation of a usable system was our goal.
it ol

Off The Grid Resource Pages:

1 “Off The Grid” Introduction 6 Frequently Asked Questions
2 Security Goals and Design 7 Technical Details and Docs
3 How to use the OTG system 8 Security & Attack Analysis
4 Enhanced Security Options 9 Latin Squares Workbench

5 Create/Print Your Own Grid 10 “Off The Grid” Feedback

f |
| GRC's Ultra-High Entropy Pseudo-Random Number Generator|

y ‘ Gibson Research Corporation is owned and operated by Steve Gibson. The coptents
1 of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShlP.l.HSUP, Jump
NanoProbe, and any other indicated trademarks are registered trademarks of Glbsc_m ToTop

Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

<D

Last Edit: Aug 21, 2011 at 08:40 (468.55 days ago) Viewed 3 times per day

12/2/2012 12:52 AM

GRC's | “Off The Grid” Frequently Asked Questions

1 of4

WORK IN _ WORK IN
PROGRESS Off The Grid PROGRESS

Frequently Asked Questions

https://www.grc.com/otg/questions.htm

Q&A question if you insist, but read this answer first.)

It was never the goal of our “Off The Grid” project to duplicate the security
of a state-of-the-art symmetric cipher like AES/Rijndael. Rather, the OTG
system was carefully and deliberately designed to provide far more
security than any of the solutions it replaces, while being easy enough to
use that it would actually be used. We believe the system succeeds at
achieving those goals.

It is important to consider that modern computer-based cryptography is so
strong that it is never the weakest link in-the chain. It is never broken. Yet
Internet user's passwords are still being lost or stolen, and their accounts are
being compromised every day. The problem is not that computer-based
encryption is not strong enough — it's effectively unbreakable. The problem
is pretty much with everything else. Users choose and use insecure and
easily guessed passwords, and they often use the same password on every,
or across many, sites. Malware and keystroke loggers of many types can
infect users' systems, and popular password management systems have been
the target of malicious manipulation in the past. But users who adopt the
“Off The Grid” system have a paper-based solution that does not run in their
computers, so it cannot be compromised by malware. And since all OTG
passwords are long, extremely random and unique per site, OTG provides
the best security we know how to create. OTG is far more secure than the
other “ad hoc” methods that most users adopt. So switching to OTG almost
certainly increases any user's security.

Q: Is OTG as secure as the AES/Rijndael symmetric encryption system? e
3
/ /
A: The two systems cannot be readily compared because they are very é;//
different. However, that's really not the right question to ask. (See the next U Z {‘/

Q: But I want you to compare the security of OTG to AES/Rijndael . . .

A: Okay.

First: Algorithmic Security — Modern cryptographic algorithms utilize a high
number of complex computational and combinatorial steps to obscure the
relationship between the input “plaintext” and the output “ciphertext”. And
even with a modern processor's incredible speeds, pushing data through
these algorithms takes some time. There does not appear to be a feasible
way to adapt those “number crunching” approaches to a simple-to-use
paper-based cipher. So we needed to take a different approach . . .

Second: The “Off The Grid” system replaces sym_Ln_etj';Q\éptography’s
computational complexity with extremely high levels of entropy (unknowable
and unpredictable randomness). The AES/Rijndael cipher is most commonly
used with a 128-bit key. This key length provides pi2e possible keys which
is: 340 282 366 920 938 463 463 374 607 431 768 211 456. The

12/2/2012 12:53 AM

GRC's | “Off The Grid” Frequently Asked Questions https://www.grc.com/otg/questions.htm

extreme algorithmic strength of the AES/Rijndael cipher prevents it from
*leaking” any useful information about its key when both its input and
output are known, and, as you can see, there are too many possible keys for
it to be practical to try them all.

Since a manual system like OTG cannot have such computational
complexity, we compensate for that by incorporating a truly incredible
amount of entropy (randomness). The entropy of Latin Squares-is-so large
that no one even knows how large it is! Mathematicians have established a
“lower bound” for it. This means that while they don't know the exact
amount, they know that it has at least a certain amount. How much? The
OTG Security & Attack Analysis page carefully explains where the following
number comes from, but there are known to be at least 9 336 974 347 720
076 203 095 381 302 683 075 484 706 012 030 875 383 265 106 777
232 515 384 291 786 329 470 875 840 456 766 821 029 030 235 438
914 174 291 844 167 774 650 650 291 329 460 401 751 489 013 555
810 781 700 163 431 985 765 122 298 613 958 200 230 192 236 631
943 316 085 768 502 914 719 815 963 609 471 283 139 690 899 669
496 766 419 404 467 151 772 248 428 431 825 394 305 641 480 706
711 487 437 686 906 450 684 680 968 293 622 304 401 609 062 321
217 193 606 241 756 724 745 170 796 786 016 394 203 303 300 168
583 550 145 590 123 023 289 449 057 087 possible 26x26 Latin
Squares of the size used by, and randomly chosen by, our Off The Grid
system. Expressed in scientific notation, this number is: 9.337 x 10428, The
log(2) (logarithm base 2) is approximately 1418. So it is the equivalent of a
1418-bit key. And the number is even higher because the random alphabetic
case of those 676 characters further increases the grid's total entropy.

Unlike a state-of-the-art symmetric cipher, which does not “leak” any useful
information about its key when it is used, every use of the OTG grid does
leak a little bit of il;itg_@;tiog_&:,l_muj its key. This occurs because the
OTG's key is the spefific structure of its grid, and we output selected pieces
of the grid as the OTG passwords. This means that individual websites each
obtain tiny chunks of the OTG grid structure selected by their domain name.
But look again at the phenomenal number of possible OTG grids, any one of

which any single user might be using. Our careful analysis demonstrates that w (@4
so little useful information can be obtained from each OTG domain name and

password pair that even if an attacker were to somehow collect a large \fp\/

number, there are so many possible OTG grids that nothing useful could be %/7

done with that information. C{Aﬂ%l

So, as you can see, modern symmetric ciphers, with their emphasis on A /HU/@
computational complexity, employ sufficient entropy (typically 128 bits) to 5;0900’1%7
thwart attackers by not leaking anything about their key. By contrast,

because computational complexity is not feasible in a simple manual system,
OTG takes advantage of its incredible amount of entropy (a user has one of
more than 9.337 x 10426 possible Latin Squares) to mitigate the

consequences of a bit of its “key” leaking to anyone who obtains an OTG
password.

Q." Why are there different ways to use the system?

|
| A: Unlike many of the “black boxes” in cryptography, where something is put
i into one end and something different mysterigyglgmengesﬁrem—the other

20of4 12/2/2012 12:53 AM

GRC's | “Off The Grid” Frequently Asked Questions https://www.grc.com/otg/questions.htm

end, the OTG system is, in every way, open and transparent. It should be
easy for anyone to understand and use. These pages carefully present the
motivation, goals, and design of the system. And like any open system, users
are free to use it for any purpose and in any way they choose. Once the OTG
Latin Square with its special border characters and capitalization rules is
understood, its special properties can be applied in many ways. Users should
be, and are, free to experiment, explore and find the approach that suits

them best. It was never our intention to impose any strict usage upon
anyone.

Q.' Why do you have one domain name character expand into two password
characters?

A: This appears to be the best_tradeoff. You could change it to one in and one
out, or one in and three out, or ven alternate . . . or anything else you want.
But we know that good security requires in the neighborhood of twelve
variable-case alphabetic characters. Since the standard OTG system encrypts
six characters into twelve, even the shortest domain names, such as ab.com
or abc.tv, provide sufficient raw material for OTG's encryption.

Q: Could I use this system for other things too?

A Absolutely! For example, if two people each shared a common OTG grid for
the purpgse of exchanging encrypted files, a file sender could choose a
impleword, and use the OTG system to encrypt that word into twice as
many password characters. Then that password could be used to encrypt a
file to be sent through eMail. The eMail message could contain the

pre-e&r—yl!)t}dsnort word that was used, along with the encrypted file. In

fact, the key word and the file could even be posted publicly. L\OV 6]“/

The recipient would receive the eMail, run the short word through their |)
identical copy of the OTG grid to obtain the same encryption password that | g/‘& - o

was used to encrypt the file, and decrypt the file. And, of course, many other
uses are possible. '

Q: I don’t think my mother-in-law could understand or use this. |

\

A= We certainly understand that this system is not for everyone. It will appeal {O/
to people who like the idea of generating secure passwacds@?rsystem
that cannot possibly be compromised by malware or other technologies . .. |
because it doesn't rely upon computers for its operation. But in working
without computers the OTG system inherently and necessarily places
responsibility for its operation on the user. There's no way around that. The |
system was designed to be as simple to use as possible while still offering an
extremely high level of security. It achieved its goals, even though those |
goals don't and won't make sense for everyone.

Off The Grid Resource Pages:
1 “Off The Grid” Introduction 6 Frequently Asked Questions

3of4 12/2/2012 12:53 AM

GRC's | “Off The Grid” Frequently Asked Questions https://www.grc.com/otg/questions.htm

2 Security Goals and Design 7 Technical Details and Docs l
3 How to use the OTG system 8 Security & Attack Analysis w
4 Enhanced Security Options 9 Latin Squares Workbench
5 Create/Print Your Own Grid 10 “Off The Grid” Feedback |

F ‘ Gibson Research Corporation is owned and operated by Steve Gibson. The contents
i : of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShieldsUP, Jump
s | NanoProbe, and any other indicated trademarks are registered trademarks of Gibson To Top
‘ Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

Last Edit: Aug 22, 2011 at 10:40 (467.47 days ago) Viewed 2 times per day

4 of 4
12/2/2012 12:53 AM

GRC's | “Off The Grid” Technical Details & Documentation https://www.grc.com/otg/technology.htm

WORK IN . WORK IN
PROGRESS Off The Grid PROGRESS

Technical Details and Documentation

Hmmmm

I don't recall now, what I was planning to put here. It may be that things I planned
to say have already been said elsewhere, since once I finish the Security & Attack
Analysis page I believe that everything will have been described.

I'll leave this page linked and present as a placeholder and reminder in case
something occurs to me as I'm wrapping everything up.

Off The Grid Resource Pages:

“Off The Grid” Introduction 6 Frequently Asked Questions
Security Goals and Design 7 Technical Details and Docs
How to use the OTG system 8 Security & Attack Analysis
Enhanced Security Options 9 Latin Squares Workbench
Create/Print Your Own Grid 10 “Off The Grid” Feedback

u L W INB=

GRC's Ultra-High Entropy Pseudo-Random Number Generatori

y ‘ Gibson Research Corporation is owned and operated by Steve Gibson. The contents
of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShieldsUP, Jump

NanoProbe, and any other indicated trademarks are registered trademarks of Gibson To Top

Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

Last Edit: Aug 22, 2011 at 10:59 (467.45 days ago) Viewed 1 times per day

1of 12/2/2012 12:53 AM

GRC's | “Off The Grid” Security & Attack Analysis

1 of3

WORK IN e
PROGRESS Off The Grid PROGRESS

https://www.grc.com/otg/security.htm

WORK IN

Security and Attack Analysis

This page is currently incomplete.

It will soon contain an analysis of the nature of the information that the OTG
system “leaks” due to the fact that its passwords are formed from bits and
pieces of the user's grid. This is already discussed at some length in the second
answer on the OTG Frequently Asked Questions page. Please see that if you
are interested in the security of the OTG system.)

Essentially, every OTG password inherently contains some structural
information about the grid. But this page will show that so much remains
uncertain and unknowable that even if an attacker were to obtain a great
many samples of a user's domain names and matching OTG passwords, they
would still be unable to reassemble the user's grid.

(Notes to myself) Discussion Points:

e The need to protect physical access to the grid

-—

e OTG uses high levels of entropy instead of algorithmic complexity

- —

e The attack model is: Bad guy knows that user is using the PPC system to
generate passwords and somehow gets one or more of that user's domain &
password pairs. Is there any way the bad guy can gain enough useful information
to weaken the secrecy of the user's other domain-based passwords.

we
Reader Beware: Much of what's below refers to an earlier design of the OTG G[L //\6@&

system [see: 26x26 & 13x13], so please do not rely upon any of this information
until the page is complete.

75 (&b

How many steps should you take?

If you were using the PPC system to encipher a very long domain name such as
“allthingsconsidered.com” the task of following that name's entire path to the end
would quiekly_beceme quite tedious and prone to error. It is also unnecessary for
the security of the Personal Paper Cipher.

As we'll see next, the system's Phase 2 (enciphering) begins at the location
determined by the initial Phase 1 path following.

The first question that arises is: How secure is this?

—

As we will see below, only a portion of the Personal Paper Cipher's security comes

from the attacker's ignorance of fRe configuration of the Latin Square we are using. ¥
But it does raise the questiorrcould an attacker guess or computationally “brute /
force” the configuration of the particular Square we are using?

' The Cipher's design actively prevents the disclosure of any
‘ 2n particular Square, so the feasibility of guessing or brute
n ! forcing a Square's configuration, assuming the absence of
any other clues, is primarily determined by the total
-__,_-.

12/2/2012 12:53 AM

GRC's | “Off The Grid” Security & Attack Analysis https://www.grc.com/otg/security.htm

20f3

2 . number of possible Latin Squares from among which ours
n (n) ~was chosen. As was mentioned in the “Latin Squares” box
above, mathematicians who have studied Latin Squares

e have only been able to obtain an exact count for Squares /
having sizes up to 11x11 (and the exact count for 11x11 Squares was only recently L/l/l{ {
obtained.) What the math gurus have been able to state with certainty, is that the Y
lower bound on the number of Latin Squares, of a given size 'n' by 'n'is given by A
the equation shown on the left. In other words, although no one knows exactly howéﬁ%
many specific Latin Square configurations there are of any size larger than 11x11 ;
(because there are too many!), we do know that there are at least as many as ’50/’@‘){1{ wa
specified by that equation. But how,many is that? ’}i ¢

(L& (v gC 1l < . L’@ﬁ __j
| 1152 Plugging the number (n=26) into the lower bound equation for the N (¢~
(26) Personal Paper Cipher's 26x26 Latin Square results in a number so \d\ !
ar(262) large as to be rather ridiculous. It is: 9 336 974 347 720 076 203 Lo\~ S A ;»
26() 095 381 302 683 075 484 706 012 030 875 383 265 106 777 232 1
' 515 384 291 786 329 470 875 840 456 766 821 029 030 235 438 2 ? "
914 174 291 844 167 774 650 650 291 329 460 401 751 489 013 555 810 781 éxZé/
700 163 431 985 765 122 298 613 958 200 230 192 236 631 943 316 085 768 ‘
502 914 719 815 963 609 471 283 139 690 899 669 496 766 419 404 467 151
772 248 428 431 825 394 305 641 480 706 711 487 437 686 906 450 684 680
968 293 622 304 401 609 062 321 217 193 606 241 756 724 745 170 796 786
016 394 203 303 300 168 583 550 145 590 123 023 289 449 057 087

This number, expressed in scientific notation, is: 9.337 x 1026 and the log(2)
(logarithm base 2) is approximately 1418. This means that a binary number having
at least 1418 bits (because this is the known lower bound) would be required to
specify one of the 26x26 Latin Squares possible.

During the development of this Personal Paper Cipher system, we developed several
different algorithms that randomly found one single Latin Square from among all of
those that are possible. However, to assure TNO (trust no one) style privacy, this
code must run as JavaScript on the user's owmrweb browser (that way no one, not
even GRC, has any idea what your individual Cipher Square looks like). The
solutions we developed did allow for highly efficient client-side JavaScript
implementation, but sometimes the search took so long that browser warning
messages popped up, and some users have older and much slower systems. In the
end we chose a secure compromise that allows us to quickly choose one Latin
Square from among a smaller, but still massive subset of all possible Squares.

The final algorithm for Latin Square generation used by the PPC system randomly
selects one Latin Square from among a subset containing 26!12x 25! x 6 Squares.
Thisis 15 136 831 721 341 031 145 555 109 377 300 868 031 260 208 035 408
929 173 274 624 000 000 000 000 000 000; in scientific notation: 1.513 x 1072, or

263 bits of effective entropy — and security. And, as we'll see below, this is only
one of several places from which the PPC system obtains its security.

Off The Grid Resource Pages:

“Off The Grid” Introduction 6 Freguently Asked Questions
Security Goals and Design 7 Technical Details and Docs
How to use the OTG system 8 Security & Attack Analysis
Enhanced Security Options 9 Latin Squares Workbench
Create/Print Your Own Grid 10 “Off The Grid” Feedback

u b W N R

12/2/2012 12:53 AM

GRC's | Latin Squares Workbench https://www.grc.com/LatinSquares.htm

Latin Squares Workbench
Experiments in Latin Square manipulation for the “Off The Grid” project.

...

. Latin Square@e array filled with n different letters, numbers or

symbols, each occurring exactly once in each row and exactly once in each
: column.

..

What is this all about?

During the early development of the “Off The Grid” personal cipher system we

needed to acquire a working understanding of the characteristics of Square Latin
manipulation. It was known from the extensive literature about the characteristics

and nature of Latin Squares that if was possible to “permute” any Latin Square in a
number of ways which would not alter the Square's m. For //
example, if you think about it for a second you'll see that the “only one of each type

of symbol in any row and column property” of every Latin Square will be preserved

if any row or column is exchanged with another. In fact, all of the following
manipulations preserve any Square's “Latinness":

¢ Exchange any pair of rows or columns. SMOVQ’ 61% H (@d @M Lg“ 1

e Exchange any set of symbols with another.

e Exchange the columns for the rows (mirror across the major diagonal).

e Exchange the symbol numbers with the row or column numbers (tricky, but it
works).

Note that what's not here are other, presumed possible, LS configurations that
might be unreachable through these transformations (this remains to be
determined and is one of-thegoats-of this-werk).-Such “unreachable” Squares might
be found, for example, by employing a brute force recursive backtrack searching to
find all possible Squares. B

(Note that a full recursive backtracking search is what I ultimately determined
would be necessary — and is what I'm doing for the “Off The Grid” system — since
the JavaScript device below allowed us to demonstrate and explore that it was not,
in fact, possible to reach all possible Latin Squares through permutations of a base
starting Square.) ==

This page was created to aid the empirical and experimental exploration of Latin
Square generation. Its goal is to answer the question of how complex a “unique
scrambling” we are able achieve, and which transformations are useful and which, if
any, are not.

It's clear that there are n! ways of reordering the columns and n! ways of
reordering the rows. However, quick experimentation with smaller Squares (such as
a 3x@which can be selected through the user-interface) quickly reveals that the
combination of unique color patterns available though combining row and column
reordering is not (n'en!) butinsteadis (n!e (n-1) .

R —_— L

There are also n! ways of swapping symbols (colors) among themselves.

Finally, if each cell in the array is represented as a tuple of the form (r,c,s) where '’
is the cell's row, 'c’ is the cell's column, and 's' is the symbol at the (Ft)tecation,

1 of 5 12/2/2012 12:53 AM

GRC's | Latin Squares Workbench

20of5

then the entire Square's essential “Latinness” is preserved if any two elements of
every tuple are exchanged. For example, if the 'c' and 's' elements were exchanged,
the cell's symbol would specify the column and the cell's column would Specify the
symbol. In other words, the cell's column number would be stored into the column
specified by that cell's symbol; e.g. if the cell in column 2 contained a 5, then a 2
would be stored into column 5. The workbench below supports and allows for
experimentation with all of these transformations.

Collectively, this generates a potentially huge variety of different Latin Squares.
Using just simple row, column and symbol exchanges, we can produce
(n'e (n-1) 'en!) combinations. For a small order 6 (n= -6) Latin Square, such as

the experimental one below, that's 62,208,000 reordering arrangements.

But here's the BIG question: Are ALL of the Latin Squares resulting from
combinatorial rearrangements distinct and unique? And how can we be sure we
didn't miss any? For example, in pFeliminary experiments with the tuple exchanger
transformations, alternating between the c—s and r<s exchanges cycled through
many six intermediate Squares before returning to the starting configuration ~ but
only in some starting grid configurations. Might it be that mixing in the otherwise
simplistic c—r exchange would extend this further?

So the question to be answered is: What algorithm can be designed using these
transformations to yield the largest number of possible unique Latin Squares? And
how large is that number relative to the total number of possible Latin Squares?

: = Snapshots
Q|| 1] 2|3||4]|5] 6 =
w6 | 1 |2|3]l45 ﬁ
= = <=
L E | 5 |6 f|t{l-2]3:] 4 e gy

| s | g P

1/1 1 4

1/1 o] e ~

== a |l s [pl[e]le][v] T

:5x5 6x6

12/2/2012 12:53 AM

https://www.grc.conv/LatinSquares.htm

-~

GRC's | Lati
s | Latin Squares Workbench https://www.grc.com/LatinSquares.htm

\ | Color | Forget row, |col | isym
| . (—}(—);‘(—)‘
| | Ident || Hist | Icol| \sym| |row|

o bavemon i LI T —

Non-Obvious Latin Square Workbench Concepts

The LS Workbench displays the colors of the grid squares, but it also tracks the
individual identities of the squares as they move through the grid. In other words,
in its default “Color” display mode, all of thmes show a '1' with the
numbers being numeric representations of each color. But in the “Indent” display
mode, you'll notice that each color is individually numbered within its color. This is
useful for tracking instances where transformations do not result in color changes,
but are nevertheless changing the identities of the grid's objects ... or where
extensive transformations may return to a previously seen coloration, but with
different instances of the same colors in each location.

The Workbench keeps track of every grid color and identity configuration it has
seen, and it memorizes these individually. The ™fraction bers sticking out
of the sides of the grid displays show the location of the attermt

history memory above w total size of the_history memor o,
The upper pair of numbers reflects the status of the color-only memory and the
lower pair shows the status of the color+identity memory. Finally, the number pairs

are highlighted with red or green (respectively) whenever a new and unique pattern
entry is made to the history memory

The equality of the snapshot scratchpads is continually shown with equals, not
equals, and a green three-bar “equivalence” symbols. Not equals is shown
whenever the displayed color patterns are not identical, equals is shown when the
displayed colors are identical but the UHCW__,\%%/JMD-M@FS are not. And
the three-bar “equivalance” symbol is shown when both the colors and identities are
identical. Consequently, for example, the three-bar equivalence symbol will be

shown immediately after copying the main grid into one of the snapshots since they
will be completely identical at that point.

The Workbench is 100% “touch friendly” and is delightful to work with on any (O (
touch-enabled device. But it is less easily manipulated with a mouse. Consequently,

the Rows, Columns, and Colors can be selected with a keyboard by pressing the

letters associated with the rows, columns, and colors.

Workbench User-Interface Guide

[T The “Reset” button If each cell of the grid is

| col

' Reset | restores the primary Latin | <, | addressed as an (r,c,s)

| Square to its “"base” state | SYym | tuple, the “Latinness” of
where the first row is ~ the Square is preserved

numbered 1, 2, 3, ... and each when any pair of those tuple

successive row is rotated one - elements are exchanged.

column to the right. This is Exchanging the 'r' & 'c' elements

3of5 12/2/2012 12:53 AM

GRC's | Latin Squares Workbench

4 of 5

| Forget|
| | Hist |

- guaranteed to produce a very simple |
| Latin Square and is the starting

. state for all subsequent
- manipulations.

~1 The large alphabetic

| buttons can be clicked to

| select its respective row or

column. The respective

. keyboard keys perform the same
function. The contents of any pair of
rows or columns can be exchanged
. by first selecting one, which will
. show it selected, then clicking the
second, which will exchange the
- contents of the row or column.

' 1 Similar to the button
|

]

~ operation of exchanging the symbol
. and row elements of the Latin
Square's (r,c,s) tuples. Note that 'r'

- stands for row, 'c' for column, and 's'
| for the symbol located at the 'r' and
. | 'c' intersection.

https://www.grc.conv/LatinSquares.htm

- swaps the row and column (which is
. what the row«col button does). This
' | button exchanges the columns and
| symbols.

YM | above, this performs the
| TOW | somewhat complex
'''' “Latinness” preserving

The Latin Square grid is
labelled with distinctive
colors and numbers. As
! with row and column
selection/swapping the keyboard
. may be used for quicker interaction.
. Any two sets of grid symbols may be
~ exchanged by first selecting one,
- then the other.

' [3x3|[axel Latin Square complexity

——1 increases quickly as the

P

1 §5x5§§6§§§ size of the square

Rk increases, the workbench
- can be set to manipulate 3x3, 4x4,
- 5x5, and 6x6 size Latin Squares.

Color | This button toggles the
- = workbench's display mode.
! Iﬂf“t . When set to “Color”, the

~ cell numbering

corresponds to its color. When set to |

. “Ident” the numbers track the cell's
individual identity within its color

. group as it is moved around the

~ Square.

Empties the Workbench's
memory of all previous

/:I "Snapshot” scratchpads.
| <

R the current Latin Square grid

| between its respective snapshot and
- the Latin Square.

| —F arrows copy the snapshot
- J7L scratchpadSbetween

~.. The Latin Squares
/\“ Workbench contains three
The horizontal left and

right pointing arrows copy

configuration back and forth

~". The up and down pointing

" themselves—This can be
useful handy during
complex hunts for intermediate

| Latin Square configurations.

¢ The Equals, Not Equals and

Y Equivalence (three green
=== bars) symbols continuously
reflect whether e of the
snapshot scratchpads_is identical to
the main Latin Square.
“Equivalence” means that not only

. are all of the colors identical, but

the individual cells within a color are

| also identical.

30/38 The upper bold number
of the n/m fraction is
44/44

Lo,

12/2/2012 12:53 AM

GRC's | Latin Squares Workbench

5of5

color and cell identity

patterns. The current pattern
- becomes the first new pattern in the
- Workbench's pattern configuration

- history.
.~ | Flips (reflects) a Latin
row i i
< | Square about its major
| col diagonal axis (from upper

left to lower right)

. preserves its “Latinness”.

. (Preliminary experimentation

- reveals that this reflecting does not
. help to create unique Latin Squares
- since the mirroring can be easily

- reversed through row and column

https://www.grc.com/LatinSquares.htm

44/44
the associated grid
pattern's location within in the
Workbench's pattern memory and
the lower non-bold number is the
total number of pattern entries in

' the grid memory. The upper pair of

numbers shows the color-pattern
memory and the lower pair shows
the more specific color+identity

. memory. The respective numbers
- are highlighted (in red for the

upper pair and green for the lower
pair) whenever a new grid pattern

s being seen for the first time and a

new entry is made into the pattern
memory.

- exchanges.
Off The Grid Resource Pages:
1 “Off The Grid” Introduction 6 Frequently Asked Questions |
2 Security Goals and Design 7 Technical Details and Docs |
3 How to use the OTG system 8 Security & Attack Analysis
4 Enhanced Security Options 9 Latin Squares Workbench n
5 Create/Print Your Own Grid 10 “Off The Grid” Feedback

d

Last Edit: Aug 12, 2011 at 13:18 (477.36 days ago)

| GRC's Ultra-High Entro

Pseudo-Random Number Generator

Gibson Research Corporation is owned and operated by Steve Gibson. The contents
of this page are Copyright (c) 2012 Gibson Research Corporation. SpinRite, ShieldsUP,
NanoProbe, and any other indicated trademarks are registered trademarks of Gibson
Research Corporation, Laguna Hills, CA, USA. GRC's web and customer privacy policy.

Jump
To Top

Viewed 10 times per day

12/2/2012 12:53 AM

atF 1 [Z/Z A

Novel Password Systems Where Enter

Derivation of Password instead of Actual
Password

6.858 Final Project
Michael Plasmeier <theplaz>

Jonathan Wang <jwang7>
Miguel Flores <mflores>

Motivation

The problem with many password systems is that users must type their entire, full password each time
they log on. This makes the password vulnerable to key logging and interception during transmission.

We explore systems in which the user does not enter their direct password, but a derivation of the
password which changes on each log in. The user proves that he or she knows the password without
subsequently ever providing the password itself.

ING Password Keyboard

A simple example is ING Direct's PIN pad. Under ING’s system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Page 1

Description of System (Plaz)

Original Off the Grid

We were inspired by the “Off the Grid” system from the Gibson Research Corporation.! The “Off the
Grid” proposal is designed to allow users to use a personal printed paper grid to encipher the domain
name of the website they are currently on into a string of psudeo-random characters.

The Off the Grid system works entirely on the user’s side. Websites do not need to do anything to
support Off the Grid.

To use Off the Grid, the user first generates a grid from a grid-providing website such as
https://www.grc.com/offthegrid.htm. This website generates a grid using client-side scripting (ie.
JavaScript) to generate the grid on the user’s machine. The user then prints the grid onto a sheet of
letter paper. At this point the Grid is offline and thus impossible to access by malware. As an
alternative, there is at least one application for Android which produces and stores a grid; however, the
grid is now accessible to malware on the Android phone which is able to defeat the inter-process
sandboxing.

The grid that is generated is a Latin Square. A Latin Square is an n x n array filled with n different
symbols, each occurring exactly once in each row and exactly once in each column.” The most famous
Latin Square is the popular puzzle game Sudoku. (Note however, that we do not divide up the grid into
9 smaller 3x3 mini-squares in which each symbol must be unique). For example, here is a 11x11 Latin
Square with 11 alphabetic characters:

glejlaimjo|n |z |k [i |r |c
k |&@ |a [e |miz-lo|Flglile
nl|kilcilz |a|m|r |glo|e|i
z lo|i |a|n|g|e|c|r |k |m
mi|r |z |n|g |a|k|i |e]|c|o
a |glefi |z |r |njo|c |ml|k
rlc|glkle]i |m{n|z |o|a
e |ln lk |g |l o e |z imlads
i ImjoJe|r |c|gla |k (n|k
C {1 |r |lolk|e la |m|n*|z%le
O |z m|r |c |k |i |e|a|g|n

Figure 2

Once the user has a grid, they use the grid to create or change the password for each website. The Off
the Grid specification has a number of variants, but we will use the base variant described on the GRC
website.

In the Off the Grid specification, the user traces the name of the website twice to provide additional
entropy. In the start of the first phase, the user always starts along the first row of the grid.

! https://www.grc.com/offthegrid.htm and associated pages. Is still marked as “Work in Progress;” Retrieved
12/2/2012
2 http://en.wikipedia.org/wiki/Latin_square

Page 2

Start —3¢

Al

€ (o
olw (oo

olaolo g
‘-‘-’U‘ﬁql-

Figure 3

The user then traces out the first 6 characters of the domain name. 6 characters was chosen by the
author to provide a 12 character password, which the author chose to balance ease of use with entropy.
Again, a user may choose their own scheme. The user alternates between looking horizontally and
vertically.

Start=—» lge——e—>a |m|o [n |z |k |[i |r |c
k la|dqlc | m|z |o]|r |g|i |e
nlki|diz |a|m|r |g|o|e|i
z |lo|il|la|nig|e |c|r |k |m
m|r |4 |n|g|a |k |i |e|c|o
aleg |4gq|i z |r |njofc |m|k
ricl|d |k je|i |m|n|z>0 |a
e |n|H g |i |olc |z |4 ¢ r|
i |m|q|e |r |c|g |a % n |k
c|i |[W|o e |a |m z |g
0 |2 m 7T T k— ela |g | N

Figure 4

In the second phase, the user starts at the character that they ended with at the end of Phase 1. The
user then two more characters from the grid in the same direction of travel. The user then appends
those two characters to their password.

b |d |a |c
——ape |B | H
d c |3

c d | b

%

Figure 5 The user arrives at ¢ traveling to the right. The user appends the next two characters “bd” to
their password, and then continues up/down from the last character they read i

The user wraps around if their characters go off the grid.

b |d |a |c
——fa3-—J-cxb |d

g |b [c |a

¢ |a |d |b

1

v

Page 3

Figure 6 The user arrives at b traveling to the right. The user appends the next two characters to their
password, wrapping around if they go off the edge of the grid. Here those characters are “da”. The
user then continues up/down from the last character “a”.

For example here is Phase 2 of our Amazon example.

> [g le lallentedn [z [k [i [r |c
k |a |n|c|m|z |of|r |g|i |e
dy k. e |z |a. @]t |gla.fe |i
glo [l Ja |n | £[68 [€ [F [k |m
mijr |z |n|g |3 |k|i |e|c o
a fg—te—i—tz o [c [m]k
rliclg |k |e min|z |[¢|a
e |n|kjg|i |&dlc |z |m|g]|r
i |mjo|e |r |c|g [alekstn |k
cli |rlolkl|el|a|m|n]Z [
oz |[m|r |c |k |i |e|a]|g|n

Figure 7 Phase 2 of Off the Grid. The password is “gaznegmacmazg”

Here are Phase 1 and Phase 2.

—>|lg le lalgmtedn |z [k [i [r C
k| a c {m[z [o]|r |g|i |e
(ﬁ, k{clz |a|m|r |g|o]|e [i
Z o |l |a|n|glejc|r |k |m
m(r |z |n|g k |i |e|c|o
a fe—e—i—s o |c [m]k
roje |8 |k e min|z|¢ |a
e |n |k |g|i _ c |z |m j{_ r
i |mjo|e |r Jc|g |alekdn |k
c |i jrjojkle|la|m|n]|z |g
o jz [mir|ck|i{e’|a|g|n

Figure 8 Phase 1 and 2 of Off the Grid.

To log in, the user retraces exactly the same steps as when creating a password. This means the
password is exactly the same for each domain. This is an obvious requirement for a system designed to

fit within the existing password infrastructure. However, we wanted to explore ideas in which the user
does not enter the same password each time.

We wanted to design a system similar to the Off the Grid system, but where the password the user
transmits over the network is different each time. With this system, the website presents the user with
a grid and the user enters only a deviation of their password.

When the user creates an account, he provides his or her password to the webserver. The user may use
characters from the lower case Latin alphabet [a...z].

Page 4

When the user logs in, the server randomly generates a 26x26 Latin square with the characters [a...z]
called the Grid. The server also randomly selects a start row or column called the start location. The
server transmits this Grid to the user. The Grid and the start location are unique for each log in. The
server stores the Grid and start location in temporary state and provides a pointer to this state called
the token to the user. The user’s browser returns the token to the server on each log in attempt.

These are transmitted to the user. The user then visually traces out his or her password on the grid,
alternating between rows and columns. For example, the user would locate the first letter of their
password on the start row or column. The user would then look for the next letter of his or her
password in either the column (if the start was a row) or row (if the start was a column) that contained
the user’s first character. The user would then continue alternating for the length of their password.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
This is called the trace of the password. The trace and the token are sent back to the server.

The server verifies that the trace by applying the trace to the grid associated with the provided token.

Page 5

Example: entering the password Amazon with the 5™ column as the start row/column. The grid as well
as the start row/column are randomly generated be the server for each log in.

Start

gt nmpra{kle|miwli oz |¥|z|] ([diblhlp|r|ols € |f |y |la]!]
s|g|wlc|p|flajt|[d]j |u[m|v|ix|o|p|lyl|lgle]|!l [k]r z i |h|b
L [n|x |f ||l |m|c|s|e|k|q|u]y|b|v|o|a|d|p|r |wlg]|j |h]|t]z
hly|d|r |mjc|x |k|v|f|b|s|i]e|lp|lu|lo|wl|j|qlz]|n]|l |g|a]t
vikjz]t[x|bl|jlo|r|p|w]|]i|u|s|la|[m|lg]|n|lI |d]|f |q|h]e y | c
k {wly|[blg|[n|ufl |s|el|i|r|olc|gl|lz|f|x|h]|v]|d|a]|ml|t p j
elgll (y[y]lilJz]|h|glo|p|flc|w|lb]|v|k|als]|mlulx]|nlr j |d
d|b|f|wld|y|t]e|x|alc|qg|pl|i|[m|nlulr|k]|h]] j |[s|olg|v
njolgli (g]la|pfrjulv]|l |w|d|fl|lc]|]j |x|m|t|k]|ale vy |blz |h
P -hul@ sl | d plx bl el ok Lz glcle|y|lulgl|j |[f|m
ol |j[x|p|s|v]z]|a|m|r|y|w|n glojd bl [Elagltlkl[f 2]l
Bl |t !nld]a y(njolijgle|x|r]ull [p|flv|iw|m|z|cl|s |d]lk
g|s |kle|[y|ufd|m|z|x|o|h|a]|t y [wic|]j |blg|r|il|p]|l |[n]|f
i Jzle|lk|¢g | w|o|g|h|t]|d]|j|b plr|fim|s|uly|x|v|al|n]l q
ale|u|v I lalb|p|r|y|k|jlz|wlcli|n|nlf g5 |k % [m]e
zja|mjo|d |h|i|c|blg|k|n]|gqlulj|r]|v]t yiple|jl |d]w|x|s
u|x|s |j e k(b ly |l |n|tlz]|h|qg]li|d]|r|v glajc|flwim|lo|p
X |d|p|z 1T gk |s|nle|m{g]f V]elk |w|i (elh|v]|alblr
yi|cli|qg p | n €F—mrrtTsrt B 1Tt T oz |b|v | w|e |k u|a
fli Jvidie|r|s|aly|z]|j|x]|I]k [n glb|(dlgln|t|m|lulp|w]|e
tipjajn|w|vi|ie|ulg Yy [flo|r |atd—d—tD|z | m j lhid|blcl|i |x
wimjr gl |lo|h|j|k|b|a|d]|s Klelglt i |fluln BlX|Z |€|Y¥
jlvib|m|hlg|f|ilec|[d]|z [a]|k Il X|s|wlejo [t |p|y|q|u]r|n
rlflec|l |Y]z g lvl i |w|imlp|t|[H]|[n]e qluja|x |b|k|o|d]|s |i
c|r |h|u|arT>xrwrptrtotetbtD| mls i | (vyldijz 1] leli vk g
migjgjplidtikjd | fielhlalelviz = n |l (= sli|blrjqfv|w]

The resulting trace would be: Down, Right, Up, Right, Up, Left.

Figure 9 A trace of the password “amazon”

Modified Tracer

We also explored a modified version of this system designed to increase usability. This system uses a
13x13 grid, instead of a 26x26 grid to make it easier for users to visually scan the grid.

In addition, we no longer generate a Latin Square. Instead, we first randomly distribute the user’s
password in an empty grid. We first randomly select either a row or a column from our 26 choices. We
then place the first letter somewhere in that row or column. For this example, say we select the 3"
column to start with. We then place the “a” somewhere in this first column. We then place the second

Page 6

letter “m” in the row in which we have placed the first letter. We continue this scheme until the
password has been placed.

For example:

Figure 10

We then randomly fill in the remaining letters on the grid from the set of 26 lower case letters. We
make sure each row and column only contains each letter only once by backtracking. For each spot we
first start with the entire set [a...z]. We then remove all letters that are currently in the same row and
column that we are in. We then randomly select a character from the remaining set.

This is not a Latin Square because we have a [13x13] Grid, but 26 possible characters.

Probabilistic Analysis (Miguel)
Original Off the Grid
Tracer: Trace the Grid

Modified Tracer
Math from breaking down the Latin Square.

Other Factors (Plaz)

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.?

® http://css.csail.mit.edu/6.858/2012/readings/passwords.pdf

Page 7

Original Off the Grid
Tracer: Trace the Grid

Modified Tracer

Usability (Plaz)

The simpler a system is, the more it will be used.

6.813 Ul class
Original Off the Grid
Tracer: Trace the Grid

Modified Tracer

Code (Jwang)
Anything we want to write here?

How do we generate a Latin Square?

Conclusion (Jwang)

Page 8

(104 %Wi 0 e
(

e (| g Wk 5 @669#24/[,,#

Ng (D(Mw@mt G00ms wgbd-()k?

567

W Y Ty o odhagd (44, g

h‘LA I why ZWL]

| = %/Mnlﬁ ﬁz@)
st b onige Quh -
@meﬂ paseart | fo
O d vl
HOW W&/Cd G/QL EVW()/]L
[
Ve 1 C‘k 1
1—>al 2
\H/labﬁ, l “L

A

b,
93/

Y
BW%“ Wl o0 Tt gles

-_.--"—-__'_-‘

/“L/ | |
(/lép; [(/o Ccep%of/l{l% or L(}é{; Z(‘c,s %
~ [/ffg s

[C
ledy o |

The Quest to Replace Passwords:
A Framework for Comparative Evaluation of Web Authentication Schemes*

Joseph Bonneau
University of Cambridge
Cambridge, UK
Jjeb82@cl.cam.ac.uk

Cormac Herley
Microsoft Research
Redmond, WA, USA
cormac @ microsoft.com

Abstract—We evaluate two decades of proposals to replace
text passwords for general-purpose user authentication on the
web using a broad set of twenty-five usability, deployability
and security benefits that an ideal scheme might provide.
The scope of proposals we survey is also extensive, including
password management software, federated login protocols,
graphical password schemes, cognitive authentication schemes,
one-time passwords, hardware tokens, phonec-aided schemes
and biometrics. Our comprehensive approach leads to key
insights about the difficulty of replacing passwords. Not only
does no known scheme come close to providing all desired
benefits: none even retains the full set of benefits that legacy
passwords already provide. In particular, there is a wide range
from schemes offering minor security benefits beyond legacy
passwords, to those offering significant sccurity bencfits in
return for being more costly to deploy or more ditficult to use.
We conclude that many academic proposals have failed to gain
traction because researchers rarely consider a sufficiently wide
range of real-world constraints. Beyond our analysis of current
schemes, our framework provides an evaluation methodology
and benchmark for future web authentication proposals.

Keywords-authentication; computer security; human com-
puter interaction; security and usability; deployability; eco-
nomics; software engineering,

I. INTRODUCTION

The continued domination of passwords over all other
methods of end-user authentication is a major embarrass-
ment to security researchers. As web technology moves
ahead by leaps and bounds in other areas. passwords stub-
bornly survive and reproduce with every new web site.
Extensive discussions of alternative authentication schemes
have produced no definitive answers.

Over forty years of research have demonstrated that
passwords are plagued by security problems [2] and openly
hated by users [3]. We believe that, to make progress, the
community must better systematize the knowledge that we
have regarding both passwords and their alternatives [4].
However, among other challenges, unbiased evaluation of
password replacement schemes is complicated by the diverse

“An extended version of this paper is available as a University of
Cambridge technical report [1].

TFrank Stajano was the lead author who conceived the project and
assembled the team. All authors contributed equally thereafier.

In Proc. IEEE Symp. on Security and Privacy 2012 (*Oakland 20127).

Yaul C. van Oorschot
Carleton Universiry
Ottawa, ON, Canada
paulv@scs.carleton.ca

Frank Stajano!
Universiry of Cambridge
Cambridge, UK
Sfrank.stajano@cl.cam.ac.uk

interests of various communities. In our experience. security
experts focus more on security but less on usability and
practical issues related to deployment; biometrics experts
focus on analysis of false negatives and naturally-occurring
false positives rather than on attacks by an intelligent,
adaptive adversary: usability experts tend to be oplimistic
about security; and originators of a scheme. whatever their
background, downplay or ignore benefits that their scheme
doesn’t attempt to provide, thus overlooking dimensions on
which it fares poorly. As proponents assert the superiority
of their schemes, their objective functions are often not ex-
plicitly stated and differ substantially from those of potential
adopters. Targeting different authentication problems using
dillerent criteria, some address very specific environments
and narrow scenarios: others silently seek generic solutions
that fit all environments at once, assuming a single choice
is mandatory. As such, consensus is unlikely.

These and other factors have contributed to a long-
standing lack of progress on how best to evaluate and
compare authentication proposals intended for practical use.
In response, we propose a standard benchmark and frame-
work allowing schemes to be rated across a common, broad
spectrum of criteria chosen objectively for relevance in wide-
ranging scenarios, without hidden agenda.' We suggest and
define 25 properties framed as a diverse set of benefits,
and a methodology for comparative evaluation. demonstrated
and tested by rating 35 password-replacement schemes on
the same criteria, as summarized in a carefully constructed
comparative table.

Both the rating criteria and their definitions were it-
eratively refined over the evaluation of these schemes.
Discussion of evaluation details for passwords and nine
representative alternatives is provided herein to demonstrate
the process, and to provide evidence that the list of benefits
suffices to illuminate the strengths and weaknesses of a wide
universe of schemes. Though not cast in stone, we believe
that the list of benelits and their specific deflinitions provide
an excellent basis from which to work; the framework and

"The present authors contributed to the definition of the following
schemes: URRSA |5]. MP-Auth |6), PCCP |7] and Pico |8]. We invite
readers to verify that we have rated them impartially.

cvaluation process that we define are independent of them,
although our comparative results naturally are not. From our
analysis and comparative summary table, we look for clues
to help explain why passwords remain so dominant, despite
frequent claims of superior alternatives.

In the past decade our community has recognized a
tension between security and usability: it is generally easy
to provide more of one by offering less of the other. But
the sitwation is much more complex than simply a linear
trade-off: we seek to capture the multi-faceted, rather than
one-dimensional, nature of both usability and security in our
benefits. We further suggest that “deployability”, for lack of
a better word, is an important third dimension that deserves
consideration. We choose to examine all three explicitly,
complementing earlier comparative surveys (e.g., [9]-[11]).

Our usability-deployability-security (“UDS") evaluation
framework and process may be referred to as semi-structured
evaluation of user authentication schemes. We take inspira-
tion from inspection methods for evaluating user interface
design, including feature inspections and Nielsen's heuristic
analysis based on usability principles [12].

Each co-author acted as a domain expert, familiar with
both the rating framework and a subset of the schemes.
For each scheme rated, the evaluation process involved one
co-author studying the scheme and rating it on the defined
benefits; additional co-authors reviewing each rating score;
and iteratively refining the ratings as necessary through
discussion, as noted in Section V-D.

Our focus is user authentication on the web, specifically
from unsupervised end-user client devices (e.g., a personal
compuler) o remole veriliers. Some schemes examined
involve mobile phones as auxiliary devices, but logging
in directly from such constrained devices, which involves
different usability challenges among other things, is not a
main focus. Our present work does not directly examine
schemes designed exclusively for machine-to-machine au-
thentication, e.g., cryptographic protocols or infrastructure
such as client public-key certificates. Many of the schemes
we examine, however, are the technologies proposed for the
human-to-machine component that may precede machine-to-
machine authentication. Our choice of web authentication
as target application also has significant implications for
specific schemes, as noted in our results.

II. BENEFITS

The benefits we consider encompass three categories:
usability, deployability and security, the latter including
privacy aspects. The benefits in our list have been refined to
a set we believe highlights important evaluation dimensions,
with an eye to limiting overlap between benefits.

Throughout the paper, for brevity and consistency, each
benefit is referred to with an italicized mnemonic title. This
title should not be interpreted too literally; refer instead to
our actual definitions below, which are informally worded to

aid use. Each scheme is rated as either offering or not offer-
ing the benefit; if a scheme almost offers the benefit, but not
quite, we indicate this with the Quasi- prelix. Section V-DD
discusses pros and cons of finer-grained scoring.

Sometimes a particular benefit (e.g., Resilient-to-Thefr)
just doesn't apply to a particular scheme (e.g.. there is
nothing physical to steal in a scheme where the user must
memorize a secret squiggle). To simplify analysis, instead of
introducing a “not applicable™ value, we rate the scheme as
offering the benefit—in the sense that nothing can go wrong,
for that scheme, with respect to the corresponding problem.

When rating password-related schemes we assume that
implementers use best practice such as salting and hashing
(even though we know they often don’t [13]), because we
assess what the scheme’s design can potentially offer: a poor
implementation could otherwise kill any scheme. On the
other hand, we assume that ordinary users won’t necessarily
follow the often unreasonably inconvenient directives of
security engineers, such as never recycling passwords, or
using randomly-generated ones.

A. Usability benefits

Ul Memorywise-Effortless: Users of the scheme do
not have to remember any secrets at all. We grant
a Quasi-Memorywise-Effortless if users have to
remember one secret for everything (as opposed
Lo one per verifier).

U2 Scalable-for-Users: Using the scheme for hundreds
of accounts does not increase the burden on the
user. As the mnemonic suggests, we mean “scal-
able” only from the user’s perspective, looking at
the cognitive load, not from a system deployment
perspective, looking at allocation of technical re-
sources.

U3 Nothing-to-Carry: Users do not need to carry an
additional physical object (electronic device, me-
chanical key, piece of paper) to use the scheme.
Quasi-Nothing-to-Carry is awarded if the object
is one that they'd carry everywhere all the time
anyway, such as their mobile phone, but not if it’s
their computer (including tablets).

U4 Physically-Effortless: The authentication process
does not require physical (as opposed (o cognitive)
user effort beyond, say, pressing a button. Schemes
that don’t offer this benefit include those that
require typing. scribbling or performing a set of
motions. We grant Quasi-Physically-Effortless if
the user’s effort is limited to speaking, on the basis
that even illiterate people find that natural to do.

US Easy-to-Learn: Users who don’t know the scheme
can ligure it out and learn it without too much
trouble, and then easily recall how to use it.

U6 Efficient-ro-Use: The time the user must spend for
cach authentication is acceptably short. The time

u7

U8

required for setting up a new association with
a verifier, although possibly longer than that for
authentication, is also reasonable.
Infrequent-Errors: The task that users must per-
form to log in usually succeeds when performed
by a legitimate and honest user. In other words,
the scheme isn’t so hard to use or unreliable that
genuine users are routinely rejected.”
Easy-Recovery-from-Loss: A user can conveniently
regain the ability to authenticate if the token is lost
or the credentials forgotten. This combines usabil-
ity aspects such as: low latency hefore restored
ability: low user inconvenience in recovery (e.g.,
no requirement for physically standing in line);
and assurance that recovery will be possible. for
example via built-in backups or secondary recovery
schemes. If recovery requires some form of re-
enrollment, this benefit rates its convenience.

B. Deployability benefits

Dl

D3

Accessible: Users who can use passwords® are not
prevented from using the scheme by disabilities or
other physical (not cognitive) conditions.
Negligible-Cost-per-User: The total cost per user
of the scheme, adding up the costs at both the
prover’s end (any devices required) and the veri-
fier’s end (any share of the equipment and software
required), is negligible. The scheme is plausible for
startups with no per-user revenue.
Server-Compatible: At the verifier’s end, the
scheme is compatible with text-based passwords.
Providers don’t have to change their existing au-
thentication setup to support the scheme.
Browser-Compatible: Users don’t have to change
their client to support the scheme and can ex-
pect the scheme to work when using other ma-
chines with an up-to-date, standards-compliant web
browser and no additional software. In 2012, this
would mean an HTMLS35-compliant browser with
JavaScript enabled. Schemes fail to provide this
benefit if they require the installation of plugins
or any kind of software whose installation re-
quires administrative rights. Schemes offer Quasi-

>We could view this benefit as “low false reject rate”™. [n many cases the
scheme designer could make the false reject rate lower by making the false
accept rate higher. If this is taken to an extreme we count it as cheating,
and penalize it through a low score in some of the security-related benefits.

3ldeally a scheme would be usable by everyone. regardless of disabilities
like zero-vision (blindness) or low motor control. However, for any given
scheme, it is always possible 1o identify a disability or physical condition
that would exclude a category of people and then no scheme would be
granted this henefit. We therefore choose to award the benefit to schemes
that do at least as well as the incumbent that is de facto accepted today.
despite the fact that it too isn't perfect. An alternative (o this text password
baseline could be 1o base the metric on the ability o serve a defined
percentage of the population of potential users.

D6

Browser-Compatible if they rely on non-standard
but very common plugins, e.g., Flash.

Marure: The scheme has been implemented and
deployed on a large scale for actual authentication
purposes beyond research. Indicators to consider
for granting the full benefit may also include
whether the scheme has undergone user testing,
whether the standards community has published re-
lated documents, whether open-source projects im-
plementing the scheme exist, whether anyone other
than the implementers has adopted the scheme, the
amount of literature on the scheme and so forth.
Non-Proprietary: Anyone can implement or use
the scheme for any purpose without having to pay
royalties to anyone else. The relevant techniques
are generally known, published openly and not
protected by patents or trade secrets.

C. Security benefits

S1

52

Resilient-to-Physical-Observation: An attacker
cannot impersonate a user after observing them
authenticate one or more times. We grant Quasi-
Resilient-to-Physical-Observation if the scheme
could be broken only by repeating the observation
more than, say, 10-20 times. Attacks include
shoulder surfing, filming the keyboard, recording
keystroke sounds, or thermal imaging of keypad.
Resilient-to-Targeted-Impersonation: It is not pos-
sible for an acquaintance (or skilled investiga-
tor) to impersonate a specific user by exploiting
knowledge of personal details (birth date, names
of relatives etc.). Personal knowledge questions are
the canonical scheme that fails on this point.
Resilient-to-Throttled-Guessing: ~ An attacker
whose rate of guessing is constrained by the
verifier cannot successfully guess the secrets of a
significant fraction of users. The verifier-imposed
constraint might be enforced by an online server.
a tamper-resistant chip or any other mechanism
capable of throttling repeated requests. To give a
quantitative cxample, we might grant this benefit
if an attacker constrained to, say, 10 guesses per
account per day, could compromise at most 1% of
accounts in a year. Lack of this benefit is meant
to penalize schemes in which it is frequent for
user-chosen secrets to be selected from a small
and well-known subset (low min-entropy [14]).
Resilient-to-Unthrottled-Guessing: An attacker
whose rate of guessing is constrained only by
available computing resources cannot successfully
guess the secrets of a significant fraction of users.
We might for example grant this benefit if an
attacker capable of attempting up to 21 or even
264 oyesses per account could still only reach

S7

S8

fewer than 1% of accounts, Lack of this bencfit
i1s meant to penalize schemes where the space
of credentials is not large enough to withstand
brute force search (including dictionary attacks,
rainbow tables and related brute force methods
smarter than raw exhaustive search, if credentials
are user-chosen secrets).
Resilient-to-Internal-Observation: An attacker can-
not impersonate a user by intercepting the user’s
input from inside the user’s device (e.g.. by key-
logging malware) or eavesdropping on lhc clear-
text communication between prover and verifier
(we assume that the attacker can also defeat
TLS if it is used, perhaps through the CA).
As with Resilient-to-Physical-Observation above,
we grant Quasi-Resilient-to-Internal-Observation
if the scheme could be broken only by intercept-
ing input or eavesdropping cleartext more than,
say, 10-20 times. This penalizes schemes that are
not replay-resistant, whether because they send
a static response or because their dynamic re-
sponse countermeasure can be cracked with a few
observations. This benefit assumes that general-
purpose devices like software-updatable personal
computers and mobile phones may contain mal-
ware, but that hardware devices dedicated exclu-
sively to the scheme can be made malware-free.
We grant Quasi-Resilient-to-Internal-Observation
to two-factor schemes where both factors must
be malware-infected for the attack o work. If
infecting only one factor breaks the scheme. we
don’t grant the benefit.
Resilient-to-Leaks-from-Other-Verifiers: Nothing
that a verifier could possibly leak can help an
attacker impersonate the user to another verilier,
This penalizes schemes where insider fraud at one
provider, or a successful attack on one back-end.,
endangers the user's accounts at other sites.
Resilient-to-Phishing: An attacker who simulates
a valid verifier (including by DNS manipulation)
cannot collect credentials that can later be used
to impersonate the user to the actual verifier. This
penalizes schemes allowing phishers to get victims
o authenticate to lookalike sites and later use
the harvested credentials against the genuine sites.
It is not meant to penalize schemes vulnerable
to more sophisticated real-time man-in-the-middle
or relay attacks, in which the attackers have one
connection to the victim prover (pretending to be
the verifier) and simultancously another connection
to the victim verifier (pretending (o be the prover).
Resilient-to-Thefr: If the scheme uses a physical
object for authentication, the object cannot be used
for authentication by another person who gains

possession of it. We still grant Quasi-Resilient-to-
Theft if the protection is achieved with the modest
strength of a PIN, even if attempts are not rate-
controlled, because the attack doesn’t easily scale
to many victims.

S9 No-Trusted-Third-Party: The scheme does not rely
on a trusted third party (other than the prover
and the verifier) who could, upon being attacked
or otherwise becoming untrustworthy, compromise
the prover’s security or privacy.

S10 Requiring-Explicit-Consent: The authentication
process cannot be started without the explicit
consent of the user. This is both a security and
a privacy [eature (a rogue wireless RFID-based
credit card reader embedded in a sofa might charge
a card without user knowledge or consent).

SI1 Unlinkable: Colluding veriticrs cannot determine,
from the authenticator alone, whether the same
user is authenticating to both. This is a privacy
feature. To rate this benefit we disregard linkability
introduced by other mechanisms (same user ID,
same [P address, ctc).

We emphasize that it would be simple-minded (o rank
competing schemes simply by counting how many benefits
cach offers. Clearly some benefits deserve more weight than
others—but which ones? Scalable-for-Users, for example,
is a heavy-weight benefit if the goal is to adopt a single
scheme as a universal replacement; it is less important if one
is secking a password alternative for only a single account.
Providing appropriate weights thus depends strongly on the
specific goal for which the schemes are being compared
which is one of the reasons we don’t offer any.

»

Having said that, readers wanting to use weights might
use our framework as follows. First, examine and score each
individual scheme on each benefit; next, compare (groups
of) competing schemes to identify precisely which benefits
cach offers over the other; finally, with weights that take into
account the relative importance of the benefits, detcrmine an
overall ranking by rating scheme ¢ as S, L W
Weights W; are constants across all schemes in a pamcul:u'
comparison exercise, and b; ; € [0,1] is the real-valued
benefit rating for scheme i on bencfit j. For different
solution environments (scenarios k), the relative importance
of benefits will differ, with weights IW; replaced by H"m

In this paper we choose a more qualitative dp]nmch
we do not suggest any weights H k) and the b; ; ratings
we assign are not continuous but coarsely quantized. In
Section V-D we discuss why. In our experience, “the Journey
(the rating exercise) is the reward”: the i important technical
insights we gained about schemes by discussing whether our
ratings were fair and consistent were worth much more to
us than the actual scores produced. As a take-home message
for the value of this exercise, bringing a team of experts to

a shared understanding of the relevant technical issues is
much more valuable than ranking the schemes linearly or
reaching unanimous agreement over scoring.

III. EVALUATING LEGACY PASSWORDS

We expect that the reader is familiar with text passwords
and their shortcomings, so evaluating them is good exercise
for our framework. It's also useful to have a baseline
standard to refer to. While we consider “legacy passwords™
as a single scheme, surveys of password deployment on the
web have found substantial variation in implemention. A
study of 150 sites in 2010 [13], for example, found a unique
set of design choices at nearly every site. Other studies
have focused on implementations of cookie semantics [15],
password composition policies [16], or use of TLS to protect
passwords [17]. Every study has found both considerable
inconsistency and frequent serious implementation errors in
practical deployments on the web.

We remind readers of our Section II assumption of best
practice by implementers—thus in our ratings we do not
hold against passwords the many weak implementations
that their widespread deployment includes, unless due to
inherent weaknesses; while on the other hand, our ratings
of passwords and other schemes do assume that poor user
behavior is an inherent aspect of fielded systems.

The difficulty of guessing passwords was studied over
three decades ago [2] with rescarchers able to guess over
75% of users’ passwords; follow-up studies over the years
have consistently compromised a substantial fraction of
accounts with dictionary attacks. A survey [3] of corporate
password users found them flustered by password require-
ments and coping by writing passwords down on post-it
notes. On the web, users are typically overwhelmed by the
number of passwords they have registered. One study [18]
found most users have many accounts for which they've
forgotten their passwords and even accounts they can’t re-
member registering. Another [19] used a browser extension
to observe thousands of users’ password habits, finding on
average 25 accounts and 6 unique passwords per user.

Thus. passwords, as a purely memory-based scheme,
clearly aren’t Memorywise-Effortless or Scalable-for-Users
as they must be remembered and chosen for each site.
While they are Nothing-to-Carry, they aren’t Physically-
Effortless as they must be typed. Usubility is otherwise
good, as passwords are de facto Easy-to-Learn due to years
of user experience and Efficient-to-Use as most users type
only a few characters, though typos downgrade passwords
to Quasi-Infrequent-Errors. Passwords can be easily reset.
aiving them Easy-Recovery-from-Loss.

Their highest scores are in deployability, where they
receive full credit for every benefit—in part because many
of our criteria are defined based on passwords. For example.
passwords are Accessible because we defined the benefit
with respect to them and accommodations already exist for

most groups due to the importance of passwords. Pass-
words are Negligible-Cost-per-User due to their simplicity,
and are Server-Compatible and Browser-Compatible due to
their incumbent status. Passwords are Marure and Non-
Proprietary. with turnkey packages implementing password
authentication for many popular web development platforms,
albeit not well-standardized despite their ubiquity.
Passwords score relatively poorly on security. They
aren’t Resilieni-to-Physical-Observation because even if
typed quickly they can be automatically recovered from
high-quality video of the keyboard [20]. Perhaps gener-
ously, we rate passwords as Quasi-Resilient-ro-Targeted-
Impersonation in the absence of user studies establishing
acquaintances’ ability to guess passwords, though many
users undermine this by keeping passwords written down in
plain sight [3]. Similarly, users’ well-established poor track
record in selection means passwords are neither Resilient-to-
Thrortled-Guessing nor Resilient-to-Unthrottled-Guessing.
As static tokens, passwords aren’t Resilient-to-Internal-
Observation. The fact that users reuse them across
sites means they also aren’t Resilient-to-Leaks-from-Other-
Verifiers, as even a properly salted and strengthened hash
function [21] can’t protect many passwords from dedicated
cracking software. (Up to 50% of websites don’t appear to
hash passwords at all [13].) Passwords aren’t Resilient-to-
Phishing as phishing remains an open problem in practice.
Finally, their simplicity facilitates several security bene-
fits. They are Resilient-to-Theft as they require no hardware.
There is No-Trusted-Third-Party; having to type makes them
Requiring-Explicit-Consent; and, assuming that sites add salt
independently, even weak passwords are Unlinkable.

IV. SAMPLE EVALUATION OF REPLACEMENT SCHEMES

We now use our criteria to evaluate a representative
sample of proposed password replacement schemes. Table 1
visually summarizes these and others we explored. Due to
space constraints, we only explain in detail our ratings for at
most one representative scheme per category (e.g. federated
login schemes, graphical passwords, hardware tokens, etc.).
Evaluation details for all other schemes in the table are
provided in a companion technical report [1].

We introduce categories to highlight general trends, but
stress that any scheme must be rated individually. Contrary
to what the table layout suggests, schemes are not uniquely
partitioned by the categories: several schemes belong to mul-
tiple categories, and different groupings of the schemes are
possible with these same categories. For example, GrlDsure
is both cognitive and graphical: and. though several of the
schemes we examine use some f[orm of underlying “one-
time-passwords”, we did not group them into a common
category and indeed have no formal category of that name.

We emphasize that, in selecting a particular scheme for
inclusion in the table or for discussion as a category rep-
resentative, we do not necessarily endorse it as better than

alternatives—merely that it is reasonably representative, or
illuminates in some way what the category can achieve.

A, Encrypted password managers: Mozilla Firefox

The Firefox web browser [22] automatically offers to
remember passwords entered into web pages, optionally
encrypting them with a master password. (Our rating as-
sumes that this option is used; use without the password
has different propertics.) It then pre-fills the username and
password fields when the user revisits the same site. With its
Sync facility the passwords can be stored, encrypted, in the
cloud. After a once-per-machine authentication ritual, they
arc updated automatically on all designated machines.

This scheme is Quasi-Memorywise-Effortless (because
of the master password) and Scalable-for-Users: it can
remember arbitrarily many passwords. Without Syne, the
solution would have required carrying a specific computer;
with Sync, the passwords can be accessed [rom any of
the user’s computers. However it’s not more than Quasi-
Nothing-to-Carry because a travelling user will have to
carry at least a smartphone: it would be quite insecure to
sync one’s passwords with a browser found in a cybercafé.
It is Quasi-Physically-Effortless, as no typing is required
during authentication except for the master password once
per session, and Easy-to-Learn. 1 is Efficient-to-Use (much
more so than what it replaces) and has Infrequent-Errors
(hardly any, except when entering the master password). It
does not have Easy-Recovery-from-Loss: losing the master
password is catastrophic.

The scheme is backwards-compatible by design and thus
scores quite highly on deployability: it fully provides all
the deployability benefits except for Browser-Compatible,
unavoidably because it requires a specific browser.

It is Quasi-Resilient-to-Physical-Observation and Quasi-
Resilient-to-Targeted-Impersonation because an altacker
could still target the infrequently-typed master password
(but would also need access to the browser). It is not
Resilient-to-Thronled-Guessing nor Resilient-1o-Unthrottled-
Guessing: even if the master password is safe from such
attacks, the original web passwords remain as vulnerable as
before.” Tt is not Resilient-to-Internal-Observation because,
even il TLS is used, it’s replayable static passwords that [low
in the tunnel and malware could also capture the master
password. It's not Resilient-to-Leaks-from-Other-Verifiers,
because what happens at the back-end is the same as with
passwords. IUs Resilient-to-Phishing because we assume
that sites follow best practice, which includes using TLS
for the login page. It is Resilient-to-Thefi, at least under

4Security-conscious users might adopt truly random unguessable pass-
words, as they need no longer remember them, but most users won't. If
the scheme pre-generated rundom pusswords it would score more highly
here, disregurding pre-existing passwords. Similarly, for Resilient-to-Leaks-
Srom-Other-Verifiers below, this scheme mukes it easier for careful users to
use a different pussword for every site; if it forced this behaviour (vs. just
allowing it), it would get a higher score on this particular benefit.

our assumption that a master password is being used. It
offers No-Trusted-Third-Party because the Sync data is pre-
encrypted locally before being stored on Mozilla's servers.
It offers Requiring-Ixplicit-Consent because it pre-fills the
username and password fields but the user still has to press
enter to submit. Finally, it is as Unlinkable as passwords.

B. Proxy-based: URRSA

Proxy-based schemes place a man-in-the-middle between
the user’s machine and the server. One reason for doing so.
employed by Impostor [23] and URRSA [3] is to enable
secure logins despite malware-infected clients.

URRSA has users authenticate to the end server using
one-time codes carried on a sheet of paper. At registration
the user enters the password, P;, for each account, j, to be
visited: this is encrypted at the proxy with thirty different
keys, I;, giving C; = Iy (P;). The C; act as one-time
codes which the user prints and carries. The codes are
generally 8-10 characters long: thirty codes for each of six
accounts fit on a two-sided sheet. The keys, but not the
passwords, are stored at the proxy. At login the user visits
the proxy, indicates which site is desired, and is asked for the
next unused code. When he enters the code it is decrypted
and passed to the end login server: EA’-}{C,-) = P;. The
proxy never authenticates the user, it merely decrypts with
an agreed-upon key, the code delivered by the user.

Since it requires carrying one-time codes URRSA
is Memorywise-Effortless, but not Scalable-for-Users or
Nothing-to-Carry. It is not Physically-Efforiless but is Easy-
to-Learn. In common with all of the schemes that in-
volve transcribing codes from a device or sheet it is not
Efficieni-to-Use. However, we do consider it to have Quasi-
Infrequent-Errors, since the codes are generally 8-10 charac-
ters. It does not have Easy-Recovery-from-Loss: a revocation
procedure is required if the code sheet is lost or stolen. Since
no passwords are stored at the proxy the entire registration
must be repeated if this happens.

In common with other paper token schemes it is not
Accessible. URRSA has Negligible-Cost-per-User. Rather
than have a user change browser settings, URRSA relies on a
link-translating proxy that intermediates traffic between the
user and the server; this translation is not flawless and some
functionality may fail on complex sites, thus we consider
it only Quasi-Server-Compatible. 1t is, however, Browser-
Compatible. 1t is neither Manue nor Non-Proprietary.

In common with other one-time code schemes it is
not Resilient-to-Physical-Observation, since a camera might
capture all of the codes on the sheet. Since it merely inserts
a proxy it inherits many security weaknesses from the legacy
password system it serves: it is Quasi-Resilient-to-Targeted-
Impersonation and is not Resilient-to-Throttled-Guessing or
Resilient-to-Unthrontled-Guessing. Tt is Quasi-Resilient-to-
Internal-Observation as observing the client during authenti-
cation does not allow passwords to be captured, but breaking

the proxy-to-server TLS connection does. It inherits from
passwords the fact that it is not Resilient-to-Leaks-from-
Other-Verifiers, but the fact that it is Resilient-to-Phishing
from other one-time schemes. It is not Resilient-ro-Theft nor
No-Trusted-Third-Party: the proxy must be trusted. It offers
Requiring-Explicit-Consent and is Unlinkable.

C. Federated Single Sign-On: OpenlD

Federated single sign-on enables web sites to authenticate
a user by redirecting them to a trusted identity server which
attests the users’ identity. This has been considered a “holy
grail” as it could eliminate the problem of remembering dif-
ferent passwords for different sites. The concept of federated
authentication dates at least to the 1978 Needham-Schroeder
key agreement protocol [24] which formed the basis for
Kerberos [25]. Kerberos has inspired dozens of proposals
for federated authentication on the Internet; Pashalidis and
Mitchell provided a complete survey [26]. A well-known
representative is OpenID, a protocol which allows any web
server to act as an “identity provider™ [27] to any server
desiring authentication (a “relying party™). OpenlD has an
enthusiastic group of followers both in and out of academia,
but it has seen only patchy adoption with many sites willing
to act as identity providers but few willing to accept it as
relying parties [28].

In evaluating OpenlD. we note that in practice identity
providers will continue to use lext passwords to authenticate
users in the forseeable future, although the protocol itsell
allows passwords to be replaced by a stronger mechanism.
Thus, we rate the scheme Quasi-Memorywise-Effortless in
that most users will still have to remember one master
password, but Scalable-for-Users as this password can work
for multiple sites. OpenlD is Nothing-ro-Carry like pass-
words and Quasi-Physically-Effortless because passwords
only need to be typed at the identity provider. Similarly,
we rate it Efficient-to-Use and Infrequent-Errors in that
it is either a password authentication or can occur auto-
matically in a browser with cached login cookies for the
identity provider. However, OpenlD has found that selecting
an opaque “identity URL” can be a significant usability
challenge without a good interface at the relying party,
making the scheme only Quasi-Easy-to-Learn. OpenlD is
Easy-Recovery-from-Loss, equivalent 1o a password resel.

OpenlID is favorable from a deployment standpoint, pro-
viding all benefits except [or Server-Compatible, includ-
ing Mature as it has detailed standards and many open-
source implementations. We do note however that it requires
identity providers yield some control over trust decisions
and possibly weaken their own brand [28], a deployment
drawback not currently captured in our criteria.

30penlD is often confused with OAuth, a technically unrelated protocol
for delegating access to one's accounts to third parties. The recent OpenlD
Conneet proposal merges the two. We consider the OpenlD 2.0 standard
here, though all current versions score identically in our framework.

Security-wise. OpenlD reduces most attacks to only
the password authentication between a user and his or
her identity provider. This makes it somewhat difficult to
rate: we consider it Quasi-Resilient-to-Throtled-Guessing,
Quasi-Resilient-to-Unthrottled-Guessing, Quasi-Resilient-
to-Targeted-Impersonation, Quasi-Resilient-to-Physical-
Observation as these attacks are possible but only against
the single identity provider (typically cached in a cookie)
and not for cach login to all verifiers. However, it is not
Resilient-to-Internal-Observation as malware can either
steal persistent login cookies or record the master password.
OpenlD is also believed to be badly non-Resilicni-to-
Phishing since it involves re-direction to an identity
provider from a relying party [29]. OpenlD is Resilient-to-
Leaks-from-Other-Verifiers, as relying parties don’t store
users passwords. Federated schemes have been criticized on
privacy grounds and, while OpenlD does enable technically
savvy users to operate their own identity provider, we rate
OpenlD as non-Unlinkable and non-No-Trusted-Third-Party
as the vast majority of users aren’t capable of doing so.

D. Graphical passwords:
(PCCP)

Graphical passwords schemes attempt to leverage natural
human ability to remember images, which is believed to
exceed memory for text. We consider as a representative
PCCP [7] (Persuasive Cued Click-Points), a cued-recall
scheme. Users are sequentially presented with five images
on each of which they select one point, determining the
nex!t image displayed. To log in, all selected points must be
correctly re-entered within a defined tolerance. To flatten the
password distribution, during password creation a randomly-
positioned portal covers a portion of each image: users
must select their point from therein (the rest of each image
is shaded slightly). Users may hit a “shuffle” button to
randomly reposition the portal to a different region—but
doing so consumes time, thus persuading otherwise. The
portal is absent on regular login. Published security analysis
and testing report reasonable usability and improved security
over earlier schemes, specilically in terms ol resistance (o
both hotspots and pattern-based attacks [11].

While not Memorvwise-Effortless, nor Scalable-for-Users
due to extra cognitive load for each account password, PCCP
offers advantages over text passwords (and other uncued
schemes) due to per-account image cues reducing password
interference. It is Easy-ro-Learn (usage and mental models
match web passwords, but interface details differ), but only
Quasi-Efficient-to-Use (login times on the order of 5s to 20s
exceed text passwords) and at best Quasi-Infrequent-Errors.

PCCP is not Accessible (consider blind users) and
has Negligible-Cost-per-User. Tt is not Server-Compatible;
though it might be made so by having a proxy act as inter-
mediary (much as URRSA does). It is Browser-Compatible.
It is not Mature, but apparently Non-Proprietary.

Persuasive Cued Clickpoints

PCCP is not Resilient-io-Physical-Observation (due to
video-camera shoulder surfing), but is Resilient-to-Targeted-
Impersonation (personal knowledge of a target user does
not help attacks). We rate it Quasi-Resilient-to-Throttled-
Guessing due to portal persuasion increasing password ran-
domness, but note individual users may repeatedly bypass
portal recommendations. Although the persuasion is also
intended to mitigate offline attacks, we rate it not Resilient-
to-Unthrontled-Guessing as studies to date have been limited
to full password spaces of 2% (which are within reach of
offline dictionary attack, especially for users choosing more
predictable passwords, assuming verifier-stored hashes are
available). It is not Resilient-to-Internal-Observation (static
passwords are replayable). It is Resilient-to-Leaks-from-
Other-Verifiers (distinct sites can insist on distinet image
sets). PCCP is Resilient-to-Phishing per our strict definition
of that benefit; to obtain the proper per-user images, a
phishing site must interact (e.g., by MITM) with a legitimate
server, PCCP matches text passwords on being Unlinkable.

E. Cognitive authentication: GriDsure

Challenge-Response schemes attempt to address the re-
play attack on passwords by having the user deliver proof
that he knows the secret without divulging the secret itself.
I[f memorization and computation were no barrier then the
server might challenge the user to return a cryptographic
hash of the user’s secret combined with a server-selected
nonce. However, it is unclear if a scheme within the means
of human memory and calculating ability is achievable. We
examine the commercial offering GrIDsure (a variant of
which is described in a paper [30] by other authors) as
representative of the class.

Atregistration the user is presented with a grid (e.g., 5x5)
and selects a pattern, or sequence of cells. There are 25
possible length-4 patterns, for example. At login the user
is again presented with the grid. but now populated with
digits. To authenticate he transcribes the digits in the cells
corresponding to his pattern. Since the association of digits
to cells is randomized the string typed by the user is different
from login to login. Thus he reveals knowledge of his secret
without typing the secret itself.

This scheme is similar to passwords in terms of usability
and we (perhaps generously) rate it identically in terms of
many usability benefits. An exception is that it’s only Quasi-
Efficient-to-Use: unlike passwords, which can often be typed
from muscle memory, transcribing digits from the grid cells
requires effort and attention and is likely to be slower.

We consider the scheme as not Accessible as the two-
dimensional layout seems unusable for blind users. The
scheme has Negligible-Cost-per-User, in terms of technol-
ogy. Itis not Server-Compatible but is Browser-Compatible.
It is not Mature. We rate it not Non-Proprietary, as the
intellectual property status is unknown.

The security properties are, again, similar to passwords in
many respects. It is not Resilient-to-Physical-Observation, as
a camera that captures both the grid and user input quickly
learns the secret. It is an improvement on passwords in
that it is Resilieni-to-Targeted-Impersonation: we assume
that an attacker is more likely to guess secret strings than
secret patterns based on knowledge of the user. However,
its small space of choices prevents it from being Resilient-
to-Throttled-Guessing or Resilient-to-Unthrotiled-Guessing.
In spite of the one-time nature of what the user types the
scheme is not Resilient-to-Internal-Observation: 100 many
possible patterns are eliminated at each login for the secret
to withstand more than three or four observations. It shares
the remaining security benefits with passwords.

I Paper tokens: OTPW

Using paper to store long secrets is the cheapest form of
a physical login token. The concept is related to military
codebooks used throughout history, but interest in using
possession of paper tokens to authenticate humans was
spurred in the early 1980’s by Lamport’s hash-chaining
scheme [31], later developed into S/KEY [32]. OTPW is a
later refinement, developed by Kuhn in 1998 [33], in which
the server stores a larger set of independent hash values,
consisting of about 4 kB per user. The user carries the hash
pre-images, printed as 8-character values like 12dB bagyH.
Logging in requires typing a “prefix password™ as well as
one randomly-queried hash-preimage.

OTPW rates poorly for usability: the prefix password
means the scheme isn’t Memorywise-Effortless or Scalable-
Jor-Users; it also isn’t Nothing-to-Carry because of the
paper token. The typing of random passwords means the
scheme also isn't Physically-Effortless, Efficient-to-Use or
Infrequent-Errors. We do expect that the scheme is Easy-
to-Learn, as typing in a numbered password upon request
is only marginally more difficult than using text passwords.
Itis also Easy-Recovery-from-Loss as we expect most users
can casily print a new sheet if needed.

Paper-based tokens are cheap and easy to deploy. We
rate OTPW as non-Accessible because plain printing may be
msufficient for visually-impaired users, though alternatives
(e.g. braille) may be available. We consider the price of
printing to be Negligible-Cost-per-User. While not Server-
Compatible, the scheme is Browser-Compatible. Finally,
OTPW has a mature open-source implementation, making
it Mature and Non-Proprietary.

Though OTPW is designed to resist human observa-
tion compared to S/KEY, it isn't Resilient-to-Physical-
Observation because the printed sheet of one-time codes
can be completely captured by a camera. Otherwise,
OTPW achieves all other security benelits. Because lo-
gin codes are used only once and randomly generated,
the scheme is Resilient-to-Throtiled-Guessing, Resilient-to-
Unthrottled-Guessing and Resilient-to-Internal-Observation.

It is Resilient-to-Phishing as it is impractical for a user
to enter all of their secrets into a phishing website even
if asked, and Resilient-to-Theft thanks to the prefix pass-
word. As a one-to-one scheme with different secrets for
each server. it is Resilient-ro-Leaks-from-Other-Verifiers, No-
Trusted-Third-Parry and Unlinkable. Finally, the typing re-
quired makes it Requiring-Explicit-Consent.

G. Hardware tokens: RSA SecurlD

Hardware tokens store secrets in a dedicated tamper-
resistant module carried by the user: the RSA SecurlD [34]
family of tokens is the long-established market leader. Here
we refer to the simplest dedicated-hardware version, which
has only a display and no buttons or I/O ports. Each instance
of the device holds a secret “seed” known to the back-end.
A cryptographically strong transform generates a new 6-
digit code from this secret every 60 seconds. The current
code is shown on the device's display. On enrollment, the
user connects to the administrative back-end through a web
interface, where he selects a PIN and where the pairing
between username and token is confirmed. From then on,
for authenticating, instead of username and password the
user shall type username and “passcode™ (concatenation of a
static 4-digit PIN and the dynamic 6-digit code). RSA offers
an SSO facility to grant access to several corporate resources
with the same token; but we rate this scheme assuming there
won’t be a single SSO spanning all verifiers.

In March 2011 attackers compromised RSA’s back-end
database of seeds [35], which allowed them to predict the
codes issued by any token. This reduced the security of each
account to that of its PIN until the corresponding token was
recalled and reissued.

The scheme is not Memorvwise-Effortless nor Scalable-
for-Users (it needs a new token and PIN per verifier). IU's
not Physicallv-Effortless, because the user must transcribe
the passcode. It's simple enough 1o be Easy-to-Learn, but
Quasi-Efficient-10-Use because of the transcription. We rate
it as having Quasi-Infrequent-Errors, like passwords, though
it might be slightly worse. It is not Easy-Recovery-from-
Loss: the token must be revoked and a new one reissued.

The scheme is not Accessible: blind users cannot read
the code off the token. No token-based scheme can of-
fer Negligible-Cost-per-User. The scheme is not Server-
Compatible (a new back-end is required) but it is Browser-
Comparible. It is definitely Marure, but not Non-Proprietary.

As for security, because the code changes every minute,
SecurlD is Resilient-to-Physical-Observation, Resilient-
to-Targeted-Impersonation, Resilient-to-Throttled-Guessing
and Resilient-to-Unthrottled-Guessing (unless we also as-
sume that the attacker broke into the server and stole the
seeds). It is Resilient-to-Internal-Observation: we assume
that dedicated devices can resist malware infiltration. It's
Resilient-to-Leaks-from-Other-Verifiers, as different verifiers
would have their own seeds; Resilieni-to-Phishing, because

captured passcodes expire after one minute; and Resilieni-1o-
Theft, because the PIN is checked at the verifier, so guesses
could be rate-limited. IU’s not Ne-Trusted-Third-Party, as
demonstrated by the March 2011 autack, since RSA keeps
the sced of each token. It's Requiring-Explicit-Consent, as
the user must transcribe the passcode, and Unlinkable if each
verifier requires its own token.

H. Mobile-Phone-based: Phoolproof

Phoolproof Phishing Prevention [36] is another token-
based design, but one in which the token is a mobile
phone with special code and crypto keys. It uses public key
cryptography and an SSL-like authentication protocol and
was designed to be as compatible as possible with existing
systems.

Phoolproofl was conceived as a system to secure banking
transactions against phishing, not as a password replacement.
The user selects a desired site from the whitelist on the
phone; the phone talks wirelessly to the browser, causing
the site to be visited; an end-to-end TLS-based mutual
authentication ensues between the phone and the bank’s
site; the user must still type the banking website password
into the browser. Thus the scheme is not Memorywise-
Effortless, nor Scalable-for-Users. It has Quasi-Nothing-to-
Carry (the mobile phone). It's not Physically-Effortless as
one must type a password. We rate it Easy-ro-Learn, perhaps
gencrously, and Quasi-Efficient-to-Use as it requires both
typing a password and fiddling with a phone. It's no better
than passwords on Quasi-Infrequent-Ervors, since it still uses
one. The only recovery mechanism is revocation and reissue,
so it doesn’t have Easy-Recovery-from-Loss.

On deployability: it’s Quasi-Accessible insofar as most
disabled users, including blind people, can use a mobile
phone too (note the user doesn’t need to transcribe codes
from the phone). We assume most users will already have a
phone, though perhaps not one of the right type (with Java,
Bluetooth etc). hence it has Quasi-Negligible-Cost-per-User.
The scheme requires changes, albeit minor, to both ends,
so iU's Quasi-Server-Compatible but, by our definitions, not
Browser-Compatible because it uses a browser plugin. It's
not really Marture (only a research prototype), but it is Non-
Proprieiary.

On security: iU's Resilient-to-Physical-Observation,
Resilient-to-Targeted-Impersonation, Resilient-to-Throtiled-
Guessing, Resilient-to-Unthrottled-Guessing because, even
after observing or guessing the correct password, the
attacker can’t authenticate unless he also steals the user's
phone, which holds the cryptographic keys. IUs Quasi-
Resilient-to-Internal-Observation because malware must
compromise both the phone (to capture the private keys)
and the computer (to keylog the password). It's Resilient-to-
Leaks-from-Other-Verifiers because the phone has a key pair
per verifier, so credentials are not recycled. It's definitely
Resilient-to-Phishing. the main design requirement of the

scheme. It's Resilient-to-Theft because possession of the
phone is insufficient: the user still needs to type user 1D and
password in the browser (for additional protection against
theft, the authors envisage an additional PIN or biometric
to authenticate the user to the device; we are not rating
this). The scheme is No-Trusted-Third-Party if we disregard
the CA that certifies the TLS certificate of the bank. It's
Requiring-Explicit-Consent because the user must type user
ID and password. Finally it’s Unlinkable because the phone
has a different key pair for each verifier.

. Biometrics: Fingerprint recognition

Biometrics [37] are the “what you are™ means of authen-
tication, leveraging the uniqueness of physical or behavioral
characteristics across individuals. We discuss in detail fin-
gerprint biometrics [38]; our summary table also rates iris
recognition [39] and voiceprint biometrics [40). In rating
for our remote authentication application, and biomerric
verification (“Is this individual asserted (o be Jane Doe really
Jane Doe?”), we assume unsupervised biometric hardware
as might be built into client devices, vs. verifier-provided
hardware, c.g., at an airport supervised by officials.

Fingerprint biometrics offer usability —advantages
Memorywise-Effortless, Scalable-for-Users, Easy-to-Learn,
and Nothing-to-Carry (no secrets need be carried; we
charge elsewhere for client-side fingerprint readers not
being currently universal), Current products are at best
Quasi-Physically-Effortless and Quasi-Efficient-to-Use due
to user experience of not /nfrequent-Errors (the latter two
worse than web passwords) and fail to offer Easy-Recovery-
Srom-Loss (here equated with requiring an alternate scheme
in case of compromise, or users becoming unable to provide
the biometric for physical reasons).

Deployability is poor—we rate it at best Quasi-Accessible
due to common failure-to-register biometric issues: not
Negligible-Cost-per-User (fingerprint reader has a cost):
neither Server-Compatible nor Browser-Compatible, needing
both client and server changes; at best Quasi-Manre for un-
supervised remote authentication; and not Non-Proprietary,
typically involving proprietary hardware and/or software.

We rate the fingerprint biometric Resilient-ro-Physical-
Observation but serious concerns include easily fooling
COTS devices, e.g., by lifting fingerprints from glass
surfaces with gelatin-like substances [41], which we
charge by rating not Resilient-to-Targeted-Impersonation.
It is Resilient-to-Throttled-Guessing, but not Resilieni-1o-
Unthrotiled-Guessing for typical precisions used: estimated
“effective equivalent key spaces” [9, page 2032] for fin-
gerprint, iris and voice are 13.3 bits, 19.9 bits and 11.7
bits respectively. It is not Resilient-to-Internal-Observarion
(captured samples of static physical biometrics are subject
to replay in unsupervised environments), not Resilient-o-
Leaks-from-Other-Verifiers, not Resilient-to-Phishing (a seri-
ous concern as biometrics are by design supposed to be hard

to change), and not Resilient-to-Theft (see above re: targeted
impersonation). As a plus, it needs No-Trusted-Third-Party
and is Requiring-Explicit-Consent. Physical biometrics are
also a canonical example of schemes that are not Unlinkable.

V. DISCUSSION

A clear result of our exercise is that no scheme we
examined is perfect—or even comes close to perfect scores.
The incumbent (traditional passwords) achieves all benefits
on deployability, and one scheme (the CAP reader, discussed
in the tech report [1]) achieves all in security. but no
scheme achieves all usability benefits. Not a single scheme
is dominant over passwords, i.c., does better on one or more
benefits and does at least as well on all others. Almost all
schemes do better than passwords in some criteria, but all
are worse in others: as Table 1 shows, no row is free of red
(horizontal) stripes.

Thus, the current state of the world is a Pareto equilibrium.
Replacing passwords with any of the schemes examined
is not a question ol giving up an inferior technology for
something unarguably better, but of giving up one set of
compromises and trade-offs in exchange for another. For
example, arguing that a hardware token like RSA SecurlD
is better than passwords implicitly assumes that the security
criteria. where it does better outweigh the usability and
deployability criteria where it does worse. For accounts
that require high assurance, security benefits may indeed
outweigh the fact that the scheme doesn’t offer Nothing-
to-Carry nor Negligible-Cost-per-User, but this argument is
less compelling for lower value accounts.

The usability benefits where passwords excel—namely,
Nothing-to-Carry, Efficient-to-Use, ~ Easy-Recovery-from-
Loss—are where essentially all of the stronger security
schemes need improvement. None of the paper token or
hardware token schemes achieves even two of these three.
In expressing frustration with the continuing dominance of
passwords, many security experts presumably view these
two classes of schemes to be sufficiently usable to justify a
switch from passwords. The web sites that crave user traffic
apparently disagree.

Some sets of benefits appear almost incompatible, e.g.,
the pair (Memorvwise-Effortless, Nothing-to-Carry) is
achieved only by biometric schemes. No schemes studied
achieve (Memorywise-Effortless, Resilient-to-Theft) fully,
nor (Server-Compatible, Resilient-to-Internal-Observation)
or (Server-Compatible, Resilient-to-Leaks-from-Other-
Verifiers), though several almost do. Note that since
compatibility with existing servers almost assures a static
replayable secret, to avoid its security implications, many
proposals abandon being Server-Compatible.

A. Rating categories of schemes

Password managers offer advantages over legacy pass-
words in selected usability and security aspects without

Usability Deployability Security
2
S$§ E58
I 2 wE 2
S EESS
al & 233503838 5
- 5 3| S 932335, &S
£ Te. & 5| s+3 [BEESERE_sS%
S B3E5. 8% £T§ gEEiTssavis
= 21958353 o8F FETRRiiihGd
c 2IsSELTIRT gL i8S SSSusHES
9 SIESEZoo PSSz LSSSESEEER 88
4] 53 ST LSS ESZYTLS3geesoganad T
Category Scheme A ¢SSR NSRSk a2
(Incumbent) Web passwords I ([13] ® eeOCeoeo0oo0oeee O o000
Password managers Piekt V-A2)R RS D SOR=|006=880 ®9 6 &9
=7""|LastPass [42l0@00@®@0@@®@0@0@® @ |[OOO0O0 OGO 00
Proxy URRSA IV-B| [5] |® ® O [el o) o ®)
Impostor 23]|0 @@ @ eo®@0 @00 O eoeo ®
Opcn[D IV-C|[27]|]c @@ 0 0C @ @@ @@ ®9®@®@ 0000 L] L] L]
Microsoft Passport [43]lc@@ 000 @00 @e® (0000 @ e @
Federated Facebook Connect 44jj0o@@0COOGOOOG@OS® @@ OO0OO0O0C @ @
BrowserlD [4ﬁ]0..0...... O0@e 0000 o [] [
OTP over email [46]|0 ® ® Qo (N M N o ® 0O0O0O0 00 ®
Graphical PCCP IV-D| [7] ® ®©e00Oe@e e e o o0 eoo000e0
PassGo (47) e @eco0el © eocel e XXX
GrlDsure (original) |1V-E|[30] @ ®e©€00Oe® o (] @ (XX
. Weinshall [48] ® ® @ eoeO0e 00000
Cognilive Hopper Blum [49] ee o o0 eecocoo0
Word Association [50] ® eeo0Oje® o o e oo
OTPW IV-F|[33] ® o o eooe ooecocccecoo
Paper tokens S/KEY [32] @ ® OO0 © 006 0000060 o000
PIN+TAN [51] @ 00/ O eoee o©0o00esO0OO
Visual crypto PassWindow [52] @ O ee® OCeesOe0e o000
RSA SecurlD 1V-G|[34] ®@0O0 o0 o000 00G0®O® OO
YubiKey [33] ® 00 &) LN 00000 OGS (N]
Hardware tokens |lronKey [54)j0o® ©0O0OO0OO | ®@®0® |00 O eeeoeo0o
CAP reader [55] @00 e 0 000G OOOGOOGOGS
Pico [R]le® @ o0 elevsoeooeeco0o0e0
Phoolproof IV-H|[36] O @00 (00O ee0o0o0COOOOEOO
Cronto [56] o @00 o) @0 000000606000
Phone-based MP-Auth 6] o @90 ledfle o) ® o o000 00O
OTP over SMS ® e 0 ® 0 0|0 90000 O0MO0OOCOGO®O e
Google 2-Step [57] O @0O0O0|0 @e® OO0Oe®e0® o000 OO
Fingerprint Vi|[38)j@®@e@o0e0 o O | e X}
Biometric Iris [30]|® ® ® O @O (o] (o] ® ® @0
Voice [40]/®@ ® ® 0 ® O COZDOE[eE0 oo
Personal knowledge [58]j© e eeoOeee o000 o000
Recovery Preference-based [59]]0 e eoeoee® @ o] LN NN
Social re-auth. [60] e © © e® @0 (O @e®@OOCG®@S® 0O
@®— offers the benefit; ©= almost offers the benelit; no circle = does not offer the benefit.
= better than passwords; = worse than passwords: no background pattern = no change.
We group related schemes into categories. For space reasons, in the present paper we describe at most one representative

scheme per category; the companion technical report [1] discusses all schemes listed.

COMPARATIVE EVALUATION OF THE VARIOUS SCHEMES WE EXAMINED

Table 1

losing much. They could become a staple of users’ coping
strategies if passwords remain widespread, enabling as a ma-
jor advantage the management of an ever-increasing number
of accounts (Scalable-for-Users). However, the underlying
technology remains replayable, static (mainly user-chosen)
passwords.

Federated schemes are particularly hard to grade. Propo-
nents note that security is good if authentication to the iden-
tity provider (1P) is done with a strong scheme (e.g., one-
time passwords or tokens). However in this case usability is
inherited from that scheme and is generally poor, per Table
[. This also reduces federated schemes to be a placeholder
for a solution rather than a solution itself. If authentication
to the IP relies on passwords, then the resulting security is
only a little better than that of passwords themselves (with
fewer password entry instances exposed to attack).

Graphical passwords can approach text passwords on us-
ability criteria, offering some security gain, but static secrets
are replayable and not Resilient-to-Internal-Observation.
Despite adoption for device access-control on some touch-
screen mobile devices, for remote web authentication the
advantages appear insufficient to generally displace a firmly-
entrenched incumbent.

Cognitive schemes show slender improvement on the
security of passwords, in return for worse usability. While
several schemes attempt to achieve Resilient-to-Internal-
Observation, to date none succeed: the secret may withstand
one observation or two [61]. but seldom more than a
handful [62]. The apparently inherent limitations [63], [64]
of cognitive schemes to date lead one to question if the
category can rise above one of purely academic interest.

The hardware token, paper token and phone-based cate-
gories of schemes fare very well in security, e.g., most in

£

Table I are Resilient-to-Internal-Observation, easily beating
other classes. However, that S/KEY and SecurID have been
around for decades and have failed to slow down the
inexorable rise of passwords suggests that their drawbacks
in usability (e.g., not Scalable-for-Users, nor Nothing-to-
Carry, nor Efficient-to-Use) and deployability (e.g., hard-
ware tokens are not Negligible-Cost-per-User) should not be
over-looked. Less usable schemes can always be mandated,
but this is more common in situations where a site has a
de facto monopoly (e.g., employee accounts or government
sites) than where user acceptance matters, Experience shows
that the large web-sites that compete for both traffic and
users are reluctant to risk bad usability [16]. Schemes that
are less usable than passwords face an uphill battle in such
environments,

Biometric schemes have mixed scores on our usability
metrics, and do poorly in deployability and security. As
a major issue, physical biometrics being inherently non-
Resilient-to-Internal-Observation is seriously compounded
by biometrics missing Easy-Recovery-from-Loss as well,
with re-issuance impossible [9]. Thus, e.g., if malware cap-

tures the digital representation of a user’s iris, possible replay
makes the biometric no longer suitable in unsupervised
environments. Hence despite security features appropriate
to control access to physical locations under the supervision
of suitable personnel, biometrics aren’t well suited for un-
supervised web authentication where client devices lack a
trusted input path and means to verify that samples are live.

B. Extending the benefits list

Our list of benefits is not complete, and indeed, any such
list could always be expanded. We did not include resistance
to active-man-in-the-middle, which a few examined schemes
may provide, or to relay attacks, which probably none of
them do. However, tracking all security goals, whether met
or not, is important and considering benefits that indicate
resistance to these (and additional) attacks is worthwhile.

Continuous authentication (with ongoing assurances
rather than just at session start, thereby addressing session
hijacking) is a benelit worth considering, although a goal of
few current schemes. Positive user affectation (how pleasant
users perceive use of a scheme to be) is a standard usability
metric we omitted; unfortunately, the literature currently
lacks this information for most schemes. The burden on
the end-user in migrating from passwords (distinct from
the deployability costs of modifying browser and server
infrastructure) is another important cost—both the one-time
initial setup and per-account transition costs. While ecase
ol resetting and revoking credentials falls within Easy-
Recovery-from-Loss, the benefit does not include user and
system aspects related to ease of renewing credentials that
expire within normal operations (excluding loss). Other
missing cost-related benefits are low cost for initial setup
(including infrastructure changes by all stakeholders); low
cost for ongoing administration, support and maintenance;
and low overall complexity (how many inter-related “moving
parts” a system has). We don’t capture continued availabil-
ity under denial-of-service attack, ease of use on mobile
devices, nor the broad category of economic and business
effects—e.g., the lack of incentive to be a relying party is
cited as a main reason for OpenlD’s lack of adoption [28].

We have not attempted to capture these and other benefits
in the present paper, though all fit into the framework and
could be chosen by others using this methodology. Alas,
many of these raise a difficulty: assigning ratings might be
even more subjective than [or existing benelits.

C. Additional nuanced ratings

We considered, but did not use, a “fatal” rating to indicate
that a scheme’s performance on a benefit is so poor that the
scheme should be eliminated from serious consideration. For
example, the 2-3 minutes required for authentication using
the Weinshall or Hopper-Blum schemes may make them
“fatally-non-Efficient-to-Use”, likely preventing widespread
adoption even if virtually all other benefits were provided.

We decided against this because for many properties, it isn’t
clear what level of failure to declare as fatal.

We also considered a “power” rating to indicate that
a scheme optionally enables a benefit for power users—
e.g., OpenlD could be rated “amenable-to-No-Trusted-Third-
Party” as users can run their own identity servers, in contrast
to Facebook Connect or Microsoft Passport. The popularity
of webmail-based password reset indicates most users ac-
cede to a heavily-trusted third party for their online identities
already, so “amenable-to™ may suffice for adoption. OpenlD
is arguably amenable to every security benefit for power
users, but doesn’t provide them for common users who
use text passwords to authenticate to their identity provider.
However, as one could argue for an amenable-to rating for
many properties of many schemes, we maintained focus on
properties provided by default to all users.

D. Weights and finer-grained scoring

We reiterate a caution sounded at the end of Section II: the
benefits chosen as metrics are not all of equal weight. The
importance of any particular benefit depends on target use
and threat environment. While one could assign weights to
each column to compute numerical scores for each scheme,
providing exact weights is problematic and no fixed values
would suit all scenarios; nonetheless, our framework allows
such an endeavour. For finer-grained evaluation, table cell
scores like partially could also be allowed beyond our very
coarse {no, almost, yes} quantization, to further delineate
similar schemes. This has merit but brings the danger of
being “precisely wrong”. and too fine a granularity adds to
the difficulty of scoring schemes consistently. There will be
the temptation to be unrealistically precise (“If scheme X
gets 0.9 for this benefit, then scheme Y should get at most
0.6™), but this demands the ability to maintain a constant
level of precision repeatably across all cells.

We have resisted the temptation to produce an aggregate
score for each scheme (e.g., by counting the number of
benefits achieved), or to rank the schemes. As discussed
above, fatal failure of a single benefit or combined failure
of a pair of benefits (e.g., not being Resilieni-to-Internal-
Observation and fatally failing Easy-Recovery-from-Loss for
biometrics) may eliminate a scheme f{rom consideration.
Thus, seeking schemes purely based on high numbers of
benefits could well prove but a distraction.

Beyond divergences of judgement, there will no doubt be
errors in judgement in scoring. The table scoring methodol-
ogy must include redundancy and cross-checks sufficient to
catch most such errors. (Our exercise involved one author
initially scoring a scheme row, co-authors verifying the
scores, and independently, cross-checks within columns to
calibrate individual benefit ratings across schemes; useful
clarifications of benefit definitions often resulted.) Another
danger in being “too precise” arises from scoring on second-

hand data inferred from papers. Coarsely-quantized but self-
consistent scores are likely better than inconsistent ones.
On one hand, it could be argued that different appli-
cation domains (e.g., banking vs. gaming) have different
requirements and that therefore they ought to assign different
weights to the benefits, resulting in a different choice of
optimal scheme for cach domain. However on the other
hand, to users. a proliferation of schemes is in itself a
failure: the meta-scheme of “use the best scheme for each
application™ will score rather poorly on Scalable-for-Users,
Easy-to-Learn and perhaps a few other usability benefits.

E. Combining schemes

Pairs of schemes that complement each other well in a
two-factor arrangement might be those where borh achieve
good scores in usability and deployability and ar least one
does so in security—so a combined scheme might be viewed
as having the AND of the usability-deployability scores
(i.e., the combination does not have a particular usability
or deployability benefit unless both of the schemes do) and
the OR of the security scores (i.e., the combination has the
security benefit if either of the schemes do). An exception
would appear to be the usability benefit Scalable-for-Users
which a combination might inherit from either component.

However, this is necessarily just a starting point for the
analysis: it is optimistic to assume that two-component
schemes always inherit benefits in this way. Wimberly and
Liebrock [65] observed that the presence of a second factor
caused users to pick much weaker passwords than if pass-
words alone were used Lo protect an account—as predicted
by Adams’s “risk thermostat” model [66]. Thus. especially
where user choice is involved, there can be an erosion of the
efficacy of one protection when a second factor is known to
be in place. Equally, defeating one security mechanism may
also make it materially easier to defeat another. We rated,
e.g., Phoolproof Quasi-Resilient-to-Internal-Observation be-
‘ause it requires an attacker to compromise both a PC and a
mobile device. However, malware has already been observed
in the wild which leverages a compromised PC to download
further malware onto mobile devices plugged into the PC
for a software update [67].

See O'Gorman [9] for suggested two-factor combinations
of biometrics, passwords, and tokens, for various applica-
tions (e.g., combining a hardware token with a biometric).
Another common suggestion is pairing a federated scheme
with a higher-security scheme, e.g., a hardware token.

=

V1. CONCLUDING REMARKS

The concise overview offered by Table | allows us to see
high level patterns that might otherwise be missed. We could
at this stage draw a variety of conclusions and note, for
example, that graphical and cognitive schemes offer only
minor improvements over passwords and thus have little
hope of displacing them. Or we could note that most of

the schemes with substantial improvements in both usability
and security can be seen as incarnations of Single-Sign-
On (including in this broad definition not only [lederated
schemes but also “local SSO” systems [26] such as password
managers or Pico). Having said that, we expect the long-
term scientific value of our contribution will lie not as much
in the raw data distilled herein, as in the methodology by
which it was assembled. A carefully crafted benefits list
and coherent methodology for scoring table entries, despite
inevitable (albeit instructive) disagreements over fine points
of specific scores, allows principled discussions about high
level conclusions.

That a Table I scheme (the CAP reader) scored full marks
in security does not at all suggest that its real-world security
is perfect—indeed. major issues have been found [55]. This
1s a loud warning that it would be unwise to read absolute
verdicts into these scores. Qur ratings are useful and we
stand by them, but they are not a substitute for independent
critical analysis or for considering aspects we didn’t rate,
such as vulnerability to active man-in-the-middle attacks.

We note that the ratings implied by scheme authors in
original publications are often not only optimistic, but also
incomplete. Proponents, perhaps subconsciously, often have
a biased and narrow view of what bencefits are relevant. Our
framework allows a more objective assessment.

In closing we observe that, looking at the green (vertical)
and red (horizontal) patterns in Table I, most schemes
do better than passwords on security—as expected, given
that inventors of alternatives to passwords tend to come
from the security community. Some schemes do better and
some worse on usability—suggesting that the community
needs to work harder there. But every scheme does worse
than passwords on deployability. This was to be expected
given that the first four deployability benefits are defined
with explicit reference to what passwords achieve and the
remaining two are natural benefits of a long-term incum-
bent, but this uneven playing field reflects the reality of a
decentralized system like the Internet. Marginal gains are
often not sufficient to reach the activation energy necessary
lo overcome significant transition costs, which may provide
the best explanation of why we are likely to live considerably
longer before seeing the funeral procession for passwords
arrive at the cemetery.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers whose com-
ments helped improve the paper greatly. Joseph Bonneau
is supported by the Gates Cambridge Trust. Paul C. van
Oorschot is Canada Research Chair in Authentication and
Computer Security, and acknowledges NSERC for funding
the chair and a Discovery Grant; partial funding from
NSERC ISSNet is also acknowledged. This work grew out
of the Related Work section of Pico [8].

REFERENCES

[1] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano,
“The quest to replace passwords: A framework for compar-
ative evaluation of web authentication schemes,” University
of Cambridge Computer Laboratory, Tech Report 817, 2012,
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.html.

[2] R. Morris and K. Thompson, “Password security: a case
history,” Commun. ACM, vol. 22, no. 11. pp. 594-597, 1979.

[3] A. Adams and M. Sasse, “Users Are Not The Enemy,”
Commun. ACM, vol. 42, no. 12, pp. 416, 1999.

[4] C. Herley and P. C. van Qorschot, “A research agenda
acknowledging the persistence of passwords,” IEEE Security
& Privacy, vol. 10, no. 1, pp. 28-36, 2012.

[5] D. Floréncio and C. Herley, “One-Time Password Access to
Any Server Without Changing the Server,” ISC 2008, Taipei.

[6] M. Mannan and P. C. van Oorschot, “Leveraging personal

devices for stronger password authentication from untrusted

computers.” Jowrnal of Computer Security, vol. 19, no. 4, pp.

703-750, 2011.

S. Chiasson, E. Stobert, A. Forget, R. Biddle, and P. C. van

Oorschot, “Persuasive cued click-points: Design. implemen-

tation, and evaluation of a knowledge-based authentication

mechanism.” [EEE Trans. on Dependable and Secure Coin-

puting, vol. 9, no. 2, pp. 222-235, 2012.

. Stajano, “Pico: No more passwords!” in Proc. Sec. Proto-

cols Workshop 2011, ser. LNCS, vol. 7114. Springer.

[9] L. O Gorman, “Comparing passwords, tokens, and biometrics
for user authentication,” Proceedings of the [EEE, vol. 91,
no. 12, pp. 2019-2040, December 2003.

[10] K. Renaud, “Quantification of authentication mechanisms: a
usability perspective,” J. Web Eng., vol. 3, no. 2, pp. 95-123,
2004.

[11] R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical
Passwords: Learning from the First Twelve Years,” ACM
Computing Surveys, vol. 44, no. 4, 2012,

[12] I. Nielsen and R. Mack, Usabilitv nspection Methods. John

Wiley & Sons, Inc, 1994,

J. Bonneau and S. Preibusch, “The password thicket: technical

and market failures in human authentication on the web.” in

Proc. WEIS 2010, 2010.

[14] 1. Bonnecau, *“The science of guessing: analyzing an

anonymized corpus of 70 million passwords,” [EEE Symp.

Security and Privacy, May 2012.

K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and don’ts of

client authentication on the web,” in Proc. USENIX Securiry

Symposium, 2001.

[16] D. Floréncio and C. Herley, “Where Do Security Policies
Come From?" in ACM SOUPS 2010: Proc. 6th Symp. on
Usable Privacy and Securiry.

[17] L. Falk, A. Prakash, and K. Borders, “Analyzing websites for
user-visible security design flaws.” in ACM SOUPS 2008, pp.
117-126.

[18] S. Gaw and E. W. Felten, “Password Management Strategies
for Online Accounts.” in ACM SOUPS 2006: Proc. 2nd Symp.
on Usable Privacy and Security, pp. 44-55.

[19] D. Floréncio and C. Herley, “A large-scale study of web
password habits.” in WW\V '07: Proc. 16™ International Cony.
on the World Wide Web. ACM, 2007, pp. 657-6066.

[20] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdrop-
ping on Keyboard Input from Video,” in [EEE Symp. Security
and Privacy, 2008, pp. 170-183.

|7

[8

[13

[15

[21]

[S= I

2)
3]

[
[

(27
(28]

[29]

[30]

(31]
[32]
133
(34

(351

(36]

1371

(38]

(39]
140]
[41]
[42]
[43]
(44]

[45]

B. Kaliski, RFC 2898: PKCS #5: Password-Based Cryprog-
raphy Specification Version 2.0, IETF, September 2000.
Mozilla Firefox, ver. 10.0.2, www.mozilla.org/.

A. Pashalidis and C. J. Mitchell, “Impostor: A single sign-

on system for use from untrusted devices.” Proc. IEEE

Globecom, 2004,

R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers.” Commun.
ACM, vol. 21, pp. 993-999, December 1978.

I. Kohl and C. Neuman, “The Kerberos Network Authentica-
tion Service (V5),” United States, 1993.

A. Pashalidis and C. J. Mitchell, A Taxonomy of Single
Sign-On Systems.” in Proc. ACISP 2003, Information Se-
curity and Privacy, 8th Australasian Conference. Springer
LNCS 2727, 2003, pp. 249-264.

D. Recordon and D. Reed, “OpenlID 2.0: a platform for user-
centric identity management,” in DIM 06: Proc. 2nd ACM
Workshop on Digital Identity Management, 2006, pp. 11-16.
S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov, “A
billion keys, but few locks: the crisis of web single sign-on.”
Proc. NSPW 2010, pp. 61-72.

B. Laurie, “OpenlD: Phishing Heaven,” January 2007, www,
links.org/?7p=187.

R. Jhawar, P. Inglesant, N. Courtois, and M. A. Sasse, “Make
mine a quadruple: Strengthening the security of graphical
one-time pin authentication,” in Proc. NS§S 2011, pp. 81-88.
L. Lamport, “Password authentication with insecure commu-
nication,” Commun. ACM, vol. 24, no. |1, pp. 770-772, 1981.
N. Haller and C. Metz, “RFC 1938: A One-Time Password
System,” 1998.

M. Kuhn, “OTPW — a one-time password login package,”
1998, www.cl.cam.ac.uk/~mgk25/otpw.html.

RSA, “RSA SecurID Two-factor Authentication.” 2011, www,
rsa.com/products/securid/sb/ L0695_SIDTFA_SB_0210.pdf.

P. Bright. “RSA finally comes clean: SecurlD s compro-
mised,” Jun. 2011, arstechnica.com/security/news/2011/06/
rsu-finally-comes-clean-securid-is-compromised.ars.

B. Parno, C. Kuo, and A. Perrig, “Phoolproof Phishing
Prevention,” in Proc. Fin. Crypr. 2006, pp. 1-19.

A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool
for information security.” IEEE Transactions on Information
Forensics and Security, vol. 1, no. 2, pp. 125143, 2006.

A. Ross, I. Shah, and A. K. Jain, “From Template to Image:
Reconstructing Fingerprints from Minutiae Poims,” [EEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 544-560,
2007.

1. Daugman, “How iris recognition works,” [EEE Trans.
Circuits Syst. Video Techn., vol. 14, no. 1, pp. 21-30, 2004,
P. S. Aleksic and A. K. Katsaggelos, “Audio-Visual Biomet-
rics.” Proc. of the IEEE, vol. 94, no. 11, pp. 2025-2044, 20006.
T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino,
“Impact of artificial “gummy™ fingers on fingerprint systems,”
in SPIE Conf. Series, vol. 4677, Apr. 2002, pp. 275-289.
LastPass, www.lastpass.com/.

D. P. Kormann and A. D. Rubin, “Risks of the Passport single
signon protocol,” Camputer Networks, vol. 33, no. 1-6, 2000.
“Facebook Connect,” 2011, www.facebook.com/advertising/
Iconnect.

M. Hanson, D. Mills, and B. Adida, “Federated Browser-
Based Identity using Email Addresses,” W3C Woarkshop on
Identity in the Browser, May 2011.

[46]

[47]

(48]

[49]
(50)
[s1]
[52]
(53]
[54]

[55]

[56)
[57

(58]

[59]

[60]

(61]

[62]

(63]

[64]

[65])

166]

[67]

T. W. van der Horst and K. E. Seamons, “Simple Authenti-
cation for the Web,™ in fn1l. Conf. on Security and Privacy in
Commumications Nerworks, 2007, pp. 473482,

H. Tao, “Pass-Go, a New Graphical Password Scheme.”
Master’s thesis. School of Information Technology and Engi-
neering, University of Ottawa, June 2006.

D. Weinshall, “Cognitive Authentication Schemes Safe
Against Spyware (Short Paper).” in IEEE Svmposiumn on
Securiry and Privacy, May 2006.

N. Hopper and M. Blum, “Secure human identification pro-
tocols,” ASIACRYPT 2001, pp. 52-66, 2001.

5. Smith, “Authenticating users by word association,” Com-
puters & Securiry, vol. 6, no. 6, pp. 464—470, 1987,

A. Wiesmaier, M. Fischer, E. G. Karatsiolis, and M. Lip-
pert, “Outflanking and securely using the PIN/TAN-System,”
CoRR, vol. ¢s.CR/0410025, 2004.

“PassWindow,” 2011, www.passwindow.com,

Yubico, “The YubiKey Manual, v. 2.0, 2009, static.yubico.
com/var/uploads/YubiKey_manual-2.0.pdf.

Ironkey, www.ironkey.com/internet-authentication.

S. Drimer, S. J. Murdoch, and R. Anderson, “Optimised
to Fail: Card Readers for Online Banking,” in Financial
Cryprography and Dara Securiry, 2009, pp. 184-200.
Cronto, www.cronto.com/.

Google Inc., “2-step verification: how it waorks,” 2012, www.
google.com/accounts.

S. Schecliter, A. J. B. Brush, and S. Egelman, “It’s no secret:
Measuring the security and reliability of authentication via
secret” questions,” in [IEEE Symp. Security and Privacy,
2009, pp. 375-390.

M. Jakobsson, L. Yang, and S. Wetzel, “Quantifying the
Security of Preference-based Authentication.” in ACM DIM
2008: 4th Workshop on Digital ldentity Management.

J. Brainard, A. Juels. R. L. Rivest. M. Szydlo. and M. Yung,
“Fourth-factor authentication: somebody you know.” in ACM
CCS 2006, pp. 168-178.

D. Weinshall, “Cognitive Authentication Schemes Safe
Against Spyware,” IEEE Svip. Security and Privacy, 2006.
P. Golle and D. Wagner, “Cryptanalysis of a Cognitive
Authentication Scheme,” [EEE Svinp. Security and Privacy,
2007.

B. Coskun and C. Herley. “Can “Something You Know"™ be
Saved?” ISC 2008, Taipei.

Q. Yan. J. Han, Y. Li, and H. Deng, “On limitations of
designing usable leakage-resilient password systems: Attacks,
principles and usability.” Proc. NDSS, 2012.

H. Wimberly and L. M. Liebrock, “Using Fingerprint Authen-
tication to Reduce System Security: An Empirical Study,” in
IEEE Svinp. Security and Privacy, 2011, pp. 32-46.

J. Adams, “Risk and morality: three framing devices,” in Risk
and Morality, R. Ericson and A. Doyle, Eds. University of
Toronto Press. 2003.

A. P. Felt, M. Finifter, E. Chin. S. Hanna, and D. Wagner.
“A survey of mobile malware in the wild,” in ACM SPSM
2011: I Workshop en Security and Privacy in Smartphones
and Mobile Devices, pp. 3=14.

-]QO\/mH];L/

_ @HJZ(QM[/

~ lakley

~ Qs /efcwwble,

~Fe L

~ Toe liy
—»Tf(w\t«g e vale
\“' B of deny Cin ar ome

T

r

Cd{f\ L/Oj [fa{f\ 201 WM"/\ j
\/‘;\k@o 0€ L@n/ +0

Momﬂb

Mert] g dy
LWMQMZ

gtpha®

0dbrdacts

bl

fanpy 0T
e va 4 L

CL\m LU\(/\ﬂ
Tt (ks
0 %o
FH, L
folttly ¢ gheat
ﬁ/mf y

)0209

]DZAs’

Y

ggl@ﬂz,(— fU7)\7ovde) 6@

Y el ¢ s

297

v

Dl L W

Novel Password Systems Where Enter
Derivation of Password instead of Actual
Password

6.858 Final Project
Michael Plasmeier <theplaz>

Jonathan Wang <jwang7>
Miguel Flores <mflores>

Motivation
The problem with many password systems is that users must type their entire, full password each time
they log on. This makes the password vulnerable to key logging and interception during transmission.

We explore systems in which the user does not enter their direct password, but a derivation of the
password which changes on each log in. The user proves that he or she knows the password without
subsequently ever providing the password itself.

ING Password Keyboard

A simple example is ING Direct's PIN pad. Under ING's system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Page 1

Description of System (Plaz)

Original Off the Grid

We were inspired by the “Off the Grid” system from the Gibson Research Corporation.! The “Off the
Grid” proposal is designed to allow users to use a personal printed paper grid to encipher the domain
name of the website they are currently on into a string of psudeo-random characters.

The Off the Grid system works entirely on the user’s side. Websites do not need to do anything to
support Off the Grid.

To use Off the Grid, the user first generates a grid from a grid-providing website such as
https://www.grc.com/offthegrid.htm. This website generates a grid using client-side scripting (ie.
JavaScript) to generate the grid on the user’s machine. The user then prints the grid onto a sheet of
letter paper. At this point the Grid is offline and thus impossible to access by malware. Asan
alternative, there is at least one application for Android which produces and stores a grid; however, the
grid is now accessible to malware on the Android phone which is able to defeat the inter-process
sandboxing.

The grid that is generated is a Latin Square. A Latin Square is an n x n array filled with n different
symbols, each occurring exactly once in each row and exactly once in each column.? The most famous
Latin Square is the popular puzzle game Sudoku. (Note however, that we do not divide up the grid into
9 smaller 3x3 mini-squares in which each symbol must be unique). For example, here is a 11x11 Latin
Square with 11 alphabetic characters:

glela| m|o|n |z |[k]|i |r |c
K lamde |m]E1or 1ei"e
n|kl|clz |a|m|r |g|o|e]i
z |o|i [a|nf|gle|c|r |k |m
mi|r |z |n|gla|ki|i|e|clo
a|gle|i |z |r |n|o|c |ml|k
ricl|lglkle]i |[m[nl|z |o]|a
e |n|k|g|i |[o|c |z |ml|la]|r
i Im|o|e |r [c|gla |k |n |k
c|i |[rlo|lk|e|a|m|n |z |g
0|z |m|r |c |k |i |e]a|g|n

Figure 2

Once the user has a grid, they use the grid to create or change the password for each website. The Off
the Grid specification has a number of variants, but we will use the base variant described on the GRC
website.

In the Off the Grid specification, the user traces the name of the website twice to provide additional
entropy. Inthe start of the first phase, the user always starts along the first row of the grid.

1 https://www.grc.com/offthegrid.htm and associated pages. Is still marked as “Work in Progress;” Retrieved
12/2/2012
2 http://en.wikipedia.org/wiki/Latin_square

Page 2

Start =3t

ol oa|lo

b
4
v

O | (g
L |TI0 |

Figure 3

The user then traces out the first 6 characters of the domain name. 6 characters was chosen by the
author to provide a 12 character password, which the author chose to balance ease of use with entropy.
Again, a user may choose their own scheme. The user alternates between looking horizontally and
vertically.

Start=—2» |-g——-e—3>a |m|o [n [z |k [i |r |c
kla|nq|c | m|z |o]|r |g|i |e
n|k|dq|z |[a|m|r g |0 |e|i
z |ol|il|la|n|g|le|c|r |k |m
mir |4 |n|g|a |k |i |e|c|o
a |g|qg|i |z |r|njojc |m|k
ric|gd |k |e|]i |m|n|z>0 |a
e |n|H|gl|i |of|lc |z | d, r
i |m|dq|e |r |c|g|a |} |n |k
c |i (W|olk (e |a@ M| |Z |8
0 F4 m T T K T t."% a g | n

Figure 4

In the second phase, the user starts at the character that they ended with at the end of Phase 1. The
user then two more characters from the grid in the same direction of travel. The user then appends
those two characters to their password.

b a |¢c
———qapC |b |d

d b |c 3

g d | b

v

Figure 5 The user arrives at c traveling to the right. The user appends the next two characters “bd” to
their password, and then continues up/down from the last character they read “d”.

The user wraps around if their characters go off the grid.

b |d |a |¢c
-—t3---c>»b |d

¢ b |c a

¢ |a |d |b

v

Page 3

Figure 6 The user arrives at b traveling to the right. The user appends the next two characters to their
password, wrapping around if they go off the edge of the grid. Here those characters are “da”. The
user then continues up/down from the last character “a”.

For example here is Phase 2 of our Amazon example.

—>|g le |alntedn |z [k [i [r [c
B |a Cimjz Jo|r |g|i |e
K lc |z [a|@|r |g |lo|e |i
Z Jo |l |a|n|g|le]c|r |k |m
m|r |z |n|g k |i [e|c |o
a e o [c [m]k
Fle (e |k e min|z [§]a]
e |n |k |g|i c [z |m \i; r
i Imjoje |r [c|g |alekdn |k
c (i [r o |k _e_ a m|n|z |g
0|z |mj|r |c |k|i|e|a]g]|n

Figure 7 Phase 2 of Off the Grid. The password is “gaznegmacmzg”

Here are Phase 1 and Phase 2.

—> g le lallgntedn [z [k |i |r |c
k la|n|c|m|[z [o]r gli |e
{b, k Z |a|m|r |glofe |i
Z o |l Jan|gle|c|r |k |m
i lr [z |n (g k |i |e|c]|o
a [ete—i—te o |c [m]k
r{icilglk|e Im|n |z3%8 |a
e |n|k|g]|i |®&|c |z m_\iLL_
i |m|lo|e |r |c g;!k n |k
c|i |[rrlo|k|e|a|m|n]|z |g
0 |2 |@rrTe1lcTrt—re?d |® |n

Figure 8 Phase 1 and 2 of Off the Grid.

To log in, the user retraces exactly the same steps as when creating a password. This means the
password is exactly the same for each domain. This is an obvious requirement for a system designed to
fit within the existing password infrastructure. However, we wanted to explore ideas in which the user
does not enter the same password each time.

Tracer: Trace the Grid
Name of system: Tracer or Cross Password?

We wanted to design a system similar to the Off the Grid system, but where the password the user
transmits over the network is different each time. With this system, the website presents the user with
a grid and the user enters only a deviation of their password.

When the user creates an account, he provides his or her password to the webserver. The user may use
characters from the lower case Latin alphabet [a...z]. The password may not have consecutive

Page 4

repeating characters, for example, “aardvark”. The password is stored on the server such that the plain
text can be accessed in order to verify the trace.

When the user logs in, the server randomly generates a 26x26 Latin square with the characters [a...z]
called the Grid. The server also randomly selects a start row or column called the start location. The
server transmits this Grid to the user. The Grid and the start location are unique for each log in. The
server stores the Grid and start location in temporary state and provides a pointer to this state called
the token to the user. The user’s browser returns the token to the server on each log in attempt.

These are transmitted to the user. The user then visually traces out his or her password on the grid,
alternating between rows and columns. For example, the user would locate the first letter of their
password on the start row or column. The user would then look for the next letter of his or her
password in either the column (if the start was a row) or row (if the start was a column) that contained
the user’s first character. The user would then continue alternating for the length of their password.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
This is called the trace of the password. The trace and the token are sent back to the server.

The server verifies that the trace by replaying the trace and making sure the password letters fit within
the code. Changed the description to fit the code

The server will only accept 2 traces per token. If a user guesses incorrectly twice, the server will present
the user with a new Grid and Start Location. The server will lock the account after four incorrect tries
until the user completes an email loop. not currently in code

Page 5

Example: entering the password Amazon with the 5" column as the start row/column. The grid as well
as the start row/column are randomly generated be the server for each log in.
Start

glt | nfalkl|le | m|w|i |u|x]|v]|z|j|d|blh|p|r|o]|s |c|f |y]|qg]l
s|jglw|c|n|fla|t|d]|j|lu/m|v | x|o|p|lyl|lgle]|l |[k|rf|z]|i |h|b
l In|x |f || |m|c|s|e|lk|g|lu|y|b|lv|ola|d|p|r |w|g]|j |h|t]|z
hly|ld|r |mjc|{x |k]|v |[f |b|s|i|e|lp|lulo|w]|j |g|z|n]|l |g|la]|t
vikijz|t|x|bl|j |of|lr|p]|wl|i]|u|fs]|a|m|g|n|l |d|f]|g|hl|e]|y]|cC
k lw|ly |blg|n|ull |s|eli|r|loflc|qglz|f|x|h|v|d|ja|m|t | |p]]
e |lg)l |y i3 fli |zZih|glo|p|flecjwlh|v]|k|a|s |mlu|x |n|r|]|d
d|b|f |w|d |y |t |e|x|a|c|glpl|i|min|ju]|r |k|h]|l |j|s|o|g]|Vv
njof|gli|g]lalp|r|u|v]|l |w|d|f|c|j |x|m|t|k|a|le|y]|b]|z |h
plhila|s |b|d]|r |x|w]|l |v]|t|n|fol|lk]|i|z|g|c|e|y|u|lg]|]j |[f]|m
o | [] pﬁ $ (W2 A mpiray i n jg chifd (el Je | g1tk |F |8ld
blj |t |h J; aly|njolilgle|x|rfu|l |p|fl|lv|iw|m|lz |c|s |d]|k
qls |k |e ul|ld|{m|z |[x|o|hla |t |y |w|lc]|]j |blg|r|i]|p]|l |n|f
i |z]le|k|¢d|w|lo|jg|h|t |d|j |b|lp|r|f | m|s|uly |[x|vi|a]|n]|l |qg
ajleju|vi|id]|l |g|b|plr|y|k]j|z|w|c|i|h|fn|f |g|s |t |x]|m]|o
z|la|mjo|d |h|i|c|blg|k|n|jglulj |r|v]|t|ylple|l |d|w|x/|s
ulx|s|j |¢|k|b|jy |l |n|t|z|h|g]l|i|d|r|v|gla|c|f|w|m|o|p
x |[diplz |d]j |l |gflt|s|nfc|m|g|f|y|e|k|w]|]i|o|h|v] |&a|b]|r
vic|i|g|d|p|nEsmrtrTsTtTgrdTtTx7T7|o|z|b|v | w|e|k]|u]a
fli(v]|d|d|r|s|a|y|z|]j |x]|]I |k]|h|g]|hb 4\ g(n|t | mju|plwle
t{plaln|W|v|e|lulg|y|flo|r|at—HTD[z [m jlhld|blc|i |x
wimfr |g |l |[o]h]j |k|b|la|d]|s |[MA|le|qg]|t |i |[f|lu|ln|p]|x]|z|c]|y
j|vib|m|h|lg|f|i|c|d|z|a]|k]|l||x|s|w|e|lo|t|p|y]|g|lul|r|n
r|f (c|l Y z|lg|v|j |wim|p|t|IWh|n|e|glul|la|x|bl|k|o|d]|s i
c|r |hju|a>TwrpTmrToTeTb+> m|s |t || |y |[d]|z |j |o]i|Vv|k]|g
miujolpli |tlkid|f |lejbigle|yp|lzlalnl|l]l |x|s|i |blr [glv|w

The resulting trace would be: Down, Right, Up, Right, Up, Left.

Figure 9 A trace of the password “amazon”

Modified Tracer
We also explored a modified version of this system designed to increase usability. This system uses a
13x13 grid, instead of a 26x26 grid to make it easier for users to visually scan the grid.

In addition, we no longer generate a Latin Square. Instead, we first randomly distribute the user’s
password in an empty grid. We first randomly select either a row or a column from our 26 choices. We
then place the first letter somewhere in that row or column. For this example, say we select the 3
column to start with. We then place the “a” somewhere in this first column. We then place the second

Page 6

letter “m” in the row in which we have placed the first letter. We continue this scheme until the
password has been placed.

This scheme seems different from the code; it seems what I've written seems to have the same outcome
but is simpler to explain and build. But the end result seems the same (or at least very similar). Are we
sure it is the same from a probability perspective?

For example:

Figure 10

We then randomly fill in the remaining letters on the grid from the set of 26 lower case letters. We
make sure each row and column only contains each letter only once by backtracking. For each spot we
first start with the entire set [a...z]. We then remove all letters that are currently in the same row and
column that we are in. We then randomly select a character from the remaining set.

Currently not built in code

This is not a Latin Square because we have a 13x13 Grid, but 26 possible characters.

Probabilistic Analysis (Miguel)
Original Off the Grid
Tracer: Trace the Grid

Modified Tracer
Math from different from no longer being a Latin Square.

Page 7

Other Factors (Plaz)

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.?

Improvements to Criteria

Resilient-to-Physical Observations Category

We think that the Resilient-to-Physical Observations category should be split in two: casual observation
and video observation. Casual observation is if an attacker is just able to watch the user enter their
password once. This is feasible for short passwords and/or if the user types slow. An attacker can see
which keys are hit on the keyboard. This is especially true if the user types slowly, has a short, and/or
easily remember-able password.

However, the attacker seeing the user trace out the password on the grid once would have trouble
remembering the entire grid, preventing the total loss of the password scheme. For that specific
domain name, the attacker would have trouble remembering the sequence of 12 random characters,
providing some additional security.

Video observation is defined as the attacker having the full ability to carefully watch and study users’
movements because the attacker is able to pause and replay the user’s log in actions.

Resilient-to-Internal Observation Category
We propose breaking up the Resilient-to-Internal Observation category into: internal observation and

wire observation. We feel that splitting these categories allows us to elaborate on the strength of the
designs.

Must Seek Out
Must the user seek out the new password system? Or does the server require that the user use it?

Man in the middle?
Original Off the Grid

Usability benefits

1. Memorywise-Effortless YES There are no secrets to be remembered in the base case. The
description mentions a more advanced case, where the user could start at a different location,
but we are assuming the base case where the user automatically selects the same location.
Scalable-for-Users YES The user only needs one grid for all of their sites.
Nothing-to-Carry NO User must carry 1 sheet of paper
Physically-Effortless NO The user must trace out their password on paper
Easy-to-Learn NO Using the same rubric as the paper does, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on the grid twice is easy to mess up.

NO T AW

. http://css.csail. mit.edu/6.858/2012/readings/passwords.pdf

Page 8

8.

Easy-Recovery-from-Loss KINDA If the user lost their Grid, they must have another copy of their
Grid, or the key used to generate that Grid. A user can always reset their passwords on each
site. The paper rates generic passwords as Easy-Recovery-from-Loss YES.

Deployability benefit

1.

6.

Accessible KINDA The user needs to be sighted to use this scheme. There could conceivably be
a braille-based grid, but not at this moment.

Negligible-Cost-per-User YES The user is required to print one sheet of paper which costs < 05
cents

Server-Compatibility YES One of the primary benefits of this scheme is that it is compatible with
existing servers which use passwords

Browser-Compatibility YES No special browser is needed

Mature KINDA The scheme has been published for some length of time; at least one Android
app exists with support.

Non-Proprietary YES The scheme is published fully.

Security benefits

1.

10.

11.

Resilient-to-Physical Observations-Casual KINDA The attacker would have to remember 12
random characters in order to observe the user’s password for that site.

With just a casual observation there is no way the attacker can memorize the entire Grid.
Resilient-to-Physical Observations-Video NO If the attacker can take a picture of the Grid, for
example, a video camera over the shoulder, then the attacker would have access to all of the
users’ passwords assuming the user is using the standard Of the Grid scheme.
Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Resilient-to-Throttled-Guessing YES The user’s password is 12 random alphanumeric
characters. This means there are 26'? possible passwords.

Resilient-to-Unthrottled-Guessing YES There are 262 possible passwords.
Resilient-to-Internal-Observation NO Off the Grid reduces to a normal 12 character password
unique for each domain. This password is the same for each log in.
Resilient-to-Wire-Observation KINDA The password is the same for each log in; it must be
protected with some additional protection (such as SSL) in transit.
Resilient-to-Leaks-from-Other-Verifiers YES Ideally the server should be hashing the password.
Regardless, each domain has a unique password so leaking one password does not give one
feasible information about another domains’ password.

Resilient-to-Phishing NO If the attacker is able to spoof the domain name of the site, then the
user will follow the same trace on the grid, providing the attacker their password.
Resilient-to-Theft NO! If the attacker gets your grid, it's game over, assuming you are sticking to
the base Off the Grid algorithm. The author suggests that you make small personal tweaks to
the algorithm in order to add resilience to theft.

No-Trusted-Third-Party YES The third party provides the code to generate the grid. However,
that code runs in JavaScript on your local computer, allowing you to verify that the code is
actually generating a unique grid and is not sending a copy to the third party. One could also
write ones’ own implementation of the Grid generation scheme to be sure.

Page 9

12. Requires-Explicit-Consent YES The user must trace their password on the grid and then enter it

onto the computer.

13. Unlinkable YES Since each user’s Grid is so different, there is no feasible way to link users using

the same scheme.

Tracer: Trace the Grid
Goal: prevent from seeing over wire

Note all are for the actual log in experience. This analysis does not consider creating a password; the
process of which is similar to traditional password schemes.

Usability benefits

1.

e N

Memorywise-Effortless NO The user must remember a password to use Tracer. Ideally, that
password should be different between sites. Since we only allow lowercase alphabetic
characters without repeating letters, we may prevent users from using the same password on a
site running Tracer than the user uses on all of their sites.

Scalable-for-Users NO Ideally the user has a different password for each site

Nothing-to-Carry YES There is nothing to carry

Physically-Effortless NO The user must trace out their password on-screen

Easy-to-Learn NO Using the same rubric as the paper, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on screen is easy to mess up
Easy-Recovery-from-Loss YES Tracer falls back on the same recovery mechanisms as traditional
password sites, which is rated YES in the paper.

Deployability benefit

1.

Rl

Accessible KINDA A screen reader would be tedious to use.

Negligible-Cost-per-User YES There is no cost.

Server-Compatibility NO The server must be provisioned with a new authentication library.
Browser-Compatibility YES No special browser is needed

Mature NO We are proposing it here

Non-Proprietary YES The scheme is published fully.

Security benefits

1

Resilient-to-Physical Observations-Casual POSSIBLY If the attacker could see the screen and the
keyboard they could not uncover the user’s password, unless the user traces the password with
their finger.

Resilient-to-Physical Observations-Video POSSIBLY Even with being able to study the user as
they enter their password, the attacker would not be able to recover a user’s password, unless
the user traces the password with their finger. This is one of the major design goals of this
system.

Resilient-to-Targeted-lmpersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Page 10

Resilient-to-Throttled-Guessing YES An attacker can only submit two tracers per grid/start
location. After two tries, the server will issue a new grid. The user then gets two more tries at a
trace submission before the account is locked until an email loop is performed.
Resilient-to-Unthrottled-Guessing NO TBD

Resilient-to-Internal-Observation QUASI This is the major design goal of this system. An
attacker needs __ observations of both the grid, Start Location, and trace in order to crack
the password. Less if the user picks a dictionary word. Quasi since report says if we need 20-30.
Resilient-to-Wire-Observation QUASI This is the same as internal, except if additional transport
level security is added (ie SSL/TLS).

Resilient-to-Leaks-from-Other-Verifiers NO The password is stored in plain text on the server in
order for the server to verify the password. This is not good practice.

Resilient-to-Phishing YES An attacker with just one trace could not submit that trace to another

server, because the grid is randomized each time.
10. Resilient-to-Theft YES There is nothing to steal

11. No-Trusted-Third-Party YES There are no 3" parties involved

12. Requires-Explicit-Consent YES The user must trace their password on the computer and enter

the trace.

13. Unlinkable YES Like passwords, this scheme is unlinkable.

Modified Tracer

The modified tracer is more Efficient-to-Use and has less errors (Infrequent-Errors), however at the cost
of an decreased Resilient-to-Physical Observations-Casual, Resilient-to-Physical Observations-Video,
Resilient-to-Throttled-Guessing , Resilient-to-Unthrottled-Guessing, Resilient-to-Internal Observation,

and Resilient-to-Phishing. However, all criteria are still the same according to the rubric. This is
because the rubric focuses on theoretical possibility, and not the degree of.

Comparison Table

3

£ | % 38

[SNG] = 2 =
Memorywise-effortless | Yes No No
Scalable for users. Yes No No
Nothing-to-carry No [Yes Yes
Physically-effortless No No No
Easy-to-Learn No No No
Efficient-to-Use No No No (More)
Infrequent-Errors No No No (More)
Easy-Recovery-from- Kinda Yes Yes
Loss
Accessible Kinda Kinda Kinda
Negligible-Cost-per- Yes _ Yes Yes
User

Page 11

Server-Compatibility Yes No No
Browser-Compatibility | Yes Yes Yes
Mature Kinda No No
Non-Proprietary Yes Yes Yes
Resilient-to-Physical Kinda Passibly Possibly
Observations-Casual (Less) |
Resilient-to-Physical No Possibly Possibly
Observations-Video (Less)
Resilient-to-Targeted- Yes Yes Yes
Impersonation

Resilient-to-Throttled- | Yes Yes Yes (Less)
Guessing

Resilient-to- Yes No No (Less)
Unthrottled-Guessing

Resilient-to-Internal- No Quasi Quasi
Observation (Less)
Resilient-to-Wire- Kinda Quasi Quasi
Observation

Resilient-to-Leaks- Yes No No
from-Other-Verifiers

Resilient-to-Phishing No Yes Yes (Less)
Resilient-to-Theft No! Yes Yes
No-Trusted-Third-Party | Yes Yes Yes
Requires-Explicit- Yes Yes Yes
Consent

Unlinkable Yes Yes Yes
Usability (Plaz)

The simpler a system is, the more it will be used.

This section attempts to usability of grid systems.” The three core tenants of usability are: learnability,
efficiency, and safety.

Learnability

Discoverability

Tracer is more discoverable than Off the Grid because the website you are creating an account with can
let you know that the website uses Tracer. Itis inherently discoverable. Off the Grid requires that you
hear about the system in some way. Websites can still advise you of the presence of Off the Grid, but
the Off the Grid system, as currently designed and designated, is not inherently discoverable.

* Material from MIT’s 6.813 User Interface classes by Prof. Rob Miller Spring 2012.

Page 12

Training

Tracer can be taught to users when they pick their password for the site. For example, sites could show
users a video of how to use Tracer. Sites could also provide an interactive training tool using Tracer that
uses JavaScript and HTML 5 to show the user how to trace their actual password. Using the actual
password would reveal the user’s password to an attacker which can see a screen, but not a keyboard.
Thus it should not be used in a public room. However, it would not change other security aspects of
registration versus traditional password schemes because the password is still stored in the DOM.

Mental Model

We believe that once explained, it is easy to form a mental model of the system. The system asks you to
solve a puzzle and you solve it. In addition, it is clear that this prevents you from sending your password
over the wire for subsequent log ins. In addition, each log in is consistent with the rules of the system
and ones’ mental model of the system.

Efficiency

Tracer is more natural to use than Off the Grid because one can trace the system on the screen as one
enters the keyboard traces. We feel that expert users of Tracer could use the arrow keys without taking
their eyes off the screen. This could make password entry quite fast.

This is easier than Off the Grid which requires users to trace their password on the grid twice. Off the
Grid also requires users to overshoot and enter two characters after each character in their password in
Phase 2.

Chunking

Research has shown that people can remember 7 2 pieces of information at once.” Tracer requires
that the user only remember one password.

Fitts’s Law

Fitts’s Law is an estimate of the time it takes someone to point to an object or steer among objects.’
The rule as proposed by Scott MacKenzie is as follows:’

D
i —
a+blog,(1+ W)

where:

o Tisthe average time taken to complete the movement

e arepresents reaction time to start moving

e b stands for the speed of movement

o Disthe distance from the starting point to the center of the target.

® De Groot, A. D., Thought and choice in chess, 1965

® paul M. Fitts (1954). The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, volume 47, number 6, June 1954, pp. 381-391.

1. Scott MacKenzie and William A. S. Buxton (1992). Extending Fitts' law to two-dimensional tasks. Proceedings of
ACM CHI 1992 Conference on Human Factors in Computing Systems, pp. 219-226.
http://doi.acm.org/10.1145/142750.142794

Page 13

» Wis the width of the target measured along the axis of motion. W can also be thought
of as the allowed error tolerance in the final position, since the final point of the motion
must fall within ¥/, of the target's center.

We can use a more specific form to study steering tasks, the time to move your hand through a tunnel
of length D and width S:

T = bD
=a+b ()

The index of difficulty is now linear.

We can use this to measure the amount of time it takes someone to trace through the grid, assuming
they trace the grid with their finger or mouse. Ideally the user should not do that to maintain Resilient-
to-Physical Observations-Casual and Resilient-to-Physical Observations-Video.

Auto-Solver

It is possible for there to be a browser-based auto-solver for Tracer grids. This software would know the
user’s password and use that to automatically solve grid challenges. This would break Resilient-to-
Internal Observation because the user’s system would now need the password stored. However the
system would still meet Resilient-to-Wire-Observation QUASI designation even without additional
transport level security. It receives a Quasi designation because multiple successful log in attempts must
be witnessed before the attacker has enough information to discover the password. It would do a great
deal for usability, flipping Physically-Effortless, Easy-to-Learn, Efficient-to-Use, and Infrequent-Errors all
to yes. In addition Accessibility would greatly improve.

Code (Jwang)

Anything we want to write here?

How do we generate a Latin Square?

Conclusion (?)
Tracer is not recommended

Page 14

We evaluate the security of the thr ems described above using a probability analysis. In
eavesdropping on a user, an adversary may obtain the user’s Squmpassword ortrace, or
both, the board and the password / trace. Given each of these pieces of information we see how the
user may be compromised.

Original Off the Grid
The Off the Grid system offers users a unique password given the domain name. The user simply traces
the domain name in the two phases described above.

The first attack may occur if an adversary obtains a user’s grid. This is usually held on hand by the user,

and may occur if their wallet is stolen.
- e

_only coref s

(o oo Bt i Lo T = hinc ga, g
O whit s debe v ae atery -

E le ja |m|jo |n |z |k |¢iz7] v lic
k la|nfc | m|z [o]|r |g |i |e
Nk ke |2 | mdx- g Lo [e |i
z |o|i |a|n|gle|c|r |k |m
mi|r (z |n|gla |k |i |[e]|]c|o
algle i |z |r |njolc |m k |
riclglklel|i |m|n|z |o]a
e | a-hkalgs il be- g0 gapm -a e

i [m|ofe|r |c|g|a |k |n |k
c |i |r|lo|lk|e|la|m|n|z |g
oz |m|r |c |k |i |e|a|g]|n

Figure 9 Blank User’s Grid

If an attacker is able to retrieve the grid of a user, he obtains no information about the user’s password.
If the attacker does not know of the Off the Grid system, the grid will offer no information nor clue to
the user’s password. If however, the attacker does know the Off the Grid protocol and that the user
uses it, then all passwords are compromised because the attacker can then follow the two phases
described in order to get the password for any site such as Amazon.com.

If an attacker instead obtains the user’s password for a single site, only interactions with that website
are compromised. In the description described above, the password “gaznegmacmzg” is obtained by
following the two phases of the Off the Grid system for Amazon. If the attacker obtains
“gaznegmacmzg,” unless he knows which website it belongs to, is useless, otherwise he can use it to log
in the user’s account for Amazon.

However the attacker obtains no information regarding other passwords for other website domains. In

order to do so, the user must guess the grid that created the password. Given the Off the Grid
(nhH2n

nn?

Implementation described, there are at least boards for an n-sized board, which leads to at least

9.337 x 10**® boards for n = 26. Given this, there is still little information obtained to gaining the
password information for any other site.

Lastly, if an attacker retrieves the password and the grid, the user is equally as susceptible to the attacks
described in (1). The adversary can now trace out the password in order to determine the website the
password belongs to, and if he knows of the Off the Grid system, can retrieve the password for all other
websites.

The safety of this implementation relies on how much the user secures the grid. If the grid is stolen,
then all of the user’s passwords are compromised.

Tracer: Trace the Grid

Our tracer implementation relies on the security of the Latin Square. Since each password must be
made up of only lower case letters and no-repeating characters, the password can be searched using a
26 % 26 Latin Square as specified above, resulting in at least 9.337 x 10%2° possible grids.

If the attacker gains access to the board the user sees along with the start location, the attacker never
gains any information on the password of the user even after multiple board configurations are given.
Each board will always contain all 26 letters, and no information is ever gained about the password.

If the attacker instead gains only access to the user’s key-logs, thus obtaining their input, they can never
retrieve the password. The password will be impossible to obtain from only getting “up, right, up, left,
down” and so on. The only information gained is the length of the password which is 1-to-1 with the
trace. Even with multiple traces, the password will be impossible to obtain without the trace. An
adversary can then do a brute-force guess on the board because he knows the length of the password.
A password presented as Down, Right, Up, Right, Up, Left we know will give us a password of length 6.
Additionally, we know that the first element is given through the start-location on the board. We can
use the fact that the direction changes each turn, thus Left and Right will always be followed by Up or
Down. Thus thisgivesusal X 2 X 2x 2 X 2 X 2 = 32 possible combinations which we can then
brute force. Thus after finding out the length of a password through the trace, we know there are then
2171 possibilities given, [, the length of the password. Brute force is reduced by the frequency of the
board change.

Lastly, the most important case is when an attacker gains information to the board, the start-location,
and the trace. To begin with,

Modified Tracer
While our Tracer implementation relies on the security of the Latin Square, the modified version is no
longer a Latin Square having a reduced size, 13 X 13, but still using all 26 letters as possibilities.

Unlike our previous implementation, the adversary gains information looking at multiple boards over
time. One board offers no information about what letters are in the password, but using multiple
boards, an adversary may use the boards to determine which letters are in the password. Under some
password configurations, one of the letters of the alphabet may not appear in the grid. If we continue
onwards with this, we will eliminate all letters that are not in the password. It is then a matter of
determining the length of the password and see what are plausible passwords given the letters.

Similar to our Original Tracer implementation, the adversary gains no information when multiple traces
are presented other than the length of the password. They can then brute force the password knowing
there are 2!~1 possible combinations.

Lastly, there is the possibility of having all information of the board, the start-location, and the trace.

Anand

Sunday, December 09, 2012
8:47 PM

change amazon I'm example 3\/
g

fe
| 4

but only 4 tries .
s0 4/32 tries ‘ A
(31/32)M4 €& \ "W+ / “@\"J(
10% for specific user

but can scan password

not Clean

but then edges

info theory

how many bits of info

Sbita

log_2(26) etc

bound on information needed

later letters

original password hard

since little info

which is good if don't know password

L o

(A Jl& LQ J@M"ﬂ& &ﬁwtm‘

but easy for then to get into your account without password

like xor password could just send 1 or 0
but easy to guess

try to get bounds

hard to solve explicitly
could use Mathematica
or sigmas

all locations, all things,
nested sums

no induction
need all the info

if 1 char password could not figure out, 0 password

they get no info, but log in

so is a 2 char like a 1 char password
very directly sacrificing info
complicated lookup table

write up 2 char password

modified

way different

now can just to the website n times
must limit times can attempt to log in

would never recommend tell them part of the password

at most once

Page |

can we do each pair only have 1 letter
then all 4 choices

could you construct such a grid?

if made 1 could always switch the letters

but how use them actually using grid

but can do character by character
between 4 and 5

can cross off letter

(better than freq analysis)

but here know it by sure

freq analysis much harder

do in addition?

can save grid

10 grids high probably

on avg 5 grids

might have 2 or 3 changes

DOS from lock ours
and guess passwords

challenge response protocol

i
grc show full 26x26

11x11is sample

trade off some for others /
but not equally weighted

Page 2

vty 170

)MW/L 01((//\,(,J?/‘l?é’/ﬂtz
C bib oF GmL/EpY ‘z«\ Q e

Gl o Vb b L7

/W“”/J

- Pf%ﬂ’«fb/ﬂdﬂ \

oy

R
j\mg; @@g\//ﬁ Lwﬁrm g{ b fw\’qlpf
\”\/Q/UV% é/ pf @%M/fﬁq

ST
39/0\/@ o édww/y w/) Wj/ ¥ 7&;/0@
/ﬂ' Covog. s M(/f/lr/’vy
Mext T poc Jltafl b4

Oﬂ(g /(/fw)sj Dissatd
| " A ¥
T‘fﬂe ’ Pr thn oy ibhiay
Adtunligle by SPving Plssord
m WIWL Ceo}a/ 25 4337 %@47{5 éw(

— e
— (-

@
b
6;1/ ;?L ('> G Clé‘bbéwf
JbYL whd e (oo 7?0 L
()

% Wany Jew,
QM (ot
%

50 04— m lL/ﬂ

EM\ frales o 5
e for QA / fawit

O/ J/\o
(—/
‘S/ ’C(“Z e W/

y

g
oy
)

T

fy

d

e
i ’

9

7

Z

g N
=
CrossPassword %

theplaz, jwang7, mflores
6.858 Project
12/12/2012

Could you somehow prove you know the
password without directly entering it?

Let’s say your password is -
tennis ball

What color is it?

green
What shape is it?

round

Could we enter those instead?

Introducing

CrossPassword

Demo

Password: abc

Let’s say your password is
tennis ball

What color is it?

green
What shape is it?
round

Sound Familiar?

With enough questions answered,
you can guess the password.

Let’s say your password is
tennis ball

What color is it?
green blue red black

yellow orange
What shape is it? round rectangular

triangular none

Limited answers can lead
to brute force attacks.

CrossPassword: How to fix it?

* Increase bits of entropy in the response
* Rate limit password attempts

* Increase usability/decrease time to log in
o Stripe the direction currently looking at

Many tradeoffs!

CrossPassword: Novel Password Systems %P
Where Enter Derivation of Password
instead of Actual Password

6.858 Final Project

Michael Plasmeier <theplaz>
Jonathan Wang <jwang7>
Miguel Flores <mflores>

Motivation

The problem with many password systems is that users must type their entire, full password each time
they log on. This makes the password vulnerable to key logging and interception during transmission.

We explore systems in which the user does not enter their direct password, but a derivation of the
password which changes on each log in. The user proves that he or she knows the password without
subsequently ever providing the password itself.

ING Password Keyboard

A simple example is ING Direct's PIN pad. Under ING’s system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Page 1

Description of System (Plaz)

Original Off the Grid

We were inspired by the “Off the Grid” system from the Gibson Research Corporation.' The “Off the
Grid” proposal is designed to allow users to use a personal printed paper grid to encipher the domain
name of the website they are currently on into a string of psudeo-random characters.

The Off the Grid system works entirely on the user’s side. Websites do not need to do anything to
support Off the Grid.

To use Off the Grid, the user first generates a grid from a grid-providing website such as
https://www.grc.com/offthegrid.htm. This website generates a grid using client-side scripting (ie.
JavaScript) to generate the grid on the user’s machine. The user then prints the grid onto a sheet of
letter paper. At this point the Grid is offline and thus impossible to access by malware. Asan
alternative, there is at least one application for Android which produces and stores a grid; however, the
grid is now accessible to malware on the Android phone which is able to defeat the inter-process
sandboxing.

The grid that is generated is a Latin Square. A Latin Square is an n x n array filled with n different
symbols, each occurring exactly once in each row and exactly once in each column.? The most famous
Latin Square is the popular puzzle game Sudoku. (Note however, that we do not divide up the grid into
9 smaller 3x3 mini-squares in which each symbol must be unique). For example, here is a 11x11 Latin
Square with 11 alphabetic characters:

glefla | m|jo|n |z [k |i |[r|c
k |a|n|c |m|z |o|r |g|i |e
n|lkilcl|z|a|m|r |g|lo]e]i

z |lof|i |a|n]|g|e|c|r |k |m
m|r |z |[n|g|a |k |i |e|c|o
alglel|i |z |r|njJo|c | m|k
rfc|g |k |e|]i |m{n]|z |o]|a
e|n|klg|i |of|lc |z |m|a]|r

i Im|o e |r |c|gla|k|n |k
cli|rjolJk|]e|a|m|n |z |g
oz |mjfr |c |k |i |e]a|g|n

Figure 2 An 11x11 Latin Square; normally 26x26, but reduced in size here to save space.

Once the user has a grid, they use the grid to create or change the password for each website. The Off
the Grid specification has a number of variants, but we will use the base variant described on the GRC
website.

In the Off the Grid specification, the user traces the name of the website twice to provide additional
entropy. In the start of the first phase, the user always starts along the first row of the grid.

! https://www.grc.com/offthegrid.htm and associated pages. Is still marked as “Work in Progress;” Retrieved
12/2/2012
: http://en.wikipedia.org/wiki/Latin_square

Page 2

Start 4 b—-—d—f»a

oo alo

O ||
L IolO

P P

Figure 3

The user then traces out the first 6 characters of the domain name. 6 characters was chosen by the
author to provide a 12 character password, which the author chose to balance ease of use with entropy.

Again, a user may choose their own scheme. The user alternates between looking horizontally and
vertically.

Start=—> e>a |m|o|n |z |k |i |r|c
k la|dq|c |m|z |[o]|r [g|i |e
nlki|dq|z|a|m|r |g|lo|e|i
z lolil|la|n|gle|c|r |k [m
m|r |4 |n|g|a|k|i |e|c]|o
a|g|qg|i |z |r |njo|c |m|k
r{cldlk |e|i |m|n|z>0 |a
e n[Hlgliofc|z [M|lg]r
i [m|dle|r |c|gla]|} |[n]|k
c|i |[W|o|k|el|la|m|n |z |g
0|z |mr—ToTkTrT=>a |g |n

Figure 4

In the second phase, the user starts at the character that they ended with at the end of Phase 1. The
user then two more characters from the grid in the same direction of travel. The user then appends
those two characters to their password.

b a |c
—-1ac B |0 |

d c |3

c d | b

Figure 5 The user arrives at c traveling to the right. The user appends the next two characters “bd” to
their password, and then continues up/down from the last character they read “d”.

The user wraps around if their characters go off the grid.

b |[d |a |c
——@---c b [
4 |b |c |a
¢ |a |d |b
T
A4

Page 3

Figure 6 The user arrives at b traveling to the right. The user appends the next two characters to their
password, wrapping around if they go off the edge of the grid. Here those characters are “da”. The
user then continues up/down from the last character “a”.

For example here is Phase 2 of our Amazon example.

— l}_iﬂc.. o z.- L kJi lr.le
k la [n|c |m olr |g|i|e
Wilklclz[alm]|r [g[o[e[i
g Jo|l |a|n|gle|c|r |k|m

r|lz|nilg k |i |e|c |o

i w> o |8 Bk
r le g |k |e min|z [¢]a
e(njkijgli |d|c |z |m dy r
i |m|o|e |r] alek—n |k
c|i |r|o|k|e|a|[m|n g
0 |z |m]r |c |k]i |e]|a n

Figure 7 Phase 2 of Off the Grid. The password is “gaznegmacmzg”

Here are Phase 1 and Phase 2.

—> [E [F [a [l

a ® z |k |i |r|c

K |a|n|c|m ol|r |g|i |e
k |Jc |z |a|m]|r |[g |o|e |i

2 Jo|il|a|n|glefc|r |k |m
rlz|ni|g |3 |k]|]i |e]|c|o

3 € t Z H>b E k

r lc|g |k |e min|z:é |a
e |n|k|gl|i|®d]|clz |m r
i |m|lo|e |r B |2 FRekFn [k
cli |r|lo|k|e|a|m]|n g
e e e mn i e

Figure 8 Phase 1 and 2 of Off the Grid.

To log in, the user retraces exactly the same steps as when creating a password. This means the
password is exactly the same for each domain. This is an obvious requirement for a system designed to
fit within the existing password infrastructure. However, we wanted to explore ideas in which the user
does not enter the same password each time.

CrossPassword

We wanted to design a system similar to the Off the Grid system, but where the password the user
transmits over the network is different each time. With this system, the website presents the user with
a grid and the user enters only a deviation of their password.

When the user creates an account, he provides his or her password to the webserver. The user may use
characters from the lower case Latin alphabet [a...z]. The password may not have consecutive
repeating characters, for example, “aardvark”. The password is stored on the server such that the plain
text can be accessed in order to verify the trace.

Page 4

When the user logs in, the server randomly generates a 26x26 Latin square with the characters [a...z]
called the Grid. The server also randomly selects a start row or column called the start location. The
server transmits this Grid to the user. The Grid and the start location are unique for each log in. The
server stores the Grid and start location in temporary state and provides a pointer to this state called
the token to the user. The user’s browser returns the token to the server on each log in attempt.

These are transmitted to the user. The user then visually traces out his or her password on the grid,
alternating between rows and columns. For example, the user would locate the first letter of their
password on the start row or column. The user would then look for the next letter of his or her
password in either the column (if the start was a row) or row (if the start was a column) that contained
the user’s first character. The user would then continue alternating for the length of their password.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
This is called the trace of the password. The trace and the token are sent back to the server.

The server verifies that the trace by replaying the trace and making sure the password letters fit within

the code. Changed the description to fit the code

The server will only accept 2 traces per token. If a user guesses incorrectly twice, the server will present
the user with a new Grid and Start Location. The server will lock the account s
four incorrect tries until the user completes an email loop. not currently in code

Page 5

Example: entering the password Amazon with the 5™ column as the start row/column. The grid as well

as the start row/column are randomly generated be the server for each log in.
Start

glt|n|a l[el iy |0 ue e 2] (@B R et re s fedt Y lg bl
s |qg|lwl|c p|f [a|t |d Jeab it Ly ok e lp by ligele | Lulkelr |2 4l 1 h.| b
L e illamlic] ek ian] Gl 9 { b o |8 |4 J8 e lwleg]l |K|E]2
hly|[d|r |m|lc|x |k |v|f|b|s|i|e|p|lu|o|w]|]j |gl|lz|n]|l] |gla]|t
vik|z |t |x|b]|]j |o|lr|p|w]|]i|u|ls|a|m|g|n|l |d|f]|]g|h|le]y]|c
k |wly|b|g|n|u]|l |s|e]|i|r|o|lc|g|z|f |x|h|v|d|a|[m|t|p]|ij
elg |l |y|[§]i|z|h|gq|lo|lp|f|lc|w|b|v | kla|s|m|u|x|n|r|[]j|d
dib|f |w|d |y |t|e|x|a|c|g|p|i |m{n|u|r|[k|h]|l |j|s|]o|g]|V
nlofgli [§lag|p|rjulv |l [w|d]|f]|c]|j |[x|m|t|k|a|e|y]|b|z|h
plbhla s [®pld|r{x |wll |v|t|in]o|[k i fjzlglelely|inlell |f |m
ol |j |x * s|{vi|z|a|m|r|y|lw|n|g|h|d|[b]|i |c|g|t|k]|f]e]|u
b|j|[t]|h & aly|nf|ol|i|gl|le|x|rful|l |p|f|v|w|m|z |c]|s |d]|k
gls|kle|yYy|u|d|[m|z |x|o|lh|a|t]|y |w|c]|] |bl|lg]|r|i|p]|l |n]|f
L\ e Yot s [u |y |x |v]a|n|l |q
afeTerv|(d || |g|b|p|r|y|k]|]j |z |w]|c]i h|n|f g |s |t |x|m|o
z|la|m|o|f [h]i |c|b|g|k|n|fg|ulj |r|v]|y]|ly|ple]|l |[d|lw]|x]|s
ul|x|s|jle|lk|b]ly |l |n|t]|z|h|g]|i |d]Tr gla|c|[f |w|m|o]|p
x|dfplz|ulj |l |glt]s]|n|c|m|lg|[f|y|le|k|w]i |o|h]|v|a]|b]r
ylclilaglr]|p|n|f|m|lh|s |l [g]|d|t|x]|j|é|z]|b|lv|w|e|k]|u]la
fli Iv|ldlolr|sialylz]|} |Ix]l |kit|lg]|hb gin|t |[mjulp|lw]|e
t | plaln|w|v|e|lulgly|[flo]|r]all [k]s|¥Y|m j|h|d|b|c|i |x
wim|r [g|l Jo|lh|j |k|b|la|d|s|v]|e+|i |[f|lu|n|p|x|z|c]|y
i v b |m|h|g|f|]ifc|d|z|a|k]|l [¥|s|w|e|o|t|p|y|aq|u]|r|n
rlflecll |Jylzlg|v]i|w|m|p|t|h|w]elglulalx]|b|k]|o[d][s i
c|r|hjuja|x|w|p|n|gle|b]|f |[m|s [t]|l |y|d]|z]|j |o]|i |v]|k]|g
mjujo|p|j |t]k[d|f]c|h|gl|le|yl|lz|a]|n]|l [x]|s]|i|b]|r|q|v]|w

The resulting trace would be: Down, Left, Up, Right, Down, Left, Down.

Figure 9 A trace of the password “daisies”

Modified CrossPassword

We also explored a modified version of this system designed to increase usability. This system uses a

13x13 grid, instead of a 26x26 grid to make it easier for users to visually scan the grid.

In addition, we no longer generate a Latin Square. Instead, we first randomly distribute the user’s

password in an empty grid. We first randomly select either a row or a column from our 26 choices. We

then place the first letter somewhere in that row or column. For this example, say we select the 3"

d

column to start with. We then place the “a” somewhere in this first column. We then place the second

Page 6

letter “m” in the row in which we have placed the first letter. We continue this scheme until the
password has been placed.

sure it is th'e;é'é'me from a blfb'bability perspective?

For example:

Figure 10

We then randomly fill in the remaining letters on the grid from the set of 26 lower case letters. We
make sure each row and column only contains each letter only once by backtracking. For each spot we
first start with the entire set [a...z]. We then remove all letters that are currently in the same row and
column that we are in. We then randomly select a character from the remaining set. Currently not built
in code this Waﬁ

This is not a Latin Square because we have a 13x13 Grid, but 26 possible characters.

Probabilistic Analysis (Miguel)

We evaluate the security of the three systems described above using a probability analysis. In
eavesdropping on a user, an adversary may obtain the user’s Square board, the password or trace, or
both, the board and the password / trace. Given each of these pieces of information we see how the
user may be compromised.

Original Off the Grid
The Off the Grid system offers users a unique password given the domain name. The user simply traces
the domain name in the two phases described above.

The first attack may occur if an adversary obtains a user’s grid. This is usually held on hand by the user,
and may occur if their wallet is stolen.

Page 7

gleila I'miesnlz |¥ |t |r |e
k |la|n|c|mjz [of|r |g|i |e
n|kjlclz|a|m|r g |lo|e|i
z |o|i |a|n|gle|c|r |k |m
m|r |z |n|gl|a|k|i |[e]|c|o
algl|le|i |z |r|njofc |[m|Kk
r|lc|gl|kl|e]|]i |m|[n|z |o]a
e |n |k |gl|i |ojc|z |m|a]|Tr
i Im|o|e|r |c|g|a |k |n |k
c|i |r|lolk|ela|m|n |z |Eg
o|lz |m|r |c |k |i |[e|a|g]|n
Figure 9 Blank User’s Grid

If an attacker is able to retrieve the grid of a user, he obtains no information about the user’s password.
If the attacker does not know of the Off the Grid system, the grid will offer no information nor clue to
the user’s password. If however, the attacker does know the Off the Grid protocol and that the user
uses it, then all passwords are compromised because the attacker can then follow the two phases
described in order to get the password for any site such as Amazon.com.

If an attacker instead obtains the user’s password for a single site, only interactions with that website
are compromised. In the description described above, the password “gaznegmacmzg” is obtained by
following the two phases of the Off the Grid system for Amazon. If the attacker obtains
“gaznegmacmzg,” unless he knows which website it belongs to, is useless, otherwise he can use it to log
in the user’s account for Amazon.

However the attacker obtains no information regarding other passwords for other website domains. In
order to do so, the user must guess the grid that created the password. Given the Off the Grid
(!)zn

T
nn?
9.337 x 10*2% boards for n = 26. Given this, there is still little information obtained to gaining the
password information for any other site.

Implementation described, there are at least

boards for an n-sized board, which leads to at least

Lastly, if an attacker retrieves the password and the grid, the user is equally as susceptible to the attacks
described in (1). The adversary can now trace out the password in order to determine the website the
password belongs to, and if he knows of the Off the Grid system, can retrieve the password for all other
websites.

The safety of this implementation relies on how much the user secures the grid. If the grid is stolen,
then all of the user’s passwords are compromised.

CrossPassword

Our CrossPassword implementation relies on the security of the Latin Square. Since each password
must be made up of only lower case letters and no-repeating characters, the password can be searched
using a 26 X 26 Latin Square as specified above, resulting in at least 9.337 x 10%2¢ possible grids.

If the attacker gains access to the board the user sees along with the start location, the attacker never
gains any information on the password of the user even after multiple board configurations are given.
Each board will always contain all 26 letters, and no information is ever gained about the password.

Page 8

If the attacker instead gains only access to the user’s key-logs, thus obtaining their input, they can never
retrieve the password. The password will be impossible to obtain from only getting “up, right, up, left,
down” and so on. The only information gained is the length of the password which is 1-to-1 with the
trace. Even with multiple traces, the password will be impossible to obtain without the trace. An
adversary can then do a brute-force guess on the board because he knows the length of the password.
A password presented as Down, Right, Up, Right, Up, Left we know will give us a password of length 6.
Additionally, we know that the first element is given through the start-location on the board. We can
use the fact that the direction changes each turn, thus Left and Right will always be followed by Up or
Down. Thusthisgivesusal X2 X2 X2 X2 X 2 = 32 possible combinations which we can then
brute force. Thus after finding out the length of a password through the trace, we know there are then
2171 possibilities given, I, the length of the password.

Brute force is reduced by the frequency of the board change and
guessing a specific user’s password of

ut. So there is a chance of

(31 30 31 30) 129

—|—*k— %k — % —]| =

32 31 32 31 °

This means an attacker will likely figure out the password of about every ninth user if the attacker is able
to use a range of IP addresses, since IP blocking.

Lastly, the most important case is when an attacker gains information to the board, the start-location,
and the trace. To begin with,

Brute Force
| would add subheadings

Recover Password
However it is much more difficult for the attacker to backsolve the password back from the grid. Move
content from above here

I would at least try to discuss how you know can’t be in certain rows, to show that its difficult
Bound on information needed

2 character password example

Modified CrossPassword

While our CrossPassword implementation relies on the security of the Latin Square, the modified
version is no longer a Latin Square having a reduced size, 13 X 13, but still using all 26 letters as
possibilities.

Here the adversary does not even have to attempt to log in; they can just look at a number of boards
Determine by elimination which character is never missing (and plus frequent:y énal'y:'s'is as a bonus)
Use past boards; go letter by letter

In 10 refreshes, chance of getting the password is (calculation)

Page S

Unlike our previous implementation, the adversary gains information looking at multiple boards over
time. One board offers no information about what letters are in the password, but using multiple
boards, an adversary may use the boards to determine which letters are in the password. Under some
password configurations, one of the letters of the alphabet may not appear in the grid. If we continue
onwards with this, we will eliminate all letters that are not in the password. Itis then a matter of
determining the length of the password and see what are plausible passwords given the letters.

Similar to our Original CrossPassword implementation, the adversary gains no information when
multiple traces are presented other than the length of the password. They can then brute force the
password knowing there are 2!~ possible combinations.

Lastly, there is the paossibility of having all information of the board, the start-location, and the trace.

Why only 4 random grids?

Other Factors (Plaz)

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.?

Improvements to Criteria

Resilient-to-Physical Observations Category

We think that the Resilient-to-Physical Observations category should be split in two: casual observation
and video observation. Casual observation is if an attacker is just able to watch the user enter their
password once. This is feasible for short passwords and/or if the user types slow. An attacker can see
which keys are hit on the keyboard. This is especially true if the user types slowly, has a short, and/or
easily remember-able password.

However, the attacker seeing the user trace out the password on the grid once would have trouble
remembering the entire grid, preventing the total loss of the password scheme. For that specific
domain name, the attacker would have trouble remembering the sequence of 12 random characters,
providing some additional security.

Video observation is defined as the attacker having the full ability to carefully watch and study users’
movements because the attacker is able to pause and replay the user’s log in actions.

Resilient-to-Internal Observation Category

We propose breaking up the Resilient-to-Internal Observation category into: internal observation and

wire observation. We feel that splitting these categories allows us to elaborate on the strength of the
designs.

Must Seek Out
Must the user seek out the new password system? Or does the server require that the user use it?

3 http://css.csail.mit.edu/6.858/2012/readings/passwords.pdf

Page 10

Denial of Service-able

An active attacker can cause a denial-of-service attack by submitting a sufficient quantity of incorrect
passwords such that the system locks the user out.

Original Off the Grid

Usability benefits

L.

M oo

Memorywise-Effortless YES There are no secrets to be remembered in the base case. The
description mentions a more advanced case, where the user could start at a different location,
but we are assuming the base case where the user automatically selects the same location.
Scalable-for-Users YES The user only needs one grid for all of their sites.

Nothing-to-Carry NO User must carry 1 sheet of paper

Physically-Effortless NO The user must trace out their password on paper

Easy-to-Learn NO Using the same rubric as the paper does, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on the grid twice is easy to mess up.
Easy-Recovery-from-Loss KINDA If the user lost their Grid, they must have another copy of their
Grid, or the key used to generate that Grid. A user can always reset their passwords on each
site. The paper rates generic passwords as Easy-Recovery-from-Loss YES.

Deployability benefit

1

6.

Accessible KINDA The user needs to be sighted to use this scheme. There could conceivably be
a braille-based grid, but not at this moment.

Negligible-Cost-per-User YES The user is required to print one sheet of paper which costs < 05
cents

Server-Compatibility YES One of the primary benefits of this scheme is that it is compatible with
existing servers which use passwords

Browser-Compatibility YES No special browser is needed

Mature KINDA The scheme has been published for some length of time; at least one Android
app exists with support.

Non-Proprietary YES The scheme is published fully.

Security benefits

1.

Resilient-to-Physical Observations-Casual KINDA The attacker would have to remember 12
random characters in order to observe the user’s password for that site.

With just a casual observation there is no way the attacker can memorize the entire Grid.
Resilient-to-Physical Observations-Video NO If the attacker can take a picture of the Grid, for
example, a video camera over the shoulder, then the attacker would have access to all of the
users’ passwords assuming the user is using the standard Of the Grid scheme.
Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Page 11

4. Resilient-to-Throttled-Guessing YES The user’s password is 12 random alphanumeric
characters. This means there are 262 possible passwords.

5. Resilient-to-Unthrottled-Guessing YES There are 262 possible passwords.

6. Resilient-to-Internal-Observation NO Off the Grid reduces to a normal 12 character password
unique for each domain. This password is the same for each log in.

7. Resilient-to-Wire-Observation KINDA The password is the same for each log in; it must be
protected with some additional protection (such as SSL) in transit.

8. Resilient-to-Leaks-from-Other-Verifiers YES Ideally the server should be hashing the password.
Regardless, each domain has a unique password so leaking one password does not give one
feasible information about another domains’ password.

9. Resilient-to-Phishing NO If the attacker is able to spoof the domain name of the site, then the
user will follow the same trace on the grid, providing the attacker their password.

10. Resilient-to-Theft NO! If the attacker gets your grid, it's game over, assuming you are sticking to
the base Off the Grid algorithm. The author suggests that you make small personal tweaks to
the algorithm in order to add resilience to theft.

11. No-Trusted-Third-Party YES The third party provides the code to generate the grid. However,
that code runs in JavaScript on your local computer, allowing you to verify that the code is
actually generating a unique grid and is not sending a copy to the third party. One could also
write ones’ own implementation of the Grid generation scheme to be sure.

12. Requires-Explicit-Consent YES The user must trace their password on the grid and then enter it
onto the computer.

13. Unlinkable YES Since each user’s Grid is so different, there is no feasible way to link users using
the same scheme.

14. Denial-of-Service-able NO This is the same as normal passwords. Under a normal password
system, services generally do not add a lockout provision.

CrossPassword

Goal: prevent from seeing over wire

Note all are for the actual log in experience. This analysis does not consider creating a password; the
process of which is similar to traditional password schemes.

Usability benefits

1.

DRSSOy (i Y

Memorywise-Effortless NO The user must remember a password to use CrossPassword. Ideally,
that password should be different between sites. Since we only allow lowercase alphabetic
characters without repeating letters, we may prevent users from using the same password on a
site running CrossPassword than the user uses on all of their sites.

Scalable-for-Users NO Ideally the user has a different password for each site

Nothing-to-Carry YES There is nothing to carry

Physically-Effortless NO The user must trace out their password on-screen

Easy-to-Learn NO Using the same rubric as the paper, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on screen is easy to mess up
Easy-Recovery-from-Loss YES CrossPassword falls back on the same recovery mechanisms as
traditional password sites, which is rated YES in the paper.

Page 12

Deployability henefit

i 1

o @ B wiho

Accessible KINDA A screen reader would be tedious to use.

Negligible-Cost-per-User YES There is no cost.

Server-Compatibility NO The server must be provisioned with a new authentication library.
Browser-Compatibility YES No special browser is needed

Mature NO We are proposing it here

Non-Proprietary YES The scheme is published fully.

Security benefits

1.

10.
11.
12,

13.
14.

Resilient-to-Physical Observations-Casual POSSIBLY If the attacker could see the screen and the
keyboard they could not uncover the user’s password, unless the user traces the password with
their finger.

Resilient-to-Physical Observations-Video POSSIBLY Even with being able to study the user as
they enter their password, the attacker would not be able to recover a user’s password, unless
the user traces the password with their finger. This is one of the major design goals of this
system.

Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Resilient-to-Throttled-Guessing YES An attacker can only submit two tracers per grid/start
location. After two tries, the server will issue a new grid. The user then gets two more tries at a
trace submission before the account is locked until an email loop is performed.
Resilient-to-Unthrottled-Guessing NO TBD

Resilient-to-Internal-Observation QUASI This is the major design goal of this system. An
attackerneeds __ observations of both the grid, Start Location, and trace in order to crack
the password. Less if the user picks a dictionary word. Quasi since report says if we need 20-30.
Resilient-to-Wire-Observation QUASI This is the same as internal, except if additional transport
level security is added (ie SSL/TLS).

Resilient-to-Leaks-from-Other-Verifiers NO The password is stored in plain text on the serverin
order for the server to verify the password. This is not good practice.

Resilient-to-Phishing YES An attacker with just one trace could not submit that trace to another
server, because the grid is randomized each time.

Resilient-to-Theft YES There is nothing to steal

No-Trusted-Third-Party YES There are no 3" parties involved

Requires-Explicit-Consent YES The user must trace their password on the computer and enter
the trace.

Unlinkable YES Like passwords, this scheme is unlinkable.

Denial-of-Service-able YES An attacker can lock out an account by trying an incorrect password
4 times.

Modified CrossPassword

The modified CrossPassword is more Efficient-to-Use and has less errors (Infrequent-Errors), however
at the cost of an decreased Resilient-to-Physical Observations-Casual, Resilient-to-Physical
Observations-Video, Resilient-to-Throttled-Guessing , Resilient-to-Unthrottled-Guessing, Resilient-to-

Page 13

Internal Observation, and Resilient-to-Phishing. However, all criteria are still the same according to the

rubric. This is because the rubric focuses on theoretical possibility, and not the degree of.

Modified CrossPassword is even more Denial-of-Service-able. An attacker can now launch a Denial of
Service attack simply by displaying the grid, so we need to put in place a more aggressive lock out policy

which restricts not only the number of guesses, but the number of grids which are displayed.

Comparison Table

§ T3

% 5= E 2 %’ E i

w T 2 o S P o

oV o 3 =0 2
Memorywise-effortless | Yes No No
Scalable for users. Yes No No
Nothing-to-carry No Yes Yes
Physically-effortless No No No
Easy-to-Learn No No No
Efficient-to-Use No No No (More)
Infrequent-Errors No No No (More)
Easy-Recovery-from- Kinda Yes Yes
Loss
Accessible Kinda Kinda Kinda
Negligible-Cost-per- Yes Yes Yes
User
Server-Compatibility Yes No No
Browser-Compatibility | Yes Yes Yes
Mature Kinda No No
Non-Proprietary Yes Yes Yes
Resilient-to-Physical Kinda Possibly Possibly
Observations-Casual (Less)
Resilient-to-Physical No Possibly Possibly
Observations-Video (Less)
Resilient-to-Targeted- Yes Yes Yes
Impersonation
Resilient-to-Throttled- | Yes Yes Yes (Less)
Guessing
Resilient-to- Yes No No (Less)
Unthrottled-Guessing
Resilient-to-Internal- No Quasi Quasi
Observation (Less)
Resilient-to-Wire- Kinda Quasi Quasi
Observation
Resilient-to-Leaks- Yes No No
from-Other-Verifiers
Resilient-to-Phishing No Yes Yes (Less)

Page 14

Resilient-to-Theft No! Yes Yes
No-Trusted-Third-Party | Yes Yes Yes
Requires-Explicit- Yes Yes Yes
Consent

Unlinkable Yes Yes Yes
Denial-of-Service-able | No Yes Yes (More)

Usability (Plaz)

The simpler a system is, the more it will be used.

This section attempts to usability of grid systems.® The three core tenants of usability are: learnability,
efficiency, and safety.

Learnability

Discoverability

CrossPassword is more discoverable than Off the Grid because the website you are creating an account
with can let you know that the website uses CrossPassword. It is inherently discoverable. Off the Grid
requires that you hear about the system in some way. Websites can still advise you of the presence of
Off the Grid, but the Off the Grid system, as currently designed and designated, is not inherently
discoverable.

Training

CrossPassword can be taught to users when they pick their password for the site. For example, sites
could show users a video of how to use CrossPassword. Sites could also provide an interactive training
tool using CrossPassword that uses JavaScript and HTML 5 to show the user how to trace their actual
password. Using the actual password would reveal the user’s password to an attacker which can see a
screen, but not a keyboard. Thus it should not be used in a public room. However, it would not change
other security aspects of registration versus traditional password schemes because the password is still
stored in the DOM.

Mental Model

We believe that once explained, it is easy to form a mental model of the system. The system asks you to
solve a puzzle and you solve it. In addition, it is clear that this prevents you from sending your password
over the wire for subsequent log ins. In addition, each log in is consistent with the rules of the system
and ones’ mental model of the system.

Efficiency

CrossPassword is more natural to use than Off the Grid because one can trace the system on the screen
as one enters the keyboard traces. We feel that expert users of CrossPassword could use the arrow keys
without taking their eyes off the screen. This could make password entry quite fast.

* Material from MIT’s 6.813 User Interface classes by Prof. Rob Miller Spring 2012.

Page 15

This is easier than Off the Grid which requires users to trace their password on the grid twice. Off the
Grid also requires users to overshoot and enter two characters after each character in their password in
Phase 2.

Chunking
Research has shown that people can remember 7 2 pieces of information at once.” CrossPassword
requires that the user only remember one password.

Casual observation; 12 not possible

Fitts’s Law

Fitts's Law is an estimate of the time it takes someone to point to an object or steer among objects.®
The rule as proposed by Scott MacKenzie is as follows:’

D
T=a+blog,(1+ W)
where:

e Tisthe average time taken to complete the movement

e arepresents reaction time to start moving

e b stands for the speed of movement

¢ Disthe distance from the starting point to the center of the target.

e Wi is the width of the target measured along the axis of motion. W can also be thought
of as the allowed error tolerance in the final position, since the final point of the motion
must fall within "/, of the target's center.

We can use a more specific form to study steering tasks, the time to move your hand through a tunnel
of length D and width S:

T +b (D)
=0a e

S
The index of difficulty is now linear.

We can use this to measure the amount of time it takes someone to trace through the grid, assuming
they trace the grid with their finger or mouse. Ideally the user should not do that to maintain Resilient-
to-Physical Observations-Casual and Resilient-to-Physical Observations-Video.

®De Groot, A. D., Thought and choice in chess, 1965

® Paul M. Fitts (1954). The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, volume 47, number 6, June 1954, pp. 381-391.

7 1. Scott MacKenzie and William A. S. Buxton (1992). Extending Fitts' law to two-dimensional tasks. Proceedings of
ACM CHI 1992 Conference on Human Factors in Computing Systems, pp. 219-226.
http://doi.acm.org/10.1145/142750.142794

Page 16

Auto-Solver

It is possible for there to be a browser-based auto-solver for CrossPassword grids. This software would
know the user’s password and use that to automatically solve grid challenges. This would break
Resilient-to-Internal Observation because the user’s system would now need the password stored.
However the system would still meet Resilient-to-Wire-Observation QUASI designation even without
additional transport level security. It receives a Quasi designation because multiple successful log in
attempts must be witnessed before the attacker has enough information to discover the password. It
would do a great deal for usability, flipping Physically-Effortless, Easy-to-Learn, Efficient-to-Use, and
Infrequent-Errors all to yes. In addition Accessibility would greatly improve.

Code (Jwang)

Anything we want to write here?

How do we generate a Latin Square?

Conclusion (Plaz)
CrossPassword is not recommended as a password system. Modified CrossPassword turned out to be
even weaker than we first imagined.

We controlled for the wrong thing. The password had a lot of information. However, the item which we
return to the server has very little information. The Shannon entropy of CrossPassword is (I — 1) where
l is the number of characters in the password. This makes it easy to brute force.

For example, say we take a password and XOR the characters together to get 1 bit which is either yes or
no. We transmit very little meaningful information of the password, but that very fact makes it easy for
the attacker to guess!

We showed that trading off some factors in The Quest to Replace Passwords: A Framework for
Comparative Evaluation of Web Authentication Schemes produces different outcomes in security.
Factors cannot be traded off one-for-one. The factors are not evenly weighted.

Page 17

CW PM\/M{ | Z/ﬂ

Uk fidh o poy By

AM\ H{ Em%/o CMJ\:&EW)
Fux Wm e ale
E‘X U]: ko k%@%)ob

——-—_———""/_.—

Nl % {sz (i o ke
0 N 4 db gp it hady mote T Gy~

/__/

Q(Jo ' n miohe
Lo %L
b ool gt

Al 'J@NW’E ~llwe e d‘é
4l oy

@Ok AT
Voo wip § o o Oy df-.

OOQS WM”‘ﬂ (/RMJQ 5("“@ Jﬁfﬂz wod B St fue’

l_‘—'—_/"

s ollid e ’L/‘%
el i

and o %”W @//Q/)
@k/@%mg y A - .
- O\EW o gids OF g
e J\aa/t Jw (Clay Px,ssmf
5 il e Cley|

™ o thadis o e
L\/QW{’\ ({at’,@/# /\a@d 'y 4@6/

N [2rs
Cﬂ‘ow d @MHZ) 6\LMJM5/’
(L\/LT o W5 o« qude Section

\/\/Q C@/H any Mg Cf/l)nﬂl ty gfe@@

Exady o bug ot cald b oo B o
(\ KDMWL_‘

0 gt e ok o G
O o dgal atinon bl feseet)

O(M Lol Ma post Cag l)m@
}:vjf “LT\\LS lus \Jr[o% \,/ {{(/Wy

e Sppt o - Yl chaliey

%Ml Jﬂ\\ML iz d/b)u}r rh[% l (/
(/Wk\, O {W’b«% P%&ﬁ ow

U@U{%@ Ohfm,/jdgf/)
o how des That iy {M//

b, go}ﬁg goil
| Pfa/w Jes—statet- [uéﬂ/)

‘f%"fl{"o ‘i’ﬂ 51@«/ &'Wé)ﬂw ‘]LB c/(/cf
Bttty s

fo

G valle ases 4
P Can s gt o aad
{4 leas

d d daet ‘-m;glwtgéf Gl
M (ke mlz by {

@
Iy cm/
3
o st

0¢
e

se,

{
e
.
widg.

(e

; (5

I
0
b
z/g %
ol
I
s
I

U

50 it far b :’iz_@

bl
50 é ;5 Gy 564//'01@ 14«0(0/~~\
M
1 f- 1’

Tno 1 ol erodg by g b= 104,
T ol bt s o o all G e

\/O‘/ b W@én@,ﬂﬁ

| |
tie I Ay

[

1) - [gm(Q/

L g W w/d [o peld p b
M‘(Ol\ /5 T 60601

~

4

O\‘\ N dw WM %o %7((

\ UV\NJ‘(‘WJ

T:dw@

LAY 1{3{,
Mk oy b suall T fogh

Y

%}{a plr 9%

- WIBB gec PV {04

;i 33@ My R UcF
60 (OO S +W S,M(

7 Bﬂts P 2

D192 s

—
Wt D,§ il ,
Lyge doawd mitfe S ol nng
D' CNL‘ lny
(5 wie

Ok duh _g

0

¢
ot
Y

13 7&{\ e o uet T pf.

Ctﬂmk'iﬁm@ﬁ M«(ﬁ%&f&%lf%y%p

(\éWi W W vi’fti)fflﬁg %J‘@)
O wall -

/_\

oo g
i’%z(ZQ) :
4,7
Ut Y {0+ (U
ol Y

O\ Aol okt T wguln

hllm P(m (andin lét%o(b matbes DI/U)
- I

075

éo P(ﬂ\ (0ad s Sty mafche)} @7\/ cmw

B L

E}“ e gt dy %{{ T hatth
3 %ﬁ’z
0 3?-3%(-%(4]1
(M ash b 0”"“)

9
N@ Q/@ (0 9Y, mades & P G -~)
ity e

(M/

It o po b(]DI]V mWﬁ o @ /

(0({1 ﬁN& matth A (dadon 6%/

)

40

CrossPassword: Novel Password Systems W
Where Enter Derivation of Password
instead of Actual Password

6.858 Final Project

Michael Plasmeier <theplaz>
Jonathan Wang <jwang7>
Miguel Flores <mflores>

Motivation

The problem with many password systems is that users must type their entire, full password each time

they log on. This makes the password vulnerable to key logging, shoulder surfing, and interception
during transmission.

We explore systems in which the user does not enter their direct password, but a derivation of the
password which changes on each log in. The user proves that he or she knows the password without
subsequently ever providing the password itself.

ING Password Keyboard

A simple example is ING Direct's PIN pad. Under ING’s system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Answering Questions
One could answer questions about the password, instead of inputting the password itself. For example,
say a user’s password is “tennis ball.” The system could prompt “what color is it?” The user would

Page 1

respond “green.” The next time the system could ask “what shape is it?” The user would respond
“round.” This way the user only transmits their actual object during registration, but never during log
in.

Hashing a Response
In an ideal world, the user could prove to the server that it knew the secret by producing a cryptographic
hash of the user’s secret combined with a server-selected nonce.

Hash(Secretyser, Nonceseryer)

However, people are not particularly good at being able to calculate cryptographic hashes in their heads,
so we need to seek an alternate system.

Inspiration

Original Off the Grid

We were inspired by the “Off the Grid” system from the Gibson Research Corporation." The “Off the
Grid” proposal is designed to allow users to use a personal printed paper grid to encipher the domain
name of the website they are currently on into a string of psudeo-random characters.

The Off the Grid system works entirely on the user’s side. Websites do not need to do anything to
support Off the Grid.

To use Off the Grid, the user first generates a grid from a grid-providing website such as
https://www.grc.com/offthegrid.htm. This website generates a grid using client-side scripting (ie.
JavaScript) to generate the grid on the user’s machine. The user then prints the grid onto a sheet of
letter paper. At this point the Grid is offline and thus impossible to access by malware. As an
alternative, there is at least one application for Android which produces and stores a grid; however, the
grid is now accessible to malware on the Android phone which is able to defeat the inter-process
sandboxing.

The grid that is generated is a Latin Square. A Latin Square is an n x n array filled with n different
symbols, each occurring exactly once in each row and exactly once in each column.” The most famous
Latin Square is the popular puzzle game Sudoku. (Note however, that we do not divide up the grid into
9 smaller 3x3 mini-squares in which each symbol must be unique). For example, here is a 11x11 Latin
Square with 11 alphabetic characters: Normally, a 26x26 Latin Square is used.

—ln s |l

I N3 |~ |
S |Oo|x | |

ol [N|O 3
| |(w 3|©
o (o 3 N |3
=|m | |o|N
= |0 k| | x
M |[— |O ;|
O (x| |= |
o|g|T|m (o

N

! https://www.grc.com/offthegrid.htm and associated pages. Is still marked as “Work in Progress;” Retrieved
12/2/2012
? http://en.wikipedia.org/wiki/Latin_square

Page 2

alglel|i |z |r |njo|c |m]|k
rfclgl|klel|i |m|[n|z |o|a
e|n|k|g|i |o|c |z |m|a]|r
i Imjo|e |r |c|g|a|k|n |k
c|i |r|o|k|el|la|m|n|z |g
oflz |mi|r |c |k |i e la|g|n

Figure 2 An 11x11 Latin Square; normally 26x26, but reduced in size here to save space.

Once the user has a grid, they use the grid to create or change the password for each website. The Off
the Grid specification has a number of variants, but we will use the base variant described on the GRC
website. The author recommends that each user adopt slight variations to the rules in order to increase
security. To provide a consistent analysis, we assume the user ignores this suggestion.

In the Off the Grid specification, the user traces the name of the website twice to provide additional
entropy. In the start of the first phase, the user always starts along the first row of the grid.

Start =3t p—t-d—>a

C

b
b |¢
a |w

oo (a|o

a
d
c

Figure 3

The user then traces out the first 6 characters of the domain name. 6 characters was chosen by the
author to provide a 12 character password, which the author chose to balance ease of use with entropy.
Again, a user may choose their own scheme. The user alternates between looking horizontally and
vertically.

Start=>»e1e>a |m|o [n |z [k |i [r |c
k la|d|c|m|z |o|r |g|i |e
n|lk|d|z |[a|m|r |[g]o|e]i
z |lo|il|la|n|gle|c|r |k [m
m|r |4 |n|g|a |k]|i |e]|c|o
algld|i |z |r [n]Jo|c |m|k
r fc|d |k |e]i min|z>o0 |a
en|Hleglilolc|z |dlg]r
i Im|[d]e|r |[clg|a | [n]k
cl|li [W|lo |k |[e |[a |m d zZ g
0|z |m cTk—TTT=>ta |g |n

Figure 4

In the second phase, the user starts at the character that they ended with at the end of Phase 1. The
user then two more characters from the grid in the same direction of travel. The user then appends
those two characters to their password.

b |d |a |c
ceaale [HH

d |b |c [3

i

A 4

Page 3

[c [a [d [b]

Figure 5 The user arrives at c traveling to the right. The user appends the next two characters “bd” to
their password, and then continues up/down from the last character they read “d”.

The user wraps around if their characters go off the grid.

b |[d |a |c
el [

i I'bl'e | a

&' |al'd- |'b

T

v

Figure 6 The user arrives at b traveling to the right. The user appends the next two characters to their
password, wrapping around if they go off the edge of the grid. Here those characters are “da”. The
user then continues up/down from the last character “a”.

For example here is Phase 2 of our Amazon example.

—-> ll_ilk o z |k i |r |c
k la [n|c |m ol|r |gli|e
k (c |z |a|m|r |g |o|e|i
z lo|i |a|n *‘ e |c|r |k |m
r{zfni|g|a|k]|i |e]|c|o
et m>fo [E 7]k
r lclg |k |e m|nlz |¢|a
e|n|kjgli|[®]c |z |m yb r
i [m]o|e[r [E B [alektn [k
c|i |r|{o|k|e]a|m|n g
oz |m|r |c |k]|i |e|a n

Figure 7 Phase 2 of Off the Grid. The password is “gaznegmacmzg”

Here are Phase 1 and Phase 2.

—>[E

lﬂ o z [k |i |r|c
k la|nfc|m o|r |g i e
dy k lclz|a|m|r |g|o]e]i
ZloJif|a|n|gle|c|r |k |m
m|r (z |[n |g k |i |e|c|o

T > o E m | k
r lc |[g |k]e min |z-(¢ |a
e |n|klgl|i & |c |z |m r
i [m|lo e |r E a lek—tn |k
c |i |[rjolk|e|a|m]|n é g
o |z | mPr-rc-rk-rir—ted a n

Page 4

Figure 8 Phase 1 and 2 of Off the Grid.

To log in, the user retraces exactly the same steps as when creating a password. This means the
password is exactly the same for each domain. This is an obvious requirement for a system designed to
fit within the existing password infrastructure. However, we wanted to explore ideas in which the user
does not enter the same password each time.

Description of System

CrossPassword

We wanted to design a system similar to the Off the Grid system, but where the password the user
transmits over the network is different each time. With this system, the website presents the user with
a grid and the user enters only a deviation of their password.

When the user creates an account, he provides his or her password to the webserver. The user may use
characters from the lower case Latin alphabet [a...z]. The password may not have consecutive
repeating characters, for example, “aardvark” has the repeating characters “aa” so it would not be
allowed. The password is stored on the server such that the plain text can be accessed in order to verify
the trace.

When the user logs in, the server randomly generates a 26x26 Latin square with the characters [a...z]
called the Grid. The server also randomly selects a start row or column called the start location. The
server transmits this Grid to the user. The Grid and the start location are unique for each log in. The
server stores the Grid and start location in temporary state and provides a pointer to this state called
the token to the user. The user’s browser returns the token to the server on each log in attempt.

These are transmitted to the user. The user then visually traces out his or her password on the grid,
alternating between rows and columns. For example, the user would locate the first letter of their
password on the start row or column. The user would then look for the next letter of his or her
password in either the column (if the start was a row) or row (if the start was a column) that contained
the user’s first character. The user would then continue alternating between vertical and horizontal for
the length of their password.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
This is called the trace of the password. The trace and the token are sent back to the server.

The server verifies that the trace by replaying the trace and making sure the password letters match the
provided trace.

The server will only accept 2 traces per token. If a user guesses incorrectly twice, the server will present
the user with a new Grid and Start Location. The server will lock the account and the IP address after
four incorrect tries until the user completes an email loop.

Page 5

Example: entering the password Amazon with the 5" column as the start row/column. The grid as well
as the start row/column are randomly generated be the server for each log in.
Start

v

glt|n|a e |lmlwli (w|x|viz]|jld|blhlp|r|o|s|e|f |y |q]l

s|lg(lw|c|d|fla|t|d]|j |ulm|fv |[x]o]|plyl|lgle]|l |k]r |z]i |h]|b
 InlxlfF |l |mlels |elkiglely|bBlviola|d|plriwigli |h|t [2

hly |[d]r clix|k|v|f|b]|s|i|e|p|lu|o|wl|]j |gq|z]|n]|l |g|la]|t

v |k [z 1t b3 b Li ol g e biolals gelmle lald |d 1€ |6 K€ |¥.1€
k |wly |blginlul)l |s |lel]ilelo.leclglz|f|x|h|v|id]a|mlt|p|]

elg|l |y|4d|i|z|h|gqlo]|p|flc|w|lb|v]|k|la]|s |mlu|[x|n]|r|[]|d
d|{b|f|wld|y|tl|e|x]|a|lc|g|lp|i |m|njufr|{k|h]|]l |j |s|[o]|g]|V
nolioy] e AT Lgelip |6 i Pt |0 e | dit | of - [ies)oje s &- |k {a ey b [z |h
i | b |8 & lobdladalir o % o] bobae g <[e | RApTs | Zinlgries e |y Ju [g g ofF | m
ol | |x][) g | e o & loomle | sl fon g Jibe e | byl e |l bt Jk JF Je o
b|j |t |h & T A T e N - T T O A M -
gls |k|elyinldim|lz |[x|elh|lalt |y |wlelj |blg]lr]i |p|l |n]|f

% T Tk TVTw o B Tt _| By P11 f - o S(ujy |X|v]a]|n | q
a€e—ta——|d |l [g|b|p|r |y |k]|j |z |w|cl]i b n[f |gls [t]lxlmlo
2 | @ 'm]o P Ph i e |8 gtk I nda v e I'v [y lp'te | b jad [w]x|s
ulx|sl|jlelk|[bl|ly]|l |n|t|z|h]|g]|i|d|r|y|gl|la|c|[f |w|m|lo]|p
x|d|p|lz|ul|j |l |gq|t]|s|n|jc|m|lg|f|y]|e wli |[o|h]|v]a]|b]|r
¥ e |09 P pilrbelf o oR s oLl ey | jo @ lz bV |wl|élk|w|d
fli|v|id|jo]|r|s|a|yl|lz]|j|x]|l |k|h|lg|b|¢|g|n]|t|m|u|p|w]|e
t|lplg|n|w|vi|ie|lul|lgl|ly|flo|fr|a]|l |k]|s Y m i |hijd]|blcl|i |x
wim|r |g|l |[o|lh|j |k|b|a|d|s |v|e €&+|] |f|lu|n|p]|x |z |c]|y
I [lBimih BTl eld (2 @l s iwlelalt (plylginlr |'n
r|flc|l |y|lz|g|v]j |w|[m|p]|t]|h Wlelglula|x|b|k]|o]|d]|s]i

clr|hjula|x|w|lp|n|ql|le|b|f |m|s |t ||l |y|d|z]|j |o]i|v |k]|g
mjulo|p|j |t |k]|d|f|lc|h|gle|lyl|lz]|a|n]|l |[x|s|i |b|r]|g|v|w

The resulting trace would be: Down, Left, Up, Right, Down, Left, Down.

Figure 9 A trace of the password “daisies”

Modified CrossPassword

We also explored a modified version of this system designed to increase usability. This system uses a
13x13 grid, instead of a 26x26 grid to make it easier for users to visually scan the grid.

In addition, we no longer generate a Latin Square. Instead, we first randomly distribute the user’s
password in an empty grid. We first randomly select either a row or a column from our 26 choices. We
then place the first letter somewhere in that row or column. For this example, say we select the 3™
column to start with. We then place the “a” somewhere in this first column. We then place the second

Page 6

letter “m” in the row in which we have placed the first letter. We continue this scheme until the
password has been placed.

For example:

Figure 10

We then randomly fill in the remaining letters on the grid from the set of 26 lower case letters. We
make sure each row and column only contains each letter only once by backtracking. For each spot we
first start with the entire set [a...zZ]. We then remove all letters that are currently in the same row and
column that we are in. We then randomly select a character from the remaining set.

This is not a Latin Square because we have a 13x13 Grid, but 26 possible characters.

With this system we must prevent an attacker from looking at a grid a certain amount of times. A user
can only look at up to 4 random grids before their IP address is locked out. In addition, a particular user
account can only have 4 grids shown before that account is locked out as well, in the event the attacker
is using a distributed attack.

GriDsure

As a comparison, we will evaluate our proposal against GriDsure as described in The Quest to Replace
Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. GriDsure is also
a cognitive authentication scheme in which the user attempts to prove to the server that it knows a
secret without actually revealing the secret.

At registration, the user is presented with a 5x5 grid and selects a pattern of 4 cells.

1 3

4
Figure 11 A length-4 pattern selected

Page 7

At login, the user is again presented with a 5x5 grid, this time with a random digit in each cell. The user
then transcribes the digits from his or her length-4 pattern into the nearby box. The digits differ each
time because they are chosen randomly each time.

5(3|14([8]9
212744
316[(9|6]3
8|14|6(7|0
9(8|1]|]0]|7

Figure 12 The password here would be “3987”

Probabilistic Analysis

We evaluate the security of the three systems described above using a probability analysis. In
eavesdropping on a user, an adversary may obtain the user’s Square board, the password or trace, or
both, the board and the password / trace. Given each of these pieces of information we see how the
user may be compromised.

Original Off the Grid

The Off the Grid system offers users a unique password given the domain name. The user simply traces
the domain name in the two phases described above.

The first attack may occur if an adversary obtains a user’s grid. This is usually held on hand by the user,
and may occur if their wallet is stolen.

-

Oﬁ_'m"ﬂ)BNJTUQ

N_'BJHW"OWWQ
BWOTU'Q(DN"'O:)QJ

ﬁrﬂ_'ﬂ)ijmBO

=|o|o|o|[—|= |wfm|g|N|S

_‘Omﬂ'Q?__':mNﬁg
—lwm o |g|s|=|o |~ |o |~
o |53 |o(N(sfo|=|ojm|~|=
WBTBN(‘IFD_‘OUQ_'
rmN:mognrm—'

Sfm == |o|=|o|g|[—|® |0

Figure 9 Blank User’s Grid

If an attacker is able to retrieve the grid of a user, he obtains no information about the user’s password.
If the attacker does not know of the Off the Grid system, the grid will offer no information nor clue to
the user’s password. If however, the attacker does know the Off the Grid protocol and that the user
uses it, then all passwords are compromised because the attacker can then follow the two phases
described in order to get the password for any site such as Amazon.com.

If an attacker instead obtains the user’s password for a single site, only interactions with that website
are compromised. In the description described above, the password “gaznegmacmzg” is obtained by
following the two phases of the Off the Grid system for Amazon. If the attacker obtains

Page 8

“gaznegmacmzg,” unless he knows which website it belongs to, is useless, otherwise he can use it to log
in the user’s account for Amazon.

However the attacker obtains no information regarding other passwords for other website domains. In
order to do so, the user must guess the grid that created the password. Given the Off the Grid
(n!

Zn
Z)z boards for an n-sized board, which leads to at least

n

Implementation described, there are at least

9.337 X 10*26 boards for n = 26. Given this, there is still little information obtained to gaining the
password information for any other site.

Lastly, if an attacker retrieves the password and the grid, the user is equally as susceptible to the attacks
described in (1). The adversary can now trace out the password in order to determine the website the
password belongs to, and if he knows of the Off the Grid system, can retrieve the password for all other
websites.

The safety of this implementation relies on how much the user secures the grid. If the grid is stolen,
then all of the user’s passwords are compromised.

CrossPassword

Our CrossPassword implementation relies on the security of the Latin Square. Since each password
must be made up of only lower case letters and no-repeating characters, the password can be searched
using a 26 X 26 Latin Square as specified above, resulting in at least 9.337 x 10%2¢ possible grids.

If the attacker gains access to the board the user sees along with the start location, the attacker never
gains any information on the password of the user even after multiple board configurations are given.
Each board will always contain all 26 letters, and no information is ever gained about the password.

If the attacker instead gains only access to the user’s key-logs, thus obtaining their input, they can never
retrieve the password. The password will be impossible to obtain from only getting “up, right, up, left,
down” and so on. The only information gained is the length of the password which is 1-to-1 with the
trace. Even with multiple traces, the password will be impossible to obtain without the trace. An
adversary can then do a brute-force guess on the board because he knows the length of the password.
A password presented as Down, Right, Up, Right, Up, Left we know will give us a password of length 6.
Additionally, we know that the first element is given through the start-location on the board. We can
use the fact that the direction changes each turn, thus Left and Right will always be followed by Up or
Down. Thusthisgivesusal X2 X2 X2 X2 X 2 = 32 possible combinations which we can then
brute force. Thus after finding out the length of a password through the trace, we know there are then
271 possibilities given, I, the length of the password.

Brute force is reduced by the frequency of the board change and |

guessing a specific user’s password of
(31 30 31 30

i Bl sl i) (T
32*31*32*31) Lawo

This means an attacker will likely figure out the password of about every ninth user if the attacker is able
to use a range of IP addresses, since IP blocking.

Page 9

Lastly, the most important case is when an attacker gains information to the board, the start-location,
and the trace. To begin with,

Brute Force
| would add subheadings

Recover Password ‘
However it is much more difficult for the attacker to backsolve the password back from the grid. Move
content from above here

I would at least try to discuss how you know can’t be in certain rows, to show that its difficult
Bound on information needed
2 character password example

What happens if a user picks a dictionary word?

Modified CrossPassword

While our CrossPassword implementation relies on the security of the Latin Square, the modified
version is no longer a Latin Square having a reduced size, 13 X 13, but still using all 26 letters as
possibilities.

Determine by elimination which character is never missing (and plus frequency analysis as a bonus)
Use past boards; go letter by letter
In 10 refreshes, chance of getting the password is (calculation)

Unlike our previous implementation, the adversary gains information looking at multiple boards over
time. One board offers no information about what letters are in the password, but using multiple
boards, an adversary may use the boards to determine which letters are in the password. Under some
password configurations, one of the letters of the alphabet may not appear in the grid. If we continue
onwards with this, we will eliminate all letters that are not in the password. It is then a matter of
determining the length of the password and see what are plausible passwords given the letters.

Similar to our Original CrossPassword implementation, the adversary gains no information when
multiple traces are presented other than the length of the password. They can then brute force the
password knowing there are 2!~ possible combinations.

Lastly, there is the possibility of having all information of the board, the start-location, and the trace.

Why only 4 random grids?

Page 10

GriDsure
There are 25*possible combinations of length-4 patterns.

However, there are 10* possible inputs to return.

We cannot exactly map one “trace” from the grid to the squares that the user selected because there
are 25 grid locations but only 10 digits. Thus each digit will be in the grid an average of 2.5 times.

How many Grids and answers do we need?

Since each item is on the grid an average of 2.5 times there are 2.5% possible underlying grids for each
given trace. That means that with only 1 observation, an attacker as a 1 in 39 chance of guessing the
original box pattern correctly.

If the attacker has two observations, then there is a very small chance (how small) that more than two
of the 39 possible grid patterns overlap. There will be our 1 target overlap, but a very, very small chance
of accidential overlap.

Can you check this?

P(a PIN matches a particular random seq) 252:7

P(2 PIN matches a particular random seq) = (:—;)2:9*10‘9 randomly

{how do the math?)

Other Factors

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.?

Improvements to Criteria

Resilient-to-Physical Observations Category

We think that the Resilient-to-Physical Observations category should be split in two: casual observation
and video observation. Casual observation is if an attacker is just able to watch the user enter their
password once. This is feasible for short passwords and/or if the user types slow. An attacker can see
which keys are hit on the keyboard. This is especially true if the user types slowly, has a short, and/or
easily remember-able password.

However, the attacker seeing the user trace out the password on the grid once would have trouble
remembering the entire grid, preventing the total loss of the password scheme. For that specific

2 Bonneau, Joseph, Cormac Herley, Paul C. van Oorschot, Frank Stajanoy. The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes. University of Cambridge; Microsoft
Research; Carleton University; University of Cambridge. Proc. IEEE Symp. on Security and Privacy 2012 (“Oakland
2012"). http://css.csail.mit.edu/6.858/2012/readings/passwords.pdf

Page 11

domain name, many attackers would have trouble remembering the sequence of 12 random characters,
providing some additional security.

Video observation is defined as the attacker having the full ability to carefully watch and study users’
movements because the attacker is able to pause and replay the user’s log in actions.

Resilient-to-Throttled-Guessing
To better demonstrate the differences between our protocols, we assign Resilient-to-Throttled-
Guessing if there are more than 10 possible choices all of equal weight. This is much small than the

original paper requires. The paper considers % choices to be NOT Resilient-to-Throttled-Guessing.

Inherently-Discoverable

Must the user seek out the new password system? Or does the server require that the user use it?
Often new schemes that fit within the structure of existing passwords remain undiscoverable to the
user. We want to highlight schemes where the website helps the user discover them. A scheme gets a
YES here if the server is required to notify and teach the user of the new scheme.

Resilient-to-55L-Proxy-Man-in-the-Middle

Assume that there is someone who is listening in on the wire who can decrypt SSL, for example, a
corporate SSL proxy. Does this person have enough information to log in? YES, if they can do so after
observing 1 log in. QUASI, if they must observe several log ins in order to have this power. We assume
that the initial registration process is outside this scheme.

Allows -User-to-Choose-Any-Password

Does the system allow the user to choose any password (as defined by the usual set of characters
allowed in a password)? Or does the system limit the user’s set of password to a certain length or set of
characters? Or use a totally different memory scheme? Users might use the same password on multiple
sites or have an external scheme to generate a password. One could argue that preventing a user from
using the same password on each site is a good thing, but a password scheme should not do so by
limiting the choice that a user has in selecting a password.

Denial-of-Serviceable

An active attacker can cause a denial-of-service attack by submitting a sufficient quantity of incorrect
passwords such that the system locks the user out. Lockouts can add additional security by preventing
more than a handful of guesses by the attacker. However, they can considerably impede usability as
they can require a user to either wait or to seek out help from a system administrator. If these are tied
to a user account, an attacker can deliberately use up these guesses to mount a Denial-of-Service attack

on the user. If this is possible with a few incorrect submissions from any IP address, we assign a YES
here.

Original Off the Grid

Usability benefits
1. Memorywise-Effortless YES There are no secrets to be remembered in the base case. The
description mentions a more advanced case, where the user could start at a different location,
but we are assuming the base case where the user automatically selects the same location.

Page 12

00 o D H s W

10.

Scalable-for-Users YES The user only needs one grid for all of their sites.

Nothing-to-Carry NO User must carry 1 sheet of paper

Physically-Effortless NO The user must trace out their password on paper

Easy-to-Learn NO Using the same rubric as the paper does, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on the grid twice is easy to mess up.
Easy-Recovery-from-Loss KINDA If the user lost their Grid, they must have another copy of their
Grid, or the key used to generate that Grid. A user can always reset their passwords on each
site. The paper rates generic passwords as Easy-Recovery-from-Loss YES.
Inherently-Discoverable NO A user must learn about this scheme by visiting the GRC website.
Allows -User-to-Choose-Any-Password NO The password is based off of the domain name of
the site.

Deployability benefit

1.

6.

Accessible NO There could conceivably be a braille-based grid, but not at this moment. In
addition, someone with poor motor control will find this scheme very difficult.
Negligible-Cost-per-User YES The user is required to print one sheet of paper which costs < 05
cents.

Server-Compatibility YES One of the primary benefits of this scheme is that it is compatible with
existing servers which use passwords

Browser-Compatibility YES No special browser is needed

Mature KINDA The scheme has been published for some length of time; at least one Android
app exists with support.

Non-Proprietary YES The scheme is published fully.

Security benefits

1.

Resilient-to-Physical Observations-Casual KINDA The attacker would have to remember 12
random characters in order to observe the user’s password for that site.

With just a casual observation there is no way the attacker can memorize the entire Grid.
Resilient-to-Physical Observations-Video NO If the attacker can take a picture of the Grid, for
example, a video camera over the shoulder, then the attacker would have access to all of the
users’ passwords assuming the user is using the standard Of the Grid scheme.
Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Resilient-to-Throttled-Guessing YES The user’s password is 12 random alphanumeric
characters. This means there are 262 possible passwords.

Resilient-to-Unthrottled-Guessing YES There are 262 possible passwords.
Resilient-to-Internal-Observation NO Off the Grid reduces to a normal 12 character password
unique for each domain. This password is the same for each log in.
Resilient-to-SSL-Proxy-Man-in-the-Middle NO The password is the same for each log in; it must
be protected with some additional protection (such as SSL) in transit.
Resilient-to-Leaks-from-Other-Verifiers YES Ideally the server should be hashing the password.
Regardless, each domain has a unique password so leaking one password does not give one
feasible information about another domains’ password.

Page 13

9. Resilient-to-Phishing NO If the attacker is able to spoof the domain name of the site, then the
user will follow the same trace on the grid, providing the attacker their password.

10. Resilient-to-Theft NO! If the attacker gets your grid, it's game over, assuming you are sticking to
the base Off the Grid algorithm. The author suggests that you make small personal tweaks to
the algorithm in order to add resilience to theft.

11. No-Trusted-Third-Party YES The third party provides the code to generate the grid. However,
that code runs in JavaScript on your local computer, allowing you to verify that the code is
actually generating a unique grid and is not sending a copy to the third party. One could also
write ones’ own implementation of the Grid generation scheme to be sure.

12. Requires-Explicit-Consent YES The user must trace their password on the grid and then enter it
onto the computer.

13. Unlinkable YES Since each user’s Grid is so different, there is no feasible way to link users using
the same scheme.

14. Denial-of-Service-able NO This is the same as normal passwords. Under a normal password
system, services generally do not add a lockout provision.

CrossPassword

Goal: prevent from seeing over wire

Note all are for the actual log in experience. This analysis does not consider creating a password; the
process of which is similar to traditional password schemes.

Usability benefits

1.

001 S iy SRR O B

10.

Memorywise-Effortless NO The user must remember a password to use CrossPassword. Ideally,
that password should be different between sites. Since we only allow lowercase alphabetic
characters without repeating letters, we may prevent users from using the same password on a
site running CrossPassword than the user uses on all of their sites.

Scalable-for-Users NO Ideally the user has a different password for each site

Nothing-to-Carry YES There is nothing to carry

Physically-Effortless NO The user must trace out their password on-screen

Easy-to-Learn NO Using the same rubric as the paper, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on screen is easy to mess up
Easy-Recovery-from-Loss YES CrossPassword falls back on the same recovery mechanisms as
traditional password sites, which is rated YES in the paper.

Inherently-Discoverable YES A user will discover the CrossPassword scheme when attempting
to create an account on a server that uses CrossPassword

Allows -User-to-Choose-Any-Password NO The user can only choose a password using the
letters [a...z] and the user cannot repeat the same characters twice, as in “aardvark.”

Deployability benefit

1.

Accessible NO A screen reader would be tedious to use. In addition, someone with poor motor
control will find this scheme very difficult.

Negligible-Cost-per-User YES There is no cost.

Server-Compatibility NO The server must be provisioned with a new authentication library.

Page 14

4,
5.
6.

Browser-Compatibility YES No special browser is needed
Mature NO We are proposing it here
Non-Proprietary YES The scheme is published fully.

Security benefits

1.

10.
11.
12.

13.
14.

Resilient-to-Physical Observations-Casual POSSIBLY If the attacker could see the screen and the
keyboard they could not uncover the user’s password, unless the user traces the password with
their finger.

Resilient-to-Physical Observations-Video POSSIBLY Even with being able to study the user as
they enter their password, the attacker would not be able to recover a user’s password, unless
the user traces the password with their finger. This is one of the major design goals of this
system.

Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Resilient-to-Throttled-Guessing YES An attacker can only submit two tracers per grid/start
location. After two tries, the server will issue a new grid. The user then gets two more tries at a
trace submission before the account is locked until an email loop is performed.
Resilient-to-Unthrottled-Guessing NO Due to the very small number of possible responses (for
example, 25=32 for a 6 character password, there are very few bits of entropy so the system
falls fast.

Resilient-to-Internal-Observation YES This is the major design goal of this system. An attacker
needs many observations of the grid, Start Location, and trace in order to crack the password.
This is sharply reduced if the user picks a dictionary word, however.
Resilient-to-SSL-Proxy-Man-in-the-Middle YES This is the same as Internal-Observations. If a
listener on the wire who was able to remove the SSL encryption, then they would need several
observation in order to recover the password.

Resilient-to-Leaks-from-Other-Verifiers NO The password is stored in plain text on the serverin
order for the server to verify the password. This is not good practice.

Resilient-to-Phishing YES An attacker with just one trace could not submit that trace to another
server, because the grid is randomized each time. At attacker could mount a man-in-the-middle
attack and proxy the grid, but the rubric in the paper does not penalize for this.
Resilient-to-Theft YES There is nothing to steal

No-Trusted-Third-Party YES There are no 3" parties involved

Requires-Explicit-Consent YES The user must trace their password on the computer and enter
the trace.

Unlinkable YES Like passwords, this scheme is unlinkable.

Denial-of-Service-able YES An attacker can lock out an account by trying an incorrect password
4 times.

Modified CrossPassword

The modified CrossPassword is more Efficient-to-Use and has less errors (Infrequent-Errors), however
at the cost of a slightly decreased Resilient-to-Physical Observations-Casual and Resilient-to-Physical
Observations-Video if a user traces the grid because of the smaller grid. The degree is reduced, but the
broad scores remain the same.

Page 15

However, Resilient-to-Internal Observation and Resilient-to-SSL-Proxy-Man-in-the-Middle take big hits
as an attacker can discover a user’s password (or at least have a very high chance of finding it) using 5-
10 copies of the random grid and start location. They don’t need any copies of the trace, though having
at least 1 would help. This makes the scheme vastly weaker. Resilient-to-Throttled-Guessing, Resilient-
to-Unthrottled-Guessing switch to no because the attacker has that high chance of recovering the
password and might only need to make 1-2 guesses. In fact, we don’t even have a category for how bad
this is: Crackable-From-Reloading-Log-In-Page?

Because we now need to protect from the attacker seeing the grid multiple times, modified
CrossPassword is even more Denial-of-Service-able.

GriDsure

GriDsure is evaluated in The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. Here we evaluate the new metrics we have introduced and make
additional comments about some metrics.

It is important to note that the authors rated it as not Resilient-to-Throttled-Guessing or Resilient-to-
Unthrottled-Guessing because the space of possible is so small (10%). In this paper, we rated our other
schemes as Resilient-to-Throttled-Guessing if the attacker has less than 10 possible choices, so we
would rate this as Resilient-to-Throttled-Guessing if it has a rate limiter/lockout.

Because the server must tell the user about the scheme, GriDsure is Inherently-Discoverable. However,
it requires users to remember a sequence of 4 unmarked boxes in a 5x5 grid. Thus it is clearly not
Allows -User-to-Choose-Any-Password.

When the user does not place their finger to the screen, it is Resilient-to-Physical Observations-Casual.

Because of the small number of possibilities it is not Resilient-to-Internal-Observation, Resilient-to-SSL-
Proxy-Man-in-the-Middle, or Resilient-to-Physical Observations-Video. With two observations, it is
pretty much game over, as the attacker is able to discover the original sequence of boxes.

Comparison Table

a - 7 w
g 238 s
£ 2o 592 | &
< ‘T © G © 0 g =
o o =2 =0 =2 G]
Memorywise-effortless | Yes No No No
Scalable-for-users Yes No No No
Nothing-to-carry No Yes Yes Yes
Physically-effortless No No No No
Easy-to-Learn No No No Yes
Efficient-to-Use No No No (More) | Quasi
Infrequent-Errors No No No (More) | Quasi
Easy-Recovery-from- Kinda Yes Yes Yes
Loss
Inherently- No Yes Yes Yes

Page 16

Discoverable

Allows -User-to- No No No No
Choose-Any-Password

Accessible No No No No
Negligible-Cost-per- Yes Yes Yes Yes
User

Server-Compatibility Yes No No No
Browser-Compatibility | Yes Yes Yes Yes
Mature Kinda No No No
Non-Proprietary Yes Yes Yes No
Resilient-to-Physical Kinda Possibly Possibly Yes
Observations-Casual (Less)
Resilient-to-Physical No Possibly Possibly No
Observations-Video (Less)
Resilient-to-Targeted- | Yes Yes Yes No
Impersonation

Resilient-to-Throttled- | Yes Yes No! Yes
Guessing

Resilient-to- Yes No! No (Less) No
Unthrottled-Guessing

Resilient-to-Internal- No Yes No! No
Observation

Resilient-to-SSL-Proxy- | No Yes No! No
Man-in-the-Middle

Resilient-to-Leaks- Yes No! No! No
from-Other-Verifiers

Resilient-to-Phishing No Yes Yes No
Resilient-to-Theft No! Yes Yes Yes
No-Trusted-Third-Party | Yes Yes Yes Yes
Requires-Explicit- Yes Yes Yes Yes
Consent

Unlinkable Yes Yes Yes Yes
Denial-of-Service-able | No Yes Yes (More) | No

Table 1: A Comparison of Off the Grid, CrossPassword, Modified CrossPassword, and GriDsure.

Usability

We will now explore what the field of usability tells us about our password schemes. * The three core
tenants of usability are: learnability, efficiency, and safety.

At the core, the simpler a system is, the more it will be used. Security is often a tradeoff between
usability and security. A successful scheme should add security, without impacting usability too much.

* Material from MIT’s 6.813 User Interface classes by Prof. Rob Miller Spring 2012.

Page 17

Learnability

Discoverability
In order for a system to start being used, it must be discoverable.

CrossPassword is more discoverable than Off the Grid because the website you are creating an account
with can let you know that the website uses CrossPassword. It is inherently discoverable. Off the Grid
requires that you hear about the system in some way. Websites can still advise you of the presence of
Off the Grid, but the Off the Grid system, as currently designed and designated, is not inherently
discoverable.

Training
It's important that a user know how to use a particular system.

CrossPassword can be taught to users when they pick their password for the site. For example, sites
could show users a video of how to use CrossPassword. Sites could also provide an interactive training
tool using CrossPassword that uses JavaScript and HTML 5 to show the user how to trace their actual
password. (Using the actual password would reveal the user’s password to a shoulder surfing attacker,
but this may be appropriate for a secure room. The password would be stored in the DOM during
registration, but this happens with a normal registration system as well)

Mental Model

When users interact with a system, they form a mental model of how that system operates “behind the
scenes.”

We believe that once CrossPassword is explained to a user, it is easy for that user to form a mental
model of the system. The server asks you to solve a puzzle and you solve it. In addition, the rationale
behind the system is also clear; it is clear that this prevents you from sending your password over the
wire for subsequent log ins. Users should be able to understand how the system works. Each log in is
consistent with the rules of the system and ones’ mental model of the system.

Efficiency

Each log in should not take a long time. This is because user’s time is valuable. In addition, users will be
more likely to keep using the system if it is fast.

Whereas Off the Grid requires users to trace the grid twice, CrossPassword only requires a user to trace
the grid once.

Off the Grid also requires one to enter two characters for each letter in the domain name during its
Phase 2. CrossPassword is more natural to use than Off the Grid because one can trace the system on
the screen as one enters the keyboard traces. We feel that expert users of CrossPassword could use the
arrow keys without taking their eyes off the screen. This could make password entry quite fast.

However, both CrossPassword and Off the Grid are slower than traditional password schemes, or even

password managers, such as LastPass. Users may not want to adopt a system that is slower than what
they already have.

Page 18

Chunking

Research has shown that people can remember 7 +2 pieces of information at once.® A piece of
information could be one letter. When letters are combined into an English word, that word is now one
piece of information. To reiterate: a collection of 7 random letters are 7 pieces of information.
However, a word comprised of 7 letters is only 1 piece of information.

We can use this to evaluate whither a causal visual observer (shoulder surfer) could observe a password
off the screen. With Off the Grid, it would be difficult for an attacker to remember 12 characters using
just their short term memory. This is why we rated it as KINDA for Resilient-to-Physical Observations-
Casual.

Fitts’s Law
Fitts's Law is an estimate of the time it takes someone to point to an object or steer among objects.®
The rule as formulated by Scott MacKenzie is as follows:’

D
T=a+b log2(1+ﬁ/—)

where:

e Tisthe average time taken to complete the movement

e grepresents reaction time to start moving

» b stands for the speed of movement

e Disthe distance from the starting point to the center of the target.

e Wis the width of the target measured along the axis of motion. W can also be thought
of as the allowed error tolerance in the final position, since the final point of the motion
must fall within "/, of the target's center.

We can use a more specific form to study steering tasks, the time to move your hand through a tunnel
of length D and width S:

T=a+bh o
=a+b ()

The index of difficulty is now linear.

We can use this to measure the amount of time it takes someone to trace through the grid, if they trace
the grid with their finger or mouse. ldeally the user should not do that to maintain Resilient-to-Physical
Observations-Casual and Resilient-to-Physical Observations-Video.

®De Groot, A. D., Thought and choice in chess, 1965

® Paul M. Fitts (1954). The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, volume 47, number 6, June 1954, pp. 381-391.

7. Scott MacKenzie and William A. S. Buxton (1992). Extending Fitts' law to two-dimensional tasks. Proceedings of
ACM CHI 1992 Conference on Human Factors in Computing Systems, pp. 219-226.
http://doi.acm.org/10.1145/142750.142794

Page 19

Assume a = 0 and b=200ms/bit for a mouse, using the upper limit of the empirical study.® Assume the
user must travel 26 cm to reach a 1 cm square block. If a user had to steer within a row, this leads to an
approximate time to trace of

0 +.2(26) =5.2 seconds for traveling a row or column.

This is the worst case possibility: the user (worst case empirical user) is using a mouse to travel the
entire length of a row/column and they cannot leave the row/column with their mouse at all. This is

Improving Usabhility
We can do things to improve usability. For example, we can shade every other row or column,
alternating between row and column on every user input.

L A R O o B e B
jmw:-pvzcxtegus"
x!dljlzlhlk lwlelgls lvioln
elglxlklilt ljlslicinlhlipla
svetqunﬁaizﬁi
nlhilclallle lala lidmlh 1l 14

Figure 13 Every other column is shaded

This gives us two benefits. First, the user can now easily see if they should move horizontally or
vertically next. Second, it is easier for the user to keep their eye in the same column/row as they scan
the grid vertically/horizontally for their next letter. This should decrease mistakes as well as decrease
the time it takes people to solve the grid.

Auto-Solver

It is possible to build a browser-based auto-solver for CrossPassword grids. This software would know
the user’'s password and use that to automatically solve grid challenges. This would break Resilient-to-
Internal Observation because the user’s system would now need the password stored. However the
system would still meet Resilient-to-SSL-Proxy-Man-in-the-Middle . It would do a great deal for

usability, flipping Physically-Effortless, Easy-to-Learn, Efficient-to-Use, and Infrequent-Errors all to yes.
In addition Accessibility would greatly improve.

Code (Jwang)

How do we generate a Latin Square?

Limitations of Current Code
We have not implemented any sort of lockout system in our sample code.

8 Soukoreff, R. William, and I. Scott MacKenzie. Towards a standard for pointing device evaluation, perspectives on
27 years of Fitts’ law research in HCI. York University. Department of Computer Science and Engineering.
November 4, 2004. http://www.yorku.ca/mack/ijhcs2004.pdf

Page 20

Conclusion

CrossPassword is not recommended as a password system. Modified CrossPassword turned out to be
even weaker than we first imagined.

We tried to build a zero-knowledge interactive proof. A zero-knowledge interactive proof is one in
which the prover needs to show that they know the solution to the verifier. The prover in this case is
the user, and the verifier is the server. The verifier asks questions to the prover, who responds with an
answer. If the prover does in fact know the answer, he or she will always answer the verifier’s question
correctly. If however, the prover does not actually know the answer, the prover may still get the
question correct. However, over many questions the prover is likely to guess incorrectly at some point.
Thus after enough guesses it is very unlikely that the prover is faking it. However, we only pose one
question on each log in, which is not sufficient for a zero-knowledge interactive proof. Even with a
super-aggressive lock out, CrossPassword still has false negative rates are well above the standards for
cryptographic algorithms.

We controlled for the wrong thing. The password had a lot of information. However, the trace which
we return to the server has very little information. For example, say we take a password and XOR the
characters together to get 1 bit which is either yes or no. We transmit very little meaningful information
of the password, but that very fact makes it easy for the attacker to guess!

The Shannon entropy of CrossPassword is ([— 1) where [is the number of characters in the password.
For example, a 6 character password has 5 bits of entropy. This makes it easy to brute force. In
comparison, a single letter a-z has 26 possibilities or log,(26) = 4.7 bits per letter. Thus our 6 character
password is almost the equivalent of a password of a single letter! If we allow upper and lower case,
digits, and 10 special characters, we have log,(72) = 6.2 bits of entropy, which is more than we
currently have!

GriDsure also has a reduction of entropy from 25* choices to 10* choices. However, 10* represents
log,(10%) = 13.3 bits of entropy, which is a good deal more than CrossPassword. Remember each
additional bit doubles the number of possible passwords, and thus doubles the brute-force password
search time.

However, GriDsure is even unable to fulfill its design goal if an attacker has even two complete
observations of grids and the corresponding PIN code.

The Modified Scheme ends up being even worse because we reveal information about the password to
the user. This ends up being disastrous because an attacker only needs to receive 5-10 copies of the grid
from the server, and no data from the user actually entering their password.

On top of all this, our scheme is slower to enter than a traditional password, especially when used with a
password manager.

This shows the inherent complexity in producing password schemes. There are many different
objectives to try to achieve at once. Trading off some objectives produces different outcomes in
security. Objectives cannot be traded off one-for-one, since the factors are not evenly weighted.

There are many different possible attacks on a password scheme. It is difficult to keep all of the possible
attacks in mind as one designs a particular scheme. Although this scheme was wealk, it was interesting
to evaluate exactly why it was weak and to think of possible attacks against the scheme.

Page 21

s (27/
p CMHM\@/\% e

At login, the user is again presented with a 5x5 grid, this time with a random digit in each cell. The user
then transcribes the digits from his or her length-4 pattern into the nearby box. The digits differ each
time because they are chosen randomly each time.

s[3[a]8]9
202]7]4a
3/6/9|6(3
glale|7]0
9/g|1lo]7

Figure 12 The password here would be “3987"

Analysis of Attacks

We evaluate the security of the three systems described above using a probability analysis. In
eavesdropping on a user, an adversary may obtain the user’s Square board, the password or trace, or
both, the board and the password / trace. Given each of these pieces of information we see how the
user may be compromised.

Original Off the Grid
The Off the Grid system offers users a unique password given the domain name. The user simply traces
the domain name in the two phases described above.

The first attack may occur if an adversary obtains a user’s grid. This is usually held on hand by the user,
and may occur if their wallet is stolen.

g |e almlo nlz [k[i]|r|c
k Ja|n |c|m|z|o|r g|i]e
n|lk|lclz|a|m|r g ole]li
z loli |a|{n|glelc|r |k |m
m|r |z |nlglalk|ile|c]|o
algleli|z|rin|olc|[mlk
r|c gm kleli m|n ‘z_ o |a |
e (n|k jgl|i |lolc|z |m|a]|r
i |m|oje|r |c|gla|k|n]|k
c |i |r ()__._k e la | min |z |g
oz |m|r |c|k]|ilelalg]|[n

Figure 13 Blank User’s Grid

Intercepted Grid

If an attacker is able to retrieve the grid of a user, he obtains no information about any of the user’s
passwords. If the attacker does not know of the Off the Grid system, the grid will offer no information
nor clue to the user’s password. If however, the attacker does know the Off the Grid protocol and that
the user uses it, then all passwords are compromised because the attacker can then follow the two

phases described in order to get the password for any site such as Amazon.com. | Comment [MEP1]: | think we assume the

| attacker knows the protocol

Page 8

Observing a Single Site

If an attacker instead obtains the user’s password for a single site, only interactions with that website
are compromised. In the description described above, the password “gaznegmacmzg” is obtained by
following the two phases of the Off the Grid system for Amazon. If the attacker obtains
“gaznegmacmzg,” unless he knows which website it belongs to, it is useless, otherwise he can use it to
log in the user’s account for Amazon.

However the attacker obtains no information regarding other passwords for other website domains. In

order to do so, the user must guess the grid that created the password. Given the Off the Grid
(n1)=n

nn*
9.337 x 10*26 boards for n = 26. Given this, there is still little information obtained to gaining the
password information for any other site.

implementation described, there are at least

boards for an n-sized board, which leads to at least

Lastly, if an attacker retrieves the password and the grid, the user is equally as susceptible to the attacks
described if he had no grid at all. The adversary can now trace out the password in order to determine
the website the password belongs to, and if he knows of the Off the Grid system, can retrieve the
password for all other websites.

The safety of this implementation relies on how much the user secures the grid. If the grid is stolen,
then all of the user’s passwords are compromised.

CrossPassword

Our CrossPassword implementation relies on the security of the Latin Square. Since each password
must be made up of only lower case letters and no-repeating characters, the password can be searched
usinga 26 X 26 Latin Square as specified above, resulting in at least 9.337 x 10%2¢ possible grids.

Intercepted Board

If the attacker gains access to the board the user sees along with the start location, the attacker never
gains any information on the password of the user even after multiple board configurations are given.
Each board will always contain all 26 letters, and no information is ever gained about the password.

Recovering User Password from Trace

If the attacker instead gains only access to the user’s key-logs, thus obtaining their input, they can never
retrieve the password. The password will be impossible to obtain from only getting “up, right, up, left,
down” and so on. The only information gained is the length of the password which is 1-to-1 with the

trace. Even with multiple traces, the password will be impossible to obtain without the accompanying
board.

Brute Forcing Traces

An adversary can do a brute-force guess on the board because he knows the length of the password. If
a trace is intercepted as Down, Right, Up, Right, Up, Left, we now know the length of the password, 6.
Additionally, we know that the first element is given through the start-location on the board. We can
use the fact that the direction changes each turn, thus Left and Right will always be followed by Up or
Down. Thus thisgivesusa1x 2 x 2 X2 x 2 x 2 = 32 possible combinations which we can then
brute force. After finding out the length of a password through the trace, we know there are then 2/~1
possibilities given, I, the length of the password.

Page 9

| Comment [MEP2]: i think we can assume the
| attacker knows what site it belongs to. The
distinction here is that they gain very little info
about other sites, Can we articulate this more

i clearly?

Comment [MEP3]: Can we articulate this more
clearly? le. Give some explanation of what the
attacker would have to do and why that is
impossible?

Comment [MEP4]: | wouldn’t say that it's like
no grid at all; | would say the user is totally hosed.
The system absolutely relies on keeping the grid
secure. Again we can assume the attacker knows
the systern. We could add that if the user adopts a

somewhat better off. le random start location,
! there are 104 possibilities, which is better than 1,
| but not very good.

| Comment [MEP5]: This seems duplicate with |

the section abave

| Comment [MEP6]: It s very difficult

- | comment [MEP7]: How does this relate to

| below paragraph

random suggested modification, then they would be |

Because this scheme is highly susceptible to brute force attacks with a -2—% probability of guessing

correctly, we can reduce the effectiveness of brute force attacks by the frequency of the board change
and lockout. If we lockout after every 4 attempts, then there is a chance of guessing a specific user’s
password of

(31 30 31 30) 12%

—|——*—%x—]| =
A2 31 32 31 ’

before being locked out given a trace of length 6. This means an attacker will likely figure out the
password of about every ninth user if the attacker is able to use a range of IP addresses, due to IP
blocking.

Intercepted Board and Trace: Password Recovery?
Lastly, the most important case is when an attacker gains information to the board, the start-location,

and the trace. Even when the trace is intercepted along with its board, it is extremely difficult to recover

the password as can seen in the example below where the password is “daisies.”

Start
\/
gl|t|n|a|k|e|m wii julx|vi|z|jld]|b hlp rlo|sic|f|y|q]l
s |g|lw|c|n|fla |t|d|j|ulm|v | x|lo|p|ylele]|l |[k|ir |z |i |h|b
I In|x|f |l |m|c |s|le|k|gqgluly|b|v]|ofla |/ d|p|r |[wiglj |h]|t]|z
hly|ld|r|imje|x [kiv|f|[b|s|i |e|[plulolw|jlglz|n]|l [g|la]|t
vik|z |t |x|[blj |olr|p|wl|i |uls|la|mlg|n|l |d|figq|lhl|ely]|c
k|wly|blg|n|ju|l|s|eli|r|lolc|ql|z|f !x|hlv i idla|m[t]|p]]j
elgl|l |ylt|ilz |hlglo|p|f|lc|w|b|v|klals mlulx|n]|r|[j|d
d b |f|lwijz|y|t |e|x|a|c|g|p|i |m|njulr |k H|I]|j |s|o|g]|Vv
nlolg|ilslafp [rjulv |l |w]d/flc|j|x m|t|K aje|y|b]z |h
plhla|s|b|d|r |x|w|l |v]t ‘Ll_oﬁk i |z |glc Elylulglj|f]|m
ol [j|x|pls|v i zla | m|r|y|w|n|g|h|d|b|i |Claq|t |k|[fle]|u
bljft|hlalaly |njoli|gle|x|r u|l [p|[f|v|w|mlz |c]|s |d] k
qls|kle|v|u|ld |mlz | x|o|h|a |t y|wlc|j |blg |r|ilp]|l |n]|f
i |z le|k|c|wlo |glh t|d]|j[blp|r|f|m|s|uly x|vi|a|n]|l |qg
ale|lu|v|d]|!l |g|blp|r|ylk]j|lzlw|c]|i |h|in]|f |g|s |t |x|[m]o
z|la|m|o|f |h|i |c|lblg|kin|g|lulj |[r|v |t |y|p|e|l |dw]|x]|s
ulx|s|jlelk|b |y|ll In|jt|z|h|g|i|dfr|vi/igla |c|f|w|m|lo]|p
x |d|plz|ulj |l |qglt|s|n|c|m|lg|flyle|k|wl|i |olh|v]a]|b]|r
ylclifglr|p|n |f|m|h|s || |g|d|t|x]|j|lo|lz|b|v|iw|le]k|u]|a
fli|v|idlolr|s |aly|z]]j x_wak hlgiblcigln|t|mlulp|wl|e]
t{plg|n|w|vi|e [u|lg|y|flofr la|l |[kfs |z m/j |hjdib|lc|i |x
wi m|r |g|l Jo|h |j|k|bla|d]|s viejg]|t |i |[flu|n|p|x]|z |c]|YV
jlv|b|m|lh|g|f [i|c|d]z|a|k]|| |x|s|wle|o|t |ply|[gq|u]|r|n
riflc|l Jylz|g |v|j [w|m|p|t h|n|e|q|ula | x [b|k|o|d]|s |i
clir|h|lulalx|w|pln|gle|b|f | mis |t |l |y|djz |jlo]|i |v]k]|e
mlulolplj [tk [alflc|nlglelylz]aln]l [x]|s]ilbir]a]v]|w

Trace: Down, Left, Up, Right, Down, Left, Down

Page 10

- | Comment [MEP8]: | would not agree that it is
{ the most important case

Figure 14: A board, start location, and trace provided.) | Comment [MEP9]: What dees the figure add

| hera?

Given this information, there is a low probability of recovering the password. There are too many

possibilities for a password. Having the trace does not give enough information to determine the

password. Whether the password is a dictionary word or not has no effect in the difficulty of recovering

the password. [Comment [MEP10]: What would the attacker |
| need to do? !

Dictionary word

Modified CrossPassword
While our CrossPassword implementation relies on the security of the Latin Square, the modified

version is no longer a Latin Square having a reduced size, 13 x 13, but still using all 26 letters as
possible letters.

Intercepted Board

Unlike our previous implementation, the adversary gains information looking at even a single board.
After looking at a few boards, the adversary may be able to determine all the letters of the password. If
the adversary is able to intercept the board along with the start row or column, as sent by the server,
then he can use the vulnerability that only 13/26 of the letters can make up the first letter of the
password by simply looking at the starting row. This already cuts down the first letter to % of all
possible letters. By simply refreshing the page and getting a new hoard to see, the adversary can cut
down the possible letters even more. He continues this process until there is only 1 letter that is always
repeated across all boards in the start row /column; this letter is the first letter of the password. Now
that the first letter is figured out, the adversary can repeat the process one letter at a time to calculate
all letters in the password. For a random password, the adversary may not know when to stop, but if
the password is a dictionary word, the adversary can stop at the end of a dictionary word.

| Comment [MEP11]: Can stop because knows !
| how many characters are in password by looking at |
i a bunch of grids. le in a 9 character password there
i

| are 9 characters which appear 1x in a row and
column always in every grid. Certainly possible.

Math to be added

Attack Pseudocode?

Intercepted Trace

Similar to our Original CrossPassword implementation, the adversary gains no information when
multiple traces are presented other than the length of the password. They can then brute force the
password knowing there are 21! possible combinations.

Intercepted Board and Trace

Lastly, there is the possibility of having all information of the board, the start-location, and the trace.
This equates to the information gained from have the board and its accompanying starting row, and the
information gained from having the trace. The adversary can repeat the same process to obtain the
password as described above for intercepting only the board and start row/column. Intercepting the
trace comes with the added benefit that the adversary now knows the exact length of the password and

knows exactly when to stop and when he has the password. ?Comment [MEP12]: Cuts down on the # of

| possibilities, requiring less grids (how many less?)
Math to be added: Same math as above?

Page 11

GriDsure
There are 25*possible combinations of length-4 patterns.

However, there are 10* possible inputs to return.

We cannot exactly map one “trace” from the grid to the squares that the user selected because there
are 25 grid locations but only 10 digits. Thus each digit will be in the grid an average of 2.5 times.

How many Grids and answers do we need?

Since each item is on the grid an average of 2.5 times there are 2.5% possible underlying grids for each
given trace. That means that with only 1 observation, an attacker as a 1 in 39 chance of guessing the
original box pattern correctly.

If the attacker has two observations, then there is a very small chance (how small) that more than two
of the 39 possible grid patterns overlap. There will be our 1 target overlap, but a very, very small chance
of accidential overlap.

Can you check this?

; 39
P(a PIN matches a particular random seq) = =

P(2 PIN matches a particular random seq) = (%)2=9*1 0~? randomly

(how do the math?)

Other Factors

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.?

Improvements to Criteria

Resilient-to-Physical Observations Category

We think that the Resilient-to-Physical Observations category should be split in two: casual observation
and video observation. Casual observation is if an attacker is just able to watch the user enter their
password once. This is feasible for short passwords and/or if the user types slow. An attacker can see
which keys are hit on the keyboard. This is especially true if the user types slowly, has a short, and/or
easily remember-able password.

However, the attacker seeing the user trace out the password on the grid once would have trouble
remembering the entire grid, preventing the total loss of the password scheme. For that specific

2 Bonneau, Joseph, Cormac Herley, Paul C. van Qorschot, Frank Stajanoy. The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes. University of Cambridge; Microsoft
Research; Carleton University; University of Cambridge. Proc. IEEE Symp. on Security and Privacy 2012 (“Oakland
2012"). http://css.csail.mit.edu/6.858/2012/readings/passwords.pdf

Page 12

Make Mine a Quadruple: Strengthening the Security
of Graphical One-Time PIN authentication

Ravi Jhawar, Philip Inglesant, Nicolas Courtois, M. Angela Sasse
Dept. of Computer Science
University College London
Gower Street, London WCIE 6BT, UK
ravi.jhawar.09 @ucl.ac.uk, p.inglesant@ed.ac.uk, {n.courtois, a.sasse} @cs.ucl.ac.uk

Abstract—Secure and reliable authentication is an essential
prerequisite for many online systems, yet achieving this in a
way which is acceptable to customers remains a challenge,
GrlDsure, a one-time PIN scheme using random grids and
personal patterns, has been proposed as a way to overcome
some of these challenges. We present an analytical study which
demonstrates that GrIDsure in its current form is vulnerable
to interception. To strengthen the scheme, we propose a way
to fortify GriDsure against Man-in-the-Middle attacks through
(i) an additional secret transmitted out-of-band and (ii) multiple
patterns. Since the need to recall multiple patterns increases user
workload, we evaluated user performance with multiple captures
with 26 participants making 15 authentication attempts each over
a 3-week period. In contrast with other research into the use of
multiple graphical passwords, we find no significant difference in
the usability of GrIDsure with single and with multiple patterns.

Index Terms—Graphical Passwords, one-time PINs, Usable
Security, Man-in-the-Middle, Entropy, GrIDsure

I. INTRODUCTION

Secure and usable authentication remains a challenge for
most information systems. Despite other forms of authentica-
tion, such as biometrics, being developed, knowledge-based
authentication through passwords and PINs are very widely
used. However, Users have well-documented problems recall-
ing text-based passwords or Personal Identification Numbers
(PINs) [1], [14]; as a result and tend to choose predictable
values [16], [29] or resort to other potentially unsafe practices.

PINs, in particular, have a low set of possible values, and
users tend to select from an even smaller set of choices -
to increase memorability, they either choose significant dates
or use simple sequences of numbers such as 1248 [24]; for
example, [21] reported a study which finds that 18% of users
chose their birthdays as PINs. Given that PINs can be captured
through attacks such as key-logging and shoulder-surfing, they
are at risk of being compromised [12], [16]. Security could be
improved through the use of one-time PINs; however, ever
since their first use as far back as World War II they have
been known to be difficult to use [18] and are not practical in
many situations.

Graphical password schemes [8], [10], [15], [19], [28] have
been proposed as more memorable alternatives to textual
passwords, using the recognised ability of human memory to
recall (or in some schemes, to recognise) pictures or shapes
rather than text.

978-1-4577-0460-4/11/$26.00 ©2011 IEEE

In this paper, we analyze the security of GrIDsure [13], a
patented authentication scheme which combines a graphical,
shape-based password with a one-time PIN, without requiring
special hardware. GrIDsure has been applied to Microsoft IAG
and UAG, Windows or Active Directory login - optionally as
part of 2-factor authentication - document authorisation and
signing, and has been implemented as an authentication option
on a smartcard.

The statistical security of GrIDsure has been investigated
by Weber [27], who concluded that GrIDsure is at least as
secure as a static PIN, and, for threats such as shoulder-surfing
provides far greater security. In contrast, Bond [6] argued that
this scheme is no more secure than a standard PIN because
users are likely to choose from a limited subset of predictable
patterns.

Brostoff et al. [7] found that users did indeed chose
predictable patterns unless they were instructed to pick less
predictable ones, and concluded that Bond’s analysis affected
security in some usage scenarios, but not others. They rec-
ommended its use as a second factor authentication where
the capture of both one-time PIN and grid is unlikely such
as at Point-of-Sale. The authors argued that user performance
with GrIDsure warranted further examination, and whether the
security issues could be addressed through modifications.

In this paper, we exactly do that: with a detailed analysis
of the security of GrIDsure from a new empirical work, we
suggest an enhanced system to overcome the security issues
identified in previous studies. The aim of our effort was to see
if it is possible to increase the security of the system without
reducing its usability. We therefore conducted a usability
study on a prototype version of the new system and obtained
encouraging results.

The remainder of this paper proceeds as follows. After
describing the GrIDsure scheme and summarising previous
studies on its security and usability, we demonstrate that GrID-
sure as it stands is not resistant to intercepted communications.
Exploiting the commonly used computer security concepts,
we identify several enhancements which provide effective
resistance for GrIDsure against Man-in-the-Middle attacks.
We report the results of the usability of these enhancements
based on our evaluation, and find that there is no significant
difference in recall reliability between the original GrIDsure
and our enhanced design.

II. INTRODUCTION TO GRIDSURE

Graphical passwords are more easy to use than passwords
and PINs because they offer cued (rather than unaided) recall
and this makes them particularly well suited for infrequent
authentication [3], [4], [23]. GrIDsure uses graphical scheme
to generate a one-time PIN which users read off and enter into
another application or device. It is essentially an example of a
graphical password scheme and effectively a combination of
both, a graphical and PIN authentication scheme.

With GrlDsure, the user has to remember a pattern rather
than a passcode or a complex password. It works in two basic
steps:

1) Registering Personal Identification Pattern (PIP)

The user has to choose a pattern - a shape and sequence
of squares on the grid, and register the pattern with
username or account. The pattern can be of any length
- e.g. 4 to replace a 4-digit PIN - and any shape that the
user finds easy to remember. Note that the order of the
chosen squares is significant.

For enrollment, a grid with non-repeating characters
spread in a random fashion can be used, where the
user enters the characters which correspond to his or
her chosen pattern.

Using the Personal Identification Pattern

A grid with random numbers in each cell is displayed to
the participant when he uses the system. The user then
has to enter the numbers that correspond to his registered
pattern as his one-time PIN.

An example of a pattern on a random grid is shown in
Fig. 1 (of course, in real use the cells are not shaded
orange).

2)

In principle, GrIDsure can be implemented on a grid of
any reasonable size or shape; for the purposes of this study,
however, we consider only the common use of a grid of 5X5
cells from which users choose ordered patterns of 4 cells and
on which re-use of cells is allowed.

On authentication, if the digits 0-9 are used on a 5X5 grid,
there will be some repeated numbers, and this is an important
feature of GrIDsure security.

The system affords some protection from observation and
replay attacks because (i) although a user’s pattern is constant,
the grid is randomised with each use, so the resulting PIN
will be different each time; and (ii) there is always more than
one possible pattern, on the randomised grid, that could have
produced an observed PIN.

ITI. RELATED WORK
A. Graphical Passwords

From a usability point of view, the key advantage of graphi-
cal passwords over traditional knowledge-based authentication
schemes is that they can offer cued, rather than unaided recall.
Human memory performance with cued recall is significantly
better than for unaided recall, particularly with infrequent
usage [23]. Another advantage of graphical passwords is that
psychology research has consistently found that pictures are

82

7 6 8 1 7

Fig. 1: Entering a PIN (the cells are shaded for illustration
only): 3,6, 7,3

recalled more readily than concrete words, and concrete words
more readily than abstract [17].

Graphical passwords schemes, such as PassPoints, offer
cued recall, typically involving users in recalling a spe-
cific target on an image, as presented in [3], [28]. Of the
recognition-based schemes, perhaps the best-known graphical
authentication scheme is PassFaces™ [8], [20]. The most
similar to GrIDsure is the recall-based Background Draw-a-
Secret (BDAS) [10] scheme.

Graphical password schemes can produce high levels of
maximum theoretical entropy; a DAS pattern in which the total
length of the strokes is 11, for example, has a raw entropy of
around 53 bits [15]. However, the number of “memorable”
DAS patterns is considerably lower than this, as [15] show,
and if “memorable” is assumed to mean “symmetric” then the
size is lower still [26].

Unfortunately, if users are permitted to choose their own
passwords, graphical passwords in general can end up being
weaker than textual passwords because users choose pre-
dictable credentials to improve memorability. For instance,
with PassFaces™, users prefer certain types of faces - what
Monrose and Reiter termed as “beauty bias” [19]. On the
other hand, there is evidence that, in certain configurations
graphical passwords can be less vulnerable to shoulder-surfing

than strong textual passwords [25]. O/} l {, i Z
B. Existing-Research on GrIDsure(é i o1

Webgr [27] pgrformed an analysis of the statistical security

a 4-cell pattern, the probability of randomly
guessing the correct PIN by simply typing a PIN is 0.0001,
as for any other 4-digit PIN. However, an attacker can gain
a higher probability of success by entering the PIN that
corresponds to a randomly chosen pattern. The probability of
guessing the correct PIN in this way is 0.000342102; this is
higher than that from simply guessing the PIN because not all
PINs occur in the grid with the same probability [27].

This is a key point in the consideration of GrIDsure security,
because the probability of guessing a PIN generated from a
secret pattern - not of guessing the secret pattern itself, but
a PIN which matches it - is greater than the probability of
guessing a 4-digit static PIN. The additional security claimed
for GrIDsure therefore rests on its resistance to capture of

(

H}/ \

l

the transaction, together with the assertion that, unlike a static
PIN, successful authorisation using a guessing method does
not compromise the secret pattern.

The guessing probability can be minimised by choosing a
grid calculated so that each digit appears as near as possible,
an equal number of times, rather than strictly randomly chosen
across the set of possible digits. For example, using digits 0-9,
5 digits appear exactly 3 times each and other 5 appear twice.
This is called a “balanced grid”. On a balanced 5X5 grid, the
probability of guessing a correct PIN by entering a random
pattern is 0.000116986 [27].

While a balanced grid makes random-guessing more dif-
ficult, it increases the risk from intercepted communications;
having captured a PIN and grid, it is generally easier for an
attacker to reverse-engineer the pattern with a balanced than
with a random grid. We expand on this point later from our
empirical work.

GrIDsure has been found to be easy to learn and the recall
of patterns is acceptably reliable; however, as with other
password schemes, the effective pattern space is far smaller
than the maximum possible [7]. However, to understand the
actual pattern space, simple assumptions are not sufficient [6];
as well as the shape, the order of cells and placement on
the grid are important factors distinguishing between patterns.
Although there are common patterns, these do not all occur
with similar frequency [6], [7]. Brostoff et al. have developed
a taxonomy of patterns, and our current work builds on this.

IV. EMPIRICAL STUDY OF GRIDSURE SECURITY

We now re-consider the security and usability of GrIDsure
from our empirical work. We are able to make an early esti-
mate of the entropy of the GrIDsure’s pattern space and give a
far more thorough analysis of the risks from multiple captures
than the rough figure of “2 in most cases” as suggested by
Bond [6].

A. The Actual Entropy of GriDsure

The maximum entropy of the possible pattern space for
a 5X5 grid, from which users choose patterns of 4-cells is
log,(25%) = log,(390625) = 18.5754. This is considerably
less than the 52 bits of entropy of a random 8-character
password from a 95-character set, but comparable with a
Draw-a-Secret password of length 4 strokes (which would be
a very simple DAS password) [15].

However, the entropy of patterns actually chosen is lower
than the theoretical entropy of the grid. From the patterns
chosen by participants in our study described in section 6, we
calculate a lower bound to the entropy, based on the calculation
for a balanced estimator of the Shannon entropy:

1 M N+2 1
rrbal — . 1 -
oo £

j=ni+2
from [5], where M is the number of patterns and N is the
sample size. In our sample of 140 there were 102 distinct
patterns, of which 78 were chosen once, 15 twice, 7 chosen
3 times, and 1 each 5 and 6 times. This gives a low entropy

of 6.56, which suggests that GrIDsure may be rather easier to
guess than it might first appear.

B. Resistance of GriDsure to Interception

A capture of both PIN and Grid is possible in a Man-in-the-
Middle (MiM) or shoulder-surfing attack. For shoulder-surfing,
it is unlikely that an observer would be able to memorise the
Grid at the same time as observing a PIN, but video recording
would make this vulnerable. MiM could also be effectively
carried out in the form of malware on the user’s computer or
a fake “Phishing” website. In this paper, we use MiM to refer
to any situation where an attacker can capture both the grid
and the user’s PIN, and is therefore relevant to most systems
even where there is reasonable security on the transmission
channels.

In the case of traditional PINs or passwords, a single capture
can be used by the attacker. In this limited sense, GrIDsure
is an advance on traditional PINs. When GrIDsure is used as
the authentication mechanism, the MiM can see the grid that
the server sends to the user, keep a copy of it or change it
and forward it to the user. In the same way, he can look at the
user’s response containing the one-time PIN which the user
has read from the grid, and forward it to the server; he then
has a copy of both the grid and the PIN.

Weber [27] shows that with a 4-cell pattern on a 5X5
balanced grid, an attacker can find on average 45.6976 pat-
terns for each entered PIN. This seems like a reasonable
improvement over a static PIN, particularly if, as is usual,
an account or card is blocked after a number of consecutive
authentication failures. But what if an attacker is able to make
multiple captures? In the case of a MiM, this is realistic; if
a communication channel has been intercepted, the intercept
is likely to remain in place. In the following section, we
show that if the MiM can successfully capture the grid and
user response on multiple occasions, reverse engineering will
rapidly reduce the possibilities to 1 pattern.

1) Multiple Captures: An illustration: As an illustration,
consider the case in which an attacker successfully captures
the first grid displayed in Fig. 2 and the corresponding user
response (one-time PIN) captured is {3, 9, 0, 5}.

In this grid, 5 digits 1, 2, 7, 8 and O repeat twice and the
other five digits are repeated three times; the grid is a balanced
grid. From the user’s response {3, 9, 0, 5}, digits 3, 9 and 5
occur three times in the grid and O occurs twice; thus the
number of possible patterns that could correspond to the first
grid with {3, 9, 0, 5} PIN is 3% % 2! = 27%2 =54,

To aid in matching the patterns, the adversary considers
a grid numbered 1 to 25, left to right, top to bottom, as
a reference grid to compare all distinct patterns. Using the
reference grid, it is now possible to construct a list of all 54
candidate patterns. Examples of these patterns, numbered as
in the reference grid, are {9, 12, 7, 6} and {21, 25, 23, 24}
...and so on up to 54.

Now, suppose the adversary captures the second grid and
the corresponding PIN. In this case, suppose the user enters his
PIN as {9, 7, 0, 5}. It so happens that the number of possible

3

Fig. 2: First and Second captured grids in this example; below:
Chosen pattern

patterns in this case is only 2* = 16. As for the previous
capture, the attacker lists all possible patterns for the second
grid that gives the PIN {9, 7, 0, 5} using the reference grid;
for example {13, 17, 23, 1}, {9, 3, 25, 6} ...and so on up to
16.

We now have two sets of possible patterns - one from each
grid making use of the user’s input. Comparing both sets of
patterns, retaining only those patterns from the first set that
have at least one matching entry in the second set, only a small
number of possible patterns remains. In fact, in this case there
is only one pattern matching both the sets, so the pattern has
been reverse-engineered with only two captures; it is {9, 17,
23, 6} (see Fig. 2).

2) Emulating MiM Captures Programmatically: The previ-
ous section provided an illustration, but to understand the real
risks, we have investigated the process of multiple captures
empirically or mathematically. We chose to use a simple
Monte Carlo technique to build grids programmatically and
“capture” the PIN and grid in order to find the number of
captures needed to reverse-engineer a pattern with certainty.

Having “captured” a PIN and grid, the program then sim-
ulates further captures of the same pattern (the grid and
the corresponding PIN are obviously different), each time
generating the set of patterns corresponding to the captured
PIN and grid. In each iteration, the program also matches the
patterns from the previously generated set, as described in the
previous section.

The average number of patterns that match a captured PIN
i.e. those which match all captured patterns in a trial are
given in Table 1. Note that the average number of matches
in a capture rises after 4 captures, but there are few trials
that actually reach this number - most patterns have been
found with fewer captures. We do not show the figures for
later captures, for reasons of space. As expected, the average
number of matching patterns in a capture from a random grid is
far higher than from a balanced grid; this makes the attacker’s

84

TABLE I: Numbers of matches after multiple captures

Iteration Average matches
balanced grid random grid
1 45.7019 146.6415
2 1.5605 2.5489
3 1.1003 1.1936
4 1.0874 1.1231
5 1.0910 1.1306

TABLE 1II: Captures to reverse-engineer a pattern

Found after balanced grid random grid
captures
1 0 129
2 675282 422230
3 299699 496400
4 23304 72871
5 1599 7527
6 108 770
7 6 69
8 3 4

TABLE III: Expected and observed probabilities of matching
patterns per PIN

Number of Calculate Observed in
matches Probability 1000000 trials
16 0.0256 25661
24 0.1536 153611
36 0.3456 344925
54 0.3456 345995
81 0.1296 129808

job harder in terms of reverse-engineering the pattern but it is
easier to make a successful random guess.

From Table 2 also observe that, although there are a few
reverse-engineered patterns using a random grid on the first
capture while none with a balanced grid, the number of
patterns that can be reverse-engineered with a random grid
(42.2%) is far fewer when compared to a balanced grid
(67.5%) with only 2 captures. The number of captures required
with a random grid are higher from third and more captures.

By running our program over 1000000 simulated attacks, we
obtained the following results for balanced and random grids:
Average number of captures to reverse-engineer a pattern:
Balanced grid: 2.3516; Random grid: 2.6680
Maximum: Balanced grid: 8; Random grid: 8

We already know, the expected number of PINs with pat-
terns which match a PIN entered by a user, from Weber’s
[27] work; from our program, we are also able to make
an estimate of the probable number of matches on multiple
captures. After running our program for 1000000 trials, we
generated a mean of the number of matching patterns. At the
first capture, for a balanced grid this was 45.7019, similar to
the expected value derived theoretically by Weber [27]. The
different numbers of possible matches occur with different
frequencies. The probabilities for each possible number of
matches, which we have calculated using Weber’s method of
“templates” of pattern types, and observed in our simulation,

1 Customer enters his éredentials to get access to the system

4(i) MiM forwards the grid to the customer after
making a copy or changing it :
Y

5 Customer enters his one-time PIN
corresponding to that pattern

4(ii) MiM forwards the Pattern Index to the
_customer after making a copy or changing it

Customer

“sits” on

either

channel ., out-of-band
N

Adversary

LY

v 7

. 2 Server sends a login grid to the customer which

L’is displayed on his screen

)
- 6(i) MiM captures the grid and the corresponding

: user response. Pattern Index remains secret.

: 6(ii) MiM cannot capture the user response

rd

: 3 Server sends the Pattern Index to the customer,

Fig. 3: Sending pattern index OOB when there is a risk of MiM attacks

are shown in Table 3. The closeness of the observed figures to
their expected values indicates that our program is operating
correctly. Note that we generate the “user’s” pattern randomly
for each trial, since not all patterns are equally easy to reverse-
engineer.

So far, we have only modeled an attacker who assumes
that all matching patterns are equally probable. If an attacker
guesses patterns which are known to occur with higher proba-
bility, part of the subject of our further study, then the number
of captures needed to reverse-engineer a pattern, which is
already small, would be reduced further.

V. FORTIFYING GRIDSURE AGAINST MIM

We have shown that GrIDSure is not resistant to MiM-
type attacks since (i) patterns can be cracked with only a
small number of captures and (i) the actual entropy is much
lower than the theoretical entropy. In this section we present
our modified system that greatly increase the resistance of
GrIDsure to MiM and similar attacks.

A. Enhancement I

In our proposed enhancement, Users choose and register
multiple (different) patterns with his account/username, as
shown in Fig. 4; for clarity, we show the grid in alphabetic
order, although in actual implementation it is preferable for
the enrollment grid to be ordered randomly, to prevent users
from using guessable words as a form of pattern. Although,
in principle, a system can implement our solution using any
number of patterns, use of 4 patterns seem to be a reasonable
balance considering that average users are now registered
to more than 20 different accounts and have difficultics in
managing their credentials [11].

Each time the user tries to login using our proposed system
(GS4), he is informed which one among his registered patterns
to use (the “pattern index”) for successful authentication, using
an Out-Of-Band (OOB) technique like sending an SMS to the
user’s mobile phone, as shown in Fig. 3.

With the use of GS4, unable to intercept the OOB channel,
the attacker has no idea against which pattern a capture is
to be matched. Simply comparing multiple captures will no
longer reduce rapidly to a single matching pattern with a small
number of captures.

85

Suppose an attacker has captured two PIN and grid transac-
tions by intercepting the channel where the user enters his
login details (steps 4(i) and 6(i) in Fig. 3). Of course, if
the pattern index is the same for both captures (although the
attacker cannot know this), then there must be at least one
pattern that matches on both grids. However, this might happen
even if the two patterns are different. An attacker finding that
two or more captures match one unknown pattern could guess
that all of the captures correspond to one pattern, but he cannot
be sure.

On the other hand, with a large enough set of captures, the
attacker can certainly reject some of the potential matches;
comparing captures resulting from patterns which correspond
to different pattern index will rapidly reduce to zero matching
patterns. However, to find these sets of ‘“non-matching”
captures, every capture has to be compared with every other
capture, and this still does not provide any patterns which
are known with certainty. Eventually, by eliminating these
non-matches, the attacker can build up a set of probable
patterns, but note that the attacker still cannot know the
corresponding pattern indexes.

Alslc|p|ella|lB|lc|Dp|E
Fle |m| 1| 1] F G_. H| 1|3
k|lL|M|n|ofk|[L]|mM]|Nn]|oO
plolr|s|Tllrplaelr]|s]|T
vlviw|x|yl[lu|v|w|x]|¥
aAlslc|ol|lellals|c]p]|eE
Fla|luw| v |s|lFrle|nfrily
k|l |m|n|loll x|]|mMin]|o
plol|lr st rlolr]s|T
vlv|iw|x|yl|lu|v | w]|x]|Y

Fig. 4: Registering patterns in the proposed system. Pattern I:
PVRN Pattern 2: AGMS Pattern 3: KCWX Pattern 4: IDNJ

—

ﬁ 4(i) MiM forwards the grid to the customer after

i
'
'
P
1

B making a copy or changing it :
i S L

5 Customer enters his one-time PIN

Customer corresponding to that pattern H

7

“sits” on |

2 Server sends the login grid and a random string
to the customer, out-of-band

AN e

6(i) MiM cannot capture the user response
6(ii) MiM cannot capture the grid and the
random string

4(ii) MiM forwards the Pattern Indextothe | ginar | 3 Server sends the Pattern Index to the customer
_customer after making a copy or changing it ! channel ! which is displayed on his screen
< A
Adversary

Fig. 5: Sending the login grid OOB when there is a risk of MiM attacks

If the pattern index generation does not follow a random
distribution and is instead fabricated to ensure non-repetition
of consecutive index sequences; assuming the system registers
four patterns with each user account, the best that can be said is
that the attacker can learn all the four patterns after 8 captures
but still cannot know the pattern indexes. If all the patterns are
known by the attacker, the probability of successfully entering
a PIN in response to a challenge from the server is 0.25 on
each attempt. In this case, clearly the number of attempts
the server allows to login to the system becomes a critical
parameter of consideration. If a user is allowed 3 attempts,
the attacker has = 0.75 probability of getting in to the system;
this reduces to 0.25 if only one attempt is allowed, and if 4
attempts are permitted then the entire set of 4 patterns would
be effectively compromised.

B. Enhancement 2

In a further enhancement involving Out-of-Band communi-
cations, another parameter, such as a random one time string,
is also sent to the user’s mobile phone along with expected
pattern number. The user reproduces this string during login.
Assuming that the attacker cannot control both communication
channels, the attacker will never be able to login to the system.

It is worth a note that OOB cannot be used standalone
to authenticate users. If it is not used in conjunction with
a knowledge-based authentication mechanism like GS4, the
security of the system reduces only to the physical security
of the device. For example, authentication in a conventional
username/password scheme where the user reproduces the
password sent as an SMS to his mobile phone is only based on
“something you have”. If the mobile phone is compromised,
the attacker can easily gain access to the system. In contrast,
our proposed system offers security of a higher magnitude
Le. of both “something you have and something you know”,
providing a two-factor authentication.

A variation of these approaches is shown in the Fig. 5,
where, instead of sending the expected pattern number to the
mobile phone, the server can send the login grid to the mobile
phone and display the expected pattern number on the screen
where the user is expected to type his details.

In this case, it becomes almost impossible for the MiM
to be able to capture the grid and the user response both. If
the attacker “sits” on the communication channel between the

86

server and the login terminal, he will learn only the one time
PIN - i.e. the user’s response and the expected pattern number
(steps 4(ii) and 6(ii) in Fig. 5). If the attacker “sits” in the
communication channel between the server and the mobile
phone, he can see the grid which the server sends to the user,
which in any case changes each time, but cannot capture the
user’s response (steps 4(i) and 6(i) in Fig. 5). This defeats
the MiM attack, as it is highly unlikely that the attacker can
control both the web and phone channel. The only drawback
with this method is that the user must have a mobile phone
that is capable of displaying the grid.

Since the server initiates the transmission, this channel is not
at risk of being controlled by an attacker (even though it could
itself be intercepted or overseen). However, the OOB channel
could be any convenient form of electronic communication,
which makes our proposal extremely flexible for use at, for
example, an ATM.

VI. USABILITY OF MULTIPLE PATTERNS - AN EVALUATION

Whilst the use of multiple patterns would fortify GrID-
sure against MiM and shoulder-surfing attacks, this is not
a practical solution unless it is possible for users to recall
multiple patterns. Studies of other graphical authentication
schemes have shown that adding a second graphical password
significantly reduces the number of correct recalls - e.g. for
Passfaces™ [26]. There is also evidence that multiple graph-
ical passwords produce interference problems similar to those
known in textual passwords [11]. Therefore, to investigate
the usability of our proposals, we conducted a field trial
evaluation, using the Authentication Performance Evaluation
Tool (APET) online web-based tool described in [2].

A. Methodology

We used a Chi-squared test to decide the number the
participants to be recruited for the study so as to obtain the
best results. The results of the test suggested the value of N =
26. We recruited 30 people to allow for a 15% dropout rate.

30 participants from varying age groups and education
levels were recruited over a three-week period. None of the
participants had any previous experience of using GrlDsure.

Participants were divided into two groups. Each participant
was assigned to make 15 login attempts over a three-week
period during the experiment; this was done entirely using

TABLE IV: Reliability of recall of GrIDsure patterns

Successful Login (%)

Complete Failure(%)

>1 attempt first attempt
Group A GSI 277 95.83 1.38
GS4 6.94 90.20 271
Group B GS4 6.77 88.98 423
GS1 1.50 98.50 0
Overall GS1 2.22 97.03 0.74
GS4 6.87 89.69 3.44

email and web. Participants in Group A used GrIDsure with
one pattern (GS1) for first five logins and then used GrIDsure
with four patterns (GS4) for the subsequent ten logins, whereas
Group B used GS4 for the first ten logins and GS1 for the
subsequent five. In this way, we avoided bias between the
groups since each group used both designs, and we avoided
bias within groups since the groups used the designs in
different orders.

At the start of the trial, participants were sent an email
requesting that they register their pattern(s) and then login
using their first or only registered pattern (depending on the
group) in the same session. The first three emails also included
the instructions on the usage of the scheme, as initial training.
All subsequent emails provided only those details necessary
to login (no instructions). Participants were sent 4-5 emails a
week over the three week experimentation period.

A well-known issue in the design of studies in usable
authentication is that, in the real world, authentication is
not users’ primary task; they are using the authentication
mechanism only to gain access to some service. For this
reason, we devised a study in which the authentication was
considered as the secondary, rather than the primary, task.

We used the Barter World scenario described in [2]. In this
game, participants complete services - Gardening, Babysitting,
Cleaning, or Teaching - for the community, and in return
receive tokens for the appropriate working hours. (Participants
did not actually have to perform the services, but they did have
to log the hours worked to their personal account, protected
by GrIDsure authentication, to claim their payment.)

As in [7], [11], participants were compensated with the
exchange of tokens for gift certificates, at the rate of £1.33
for every successful login and £1.20 otherwise, giving a
guaranteed minimum for participation up to a maximum of
£20.

The community manager sent them an email when a barter
task “had been completed”. The email included a hyperlink
and the pattern number (index) with which to authenticate, and
an additional random string. If a user failed to authenticate
within three attempts, the authentication server sent another
email containing a hyperlink to the registered pattern; this
simulates a real-world “password reset”. If a participant failed
to attempt authentication before midnight, they could no longer
authenticate and log the claim.

The APET system [2] records (i) the time taken to login, (ii)
number of login attempts, (iii) whether or not the attempt was

87

successful, (iv) the IP address, and, if more than one attempt
was required, (v) the PIN entered and what it should have
been.

Following a successful GrIDsure authentication, participants
entered a “claim code™ consisting of the random string con-
tained in the email. This implements the random out-of-band
data suggested in section 5.2.

B. Results

As in Brostoff et al.’s study [7], user performance results
are encouraging. All participants in Group A and 14/15
participants in Group B were able to login successfully.

In Group A, during the 75 usages (5 each by 15 participants)
in the GS1 phase of evaluation, there were 3 occurrences of
participants failing to respond to emails before midnight and
hence of the request expiring. During the 150 usages - 10 each
- of the GS4 phase, there were 6 occurrences of email expiry.
In Group B, 2 participants discontinued the study. Of the 65
usages in the GS1 phase (which was completed after the GS4
phase for Group B) - 5 each by the remaining 13 participants
- there were 2 occurrences of email expiry and 12 during the
GS4 phase.

Excluding these non-attempted authentications, the results
are shown in Table 4.

A failure rate of 3.44% would not be considered good in
ordinary password use, but for an initial encounter with an
unfamiliar mechanism, the performance is encouraging.

An important result, for the validating the usability of our
proposal, is that there is no significant difference in user
performance between GS1 and GS4.

We consider only 13 participants in each of groups A and
B (13+13=26) as required by the Chi-squared test. This gives
127 of 128 successful logins within 3 attempts using GS1 and
237 of 246 successful using GS4.

Applying a x? test, we find x*(df=1, Yates’ correction) =
1.68, p=0.194. However, since the expected value of failed
logins using GS1 is less than 5, which suggests that X2 may
be unreliable, we also apply Fisher’s exact test which gives a
one-sided significance of p=0.091 (>0.05) i.e., not statistically
significant, although it’s not strong enough to say that G54 is
as easy as GS1. Intuitively, from our results, GS4 is at least a
bit harder than GS1, but we can infer that we have not found
it to be significantly less easy.

This finding is surprising - given that studies have found
a clear interference effect for multiple passwords in other

graphical authentication schemes [11] - and encouraging.
However, GrlDsure is quite different from the scheme used
in Everitt et al’s study, which was based on recognition of
faces, similar to PassFaces™ [20]. In addition, factors such
as frequency of use and length of use are known to have
important impacts on the usability of passwords generally.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present empirical results which confirm the
assertions of Brostoff et al. [7] and Bond [6], that GrIDsure
is not resistant to multiple captures of the grid and PIN. We
have also developed enhancements to GrIDsure which fortify
it against Man-in-the-Middle and similar attacks.

From our user study we did not find the enhanced GrlDsure,
with 4 personal patterns and Out-of-Band secrets, to be
significantly less usable than simple GrIDsure.

Given the documented problems with interference between
different graphical passwords just as for textual ones [11], it
might be more usable to remember 4 patterns across a number
of services than different patterns for each service. We agree
with [7] that the re-use of patterns across different services
is insecure in general. However, if it can be shown that our
enhancements add sufficient security to enable the safe use of
patterns across multiple services, it is possible that our solution
will actually improve the overall usability of GrIDsure.

We have also completed a longer-term study of the usability,
interference and memorability of GrIDsure with 4 patterns.
Our results here have confirmed the importance of detailed
research on actual user behaviour as the basis for the design
of emulation experiments and estimates of actual entropy.

Therefore, our future work will provide a more detailed
study of the effective entropy of GrIDsure based on the taxon-
omy of patterns which we are developing from our empirical
studies. This taxonomy will also enable us to enhance our
system using Monte Carlo technique, by emulating patterns
actually chosen rather than random ones. We will also emulate
an attacker who guesses similar patterns, or who uses the
kinds of “clever” guessing methods suggested by Weber [27]
by choosing the more frequently occurring digits from a
grid. Finally, a more complex algorithm will enable us to
emulate grid and PIN capture in our enhanced GrIDsure with
4 patterns.

REFERENCES

[1]1 A. Adams, M. A. Sasse, and P. Lunt. Making Passwords Secure and
Usable. People and Computers X1I: HCI 97, 1997.

[2] A. Beautement and M. A. Sasse. Gathering Realistic Authentication
Performance Data Through Field Trials. Usable Security Experiment
Reporis (USER) Workshop, Symposium On Usable Privacy and Security,
2010.

R. Biddle, S. Chiasson, and P. C. van Qorschot. Graphical Passwords:
Learning from the First Generation. Technical Report TR-09-09, 2009.
R. Biddle, S. Chiasson, and P. C. van Oorschot. Graphical Passwords:
Leamning from the first twelve years. ACM Computing Surveys, 2011,

3

[4

88

[5]1 1. A. Bonachela, H. Hinrichsen, and M. A. M. noz. Entropy estimates
of small data sets. Journal of Physics A: Mathematical and Theoretical,
41(20):1-9, 2008.

M. Bond. Comments on Gridsure Authentication. 2008.

S. Brostoff, P. G. Inglesant, and M. A. Sasse. Evaluating the usability

and security of a graphical one-time PIN system. Conference on Human

Computer Interaction BCS, 2010.

S. Brostoff and M. A. Sasse. Are Passfaces more usable than passwords?

A field trial investigation. HCI 2000 - People and Computers XIV -

Usability or Else! BCS, 2000.

J. Cohen. Quantitative Methods in Psychology, A Power Primer. New

York University.

[10] P. Dunphy and J. Yan. Do Background Images Improve Draw a Secret
Graphical Passwords? Conference on Computer and Communications
Security, pages 36-47, 2007.

(11] K. M. Everitt, T. Bragin, J. Fogarty, and T. Kohno. A Comprehensive
Study of Frequency, Interference, and Training of Multiple Graphical
Passwords. 27th International Conference on Human factors in Compui-
ing Systems, 2009.

[12] D. Floréncio and C. Harley. A Large-Scale Study of Web Password
Habits. Proceedings of WWW 2007 (Banff, Alberta, Canada, May 2007.

[13] GrIDsureLimited. http://www.gridsure.com.

[14] P. G. Inglesant and M. A. Sasse. The True Cost of Unusable Password
Policies: Password Use in the Wild. 28th International Conference on
Huwman Factors in Computing Systems (CHI 2010), 2010.

[15] I Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D. Rubin.
The Design and Analysis of Graphical Passwords. 8th USENIX Security
Symposium, 1999,

[16] D. V. Klein. Foiling the Cracker: A Survey of, and Improvements to,
Password Security. Second USENIX Workshop on Security, pages 5 — 14,
1990.

[17] S. A. Madigan. Picture memory. Imagery, Memory, and Cognition,
Yuille, J. C. (ed.), 1983.

[18] L. Marks. Between Silk and Cyanide: A Codemaker’s Story 1941-1945.
HarperCollins, London, UK, 2000.

[19] F. Monrose and M. K. Reiter. Graphical Passwords. Chapter 9 in
Security and Usability: Designing Secure Systems That People Can Use,
Cranor, L. F. and Garfinkle, S. (eds.), O’Reilly, Sebastopol, CA, USA;
Cambridge, UK. pages 161 - 179, 2005.

[20] passfaces.com. http://www.passfaces.com.

[21] One in five use birthday as PIN number.
http://www.telegraph.co.uk/finance/personalfinance/borrowing/creditcards/
8089674/OneinfiveusebirthdayasPINnumber.html.

[22] A. Polyviou. The impact of interference and frequency of use on
the performance of three authentication mechanisms. Masters thesis
(unpublished), University College London, 2010.

[23] M. A. Sasse, S. Brostoff, and D. Weirich. Transforming the ~Weakest
Link’ - a2 Human/Computer Interation Approach to Usable and Effective
Security. BT Technology Journal, 19, July 2001.

[24] E. M. Tamil, A. H. Othman, S. A. Z. Abidin, M. Y. 1. Idris, and
0. Zakaria. Password Practices: A Study on Attitudes towards Password
Usage among Undergraduate Students in Klang Valley, Malaysia. Journal
of Advancement of Science & Arts, 3:37-42, 2007.

[25] F. Tari, A. A. Ozok, and S. H. Holden. Comparison of Perceived
and Real Shoulder surfing Risks between Alphanumeric and Graphical
Passwords. Symposium on Usable Privacy and Security (SOUPS 06),
ACM Press, 2010,

[26] J. Thorpe and P. C. van Qorschot. Graphical Dictionaries and the
Memorable Space of Graphical Passwords. 13th USENIX Security
Symposium, 2004.

[27] R. Weber. The Statistical Security of GrlDsure.

[28] S. Wiedenbeck, J. Waters, J. C. Birget, A. Brodskiy, and N. Memon.
PassPoints: Design and longitudinal evaluation of a graphical password
system. International Journal of Human-Computer Studies, (63):102 —
107, 2005.

[29] M. Zviran and W. J. Haga. Password Security: An Empirical Study.
Journal of Management Information Systems, 4(15):161-185, 1999.

(6]
7

(8]

[9

Comments on Gridsure Authentication

This document is an edited version of notes taken to provide feedback to Gridsure
after an approximately two hour meeting on Friday 8" February 2008, and based on
past presentation material on the scheme seen in mid 2007.

Please note that these comments are selective feedback on particular issues I found
with the Gridsure scheme, which can aid other analysts in continuing this work. This

document is not intended to be a fully representative or balanced appraisal of the
scheme.

Mike Bond, 27" March 2008

Weber's Report

I dispute the worth of Professor Weber's analysis'. Whilst his mathematical
calculations in themselves I'm sure are flawless, there are a number of tacit
assumptions made that undermine its meaningfulness, mainly about the psychology of
choice of patterns. Weber first selects a set of "likely to be chosen" shapes, including
lines, ticks and boxes. On what basis is it argued that users are likely to pick these
shapes? Intuitively we might want to believe that squares, lines, ticks are all common,
but it psychology results often defy intuition and need to be properly researched.
Secondly, Weber assumes that all alignments of common shapes are equally likely to
be chosen, for example that a four digit line running from left to right could start from
the second column as well as the first. Beyond this, the combinatorics clearly say
nothing about the relative likelihood of different patterns actually being chosen. So if
we were to accept his assertion that there are 11,640 common patterns on the grid, it
still is of huge significance that some of these patterns are more common than others.
So the results of this report rely on psychology assumptions that Weber has not
justified, and totally ignores the wider issue of relative probabilities of different
shapes.

My suspicion is that the practical entropy of Gridsure patterns will be at least as low
as that for PINs (way less than 10,000 combinations because PINs involving dates and
years (e.g. 1984) are probably more common). Now, for PINs this can easily be
rectified by issuing initial PINs rather than encouraging cardholders to choose their
own. The advantages of Gridsure are eroded if the user cannot select his or her own
pattern, and the results of the usability study conducted by Sasse are no longer
applicable in this scenario.

Resistance of Challenge/Response to Pattern Recovery

During the meeting Gridsure stated that (according to Consult Hyperion), three
"engineered grids" were required to determine a PIN with certainty. Below follows

! "GrIDsure — The mathematics of Patterns & Sequences", provided to me by Gridsure on 11/06/07

excerpts from my original analysis of June 2007, which Gridsure does not seem to
have taken note of. Consider the following two engineered grids:

Challenge A Challenge B
12345 1 1
12345 22222
12345 33333
12345 44444
12345 55555

If a user is challenged with the following two patterns, then the pair of response codes
together will leak the X and Y coordinates of each digit in the pattern. Clearly then a
maximum of two challenge grids are required, not three as suggested by Consult
Hyperion. Challenges A & B can have their digits permuted randomly, so long as the
same transformation is applied to both A & B. The human eye will then not be able to
detect the presence of a pattern. Furthermore, digits can be doubled up, so that pairs
are used interchangeably. For example, the challenge grid A would become as
follows:

Challenge A Challenge A (doubled up)
12345 12895
12345 67345
12345 12890
12345 17345
12345 67345

Here the pairs are as follows: 1&6, 2&7, 3&8, 4&9, 5&0. The grid already appears
much more random to the human eye, and remains just as usable for the attack; and
this is before even the permutation step is undertaken.

Even better results could be achieved by using specially designed challenge grids
based on empirical analysis of the common shapes and patterns chosen. The grid
could be specially designed to make it as likely as possible that the pattern can be
determined with a single challenge. For example, supposing we knew that straight
lines either horizontally or vertically were 100 times more likely to be used than any
other, then consider the following challenge grid.

Challenge C
12345

34567
56789
78801
32609

All possible length 4 horizontal and vertical straight lines are then uniquely coded:

1234, 3456, 5678, 7890, 3260 (horizontal, starting left most)
2345, 4567, 6789, 8901, 2609 (horizontal, leftmost + 1)
1357, 2468, 3579, 4680, 5791 (vertical, topmost)

3573, 4682, 5796, 6800, 7919 (vertical, topmost + 1)

This is just an example. With some care and attention, a very efficient single
challenge grid aimed at exposing the most common shapes could be created.

So the standard mode of the gridsure system clearly is not strongly resistant to chosen
challenges (such as might be deployed in a phishing attack). What then is the
information leakage from response to a randomised grid challenge?

In a random challenge grid filled with digits 1 through 10, evenly distributed, we can
expect every challenge to reduce (on average) the range of possible squares for each
element of the pattern by a factor of 10 — namely a leak of 3.3 bits of information per
digit responded to, or a total of 13.3 bits for a 4 digit response.

A fully random 4 digit pattern will have 25*%24*23*22 combinations, equal to 18.2
bits of information (assuming non-repetition of the same square in pattern).

Clearly after two challenges, up to 26.6 bits of information have been revealed in the
response, yet the maximal entropy of a pattern is 18.2 bits. Given the typical entropy
of a pattern will be much lower, due some common patterns being much more
appealing than others, it is likely that knowledge of both challenge grid and response
from a single challenge will yield enough information to determine the pattern fully in
a significant proportion of cases, and two challenge/response pairs will suffice in most
cases. Thus if an eavesdropper is able to observe the challenge and response (e.g. with
a mobile phone camera or fixed CCTV camera in a shop) or via screen capture in the
case of malicious software on a PC, the pattern will quickly leak.

Though this analysis is far from complete, my opinion so far is that if the challenge
can be seen, Gridsure is no more secure than a PIN, and possibly less so for the

reasons described in other sections of this document.

Shoulder Surfing

The analysis of resistance to shoulder-surfing based on experiments with Children
was inadequate. The learning curve and dynamics of teaching shoulder surfing are not
known. Consider pick-pocketing — a criminal skill which requires some considerable
level of practice to get good at. Yet we know it still can be done. Likewise shoulder
surfers could specifically learn to determine patterns in a better way, probably with
reference to common patterns. What we don't know is whether this is easy or difficult
to learn, and it would be unwise to assume either. Note also that because the user
always has to respond freshly with a different number to the challenge grid, the user
will not be able to type the response number so quickly, and potentially not whilst
also shielding it with their hand. This sort of protection is only likely to come into
play upon repeated entry of the PIN. So one cannot assume that the response PIN is as
well protected in the case of Gridsure (indeed it is proposed for accessibility purposes
that certain respondents might read their response code aloud).

Compromised Terminals

The major current threat for PIN recovery in Point-of-Sale environment is not
shoulder surfing (where Gridsure provides limited resistance), nor hidden cameras
(where Gridsure resistance is even less as entire challenge and entry can be recorded
for later review), but compromised terminals. This is where the Point-of-Sale terminal
is sabotaged in order to record PIN and account details. The Gridsure scheme is no
more resistant than PIN against sabotaged terminal, as the sabotaged terminal can
record entire challenge and response (or indeed submit an engineered grid and then
translate the response code from this grid to the response code for the grid received
from the central server).

Multiple Entry Attempts

When the correct pattern cannot be determined with certainty (probability 1) from a
challenge and response pair, it must be borne in mind that if there were several
candidate patterns that could not be distinguished from one another, the user trying to
authenticate will get (for example) three attempts to respond correctly. This means
that if a challenge/response pair yields three possible patterns, then the attacker will
still be able to respond correctly with certainty.

Side Channel Leakage of PIN

From early experimentation during the meeting, considering disjoint patterns or
patterns with a change in direction (e.g. the tick), such as the following examples:

12345 12345
12345 12345
12345 12345
12345 12345

I'noted that I hesitated during entry of the response code as I negotiated the gap or the
change in direction of the sequence. If the time intervals between keypresses were
monitored as well as the key presses themselves, this could yield extra "sidechannel”
information about the nature of the pattern entered, which could help resolve between
different possible combinations. Such timing attacks (and other sidechannels which
act as windows on the mental processes of the secret holder) should be considered.

Writing down the Pattern

Some people are unable to remember PINs. It is conjectured that Gridsure patterns are
easier to remember than PINs, though no evidence has been offered to this effect (I do
note some of Sasse's references are broadly in support of this thesis however). Those
who are unable to remember PINs often write them down, with the advice that they
disguise their PIN, for instance as the area code of a telephone number. This means
that if their wallet is stolen, the criminal will have to search carefully to try and
recover the disguised copy of the PIN, and even then may not be successful. To
accommodate those who do not wish to use Gridsure (but who are not sufficiently
disabled as to actively reject its use e.g. some people use "chip & signature" cards

instead of chip&PIN), how might they record their correct Gridsure pattern in such a
way that it can be easily concealed? This issue is unresolved, and as stated in the
meeting, one should plan for a scheme to be resilient against disinterested, reticent
and even sometimes totally self-destructive behaviour from users.

Screen Scraping, and Retrieving Challenge Grids from PCs

During the meeting Gridsure discussed how the scheme could be used in an online
environment (for instance integrated with 3DSecure or VBV). Whilst Gridsure clearly
provides no protection against phishing here (as engineered grids can be submitted),
or against man-in-the-middle, it does apparently provide protection against keyboard
logging viruses/worms/trojans.

Why do viruses not commonly scrape screens to retrieve password information? The
answer is because the economics are not yet aligned for it to become necessary. There
are easier and better ways at current to attack which do not require this technology.
Yet the technology definitely exists and is demonstrably in the hands of the crooks as
it is being used to recognise the text from "CAPTCHAs" — the distorted codes or
phrases that one often has to re-type when signing up for a new account at a website.
These are designed to resist automation by computers, but come under regularly
attack, demonstrating that the crooks have the capability to perform sophisticated
image processing in order to defeat security mechanisms.

With regards to screen scraping from Flash plugins or from "Silverfish", it may be
true that current deployed screen scrapers have an issue with this, but this is not the
same as saying that it cannot be done. As soon as the economics yields a reason to
want to scrape from Flash, it will become possible. There are no significant technical
barriers to attacker code running on a compromised machine reading all the screen
information it likes.

Mobile Phone Gridsure

A variety of schemes were discussed where the Gridsure grid is rendered by a mobile
phone, including methods where the challenge grid arrives in encrypted form via
SMS, or where a challenge grid is constructed from pertinent transaction data such as
destination and sort code. All of these schemes rely on the security of the mobile
phone as an independent channel, and on the underlying cryptography. None of the
detail of this proposed cryptography was presented in the meeting, so one cannot say
either way if it would work or not. However it seems that this cryptography (if
implemented successfully) would stand alone to make a formidable authentication
mechanism, and the Gridsure code itself has rather little to add — only a substitution of
PIN entry into the phone with generation of response code from challenge.

Memorability of Multiple Patterns

A study is recommended into the memorability of multiple patterns, although the idea
of differently "cueing" the grid with framework patterns in order to evoke memory of
a particular associated pattern is indeed clever, and a clear advantage over PIN
prompts. This advantage should be stressed more strongly when comparing to PIN

entry. Whether these cue frameworks could be implemented effectively on black and
white screens is a matter for further research too.

Summary of Threats and Protection

Threat Gridsure PIN

Shoulder surfing at Partially resistant. Partially resistant. Some

POS/ATM Difficulty of shoulder studies of shoulder surfing
surfing unknown performed.

Camera at POS/ATM Not resistant Not resistant

Sabotaged POS/ATM Not resistant Not resistant

Online, keyboard logger Resistant Not resistant. However

trojan

resistance achieved easily
through PIN entry using
drop-down boxes.

Online, Phishing (naive
clicking on emails)

Not resistant
(engineered challenge

grids)

Not resistant

Online, Phishing (Installed
trojan misdirects user to bad
site even though correct URL

typed)

Not resistant

Not resistant

Shoulder surfing at PC logon | Resistant. Economics Partially resistant.
not in favour of
colleageues learning to
shoulder surf grids.

Physical keyboard logger Resistant. Not resistant.

attached to keyboard cable

Conclusions

The Gridsure authentication mechanism remains largely unproven. Studies so far are
flawed or taken out of context; my own initial studies indicate further weaknesses.

Many of the attacks discussed in this document rely upon Gridsure becoming a focus
of attacks — for the economics to work — as it would indeed become were it used in a
Point-of-Sale environment. Gridsure could well be more suitable for deployment in
enterprise scenarios. Indeed it does provide protection against certain enterprise
threats such as keyboard-cable keyloggers. Only if it achieves a large market share
would it become economic to develop the attack methodologies properly.

Mike Bond

11" Feb 2008
(edit 27™ March)

9

ekl

\((Za/iw (i (@(lw letes ¢

bt

_—

Woe & ot (s
Lom(«odi(locs, .

Qossle dhur 01 avy

02
Y
2 3

48
L5 ()

Y
VI ow
M?ﬁ;f t tyr of
o bk h[a/cg g

-_—__/_—

Tine |
A \J\ML &0@ |
it
he v((

s
% Chante. ul 514"‘”%’

(%

1.
=%

(i T ol e Tie b dy b
\/h‘b 25 ﬁ/ﬂ}

G

hA ‘ﬁ% (S %&OW

% 0ef
(

. 2

g 93 4+ E- -

@ G
Obégﬁjj hel mee fle

J/ SO e % [;(N) [(”U

Ef\m Yl H;ZW

CrossPassword: Novel Password Systems
Where Enter Derivation of Password
instead of Actual Password

6.858 Final Project

Michael Plasmeier <theplaz>
Jonathan Wang <jwang7>
Miguel Flores <mflores>

December 14, 2012

Motivation

The problem with many password systems is that users must type their entire, full password each time
they log on. This makes the password vulnerable to key logging, shoulder surfing, and interception
during transmission.

We explore systems in which the user does not enter their direct password, but a derivation of the
password which changes on each log in. The user proves that he or she knows the password without
subsequently ever providing the password itself.

ING Password Keyhoard

A simple example is ING Direct's PIN pad. Under ING’s system, the user enters the letters corresponding
to their PIN instead of the PIN itself. The mapping between numbers and letters is randomly generated
on every log in. This method does not survive an attack where the attacker has access to the mapping,
but it does prevent simple keylogging.

Figure 1 ING’s Pin Pad. The user enters the letters corresponding to their PIN in the box.

Answering Questions
One could answer questions about the password, instead of inputting the password itself. For example,
say a user’s password is “tennis ball.” The system could prompt “what color is it?” The user would

Page 1

respond “green.” The next time the system could ask “what shape is it?” The user would respond
“round.” This way the user only transmits their actual object during registration, but never during log
in.

Hashing a Response
In an ideal world, the user could prove to the server that it knew the secret by producing a cryptographic
hash of the user’s secret combined with a server-selected nonce.

Hash(Secretyse,, Nonceseryer)

However, people are not particularly good at being able to calculate cryptographic hashes in their heads,
so we need to seek an alternate system.

Inspiration

Original Off the Grid

We were inspired by the “Off the Grid” system from the Gibson Research Corporation." The “Off the
Grid” proposal is designed to allow users to use a personal printed paper grid to encipher the domain
name of the website they are currently on into a string of pseudo-random characters.

The Off the Grid system works entirely on the user’s side. Websites do not need to do anything to
support Off the Grid.

To use Off the Grid, the user first generates a grid from a grid-providing website such as
https://www.grc.com/offthegrid.htm. This website generates a grid using client-side scripting (i.e.
JavaScript) to generate the grid on the user’s machine. The user then prints the grid onto a sheet of
letter paper. At this point the Grid is offline and thus impossible to access by malware. Asan
alternative, there is at least one application for Android which produces and stores a grid; however, the

grid is now accessible to malware on the Android phone which is able to defeat the inter-process
sandboxing.

The grid that is generated is a Latin Square. A Latin Square is an n x n array filled with n different
symbols, each occurring exactly once in each row and exactly once in each column.? The most famous
Latin Square is the popular puzzle game Sudoku. (Note however, that we do not divide up the grid into
9 smaller 3x3 mini-squares in which each symbol must be unique). For example, here is a 11x11 Latin
Square with 11 alphabetic characters: Normally, a 26x26 Latin Square is used.

3 N |3 | = |0a
S |o x| (M
Py L2y [
S| INIO 3
Q |0a 3 N |3
| [T |0 N
= | jm|= |x

O'ODWBO
(7 |O ||~

2 Al Frosal o O Bt 10}
OB"(‘DG

L https://www.grc.com/offthegrid.htm and associated pages. Is still marked as “Work in Progress;” Retrieved
12/2/2012
b http://en.wikipedia.org/wiki/Latin_square

Page 2

Figure 2 An 11x11 Latin Square; normally 26x26, but reduced in size here to save space.

a|gle|i |z |r|n|o|lc |ml|k
rfclglk|e]i |[m|n|z |o]a
e|n|k|gl|i |lo|lc |z |m|a]|Tr
i |m|o|e |r |[c|g|a |k |n |k
c|i |[r|Jolk|le]Ja|m|n|z |g
o|z |[m|r |c |k |i |[e]|a]|g |n

Once the user has a grid, they use the grid to create or change the password for each website. The Off
the Grid specification has a number of variants, but we will use the base variant described on the GRC
website. The author recommends that each user adopt slight variations to the rules in order to increase

security. To provide a consistent analysis, we assume the user ignores this suggestion.

In the Off the Grid specification, the user traces the name of the website twice to provide additional

entropy. In the start of the first phase, the user always starts along the first row of the grid.

Start == fg—

—d—>a

C
a [c |Bb |d
d |b |4 |a
C a @ b

Figure 3

The user then traces out the first 6 characters of the domain name. 6 characters was chosen by the
author to provide a 12 character password, which the author chose to balance ease of use with entropy.
Again, a user may choose their own scheme. The user alternates between looking horizontally and

vertically.

Start=>[e1e>a |m|o |[n |z [k]|i |r]c
k la|dq|c |m|z |o|r |[g|i |e
n|lk|d|z |a|m|r |g|lo|e|i
z |lolil|la|n|g|e|c|r |k |m
m|r (4 |n|g|a |k]|]i |e|c|o
a|lgl|gqg|i |z |r |{njo|c |m]|k
rfclg |k |e|i [m|n|z>0 |a
e|n|[Hlglilolc|z [M|@g]r
i |m|dq|e |[r |[c|g|a I{ n |k
c|i |W|lo |k |e]|]a |m rl z |g
oz |[mrr—ToTkTi—Te>ra |g |n

Figure 4

In the second phase, the user starts at the character that they ended with at the end of Phase 1. The

user then selects two more characters from the grid in the same direction of travel. The user then

appends those two characters to their password.

b a
laae B
d b |c

c

N
!
v

Page 3

lc la [d |b]

Figure 5 The user arrives at c traveling to the right. The user appends the next two characters “bd” to

their password, and then continues up/down from the last character they read “d”.

The user wraps around if their characters go off the grid.

b |d |a c
__]__-c_) b E
8 |b |c |a
¢ |a |d |b

%

Figure 6 The user arrives at b traveling to the right. The user appends the next two characters to their
password, wrapping around if they go off the edge of the grid. Here those characters are “da”. The
user then continues up/down from the last character

For example here is Phase 2 of our Amazon example.

—

Figure 7 Phase 2 of Off the Grid. The password is “gaznegmacmzg”

Here are Phase 1 and Phase 2.

—-

Ili] o z |k |i |r|c
Kk la lnle lm olr g i |e
qb. k [Clz [a|[m]|r |g|o e [i
glofl la|nlgle|c |r ik |m

r{Z |ni|g k |[i |[e |c |o

P — w>fo |E [W]k
rle lg |k |e minlz |§]a
e|nlklgli|d|c|z |m »3; r
i |[mjo|e |r] a ek—tn | k
c|i |[R|o]Jk|e|[a|[m]|n g
ofz [m|r |c |k]i |e|a n

llil e R Jio)E Le
f la [n|c|m ol|r [g|i|e
qb k |Clz [a|m|r |g|o|e|i
z ol ja|n|gle|c|r [k |m

r|1Z(nj|g |3 |k]|]i |e|c]|o

T w>(lo |8 Bk
r lc g lk]e min|z:|¢ |a
e |n|k|g|i |&|c |z |m r
i [m|lo|e|r B [aleFn [k
c|i |[R]lo|k |e|a|m|n 5 g
oz |m|r|c ki |e’a n

Page 4

Figure 8 Phase 1 and 2 of Off the Grid.

To log in, the user retraces exactly the same steps as when creating a password. This means the
password is exactly the same for each domain. This is an obvious requirement for a system designed to
fit within the existing password infrastructure. However, we wanted to explore ideas in which the user
does not enter the same password each time.

Description of System

CrossPassword

We wanted to design a system similar to the Off the Grid system, but where the password the user
transmits over the network is different each time. With this system, the website presents the user with
a grid and the user enters only a deviation of their password.

When the user creates an account, he provides his or her password to the webserver. The user may use
characters from the lower case Latin alphabet [a...z]. The password may not have consecutive
repeating characters, for example, “aardvark” has the repeating characters “aa” so it would not be
allowed. The password is stored on the server such that the plain text can be accessed in order to verify
the trace.

When the user logs in, the server randomly generates a 26x26 Latin square with the characters [a...z]
called the Grid. The server also randomly selects a cell and a direction (either horizontal or vertical) as
the start location. The server transmits this Grid to the user. The Grid and the start location are unique
for each log in. The server stores the Grid and start location in temporary state and provides a pointer
to this state called the token to the user. The user’s browser returns the token to the server on each log
in attempt.

These are transmitted to the user. The user then visually traces out his or her password on the grid,
alternating between rows and columns. For example, the user would locate the first letter of their
password on the start row or column. The user would then look for the next letter of his or her
password in either the column (if the start was a row) or row (if the start was a column) that contained
the user’s first character. The user would then continue alternating between vertical and horizontal for
the length of their password. If the first letter is the start location, the server will select another
random start location.

The user enters the directions (up, down, left, right) that they follow as they trace out their password.
This is called the trace of the password. The trace and the token are sent back to the server.

The server verifies that the trace by replaying the trace and making sure the password letters match the
provided trace.

The server will only accept 2 traces per token. If a user guesses incorrectly twice, the server will present
the user with a new Grid and Start Location. The server will lock the account and the IP address after
four incorrect tries until the user completes an email loop.

Page 5

Example: entering the password Amazon with the 5™ column as the start row/column. The grid, as well
as the start location and direction, are randomly generated be the server for each log in.

Start: Vertical
glt|nla|klle|[m|wl|i [u|x]|v]|z]|j|d|b|h |[p|r|o]|s |c|[f]|y]|q]l
s|qg|lw|lc|NI|fla|t|d]|]j |u|m|lv|x|o]|p|y |gle|!l |k]|r |z |i |h]b
I {n|x |f |I}lm|lc|s|e|k|g|lu|y|b|v]|o|a |d|p|r|w]|g]l|]j |h]|t]|z
h(y |dlr |mle |x |k]|v|f|b|s]i |e]pjulo |wlf [alz |a|lidg|a |k
vi|ik |z |t |[x]|b]|j|lo|r|p|w]|]i|u|s|a|m|g |n|l |d]|f |q|h|e]|y]|c
k [wly |b|glln|u]|l |s|el|i|r|lo|c]|ql|lz |f |x|h|v|d|a|m|t |p]]
elg|l |y |tWi |z |h|glo|p|[f|lc|w|b|v]|k |als |m|lu|x|n]|r]j |d
d|b|f |w - y|ltlel|x|alcl|glpl|i |[m|n|u |(r|lk|h]|l |j |s|o]|g]|V
e et - T B S T o e i I e e S R R SR
plhla]|s li) di{r (x|wl|l |v|t|n]jo|k]i |z [qlc|e|y|ulg]|]j |f |m
o |l |j |x ;b s|vi|z|a|m|r|y|w|n|g|h|d |[b]i|c|g]|t|k]|f]|e]|u
b li|e [h | ¢l by | ni o i gl e xelirilufu p |flv|iw|m|z |c|s |d]k
q|s |k|le|Y|u|d|m|z|x|o|h|a|t |y |w|c |[j|b|lg]|r|i|p]|] |n|f
ATkt e s (u [y | x [v]a|n]|] |q
a €e—o—v|d |1 qlblp|r|y|kl|j|z]|w|lc]|t [h]n]Ff gls|t|x|m|o
z|a|mlo |f |h]|i|c|blgl|k|n|g|lul|j|r]|v [{]y|ple]|!l |d]|w|x]s
(x5 s) e ks Yy T 'n |t |z Thlq9r"Id]|r gla|c|f |w|m|o|p
x |'d¥'prlz Tut UM S o et 'mlte Tty L B wli |o|h|v |a]|b]|r
ylclilgfr|p|n|f | m|h|s |l |g|d|t|x]|]j |¢|lz|b|v | w|e|k|u]la
fli(vidjofr|sfaly|z|j|x]|l |k|h|g|b |¢|lg|n|t |m|lul|p|w]|e
t{plgln|wlvie|lulg|y|flo|rl|al|l [k]s [Z][m i |h]d|b|c]|i |x
wim|r |g|l [o|lh]|j |k|bla|d]|s |v|e +—]|i|f|u|ln|p]|x|z]|c]ly
J |vibim|h|g|f [i]Jc|d|[z]a]k]] [$]s|iw]elo|tip|lylglulr]|n
rolreE T by lz e e 1T mlp ke | B W|e qg |uja|x|b|k|o|d|s|i
cirlhfuja|x|w|p|n|gle]|b|f |[m|s |t |l |y|d|z]|j|o]|i|v]|k]|g
mjujo|p|j |t|k]d|f|c|hlgle]|y|z|a|n |l |x|s]i|b]|r|q|Vv]|w

The resulting trace would be: Down, Left, Up, Right, Down, Left, Down.

Figure 9 A trace of the password “daisies”

Modified CrossPassword

We also explored a modified version of this system designed to increase usability. This system uses a
13x13 grid, instead of a 26x26 grid to make it easier for users to visually scan the grid.

In addition, we no longer generate a Latin Square. Instead, we first randomly distribute the user’s
password in an empty grid. We first randomly select either a row or a column from our 26 choices. We
then place the first letter somewhere in that row or column. For this example, say we select the 3
column to start with. We then place the “a” somewhere in this first column. We then place the second

Page 6

letter “m” in the row in which we have placed the first letter. We continue this scheme until the
password has been placed.

For example:

Figure 10 Password Characters Randomly Filled In

We then randomly fill in the remaining letters on the grid from the set of 26 lower case letters. We
make sure each row and column only contains each letter only once by backtracking. For each spot we
first start with the entire set [a...z]. We then remove all letters that are currently in the same row and
column that we are in. We then randomly select a character from the remaining set.

This is not a Latin Square because we have a 13x13 Grid, but 26 possible characters.

With this system we must prevent an attacker from looking at a grid a certain amount of times. A user
can only look at up to 4 random grids before their IP address is locked out. In addition, a particular user
account can only have 4 grids shown before that account is locked out as well, in the event the attacker
is using a distributed attack.

GriDsure

As a comparison, we will evaluate our proposal against GriDsure as described in The Quest to Replace
Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes.? GriDsure is also
a cognitive authentication scheme in which the user attempts to prove to the server that it knows a
secret without actually revealing the secret.

At registration, the user is presented with a 5x5 grid and selects a pattern of 4 cells. We call this the
password for consistency with our other methods.

* From R. Jhawar, P. Inglesant, N. Courtois, and M. A. Sasse, “Make mine a quadruple: Strengthening the security of
graphical one-time pin authentication,” in Proc. NSS 2011, pp. 81-88
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06059963

Page 7

4
Figure 11 A length-4 pattern selected

At login, the user is again presented with a 5x5 grid, this time with a random digit in each cell. The user
then transcribes the digits from his or her length-4 pattern into the nearby box. For consistency, we call
this the trace. The digits differ each time because they are chosen randomly each time.

5/3(4|8]|5
2012|7144
316[9|6]3
8146|710
918|1(0]|7

Figure 12 The password here would be “3987”

Analysis of Attacks

We evaluate the security of the three systems described above using a probability analysis. In
eavesdropping on a user, an adversary may obtain the user’s board/grid, the trace, or both. Given each
of these pieces of information we see how the user may be compromised. The attacker may be able to
just log in through brute force chance; or the attacker may be able to backsolve for the original
password.

Original Off the Grid

The Off the Grid system offers users a unique password given the domain name. The user simply traces
the domain name in the two phases described above.

Intercepted Grid (Theft or Video Observation)

The first attack may occur if an adversary obtains a user’s grid. This is usually held on hand by the user,
and may occur if their wallet is stolen.

If an attacker is able to retrieve the grid of a user, he has access to all of the user’s passwords. The
attacker can follow the Off the Grid protocol for any possible domain name in order to obtain the
password for that site. This is especially true if the user sticks to the standard Off the Grid protocol. For
example, the algorithm specifies starting in the first row.

However, the protocol author recommends making personal tweaks to the algorithm, for example,
choosing a custom, personal, secret start location. If someone adopts a personal start location, this
leads to 104 possible passwords if the attacker gets control of the grid. 104 choices is still easily brute
forcible. Other tweaks can add further additional possibilities.

Page 8

We do not, however, officially consider these tweaks in evaluating the algorithm. Nevertheless, the
secrecy of the grid is paramount in preserving the integrity of the Off the Grid; if the grid is stolen, an
adversary has access to all passwords for all websites.

Observing a Single Site (Internal Observation, SSL Middleman, or Phishing Site)

If an attacker instead obtains the user’s password for a single site, only interactions with that website
are compromised. In the description described above, the password “gaznegmacmzg” is obtained by
following the two phases of the Off the Grid system for Amazon.com. If the attacker obtains
“gaznegmacmzg,” he can use it to log in the user’s account for Amazon.

Rebuilding the Grid
With one password, the attacker obtains very little information regarding the grid, and the resulting
passwords for other website domains. It is very difficult to use one, or even a collection of passwords,

(nhzn

nn?
boards for an n-sized board, which leads to at least 9.337 x 10*26 boards for n = 26. Even if you knew
the start location (the first row), there are 26 possible slots for the first character. There are then 26
possibly for the next character, etc. In addition, because one wraps around, no information is leaked
about boundaries. Even with many, many domain and password pairs it is infeasible to recreate the grid
and/or generate new passwords for a given new domain name.

to rebuild the Grid. Given the stock Off the Grid implementation described, there are at least

Brute Forcing a Password
Under the standard Off the Grid protocol (where we always use the first 6 characters of the domain
name), there are 262 possible submissions to the website. This is hard to brute force.

CrossPassword

Our CrossPassword implementation relies on the security of the Latin Square. Since each password
must be made up of only lower case letters and no-repeating characters, the password can be searched
using a 26 X 26 Latin Square as specified above, resulting in at least 9.337 x 10%2¢ possible grids.

Intercepted Board

If the attacker gains access to the board the user sees along with the start location, the attacker gains
very little information on the password of the user even after multiple board configurations are given.
Because the first letter of the password will never be the start location, with many copies of the grid, the
attacker could eventually see that there is one letter which is never the start location. This occurs 1/26
times, but an attacker needs ~50-70 boards to confidently say that the 1 letter will never show up.

With 78 boards they have a

(%)3 = .000005 chance of having a location never show by accident, so it is likely that the space that

remains is the start location. This only reveals the first letter.

Brute Forcing Traces

An adversary can do a brute-force guess on the submission. We can use the fact that the direction
changes each turn, thus Left and Right will always be followed by Up or Down along with the start
location to realize that there are only 2 possible responses for each character of the password.

Page 9

If the attacker doesn’t know the length of the password, then they must try multiple combinations

27
=1

This sum does not converge. However, if the attacker assumes a maximum length of 10, then there are
2046 possibilities. This is not very large.

10

Z 2! = 2046

1=1

Intercepting Just the Trace

If the attacker instead gains only access to the user’s key inputs (but not the grid) through key-logging
software, thus obtaining their input, they can never retrieve the password. The password will be
impossible to obtain from only getting “up, right, up, left, down” and so on. The only information gained
is the length of the password. Even with multiple traces, the password will be impossible to obtain
without the accompanying board. However given the length of the password, in a brute force attack the
user knows exactly how long the trace to input; an attacker can now do a smarter brute force attack of
the exact length of the password.

If the attacker knows there are 6 characters in the password then thereareonly2 X2 X2 X2 X2 X
2 = 64 possible combinations which we can then brute force. After finding out the length of a
password through the trace, we know there are then 2! possibilities given, I, the length of the password.

Lockout

Because this scheme is highly susceptible to brute force attacks with a % probability of guessing

correctly, we can reduce the effectiveness of brute force attacks by the frequency of the board change

and lockout. If we lockout after every 4 attempts, then there is a chance of guessing a specific user’s
password of

(2045 2044 2045 2044

— 0
2046 2045 2046 2045) A3

before being locked out given that all users choose passwords less than or equal to 10 characters. This
means an attacker will likely figure out the password of about every 500th user. The attacker would
need to use a range of IP addresses to avoid IP blocking.

intercepted One Board and Trace: Passwaord Recovery?

Lastly, in the case when an attacker gains information to the board, the start-location, and the trace.
Even when the trace is intercepted along with its board, it is extremely difficult to recover the password
with one of these sets as can be seen in the example below where the password is “daisies.”

Page 10

Start: Vertical

.
i
m
X
g

et |t < IX|eN|e TR |TloT s |0 |m|< T[T v |m
s:-1-h<g'c—'no_xmmwm‘—'—s'o:rmgw-<:.oH'

o:rnc'ﬂ.n<-"cm3:ru7rﬁ‘—'mm—h—<hac:.x5:

'DC"'amﬂﬂ..ﬂN'_'O<R‘Q:"Xm—'E{Uﬁﬂ—hnm
)

Trace: Down, Left, Up, Right, Down, Left, Dow

Figure 13: A board, start location, and trace have been intercepted. It remains difficult to recover the
password. Possibilities for the first letter are in black, 2" |etter in dark gray.

There are many possible combinations of letters that will satisfy the trace. An attacker will have to
obtain all combinations that satisfy the trace, then try to determine which is the password. For example
in Figure 13: A board, start location, and trace have been intercepted. It remains difficult to recover
the password.Figure 13, there are 19 options for the first letter (in black) then 19*21 possible options
for the second letter (in medium gray) because we know our start column is the 5™ column. However,
because this is a Latin Square, we know that within these 399 cells exist all 26 letters.

Page 11

Start: Vertical

— |al~n|e|ol o] >|=|E|3|x|w|T|ov|a| | o v x| > |~
olelolal sl al el nlcl ool c| 2| El <l o|lal S22l o] ol v
>|—|<lo| o|lo||olal—le|ul—|s| x| 3| E|s|x|alo|~n3|D|>
fz.j.lhm..nsv..gkc.n.at..d.wv&ub.v..“,u.o..r
Crgno.&.x.]eutZ.IVS...:f.nwmdpv.kO
v |~ 2| n||o| 3| | o] > o| E| | x|m|a|oflo]>|m|s| | alal—
0|rO.dvmhkeCw.gv.f.D.a.lb.n.Jutxz
L olalo|—|s|v|x|slol=|>|a| 3| > w3~ o|Elw-|o|mlT
== e e e E e SR e B e o
c | > ololmelx|s|xl~nolalo| El-|sc|ul.olaluwu|e]| 3 o—
o lalo|s|E|n]s|clalo|c|=]|3|w]|o|c]|o| = x| 0|~ o|w|o|-
clo|slalclocjalElojx|m 5> |3 —|u-|=|lc|—]|v|x|S|wn
.Jxb.esc.wif_onr.tpz.qu...m.kavihm.
ZVV.IUOCD.anx.&b.JO.hma.olrsktf..
> |E| 5| w|-||w|o|3|=| > o|=|-|2|s|n|oj—|x|o|T|c|ala
xuu.bw|..D.cl.vrg.oumnodv,..mntn.&..}fﬂzme
5 |_lxlelalolo|laols|—|E|l -] x|e| | c|ulcs|n|>a|o| 3o
id.evrs.o.xu.wao.:lhn...m.li,.m_v.g.um_c.]n
2 | olwlxlol_lclol ol x|l Elwlalo] > oe|o|s|—l—-|>5a
E|m|o| x| 3| n|+|a|=|>|>3|o|o|-|a|=|c|0n|v|c|s| 003
o |w|Elo|a nk.lv.n.d.saw_f.,u 2l ||l alc|>] o] s n| x
~ | e|l.-| E| x| w0 n|w|lalal ol s u|ole-| o 3|0 3| —|c| > .
ol ole|olelal 3 -|w|x|lc|lo|x|>|o|o| ~n|o|o| | E|—>
c |2 x|l ~n| > —=]u-]| oo @ m|x2| 0| 3| E|w| a|—|>|o||a]o|c
o lol el x| 3lwe|lole|—|.o|w|n|lo|o| x|T|o|—|a| E]>|w]|-
wl|wl—|c| |2 ojo|c|lalolalo|-| | n| 3| x| >u|=|3]|o|=|0

Trace: Down, Left, Up, Right, Down, Left, Down

Figure 14: A board, start location, and trace have been intercepted. It remains difficult to recover the

password. Possibilities for the third character are in light gray.

For the third character, we know we are going up again. We know that we are somewhere within the
light grey. Note that we know that we can’t be on the bottom row for this character. This is 19*25

possibilities; we know again that again all 26 letters exist because it is a Latin Square.

Page 12

Start: Vertical

./
g [tinkleasliksites | msliwi g susl axelliv 2z Gl dilibglsh i piatar Joplisdlic | £ [y ligh|)
st liquEwalica enb A Ral G o d B0 T mi v X o i pE iy e S fe IR kPl nt Tzt [EhE| b
IR xR Eme e s e k [q | 'ully {'bf Svi|ioN | fa BN di |t p R n R Awi fe Sl tha it | z
heldveidilict milc i [Tk v [F bl (sl e paffuilion [iwilii ilial iz lint e Ne l ai| t
VRS EZe G Exa bR (D Lo lir | ipafw [GEfus] is=hiay limiies [ans [ELEEd SRl g=Eh T [les BV ¢
KW BValbE | teREnt [uElilas U Telll Tt [Tn ol et at iz [n s [t h iV Ed et | Pml i Tl
efllizaERyE i iz h g o pt | T i Wb vk [a s e U B | e 5| d
d|b|f |w y |t |lelx|a|c|g|p|i |m|n|u|r |k]|h|il|j|s|o]|g]|V
nElfofite@RiE| selkqi jeps [| v | 1w Bt e lim | ek et e valllb k2| h
pllEhEla|is|tbilidislin Ve bw | 1 ave it linl| ol ke R zilig | cliliesi vilins gt EE | m
onllE I Rixaliptiisalivilizala [imiir |y F willins gl [thilid il i = lic s gt it kEIEhs | a5 u
b|j|t|h]|gla|y [n|lo|i |gl|le|x|r|ull |p|[flv|w|m|z]|c|s |d]|k
giissuiEktet Bvaifuli di | mlz | 'x | lo |Thiflras|] v liwe e s ii | ibe g lirEidi e pRIElEEEna| f
lszE telikialic iwi ol g lh it Bd |) { belipa] e o] mil sl o iy pxilivalallinel 1] g
adlier Fusliveidelilt g bl piler by | kR Ewalied [ore [eh Ens et g is st il mi| o
zefal i mijiof) f8[Eha et lic b lig | k. [analigu| uiloglirs v ot layi p e | eRlElE] dflswWalE | S
udlixlisi sl edlik b aye | 1 fnefr 'z [he gl id e v gial Jich SR | willnn] oi] p
x|d|plz|ulj |l |qg|lt|sin|c|m|g|f|y|le|k]|wl|i |o|lh|v]|a]|b]|r
ylcl|i|g|r|fp|n |fim|h|s || |[g|d]|t |x]|]j |o]|]z|b |v|w|le |k |u]a
el velid ot s laly |z |j |x[F k] hillgt{ bilic | q |[in . t8lim] uBlEbEl Wi e
t|plg|n|w|v |e |u|g|y|f|ofr|a]|l |k|s |z |m|j |h|d|b]|c|i |x
wim|r |[g|l |o|h |j|lk|b|a|d]|s|v]e|qg|t]|i |[f|u]|n|fp|x]|z|c]|y
j|v|b|m|h|g |f |i|lc|d]|z|a|k]|l [x|s|w|le|o]|t |ply|gq|lul|r |n
r|flc |l |y|lz |g |v]j |w|{m|p|t|h|n|le|g|ul|a|x |[b|k|o|d]/|s[i
c|r|hjuja|x |[w|p|ln|gl|le|b|f |m|s |t |l |y|d|z |jlo]|i |v |ki|g
mjuf|o|p|j |t |k |d|f |c|h|gl|le|y|z|a|n|l]l |x|s |i|b|r|q|v]|w

Trace: Down, Left, Up, Right, Down, Left, Down

Figure 15: A board, start location, and trace have been intercepted. It remains difficult to recover the
password. Possibilities for the fourth character are in light gray.

For the fourth character, we know that we can be anywhere except the last column (since we just went
up) and the last row (since we are going right). There are 625 possible cells where we can be at now,
again containing all 26 characters, by the properties of a Latin Square.

It continues like this for the rest of the password. There are
19 %265=258 % 10°

possible sequences of grids which we visited, leading to the same number of possible unique passwords
(since it is a Latin Square). Thus for each board, location, and trace there are significantly too many
possible passwords, that knowing the board and the trace does not reveal the underlying password.

Page 13

Dictionary Word

If the user selects a dictionary word, it is much easier for the attacker to recover the user’s original
password. The attacker can attempt to run every dictionary word through the observed trace offline to
see if any words fit the entire trace. The attacker then has only a few possibilities to try online when
guessing on a new grid. There are about 500,000 words in the dictionary.® Since the attacker can try
these offline, they can process through this quite fast.

Multiple Boards and Traces

If an attacker however collects multiple sets of boards, locations, and traces, he can attempt to cut
down the window of possible letter combinations by narrowing down the number of possibilities. Say
for instance the attacker has two grids and traces. In each one, there are a number of possible letters
which are to the known direction from the start location.

dr.N::-M::craﬂa-rx—'g—<mom-c—hz—‘—-:

=

Kol

m C
Figure 16: Two different first columns where the first letter is c.

The attacker will then look at the union of the two shaded sections. In this case they can see that the
only characters in the union are c, d, and q. With yet another grid and trace, the attacker can narrow
this.

% https://dazzlepod.com/unigpass/

Page 14

With 1 trace, the attacker will know have 12.5 possible characters on average; with 2 traces, there are
6.25 possible characters on average. With 5 traces there is likely to be only 1 possible character.

1 trace/board 12.5 possible characters

2 traces/boards 6.25 possible characters

3 traces/boards 3.125 possible characters
4 traces/boards 1.5625 possible characters
5 traces/boards .78125 possible characters

Table 1. Expected number of letters that will be still be present at random after specified number of
traces/boards

The attacker can then step through each letter of the password looking at one letter at a time; using the

grids and traces he already has. He can thus recover the password with approximately 5-6 complete
grids and traces.

Modified CrossPassword

While our CrossPassword implementation relies on the security of the Latin Square, the modified
version is no longer a Latin Square having a reduced size, 13 X 13, but still using all 26 letters as
possible letters.

Intercepted Board

Unlike our previous implementation, the adversary gains information looking at even a single board and
start location, but without a trace. After looking at a few boards, the adversary may be able to
determine all the letters of the password. To reiterate, the attacker just needs to refresh the log in
screen!

The adversary is able to get a copy of the board and start location by simply visiting the login page of the
server and entering the target’s username. The fatal flaw is that the password letter is always present in
the start row/column. The other letters are present with a 12/25 chance. To reiterate, we know that
one letter will show up 100% of the time, with the remaining 12 letters having been randomly selected
from the remaining 25 letters. This already cuts down the possibilities for the first letter of the
underlying password to about % of all possible letters. By simply refreshing the page and getting a new
board to see, the adversary can cut down the possible letters even more.

1 board 12 letters
2 boards 6

3 boards 3

4 boards 1.5

5 boards 75

Table 2. Expected number of letters that will be present at random.

He continues this process until there is only 1 letter that is always present across all boards in the start
row/column; this letter is the first letter of the password. This will take about 4-6 grids.

After the first letter is known, the adversary can repeat the process one letter at a time to calculate all
letters in the password. The adversary can also reuse the grids they have already retrieved; there is no
need to get new grids. The adversary knows to stop (i.e. the length of the password) when there is no
longer a letter that is present 100% of the time in the next row/column.

Page 15

Intercepted Trace

Similar to our Original CrossPassword implementation, the adversary gains very information about the
underlying grid when they observe just a trace, or when they observe multiple traces, without the
accompanying board. They do however know the length of the password, which greatly reduces the
space they must brute force over.

Brute Forcing
The Modified CrossPassword is also vulnerable to the same brute force attack as the regular system.

2.2
=1

intercepted Board and Trace

Lastly, there is the possibility that the attacker has all information: the board, the start-location, and the
trace. This equates to the information gained from have the board and its accompanying starting
location, and the information gained from having the trace. The adversary can do a similar process
using both the direction from the trace, as well as eliminating letters which only show up once. This
leads to a greatly reduced number of possible letters.

Using just information for the trace:

1 trace/board 6 possible letters

2 traces/boards 3 letters

3 traces/boards 1.5 possible letters
4 traces/boards .75 possible letters

Table 3. Expected number of letters that will be still be present at random after specified number of
traces/boards

So with two traces/boards what is the probability that a letter is present twice in given direction at
random?

652 _
(26) w8
This means that is a letter is present, it is likely that it since it is the password, not that this letter has

appeared at random. Thus with just two grids/traces you are likely to have the password.

GriDsure

There are 25*possible combinations of length-4 patterns. However, there are 10* possible inputs to
return.

Intercepted Board

If an attacker is able to successfully intercept the board and no other information, he gains no
information about the password. Each slot in the board is randomly filled with an integer. Even after
intercepting multiple copies, the attacker gains no information for the user’s password.

Brute Forcing
There are 10* possibilities, which is ok by our standards.

Page 16

Intercepted Trace
Equally, if an attacker is able to intercept the 4-digit trace but not the board, again no information is
gained about the user’s password. Each number can be equally represented by any of the 25 slots.

Intercepted Board and Trace
We cannot exactly map one “trace” from the grid to the squares that the user selected because there
are 25 grid locations but only 10 digits. Thus each digit will be in the grid an average of 2.5 times.

So if an attacker is able to intercept the board and the trace, after intercepting multiple copies, he would
be able to determine the user’s password. We can begin by looking at the first digit, because we know
each digit is located on the grid an average of 2.5 times, we can say that the first digit is located in 3
locations on the grid, one of which will correspond to the first slot of the password. The next time we
intercept a new board and trace, we will again get a new digit that is located in approximately 3
locations on the grid. We know for a fact that one of these locations must overlap because it will be a
part of the user’s password.

However, there is a small possibility that the other 2 locations may overlap with the original 2 other
locations and thereby having more than one possibility for the underlying cell which is part of the user’s
password. The probability of the second two location overlapping exactly with the first two locations is
2/24 o 1/23 = 1/276‘ This is a low probability of gaining conflicting information about the slot that
corresponds to the each “character” of the password. We need to extend this to multiple characters in
the password. After intercepting more copies, this probability decreases significantly. So we know that
at each new board, we will likely gain information to determine the slot that corresponds to the first slot

in the password. This same analysis can be done to determine the slot for the second through fourth
slot of the password.

In the original paper, the authors conduct a Monte Carlo simulation on 1,000,000 attacks and find that
they need an average of 2.66 grids/traces, with a maximum of 8 grids/traces to recover the original
password.’

of grids/traces captures # of grids reverse engineered (of 1,000,000)

1 129

422230

496400

72871

7527

770

69

|IN|On | jW|N

4

Table 4. Number of captures needed to reverse engineer a password.

* From R. Jhawar, P. Inglesant, N. Courtois, and M. A. Sasse, “Make mine a quadruple: Strengthening the security of
graphical one-time pin authentication,” in Proc. NSS 2011, pp. 81-88
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06059963

Page 17

Other Factors

We evaluate each system according to the criteria set out in The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes.®

Improvements to Criteria

Resilient-to-Physical Observations Category

We think that the Resilient-to-Physical Observations category should be split in two: casual observation
and video observation. Casual observation is if an attacker is just able to watch the user enter their
password once. This is feasible for short passwords and/or if the user types slow. An attacker can see
which keys are hit on the keyboard. This is especially true if the user types slowly, has a short, and/or
easily remember-able password.

However, the attacker seeing the user trace out the password on the grid once would have trouble
remembering the entire grid, preventing the total loss of the password scheme. For that specific
domain name, many attackers would have trouble remembering the sequence of 12 random characters,
providing some additional security.

Video observation is defined as the attacker having the full ability to carefully watch and study users’
movements because the attacker is able to pause and replay the user’s log in actions.

Resilient-to-Throttled-Guessing
To better demonstrate the differences between our protocols, we assign Resilient-to-Throttled-
Guessing if there are more than 10 possible choices all of equal weight. This is much small than the

original paper requires. The paper considers % choices to be NOT Resilient-to-Throttled-Guessing.

Inherently-Discoverable

Must the user seek out the new password system? Or does the server require that the user use it?
Often new schemes that fit within the structure of existing passwords remain undiscoverable to the
user. We want to highlight schemes where the website helps the user discover them. A scheme gets a
YES here if the server is required to notify and teach the user of the new scheme.

Resilient-to-S5L-Proxy-Man-in-the-Middle

Assume that there is someone who is listening in on the wire who can decrypt SSL, for example, a
corporate SSL proxy. Does this person have enough information to log in? YES, if they can do so after
observing 1 log in. QUASI, if they must observe several log ins in order to have this power. We assume
that the initial registration process is outside this scheme.

Allows -User-to-Choose-Any-Password
Does the system allow the user to choose any password (as defined by the usual set of characters
allowed in a password)? Or does the system limit the user’s set of password to a certain length or set of

® Bonneau, Joseph, Cormac Herley, Paul C. van Oorschot, Frank Stajanoy. The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes. University of Cambridge; Microsoft
Research; Carleton University; University of Cambridge. Proc. IEEE Symp. on Security and Privacy 2012 (“Oakland
2012"). http://css.csail.mit.edu/6.858/2012/readings/passwords.pdf

Page 18

characters? Or use a totally different memory scheme? Users might use the same password on multiple
sites or have an external scheme to generate a password. One could argue that preventing a user from
using the same password on each site is a good thing, but a password scheme should not do so by
limiting the choice that a user has in selecting a password.

Denial-of-Serviceable

An active attacker can cause a denial-of-service attack by submitting a sufficient quantity of incorrect
passwords such that the system locks the user out. Lockouts can add additional security by preventing
more than a handful of guesses by the attacker. However, they can considerably impede usability as
they can require a user to either wait or to seek out help from a system administrator. If these are tied
to a user account, an attacker can deliberately use up these guesses to mount a Denial-of-Service attack
on the user. If this is possible with a few incorrect submissions from any IP address, we assign a YES
here.

Original Off the Grid

Usability benefits
1. Memorywise-Effortless YES There are no secrets to be remembered in the base case. The
description mentions a more advanced case, where the user could start at a different location,
but we are assuming the base case where the user automatically selects the same location.
Scalable-for-Users YES The user only needs one grid for all of their sites.
Nothing-to-Carry NO User must carry 1 sheet of paper
Physically-Effortless NO The user must trace out their password on paper
Easy-to-Learn NO Using the same rubric as the paper does, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on the grid twice is easy to mess up.
Easy-Recovery-from-Loss KINDA If the user lost their Grid, they must have another copy of their
Grid, or the key used to generate that Grid. A user can always reset their passwords on each
site. The paper rates generic passwords as Easy-Recovery-from-Loss YES.
9. Inherently-Discoverable NO A user must learn about this scheme by visiting the GRC website.
10. Allows -User-to-Choose-Any-Password NO The password is based off of the domain name of
the site.

i B SN L O

Deployability benefit

1. Accessible NO There could conceivably be a braille-based grid, but not at this moment. In
addition, someone with poor motor control will find this scheme very difficult.

2. Negligible-Cost-per-User YES The user is required to print one sheet of paper which costs < 05
cents.

3. Server-Compatibility YES One of the primary benefits of this scheme is that it is compatible with
existing servers which use passwords

4. Browser-Compatibility YES No special browser is needed

5. Mature KINDA The scheme has been published for some length of time; at least one Android
app exists with support.

6. Non-Proprietary YES The scheme is published fully.

Page 19

Security benefits

1. Resilient-to-Physical Observations-Casual KINDA The attacker would have to remember 12
random characters in order to observe the user’s password for that site.

With just a casual observation there is no way the attacker can memorize the entire Grid.

2. Resilient-to-Physical Observations-Video NO If the attacker can take a picture of the Grid, for
example, a video camera over the shoulder, then the attacker would have access to all of the
users’ passwords assuming the user is using the standard Of the Grid scheme.

3. Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

4. Resilient-to-Throttled-Guessing YES The user’s password is 12 random alphanumeric
characters. This means there are 262 possible passwords.

5. Resilient-to-Unthrottled-Guessing YES There are 262 possible passwords.

6. Resilient-to-Internal-Observation NO Off the Grid reduces to a normal 12 character password
unique for each domain. This password is the same for each log in.

7. Resilient-to-SSL-Proxy-Man-in-the-Middle NO The password is the same for each log in; it must
be protected with some additional protection (such as SSL) in transit.

8. Resilient-to-Leaks-from-Other-Verifiers YES Ideally the server should be hashing the password.
Regardless, each domain has a unique password so leaking one password does not give one
feasible information about another domains’ password.

9. Resilient-to-Phishing NO If the attacker is able to spoof the domain name of the site, then the
user will follow the same trace on the grid, providing the attacker their password.

10. Resilient-to-Theft NO! If the attacker gets your grid, it's game over, assuming you are sticking to
the base Off the Grid algorithm. The author suggests that you make small personal tweaks to
the algorithm in order to add resilience to theft.

11. No-Trusted-Third-Party YES The third party provides the code to generate the grid. However,
that code runs in JavaScript on your local computer, allowing you to verify that the code is
actually generating a unique grid and is not sending a copy to the third party. One could also
write ones’ own implementation of the Grid generation scheme to be sure.

12. Requires-Explicit-Consent YES The user must trace their password on the grid and then enter it
onto the computer.

13. Unlinkable YES Since each user’s Grid is so different, there is no feasible way to link users using
the same scheme.

14. Denial-of-Service-able NO This is the same as normal passwords. Under a normal password
system, services generally do not add a lockout provision.

CrossPassword

Goal: prevent from seeing over wire

Note all are for the actual log in experience. This analysis does not consider creating a password; the
process of which is similar to traditional password schemes.

Usability benefits

1;

Memorywise-Effortless NO The user must remember a password to use CrossPassword. Ideally,
that password should be different between sites. Since we only allow lowercase alphabetic

Page 20

b S S

10.

characters without repeating letters, we may prevent users from using the same password on a
site running CrossPassword than the user uses on all of their sites.

Scalable-for-Users NO Ideally the user has a different password for each site
Nothing-to-Carry YES There is nothing to carry

Physically-Effortless NO The user must trace out their password on-screen

Easy-to-Learn NO Using the same rubric as the paper, the scheme is quite complicated
Efficient-to-Use NO The scheme requires a fair amount of effort for each authentication.
Infrequent-Errors NO Tracing out the password on screen is easy to mess up
Easy-Recovery-from-Loss YES CrossPassword falls back on the same recovery mechanisms as
traditional password sites, which is rated YES in the paper.

Inherently-Discoverable YES A user will discover the CrossPassword scheme when attempting
to create an account on a server that uses CrossPassword

Allows -User-to-Choose-Any-Password NO The user can only choose a password using the
letters [a...z] and the user cannot repeat the same characters twice, as in “aardvark.”

Deployability benefit

1

@ o e

Accessible NO A screen reader would be tedious to use. In addition, someone with poor motor
control will find this scheme very difficult.

Negligible-Cost-per-User YES There is no cost.

Server-Compatibility NO The server must be provisioned with a new authentication library.
Browser-Compatibility YES No special browser is needed

Mature NO We are proposing it here

Non-Proprietary YES The scheme is published fully.

Security benefits

x.

Resilient-to-Physical Observations-Casual POSSIBLY If the attacker could see the screen and the
keyboard they could not uncover the user’s password, unless the user traces the password with
their finger.

Resilient-to-Physical Observations-Video POSSIBLY Even with being able to study the user as
they enter their password, the attacker would not be able to recover a user’s password, unless
the user traces the password with their finger. This is one of the major design goals of this
system.

Resilient-to-Targeted-Impersonation YES Personal knowledge cannot help for the Off the Grid
scheme. However, the normal password recovery mechanisms of the website remain, which are
generally very vulnerable to Targeted Impersonation.

Resilient-to-Throttled-Guessing YES An attacker can only submit two tracers per grid/start
location. After two tries, the server will issue a new grid. The user then gets two more tries at a
trace submission before the account is locked until an email loop is performed.
Resilient-to-Unthrottled-Guessing NO Due to the very small number of possible responses (for
example, 26=64 for a 6 character password, there are very few bits of entropy so the system
falls fast.

Resilient-to-Internal-Observation QUASI This is the major design goal of this system. An
attacker needs 5-6 observations of the grid, Start Location, and trace in order to crack the
password. This is sharply reduced if the user picks a dictionary word, however.

Page 21

7. Resilient-to-SSL-Proxy-Man-in-the-Middle QUASI This is the same as Internal-Observations. If a
listener on the wire who was able to remove the SSL encryption, then they would need 5-6
observation in order to recover the password.

8. Resilient-to-Leaks-from-Other-Verifiers NO The password is stored in plain text on the serverin
order for the server to verify the password. This is not good practice.

9. Resilient-to-Phishing YES An attacker with just one trace could not submit that trace to another
server, because the grid is randomized each time. At attacker could mount a man-in-the-middle
attack and proxy the grid, but the rubric in the paper does not penalize for this.

10. Resilient-to-Theft YES There is nothing to steal

11. No-Trusted-Third-Party YES There are no 3" parties involved

12. Requires-Explicit-Consent YES The user must trace their password on the computer and enter
the trace.

13. Unlinkable YES Like passwords, this scheme is unlinkable.

14. Denial-of-Service-able YES An attacker can lock out an account by trying an incorrect password
4 times.

Modified CrossPassword

The modified CrossPassword is more Efficient-to-Use and has less errors (Infrequent-Errors), however
at the cost of a slightly decreased Resilient-to-Physical Observations-Casual and Resilient-to-Physical
Observations-Video if a user traces the grid because of the smaller grid. The degree is reduced, but the
broad scores remain the same.

However, Resilient-to-Internal Observation and Resilient-to-SSL-Proxy-Man-in-the-Middle take big hits
as an attacker can discover a user’s password (or at least have a very high chance of finding it) using 5-
10 copies of the random grid and start location. They don’t need any copies of the trace, though having
at least 1 would let them need less copies of the grid. This makes the scheme vastly weaker. Resilient-
to-Throttled-Guessing, Resilient-to-Unthrottled-Guessing switch to no because the attacker has that
high chance of recovering the password and might only need to make 1-2 guesses. In fact, we don’t
even have a category for how bad this is: Crackable-From-Reloading-Log-In-Page?

Because we now need to protect from the attacker seeing the grid multiple times, modified
CrossPassword is even more Denial-of-Service-able.

GriDsure

GriDsure is evaluated in The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. Here we evaluate the new metrics we have introduced and make
additional comments about some metrics.

It is important to note that the authors rated it as not Resilient-to-Throttled-Guessing or Resilient-to-
Unthrottled-Guessing because the space of possible is so small (10*). In this paper, we rated our other
schemes as Resilient-to-Throttled-Guessing if the attacker has less than 10 possible choices, so we
would rate this as Resilient-to-Throttled-Guessing if it has a rate limiter/lockout.

Because the server must tell the user about the scheme, GriDsure is Inherently-Discoverable. However,
it requires users to remember a sequence of 4 unmarked boxes in a 5x5 grid. Thus it is clearly not
Allows -User-to-Choose-Any-Password.

Page 22

When the user does not place their finger to the screen, it is Resilient-to-Physical Observations-Casual.

Because of the small number of possibilities it is not Resilient-to-Internal-Observation, Resilient-to-SSL-
Proxy-Man-in-the-Middle, or Resilient-to-Physical Observations-Video. With two observations, it is

pretty much game over, as the attacker is able to discover the original sequence of boxes.

Comparison Table

g g 8 g

- %o £%e |3

& 9 o © 9 o =

ouw o 2 =20 2 Q
Memorywise-effortless | Yes No No No
Scalable-for-users Yes No No No
Nothing-to-carry No Yes Yes Yes
Physically-effortless No No No No
Easy-to-Learn No No No Yes
Efficient-to-Use No No No (More) | Quasi
Infrequent-Errors No No No (More) | Quasi
Easy-Recovery-from- Kinda Yes Yes Yes
Loss
Inherently- No Yes Yes Yes
Discoverable
Allows -User-to- No No No No
Choose-Any-Password
Accessible No No No No
Negligible-Cost-per- Yes Yes Yes Yes
User
Server-Compatibility Yes No No No
Browser-Compatibility | Yes Yes Yes Yes
Mature Kinda No No No
Non-Proprietary Yes Yes Yes No
Resilient-to-Physical Kinda Possibly Possibly Yes
Observations-Casual (Less)
Resilient-to-Physical No Possibly Possibly No
Observations-Video (Less)
Resilient-to-Targeted- Yes Yes Yes No
Impersonation
Resilient-to-Throttled- | Yes Yes No! Yes
Guessing
Resilient-to- Yes No! No (Less) No
Unthrottled-Guessing
Resilient-to-Internal- No ~5-6 4-6 just ~2
Observation log in

screen!

Resilient-to-SSL-Proxy- | No Yes No! No

Page 23

Man-in-the-Middle

Crackable-From- No No Yes No
Reloading-Log-In-Page

Resilient-to-Leaks- Yes No! No! No
from-Other-Verifiers

Resilient-to-Phishing No Yes Yes No
Resilient-to-Theft No! Yes Yes Yes
No-Trusted-Third-Party | Yes Yes Yes Yes
Requires-Explicit- Yes Yes Yes Yes
Consent

Unlinkable Yes Yes Yes Yes
Denial-of-Service-able No Yes Yes (More) | No

Table 5.: A Comparison of Off the Grid, CrossPassword, Modified CrossPassword, and GriDsure.

Usability
We will now explore what the field of usability tells us about our password schemes.” The three core
tenants of usability are: learnability, efficiency, and safety.

At the core, the simpler a system is, the more it will be used. Security is often a tradeoff between
usability and security. A successful scheme should add security, without impacting usability too much.

Learnability

Discoverability
In order for a system to start being used, it must be discoverable.

CrossPassword is more discoverable than Off the Grid because the website you are creating an account
with can let you know that the website uses CrossPassword. It is inherently discoverable. Off the Grid
requires that you hear about the system in some way. Websites can still advise you of the presence of
Off the Grid, but the Off the Grid system, as currently designed and designated, is not inherently
discoverable.

Training
It's important that a user know how to use a particular system.

CrossPassword can be taught to users when they pick their password for the site. For example, sites
could show users a video of how to use CrossPassword. Sites could also provide an interactive training
tool using CrossPassword that uses JavaScript and HTML 5 to show the user how to trace their actual
password. (Using the actual password would reveal the user’s password to a shoulder surfing attacker,
but this may be appropriate for a secure room. The password would be stored in the DOM during
registration, but this happens with a normal registration system as well)

7 Material from MIT’s 6.813 User Interface classes by Prof. Rob Miller Spring 2012.

Page 24

Mental Maodel
When users interact with a system, they form a mental model of how that system operates “behind the
scenes.”

We believe that once CrossPassword is explained to a user, it is easy for that user to form a mental
model of the system. The server asks you to solve a puzzle and you solve it. In addition, the rationale
behind the system is also clear; it is clear that this prevents you from sending your password over the
wire for subsequent log ins. Users should be able to understand how the system works. Each loginis
consistent with the rules of the system and ones’ mental model of the system.

Efficiency
Each log in should not take a long time. This is because user’s time is valuable. In addition, users will be
more likely to keep using the system if it is fast.

Whereas Off the Grid requires users to trace the grid twice, CrossPassword only requires a user to trace
the grid once.

Off the Grid also requires one to enter two characters for each letter in the domain name during its
Phase 2. CrossPassword is more natural to use than Off the Grid because one can trace the system on
the screen as one enters the keyboard traces. We feel that expert users of CrossPassword could use the
arrow keys without taking their eyes off the screen. This could make password entry quite fast.

However, both CrossPassword and Off the Grid are slower than traditional password schemes, or even
password managers, such as LastPass. Users may not want to adopt a system that is slower than what
they already have.

Chunking

Research has shown that people can remember 7 +2 pieces of information at once.® A piece of
information could be one letter. When letters are combined into an English word, that word is now one
piece of information. To reiterate: a collection of 7 random letters are 7 pieces of information.
However, a word comprised of 7 letters is only 1 piece of information.

We can use this to evaluate whither a causal visual observer (shoulder surfer) could observe a password
off the screen. With Off the Grid, it would be difficult for an attacker to remember 12 characters using
just their short term memory. This is why we rated it as KINDA for Resilient-to-Physical Observations-
Casual.

Fitts’s Law

Fitts’s Law is an estimate of the time it takes someone to point to an object or steer among objects.’
The rule as formulated by Scott MacKenzie is as follows:™

® De Groot, A. D., Thought and choice in chess, 1965

? paul M. Fitts (1954). The information capacity of the human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, volume 47, number 6, June 1954, pp. 381-391.

1%). Scott MacKenzie and William A. S. Buxton (1992). Extending Fitts' law to two-dimensional tasks. Proceedings of
ACM CHI 1992 Conference on Human Factors in Computing Systems, pp. 219-226.
http://doi.acm.org/10.1145/142750.142794

Page 25

D
T=a+b log2(1+w)
where:

e Tisthe average time taken to complete the movement

e arepresents reaction time to start moving

e b stands for the speed of movement

e Disthe distance from the starting point to the center of the target.

o W isthe width of the target measured along the axis of motion. W can also be thought
of as the allowed error tolerance in the final position, since the final point of the motion
must fall within £/, of the target's center.

We can use a more specific form to study steering tasks, the time to move your hand through a tunnel
of length D and width S:

D
T=a+b()

The index of difficulty is now linear.

We can use this to measure the amount of time it takes someone to trace through the grid, if they trace
the grid with their finger or mouse. Ideally the user should not do that to maintain Resilient-to-Physical
Observations-Casual and Resilient-to-Physical Observations-Video.

Assume a = 0 and b=200ms/bit for a mouse, using the upper limit of the empirical study."* Assume the
user must travel 26 cm to reach a 1 cm square block. If a user had to steer within a row, this leads to an
approximate time to trace of

0 + .2(26) =5.2 seconds for traveling a row or column.

This is the worst case possibility: the user (worst case empirical user) is using a mouse to travel the
entire length of a row/column and they cannot leave the row/column with their mouse at all. This is

Improving Usability
We can do things to improve usability. For example, we can shade every other row or column,
alternating between row and column on every user input.

Y soukoreff, R. William, and I. Scott MacKenzie. Towards a standard for pointing device evaluation, perspectives
on 27 years of Fitts’ law research in HCI. York University. Department of Computer Science and Engineering.
November 4, 2004. http://www.yorku.ca/mack/ijhcs2004.pdf

Page 26

Rt Rl Rl Rl =0 1 S B WA it Bl Dl B
g miwlplviz lcix 1 le lg luls
xIldljlzthlk lwle lglslvioln
elglxlklilt ljlslcinlhlipla
sivieltlblglxinlwlali |z Im
nlhlclaltle lela lilmih Ii- 14

Figure 17 Every other column is shaded

This gives us two benefits. First, the user can now easily see if they should move horizontally or
vertically next. Second, it is easier for the user to keep their eye in the same column/row as they scan
the grid vertically/horizontally for their next letter. This should decrease mistakes as well as decrease
the time it takes people to solve the grid.

Auto-Solver

It is possible to build a browser-based auto-solver for CrossPassword grids. This software would know
the user’s password and use that to automatically solve grid challenges. This would break Resilient-to-
Internal Observation because the user’s system would now need the password stored. However the
system would still meet Resilient-to-SSL-Proxy-Man-in-the-Middle . It would do a great deal for
usability, flipping Physically-Effortless, Easy-to-Learn, Efficient-to-Use, and Infrequent-Errors all to yes.
In addition Accessibility would greatly improve.

Code

We built a prototype of CrossPassword to demonstrate the feasibility of implementing the system. Our
code consists of a server-side component and a client-side component. The server runs a Flask Python
server and keeps track of the user accounts in a PostgreSQL database. The client code is a Javascript file
and HTML login page that is delivered by the server.

When the user requests to login as a specific username, the client-side code sends a request to the
server for a board for that username. The server, upon receiving this request, generates a random 26x26
Latin square consisting of the lowercase letters of the alphabet and the starting coordinates and
direction. This information is stored for the user in the database. The server then sends the board and
starting square information back to the client. The client-side Javascript code inserts the board into the
login page and marks the starting square and the starting direction (indicated by highlighting every other
row/column and by text).

The user then traces out the password starting from the start square by using the arrow keys. The
direction alternates between horizontal and vertical. For example, if the starting direction is horizontal,
then the user will press either the left or right arrow key depending on where the first letter of the
password is in that row. Then the board will change and indicate that the next direction is vertical. The
user will then press either the up or down arrow key depending on where the second letter of the
password is in that column. The user repeats this until the last letter of the password is traced, and then
the user clicks the login button to submit the trace. As the user traced out the password, the client-side
code converted the arrow key presses to the letters: 'u’, 'd", 'I', 'r' and appended them to the end of the

Page 27

trace string. The final trace string might be something like 'dlurdl'. This trace string is sent send to the
server through a form POST request (the username is also sent in a hidden field).

To verify the trace, the server looks up the username in the request, and gets the board and the starting
information. The server then looks at the trace string and tests if the trace can be used to find the

password in the board. If so, then the server logs the user in and directs the user to the home page that
is only accessible to signed-in users.

New users can be created through the registration page by providing a username and password (and
confirmation password by entering the password again). The password is checked to make sure that it
can be place into a board. In order to be place in a board and satisfy the Latin square constraints, the
password must consist only of lowercase alphabet letters and must not have consecutive repeating
letters. There is also a minimum password length requirement.

To see a working version of the implementation, go to crosspassword.herokuapp.com

Limitations of Current Code

We have not implemented any sort of lockout system in our sample implementation. This means that
brute force attacks will be very easy to execute.

Conclusion

CrossPassword is not recommended as a password system. Modified CrossPassword turned out to be
even weaker than we first imagined.

We tried to build a zero-knowledge interactive proof. A zero-knowledge interactive proofis one in
which the prover needs to show that they know the solution to the verifier. The prover in this case is
the user, and the verifier is the server. The verifier asks questions to the prover, who responds with an
answer. If the prover does in fact know the answer, he or she will always answer the verifier's question
correctly. If however, the prover does not actually know the answer, the prover may still get the
question correct. However, over many questions the prover is likely to guess incorrectly at some point.
Thus after enough guesses it is very unlikely that the prover is faking it. However, we only pose one
question on each log in, which is not sufficient for a zero-knowledge interactive proof. Even with a
super-aggressive lock out, CrossPassword still has false negative rates are well above the standards for
cryptographic algorithms.

We controlled for the wrong thing. The password had a lot of information. However, the trace which
we return to the server has very little information. For example, say we take a password and XOR the
characters together to get 1 bit which is either yes or no. We transmit very little meaningful information
of the password, but that very fact makes it easy for the attacker to guess!

The Shannon entropy of CrossPassword is [where [is the number of characters in the password. For
example, a 6 character password has 6 bits of entropy. This makes it easy to brute force. In
comparison, a single letter a-z has 26 possibilities or log,(26) = 4.7 bits per letter. Thus our 6 character
password is almost the equivalent of a password of a single letter! If we allow upper and lower case,

Page 28

digits, and 10 special characters, we have log,(72) = 6.2 bits of entropy, which is more than we
currently have!

GriDsure also has a reduction of entropy from 25% choices to 10* choices. However, 10* represents
log,(10*) = 13.3 bits of entropy, which is a good deal more than CrossPassword. Remember each
additional bit doubles the number of possible passwords, and thus doubles the brute-force password
search time.

However, GriDsure is even unable to fulfill its design goal if an attacker has even two complete
observations of grids and the corresponding PIN code. Figuring out the actual password is easier with
GriDsure, but it is harder to brute force. This may be a better tradeoff.

The Modified Scheme ends up being even worse because we reveal information about the password to
the user. This ends up being disastrous because an attacker only needs to receive 4-6 copies of the grid
from the server, and no data from the user actually entering their password!

On top of all this, our scheme is slower to enter than a traditional password, especially when used with a
password manager.

This shows the inherent complexity in producing password schemes. There are many different
objectives to try to achieve at once. Trading off some objectives produces different outcomes in
security. Objectives cannot be traded off one-for-one, since the factors are not evenly weighted.

There are many different possible attacks on a password scheme. It is difficult to keep all of the possible
attacks in mind as one designs a particular scheme. Although this scheme was weak, it was interesting
to evaluate exactly why it was weak and to think of possible attacks against the scheme.

Page 29

