6.858 / Fall 2012 / General http://css.csail.mit.edw/6.858/2012/general.html

6.858: Computer

Systems Security Fall 2042

Home -
General Information
General
Information Catalog description // Who should take 6.858 //
Communication // Grading // Turn-in // Collaboration // Class
Schedule meetings // Staff // TA office hours
Reference - -
Materials MIT catalog description
Piazza discussion Prereq.: 6.033
G (H)
2011 Class 3-0-9
Materials 4 EDP

Design and implementation of secure computer systems. Lectures
cover threat models, attacks that compromise security, and
techniques for achieving security, based on recent research papers.
Topics include operating system (0OS) security, capabilities,
information flow control, language security, network protocols,
hardware security, and security in web applications. Assignments
include labs that involve implementing and compromising a secure
web server and web application, and a group final project.

Students can use 6.858 to fulfill the engineering concentration
requirements for Computer Systems.

Who should take 6.858?

6.858 is primarily intended for seniors and M.Eng students who want
to learn about how to build secure computer systems in detail. PhD
students are also welcome; 6.858 counts as a systems TQE subject.

Communication

We will distribute assignments and announcements on the course
web site. We expect students to check the 6.858 home page for both
news and assignments at least once a week. If you hear a rumor,
check it there.

Grading policy

Grades in 6.858 will be based on the results of two quizzes (one in
the middle of the term and one in the next-to-last week of classes,
20% in total), lab exercises (35%), final project and presentation

(25%), and class participation and homeworks (together 20%). No

1of2 8/30/2012 11:38 PM

6.858 / Fall 2012 / General

20f2

http://css.csail.mit.edw6.858/2012/general .html

quiz during final exam week.

Turn-in policy

You are required to turn in each lab; if you have not turned in all of
the labs, you will receive an F. Labs that are turned in but score 0
points will receive a D. You have a total of 3 late days to use
throughout the semester. There are no partial late days: an
assignment that is only six hours late uses an entire late day. After
you have used up your late days, each additional day late will incur a
full letter grade penalty. Saturday and Sunday both count as days.

Collaboration

You may not collaborate on quizzes. You are welcome to discuss the
labs with other students, but you should complete all assignments on
your own, and you should carefully acknowledge all contributions of
ideas by others, whether from classmates or from sources you have
read. Final projects will be in groups, where you should collaborate.

Class meetings

Lectures will be held MW 11-12:30 in 32-144.

Staff

Lectures
Nickolai) _ o
Zeldovich 32-G994 x3-6005 nickolai@csail.mit.edu
Teaching assistant

David Benjamin TBD davidben@mit.edu

Course mailing list: 6.858-staff@pdos.csail.mit.edu
Use this mailing list to contact all the 6.858 staff.

TA office hours

Office hours will be held TBD. If you can't make it, you can email us
to set up another time to meet. You are welcome to stay and ask
questions after lectures.

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Friday, 18-May-2012 13:52:46 EDT

8/30/2012 11:38 PM

6.858 / Fall 2012 / Reference http://css.csail.mit.edw/6.858/2012/reference.html

6.858: Computer

Systems Security Fall 2012

Home
Information
Cryptography
Schedule
® Applied Cryptography by Bruce Schneier. John Wiley & Sons,
Reference 1996. ISBN 0-471-11709-9.
Materials e Handbook of Applied Cryptography by Menezes, van Oorschot,
and Vanstone.
Piazza discussion ® Introduction to Cryptography by Johannes Buchmann. Springer,
2004. ISBN 978-0-387-21156-5.
2011 Class ® Cryptographic libraries:
Materials 0 KeyCzar by Google.

© GPGME by GnuPG.

O OpenSSL.
0 NaCl: Networking and Cryptography library by Tanja

Lange and Daniel J. Bernstein.

Control hijacking attacks

® Smashing The Stack For Fun And Profit, Aleph One.

® Bypassing non-executable-stack during exploitation using
return-to-libc by cOntex.

® Basic Integer Overflows, blexim.

® The C programming language (second edition) by Kernighan
and Ritchie. Prentice Hall, Inc., 1988. ISBN 0-13-110362-8,
1998.

e Intel 80386 Programmer's Reference Manual, 1987.
Alternatively, in PDF format. Much shorter than the full current
Intel architecture manuals below, but often sufficient.

e JA-32 Intel Architecture Software Developer's Manuals, Intel,
2009. Local copies:

O Volume 1: Basic Architecture

0 Volume 2A: Instruction Set Reference, A-M

O Volume 2B: Instruction Set Reference, N-Z

O Volume 3A: System Programming Guide, Part 1
© Volume 3B: System Programming Guide, Part 2

Web security

Browser Security Handbook, Michael Zalewski, Google.
Browser attack vectors.

Google Caja (capabilities for Javascript).

Google Native Client allows web applications to safely run x86
code in browsers.

e Myspace.com - Intricate Script Injection Vulnerability, Justin
Lavoie, 2006.

l1of2 8/30/2012 11:38 PM

6.858 / Fall 2012 / Reference

2 of2

http://css.csail.mit.edw/6.858/2012/reference.html

e The Security Architecture of the Chromium Browser by Adam
Barth, Collin Jackson, Charles Reis, and the Google Chrome
Team.

® Why Phishing Works by Rachna Dhamija, J. D. Tygar, and Marti
Hearst.

OS security

® Secure Programming for Linux and Unix HOWTO, David
Wheeler.

e setuid demystified by Hao Chen, David Wagner, and Drew
Dean.

e Some thoughts on security after ten years of gmail 1.0 by
Daniel J. Bernstein.

® Wedge: Splitting Applications into Reduced-Privilege
Compartments by Andrea Bittau, Petr Marchenko, Mark
Handley, and Brad Karp.

e KeyKOS source code.

Exploiting hardware bugs

® Bug Attacks on RSA, by Eli Biham, Yaniv Carmeli, and Adi
Shamir.

e Using Memory Errors to Attack a Virtual Machine by Sudhakar
Govindavajhala and Andrew Appel.

Mobile devices

® iOS security

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail. mit.edu.

Top // 6.858 home // Last updated Thursday, 23-Aug-2012 21:19:26 EDT

8/30/2012 11:38 PM

0057 by D
IU e fo ne B pok

f “7 " o
N It()uﬂjln 20 (&@V ;Ch
@v).ld}nﬂ Sl Syefoms

LWL//@ M/ W
NO (eUifW{/l(ﬂﬂ

ﬂ'\Uf - lﬂ/g [7l'/‘)L0(la’/ bm{c ;11 bo
(
o0h

s

Lo),
LN N yans Cegouch papers

NO)’ ((36{/”7 (/‘HOI@ (é 3517/
Hml XV f[w& C{(/L/w Cone 5;61%@

}Ml M, Seuie Syvﬁ%vé
QW/&{ [@b o (47

? /g ﬂegﬂlﬁ IC/IAQ/[plo /’@L
(40 Combinc W/ ol clusees

|
ﬂgclw éum ﬁz {C@WY\%

T@l"it H!@l’[,QW/{E €KW235
= { |
- (8235%@ (J“é aA{(/ascyr e Qs {?ma/;(w/{b

Olles M%ﬁ

LDB °‘C s \[’o m(mﬂ%

L pol’tc 3 dea) '/COA{!’J M‘:
[3 g & %) .

- {ﬂL /11(7
- avetﬂgsﬂh] | veress

g

Dot M- v e g
\obumgloy ot e cun / !
&)e Qeﬂz/@\/é

Mﬁry i "‘/lW?L (’,41(”6{; 109“(,

Gow\ s /\’J@l:ﬂ/e - bm thonte ot /@_y_ﬁzz’ﬂ gp('/,ﬂ V@j

Imp@(@{ {M7 " Traooff. é/w I[VMHWM; “/k
8@#@ VV\QJWn;sm,& @wfwt@ bette 58((//017

i

a

\Mofe (L)@g 5@/”7 9} (ory
Al 3

b it b prsed £ ool
~(dn P owfi ggfezi'nlfna’m[£ CZ%J

~ (M ﬁw Cch (% Q/ny%i)

\ohat e m@; o Cles 9l of-Ghat-shl
rot e allogd

lew Wﬂ}/ Roks VSmam F pasener{

bt & §\a,u/:7l7 v ’/IL é’%
i bl 16 ol

Wl elfs

Rl g
e Hel UZW'P”%
[y ‘ze, s P’(dx gm& poés o
G (il 1, (6/qj
G flk o ol Ongttly 0

//(ana éﬁé’i Cosph s

J BO\A %L (ofts
m\(e]L/ual@ (ot Ou/Hlm’/-]

b 00 1 foden browges
e Tuy wll & o By
Ul b

O Qadon s Gn e ol

Ombeddod dyies apW ol df
Uzﬁ(m(sl

'
4 7.,

LW?, Came. | WZ«M So0ds

[Oﬂ%q, @aol\‘\ ,geaxf}#] (¢ J%;gn - jo
I/Q@(L /ﬁ(’mbt\ &= [Mders lfl;/@d 1LO (),z%wl\

50@;@ Caf@ (¢po nal- St

BQJ g ‘(" o4 Fﬂd oF g barks
LJ} not O’%

| :Q H/Cl/w/

\ Lmd M 019 0‘/&"{’; F/@Mp[/
k Nﬂ ad [aa&, g

WOWL n :ml@/% L’S Ftr()
Tl e o o & VB dia

Rombe @O((

"\Ov/ po{/;ﬂﬂ./(]{ oe \/WC

9t (bf)
lebn s ato (}M()/

thb on 5{7"/{\

-

ot 0dd_
A Sm
)

@*(7& O QIOCS Aa‘} b L(rww (ﬂw é é A/F Lg
[G audy Swite (tho ads
LJ/ (284 13K L & S/e(i,/

(otung z 8/@@((/ 1%
Vhh oo WW@ speyinl

’————-—-—'_'/_

%Hﬂbé‘l' Oy mf‘f%@ Con {fd({, Ig A 5@@/}7 (’%:/6

-l g overlo/

[M'{?Z X/y
Xoy
Tan wap gund 1 30 bils

7& Hv@\t Worry MJML Ny G (aR

YL o

& T {len nant] o
| e
W lt?/l 6#@

Sone brones cgqd G (np CS, /57/)
=, s il Yomindted (0*%)
— bt Ty s fon byTes lﬁnﬁ
<O Ch wtd Jwa~ vncoded () brbs

n'fw;t/a

"9 g A n Gl om
P S

iy KL o

PM\/moum(um/pq,, ca, :J =035
ﬁ iy

Qio(,(/
S Can Jvﬁ(e Va1 o Ol
NQ C[’\Qou,y {% ;1 frge

D@JMA& 0)0 [6l
Rod .. () ¢

ztmL)(/‘ //mL ,n/fwcﬁﬁ({
’,

Gt XN -/ **/,

3

Asemad ot 0 67%“/1\

Stne SUP)OJ’ C(ch@({,) 771/15 G va st Jah'@é}(

ok o whle b ke |
“Swal e ”W'T‘fﬁ"'j walo_

1 , |
p(tnwru/ *ECOMFY OVL /Vtﬁo[’lﬂﬂlféﬂ(
L A

- (U ex’fmvfnﬂ, 4'&571@4’57 “ﬂ’“ﬂ r«e%km
= U5 g,

- N(NLWO(A ﬁ/@wl{;
= Cf 1Py

T b ed J@me
s long VY Vrdyhnd h ’ /
W ey g

O ey / e ey b in Det iy
_ VlM)L b ke s fo g 1 V"*/’,M(
- OM Mor OLSémpHm Y ae /4/{1

{9 I
b Yool moe $lomdoie Thiag K
Mo, / hande fo oafoce

i
”’]/\MJ@ o (oque tlr\ l%//e /écm%blf
“Cuy T (Jw:do, 1@7 j)m Jeélj,,

e

Ol wdochd vy Splen s S0
—| g I cat o

= [(Ma?[ax({ Q{ pfo}ev{/,/:j Oty ﬁ’y

—

Tawodgy
Dl duted - b]5@/

‘”C 4-55 ol e \/Wé steed
/ —!76%%\?, %/JF* et ’éﬁ}’@/ﬁ'fb,}v 801%5&,4
Aoy ’f(oé%wm/_,gw 7’7@
ks 5B volher o nesd if o ol
Misted COMPJH% ﬁ%@\‘ @’Cﬁ]

o ”JT{ {B 6)ﬂlr;ﬁk
(5, bk e, Vit

http://css.csail.mit.edw/6.858/2012/lec/101-intro.txt

Introduction g {;

Administrivia
Lectures will be MW11-12:30, in 4-237 (unless the registrar moves us again).
Each lecture will cover a paper in systems security (except today).
Preliminary paper list posted online, likely to change a bit.
If you are interested in specific topics or papers, send us email.
Read the paper before lecture.
Turn in answers to a short homework question before lecture.
Send email with a question about the paper; will try to answer in lecture.
Will discuss the paper in class.
Interrupt, ask questions, point out mistakes.
Two quizzes during regular lecture time slot.
No "final exam" during finals week; second quiz near end-of-term.
Assignments: 6 labs + final project.
Lab 1 out today: buffer overflows. Start early.
Labs will look like real-world systems, in some respects:
Many interacting parts written in different languages.
Will look at/write x86 asm, C, Python, Javascript,
Final project at the end of the course (groups of 2-3 people).
Presentations during the last week of class.
Think of projects you'd like to work on as you're reading papers.
OK to combine with other class projects or your own research.
Tutorial on how to get started with the VM, start writing your exploit.
Thursday (tomorrow) 7pm, room TBD.
Two TAs: David, Taesoo.
Sign up for Piazza (link on course web site).
Use it to ask questions about labs, see what others are stuck on, etc.
We will post any important announcements there.
Warning about security work/research on MITnet (and in general).
Know the rules: http://ist.mit.edu/services/athena/olh/rules.
Just because something is technically possible, doesn't mean it's legal.
Ask course staff for advice if in doubt.

What is security?
Achieving some goal in the presence of an adversary.
Many systems are connected to the internet, which has adversaries.
Thus, design of many systems might need to address security.
i.e., will the system work when there's an adversary?
High-level plan for thinking about security:
Policy: the goal you want to achieve.
e.g. only Alice should read file F.
Common goals: confidentiality, integrity, availability.
Threat model: assumptions about what the attacker could do.
e.g. can guess passwords, cannot physically grab file server.
Better to err on the side of assuming attacker can do something.
Mechanism: knobs that your system provides to help uphold policy.
e.g. user accounts, passwords, file permissions, encryption.
Resulting goal: no way for adversary within threat model to violate policy.
Note that goal has nothing to say about mechanism.

Why is security hard? Negative goal.
Need to guarantee policy, assuming the threat model.
Difficult to think of all possible ways that attacker might break in.
Realistic threat models are open-ended (almost negative models).
Contrast: easy to check whether a positive goal is upheld,
e.g., Alice can actually read file F.
Weakest link matters.

Iterative process: design, update threat model as necessary, etc.

What's the point if we can't achieve perfect security?

1 of 4 9/7/2012 12:23 AM

http://css.csail.mit.edw/6.858/2012/lec/101-intro.txt

In reality, must often manage security risk vs benefit.
More secure systems means less risk (or consequence) of some compromises.
Insecure system may require manual auditing to check for attacks, etc.
Better security often makes new functionality practical and safe.
Suppose you want to run some application on your system.
Large companies often prohibit users from installing software that
hasn't been approved on their desktops, partly due to security.
Javascript in the browser is isolated, making it ok (for the most part)
to run new code/applications without manual inspection/approval.
(or virtual machines, or Native Client, or better 0S isolation mechanisms)
Similarly, VPNs make it practical to mitigate risk of allowing employees
to connect to a corporate network from anywhere on the Internet.

What goes wrong #1: problems with the policy.
Example: Fairfax County, VA school system.
Each user has a principal corresponding to them, files, and password.
(Just to be clear: technical term, not the job of school principal)
Student can access only his/her own files.
Teacher can access only files of students in his/her class.
Superintendent has access to everyone's files.
Teachers can add students (principals) to their class.
Teachers can change password of students in their class.
What's the worst that could happen if student gets teacher's password?
Policy amounts to: teachers can do anything.
Example: Sarah Palin's email account.
Yahoo email accounts have a username, password, and security questions.
User can log in by supplying username and password.
If user forgets password, can reset by answering security Qs.
Security questions can sometimes be easier to guess than password.
Some adversary guessed Sarah Palin's high school, birthday, etc.
Policy amounts to: can log in with either password or security Qs.
(no way to enforce "Only if user forgets password, then ...")
Example: Amazon/Apple break-in.
Amazon allows adding credit card, then use last 4 digits to reset password,
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/all/
How to solve?
Think hard about implications of policy statements.
Some policy checking tools can automate this process.
Automation requires higher-level goal (e.g. no way for student to do X).

What goes wrong #2: problems with threat model / assumptions.
Example: human factors not accounted for.
Phishing attacks.
User gets email asking to renew email account, transfer money, or ...
Tech support gets call from convincing-sounding user to reset password.
"Rubberhose cryptanalysis".
Example: all SSL certificate CAs are fully trusted.
To connect to an SSL-enabled web site, web browser verifies certificate.
Certificate is a combination of server's host name and cryptographic key,
signed by some trusted certificate authority (CA).
Long list (hundreds) of certificate authorities trusted by most browsers.
If any CA is compromised, adversary can intercept SSL connections with
a "fake" certificate for any server host name.
Last year, a Dutch CA was compromised, issued fake certs for
many domains (google, yahoo, tor, ...), apparently used in Iran (?).
Example: assuming good randomness for cryptography.
Need high-quality randomness to generate the keys that can't be guessed.
Problem: embedded devices, virtual machines may not have much randomness.
As a result, many keys are similar or susceptible to guessing attacks.
[https://factorable.net/weakkeysl2.extended.pdf]
Example: subverting military OS security.
In the 80's, military encouraged research into secure 0OS'es.
One unexpected way in which OS'es were compromised:

2 of 4 9/7/2012 12:23 AM

http://css.csail.mit.edw/6.858/2012/1ec/101-intro.txt

adversary gained access to development systems, modified 0S code.
Example: subverting firewalls.
Adversaries can connect to an unsecured wireless behind firewall
Adversaries can trick user behind firewall to disable firewall
Might suffice just to click on link http://firewall/?action=disable
Or maybe buy an ad on CNN.com pointing to that URL (effectively)?
Example: machines disconnected from the Internet are secure?
Stuxnet worm spread via specially-constructed files on USB drives.
How to solve?
Think hard (unfortunately).
Simpler, more general threat models.
Better designs may eliminate / lessen reliance on certain assumptions.
E.g., alternative trust models that don't have fully-trusted CAs.
E.g., authentication mechanisms that aren't susceptible to phishing.

What goes wrong #3: problems with the mechanism -- bugs.
Example: programming mistakes: buffer overflows, etc.
Security-critical program manipulates strings in an unsafe way.

int read num(void) {
char buf[128];
gets (buf) ;
return atoi (buf);

}

Adversary can manipulate inputs to run arbitrary code in this program.

Example: integer overflows matter, in C code (e.g., malloc).
Example: Moxie's SSL certificate name checking bug
Null byte vs. length-encoding.
Example: PayMaxx W2 form disclosure.
Web site designed to allow users to download their tax forms online.
Login page asks for username and password.
If username and password OK, redirected to new page.
Link to print W2 form was of the form:
http://paymaxx.com/print.cgi?id=91281
Turns out 91281 was the user's ID; print.cgi did not require password
Can fetch any user's W2 form by going directly to the print.cgi URL
Possibly a wrong threat model: doesn't match the real world?
System is secure if adversary browses the web site through browser
System not secure if adversary synthesizes new URLs on their own
Hard to say if developers had wrong threat model, or buggy mechanism..
Example: Debian PRNG weakness.
Debian shipped with a library called OpenSSL for cryptography.
Used to generate secret keys (for signing or encrypting things later).
Secret key generated by gathering some random numbers.
Developer accidentally "optimized away" part of random number generator.
No-one noticed for a while, because could still generate secret keys.
Problem: many secret keys were identical, and not so secret as a result.
Example: bugs in sandbox (NaCl, Javascript).
Allows adversary to escape isolation, do operations they weren't supposed to.

How to avoid mechanism problems?
Use common, well-tested security mechanisms ("Economy of mechanism")
Audit these common security mechanisms (lots of incentive to do so)
Avoid developing new, one-off mechanisms that may have bugs

Good mechanism supports many uses, policies (more incentive to audit)
Examples of common mechanisms:

- 0S-level access control (but, could often be better)
- network firewalls (but, could often be better)
- cryptography, cryptographic protocols.

Open vs. closed design or mechanism

3 of 4 9/7/2012 12:23 AM

http://css.csail.mit.edw/6.858/2012/lec/101-intro.txt

Why not make everything closed or secret (design, impl, code, ...)}?
Threat model: best to have the most conservative threat model possible
What if you assume your implementation or design are secret?
If implementation is revealed, hard to change to re-gain security!
Must re-implement or re-design system
If only assumption was that password/key/... is secret, can change.
What if you don't make assumptions about design/impl being secret?
Often a good idea to publish design/impl to get more review.
If others use your mechanism, it will be much better tested!
Helps ensure you don't accidentally assume design/impl are secret.

Rely on less mechanism, by changing the threat model when possible.

Terminology:
(X) is trustworthy: means that (X) is worth trusting -- good!
(X) is not buggy, will not be compromised, will not fail.
(X) is trusted: means that (X) _must_ be trustworthy -- bad!

Something will fail if (X) is buggy, compromised, or fails.

Suppose you're editing a text file on some machine.

The 0S kermel is trusted by all parties (users, apps, etc).

The text editor is trusted by you (but maybe not other users).

"Trusted" is often transitive -- bad again!

If you have to trust the text editor, and the text editor has
to trust developers of some library it uses, then you may
have no choice but to trust that library too.

High-level plan:
Reduce amount of trusted code.

.. by enforcing policy using a more trustworthy mechanism.

.. e.g. the 0S kernel should let this app write to only one file?

"Principle of least privilege".

Doing this requires well-designed, flexible security mechanisms.

Improve trustworthiness of trusted code.
by auditing, program analysis, better languages, etc.

References
http://catless.ncl.ac.uk/Risks/26.02.html#subj7.1
http://en.wikipedia.org/wiki/Sarah Palin email hack
http://www.thinkcomputer.com/corporate/whitepapers/identitycrisis.pdf
http://en.wikipedia.org/wiki/DigiNotar#Issuance of fraudulent certificates

4 of4 9/7/2012 12:23 AM

01T T 7

DW“[W d Um ;may@ aml V’ﬂl wa/l
Nindhs l/mpzaﬂ// fl#]

T e
= y\)emd
- Geh)ty 4ohFs
~ 4
A i
~Vf
- 20&\ W
—oupld (rush
- 9y

— é\)om’l%'lﬂf)

[E’af

%4
(S

Foe
L Mh e \

[UM m;ndeH? " ﬂvemL 05

(Mﬁ { Liac gy
-
—CAY
~ Uh
~ Mye
=
B U;/M[ﬁa;c

MD@n\TL & UM Tm[sll

b b G (e
ﬁfl& (a/(O Q{dif

[

gﬂm(ﬁmil tﬂ{ b‘“ff/ 1

})J@A b g gl
C]% o — CO%HZI# [aZML if 1[@\(

(i}ULﬁm/

VwﬂL wailg a/‘{

Lagiel

\/C\m\’w‘ﬁl" *-/100LH 7 oob —exgleck

L(COAf}j b {l sp ndie,

CO{\{\(O‘L 1[07\ 0-/][6 dﬁ l/ﬂ

\/Mt \,/gﬁ IJ/W

%&bew

Ch& = %0")\(], . S}abL
7w gerdible doh

a\bo o8 "‘56#}
TQCL Compy o w/

" hy Rk (i
Ldagiibed Vo

C Cle o duoms
£

d

bR G hoele b pue HITP g
b oir

é@ \u\ Q‘cp\m\ﬂl ﬂ((oxd\ Py (n |
(gt & St/ " "l 4]

Lle.u“vt 5“‘/(\ P"“L LJIL Odal@

Hil & Lot e VI e gueeg
@é H, \U\}‘) }/\\Q}ML

()M) Mb N b e ne his ae
UW”S 0N M on
(ot p/(‘fﬂL fhuluorty
§ v J@b@p/

OTHM/L\ ()DB V{ (5{)9(4’(!@@ 6@% pa‘cnl

}mi& (/ wh (‘g Chogh . {{(@f fML
D gel b ok ok

~ 4 % oo i b éé’“’f
Myl HQ JH/’Q of IOWY

hobd "W 0l o el
% Hb\t (&wﬁh}
bt = bl At
Epab b of gkl
UP W‘& éowq

0

N@ (ﬁlms Yo ! /ggzi#@ﬁ

Pk ol Bl oo et ol

G = oy fond b S (e Gt
$((S%’aemag (ol] - < pfq,h ot D @ssembly cofe

5(= 20%6()’1 = (e l z.af,]r/wf({@q

(I
(antiad

ol mf . C,(J = P(;A\l Mmg’ “}
/10 0y - /tiad [0 Wl s (ﬂn ﬁ % (sp
/ 4 f (dhak poile)

{ 4o , s
%‘Lm b dagle G oy o [}

(B sy byt

——

9(1? f Jfo ﬁHauLl 7l/J [vnﬂ;ﬁj ey (IM% [@

Lean onby ok ab e af ond

@J% P qi’(p@/ep ook { ~ep5ﬁi)

bl /9

Baggy Bounds Checking: An Efficient and Backwards-Compatible]?efense
against Out-of-Bounds Errors |

Periklis Akritidis,* Manuel Costa,’ Miguel Castro,t Steven Hand*

*Computer Laboratory
University of Cambridge, UK
{pa280,smh22}@cl.cam.ac.uk

Abstract
Attacks that exploit out-of-bounds errors in C and C++
programs are still prevalent despite many yearsof re-
search on bounds checking. Previous backwards compat-
ible bounds checking techniques, which can be applied to
unmodified C and C++ programs, maintain a data struc-
fure with the bounds for each allocated object and per-
form lookups in this data structure to check if pointers
remain within bounds. This data structure can grow large

and the lookups are expensive. . L\}V l (" ¢ ¢ Kfﬁf }

In this paper we present a backwards compatible bounds
checking technique that substantially reduces perfor-

mance overhead. The key insight is to constrain the sizes
of allpcated memory regions and their alignment to en-
able eﬁm and hence efficient bounds
checks atmhnique has low overhead in
practice—only 8% throughput decrease for Apache—
and is more than two times faster than the fastest pre

vious technique and about five times faster—using less
memory—than recording object bounds using a splay

T gl by o

1 Introduction L o {_7 ald (E’;/}S (/{05&

Bounds checking C and C++ code protects against a wide
range of common vulnerabilities. The challenge has been
making bounds checking fast enough for production use
and at the same time ba%mmmbinary
libraries to allow incremental deployment. Solutions us-
ing fat pointers [24, 18] extend the pointer representation
with bounds information. This enables efficient bounds
checks but breaks backwards compatibility because in-
creasing the pointer size changes\tﬁe_ﬁm_ory layout of
data structures. Backwards compatible bounds checking
techniques [19, 30, 36, 15] use a separate data structure
to lookup bounds information. Initial attempts incurred a

significant overhead [19, 30, 36] (typically 2x—10x) be-
e

t Microsoft Research
Cambridge, UK
{manuelc,mcastro}@microsoft.com

&

j<— Allocation Bounds ———=|

t=— Object Bounds —>1

Object

Padding

/7 Figure 1: Allocated memory is often padded to a partic-

ular alignment boundary, and hence can be larger than
the requested object size. By checking allocation bounds
rather than object bounds, we allow benign accesses to the
padding, but can significantly reduce the cost of bounds
lookups at runtime.

cause looking up bo is expensive and the data struc-
ture can grow large. More recen applied
sophisticated static pointer analysis to reduce the number

of bounds lookups; this managed to reduce the runtime
overhead on the Olden benchmarks to 12% on average.

In this paper we present baggy bounds checking, a back-
wards compatible bounds checking technique that re-
duces the ¢ bounds checks. We achieve this by
enforcing allocation hounds rather than precise object
bounds, as shown in Figure 1. Since memory allocators
pad object allocations to align Wm,
there is a class of benign out-of-bdunds errors that violate
the object bounds but fall within the allocation bounds.
Previous work [4, 19, 2] has exploited this property in a
variety of ways.

Here we apply it to efficient backwards compatible
bounds checking. We use a binary buddy allocator to en-
able a compact rcprcscnmtmds:
since all allocation sizes afe powers of two, a single byte

is sufficient to Whm of the allocation
G 00(

¢ A)‘EW@/

size. Furthermore, there is no need to store additional in-
formation because the base address of an allocation with
size s can be computed by clearing t@ast sig-
nificant bits of any pointer to the allocated region. This
allows us to use a space and time efficient data struc-
ture for the bounds table. We use a contiguous array
instead of a more expensive data structiffé (such as the
splay trees used in previous work). It also provides us
with an elegant way to deal with common cases of tem-

porarily out-of-bounds pointers, We describe our design

in more detail in Section 2. p

We implemented baggy bounds checking as a compiler
plug-in for the M:crosoft Phoemx [22] code genera-
tion framework, alon in time com-
ponents (Section 3). The plug-in inserts code to check
bounds for all pointer arithmetic that cannot be statically
proven safe, anmi_nmpmmk'vaﬂa‘b%s where
necessary. The run ﬁmcs a binary
buddy allocator for heap allocations, and user-space vir-

tual memory handlers Tor growing the bounds table on
demand~——"""""

In Section 4 we evaluate the performance of our sys-
tem using the Olden benchmark (to enable a direct com-
parison with Dhurjati and Adve [15]) and SPECINT
2000. We compare our space overhead with a version
of our system that uses the splay tree implementation
from [19, 30]. We also verify the efficacy of our sys-
tem in preventing attacks using the test suite described
in [34], and run a number of security critical COTS com-
ponents to confirm its applicability.

Section 5 describes our design and implementation for
64-bit architectures. These architectures typically have
“spare” bits within pointers, and we describe a scheme
that uses these to encode bounds information directly in
the pointer rather than using a separate lookup table. Our
comparative evaluation shows that the performance ben-
efit of using these spare bits to encode bounds may not in
general justify the additional complexity; however using
them just to encode information to recover the bounds
for out-of-bounds pointers may be worthwhile.

Finally we survey related work (Section 6), discuss limi-
tations and possible future work (Section 7) and conclude
(Section 8).

2 Design

2.1 Baggy Bounds Checking

Our system shares the overall architecture of backwards
compatible bounds checking syste[ns for C/C++ (Fig-

—

Source Generate
Code IR
fm——————eccaaa= - - --
|
: Baggy Runtime
t Bounds Support
! Checking Library
]
L----------- P ———
Binary Generate
Libraries Code
Hardened
Executable

Figure 2: Overall system architecture, with our contribu-
tion highlighted within the dashed box.

ure 2). It converts source code to an intermediate repre-
sentation (IR), finds potentially unsafe pointer arithmetic
operations, and inserts checks to ensure their results are
within bounds. Then, it links the generated code with
our runtime library and binary libraries—compiled with
or without checks—to create a hardened executable.

‘We use the w:%;cr approach for bounds checking
introduced by Jones and Kelly [19]. Given an in-bounds

pointer to an object, this approach ensures that any de-
rived pointer points to the same object. It records bounds
information for each object in a bounds table. This ta-
ble is updated on allocation and deallocation of objects:
this is done by themal1oc family of functions for heap-
based objects; on function entry and exit for stack-based
objects; and on program startup for global objects.

The referent object approach performs bounds checks on
pointer arithmetic. It uses the source pointer to lookup
the"bourmdsin the table, performs the operation, and
checks if the destination pointer remains in bounds. If
the destination pointer does not point to the same object,
we mark it out-of-bounds to prevent any dereference (as
in [30, 15]). However we permit its use in further pointer
arithmetic, since it may ultimately result in i tn=bounds
pointer. The marking mechanism is described in detail in
Section 2.4.

Baggy bounds checking uses a very compact repre-

T kijmjf @‘U"L Wlmf —hvib tlé 6{0;47""“"

sentation for bounds information. Previous techniques Pointer arithmetic operation:
recorded a pointer to the start of the object and its size in
the bounds table, which requires at least eight bytes. We
paq and align quects to powers of two and enforce allo- ExPlicit bounds check:
cation bounds instead of object bounds. This enables us
to use a single byte to encode bounds information. We
store the binary logarithm of the allocation size in the
bounds table:

p' =p + 1

size
base

I

1 << table[p>>slot_size]
P & “(size-1)

p’' >= base && p’ - base < size
e = log2(size);

Optimized bounds check:
C?rven this 1l}fonnanon, Wwe can recover fhe a!.locatlon (p"p’) >>table [p>>slot size] == 0
size and a pointer to the start of the allocation with: -
size = 1 << e; Figure 3: Baggy bounds enables optimized bounds

checks: we can verify that pointer_p’ derived from
pointer p is within bounds by simply checking that p and
' have the same prefix with only the e least significant

p : bits modified, wh is the bi ith
To convert from an in-bounds pointer to the bounds for s i A e G

the chiagi . bound Pivi uti cation size.
: Vi
e object we require a _qu_q_f‘_{g e. Previous solutions

¢ % t
based on the referent object approach (such as [19, 30, ((‘jU‘D +q P(' 9/5’4][M‘é {r
15]) have implemented the bounds table using a splay 2.2 Efficient Checks

tree. JJ g ﬂm/

Baggy bounds, by contrast, implement the bounds table ~ In general, bounds checking the result p’ of pointer ~ (
using a cqntiguous array. The table is small because each arithmetic on p involves two comparisons: one against (in {}ud J ;‘Lj f;

base = p & " (size-1);

entry uses a single byte. Additionally, we partition mem- the IWMEQUM, L
ory into aligned slots with slot_size bytes. The bounds shown in Figure 3.

table has an entry for each slot rather than an entry per We devised an optimized bounds check that does not
byte. So the space overhead of the table is 1/slot_size, ¢yen need to compute the lower and uppes-bounds. It
and we can tune slot_size to balance memory waste be- e the value of p and the value of the binary logarithm
tween padding and table size. We align objects to slot 4f the allocation size, e, retrieved from the bounds table.
boundaries to ensure that no two objects share a slot. The constraints on allocation size and alignment ensure
that p’ is within the allocation bounds if it differs from
p only in the e least significant bits. Therefore, it is suf-
ficient to shift p~p’ by e and check if the result is zero,
as shown in Figure 3.

Accesses to the table are fast. To obtain a pointer to the
entry corresponding to an address, we right-shift the ad-
dress by the constant logs (slot_size) and add the con-

stant table base. ¥We can use this pointer to retrieve the

bounds information with a single memory access, instead ~ Furthermore, for pointers P’ where
of having to traverse and splay a splay tree (asinprevious sizeof («p’) > 1, we also need to check that
solutions). (char %) p’ + sizeof(xp’) - 1 is within

bounds to prevent a subsequent access to *p’ from
crossing the allocation bounds. Baggy bounds checking
can avoid this extra check if p’ points to a built-in
type. Aligned accesses to these types cannot overlap
an allocation boundary because their size is a power of
two and is less than slot_size. When checking pointers
to structures that do not satisfy these constraints, we
perform both checks.

Note that baggy bounds checking permits benign out-
of-bounds accesses to the memory padding after an ob-
ject. This does not compromise security because these
accesses cannot write or read other objects. They cannot
be exploited for typical attacks such as (@) overwriting a
return address, function pointer or other security critical
data; or (b) reading sensitive information from another
object, such as a password.

We also defend against a less obvious attack where the i
program reads values from the padding area that were 2.3 Interoperability

originally written to a deleted object that occupied the P e

same memory. We prevent this attack by clearing the ~ Baggy bounds checking works even when instrumented

padding on memory allocation. code is linked against libraries that are not instrumented.
e P i S i~

—
-—

The library code works without change because it per-
forms no checks but it is necessary to ensure that instru-
mented code works when accessing memory allocated in
an uninstrumented library. This form of interoperabil-
ity is important because some libraries are distributed in
binary form.

We achieve interoperability by using the binary loga-
rithm of the maximum allocation size as the default value
for bounds table entries. Instrumented code overwrites
the default value on allocations with the logarithm of the
allocation size and restores the default value on deallo-
cations. This ensures that table entries for objects al-
located in uninstrumented libraries inherit the default
value. Therefore, instrumented code can perform checks
as normal when accessing memory allocated in a library,
but checking is effectively disabled for these accesses.
We could intercept heap allocations in library code at
link time and use the buddy allocator to enable bounds
checks on accesses to library-allocated memory, but this
is not done in the current prototype.

2.4 Support for Out-Of-Bounds Pointers

A pointer may legally point outside the object bounds in
C. Such pointers should not be dereferenced but can be

. compared and used in pointer arithmetic that can eventu-
ally result in a valid pointer that may be dereferenced by
the program. (

Out-of-bounds pointers present a challenge for the ref-
erent object approach because it relies on an in-bounds
pointer to retrieve the object bounds. The C standard
only allows out-of-bounds pointers to one element past
the end of an array. Jones and Kelly [19] support these
legal out-of-bounds pointers by padding objects with one
byte. We did not use this technique because it interacts
poorly with our constraints on allocation sizes: adding

one byte to an allocation can double the allocated size in ;

the common case where the requested allocation size is a
power of two.

Many programs violate the C standard and generate ille-
gal but harmless out-of-bounds pointers that they never
dereference. Exa:ﬁ}ilésﬁm{-ude-thking a base one array
by decrementing the pointer returned by malloc and
other equally tasteless uses. CRED [30] improved on the
Jones and Kelly bounds checker [19] by tracking such
pointers using another auxili ata structure. We did
not use this approach because it adds overhead on deal-
locations of heap and local objects: when an object is
deallocated the auxiliary data structure must be searched
to remove entries tracking out-of-bounds pointers to the
object. Additionally, entries in this auxiliary data struc-

slot L---4
Out-of-bounds pointer
in bottom half of slot
object %
QOut-of-bounds pointer
slot |---4 in top half of slot

Figure 4: We can tell whether a pointer that is out-
of-bounds by less than slot_size/2 is below or above
an allocation. This lets us correctly adjust it to get a
poimt)jcct by respectively adding or subtract-
ing slot_size.

ture may accumulate until their referent object is deallo-
cated.

We handle out-of-bounds pointers within slot_size/2
bytes from the original object as follows. First, we mark
out-of-bounds pointers to prevent them from being deref-
erenced (as in [15]). We use the memory protection hard-
ware to prevent dereferences by setting the most signifi-
cant bit in these pointers and by restricting the program
to the lower half of the address space (this is often al-
ready the case for user-space programs). We can recover
the original pointer by clearing the bit.

The next challenge is to recover a pointer to the referent
object from the out-of-bounds pointer without resorting
to an additional data structure. We can do this for the
common case when out-of-bounds pointers are at most
slot_size/2 bytes before or after the allocation. Since
the allocation bounds are aligned to slot boundaries, we
can find if a marked pointer is below or above the alloca-
tion by checking whether it lies in the top or bottom half
of a memory slot respectively, as illustrated in Figure 4.
We can recover a pointer to the referent object by adding
or subtracting slot_size bytes. This technique cannot
handle pointers that go more than slot_size/2 bytes out-
side the original object. In Section 5.2, we show how
to take advantage of the spare bits in pointers on 64 bit
architectures to increase this range, and in Section 7 we
discuss how we could add support for arbitrary out-of-
bounds pointers while avoiding some of the problems of
previous solutions.

It is not necessary to instrument pointer dereferences.
Similarly, there is no need to instrument pointer equal-
ity comparisons because the comparison will be correct
whether the pointers are out-of-bounds or not. But we
need to instrument inequality comparisons to support

—_—

comparing an out-of-bounds pointer with an in-bounds
one: the instrumentation must clear the high-order bit of
the pointers before comparing them. We also instrument
pointer differences in the same way.

Like previous bounds checking solutions [19, 30, 15], we
do not support passing an out-of-bounds pointer to unin-
strumented code. However, this case is rare. Previous
work [30] did not encounter this case in several million
lines of code.

2.5 Static Analysis

Bounds checking has relied heavily on static analysis to
optimize performance [15]. Checks can be eliminated if
it can be statically determined that a pointer is safe, i.e.
always within bounds, or that a check is redundant due to
a previous check. Furthermore, checks or just the bounds
lookup can be hoisted out of loops. We have not imple-
mented a sophisticated analysis and, instead, focused on
making checks efficient.

Nevertheless, our prototype implements a simple intra-
procedural analysis to detect safe pointer operations.
We track allocation sizes and use the compiler’s vari-
able range analysis to eliminate checks that are statically
shown to be within bounds. We also investigate an ap-
proach to hoist checks out of loops that is described in
Section 3.

We also use static analysis to reduce the number of local
variables that are padded and aligned. We only pad and
align local variables that are indexed unsafely within the
function, or whose address is taken, and therefore pos-
sibly leaked from the function. We call these variables
unsafe.

3 Implementation

We used the Microsoft Phoenix [22] code generation
framework to implement a prototype system for x86 ma-
chines running Microsoft Windows. The system consists
of a plug-in to the Phoenix compiler and a runtime sup-
port library. In the rest of this section, we describe some
implementation details.

3.1 Bounds Table

We chose a slot_size of 16 bytes to avoid penalizing
small allocations. Therefore, we reserve 1/16" of the
address space for the bounds table. Since pages are al-
located to the table on demand, this increases memory

utilization by only 6.25%. We reserve the address space
required for the bounds table on program startup and in-
stall a user space page fault handler to allocate missing
table pages on demand. All the bytes in these pages are
initialized by the handler to the value 31, which encom-
passes all the addressable memory in the x86 (an alloca-
tion size of 231 at base address 0). This prevents out-of-
bounds errors when instrumented code accesses memory
allocated by uninstrumented code.

3.2 Padding and Aligning

We use a binary buddy allocator to satisfy the size and
alignment constraints on heap allocations. Binary buddy
allocators provide low external fragmentation but suffer
from internal fragmentation because they round alloca-
tion sizes to powers of two. This shortcoming is put to
good use in our system. Our buddy allocator implemen-
tation supports a minimum allocation size of 16 bytes,
which matches our slot_size parameter, to ensure that
no two objects share the same slot.

We instrument the program to use our version of
malloc-style heap allocation functions based on the
buddy allocator. These functions set the corresponding
bounds table entries and zero the padding area after an
object. For local variables, we align the stack frames of
functions that contain unsafe local variables at runtime
and we instrument the function entry to zero the padding
and update the appropriate bounds table entries. We also
instrument function exit to reset table entries to 31 for
interoperability when uninstrumented code reuses stack
memory. We align and pad static variables at compile
time and their bounds table entries are initialized when
the program starts up.

Unsafe function arguments are problematic because
padding and aligning them would violate the calling con-
vention. Instead, we copy them on function entry to ap-
propriately aligned and padded local variables and we
change all references to use the copies (except for uses
of va_1list that need the address of the last explicit ar-
gument to correctly extract subsequent arguments). This
preserves the calling convention while enabling bounds
checking for function arguments.

The Windows runtime cannot align stack objects to more
than 8K nor static objects to more than 4K (configurable
using the /ALIGN linker switch). We could replace
these large stack and static allocations with heap alloca-
tions to remove this limitation but our current prototype
sets the bounds table entries for these objects to 31.

Zeroing the padding after an object can increase space
and time overhead for large padding areas. We avoid this

overhead by relying on the operating system to zero al-
located pages on demand. Then we track the subset of
these pages that is modified and we zero padding areas in
these pages on allocations. Similar issues are discussed
in [9] and the standard allocator uses a similar technique
for calloc. Our buddy allocator also uses this tech-
nique to avoid explicitly zeroing large memory areas al-
located with calloc.

3.3 Checks

We add checks for each pointer arithmetic and array in-
dexing operation but, following [15], we do not instru-
ment accesses to scalar fields in structures and we do not
check pointer dereferences. This facilitates a direct com-
parison with [15]. We could easily modify our imple-
mentation to perform these checks, for example, using
the technique described in [14].

We optimize bounds checks for the common case of in-
bounds pointers. To avoid checking if a pointer is marked
out-of-bounds in the fast path, we set all the entries in the
bounds table that correspond to out-of-bounds pointers
to zero. Since out-of-bounds pointers have their most
significant bit set, we implement this by mapping all the
virtual memory pages in the top half of the bounds table
to a shared zero page. This ensures that our slow path
handler is invoked on any arithmetic operation involving
a pointer marked out-of-bounds.

bounds mov eax, buf
shr eax, 4
IOOkup mov al, byte ptr [TABLE+eax]
pointer
arithmetic char *p = buffi;
mov ebx, buf
xor ebx, p
bounds shr ebx, al
check jz ok
p = slowPath(buf, p)
ok:

Figure 5: Code scquence inserted to check unsafe pointer
arithmetic.

Figure 5 shows the x86 code sequence that we insert be-
fore an example pointer arithmetic operation. First, the
source pointer, buf, is right shifted to obtain the index of
the bounds table entry for the corresponding slot. Then
the logarithm of the allocation size e is loaded from the
bounds table into register al. The result of the pointer
arithmetic, p, is xored with the source pointer, buf, and
right shifted by al to discard the bottom bits. If buf
and p are both within the allocation bounds they can only

differ in the logze least significant bits (as discussed be-
fore). So if the zero flag is set, p is within the allocation
bounds. Otherwise, the slowPath function is called.

The slowPath function starts by checking if buf has
been marked out-of-bounds. In this case, it obtains the
referent object as described in 2.4, resets the most sig-
nificant bit in p, and returns the result if it is within
bounds. Otherwise, the result is out-of-bounds. If the
result is out-of-bounds by more than half a slot, the func-
tion signals an error. Otherwise, it marks the result
out-of-bounds and returns it. Any attempt to derefer-
ence the returned pointer will trigger an exception. To
avoid disturbing register allocation in the fast path, the
slowPath function uses a special calling convention
that saves and restores all registers.

As discussed in Section 3.3, we must add sizeof (xp)
to the result and perform a second check if the pointer
is not a pointer to a built-in type. In this case, buf is a
charx.

Similar to previous work, we provide bounds check-
ing wrappers for Standard C Library functions such as
strcpy and memcpy that operate on pointers. We re-
place during instrumentation calls to these functions with
calls to their wrappers.

3.4 Optimizations

Typical optimizations used with bounds checking in-
clude eliminating redundant checks, hoisting checks out
of loops, or hoisting just bounds table lookups out of
loops. Optimization of inner loops can have a dramatic
impact on performance. We experimented with hoisting
bounds table lookups out of loops when all accesses in-
side a loop body are to the same object. Unfortunately,
performance did not improve significantly, probably be-
cause our bounds lookups are inexpensive and hoisting
can adversely effect register allocation.

Hoisting the whole check out of a loop is preferable when
static analysis can determine symbolic bounds on the
pointer values in the loop body. However, hoisting out
the check is only possible if the analysis can determine
that these bounds are guaranteed to be reached in every
execution. Figure 6 shows an example where the loop
bounds are easy to determine but the loop may terminate
before reaching the upper bound. Hoisting out the check
would trigger a false alarm in runs where the loop exits
before violating the bounds.

We experimented with an approach that generates two
versions of the loop code, one with checks and one with-
out. We switch between the two versions on loop entry.

In the example of Figure 6, we lookup the bounds of p
and if n does not exceed the size we run the unchecked
version of the loop. Otherwise, we run the checked ver-
sion.

for (i = 0; i < n; i++) {

£ (p[i] == 0) break;
ASSERT (IN_BOUNDS (p, &pl[il));
pli] = 0;

!

if (IN_BOUNDS(p, &p[n-11)} {
for (i = 0; i < n; i++) |
if (p[i] == 0) break;

pli]l = 0;
1
} else {
for (i = 0; i < n; i++) {
if (p[i] == 0) break;
ASSERT (IN_BOUNDS (p, &plil));
plil = 0;

}

Figure 6: The compiler’s range analysis can determine
that the range of variable 7 is atmost 0. . . n—1. However,
the loop may exit before 2 reaches n — 1. To prevent erro-
neously raising an error, we fall back to an instrumented
version of the loop if the hoisted check fails.

4 Experimental Evaluation

In this section we evaluate the performance of our sys-
tem using CPU intensive benchmarks, its effectiveness
in preventing attacks using a buffer overflow suite, and
its usability by building and measuring the performance
of real world security critical code.

4.1 Performance

We evaluate the time and peak memory overhead of
our system using the Olden benchmarks and SPECINT
2000. We chose these benchmarks in part to allow a
comparison against results reported for some other so-
lutions [15, 36, 23]. In addition, to enable a more de-
tailed comparison with splay-tree-based approaches—
including measuring their space overhead—we imple-
mented a variant of our approach which uses the splay
tree code from previous systems [19, 30]. This imple-
mentation uses the standard allocator and is lacking sup-
port for illegal out-of-bounds pointers, but is otherwise
identical to our system. We compiled all benchmarks
with the Phoenix compiler using /02 optimization level

and ran them on a 2.33 GHz Intel Core 2 Duo processor
with 2 GB of RAM.

From SPECINT 2000 we excluded eon since it uses
C++ which we do not yet support. For our splay-tree-
based implementation only we did not run vpr due to
its lack of support for illegal out-of-bounds pointers. We
also could not run gce because of code that subtracted
a pointer from a NULL pointer and subtracted the result
from NULL again to recover the pointer. Running this
would require more comprehensive support for out-of-
bounds pointers (such as that described in [30], as we
propose in Section 7).

We made the following modifications to some of
the benchmarks: First, we modified parser from
SPECINT 2000 to fix an overflow that triggered a bound
error when using the splay tree. It did not trigger an
error with baggy bounds checking because in our runs
the overflow was entirely contained in the allocation, but
should it overlap another object during a run, the baggy
checking would detect it. The unchecked program also
survived our runs because the object was small enough
for the overflow to be contained even in the padding
added by the standard allocator.

Then, we had to modify per1bmk by changing two lines
to prevent an out-of-bounds arithmetic whose result is
never used and gap by changing 5 lines to avoid an out-
of-bounds pointer. Both cases can be handled by the ex-
tension described in Section 5, but are not covered by the
small out-of-bounds range supported by our 32-bit im-
plementation and the splay-tree-based implementation.

Finally, we modified mst from Olden to disable a cus-
tom allocator that allocates 32 Kbyte chunks of mem-
ory at a time that are then broken down to 12 byte ob-
jects. This increases protection at the cost of memory
allocation overhead and removes an unfair advantage for
the splay tree whose time and space overheads are mini-
mized when the tree contains just a few nodes, as well as
baggy space overhead that benefits from the power of two
allocation. This issue, shared with other systems offering
protection at the memory block level [19, 30, 36, 15, 2],
illustrates a frequent situation in C programs that may re-
quire tweaking memory allocation routines in the source
code to take full advantage of checking. In this case
merely changing a macro definition was sufficient.

We first ran the benchmarks replacing the standard allo-
cator with our buddy system allocator to isolate its ef-
fects on performance, and then we ran them using our
full system. For the Olden benchmarks, Figure 7 shows
the execution time and Figure 8 the peak memory usage.

In Figure 7 we observe that some benchmarks in the
Olden suite (mst, health) run significantly faster with

H Buddy = Baggy

Normalized Execution Time

Figure 7: Exccution time for the Olden benchmarks us-
ing the buddy allocator and our full system, normalized
by the exccution time using the standard system allocator
without instrumentation.

B Buddy = Baggy

e 2

E

El.S

T 1

o.

30.5

® 0

g > >

o PSSR E

z \ & & o A G
& & & \,5& $ \&v. 'S‘é

Figure 8: Peak memory use with the buddy allocator
alone and with the full system for the Olden benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

the buddy allocator than with the standard one. These
benchmarks are memory intensive and any memory sav-
ings reflect on the running time. In Figure 8 we can
see that the buddy system uses less memory for these
than the standard allocator. This is because these bench-
marks contain numerous small allocations for which the
padding to satisfy alignment requirements and the per-
allocation metadata used by the standard allocator ex-
ceed the internal fragmentation of the buddy system.

This means that the average time overhead of the full sys-
tem across the entire Olden suite is actually zero, because
the positive effects of using the buddy allocator mask the
costs of checks. The time overhead of the checks alone
as measured against the buddy allocator as a baseline is
6%. The overhead of the fastest previous bounds check-
ing system [15] on the same benchmarks and same pro-
tection (modulo allocation vs. object bounds) is 12%,
but their system also benefits from the technique of pool
allocation which can also be used independently. Based
on the breakdown of results reported in [15], their over-
head measured against the pool allocation is 15%, and it
seems more reasonable to compare these two numbers,

m Buddy = Baggy

2.5
2
15 -
1 4m
0.5 -
O -

Normalized Execution Time

L)
‘o'eQ &

&
Figure 9: Execution time for SPECINT 2000 benchmarks
using the buddy allocator and our full system, normalized
by the execution time using the standard system allocator
without instrumentation.

m Buddy = Baggy

Normalized Peak Memory

Figure 10: Peak memory use with the buddy allocator
alone and with the full system for SPECINT 2000 bench-
marks, normalized by peak memory using the standard
allocator without instrumentation.

as both the buddy allocator and pool allocation can be in
principle applied independently on either system.

Next we measured the system using the SPECINT 2000
benchmarks. Figures 9 and 10 show the time and space
overheads for SPECINT 2000 benchmarks.

We observe that the use of the buddy system has little
effect on performance in average. The average runtime
overhead of the full system with the benchmarks from
SPECINT 2000 is 60%. vpr has the highest overhead
of 127% because its frequent use of illegal pointers to
fake base-one arrays invokes our slow path. We observed
that adjusting the allocator to pad each allocation with 8
bytes from below, decreases the time overhead to 53%
with only 5% added to the memory usage, although in
general we are not interested in tuning the benchmarks
like this. Interestingly, the overhead for mef is a mere
16% compared to the 185% in [36] but the overhead of
gzip is 55% compared to 15% in [36]. Such differences
in performance are due to different levels of protection
such as checking structure field indexing and checking
dereferences, the effectiveness of different static analy-
sis implementations in optimizing away checks, and the

mBaggy = Splay

N

[y

=4 F b
ok N
P

Normalized Execution Time

Figure 11: Exccution time of baggy bounds checking ver-
sus using a splay tree for the Olden benchmark suite, nor-
malized by the execution time using the standard system
allocator without instrumentation. Benchmarks mst and
health used too much memory and thrashed so their
execution times are excluded.

W Baggy Splay

Normalized Execution Time

Figure 12: Execution time of baggy bounds checking ver-
sus using a splay tree for SPECINT 2000 benchmarks,
normalized by the execution time using the standard sys-
tem allocator without instrumentation.

different compilers used.

To isolate these effects, we also measured our system us-
ing the standard memory allocator and the splay tree im-
plementation from previous systems [19, 30]. Figure 11
shows the time overhead for baggy bounds versus using a
splay tree for the Olden benchmarks. The splay tree runs
out of physical memory for the last two Olden bench-
marks (mst, health) and slows down to a crawl, so
we exclude them from the average of 30% for the splay
tree. Figure 12 compares the time overhead against us-
ing a splay tree for the SPECINT 2000 benchmarks. The
overhead of the splay tree exceeds 100% for all bench-
marks, with an average of 900% compared to the average
of 60% for baggy bounds checking.

Perhaps the most interesting result of our evaluation was
space overhead. Previous solutions [19, 30, 15] do not
report on the memory overheads of using splay trees, so
we measured the memory overhead of our system using
splay trees and compared it with the memory overhead
of baggy bounds. Figure 13 shows that our system had

W Baggy = Splay

Normalized Peak Memory
o B N W & WU

S O B S R

Figure 13: Pecak memory usc of baggy bounds checking
versus using a splay tree for the Olden benchmark suite,
normalized by peak memory using the standard allocator
without instrumentation.

mBaggy ®Splay

25

E

o 2

=

ﬁ1.5

& 1 -

o

8 05 -

E 0

=]

2 &
s & L
¢ g 40.5!"

Figure 14: Peak memory usc of baggy bounds checking
versus using a splay tree for SPECINT 2000 benchmarks,
normalized by peak memory using the standard allocator
without instrumentation.

negligible memory overhead for Olden, as opposed to the
splay tree version’s 170% overhead. Clearly Olden’s nu-
merous small allocations stress the splay tree by forcing
it to allocate an entry for each.

Indeed, we see in Figure 14 that its space overhead for
most SPECINT 2000 benchmarks is very low. Neverthe-
less, the overhead of 15% for baggy bounds is less than
the 20% average of the splay tree. Furthermore, the po-
tential worst case of double the memory was not encoun-
tered for baggy bounds in any of our experiments, while
the splay tree did exhibit greater than 100% overhead for
one benchmark (twolf).

The memory overhead is also low, as expected, compared
to approaches that track meta data for each pointer. Xu
et al. [36] report 331% for Olden, and Nagarakatte et
al. [23] report an average of 87% using a hash-table (and
64% using a contiguous array) over Olden and a subset
of SPECINT and SPECFP, but more than about 260%
(or about 170% using the array) for the pointer intensive
Olden benchmarks alone. These systems suffer memory
overheads per pointer in order to provide optional tem-
poral protection [36] and sub-object protection [23] and

——Base = Baggy

6000
'g —_..-__—,-_—nn-_
§ 5000 —7

@ 4000 3

5 3000 LA

8 a

% 2000 L

& 1000 . > . : :
& 1 5 3 4 5 6

Concurrency

Figure 15: Throughput of Apache web server for varying
numbers of concurrent requests.

Base ~——Baggy

E m——

1= ottt

3 500 S

g yd

5 400 '

2 f/

£ 300

3

g 20 k ; : : .
1 2 3 4 5 6

Concurrency

Figure 16: Throughput of NullHTTPD web server for
varying numbers of concurrent requests.

it is interesting to contrast with them although they are
not directly comparable.

4.2 Effectiveness

We evaluated the effectiveness of our system in pre-
venting buffer overflows using the benchmark suite
from [34]. The attacks required tuning to have any
chance of success, because our system changes the stack
frame layout and copies unsafe function arguments to lo-
cal variables, but the benchmarks use the address of the
first function argument to find the location of the return
address they aim to overwrite.

Baggy bounds checking prevented 17 out of 18 buffer
overflows in the suite. It failed, however, to prevent the
overflow of an array inside a structure from overwriting a
pointer inside the same structure. This limitation is also
shared with other systems that detect memory errors at
the level of memory blocks [19, 30, 36, 15].

4.3 Security Critical COTS Applications

Finally, to verify the usability of our approach, we built
and measured a few additional larger and security critical

Program KSLOC
openssl-0.9.8k 397
Apache-2.2.11 474
nullhttpd-0.5.1 2

libpng-1.2.5 36
SPECINT 2000 309
Olden 6
Total 1224

Table 1: Source lines of code in programs successfully
built and run with baggy bounds.

COTS applications. Table 1 lists the total number of lines
compiled in our experiments.

We built the OpenSSL toolkit version 0.9.8k [28] com-
prised of about 400 KSLOC, and executed its test suite
measuring 10% time and 11% memory overhead.

Then we built and measured two web servers,
Apache [31] and NullHTTPD [27]. Running Null-
HTTPD revealed three bounds violations similar to, and
including, the one reported in [8]. We used the Apache
benchmark utility with the keep-alive option to com-
pare the throughput over a LAN connection of the in-
strumented and uninstrumented versions of both web
servers. We managed to saturate the CPU by using the
keep-alive option of the benchmarking utility to reuse
connections for subsequent requests. We issued repeated
requests for the servers’ default pages and varied the
number of concurrent clients until the throughput of the
uninstrumented version leveled off (Figures 15 and 16).
We verified that the server’s CPU was saturated at this
point, and measured a throughput decrease of 8% for
Apache and 3% for NullHTTPD.

Finally, we built 1ibpng, a notoriously vulnerability
prone library that is widely used. We successfully ran
its test program for 1000 PNG files between 1-2K found
on a desktop machine, and measured an average runtime
overhead of 4% and a peak memory overhead of 3.5%.

5 64-bit Architectures

In this section we verify and investigate ways to optimize
our approach on 64 bit architectures. The key observa-
tion is that pointers in 64 bit architectures have spare bits
touse. In Figure 17 (a) and (b) we see that current models
of AMDG64 processors use 48 out of 64 bits in pointers,
and Windows further limit this to 43 bits for user space
programs. Thus 21 bits in the pointer representation are
not used. Next we describe two uses for these spare bits,
and present a performance evaluation on AMD64.

(a) AMD64 hardware

| sign extended | software address space l

— 16 . 48
(b) 64-bit Windows user-space

| zero [user address space —l
21 -+ 43 4
(c) Tagged pointer
I zero | sizel supported address space l
I 21 - 5 o 38

(d) Out-of-bounds tagged pointer

| offset Isize| zero| supported address space |

13 ——i= 5 =—f—t 38

Figure 17: Use of pointer bits by AMD64 hardware, Win-
dows applications, and baggy bounds tagged pointers.

5.1 Size Tagging

Since baggy bounds occupy less than a byte, they can fit
in a 64 bit pointer’s spare bits, removing the need for a
separate data structure. These tagged pointers are similar
to fat pointers in changing the pointer representation but
have several advantages.

First, tagged pointers retain the size of regular pointers,
avoiding fat pointers’ register and memory waste. More-
over, their memory stores and loads are atomic, unlike fat
pointers that break code relying on this. Finally, they pre-
serve the memory layout of structures, overcoming the
main drawback of fat pointers that breaks their interop-
erability with uninstrumented code.

For interoperability, we must also enable instrumented
code to use pointers from uninstrumented code and vice
versa. We achieve the former by interpreting the de-
fault zero value found in unused pointer bits as maxi-
mal bounds, so checks on pointers missing bounds suc-
ceed. The other direction is harder because we must
avoid raising a hardware exception when uninstrumented
code dereferences a tagged pointer.

We solved this using the paging hardware to map all ad-
dresses that differ only in their tag bits to the same mem-
ory. This way, unmodified binary libraries can use tagged
pointers, and instrumented code avoids the cost of clear-
ing the tag too.

As shown in Figure 17(c), we use 5 bits to encode the
size, allowing objects up to 232 bytes. In order to use the
paging hardware, these 5 bits have to come from the 43
bits supported by the operating system, thus leaving 38

bits of address space for programs.

With 5 address bits used for the bounds, we need to
map 32 different address regions to the same mem-
ory. We implemented this entirely in user space using
the CreateFileMapping and MapViewOfFileEx
Windows API functions to replace the process image,
stack, and heap with a file backed by the system paging
file and mapped at 32 different locations in the process
address space.

We use the 5 bits effectively ignored by the hardware to
store the size of memory allocations. For heap alloca-
tions, our malloc-style functions set the tags for point-
ers they return. For locals and globals, we instrument the
address taking operator “&” to properly tag the resulting
pointer. We store the bit complement of the size log-
arithm enabling interoperability with untagged pointers
by interpreting their zero bit pattern as all bits set (repre-
senting a maximal allocation of 232).

extract mov rax, buf
bounds shr rax, 26h

xor rax, 1fh
pointer)
arithmetic e L

mov rbx, buf
bounds ¥or rbx, p
b shr rbx, al
chec 3ok

p = slowPath(buf, p)
ok:

Figurc 18: AMD64 code sequence inserted to check un-
safe arithmetic with tagged pointers.

With the bounds encoded in pointers, there is no need for
a memory lookup to check pointer arithmetic. Figure 18
shows the AMD64 code sequence for checking pointer
arithmetic using a tagged pointer. First, we extract the
encoded bounds from the source pointer by right shifting
a copy to bring the tag to the bottom 8 bits of the register
and xoring them with the value 0x1£ to recover the size
logarithm by inverting the bottom 5 bits. Then we check
that the result of the arithmetic is within bounds by xor-
ing the source and result pointers, shifting the result by
the tag stored in al, and checking for zero.

Similar to the table-based implementation of Section 3,
out-of-bounds pointers trigger a bounds error to simplify
the common case. To cause this, we zero the bits that
were used to hold the size and save them using 5 more
bits in the pointer, as shown in Figure 17(d).

mBuddy =Baggy mTag

Normalized Execution Time

Figure 19: Normalized execution time on AMD64 with
Olden benchmarks.

W Buddy mBaggy mTag

Normalized Execution Time

Figure 20: Normalized execution time on AMD64 with
SPECINT 2000 benchmarks.

5.2 Out-Of-Bounds Offset

The spare bits can also store an offset that allows us to
adjust an out-of-bounds pointer to recover the address of
its referent object. We can use 13 bits for this offset, as
shown in Figure 17(d). These bits can count slot or even
allocation size multiples, increasing the supported out-
of-bounds range to at least 2!¢ bytes above or below an
allocation.

This technique does not depend on size tagging and can
be used with a table instead. When looking up a pointer
in the table, however, the top bits have to be masked off.

5.3 Evaluation

We evaluated baggy bounds checking on AMD64 using
the subset of benchmarks from Section 4.1 that run un-
modified on 64 bits. We measured the system using a
contiguous array against the system using tagged point-
ers (Baggy and Tag in the figure legends respectively).
We also measured the overhead using the buddy alloca-
tor only.

The multiple memory mappings complicated measuring
memory use because Windows counts shared memory

m Buddy mBaggy mTag

2 =N
o Wwn = N u

Normalized Peak Memory

Figure 21: Normalized peak memory use on AMD64
with Olden benchmarks.

mBuddy mBaggy mTag

o Lo
o b B o~
Fre_

Normalized Peak Memory

Figure 22: Normalized peak memory usec on AMD64
with SPECINT 2000 benchmarks.

multiple times in peak memory reports. To overcome
this, we measured memory use without actually tagging
the pointers, to avoid touching more than one address
for the same memory, but with the memory mappings in
place to account for at least the top level memory man-
agement overheads.

Figures 19 and 20 show the time overhead. The average
using a table on 64-bits is 4% for Olden and 72% for
SPECINT 2000—close to the 32-bit results of Section 3.
Figures 21 and 22 show the space overhead. The average
using a table is 21% for Olden and 11% for SPECINT
2000. Olden’s space overhead is higher than the 32-bit
version; unlike the 32-bit case, the buddy allocator con-
tributes to this overhead by 14% on average.

Tagged pointers are 1-2% faster on average than the
table, and use about 5% less memory for most bench-
marks, except a few ones such as power and crafty.
These exceptions are because our prototype does not map
pages to different addresses on demand, but instead maps
32 30-bit regions of virtual address space on program
startup. Hence the fixed overhead is notable for these
benchmarks because their absolute memory usage is low.

While we successfully implemented mapping multiple
views entirely in user-space, a robust implementation
would probably require kernel mode support. We feel

that the gains are too small to justify the complex-
ity. However, using the spare bits to store an out-of-
bounds offset is a good solution for tracking out-of-
bounds pointers when using the referent object approach
of Jones and Kelly [19].

6 Related Work

Many techniques have been proposed to detect mem-
ory errors in C programs. Static analysis techniques,
e.g., [33, 21, 7], can detect defects before software ships
and they do not introduce runtime overhead, but they can
miss defects and raise false alarms.

Since static techniques do not remove all defects, they
have been complemented with dynamic techniques. De-
bugging tools such as Purify [17] and Annelid [25] can
find memory errors during testing. While these tools
can be used without source code, they typically slow-
down applications by a factor of 10 or more. Some
dynamic techniques detect specific errors such as stack
overflows [13, 16, 32] or format string exploits [12];
they have low overhead but they cannot detect all spa-
tial memory errors. Techniques such as control-flow in-
tegrity [20, 1] or taint tracking (e.g. [10, 26, 11, 35]) de-
tect broad classes of errors, but they do not provide gen-
eral protection from spatial memory errors.

Some systems provide probabilistic protection from
memory errors [5]. In particular, DieHard [4] increases
heap allocation sizes by a random amount to make more
out-of-bounds errors benign at a low performance cost.
Our system also increases the allocation size but enforces
the allocation bounds to prevent errors and also pro-
tects stack-allocated objects in addition to heap-allocated
ones.

Several systems prevent all spatial memory errors in C
programs. Systems such as SafeC [3], CCured [24],
Cyclone [18], and the technique in Xu et al. [36] asso-
ciate bounds information with each pointer. CCured [24]
and Cyclone [18] are memory safe dialects of C. They
extend the pointer representation with bounds informa-
tion, i.e., they use a fat pointer representation, but this
changes memory layout and breaks binary compatibil-
ity. Moreover, they require a significant effort to port
applications to the safe dialects. For example, CCured
required changing 1287 out of 6000 lines of code for the
Olden benchmarks [15], and an average of 10% of the
lines of code have to be changed when porting programs
from C to Cyclone [34]. CCured has 28% average run-
time overhead for the Olden benchmarks, which is sig-
nificantly higher than the baggy bounds overhead. Xu
et al. [36] track pointers to detect spatial errors as well

as temporal errors with additional overhead, thus their
space overhead is proportional to the number of point-
ers. The average time overhead for spatial protection on
the benchmarks we overlap is 73% versus 16% for baggy
bounds with a space overhead of 273% versus 4%.

Other systems map any memory address within an al-
located object to the bounds information for the object.
Jones and Kelly [19] developed a backwards compatible
bounds checking solution that uses a splay tree to map
addresses to bounds. The splay tree is updated on allo-
cation and deallocation, and operations on pointers are
instrumented to lookup the bounds using an in-bounds
pointer. The advantage over previous approaches using
fat pointers is interoperability with code that was com-
piled without instrumentation. They increase the allo-
cation size to support legal out-of-bounds pointers one
byte beyond the object size. Baggy bounds checking
offers similar interoperability with less time and space
overhead, which we evaluated by using their implemen-
tation of splay trees with our system. CRED [30] im-
proves on the solution of Jones and Kelly by adding sup-
port for tracking out-of-bounds pointers and making sure
that they are never dereferenced unless they are brought
within bounds again. Real programs often violate the
C standard and contain such out-of-bounds pointers that
may be saved to data structures. The performance over-
head for programs that do not have out-of-bounds point-
ers is similar to Jones and Kelly if the same level of run-
time checking is used, but the authors recommend only
checking strings to lower the overhead to acceptable lev-
els. For programs that do contain such out-of-bounds
pointers the cost of tracking them includes scanning a
hash-table on every dereference to remove entries for
out-of-bounds pointers. Our solution is more efficient,
and we propose ways to track common cases of out-of-
bounds pointers that avoid using an additional data struc-
ture.

The fastest previous technique for bounds checking by
Dhurjati et al. [15] is more than two times slower than
our prototype. It uses inter-procedural data structure
analysis to partition allocations into pools statically and
uses a separate splay tree for each pool. They can
avoid inserting some objects in the splay tree when the
analysis finds that a pool is size-homogeneous. This
should significantly reduce the memory usage of the
splay tree compared to previous solutions, but unfortu-
nately they do not report memory overheads. This work
also optimizes the handling of out-of-bounds pointers in
CRED [30] by relying on hardware memory protection
to detect the dereference of out-of-bounds pointers.

The latest proposal, SoftBound [23], tracks bounds for
each pointer to achieve sub-object protection. Sub-object

protection, however, may introduce compatibility prob-
lems with code using pointer arithmetic to traverse struc-
tures. SoftBound maintains interoperability by storing
bounds in a hash table or a large contiguous array. Stor-
ing bounds for each pointer can lead to a worst case
memory footprint as high as 300% for the hash-table
version or 200% for the contiguous array. The average
space overhead across Olden and a subset of SPECINT
and SPECFP is 87% using a hash-table and 64% for the
contiguous array, and the average runtime overhead for
checking both reads and writes is 93% for the hash ta-
ble and 67% for the contiguous array. Our average space
overhead over Olden and SPECINT is 7.5% with an av-
erage time overhead of 32%.

Other approaches associate different kinds of metadata
with memory regions to enforce safety properties. The
technique in [37] detects some invalid pointers derefer-
ences by marking all writable memory regions and pre-
venting writes to non-writable memory; it reports an
average runtime overhead of 97%. DFI [8] computes
reaching definitions statically and enforces them at run-
time. DFI has an average overhead of 104% on the SPEC
benchmarks. WIT [2] computes the approximate set of
objects written by each instruction and dynamically pre-
vents writes to objects not in the set. WIT does not
protect from invalid reads, and is subject to the preci-
sion of a points-to analysis when detecting some out-of-
bounds errors. On the other hand, WIT can detect ac-
cesses to deallocated/unallocated objects and some ac-
cesses through dangling pointers to re-allocated objects
in different analysis sets. WIT is six times faster than
baggy bounds checking for SPECINT 2000, so it is also
an attractive point in the error coverage/performance de-
sign space.

7 Limitations and Future Work

Our system shares some limitations with other solutions
based on the referent object approach. Arithmetic on in-
tegers holding addresses is unchecked, casting an inte-
ger that holds an out-of-bounds address back to a pointer
or passing an out-of-bounds pointer to unchecked code
will break the program, and custom memory allocators
reduce protection.

Our system does not address temporal memory safety
violations (accesses through “dangling pointers” to re-
allocated memory). Conservative garbage collection for
C [6] is one way to address these but introduces its own
compatibility issues and unpredictable overheads.

Our approach cannot protect from memory errors in sub-
objects such as structure fields. To offer such protection,

a system must track the bounds of each pointer [23] and
risk false alarms for some legal programs that use point-
ers to navigate across structure fields.

In Section 4 we found two programs using out-of-bounds
pointers beyond the slot_size/2 bytes supported on 32-
bits and one beyond the 26 bytes supported on 64-bits.
Unfortunately the real applications built in Section 4.3
were limited to software we could readily port to the
Windows toolchain; wide use will likely encounter occa-
sional problems with out-of-bounds pointers, especially
on 32-bit systems. We plan to extended our system to
support all out-of-bounds pointers using the data struc-
ture from [30], but take advantage of the more efficient
mechanisms we described for the common cases. To
solve the delayed deallocation problem discussed in Sec-
tion 6 and deallocate entries as soon as the out-of-bounds
pointer is deallocated, we can track out-of-bounds point-
ers using the pointer’s address instead of the pointer’s
referent object’s address. (Similar to the approach [23]
takes for all pointers.) To optimize scanning this data
structure on every deallocation we can use an array with
an entry for every few memory pages. A single mem-
ory read from this array on deallocation (e.g. on func-
tion exit) is sufficient to confirm the data structure has
no entries for a memory range. This is the common
case since most out-of-bounds pointers are handled by
the other mechanisms we described in this paper.

Our prototype uses a simple intra-procedural analysis to
find safe operations and does not eliminate redundant
checks. We expect that integrating state of the art analy-
ses to reduce the number of checks will further improve
performance.

Finally, our approach tolerates harmless bound viola-
tions making it less suitable for debugging than slower
techniques that can uncover these errors. On the other
hand, being faster makes it more suitable for production
runs, and tolerating faults in production runs may be de-
sired [29].

8 Conclusions

Attacks that exploit out-of-bounds errors in C and C++
continue to be a serious security problem. We presented
baggy bounds checking, a backwards-compatible bounds
checking technique that implements efficient bounds
checks. It improves the performance of bounds checks
by checking allocation bounds instead of object bounds
and by using a binary buddy allocator to constrain the
size and alignment of allocations to powers of 2. These
constraints enable a concise representation for allocation
bounds and let baggy bounds checking store this infor-

mation in an array that can be looked up and maintained
efficiently. Our experiments show that replacing a splay
tree, which was used to store bounds information in pre-
vious systems, by our array reduces time overhead by an
order of magnitude without increasing space overhead.

We believe baggy bounds checking can be used in prac-
tice to harden security-critical applications because it has
low overhead, it works on unmodified C and C++ pro-
grams, and it preserves binary compatibility with unin-
strumented libraries. For example, we were able to com-
pile the Apache Web server with baggy bounds checking
and the throughput of the hardened version of the server
decreases by only 8% relative to an unistrumented ver-
sion.

Acknowledgments

We thank our shepherd R. Sekar, the anonymous review-
ers, and the members of the Networks and Operating
Systems group at Cambridge University for comments
that helped improve this paper. We also thank Dinakar
Dhurjati and Vikram Adve for their communication.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and
Jay Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security (CCS), 2005.

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu,
Manuel Costa, and Miguel Castro. Preventing
memory error exploits with WIT. In Proceedings
of the 2008 IEEE Symposium on Security and Pri-
vacy, 2008.

[3] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient detection of all pointer and array
access errors. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and
Implementation (PLDI), 1994,

[4] Emery D. Berger and Benjamin G. Zorn. DieHard:
probabilistic memory safety for unsafe languages.
In Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implemen-
tation (PLDI), 2006.

[5] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVar-
ney. Efficient techniques for comprehensive protec-
tion from memory error exploits. In Proceedings of
the 14th USENIX Security Symposium, 2005,

[6] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. In
Software Practice & Experience, 1988.

[7

—

William R. Bush, Jonathan D. Pincus, and David J.
Sielaff. A static analyzer for finding dynamic pro-
gramming errors. In Software Practice & Experi-
ence, 2000.

[8] Miguel Castro, Manuel Costa, and Tim Harris. Se-
curing software by enforcing data-flow integrity. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[9] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel
Rosenblum. Shredding your garbage: reducing
data lifetime through secure deallocation. In Pro-
ceedings of the 14th USENIX Security Symposium,
2005.

[10] Manuel Costa, Jon Crowcroft, Miguel Castro,
Antony Rowstron, Lidong Zhou, Lintao Zhang, and
Paul Barham. Can we contain Internet worms? In
Proceedings of the Third Workshop on Hot Topics
in Networks (HotNets-11I), 2004.

[11] Manuel Costa, Jon Crowcroft, Miguel Castro,
Antony Rowstron, Lidong Zhou, Lintao Zhang, and
Paul Barham. Vigilante: end-to-end containment of
internet worms. In Proceedings of the 20th ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), 2005.

[12] Crispin Cowan, Matt Barringer, Steve Beattie, Greg
Kroah-Hartman, Mike Frantzen, and Jamie Lokier.
FormatGuard: automatic protection from printf for-
mat string vulnerabilities. In Proceedings of the
10th USENIX Security Symposium, 2001.

[13] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang,.
StackGuard: automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings
of the 7th USENIX Security Symposium, 1998.

[14] John Criswell, Andrew Lenharth, Dinakar Dhur-
jati, and Vikram Adve. Secure virtual architec-
ture: a safe execution environment for commod-
ity operating systems. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), 2007.

[15] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible array bounds checking for C with very
low overhead. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE),
2006.

[16] Hiroaki Etoh and Kunikazu Yoda. Pro-
tecting from stack-smashing attacks.
http://www.trl.ibm.com/projects/
security/ssp/main.html.

[17] Reed Hasting and Bob Joyce. Purify: Fast detection
of memory leaks and access errors. In Proceedings
of the Winter USENIX Conference, 1992.

[18] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling
Wang. Cyclone: A safe dialect of C. In Proceed-
ings of the General Track of the USENIX Annual
Conference, 2002.

[19] Richard W. M. Jones and Paul H. J. Kelly.
Backwards-compatible bounds checking for arrays
and pointers in C programs. In Proceedings of the

3rd International Workshop on Automatic Debug-
ging (AADEBUG), 1997.

[20] Vladimir Kiriansky, Derek Bruening, and Saman P.
Amarasinghe. Secure execution via program shep-
herding. In Proceedings of the 11th USENIX Secu-
rity Symposium, 2002,

[21] David Larochelle and David Evans. Statically de-
tecting likely buffer overflow vulnerabilities. In
Proceedings of the 10th USENIX Security Sympo-
sium, 2001.

[22] Microsoft. Phoenix compiler framework. http:
//connect .microsoft.com/Phoenix.

[23] Santosh Nagarakatte, Jianzhou Zhao, Milo Martin,
and Steve Zdancewic. SoftBound: Highly compat-
ible and complete spatial memory safety for C. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), 2009.

[24] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy
code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL), 2002.

[25] Nicholas Nethercote and Jeremy Fitzhardinge.
Bounds-checking entire programs without recom-
piling. In Informal Proceedings of the Second
Workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management
(SPACE), 2004.

[26] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis and sig-
nature generation of exploits on commodity soft-
ware. In Proceedings of the 12th Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[27] NullLogic. Null HTTPd. http://
nullwebmail.sourceforge.net/httpd.

[28] OpenSSL Toolkit.
org.

[29] Martin Rinard, Cristian Cadar, Daniel Dumitran,
Daniel M. Roy, Tudor Leu, and William S. Bee-
bee, Jr. Enhancing server availability and security
through failure-oblivious computing. In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), 2004.

[30] Olatunji Ruwase and Monica S. Lam. A practical
dynamic buffer overflow detector. In Proceedings
of the 11th Network and Distributed System Secu-
rity Symposium (NDSS), 2004.

[31] The Apache Software Foundation. The
Apache HTTP Server Project. http:
//httpd.apache.orq.

[32] Vendicator. StackShield. http://www.
angelfire.com/sk/stackshield.

[33] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A first step towards auto-
mated detection of buffer overrun vulnerabilities.
In Proceedings of the 7th Network and Distributed
System Security Symposium (NDSS), 2000.

http://www.openssl.

[34] John Wilander and Mariam Kamkar. A comparison
of publicly available tools for dynamic buffer over-
flow prevention. In Proceedings of the 10th Net-
work and Distributed System Security Symposium
(NDSS), 2003.

[35] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-
enhanced policy enforcement: a practical approach
to defeat a wide range of attacks. In Proceedings of
the 15th USENIX Security Symposium, 2006.

[36] Wei Xu, Daniel C. DuVarney, and R. Sekar. An
efficient and backwards-compatible transformation
to ensure memory safety of C programs. In Pro-
ceedings of the 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (SIGSOFT/FSE), 2004.

[37] Suan Hsi Yong and Susan Horwitz. Protecting C
programs from attacks via invalid pointer derefer-
ences. In Proceedings of the 11th ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2003.

6.858 / Fall 2012 / Paper Reading Questions http://css.csail.mit.edw/6.858/2012/questions.html?q=q-baggy

6.858:. Computer

Systems Security Fall 2012

Home = -
Paper Reading Questions
General
information For each paper, your assignment is two-fold:
——
Schedule ® Submit your answer for each lecture's paper question via the
submission web site, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-q@pdos.csail.mit.edu. You cannot
Piazza discussion use the question below. To the extent possible, during lecture
we will try to answer questions submitted by the evening
Submission Belgist
2011 class ; _ _ L. b
materials i Suppose slot_size is set to 16 bytes. Consider the following :

i code snippet:

char *p = malloc(256);
char *qg = p + 256;
char ch = *q;

Explain whether or not baggy bounds checking will raise an
i exception at the dereference of q.

Questions or comments regarding 6.858? Send e-mail to the course
staff at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Tuesday, 04-Sep-2012 22:57:40 EDT

1of1 9/7/2012 12:24 AM

é’ml,da = (61 LM%
@“«w& 7 U byto

TQPUINL? ‘i’o P
ﬂﬂ/\ P\/M {0 CEW 25 p TZfé
CV\/A (P\)+ CMM& u\ 7% 5&

5‘@[{/ asiies

L

o vt doll b gl e

((Sa e d tfnﬂ ;/fwf 1%@’7
L\/g, Ny Tl d/[”/'t babc‘c M" OVl o

Wik, g,
M G{/JJ/% @é 67LmL F)Jwé 9‘1[Mw
Qasy qaul vl of @/7:7

27 bits =4 by
OTo(| ;b,’/;
A 0’fT;MJ & 25@
Q0 alie pive (e
0 4 FF ia Ho

1" <[

% [@3-,, UQ) = kﬂ;;fj
—

CM 6+(v&(‘,l()] C’Wfﬂlf (ﬂ(0 CI/ML(el

g g l f’%ﬁ Vay
Chir ot < Put* & (hy avf
Wb b db f Tl 1,

p&)\wjr@f <4 —0
(Qé{%{’ ?olmhf Jfo /@J; 5’};,,# W”]

o

g
)@ /N ety MMM‘) (!1, 4 '}D/&d /: [&b{\n‘}y
Kol

prﬂﬁ(m

S——

Noig | Cela ,pa;f#@

dg Bl £ WB ke ety ol
” P(;rn‘; " [/ht /"\‘5’”07 abdrey

D W Wﬂlﬂfz aciress Qﬁ M@/M[(/exel,é/g
Rebns i fund . adhes purte
Pty b idd o alles (ol

L&\lﬂdw MR A)a«/(her JJ
L - e

R pT L5

Nane

(T res
{a WLG& o/ To (i ‘fhlb 6{/{)

@
\)\[@ol—f(5@# JP l/m

.

| 611/1{)1(Vé/ chble M;(C
6 {yl[’fg/\@ (IYL 75 ?M\nﬁl

&/0\' 4%‘/ Sooe 1o Le Gue 4y q

j@m(ﬂr (W(] WOAL;A]

A |
\NL{//{ ((9 hc M I[f’/m@ (z

{
Omfw = 1

\ e~

Tecadl, {z.a:% . obe bat

L sms MGl e SF

Nas = by

’ 1)
QJ%HM (
<o a HOM}B 15%

60;{ 8 gfl%
il levd ‘:ﬁ/
- 6[1%’“ he of oF émvi)
Bt & it
Ol = (¢

Lw{_ (/¢I~ })21(W;f
0000
7w Ol

4

Yy 72!

b Nt] 000

0 000
000

7 < =
p 190 ¥ = by
Co0 what g f1
L s
T ool & a dlf ek g g

Oh Yol s pavs]
Potlon Moty iy (N

f’v\{’f[for €cw£\ S[OF l/{g Wg/laaé
5 lalg) ~q

-

i ‘J’ﬁ{z A éoxm,t//7
Ll"’;// N Tht . ot of]L("“Q

nr

TT J@o Cagy «« |
TP - el S woh

Paper Question 1

LI 2 " I " . 5T -
Michael Plasmele

256 bytes of memory is allocated. The slot size is 16 bytes. Since 256%16 =0, the boundaries line up
and the baggy boundary checking will work when we attempt to dereference outside of the allocated

memory.

T’[} ﬁ\o@H ho v ((‘cglﬂJ

L n @n‘f\f\/n{d

157

B‘L[éer O\/Qf (0,5

L/(’/{) S@//e/ Co(l@

\/ONV reéw{ =y C){

CZ\L/ f []
m;L ,/
(3.#6(k),

J

{f% = m{ col (¢4 —1¢f

[%{‘Jﬁ , p/o\,\ (7;3‘0#
(P /o QGP - ?/p/l?p
gul) Lb? % Eqp
(&' goh o)
Mov AQ ~)/€s
AT o

Y _
%P & {7)() of it € o oludl,
60/ J@%Hmﬂ

7
o ﬂ\ (e cd(! (
J+n %gm

. J][/‘W’ C—Pf}}’ﬁ % géf
(E% & P4h7 % Cop
\b&% T /by C*feadwf%g %%p
et W 1127)

| |

g() L th W(W (9%///15 (/@%)
€ cobm aAdl/ess | .l y

byte
éo On St adlres WLoQLé{ﬁ "
buﬂt ‘WEEW (\d’/{ G (m’e fo Ca %' @/

//6)({(/“

Weak dveat Py

Ul/‘f/w[VIW’WZ &d(‘/wﬂz Mahes Mags Calsh
_Cmsiﬁmﬂ» fom mwz‘/@ Lﬁo m(wm',(

\-________,._-—'_'

Wy do Dese pablesy uep shoviny 4)7

)
Wiy ose oultr

Gyle ddn} vl n oo S cvaly ~giie pale

{%5 b had |
S s tan b faudy S

M by of ers Cun b cxplodsbl
mt f&/o‘lvy fﬁanWﬁ
Oy 5@/* MC WWP/;‘ /Wm«gmnf fsso@

HOW %0 P/ {?JM}/;
4ﬁﬁ’b%ﬁ € ke GM%V cﬁi&
A%

gl o e o, eoopy it
- (x b i r%?qﬁ&% 10 info a&&% ﬁ%#
L’\@?P P(OEWW& “]{(r'h{\ A#E“d {@9}5 57‘7‘/\6,0(7
W

\ 4’\/%}{
— Complle,
}
— A\ YG\LS '{oo]O]l rh“? (Y ”LCAJ

—/7hey 9% ffﬂ(/h }u,g ,'L(S Miz’/cl IL‘VI/?)
Wlm'fﬂfz lﬂ‘fb L’La :; MN 7l€m. E'I/Lv?
il Closog

T ()[Mlmo(Y Qafe, {(M@uc{{%
/\];"“/ P‘f‘hm/ @f C# |
b b of o il C 6 hibi

ecfomance. (edsnrs

m' ‘a‘d\@
]O«L{ (Oﬁ-|7 QL &705/ e (‘M’e ks di ijq

totun adlu
“"]:,\4@/54,49 oo t Qe g

9,
)%%7 Ba/ndj (ol ‘,,y

P@OOQ UM+ f%”] e [(/\ ﬂ)/@ﬂ/@g
A (’J“’w MV&W]L’M 61L/w}%

% Shuck ok (are ¢

——M Gon. ey
= (Lc(/k LG WQ(MHM Aﬂﬁ)’& %Cvﬂ th

" 9 ((ash
“‘o@ﬂff h«m G (){LL}MA] Cm}g

/

*’(Gtwtd %f@(, N gCC

6@ .IM (0 JQ
P\/é }/\ UWJ‘{

{i (,DJJ(’
POP (dndr

Chak

@d:mpﬂf«fté)

b

b i e i
(ITQ/M;M{O/ “ ch/] O/ UQ/ LF/ g})

Moy ts e 51’7;}«3 I(mj(’@
ﬁw oy P ﬁeg fee Tse
€ geré wil gty b e g

(i
% Bi%{[Wies Ths e
F ek oy

\fe Canwy Chosk GWI()
{0\} On)t{ Fof,,l Q}ﬂ'aj Cﬂi{ﬂ

Gt

@C{ﬂiﬂn WV
Goeate (Qabon Vulahle
Male s SHll foe

B nwl gol (anlowas
L’/O M Qv'e/,'w{

Y

C(Qdi 00[7 - c[on‘# arl B wask hole P) rem

QB} W\\?/@ 1L0 6’}%?

[, [gf [ml\ 1 \
l()}r‘) of WHCEUMJ Y [@((WMfd/Z |
T CWT’
o wile awhtar "]

UM lu{if@ ng{fﬂv

/

LJ]‘ '6)1’\\ Vs My &/ww m (anry {0(
thee poodlens forkd to gane flg

e of Tee ar_ e éﬂ(
f)f%/am,g Oﬂ?ﬂ Ve /V\VH(l/ {€

M(,o (Jo@nl ,Omla/]t Linchin par'm’m
Vol Gé{) Go)&)}‘
oot [
€()

4
Puos ot (omp:((’/ b o exany e Sl
% }n\/p}m:’%g

H1 Bunds Claghing
Wy @DE‘/M > hay Pﬂif‘}w Csciped
po} de o e Po:ml('aﬂ ofsde ouped el
o 6 WL Sty Of,l/ocwf‘l(f f>£2(
Dea dht o dee gholl = eaghl

BJJF it oot ~of ~bouds

et g 6

Char ang [129
bl Y

Chidk Léua&[ﬂ]}
Gk |,

Wtk
—eh Yulle
& b rae, b
~ 0@’((\(
i Mmt[o]

~ Catie. g st € by o 7
8&567 (¢ G%(/\V@ PO\,@/ 0€ 2
on (ake g (sl ook

A bonds chebag hue Thee s

Ob@[%0*//\‘{3 Cw“ﬂ
"@b Pf€v€+‘ C/cag,lg
] Bletic o
allowdes stp P ™ For gy @umm
Wi |\'¢l ,,) wﬁbfﬁd)mll«,(%
W vie 3%5 ‘{
m \Mk / Mma”(

)’\V Soppar} At 0l

(0 mar e Gopke sipat b & bl) b raey
ﬁ%ﬂ? @negi Zﬂﬁe a/xl ’;mc%
(JO\?) 660:49 {O/WQ{ +M \{QPML

T ")lmr!

mw

hase

LT e gy b bl £

Vod ¥ e
Vol ¥ fozﬂf
O‘IJ F ;mt’/
ok 1L Vol # |
by J

L @{&cas Dl mattr

_ pdde arth it
Pn Char *P“-m%)/ac(d
— W de oo \ 1y vl
e BE= py
Chy ¢ :,%

()

CO”’ISU”W I/l’bvﬂL QJ@ %‘b@ ' m }/]mllf/
S | 'DJWE lotalin N
W Of ale

[
q/ PUMW i P@% km,@/ /[‘,‘, ;'?[
— il W 4

d(’f{fw%@

ik D b bae i

B(/r} ﬂpql' Vil C@mp](WHQ V\/ Aﬁvv pﬁq)}Q L\//%fj
[Caﬂg
L paple (omily ,ooif#as S
0 G Can (ab paat a5 il

gO COmpoﬂ(Ec \\/}ll nml Pﬂpwlw

69 ([/\le{ é\\éﬂe c{ﬂ?’q stidwe.
ko vhat g By dhule

et ok o bin —quatre

— Judf

/ ,
\O/ (an o~ ‘/\VfﬂL (laf@’p"'ﬁ O dﬂf&c

¥ Rowgnlt, (. omP]lJz/ [5 Pfoduoz(/tﬂ ptsgemb(z
((O(\/\/5](\(/\,ngfppfﬁ on W(‘{-MHC

bé@ﬂ‘] W((,@anl\l](&4« d@/[@{
bt ks alley 5 peyan o b

I g b &b ol othuaty
gﬂ/& Wgr L/\W [/\/Lefe Po\tﬂ/‘{W Clrg. {{%
(an ¥ M bk o aor 1 7
n 4 - é{ Ve 0/6’4({0»8{

G hgb s o padie walth
-ms {(b '\ﬁ/ (obﬂ7

®

S)M»fmm 50(“7 TM
Love gof o [why Table

1[(0:11 f_n‘m@ h? beg cw/ }l}m&\
ke ot pide —bf oy

SM b 98 o8 of bouds - el do ety
hat o o d@[g&zﬂp/@(/

J

e
Dk f moc%'mﬂ (= 767/

/\M‘Q Su @Ojﬂﬁ?r ,t 5 Ml of {%ﬂfj
Lﬁz@% AI)L 59f

!W 0x 0060 1000
el () 8000 4000

T Usuall, lwwvl M)

2 v A

Y
Gy
‘(/le@d Lf gpl’ﬂ{]76 4

e o Ll T T T
V\eM W o Wh byl ks oa Gl

O{ o c|"1 7%/((‘h@
m@r@d @%41/(0/;){[of M{{
e bl
L
p(u) /%Mz Cugh OIOML Bk e of 7
9 s Ghe e iy

o ¢ W o 1 bb

Qg
= Chae ¥p = ﬂwfﬂc(oxz)

Chy TE o4 (x T b

Chv ¥ (= q/+()[()
Char ¥ = f?ﬁ
Che ¥4 <¢- OKZO

®

00 1040
G M nall(062) On G000

f(%%kb T akbess
Wil (ol

Y 4 pw
Qof i

%\/\)&7 Qunwl{()f LH\

Copt inly halts Y /Itéf /(\g‘t/
e %, ad i ot € ok cprg :
S ol £ by w

fred
< p FO¥,
e %L f N Lok g
i;ﬂpfml\%l{ CUhnd_ cxuowfl‘m

/ OK {O f‘ﬁ;'ie
MOV P?/ ﬁ(iﬂt; o OﬂﬂOW)
Ghe 9, .,

(,{,Ww@q

i
J(%\tm_l,—l%u\l_'ﬂ .

0% [0

A2y 4
p (v MA@

‘hm OML\ £ q, il p ;4 Sywe. 0}9/'%(

Xor p, 4
Cis 0 did b dl
% G5 oo bl hat il

(

W, 6 Ox 07

» YR 0\& e
bik b
Gt Mo db oy Bh guh b
She of Ot A
i ‘\t@hwt ok by € LB

Toizg

9% 0 - 5o gaml.

@ L Yg hyte
00, 16 luw e (Nl @//W%
bt padlel 04 Lyt

17 Chae)Wf@*&(w
Ol logr Tun €9 bih

Crodhed @/[ﬂ(wﬂan f % é/w///

¥ v Yo Oxf 6

T 4 L

ks 1w ()

o gt hyh ods b b 7

Go Pogeam (’“”Zl (ag h
0y J00007

WE dlét alums ace A»gc Jm/
WM hot of Teg @(fopW
&)Gﬁplq JOntf cart 1 <{€¢4/ w/ This

bt feally ab & bad
Cha Do hh ode bt

Jow VARG J@(@@Mr@ JIYL@ «ga)}/r{.

zs /‘/6 A @f Wﬂw/

moe Tueihly

-_—

&V\ Ontz g@JF PQ;/W[@/J oy &g)ﬂ'ﬂl@ W} 4 AW(/
o M by pl (2

Nozabh A b [G
/s Wa Vit ;
7 St , Aor Liom (ght @

R St

\/O(SB

(D) qatr
T s of of Wl T o o
Lhy e Ty _‘5%’:

L1+ l/wi)n‘j[Linow J’W)W 7‘0 lf:’k &/?L

(T \por vlisoal Einfinally 4085 what bl
bt net W'f? ms limlition fxa‘él‘!)

1of6

http://css.csail.mit.edw/6.858/2012/lec/102-buffer-overflows.txt

Buffer overflows, memory safety L’Z/ 9 L()

Some bugs in the paper:
Figure 3, optimized bounds check should probably be
(p*p') >> table[p >> log of slot_size] ==
Figures 5 and 18, pointer arithmetic code should probably be
char *p = gbuf[i];
or
char *p

I

buf + 1i;

Recall what's going on with buffer overflows (last lecture, 6.033, ..)
Consider the following example code from, say, a web server:

void read_reg(void) {
char buf(128];
int i;
gets (buf);
parse buf
}

What does the compiler generate in terms of memory layout?
x86 stack:
Stack grows down.
%esp points to the last (bottom-most) wvalid thing on the stack.
%ebp points to the caller's %esp value.

o +
entry %ebp ----> | .. prev frame .. |
I I
\ |
e ettt T L +
entry %esp ----> | return address |
o mm e +
new %ebp ------ > | saved %ebp
e +
| buf[127] |
I |
| buf[0] |
o +
new %esp ---—--- > | i
e +
Caller's code (say, main}):
call read req
read req's code:
push $ebp
mov $esp -> %ebp
sub 168, %esp # stack vars, etc
mev sebp -> %esp
pop $ebp
ret

What's the threat model, policy?
Assume that adversary can connect to web server, supply any inputs.
Policy is a bit loose: only perform operations intended by programmer?
In practice: don't want adversary to send spam, steal data, install bot.

How does the adversary take advantage of this ceode?
Supply long input, overwrite data on stack past buffer.
Interesting bit of data: return address, gets used by 'ret'.
Can set return address to the buffer itself, include some code in there.

How does the adversary know the address of the buffer?

What if one machine has twice as much memory?
Luckily for adversary, virtual memory makes things more deterministic.

9/12/2012 2:28 AM

hitp://css.csail.mit.edw/6.858/2012/lec/102-buffer-overflows.txt

For a given 0S and program, addresses will often be the same.

What happens if stack grows up, instead of down?
Look at the stack frame for gets.

What can the adversary do once they are executing code?
Use any privileges of the process.
Cften leverage overflow to gain easier access into system.
Originally on Unix, run shell /bin/sh (thus, "shell code").
If the process is running as root or Administrator, can do anything.
Even if not, can still send spam, read files (web server, database),
Can attack other machines behind a firewall.

Why would programmers write such code?
Legacy code, wasn't exposed to the internet.
Programmers were not thinking about security.
Many standard functions used to be unsafe (strcpy, gets, sprintf).
Even safe versions have gotchas (strncpy does not null-terminate).

More generally, any memory errors can translate into a vulnerability.

Using memory after it has been deallocated (use-after-free).
If writing, overwrite new data structure, e.g. function ptr.
If reading, might call a corrupted function pointer.

Freeing the same memory twice (double-free).
Might cause malloc to later return the same memory twice.

Decrementing the stack ptr past the end of stack, into some other memory.
[http://www.invisiblethingslab.com/resources/misc—ZOl0/xorg—large—memory—attacks.pdf]

Might not even need to overwrite a return address or function pointer.
Can suffice to read sensitive data like an encryption key.
Can suffice to change some bits (e.g. int isLoggedIn, int isRoot).

Fixing buffer overflows, plan 1: avoid bugs in C code.
Carefully check sizes of buffers, strings, arrays, etc.
Use functions that take buffer sizes into account (strncpy, fgets, snprintf).
gcc warns when a program uses gets() now.
Other potentially dangerous functions are still widespread.
Good: prevents problem in the first place.
Bad: hard to ensure that code is bug-free, especially large existing code.

Fixing buffer overflows, plan 2: help programmers find bugs.
Works well in practice; will look at static analysis in later lectures.
"Fuzzers" that supply random inputs can be effective for some kinds of bugs.
Generally, hard to prove the absence of bugs, esp. for unsafe code like C.
But, even partial analysis is useful (e.g. for Baggy bounds checking).

Fixing buffer overflows, plan 3: use a memory-safe language (Java, Ci#, Python).
Good: does prevent memory corruption errors.
Except that low-level bindings still need to be correct.
E.g. language runtime itself, or generic bindings like Python ctypes.
Bad: still have a lot of legacy code in unsafe languages.
Bad: might not perform as well as a fine-tuned C application?
Used to be a bigger problem.
Hardware & high-level languages are getting better.

All 3 above approaches are effective and widely used, but not enough.
Large/complicated legacy code written in C is still a big problem.
Even newly written code in C/C++ can have memory errors.

How to mitigate buffer overflows despite buggy code?
Two things going on in a "traditional" buffer overflow:
1: Adversary gains control over execution (program counter).
2: Adversary executes some malicious code.
What are the difficulties to these two steps?
1: Requires overwriting a code pointer (which is later invoked).
Common target is a return address using a buffer on the stack.
Any memory error could potentially work, in practice.
Function pointers, C++ vtables, exception handlers,
2: Requires some interesting code in process's memory.
Often easier than #1.

2of6 9/12/2012 2:28 AM

30f6

http://css.csail.mit.edu/6.858/2012/lec/102-buffer-overflows.txt

Process already contains a lot of code.
Process accepts inputs that adversary can supply.
(But, adversary needs to find a predictable location.)

Mitigation approach 1l: canaries (StackGuard, gcc's SSP, ..)
Idea: OK to overwrite code ptr, as long as we catch it before invocation.
One of the earlier systems: StackGuard
Place a canary on the stack upon entry, check canary value before return.
Usually requires source code; compiler inserts canary checks.
Where is the canary on the stack diagram?
Make the canary hard to forge:
"Terminator canary": four bytes (0, CR, LF, -1)
Idea: many C functions treat these characters as terminators.
As a result, if canary matched, then further writes didn't happen.
Random canary: much more common today (but, need good randomness!)
What kinds of wvulnerabilities will a stack canary not catch?
Overwrites of function pointer variables before the canary.
Heap object overflows {(function pointers, C++ vtables).
Overwrite a data pointer, then leverage it to do arbitrary mem writes.
int *ptr = ...;
char buf(128);
gets (buf);
*ptr = 5; }
Write directly to return address past the canary (for some buggy code).
How could you trick the canary?
Guess or obtain the canary value (if random)
Maybe application leaks random values from its memory?
Remove null terminator from a string, app will read later bytes.
Overwrite the authentic canary value?
If vulnerability allows arbitrary mem writes, can ovewrite it.

Mitigation approach 2: bounds checking.
Overall goal: prevent pointer misuse by checking if pointers are in range.

Sometimes hard to tell in C what's an overflow vs. what's legitimate.

Suppose program allocates integer array, int x[1024];
program also creates pointer, e.g. int *y = &x[107];

Is it OK to increment y to access subsequent elements?
If it's meant to be used like a string buffer, maybe yes.
If it's meant to store bank account balances of many users, no.

Gets even more difficult with mixed structs or unions.

Usually, the plan is to at least enforce bounds between malloc objects.
Or variables allocated by the compiler, either global or on stack.

Often requires compiler changes (hard to do for unmodified, existing code).

Electric fence: simple debugging tool from a while back.
Align allocated memory objects with a guard page at end or beginning.
Use page tables to ensure that accesses to guard page cause a crash.
Reasonably effective as a debugging technique.
Can prevent some buffer overflows for heap objects, but not for stack.
Advantage: works without source code, no compiler changes.
Need to be able to replace default malloc with efence's malloc.
Problem: huge overhead (only 1 object per page, + guard pages).
Fat pointers.
Idea: modify a pointer representation to include bounds information.
Reguires a different compiler, access to source code.
Usually called "fat pointer" because the pointer becomes much larger.
E.g. simple scheme: 4-byte pointer, 4-byte cobj base, 4-byte obj end.
Compiler generates code to aborts if dereferencing pointer whose
address is outside of its own base..end range.
Problem 1: can be expensive to check all pointer dereferences.
Problem 2: incompatible with a lot of existing code.
Cannot pass fat pointer to unmodified library.
Cannot use fat pointers in fixed-size data structures.
Fat pointers are not atomic (some code assumes ptr writes are).
Shadow data structures to keep track of bounds (Jones and Kelly, Baggy).
Requires a significant amount of compiler support.
For each allocated cbject, keep track of how big the object is.
E.g. record the value passed to malloc: char *p = malloc(256);
Or, for static variables, determined by compiler: char p[256]:
For each pointer, need to interpcse on two operations:

9/12/2012 2:28 AM

4 of 6

http://css.csail.mit.edu/6.858/2012/lec/102-buffer-overflows.txt

1. pointer arithmetic: char *q = p + 256;

2. pointer dereferencing: char ch = *qg;

Why do we need to interpose on dereference? (can we do just arithmetic?)

Why do we need to interpose on arithmetic? (can we do just dereference?)
Need to ensure that out-of-bound pointers cannot touch other data.
Challenge 1: looking up limits information for a regular pointer.

Naive: hash table or interval tree for addrs. Slow lookup.

Naive: array w/ limit info for each memory addr. Memory overhead.
Challenge 2: causing out-of-bounds pointer dereferences to fail.

Naive: interpose on every pointer dereference. Expensive.
What's the trick from the paper?

1. Align, round up allocations to powers of 2: 5 bits of limit.

2. Store limit info in a linear array: fast lookup.

3. Allocate memory at slot granularity: fewer array entries.

4. Use virtual memory system to prevent out-of-bound derefs.

Why powers of 2?2
Can represent in a small amount of space (5 bits for 32-bit ptrs).
Easy to check: base = p & ~(size-1).
(p ~ p' >> table[p >> log_of slot_size]) == 0
What's a buddy allocator?
What is the data structure that Baggy has in memory?
Array at fixed virtual address, one byte per lé6-byte mem "slot".
Using virtual memory to allocate this array on-demand.
Why don't these guys throw an error when arithmetic goes out-of-bounds?
Applications simulate l-indexed arrays.
Applications want some value to represent one-past-the-end.
Applications might compute OOB ptr but check later if it's OK to use.
Applications may compute p+(a-b) as (p+a)-b.
Example code:

char *p = malloc(0x2c); # Ox2c=44; 0x00001040 (suppose)

char *g = p + 0x3c; # 0x3c=60; 0x0000107c

char *r = q + 0x10; # 0x10=16; 0x8000108c

chat’ #*8 = £ — '8} # 0x80001084 [what happens if +87?]
char *t = s - 0x20; # 0x20=32; 0x00001064

What does their pointer look like?
Normal peointer for in-bounds values.
High-bit-set for out-of-bounds (within half a slot).
Typically, OS kernel lives in upper half, protects itself.
Why half a slot for out-of-bounds?

What happens when pointer arithmetic goes out-of-bounds?

Instrumented code jumps to slow path, computes OCB pointer wvalue.
New pointer value points to "kernel memory", will cause crash.

If OOB pointer converted to in-bounds pointer, high bit is cleared.
In common case (all in bounds), no extra overhead.

So what's the answer to the homework problem?

Does Baggy instrument every memory address computation & access?
Static analysis cculd prove some addr is always safe (no details).
What's considered an "unsafe variable"?

Address of variable taken, and not all uses can be proved safe.
What does Baggy do with function call arguments? Why?

Cannot change, because x86 calling convention is fixed.

Copy unsafe args to separate area, which is aligned & protected.

How do they get binary compatibility with existing libraries?

Normal pointers for in-bounds values.
Set the bounds info to 31 (2731 bound) for de-allocated memory.
Solves problem of library code allocating its own memory.
What can still go wrong with existing libraries?
Can't detect out-of-bounds pointers generated in that code.
Can't detect when OOB pointer passed into library goes in-bounds again.

Why do they instrument strcpy and memcpy? Do they need to?

How does their 64-bit scheme work?

Can get rid of the table storing bounds information, store in pointer.

Can keep track of OCB pointers that go much further out-of-bounds (2716).
Does legitimate code always work with Baggy?

Not guite; breaks in some cases.

Unused out-of-bounds pointers.

Temporary out-of-bounds pointers by more than slot_size/2.

Conversion from pointer to integers and back.

9/12/2012 2:28 AM

5of6

http://ess.csail.mit.edu/6.858/2012/1ec/102-buffer-overflows. xt

Passing out-of-bounds pointer into unchecked code.

Can Baggy be bypassed to exploit a buffer overflow?
Could exploit vulnerability in un-instrumented libraries.
Could exploit temporal vulnerabilities (use-after-free).
Mixed buffers and code pointers:

struct {
char buf[256];
void (*f) (void);
} my_type;
struct my_ type s;

An overflow of s.buf will corrupt s.f, but not flag a bounds error.
Would re-ordering f and buf help?

Might break applications that depend on struct layout.

Might not help if this is an array of (struct my_type)'s.

What are the costs of bounds checking (e.g. Baggy)?

Space overhead for limits information (fat pointer or extra table).
Space overhead for extra padding memory used by buddy allocator (Baggy).
CPU overheads for pointer arithmetic, dereferencing.
False alarms!

Mitigation approach 3: non-executable memory (AMD's NX bit, Windows DEP, W"X, ..)
Modern hardware allows specifying read, write, and execute perms for memory.
R, W permissions were there a long time ago; execute is recent.
Can mark the stack non-executable, so that adversary cannot run their code.
More generally, some systems enforce "W*X", meaning all memory is either
writable, or executable, but not both. (Of course, OK to be neither.)
Advantage: potentially works without any application changes.
Shortcoming: harder to dynamically generate code (esp. with W"X).
JITs like Java runtimes, Javascript engines, generate x86 on the fly.
Can work around it, by first writing, then changing to executable.
Java runtime used to mark all memory W+X (compatible, but not ideal).
Can this still be exploited?
Programs already contain a lot of code, might not need new code.
Arc injection / return-to-libc attacks.
Particularly useful functions: system, execl, unlink, strcpy, memcpy,
General technique: "return-oriented programming"

Mitigation approach 4: randomized memory addresses (ASLR, stack randomization, ..)
Make it difficult for adversary to guess a valid code pointer.
Stack randomization: move stack to random locations, random offsets.
Adversary doesn't know what to put for start of buf in return addr.
Randomize entire address space (Address Space Layout Randomization):
Rely on the fact that a lot of code is relocatable.
Dynamic loader can choose random address for each library, program.
Adversary doesn't know address of system(), etc.
Can this still be exploited?
Adversary might guess randomness.
Especially on 32-bit machines, not a lot of random bits.
32-bit address: 1 bit for kernel, 12 bit for page, at most 19 left.
Most systems have more restrictions, leading to 8-16 random bits.
More practical on 64-bit machines (easily 32 bits of randomness).
Adversary might extract randomness.
Programs might print a stack trace or error message w/ pointer.
If adversary can run some code, they might get real addresses.
Cute address leak in Flash's Dictionary (hash table):
Get victim to visit your Flash-enabled page (e.g. buy an ad).
Hash table internally computes hash value of keys.
Hash value of integers is the integer.
Hash value of object is its address.
Iterating over a hash table is done in hash bucket order.
Can compare address to integer, guess object address.
Now, can exploit some code pointer overwrite and bypass ASLR.
Adversary might not care exactly where to jump.
"Heap spraying": fill memory w/ shellcode so that random jump is OK.
Adversary might exploit some code that's ncot randomized (if exists).
Some other interesting uses of randomization elsewhere.
System call randomization (each process has its own system call numbers).

9/12/2012 2:28 AM

6 of6

http://css.csail.mit.edw6.858/2012/1ec/102-buffer-overflows.txt

Instruction set (perhaps machine or SQL language) randomization.

Are the mitigation technigues usable? Should we use them?
gcc and MSVC enable stack canaries by default.
Linux, Windows include ASLR, NX by default.

Fuzzing / fixing bugs / using memory-safe languages is common when possible.

Bounds checking not as common (performance overheads, false alarms).
Common thread in security tools: false alarms prevent adoption of tools.

Often, 0 false alarms w/ some misses better than 0 misses w/ false alarms.

Buffer overflows aren't #1 anymore; the web has "won" (SQL injection, XSS).

References:
http://www.semantiscope.com/research/BHDC2010/BHDC-2010~-Paper.pdf

9/12/2012 2:28 AM

01 (4 g7

(J @(@@(dmﬂ‘;b\@ lanj @aa[«
L &R

Ste

0
o ke [a] LR AR

SHe(cd e !

i . H <« ha[291

Oy, s loinda POZAP - ¥

&ﬁ/ St%wl((519) 5 Gl

alyl # & s 5 U ke A ey

O\EL] oo O e /{ & /LJ' '!é(a +£)

___-/-_-\

1r\WL€{jQ +"W po}n

K s~ [9]

(7

/

o

6
- S

(ath) « wed gk
[+[0)

Umj (Cftlm({ MW/’O/ 5P ioe; not Sl

—_— i
[O/’MO//{(Can - do what 00

k

€ Oi o Cor slqre/cf /rrnL

It (6+) < b)

il fyy O(:/
by

‘Z("”‘f’/’é’ 4n oy
{D’ (oa:,’g/@é

Orly veld pids

{Dajmt ﬁ e | /a(a f ((M
O On P&s+ N
%Gﬂ{ of am/

buge b fly e w g bk

)

G WL@W an b il ﬂc LM(Z)

no ol Gres

Wﬁ? Canl make ussim phian
-

g+ (v F go mee fun ¥ cob
!egal for Pec -
bt w pelle wey @ due (s ol

@M/ = ﬂw Can. (RO (ocwe%/ﬁ% /;M}L

o [h-
[
6}%{ pz(/ile(/ N W‘v/ ki

)if@r ~ Ao cﬂ @Gmﬂw od PM5 of]

ey abato, allgul b por of 7
it o
6} 6 1 }7{@ "Clegrod X
Lt gtk Oﬂl 0~ 6 “[25
nt Y<(Y \Ek

5”‘{7 o (€

JW o de/ef

(VL p/t(/ll lce ﬂ\dw@//
l” €ga//

7
mst e L/,—_—l

WH’EP\Q
k{ l
(s mw@

ey Sk oz albdion

 [e]
WZ“f/ Q[
o9
e S P{ ﬁ) 4%({ : e
Oinla~ » 'uﬁ}” ,
o 20 A
W t'/]HWu‘ﬂL - /(
loes (02 / T Z /@,{74
e v sl

Loty
:

s 5 ‘fffolrf/m
. 6((m éy‘//t/
@/ LY -0 = g J /aét”l«'»e
New el gl
\maw 65%’

CL“M‘[{IM s CLH ‘tgﬁd b 6/7/[(
e o all b fte

! Cages
ﬂ%ﬂqm tadly <,
! /}%d/l | Q/Jd:(ng

Ltn@u, 6(%6_ aud my %/p o ¢ y
gﬂ (Kﬂow I\Q)G\l‘ W«@YL o —

69 I'\GW ‘”Mﬁ-(ﬁ
CW 7 ‘/IOQLIH /‘”’:/I/?L(?/c

Tl

4

’v”% d/(Case

e Ga t @ bl et

duodil wZo Gl
Wikl “W 10 g U | dhate

g
Sl
7

A(\s = }W\U/d”] \/@)

Q@W\

Building Secure High-Performance Web Services with OKWS
——

Maxwell Krohn, MIT Computer Science and Al Laboratory
krohn@csail .mit.edu

Abstract

OKWS is a toolkit for building fast and secure Web ser-
vices. It provides Web developers with a small set of
tools that has proved powerful enough to build complex
systenis with limited effort. Despite its emphasis on se-
curity, OKWS shows performance improvements com-
pared to popular systems: when servicing [ully dynamic,
non-disk-bound database workloads, OKWS’s through-
put nd responsiveness exceed that of Apache2 [3],
Flash [23] and Haboob [44]. Experience with OKWS ina
commercial deployment suggests it can reduce hardware
and system management costs, while providing security
guarantees absent in current systems.

1 Introduction

Most dynamic Web sites today maintain large server-side
databases, to which their users have limited access via
HTTP interfaces. Keeping this data hidden and correct
is critical yet difficult. Indeed, headlines are replete with
stories of the damage and embarrassment remote attack-
ers can visit on large Web sites.

Most attacks against Web sites exploit weaknesses in
popular Web servers or bugs in custom application-level
logic. In practice, emphasis on rapid deployment and per-
formance often comes at the expense of security.

Consider the following example: Web servers typ-
ically provide Web programmers with_powerful and
generic interfaces to underlying dalz\bas‘e—'}smly on
coarse-grained database-level permission systems for ac-
cess control. Web servers also tend to package logically
separate programs into one address space. If a particular
Web site serves its search and newsletter-subscribe fea-
tures from the same machine, a bug in the former might
allow a malicious remote client to select all rows [rom
a table of subscribers’ email addresses. In general, any-
thing from a bffeF overrun 1 an unexpected escape se-
quence can expose private data to an attacker. Moreover,
few practical isolation schemes exist aside from running
different services on different machines. As a result, a
flaw in one service can ripple through an entire system.

To plug the many security holes that plague existing

(

Web servers, and to limit the severity of unforeseen prob-
lems, we introduce OKWS, the OK Web Server. Unlike
typical Web servers, OKWS is specialized for dynamic
content and is not well-suited to serving files from disk.
It relies on existing Web servers, such as Flash [23] or
Apache [3], to serve images and other static content. We
argue (in Section 5.4) that this separation of static and
dynamic content is natural and, moreover, contributes to
. il

security.

What OKWS does provide is a simple, powerful, and
secure toolkit for building dynamic content pages (also
known as Web services). OKWS enforces the natural
principle of /east privilege [27] so that those aspects of
the system most vulnerable to attack are the least use-
ful to attackers. Further, OKWS separates privileges so
that the different components of the system distrust each
other. Finally, the system distrusts the Web service devel-
oper, presuming him a sloppy programmer whose errors
can cause signiﬁcam?ﬁ@%ﬁough these principles
are not novel, Web servers have not generally incorpo-
rated them.

Using OKWS to build Web services, we show that
compromises among basic security principles, perfor-
mance, and usability are unnecessary. To this effect,
the next section surveys and categorizes attacks on Web
servers, and Section 3 presents simple design principles
that thwart them. Section 4 discusses OKWS’s imple-
mentation of these principles, and Section 5 argues that
the resulting system is practical for building large sys-
tems. Section 6 discusses the security achieved by the
implementation, and Section 7 analyzes its performance,
showing that OKWS’s specialization for dynamic content
helps it achieve better performance in simulated dynamic
workloads than general purpose servers.

2 Brief Survey of Web Server Bugs

To justify our approach to dynamic Web server design,
we briefly analyze the weaknesses of popular software
packages. Our goal is to represent the range of bugs that
have arisen in practice. Historically, attackers have ex-
ploited almost all aspects of conventional Web servers,
from core components and scripting language exten-

sions to the scripts themselves. The conclusion we draw
is that a better design—as opposed to a more correct
implementation—is required to get better security prop-
erties.

In our survey, we focus on the Apache [3] server due
to its popularity, but the types of problems discussed are
common to all similar Web servers, including IBM Web-
Sphere [14], Microsoft IIS [19] and Zeus [47].

2.1 Apache Core and Standard Modules

There have been hundreds of major bugs in Apache’s
core and in its standard modules. They fit into the fol-
lowing categories:

Unintended Data Disclosure. A class of bugs results
from Apache delivering files over HTTP that are sup-
posed to be privam_MUg in Apache’s
mod.dav reveals source code of user-written scripts [42)].
A recent discovery of leaked file descriptors allows re-
mote users to access sensitive log information [7]. On
Mac OS X operating systems, a local find-by-content in-
dexing scheme creates a hidden yet world-readable file
called .FBCIndex in each directory indexed. Versions
of Apache released in 2002 expose this file to remote
clients [41]. In all cases, attackers can use knowledge
about local configuration and custom-written application
code to mount more cﬁmﬁéﬂgck&

Buffer Overflows and Remote Code Execution.
Buffer overflows in Apache and its many modules are
commom—LUnchecked boundary conditions found re-
cently in mod.alias and mod_rewrite regular expres-
sion code allow local attack [39]. In 2002, a common
Apache deployment with OpenSSL had a critical bug
in client key negotiation, allowing remote attackers to
execute arbitrary code with the permissions of the Web
server. The attacking code downloads, compiles and exe-
cutes a program that secks to infect other machines [36].

There have been less-sophisticated attacks that re-
sulted in arbitrary remote code execution. Some Win-
dows versions of Apache execute commands in URLs
that follow pipe characters (‘| *). A remote attacker can
therefore issue the command of his choosing from an
unmodified Web browser [40]. On MS-DOS-based sys-
tems, Apache failed to filter out special device names,
allowing carefully-crafted HTTP POST requests to exe-
cute arbitrary code [43]. Other problems have occurred
when site developers call Apache’s htdigest utility
from within CGI scripts to manage HTTP user authen-
tication [6].

Denial of Service Attacks. Aside from TCP/IP-based
DoS attacks, Apache has been vulnerable to a number of
application-specific attacks. Apache versions released in
2003 failed to handle error conditions on certain “rarely
used ports,” and would stop servicing incoming connec-
tions as a result [38]. Another 2003 release allowed lo-
cal configuration errors to result in infinite redirection
loops [8]. In some versions of Apache, attackers could
exhaust Apache’s heap simply by sending a large se-
quence of linefeed characters [37].

2.2 Scripting Extensions to Apache

Apache’s security worsens considerably when compiled
with popular modules that enable dynamically-generated
content such as PHP [25]. In the past two years alone,
at least 13 critical bufler overruns have been found in
the PHP core, some of which allowed attackers to re-
motely execute arbittary code [9, 28]. In six other
cases, faults in PHP allowed attackers to circumvent its
application level chroot-like environment, called “Safe
Mode.” One vulnerability exposed /etc/passwd via
posix.getpwnam[5]. Anotherallowed attackers to write
PHP scripts to the server and then remotely execute them;
this bug persisted across multiple releases of PHP in-
tended as fixes [35].

Even if a correct implementation of PHP were possi-
ble, it would still provide Web programmers with am-
ple opportunity to introduce their own vulnerabilities. A
canonical example is that beginning PHP programmers
fail to check for sequences such as “..” in user input
and therefore inadvertent!y allow remote access to sen-
sitive files higher up in the file system hierarchy (e.g.,
../../../etc/passwd). Similarly, PHP scripts that
embed unescaped user input inside SQL queries present
openings for “SQL Injection.” If a PHP programmer ne-
glects to escape user input properly, a malicious user can
turn a benign SELECT into a catastrophic DELETE.

The PHP manual does state that PHP scripts might be
separated and run as different users to allow for privilege
separation. In this case, however, PHP could not run as
an Apache module, and the system would require a new
PHP process forked for every incoming connection. This
isolation strategy is at odds with performance.

3 Design

If we assume that bugs like the ones discussed above are
inevitable when building a large system, the best remedy
is to limit the effectiveness of attacks when they occur.
This section presents four simple guidelines for protect-
ing sensitive site data in the worst-case scenario, in which

an adversary remotely gains control of a Web server and
can execute arbitrary commands with the Web server’s
privileges. We also present OKWS’s design, which fol-
lows the four security guidelines without sacrificing per-
formance.

Throughout, we assume a cluster of Web servers and
database machines connected by a fast, firewalled LAN.,
Site data is cached at the Web servers and persistently
stored on the database machines. The primary security
goals are to prevent intrusion and to prevent unauthorized
access to site data.

3.1 Practical Security Guidelines

(1) Server processes should be chrooted. After compro-
mising a server process, most attackers will try to gain
control over the entire server machine, possibly by in-
stalling “back doors,” learning local passwords or private
keys, or probing local configuration files for errors. At
the very least, a compromised Web server should have
no access to sensitive files or directories. Moreover, an
0S-Tevel Jail ought to hide all setuid executables from
the Web server, since many privilege escalation attacks
require such files (examples include the prrace and bind
attacks mentioned in [17]). Privilege escalation is pos-
sible without setuid executables but requires OS-level
bugs or race conditions that are typically rarer.

An adversary can still do damage without control of
the Web server machine. The configuration files, source
files, and binaries that correspond to the currently run-
ning Web server contain valuable hints about how to ac-
cess important data. For instance, PHP scripts often in-
clude the username and plaintext password used to gain
access to a MySQL database. OS-enforced policy ought
to hide these files from running Web servers.

(2) Server processes should rw%@x.
A compromised process running as a privileged user can
do significant damage even from within a chrooted en-
vironment. [t might bind to a well-known network port.
It might also interfere with other system processes, espe-
cially those associated with the Web server: it can trace
their system calls or send them signals.

(3) Server processes should have the minimal set of

database access privileges necessary to perfornmTheir
task. Separate Processes shoutd mol ave access to each
other’s databases. Moreover, if a Web server process re-
quires only row-wise access to a table, an adversary who
compromises it should not have the authority to perform
operations over the entire table.

(4) A server architecture should separate indepen-

dent fumctionality into indgpendent processes. An adver-
sary who compromises a Web server can examine its in-
memory data structures, which might contain soft state
used for user session management, or possibly secret to-
kens that the Web server uses to authenticate itself to its
database. With control of a Web server process, an ad-
versary might hijack an existing database connection or
establish a new one with the authentication tokens it ac-
quired. Though more unlikely, an attacker might also
monitor and alter network traffic entering and exiting a
compromised server,

The important security principle here is to limit the
types of data that a single process can access. Site de-
signers should partition their global set of site data into
small, self-contained subsets, and their Web server ought
to align its process boundaries with this partition.

If a Web server implements principles (1) through (4),
and if there are no critical kernel bugs, an attacker cannot
move from vulnerable to secure parts of the system. By
incorporating these principles, a Web server design as-
sumes that processes will be compromised and therefore
prevents uncompromised processes from performing un-
safe operations, even when extended by careless Web de-
velopers. For example, if a server architecture denies a
successful attacker access to /etc/passwd, then a pro-
grammer cannot inadvertently expose this file to remote
clients. Similarly, if a successful attacker cannot arbitrar-
ily access underlying databases, then even a broken Web
script cannot enable SQL injection attacks.

3.2 OKWS Design

We designed OK'WS with these four principles in mind.
OKWS provides Web developers with a set of libraries
and helper processes so they can build Web services as
independent,_stand-alone processes, isolated almost en-
tirely from the file system. The core libraries provide
basic functionality for receiving HTTP requests, access-
ing data sources, composing an HTML-formatted re-
sponse, responding-to-HITP rcqucsls,/am()g_gfﬁg the
results to disk. A process called OK launcher daemon,
or(okld, Paunches custom-built services and relaunches
thenishould they crash. A process called OK dispatcher,
or fkd, poutes incoming requests to_appropriate Web ser-

viedS. A helper process cal]c@rprovides Web ser-
vices with limited read access to configuration files and
HTML template files stored on thg Tocatdisk. Finally, a
dedicated logger dacmon called oklogd Writes log entries
to disk. Figure | summarizes théS€ telationships.

This architecture allows custom-built Web services to
meet our stated design goals:

st 4//

“h

léf

Internal Site
Management
(Port 11277)

External HTTP connections
(Port 80)

okld

KEY: RPE s
HTTP
"Parent Of"

SQL

site-specific

OKWS helper

Figure 1: Block diagram of an OKWS site setup with three Web
services (SVCy, SVCz, sveC3) and two data sources (data,, datan),
one of which (data) is an OKWS database proxy.

(1) OKWS chroots all services to a remote jail di-
rectory. Within the jail, cach process has just
enough access privileges to read shared libraries
upon startup and to dump core upon abnormal ter-
mination. The services otherwise never access the
file system and lack the privileges to do S(:; Lﬁ(ﬂﬂ{' !

i

Each service runs as a unique non-privileged user.
L

(2)
3)

OKWS interposes a structured RPC interface be-
tween the Web service and the database and uses a
simple authentication mechanism to align the parti-
tion among database access methods with the parti-
tion among processes.

(4) Each Web service runs as a separate process. The
next section justifies this choice.

3.3 Process Isolation

Unlike the other three principles, the fourth, of pro-
cess isolation, implies a security and performance trade-
off since the most secure option—one Unix process per
external user—would be problematic for performance.
OKWS’s approach to this tradeofT is to assign one Unix
process per service; we now justily this selection.

Our approach is to view Web server architecture as
a dependency graph, in which the nodes represent pro-
cesses, services, users, and user state. An edge (a, b) de-
notes b’s dependence on a, meaning an attacker’s ability
to compromise ¢ implies an ability to compromise b. The
crucial design decision is thus how to establish dep
cie are abstract notions of services, users
and user states, and the more concrete notion of a pro-
cess.

Let the set S represent a Web server’s constituent ser-
vices, and assume each service accesses a private pool
of data. (Two application-level services that share data
would thus be modelled by a single “service™.) A set of
users U interacts with these services, and the interaction
between user #; and service s; involves a piece of state #;;;.
If an attacker can compromise a service s;, he can com-
promise state ¢;; for all f; thus (s, #;;) is a dependency for
all j. Compromising state also compromises the corre-
sponding user, so (#;;, u;) is also a dependency.

Let P = {p1,...,ps} be a Web server’s pool of pro-
cesses. The design decision of how to allocate processes
réduces to where the nodes in 2 belong on the depen-
dency graph. In the Apache architecture [3], each pro-
cess p; in the process pool can perform the role of any
service s;. Thus, dependencies (p;,s;) exist for all j. For
Flash [3], each process in P is associated with a particular
service: for each p;, there exists s; such that (p;,s;) is a
dependency. The size of the process pool P is determined
by the number of concurrent active HTTP sessions; each
process p; serves only one of these connections. Java-
based systems like the Haboob Server [44] employ only
one process; thus P = {p;}, and dependencies (p1,s;)
exist for all J.

Figures 2(a)-(c) depict graphs of Apache, Flash and
Haboob hosting two services for two remote users. As-
suming that the “dependence” relationship is transitive,
and that an adversary can compromise p;, the shaded
nodes in the graph show all other vulnerable entities.

This picture assumes that the process of p, is equally
vulnerable in the different architectures and that all archi-
tectures succeed equally in isolating different processes
from each other, Neither of these assumptions is entirely
true, and we will return to these issues in Section 6.2.
What is clear from these graphs is that in the case of
Flash, a compromise of p, does not affect states 15, and
fr». For example, an attacker who gained access to ;s
search history (7, ;) cannot access the contents of his in-
box (1‘3‘,').

A more strict isolation strategy is shown in Figure 2(d).
The architecture assigns a process p; to each user u;. If
the attacker is a user u;, he should only be able to compro-

| Only 6”3147’[7 diF

(b) Flash

(a) Apache

OQO0 &
>

(¢) Haboob

7

(d) Strict

(e) OKWS

Figure 2: Dependency graphs for various Web server architectures.

mise his own process p;, and will not have access to state
belonging to other users #;. The problem with this ap-
proach is that it does not scale well. A Web server would
either need to fork a new process p; for each incoming
HTTP request or would have a large pool of mostly idle
processes, one for each currently active user (of which
there might be tens of thousands).

OKWS does not implement the strict isolation strategy
but instead associates a single process with each individ-
ual service, shown in Figure 2(e). As a result OKWS
achieves the same isolation properties as Flash but with a

process pool whose size is independent of the number of

concurrent HTTP connections.

4 TImplementation

OKWS is a portable, event-based system. wri
with the SFS toolkit [T8]. It has been successfully tested
on Linux and FreeBSD. In OKWS, the different helper
processes and site-specific services shown in Figure |
communicate among themselves with SFS’s implemen-
tation of Sun RPC [32]; they communicate with exter-
nal Web clients via HTTP. Unlike other event-based
servers [23, 44, 47], OKWS exposes the event architec-
ture to Web developers. = =

To useOKWS, an administrator installs the helper bi-
naries (okld, okd, pubd and oklogd) to a standard direc-
tory such as /usr/local/sbin, and installs the site-
specific services to a runtime jail directory, such as
/var/okus/run. The administrator should allocate two
new UID/GID pairs for okd and oklogd and should also
reserve a contiguous user and group ID space lor “anony-
mous” services. Finally, administrators can tweak the
m'a_smﬁguration file, /ete/okws config. Table |

summarizes the runtime configuration of OKWS.

4.1 okld

The root process in the OKWS system is okld—the
launcher daemon. This process normally runs as supe-
ruser but can be run as a non-privileged user for testing
or in other cases when the Web server need not bind to
a privileged TCP port. When okld starts up, it reads the
configuration file /etc/okws_config to determine the
locations of the OKWS helper processes, the anonymous
user ID range, which directories to use as jail directo-
ries, and which services to launch. Next, ok/d launches
the logging daemon (oklogd) and the demultiplexing dae-
mon (okd), and chroots into its runtime jail directory. It
then launches all site-specific Web services. The steps
for launching a single service are:

1. okld requests a new Unix socket connection from
oklogd.

2. okld opens 2 socket pairs; one for HTTP connection
forwarding, and one for RPC control messages.

3. okld calls fork.

4. In the child address space, okld picks a fresh
UID/GID pair (x.x), sets the new process’s group list
to {x} and its UID to x. It then changes directories
into /cores/x.

5. Still in the child address space, okld calls execve,
launching the Web service. The new Web service
process inherits three file descriptors: one for re-
ceiving forwarded HTTP connections, one for re-
ceiving RPC control messages, and one for RPC-
based request logging. Some configuration parame-
ters in /etc/okws_config are relevant to child ser-
vices, and okld passes these to new children via the
command line.

[Tprocess | chroot jail | run directory | uid [gid]

okld | /var/okws/run / root wheel

~ pubd | /var/okws/htdocs | / T www waw

oklogd | /var/okws/log I oklogd | oklogd
okd | /var/okws/run i okd okd
SVey /var/okws/run /cores/51001 51001 51001
svea | /var/okws/run /cores/51002 | 51002 51002
svey /var/okws/run /cores/51003 51003 51003

Table 1: An example confi guration of OKWS. The entries in
the *run directory” column are relative to “chroot jails™

6. In the parent address space, okld sends the server
side of the sockets opened in Step 2 to okd.

Upon a service’s first launch, ok/d assigns it a group and
user 1D chosen arbitrarily from the given range (e.g.,
51001-51080). The service gets those same user and
group IDs in subsequent launches. It is important that no
two services share a UID or GID, and ok/d ensures this
invariant. The service executables themselves are owned
by root, belong to the group with the anonymous GID x
chosen in Step 4 and are set to mode 0410.

These settings allow okld to call execve after setuid
but disallow a service process from changing the mode
of its corresponding binary. okld changes the ownerships
and permissions of service executables at launch if they
are not appropriately set. The directory used in Step 4 is
the only one in the jailed file system to which the child
service can write. If such a directory does not exist or
has the wrong ownership or permissions, ok/d creates and
configures it accordingly.

okld catches SIGCHLD when services die. Upon receiv-
ing a non-zero exit status, okld changes the owner and
mode of any core files left behind, rendering them inac-
cessible to other OKWS processes. If a service exits un-
cleanly too many times in a given interval, okld will mark
it broken and refuse to restart it. Otherwise, okld restarts
dead services following the steps enumerated above.

4.2 okd

The okd process accepts incoming HTTP requests and
demultiplexes them based on the “Request-URI™ in their
first lines. For example, the HTTP/1.1 standard [11] de-
fines the first line of a GET request as:

GET /{abs_path)?(query) HITP/1.1

Upon receiving such a request, okd looks up a Web ser-
vice corresponding to abs_path in its dispatch table. If
successful, okd forwards the remote client’s file descrip-
tor to the requested service. If the lookup is successful
but the service is marked “broken,” okd sends an HTTP
500 error to the remote client. If the request did not match

a known service, okd returns an HTTP 404 error. In typ-
ical settings, a small and fixed number of these services
are available—on the order of 10. The set of available
services is fixed once okd reads its configuration file at
launch time.

Upon startup, okd reads the OKWS configuration file
(/etc/okws_config) to construct its dispatch table. It
inherits two file descriptors from okld: one for logging,
and one for RPC control messages. okd then listens on
the RPC channel for okl/d to send it the server side of
the child services” HTTP and RPC connections (see Sec-
tion 4.1, Step 6). okd receives one such pair for each ser-
vice launched. The HTTP connection is the sink to which
okd sends incoming HTTP requests from external clients
after successful demultiplexing. Note that okd needs ac-
cess to oklogd to log Error 404 and Error 500 messages.

okd also plays a role as a control message router for
the child services. In addition to listening for HTTP
connections on port 80, okd also listens for internal re-
quests from an administration client. It services the two
RPC calls: REPUB and RELAUNCH. A site maintainer
should call the former to “activate” any changes she
makes to HTML templates (see Section 4.4 for more de-
tails). Upon receiving a REPUB RPC, okd triggers a sim-
ple update protocol that propagates updated templates.

A site maintainer should issue a RELAUNCH RPC af-
ter updating a service’s binary. Upon receiving a RE-
LAUNCH RPC, okd simply sends an EOF to the relevant
service on its control socket. When a Web service re-
ceives such an EOF, it finishes responding to all pending
HTTP requests, flushes its logs, and then exits cleanly.
The launcher daemon, ok/d, then catches the correspond-
ing SIGCHLD and restarts the service.

4.3 oklogd

All services, along with okd, log their access and error ac-
tivity to local files via oklogd—the logger daemon. Be-
cause these processes lack the privileges to write to the
same log file directly, they instead send log updates over
a local Unix domain socket. To reduce the total number
of messages, services send log updates in batches. Ser-
vices flush their log buffers as they become full and at
regularly-scheduled intervals.

For security, oklogd runs as an unprivileged user in
its own chroot environment. Thus, a compromised okd
or Web service cannot maliciously overwrite or truncate
log files; it would only have the ability to fill them with
“noise.”

4.4 pubd

Dynamic Web pages often contain large sections of static
HTML code. In OKWS, such static blocks are called
HTML “templates”; they are stored as regular files, can
be shared by multiple services and can include each other
in a manner similar to Server Side Includes [4].

OKWS services do not read templates directly from
the file system. Rather, upon startup, the publishing dae-
mon (pubd) parses and caches all required templates. It
then ships parsed representations of the templates over
RPC to other processes that require them. pubd runs as
an unprivileged user, relegated to a jail directory that con-
tains only public HTML templates. As a sccurity pre-
caution, pubd never updates the files it serves, and ad-
ministrators should set its entire chroored directory tree
read-only (perhaps, on those platforms that support it, by
mounting a read-only nullfs).

5 OKWS In Practice

Though its design is motivated by security goals, OKWS
provides developers with a convenient and powerlul
toolkit. Our experience suggests that OKWS is suitable
for building and maintaining large commercial systems.

5.1 Web Services
A Web developer creates a new Web service as follows:

1. Extends two OKWS generic classes: one that cor-
responds to a long-lived service, and one that corre-
sponds to an individual HTTP request. Implements
the init method of the former and the process
method of the latter.

2. Runs the source file through OKWS’s preprocessor,
which outputs C++ code.

3. Compiles this C++ code into an executable, and in-
stalls it in OKWS’s service jail.

4. Adds the new service to /etc/okws_config.
5. Restarts OKWS to launch.

The resulting Web service is a single-threaded, event-
driven process.

The OKWS core libraries handle the mundane me-
chanics of a service’s life cycle and its connections to
OKWS helper processes. At the initialization stage,
a Web service establishes persistent connections to all

needed databases. The connections last the lifetime of
the service and are automatically reopened in the case of

abnormal termination. Also at initialization, a Web ser-
vice obtains static HTML templates and local configura-
tion parameters from pubd. These data stay in memory
until a message from okd over the RPC control channel
signals that the Web service should refetch. In imple-
menting the init method, the Web developer need only
specify which database connections, templates and con-
figuration files he requires.

The process method specifies the actions required for
incoming HTTP requests. In formulating replies, a Web
service typically accesses cached soft-state (such as user
session information), database-resident hard state (such
as inbox contents), HTML templates, and configuration
parameters. Because a Web service is implemented as a
single-threaded process, it does not require synchroniza-
tion mechanisms when accessing these data sources. lts
accesses to a database on behalf of all users are pipelined
through a single asynchronous RPC channel. Similarly,
its accesses to cached data are guaranteed to be atomic
and can be achieved with simple lightweight data struc-
tures, without locking. By comparison, other popular
Web servers require some combination of mmap’ed files,
spin-locks, 1PC synchronization, and database connec-
tion pooling to achieve similar results.

At present, OKWS requires Web developers to pro-
gram in C++, using the same SFS event library that un-
dergirds all OKWS helper processes and core libraries.
To simplify memory management, OKWS exposes SFS’s
reference-counted garbage collection scheme and high-
level string library to the Web programmer. OKWS also
provides a C++ preprocessor that allows for Perl-style
“heredocs™ and simplified template inclusion. Figure 3
demonstrates these facilitics.

5.2 Asynchronous Database Proxies

OKWS provides Web developers with a generic li-
brary for translating between asynchronous RPC and
any given blocking client library, in a manner similar to
Flash’s .Hmesscs [23], and “manual calling au-
tomatic™ in [1]. OKWS users can thus simply imple-
ment database proxies: asynchronous RPC front-ends
to standard databases, such as MySQL [21] or Berkeley
DB [29]. Our libraries provide the illusion of a standard
asynchronous RPC dispatch routine. Internally, these
proxies are multi-threaded and can block; the library han-
dles synchronization and scheduling.

Database proxies employ a small and static number of
worker threads and do not expand their thread pool. The
intent here is simply to overlap requests to the underlying
data source so that it might overlap its disk accesses and

void my_srvc_t::process ()

{
str color = param["color"];
/*0
print (resp) <<EOF;
<html>
<head>
<title>${param["title"]}</title>
</head>
EOF
include (resp, "/body.html",
{ COLOR => ${color}});
ox/
output (resp);
}

Figure 3: Fragment of a Web service programmed in OKWS.
The remote client supplies the title and color of the page via
standard CGl-style parameter passing. The runtime templating
system substitutes the user’s choice of color for the token COLOR
in the template /body.html. The variable my_svc_t::resp
represents a buffer that collects the body of the HTTP re-
sponse and then is flshed to the client via output (). With
the FilterCGI fhg set, OKWS fi lters all dangerous metachar-
acters from the param associative array.

benefit from disk arm scheduling.

Database proxies ought to run on the database ma-
chines themselves. Such a configuration allows the site
administrator to “lock down” a socket-based database
server, so that only local processes can execute arbitrary
database commands. All other machines in the cluster—
such as the Web server machines—only see the struc-
tured, and thus restricted, RPC interface exposed by the
database proxy.

Finally, database proxies employ a simple mechanism
for authenticating Web services. After a Web service

connects to a database proxy, it supplies '(
thentication token in a login message. The database
proxy then grants the Web service permission to access
a set of RPCs based on the supplied authentication token.

To f'acilitaMEcnt of OKWS database prox-
ies, we wrapped MySQL’s standard C library in an in-
terface more suitable for use with SFS’s libraries. We
model our MySQL interface after the popular Perl DBI
interface [24] and likewise transparently support both
parsed and prepared SQL styles. Figure 4 shows a simple
database proxy built with this library.

5.3 Real-World Experience

The author and two other programmers built a commer-
cial Web site using the OKWS system in six months [22].
We were assisted by two designers who knew little C++
but made effective use of the HTML templating system.

The application is Internet dating, and the site features a
typical suite of services, including local matching, global
matching, messaging, profile maintenance, site statistics,
and picture browsing. Almost a million users have estab-
lished accounts on the site, and at peak times, thousands
of users maintain active sessions. Our current implemen-
tation uses 34 Web services and 12 database proxies.

We have found the system to be usable, stable and
well-performing. In the absence of database bottle-
necks or latency from serving advertisements, OKWS
feels very responsive to the end user. Even those
pages that require iterative computations—Ilike match
computations—Iload instantaneously.

Our Web cluster currently consists of four load bal-
anced OKWS Web server machines, two read-only cache
servers, and two read-write database servers, all with dual
Pentium 4 processors. We use multiple OKWS machines
only for redundancy; one machine can handle peak loads
(about 200 requests per second) at about 7% CPU uti-
lization, even as it gzips most responses. A previous in-
carnation of this Web site required six ModPerl/Apache
servers [20] to accommodate less traffic. It ultimately
was abandoned due to insufficient software tools and pro-
hibitive hardware and hosting expenses [30].

5.4 Separating Static From Dynamic

OKWS relies on other machines running standard Web
servers to distribute static content. This means that all
pages generated by OKWS should have only absolute
links to external static content (such as images and style
sheets), and OKWS has no reason to support keep-alive
connections [11]. The servers that host static content for
OKWS, however, can enable HTTP keep-alive as usual.

We note that serving static and dynamic content from
different machines is already a common technique for
performance reasons; administrators choose different
hardware and software configurations for the two types
of workloads. Moreover, static content service does not
require access to sensitive site data and can therefore hap-
pen outside of a firewalled cluster, or perhaps at a differ-
ent hosting facility altogether. Indeed, some sites push
static content out to external distribution networks such
as Akamai [2].

In our commercial deployment, we host a cluster of
OKWS and database machines at a local colocation facil-
ity: we require hands-on hardware access and a network
configured for our application. We serve static content
from leased, dedicated servers at a remote facility where’
bandwidth is significantly cheaper.

struct user_xdr_t {
string name<30>;
int age;

i H

// can only occur at initialization time
q = mysql->prepare (
"SELECT age,name FROM tab WHERE id=?");

id = 1; // get ID from client
user_xdr_t u;

stmt = g->execute (id); // might block!
stmt->fetch (&u.age, &u.name);
reply (u);

Figure 4: Example of database proxy code with MySQL wrap-
per library. In this case, the Web developer is loading SQL
results directly into an RPC XDR structure.

6 Security Discussion

In this section we discuss OKWS’s security benefits and
shortcomings.

6.1 Security Benefits

(1) The Local Filesystem. An OKWS service has almost
no access to the file system when execution reaches
custom code. If compromised, a service has write access
to its coredump directory and can read from OKWS
shared libraries. Otherwise, it cannot access setuid
executables, the binaries of other OKWS services, or
core dumps left behind by crashed OKWS processes. It
cannot overwrite HTTP logs or HTML templates. Other
OKWS services such as oklogd and pubd have more
privileges, enabling them to write to and read from the
file system, respectively. However, as OKWS matures,
these helpers should not present security risks since they
do not run site-specific code.

(2) Other Operating System Privileges. Because
OKWS runs logically separate processes under different
user 1Ds, compromised processes (with the exception
of okld) do not have the ability to kill or ptrace other
running processes. Similarly, no process save for okld
can bind to privileged ports.

(3) Database Access. As described, all database
access in OKWS is achieved through RPC channels,
using independent authentication mechanisms. As a
result, an attacker who gains control of an OKWS web
service can only interact with the database in a manner
specified by the RPC protocol declaration; he does
not have generic SQL client access. Note that this is
a stronger restriction than simple database permission

systems alone can guarantee. For instance, on PHP
systems, a particular service might only have SELECT
permissions to a database’s USERS table. But with
control of the PHP server, an attacker could still issue
commands like SELECT * FROM USERS. With OKWS,
if the RPC protocol restricts access to row-wise queries
and the keyspace of the table is sparse, the attacker has
significantly more difficulty “mining” the database.'
OKWS’s separation of code and privileges further lim-
its attacks. If a particular service is compromised, it can
establish a new connection to a remote RPC database
proxy; however, because the service has no access to
source code, binaries, or ptraces of other services, it
knows no authentication tokens aside from its own.
Finally, OKWS database libraries provide runtime
checks to ensure that SQL queries can be prepared only
when a proxy starts up, and that all parameters passed to
queries are appropriately escaped. This check insulates
sloppy programmers {rom the “SQL injection”™ attacks
mentioned in Section 2.2. We expect future versions of
OKWS to enforce the same invariants at compile time.

(4) Process Isolation and Privilege Separation. OKWS
1s careful to separate the traditionally “buggy™ aspects of
Web servers from the most sensitive areas of the system.
In particular, those processes that do the majority of
HTTP parsing (the OKWS services) have the fewest
privileges. By the same logic, okld, which runs as
superuser, does no message parsing; it responds only
to signals. For the other helper processes, we believe
the RPC communication channels to be less error-prone
than standard HTTP messaging and unlikely to allow
intruders to traverse process boundaries.

Process isolation also limits the scope of those DoS
attacks that exploit bugs in site-specific logic. Since
the operating system sets per-process limits on resources
such as file descriptors and memory, DoS vulnerabilities
should not spread across process boundaries. We could
make stronger DoS guarantees by adapting “defensive
programming” techniques [26]. Qie e al. suggest com-
piling rate-control mechanisms into network services, for
dynamic prevention of DoS attacks. Their system is
applicable within OKWS’s architecture, which relegates
each service to a single address space. The same cannot
be said for those systems that spread equivalent function-
ality across multiple address spaces.

6.2 Security Shortcomings

The current implementation of OKWS supports only
C++ for service development. OKWS programmers

<html><head><title>Test Result</title></head>
<body>
<7
$db = mysql_pconnect("okdb.lcs.mit.edu");
mysql_select_db("testdb", $db);
$id = $HTTP_GET_VARS["id"];
$qry = "SELECT x,y FROM tab WHERE x=$id";
$result = mysql_query("$qry", $db);
$myrow = mysql_fetch_row($result);
print ("QRY $id S$myrow[0] $myrow([1]\n");
7>
</body>
</html>

Figure 5: PHP version of the null service

should use the provided “safe” strings classes when gen-
erating HTML output, and they should use only auto-
generated RPC stubs for network communication; how-
ever, OKWS does not prohibit programmers {rom us-
ing unsafe programming techniques and can therefore
be made more susceptible to buffer overruns and stack-
smashing attacks. Future versions of OKWS might make
these attacks less likely by supporting higher-level pro-
gramming languages such as Python or Perl.

Another shortcoming of OKWS is that an adversary
who compromises an OKWS service can gain access to
in-memory state belonging to other users. Developers
might protect against this attack by encrypting cache en-
tries with a private key stored in an HTTP cookie on the
client’s machine. Encryption cannot protect against an
adversary who can compromise and passively monitor a
Web server.

Finally, independent aspects of the system might be
vulnerable due to a common bug in the core libraries.

7 Performance Evaluation

In designing OKWS we decided to limit its process pool
to a small and fixed size. In our evaluation, we tested
the hypothesis that this decision has a positive impact
on performance, examining OKWS’s performance as a
function of the number of active service processes. We
also present and test the claim that OKWS can achieve
high throughputs relative to other Web servers because
of its smaller process pool and its specialization for dy-
namic content.

7.1 Testing Methodology

Performance testing on Web servers usually involves the
SPECweb99 benchmark [31], but this benchmark is not
well-suited for dynamic Web servers that disable Keep-
Alive connections and redirect to other machines for
static content. We therefore devised a simple benchmark

that better models serving dynamic content in real-world
deployments, which we call the null service benchmark.
For each of the platforms tested, we implemented a null
service, which takes an integer input from a client, makes
a database SELECT on the basis of that input, and returns
the result in a short HTML response (see Figure 5). Test
clients make one request per connection: they connect to
the server, supply a randomly chosen query, receive the
server’s response, and then disconnect.

7.2 Experimental Setup

All Web servers tested use a large database table filled
with sequential integer keys and their 20-byte SHA-1
hashes [12]. We constrained our client to query only the
first 1,000,000 rows of this table, so that the database
could store the entire dataset in memory. Our database
was MySQL version 4.0.16.

All experiments used four FreeBSD 4.8 machines. The
Web server and database machines were uniprocessor
2.4GHz and 2.6GHz Pentium 4s respectively, each with
1GB of RAM. Our two client machines ran Dual 3.0GHz
Pentium 4s with 2GB of RAM. All machines were con-
nected via fast Ethernet, and there was no network con-
gestion during our experiments. Ping times between the
clients and the Web server measured around 250 ps, and
ping times between the Web server and database machine
measured about 150 us.

We implemented our test client using the OKWS li-
braries and the SFS toolkit. There was no resource strain
on the client machines during our tests.

7.3 OKWS Process Pool Tests

We experimentally validated OKWS’s frugal process
allocation strategy by showing that the alternative—
running many processes per service—performs worse.
We thus configured OKWS to run a single service as a
variable number of processes, and collected throughput
measurements (in requests per second) over the different
configurations. The test client was configured to simu-
late either 500, 1,000 or 2,000 concurrent remote clients
in the different runs of the experiment.

Figure 6 summarizes the results of this experiment as
the number of processes varied between [and 450. We
attribute the general decline in performance to increased
context-switching, as shown in Figure 7. In the single-
process configuration, the operating system must switch
between the null service and okd, the demultiplexing dae-
mon. In this configuration, higher client concurrency im-
plies fewer switches, since both okd and the null service
have more outstanding requests to service before calling

1

|

o 1

8 1
2

5 5m 4

g 88]

: %, |

2 EE=|

1900 } 500 clients —&— 3l

1000 clients - L

1800 * 2000 clients = 1

I 10 100

number of processes (log scale)

Figure 6: Throughputs achieved in the process pool test

sleep. This effect quickly disappears as the server dis-
tributes requests over more processes. As their numbers
grow, each process has, on average, fewer requests to
service per unit of time, and therefore calls sieep sooner
within its CPU slice.

The process pool test supports our hypothesis that a
Web server will consume more computational resources
as its process pool grows. Although the experiments
completed without putting memory pressure on the op-
erating system, memory is more scarce in real deploy-
ments. The null service requires about 1.5MB of core
memory, but our experience shows real OKWS service
processes have memory footprints of at least 4MB, and
hence we expect memory to limit server pool size. More-
over, in real deployments there is less memory to waste
on code text, since in-memory caches on the Web ser-
vices are crucial to good site performance and should be
allowed to grow as big as possible.

7.4 Web Server Comparison

The other Web servers mentioned in Section 3.3—
Haboob, Flash and Apache—are primarily intended for
serving static Web pages. Because we have designed
and tuned OKWS for an entirely dynamic workload, we
hypothesize that when servicing such workloads, it per-
forms better than its more general-purpose peers. Our
experiments in this section test this hypothesis.

Haboob is Java-based, and we compiled and ran it with
FreeBSD’s native JDK, version 1.3. We tested Flash
v0.1a, built with FD_SETSIZE set high so that Flash re-
ported an ability to service 5116 simultaneous connec-
tions. Also tested was Apache version 2.0.47 compiled
with multi-threading support and running PHP version
4.3.3 as a dynamic shared object. We configured Apache
to handle up to 2000 concurrent connections. We ran
OKWS in its standard configuration, with a one-to-one

10000 { — T .)

2 9000 t FE

o F B/g’a'

3 e

% 8000 e ‘

[=

= 7000 o |

:._) 1

2 6000 } |

5 5000 e 1

£ Il 500 clients —=— |

2 4 L. !]

S 4000 ¢- 1000 clients x|

bl ~11 9 3 |
300" L) ‘_09(} clients @ |
| 10 100

number of processes (log scale)

Figure 7: Context switching in the process pool test

3500 --- Haboob |
- - Flash
3000 Apache+PHP
g s OKWS
: - N SR e,
520000 5 -
=% v . - "
@ v e
z 1500 e i
- h - ~
g o :
2 1000 .
500F "t STt
0
200 500 1000 1500 2000

concurrent CiiCHlS

Figure 8: Throughputs for the single-service test

correspondence between processes and services.

We enabled HTTP access logging on all systems with
the exception of Haboob, which does not support it. All
systems used persistent database connections.

7.4.1 Single-Service Workload

In the single-service workload, clients with negligible la-
tency request a dynamically generated response from the
null service. This test entails the minimal number of ser-
vice processes for OKWS and Flash and therefore should
allow them to exhibit maximal throughput. By contrast,
Apache and Haboob’s process pools do not vary in size
with the number of available services. We examined the
throughput (Figure 8) and responsiveness (Figure 9) of
the four systems as client concurrency increased. Fig-
ure 10 shows the cumulative distribution of client laten-
cies when 1,600 were active concurrently.

Of the four Web servers tested, Haboob spent the most
CPU time in user mode and performed the slowest. A
likely cause is the sluggishness of Java 1.3’s memory
management.

When servicing a small number of concurrent clients,
the Flash system outperforms the others; however, its per-

formance does not scale well. We attribute this degrada-
tion to Flash’s CGI model: because custom-written Flash
helper processes have only one thread of control, each
instantiation of a helper process can handle only one ex-
ternal client. Thus, Flash requires a separate helper pro-
cess for each external client served. At high concurrency
levels, we noted a large number of running processes (on
the order of 2000) and general resource starvation. Flash
also puts additional strain on the database, demanding
one active connection per helper—thousands in total. A
database pooling system might mitigate this negative per-
formance impact. Flash’s results were noisy in general,
and we can best explain the observed non-monotonicity
as inconsistent operating system (and database) behavior
under heavy strain,

Apache achieves 37% of OKWS’s throughput on aver-
age. Its process pool is bigger and hence requires more
frequent context switching. When servicing 1,000 con-
current clients, Apache runs around 450 processes, and
context switches about 7500 times a second. We suspect
that Apache starts queuing requests unfairly above 1,000
concurrent connections, as suggested by the plateau in
Figure 9 and the long tail in Figure 10.

In our configuration, PHP makes frequent calls to the
sigprocmask system call to serialize database accesses
among kernel threads within a process. In addition,
Apache makes frequent (and unnecessary) file system ac-
cesses, which though serviced from the buffer cache still
entail system call overhead. OKWS can achieve faster
performance because of a smaller process pool and fewer
system calls.

7.4.2 Many-Service Workload

In attempt to model a more realistic workload, we inves-
tigated Web servers running more services, serving more
data, as experienced by clients over the WAN. We modi-
fied our null services to send out an additional 3000 bytes
of text with every reply (larger responses would have sat-
urated the Web server’s access link in some cases). We
made 10 uniquely-named copies of the new null service,
convincing the Web servers that they were serving 10 dis-
tinct services. Finally, our clients were modified to pause
an average of 75 ms between establishing a connection
and sending an HTTP request. We ran the experiment
from 200 to 2000 simultaneous clients, and observed a
graph similar in shape to Figure 8.

Achieved throughputs are shown in Table 2 and are
compared to the results observed in the single-service
workload. Haboob’s performance degrades most notably,
probably because the many-service workload demands
more memory allocations. Flash’s throughput decreases

==~ Haboob T g

- - Flash i~ . .
| Apache+PHP i
|

ra

wn
;
=

By

median latency in seconds

200 500 1000 1500 2000
concurrent clients

Figure 9: Median Latencies

|
0.8
2 0.6
5
2
204
--- Haboob
0.2 - - Flash
Apachc+PHP
i — OKWS
0().1 | 10 100

latency in scconds (log scalc)

Figure 10: Client latencies for 1,600 concurrent clients

by 23%. We observed that for this workload, Flash re-
quires even more service processes, and at times over
2,500 were running. When we switched from the single-
service to the many-service configuration, the number of
OKWS service processes increased from 1 to 10. The
results from Figure 6 show this change has little im-
pact on throughput. We can better explain OKWS’s di-
minished performance by arguing that larger HTTP re-
sponses result in more data shuffling in user mode and
more pressure on the networking stack in kernel mode.
The same explanation applies for Apache, which experi-
enced a similar performance degradation.

8 Related work

Apache’s [3] many configuration options and modules al-
low Web programmers to extend its functionality with
a variety of different programming languages. How-
ever, neither 1.3.x’s multi-process architecture nor 2.0.x’s
multi-threaded architecture is conducive to process isola-
tion. Also, its extensibility and mushrooming code base
make its security properties difficult to reason about.

[| Haboob | Apache Flash [OKWS |
1 Service 490 895 1,590 2,401
10 Services 225 760 1,232 2.089
L Change | —54.0% [—150% [-22.5% [—13.0%]

Table 2: Average throughputs in connections per second

Highly-optimized event-based Web servers such as
Flash [23] and Zeus [47] have eclipsed Apache in terms
of performance. While Flash in particular has a history of
outstanding performance serving static content, our per-
formance studies here indicate that its architecture is less
suitable for dynamic content. In terms of process isola-
tion, one could most likely implement a similar separa-
tion of privileges in Flash as we have done with OKWS,

FastCGI [10] is a standard for implementing long-lived
CGl-like helper processes. It allows separation of func-
tionality along process boundaries but neither articulates
a specific security policy nor specifies the mechanics for
maintaining process isolation in the face ol partial server
compromise. Also, FastCGI requires the leader process
to relay messages between the Web service and the re-
mote client. OKWS passes file descriptors to avoid the
overhead associated with FastCGI’s relay technique.

The Haboob server studied here is one of many possi-
ble applications built on SEDA, an architecture for event-
based network servers. In particular, SEDA uses serial
event queues to enforce fairness and graceful degrada-
tion under heavy load. Larger systems such as Ninja [33]
build on SEDA’s infrastructure to create clusters of Web
servers with the same appealing properties.

Other work has used the SFS toolkit to build static
Web Servers and Web proxies [46]. Though the current
OKWS architecture is well-suited for SMP machines, the
adoption of /ibasync-mp would allow for finer-grained
sharing of a Web workload across many CPUs.

OKWS uses events but the same results are possible
with an appropriate threads library. An expansive body
of literature argues the merits of one scheme over the
other, and most recently, Capriccio’s authors [34] argue
that threads can achieve the same performance as events
in the context of Web servers, while providing program-
mers with a more intuitive interface. Other recent work
suggests that threads and events can coexist [1]. Such
techniques, if applied to OKWS, would simplify stack
management for Web developers.

In addition to the PHP [25] scripting language investi-
gated here, many other Web development environments
are in widespread use. Zope (48], a Python-based plat-
form, has gained popularity due to its modularity and
support for remote collaboration. CSE [13] allows devel-

opers to write Web services in C++ and uses some of the
same sandboxing schemes we use here to achieve fault
isolation. In more commercial settings, Java-based sys-
tems often favor thin Web servers, pushing more critical
tasks to application servers such as JBoss [15] and IBM
WebSphere [14]. Such systems limit a Web server’s ac-
cess to underlying databases in much the same way as
OKWS’s database proxies. Most Java systems, however,
package all aspects of a system in one address space with
many threads; our model for isolation would not extend
to such a setting. Furthermore, our experimental results
indicate significant performance advantages of compiled
C++ code over Java systems.

Other work has proposed changes to underlying oper-
ating systems to make Web servers fast and more secure.
The Exokernel operating system [16] allows its Cheetah
Web server to directly access the TCP/IP stack, in order
to reduce buffer copies allow for more effective caching.
The Denali isolation kernel [45] can isolate Web services
by running them on separate virtual machines.

9 Summary and Future Work

OKWS is a toolkit for serving dynamic Web content, and
its architecture fits naturally into a compelling security
model. The system’s separation of processes provides
reasonable assurances that vulnerabilities in one aspect
of the system do not metastasize. The performance re-
sults we have seen are encouraging: OKWS derives sig-
nificant speedups from a small and fixed process pool,
lightweight synchronization mechanisms, and avoidance
of unnecessary system calls. In the future, we plan to
experiment with high-level language support and better
resilience to DoS attacks. Independent of future improve-
ments, OKWS is stable and practical, and we have used
it to develop a popular commercial product.

Acknowledgments

[am indebted to David Maziéres for his help through-
out the project, and to my advisor Frans Kaashock for
help in preparing this paper. Michael Walfish signif-
icantly improved this paper’s writing and presentation.
My shepherd Eddie Kohler suggested many important
improvements, Robert Morris and Russ Cox assisted in
debugging, and the anonymous reviewers provided in-
sightful comments. [thank the programmers, design-
ers and others at OkCupid.com—Patrick Crosby, Jason
Yung, Chris Coyne, Christian Rudder and Sam Yagan—
for adopting and improving OKWS, and Jeremy Stribling
and Sarah Friedberg for proofreading. This research was

supported in part by the DARPA Composable High As-
surance Trusted Systems program (BAA #01-24), under
contract #N66001-01-1-8927.

Availability

OKWS is available under an open source license at
WWW.OKws . org.

References

(1]

(2]
B3]
(41

(5

[6

[7

(8

—_—

[9]
[10]
[

(12]

[13]

[14]

[15]
[16]

(17

18]
[19]
[20]
[21]

[22]
[23]

[24]

A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative task management without manual stack
management or, event-driven programming is not the opposite of
threaded programming. In Procecdings of the 2002 USENLY,
Monterey, CA, June 2002. USENIX.

Akamai Technologies, Inc. http://www.akamai.com.

The Apache Software Foundation. http://www.apache.org,
Apache Tutorial: Introduction to Server Side Includes.
http://httpd.apache.org/docs/howto/ssi. html.
Bugtraq 1D 4606. SecurityFocus.
http://www.securityfocus.com/bid/4606/info/.
Bugtraq 1D 5993. SecurityFocus.
http://www.securityfocus.com/bid/5993/info/.
Bugtraq 1D 72355, SecurityFocus.
http://uwww.securityfocus.com/bid/7255/info/.
Bugtraq 1D 8138. SecurityFocus.
http://www.securityfocus.com/bid/8138/info/.
CERT® Coordination Center. http://www.cert.org.
Open Market. Fastcgi. http://wuw.fastcgi.com.

R. Fielding, J. Gettys, I. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol —
HTTP/I.1. Internet Network Working Group RFC 2616, 1999,
FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.L.S.T., National Technical Information Service,
Springfi eld, VA, April 1995.

T. Gehwind and B. A, Schmit, CSE —a C++ servlet
environment for high-performance web applications, Tn
Proceedings of the FREENIX Track: 2003 USENIX Technical
Conference, San Antonio, TX, 2003. USENIX.

IBM corporation. IBM websphere application server,
http://www.ibm.com.

JBoss Group. http://wuw. jboss.org.

M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Bricefio,
R. Hunt, D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, and
K. Mackenzie. Application performance and fexibility on
exokemel systems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Saint-Malo, France, October
1997. ACM.

S. T. King and P. M. Chen. Backtracking intrusions. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, October 2003, ACM.

D. Mazieres. A toolkit for user-level fi le systems. In
Proceedings of the 2001 USENLX. USENIX, June 2001.
Microsoft Corporation. IIS. http://www.microsoft.com/
windowsserver2003/iis/default.mspx.

mod _perl. http://perl.apache.org.

MySQL. http://www.mysql.com.

OkCupid.com. http://www.okcupid.com,

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An effi cient
and portable Web server. In Proceedings of the 1999 USENLY,
Monterey, CA, June 1999, USENIX.

Perl DBL http://dbi.perl.org.

[25]
[26]

[35]

[36

—

[37

—

(38

[39]
[40]
(41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

PHP: Hypertext processor. http://www.php.net.

X. Qie, R. Pang, and L. Peterson. Defensive programming:
Using an annotation toolkit to build DoS-resistant software. In
Sth Symposium on Operating Systems Design and
Implementation (OSDI "02), Boston, MA, October 2002.
USENIX.

J. H. Saltzer and M. D. Schroeder. The protection of information
in computer systems. In Proceedings of the IEEE, volume 63,
1975.

SecurityFocus. http://www.securityfocus.com,

Sleepycat Software. http://www.sleepycat.com.

The SparkMatch service. Previously available at
http://www.thespark.com.

Standard performance evaluation corporation. the specweb99
benchmark. http://www.spec99.org/osg/web99/.

R. Srinivasan. RPC: Remote procedure call protocol

specifi cation version 2. RFC 1831, Network Working Group,
August 1995.

1. R. van Berhen, E. A, Brewer, N. Borisova, M. C.

an Matt Welsh, J. MacDonald, J. Lau, S. Gribble, and D. Culler.
Ninja: A framework for network services. In Proceedings of the
2002 USENIX, Monterey, CA, June 2002. USENIX.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.
Capriccio: scalable threads for internet services. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, October 2003. ACM.

Vulnerability CAN-2001-1246. SecurityFocus.
http://www.securityfocus.com/bid/2954/info/.
Vulnerability CAN-2002-0656. SecurityFocus.
http://wuw.securityfocus.com/bid/5363/info/.
Vulnerability CAN-2003-0132. SecurityFocus.
http://www.securityfocus.com/bid/7254/info/.
Vulnerability CAN-2003-0253.
http://www.securityfocus.com/bid/8137/info/.
Vulnerability CAN-2003-0542, SecurityFocus.
http://www.securityfocus.com/bid/8911/info/.
Vulnerability CVE-2002-0061. SecurityFocus.
http://www.securityfocus.com/bid/4435/info/.
Vulnerability Note VU117243. CERT.
http://www.kb.cert.org/vuls/id/910713.

Vulnerability Note VU91073. CERT.
http://www.kb.cert.org/vuls/id/910713.

Vulnerability Note VU979793. CERT.
http://wuw.kb.cert.org/vuls/id/979793.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. In Proceedings of
the 18th ACM Symposium on Operating Svstems Principles,
Chateau Lake Louise, Banff, Canada, October 2001. ACM.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the denali isolation kernel. In 5th Svmposium on
Operating Systems Design and Implementation (OSDI '02),
Boston, MA, October 2002. USENIX.

N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Maziéres, and

F. Kaashoek. Multiprocessor support for event-driven programs.
In Proceedings of the 2003 USENIX, San Antonio, TX, June
2003, USENTX.

Zeus Technology Limited, Zeus Web Server.
http://www.zeus.co.uk,

The Zope Corporation. http://www.zope.org.

Notes

ISimilar security properties are possible with a standard Web server
and a database that supports stored procedures, views, and roles.

6.858 / Fall 2012 / Paper Reading Questions hitp://css.csail.mit.edw6.858/2012/questions.html?q=q-okws&lec=3

6.858: Computer Systems
Security

Home

Fall 2012

Paper Reading Questions

General

information For each paper, your assignment is two-fold. By the start of lecture:

Schedule ® Submit your answer for each lecture's paper question via the
submission web site in a file named lecn.txt, and
Reference ® E-mail your own question about the paper (e.g., what you find
materials most confusing about the paper or the paper's general
context/problem) to 6.858-qg@pdos.csail.mit.edu. You cannot use
Piazza discussion the question below. To the extent possible, during lecture we will
try to answer questions submitted by the evening before.
Submission B O P R N AR
2011 class - Lecture 3
materials - What's the worst that could happen if one service in OKWS

TR 9 SoK I I e oy ST aten tken?
Cd wdl hwe gl P““)Zto@s Thaf-
Sk
'IL{’ ILM énoL/Cl@d i%{n@ - CWL} z///{,
(HdS busic bt fige e o,

-ty

Questions or comments regarding 6.858? Send e-mail to the course staff
at 6.858-staff@pdos.csail.mit.edu.

Top // 6.858 home // Last updated Monday, 10-Sep-2012 18:58:14 EDT

lofl 9/12/2012 2:28 AM

ol

Paper Question 3

Michael Plasmeier

The attacker would have all privileges that the service had. If that includes delete privileges, the

attacker could wipe out the database.

13 in
L\/ﬂb 5@//0/ //
S,

oo b ol bl seey wth St
OTWF

fl U S 1y aale o s

|)\Ow]Lo }EMH Q//c(nulﬁ({ @[C (ompméﬂl! égez[@fv

\,

})VL\ML\(J /9’00@ : Uk fﬂfOTz@/iL/m s :

U”U(/’!6} \{@W}/@é {r gew////
o/ limbk, Clegent

P{ Atlp (ﬂs .
)(\W‘ 6&)@/&3 (
0\5’\\ Opefaj’lg@

i dedes

0
Ve 11D
3L bl

WYERY)
9 b

P@L%@
Fee he b
s 0w 1D
oot o 0o me 611,

Spﬁdul et e
W
(v}

No §em'\L7 ks o aay ﬁ»iﬂ

O OIMWS L ol

l
F Qf) ({/@+ [%D logbp] llb? (/awﬂ L,q}ml)
L’)(&A WNQ QKW)Q ’W }W’}&%/ /”L\

Euh ok W @ g of pomiscios

g sy AV S
OW@LJ,\QFWX

My = ()oY
OU]’W[bag,@ #FS
Wi
4 1 |

ﬂ (,LLLMH(J/ PQ/m(’WIﬂﬂ
Wit b@ Samg l(’/
Q) A dos b ialle

E Godbe had l\wf:
Y owike bt

(0ot | Gty wdey Ty & m god ason why)

é?% ick Abat Vefe o J}@ﬁi/;

QWSS s

U

go 0?94(/eh/ Pagwol “)

N e rend /ae)/ngg,y,)
*‘@@{ Oreute. o0 J Voo
J(Jﬂfk yL W

MS A Lo gl
o b ahlier b @ ol o 2 gay
((eake / /b
!

g() nd o C?/ML /La Ceud (Aﬂt(é
e obede

//Tj'l@ ?Lﬂb(re by

Oper C) ~>5'
fe c(eeo/ o for Todl {{/(

ON’Q/ \],_,,_VQ ’ﬁ" Htﬂ Ei (o (Zo Any %};fy
QQ(M‘/}\((,Lw% @Z On (Pt

/q(mé E:/Q 6@;;\(2{{ {: /0 f)ngr/y
1)

pm(@%@

T Ll S, by (4 |
Me Uik gn pagssg Ty sane ”

»
Not Ghadd @@rwﬂ/

(
(N@Miou;ﬁ S QY thﬂy
_ Pﬁdkﬂ LSare \/;d

— fromlry = MIE% Cli |
Ll £l b premiesins

Ry 22

NQ/\Lu./p/wm
r—J\/\/@ OLM Qn 2@%

Qo J@nt) (wﬂf Vi Sane ﬁ@m({&z'm M{Jm’ﬁm}

B‘:nd/mcc@,o%
<03 pot
Only 1 QUL =)

Go Only Oditng
o hae B b ol ke o ser
O é@fl”@ @l pafs
0 by o ad
L ewmisd by U wunm
Mo Gl o pods copids fua

F el ,
- Doe;, mo} ﬁ%t (WL at [)ld
L&/'md@uﬁ (s (e —prety

Wol 1n |ja
= f
Ho\,/ S(ﬁ CL“ Wfi G)egm(tee{;ﬂ@ J 1£fm?L/
et)id) \) 5
bet g () G ol o 4
Get gosl) » =y

9“}{ % WM{\ l@ Ll/«/c q W 0[Vcb;
[Veod (0mp 0k ///m{@ 05 ()
Wah & Wy poamam BTy
popy Moo Ty o iy

45 |
(% Ab ULi%)

Cot ug
(Uns Sl

H o_!ﬁ &/ou /&@wm \Mu‘ 46

\/(,M

Yuuy %H‘L wob Goutr —whidh neLes (oot

go g@*(/‘ml HMW_@
é\/ € Gl e s

L al A@/;/ﬂ)

é@h Spto!m{ f["“ﬁ l;a /(/WJQ (Ltf/
‘[11 0 & b oL(BJ/M/T
vy - 0/, whoter cested Tily

(udyy = sore glafy
o bk K ok o o o5 Tt go

D(N‘//

Qo pha- pmmwwhc

(/cwt%t Le, Ory 5\,%« overLlow,
Lo mab bl of

0

Q\W@‘L C\&laS LwJJ \5%‘& (/'//l(‘/o&(a/'//#f)
i

(o ()rw) — ‘(&v(’/z“()[ﬁ/of ‘ly
Weas o Mﬂ e O(z]jjmcﬂﬂ/

how /Dfezxmﬁ " fon bel'ry pede)

| ot et g e
U\ﬂum‘L

@%%ﬁ//j C[/Lcmg@ lcé/(’ éy&/L%
U\/@M [’ /VCV/OL(W} //un “)

’h“u’l ll‘ {//7 OID@/} (U/@h / /)(1,557 u/(l/y

!
ﬂk lMH (h O[aen[U/Vqr/ol(%/(m/e?jt/pm@?
o p nly e fihs ol sy T

£ bl T wll ot gF eyl
bt halic Ik vorll gof- ¢ fopped

ng%@

ﬁ‘)w l”q MH A woh caver

TL"P | dlgn
Y\O{]M&L\udlu(Ly gﬁ(/r/ﬁ

(s s o Usor ol

ey -y

6'(/6](%ﬂh s (oot ?L;W@Ll I o ,07L 2
n lls sot e d

[@Hu\m; aes b file Justfple Tor P" b4

Oﬁ‘m m&Plﬁﬁ PHPJ fyﬁw ﬂkp dwr(
Tk g Uil

(/‘M sl %ezh\/ﬁ { dles
I/GM\[6}[@ ‘(A QPM% (f)dzé
Bfﬁ/ oV ﬂ@wj

pfppuaﬂﬂﬂﬂ lw&l L\ﬂj ¢ B S;w nol— {Nd{ é@k@

QL Tt

W

DR hes g samrfy .
va[(e AM L str %WL lag @Z/ Qe

i

T Ol (pid
Wabd B N s —glilled paag anai
Lok of /fmppg 2 ,’»mp fhogh o Olig

(4P pecnes

o~ fiam)
@5?““?;@_ ool

®
P(‘OW [\l]
il asles & db

%:LPMQI‘L b ai\/ef’f@
e ppfouad CQ[k
mf/M)

n CELECT «
[EROM
| e VIBE
d = (¥

Wl
Tt p(O{\7 -(b 5&/}?“?76 /
pd-

éo £
Ca{lleL', 70 l)ﬂl@,]LZ@?W
s all §QL/] q
M@/;@

0
”QA/* (601”2 Wi | ﬁf)mﬂ@m&f (F
n{ /) i @ ‘e
/ /d

- 5“””
P g vgt/(/‘{ﬁ?;/!{/ ﬂrri 4
(co//eéﬂ
/

L
Ny A
ool all T
Ting

émi 0 & V:d}

©
leéo whelof og file nlv be cgppm(/ M/
LU’]Y 3\0@7 m} SVPM
o I eplowb

0“69 \CLfOoJr hm&ﬁ Gnpons s dobf (fz«eohw
ﬂ@ 5(94/(06) 5/\4/@ ﬂL

\%f Q#(ce/lﬁ

‘*émm, nfzfz{ﬁ A (o ot al €
OL(C\/ 0 Cade o an ﬂ@-é dMéaﬂ/

piby > S
— ni} pcdf L fz p/(lnp/',a/@{

\)/1/\;1 c[auz; o(u)(ﬂ &Z @y (@”f/;

I,\ (o, hﬁ SQ/J(L@ C/u,/\
gg (4 Mﬁf%{‘ﬂ{' mm

IG &&wi@ ;b (,ompm"‘zﬂ{, ‘HL shasl{ be l[/wolé{

%o \MM‘" }f b /u;\/ na?L VV/;M‘!L(]
%

| @ [obwy fin fsu |
Opeetr f/\lld =() < Onby ded @
berey ﬁld‘:g\/o()(/ E Only prake

o Pomtsioy (anl fy madifled

trte—bad— ook 1055
gl({{_\ﬂ-l#&——er

(Caﬂﬁéﬁd)

Vet Nade T oocc,/denﬁ/ SCion

(ol Charge pamlssin
b ot d, Ufm ol B 6(/5}5

(s

®)
60@[l(”/“ml &Mag(o
1; \HL [)9 H@/ hwm APW/L@ 7
S%MULL ﬁ/@ﬁ =S ot el
Opf Code 9 /

p(?/fofwmg is rm{’ 4] p[Ob/ﬁm

m Sholl e it

o\ What & D afule subu

W

JJ&F u/a/e/z for € zd/en fo G“‘,'L/ h‘« reshals of
(ll PQ/W& fee Colitln Thot (orpls ey

0/ d@h[wc(oT/ 5@//(\0(fon Cashia iy

oM b be (nshng Siagq
Gl (,&M/

)L’iﬁ 710 buess

bhé (pe/)fwﬂb g@m/ (ommzmﬁ h (,//gﬁ {7@//(2(7/

wa L‘pr /vfm'my e /V[f)ﬂ/lyl@/ }Z/((,(/[f('\c
(] 7 SVs'a pct%wm/é
One 6%9 pace € ik Gobice

Oliogd
\/IGJM e g

Dot aHub spdee \QMZ i

G]LO‘@ CpaA((lg ~ Puen E[[9‘4((%%&

LI Cen -

%’J lill ohle B n Femphtlied sy Qo

N R e G TP ol sk
EnQa(wwfﬂ} pfo“!ﬂib&/)91 L}nuye éw(

]/mpe o btte O\/&ﬂwl,
B: . ceb NV aadad

O/\Lx[OL&CJ(J\:Q V5 ”
Lt ehll v o

oy
6%1' I l 5& L 1‘/1)/AOHM)

H M A {rangnal k

HM ‘MJ& 115 Cofn\{nﬂ Y w/ y(0x7
AL Fentls

l of 5

http://css.csail.mit.edw/6.858/2012/lec/103-okws.txt

oxus (L

Administrivia: part 1 of lab 1 due this Friday.

Today's lecture: how to build a secure web server on Unix.
The design of our lab web server, zookws, is inspired by OKWS.

Background: security and protection in Unix
Typical principals: user IDs, group IDs (32-bit integers).
Each process has a user ID (uid), and a list of group IDs (gid + grouplist).
For mostly-historical reasons, a process has a gid + extra grouplist.
Superuser principal (root) represented by uid=0, bypasses most checks.
What are the objects + ops in Unix, and how does the 0S do access control?
Files, directories.
File operations: read, write, execute, change perms,
Directory operations: lookup, create, remove, rename, change perms,
Each inode has an owner user and group.
Each inode has read, write, execute perms for user, group, others.
Typically represented as a bit vector written base 8 (octal);
octal works well because each digit is 3 bits (read, write, exec).
Who can change permissions on files? Only user owner (process UID).
Hard link to file: need write permission to file (perhaps due to quotas).
Execute for directory means being able to lockup names (but not ls).
Checks for process opening file /etc/passwd:
Must be able to look up 'etc' in /, 'passwd' in /etc.
Must be able to open /etc/passwd (read or read-write).
Suppose you want file readable to intersection of groupl and groupZ2.
Is it possible to implement this in Unix?
File descriptors.
File access control checks performed at file open.
Once process has an open file descriptor, can continue accessing.
Processes can pass file descriptors (via Unix domain sockets).
Processes.
What can you do to a process?
debug (ptrace), send signal, wait for exit & get status,
Debugging, sending signals: must have same UID (almost).
Various exceptions, this gets tricky in practice.
Waiting / getting exit status: must be parent of that process.
Memory.
One process cannot generally name memory in another process.
Exception: debug mechanisms.
Exception: memory-mapped files.
Networking.
Operations:
bind to a port
connect to scome address
read/write a connection
send/receive raw packets
Rules:
- only root (UID 0) can bind to ports below 1024;
(e.g., arbitrary user cannot run a web server on port 80.)
- only root can send/receive raw packets.
- any process can connect to any address.
- can only read/write data on connection that a process has an fd for.
Additionally, firewall imposes its own checks, unrelated to processes.
How does the principal of a process get set?
System calls: setuid(), setgid(), setgroups().
Only root (UID 0) can call these system calls (to first appreoximation).
Where does the user ID, group ID list come from?
On a typical Unix system, login program runs as root (UID 0)
Checks supplied user password against /etc/shadow.

9/15/2012 4:43 PM

http://css.csail.mit.edw6.858/2012/lec/103-okws.txt

Finds user's UID based on /etc/passwd.
Finds user's groups based on /etc/group.
Calls setuid(), setgid(), setgroups() before running user's shell
How do you regain privileges after switching to a non-root user?
Could use file descriptor passing (but have to write specialized code)
Kernel mechanism: setuid/setgid binaries.
When the binary is executed, set process UID or GID to binary owner.
Specified with a special bit in the file's permissions.
For example, su / sudo binaries are typically setuid root.
Even if your shell is not root, can run "su otheruser"
su process will check passwd, run shell as otheruser if OK.
Many such programs on Unix, since root privileges often needed.
Why might setuid-binaries be a bad idea, security-wise?
Many ways for adversary (caller of binary) to manipulate process.
In Unix, exec'ed process inherits environment vars, file descriptors,
Libraries that a setuid program might use not sufficiently paranoid
Historically, many vulnerabilities (e.g. pass $LD PRELOAD, ..)
How to prevent a malicious program from exploiting setuid-root binaries?
Kernel mechanism: chroot
Changes what '/' means when opening files by path name.
Cannot name files (e.g. setuid binaries) outside chroot tree.
For example, OKWS uses chroot to restrict programs to /var/okws/run,
Kernel also ensures that '/../' does not allow escape from chroot.
Why chroot only allowed for root?
1. setuid binaries (like su) can get confused about what's /etc/passwd.
2. many kernel implementations (inadvertently?) allow recursive calls
to chroot() to escape from chroot jail, so chroot is not an effective
security mechanism for a process running as root.
Why hasn't chroot been fixed to confine a root process in that dir?
Root can write kern mem, load kern modules, access disk sectors,

Background: traditional web server architecture {Apache).

Apache runs N identical processes, handling HTTP requests.

All processes run as user 'www'.

Application code (e.g. PHP) typically runs inside each of N apache processes.

Any accesses to OS5 state (files, processes, ...) performed by www's UID.

Storage: SQL database, typically one connection with full access to DB.
Database principal is the entire application.

Problem: if any component is compromised, adversary gets all the data.

What kind of attacks might occur in a web application?
Unintended data disclosure (getting page source code, hidden files, ..)
Remote code execution (e.g., buffer overflow in Apache)
Buggy application code (hard to write secure PHP code), e.g. SQL inj.
Attacks on web browsers (cross-site scripting attacks)

Back to OKWS: what's their application / motivation?
Dating web site: worried about data secrecy.
Not so worried about adversary breaking in and sending spam.
Lots of server-side code execution: matching, profile updates, ...
Must have sharing between users (e.g. matching) -- cannot just partition.
Good summary of overall plan:
"aspects most vulnerable to attack are least useful to attackers".

Why is this hard?
Unix makes it tricky to reduce privileges (chroot, UIDs, ..)
Applications need to share state in complicated ways.
Unix and SQL databases don't have fine-grained sharing control mechanisms.

How does OKWS partition the web server?
Figure 1 in paper.
How does a request flow in this web server?
okd -> oklogd
-> pubd

20f5 9/15/2012 4:43 PM

http://css.csail.mit.edw'6.858/2012/1ec/103-okws.txt

-> svc -> dbproxy
-> oklogd
How does this design map onto physical machines?
Probably many front-end machines (okld, okd, pubd, oklogd, svc)
Several DB machines (dbproxy, DB)

How do these components interact?
okld sets up socketpairs (bidirectional pipes) for each service.
One socketpair for control RPC requests (e.g., "get a new log socketpair"”).
One socketpair for logging (okld has to get it from cklogd first via RPEC).
For HTTP services: one socketpair for forwarding HTTP connections.
For okd: the server-side FDs for HTTP services' socketpairs (HTTP+RPC).
okd listens on a separate socket for control requests (repub, relaunch).
Seems to be port 11277 in Figure 1, but a Unix domain socket in OKWS code.
For repub, okd talks to pubd to generate new templates,
then sends generated templates to each service via RPC control channel.
Services talk to DB proxy over TCP (connect by port number).

How does OKWS enforce isolation between components in Figure 17?
Each service runs as a separate UID and GID.
chroot used to confine each process to a separate directory (almost).
Components communicate via pipes {(or rather, Unix domain socket pairs).
File descriptor passing used to pass around HTTP connections.
What's the point of okld?
Why isn't okld the same as okd?
Why does okld need to run as root? (Port 80, chroot/setuid.)
What does it take for okld to launch a service?
Create socket pairs
Get new socket to oklogd
fork, setuid/setgid, exec the service
Pass control sockets to okd
What's the point of oklogd?
What's the peint of pubd?
Why do we need a database proxy?
Ensure that each service cannot fetch other data, if it is compromised.
DB proxy protocol defined by app developer, depending on what app requires.
One likely-common kind of proxy is a templatized SQL query.
Proxy enforces overall query structure (select, update),
but allows client to fill in query parameters.
Where does the 20-byte token come from? Passed as arguments to service.
Who checks the token? DB proxy has list of tokens (& allowed queries?)
Who generates token? Not clear; manual by system administrator?
What if token disclosed? Compromised component could issue queries.
Table 1: why are all services and okld in the same chroot? 1Is it a problem?
How would we decide? What are the readable, writable files there?
Readable: shared libraries containing service code.
Writable: each service can write to its own /cores/<uid>.
Where's the config file? /etc/okws config, kept in memory by okld.
oklogd & pubd have separate chroots because they have important state:
oklogd's chroot contains the log file, want to ensure it's not modified.
pubd's chroot contains the templates, want to avoid disclesing them (?).
Why does OKWS need a separate GID for every service?
Need to execute binary, but file ownership allows chmod.
Sclution: binaries owned by root, service is group owner, mode 0410.
Why 0410 (user read, group execute), and not 0510 (user read & exec)?
Why not process per user? Is per user strictly better? wuser X service?
Per-service isolation probably made sense for okcupid given their apps.
(i.e., perhaps they need a lot of sharing between users anyway?)
Per-user isolation regquires allocating UIDs per user, complicating okld,
and reducing performance (though may still be OK for some use cases).

Does OKWS achieve its goal?
What attacks from the list of typical web attacks does OKWS sclve, and how?

3of5 9/15/2012 4:43 PM

4 of 5

http://css.csail.mit.edw6.858/2012/lec/103-okws.txt

Most things other than XSS are addressed.
XSS sort-of addressed through using specialized template routines.
What's the effect of each component being compromised, and "attack surface"?
okld: root access to web server machine, but maybe not to DB.
attack surface: small (no user input other than svc exit).
okd: intercept/modify all user HTTP regs/responses, steal passwords.
attack surface: parsing the first line of HTTP request; control requests.
pubd: corrupt templates, leverage to maybe exploit bug in some service?
attack surface: requests to fetch templates from okd.
oklogd: corrupt/ignore/remove/falsify log entries
attack surface: log messages from okd, okld, svcs
service: send garbage to user, access data for svc (modulo dbproxy)
attack surface: HTTP requests from users (+ control msgs from okd)
dbproxy: access/change all user data in the database it's talking to
attack surface: requests from authorized services
requests from unauthorized services (easy to drop)
0S kernel is part of the attack surface once a single service is compromised.
Linux kernel vulnerabilities rare, but still show up several times a year.
OKWS assumes developer does the right thing at design level (maybe not impl):
Split web application into separate services (not clump all into one).
Define precise protocols for DB proxy (otherwise any service gets any data).
Performance?
Seems better than most alternatives.
Better performance under load (so, resists DoS attacks to some extent)
How does OKWS compare to Apache?
Overall, better design.
okld runs as root, vs. nothing in Apache, but probably minor.
Neither has a great solution to client-side vulnerabilities (XSS5, ..)
How might an adversary try to compromise a system like OKWS?
Exploit buffer overflows or other vulnerabilities in C++ code.
Find a SQL injection attack in some dbproxy.
Find logic bugs in service code.
Find cross-site scripting vulnerabilities.

How successful is OKWS?
Problems described in the paper are still pretty common.
okcupid.com still runs OKWS, but doesn't seem to be used by other sites.
C++ might not be a great choice for writing web applications.
For many web applications, getting C++ performance might not be critical.
Design should be applicable to other languages too (Python, etc).
Infact, zookws for labs in 6.858 is inspired by OKWS, runs Python code.
DB proxy idea hasn't taken off, for typical web applications.
But DB proxy is critical to restrict what data a service can access in OKWS.
Why? Requires developers to define these APIs: extra work, gets in the way.
Can be hard to precisely define the allowed DB queries ahead of time.
(Although if it's hard, might be a flag that security policy is fuzzy.)
Some work on privilege separation for Apache (though still hard to use).
Unix makes it hard for non-root users to manipulate user IDs.
Performance is a concern (running a separate process for each request).
scripts.mit.edu has a similar design, running scripts under different UIDs.
Mostly worried about isolating users from one another.
Paranoid web app developer can create separate locker for each component.
Sensitive systems do partitioning at a coarser granularity.
Credit card processing companies split credit card data vs. everything else.
Use virtual machines or physical machine isolation to split apps, DBs,

How could you integrate modern Web application frameworks with OKWS?
Need to help okd figure out how to route requests to services.
Need to implement DB proxies, or some variant thereof, to protect data.
Depends on how amenable the app code is to static analysis.
Or need to ask programmer to annotate services w/ queries they can run.
Need to ensure app code can run in separate processes (probably OK).

9/15/2012 4:43 PM

http://css.csail.mit.edw/6.858/2012/1ec/103-0kws.txt

References:
http://pdos.csail.mit.edu/6.858/2012/readings/setuid.pdf
http://httpd.apache.org/docs/trunk/suexec.html
http://privsep.org/

S5of5 9/15/2012 4:43 PM

