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Review Module on Solving N equations in N unknowns

Most students’ first exposure to solving N linear equations in N unknowns occurred in high
school algebra. At first you dealt with simple dimensionless numerical equations such as

dr+2y = -2
9r+3y = 6
One approach is to solve the first equation for y as a function of x, use that to eliminate y

from the second equation, then solve that for . Once one has x one can substitute it back
into the first equation to find y.

dx+2y = -2 — y=-2z-1

Qx+3y = 6 — YQr+3{-2z—-1)=6 — z=3
dr4+2y = =2 — 1242y=-2 — y=-7

Another approach is to multiply each equation by a different number to arrive at identical
coefficients of one of the variables, then subtract one of the two resulting equations from the
other to find an expression which contains only the other variable.

3(dz+2y) = 3(-2) — 12z+6y=—6

209z +3y) = 2(6) — 18z +6y=12 l/
6z = 18 — 18zx+6y=12 — z=3

dz+2y = -2 — 1242y=-2 — y=-7

Three linear equations in three unknowns can be handled in the same way, except with more
iterations. Eliminate one variable to obtain two equations in two unknowns, then proceed
as above. V4

Next, you had to deal with the dreaded “word problems” where the dimensionless variables
were replaced with physical ones: let f be the age of a father and s be the age of his son; or
let n be the number of nickels, d the number of dimes and ¢ the number of quarters; or let
r1 be the flow in gallons per minute from the first pipe and r, be the flow from the second
pipe. The difficulty was not solving the equations (it was assumed you could do that), but
finding the correct equations to solve. You have seen this type of problem most recently on
the Math Diagnostic Exam for Physics. Of course there is an advantage here in that you can
check whether your answer is reasonable: the son can’t be older than his father, the numbers
of each coin must be integers, and the flows from the pipes can’t be negative (unless they
are drains).






Physics, and the other sciences as well as engineering, generate many “word problems” you
must solve. They differ from the high school algebra problems in that the coefficients in front
of the variables are usually not pure numbers. Rather, they are expressions involving the
important parameters in the problem. The down side is that it becomes more difficult to carry
out what are otherwise simple algebraic manipulations. You must learn to be very careful

with you math. There is one advantage though. You can check to see that your answer has
the correct dimensions. If it does not, you know you have made a mistake.

8.01 focuses on teaching you how to find the appropriate equations necessary to solve a
problem. Here we will give you these equations, simply telling you the physical principle
upon which they are based. This review module is designed to give you practice solving the
equations once they have been found.

Worked Examples

Example 1

Two blocks with masses m, and m, are connected by a massless rope of fixed length. Block 1
slides without friction on a ramp which makes an angle § with the horizontal. The rope passes
over a massless, frictionless pulley from which block 2 is freely suspended. The displacement
of block 1 upward along the ramp is designated as . The vertical displacement of block
2 below the center of the pulley is designated as y. There will be a tension T in the rope.
The system is released from rest. Find the acceleration of block 2, §, in terms of the given
parameters and the acceleration of gravity g. .
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“
The physics gives three equations relating the three unknowns: &, i, and T

F =ma on block 1 gives | ¢ bo @/ d Ham  , Sum () A%
T —mgsind = m i (1)

F = ma on block 2 gives
mag — T = myy (2)

The fact that the rope has a fixed length requires

ml on , (;?'lé\’){‘l[ ‘{ _ \__CH:_'UH/ (3)
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Here is one way to solve the equations. Let’s solve for 3. First eliminate 7" by adding
(1) and (2).
mag — mygsinf = mq @ + may (4)
Next use (3) to eliminate & from (4).
Mag — Mg sinf = myij + meij (5)
Finally solve (5) for §.
(mgy — my sinf)

P 6
i ER— (6)

Now inspect the answer. The dimensions are correct. We are looking for an acceleration. The
answer is in the form of a dimensionless fraction times the acceleration of gravity. The result
is physically reasonable. If m, is sufficiently larger than m;, block 2 accelerates downward.
If my is sufficiently-smaller.than m;, 7b_130dg 2 accelerates upward. ) = 90° the system is‘.‘

..'.{_alﬁ_ifced and does not move when m; = my. -
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A car moves at constant speed v around a curved section of highway with radius R. The car
has mass m. Its center of mass is a height h above the road. The span between the tires on
the inside and outside of the turn is w. What is the maximum speed the car can maintain
without rolling over?

Let N; and N, be the vertical components of the force the road exerts on the inner and outer
tires respectively. Similarly, let f; and f, be the inwardly directed horizontal components of
the friction force the road exerts on the inner and outer tires. These are the four unknowns
in the problem. The car will begin to roll over when N; goes to zero. [By Newton’s third
law, that is the point at which the inner tires no longer press down on the road.]

F = ma on on the car in the vertical direction gives

N;i+N,—mg=20 (1)
F = ma on on the car in the horizontal direction gives

fi + fo =mv*/R (2)

3



(Fd |~ Pu_/
aﬂ%N J N centegpral
\/ﬂg 3/ g

™ =)ol geo.0|
@ ~oul{ ol W)

“bhat el dif

JDJ] ho c]M_s (Cdr e S[W f‘qﬁrr 2o //
W=y
VoW

V.J uf'{j s g(jf/ WZ*{L!) fﬁﬁd& g{@um} \9\

o0 gy e
’ LAy W}\e\g\ ya
AQPQMS M) V"‘m({“ Way d fumj i\

S0 1anor by [/\)
0 \/ le)L\,me a lof (,wjr{/
S &0yl {ow ra‘-& 7’ fo l

X lodh 6\)“ ;’M \ /\J ’\ ﬂ

X Y F >‘F}fo:m\/l/Q
T L\’\ \ K !y |
hoY e .\ ' .

20 T Y P O Y



()M@E{; no +o(51\,9 Zn #\'4; ON(,:O
% U“Lfc!‘!' N 59{ /Uj) :’O

4o s what ) L/é{/ i /
| WOR gt =
LJ/ J(@ 6/‘?/@&5%0/[ \/»/ /ch/«/p

a0 vy W2 =0
D {ieor oqiaton Y Ul apn

_M ((me;\g £, “KO

/'2(//\ r‘“g//r'/,j

O

& #C(! ‘,h(/\) (:Wh/f’ ,J
.éﬁ"b-’

(:) ‘;:?/“._‘, l// 3 ‘/"ill.qﬂfv_ﬁ

ﬁqd \/ %(QV‘?/ f\fé-»ffn :J(/ YtM
| Wiy “é@fg/ﬁ)
M,
2 ) . ﬂ( L
Vi\—-\% nt mngw =() Ve %?L /
- il
| Loty
2 |
@fé”h . Q&J : d]\J f;{ math
& d'ﬁc l\%( P\/§[(
) < '
ﬂ!\ Veh G__,WJMJ ml%fft\ ' i /d 9/\



Torque = 0 about the center of mass of the car (when it has not yet begun to roll) gives
(fi + fo)h+ Nyw/2 — N,w/2 =0 (3)

Note that we only have 3 linear equations for 4 unknowns. We will not be able to determine
them all. However, since only the sum of the two friction components appears, one could
consider that sum to be a single variable. For this problem, we do not need to know f; and
fo separately.

Let’s solve for N;. Multiply (3) by 2/W and move the friction term to the right hand side.
Ni = No = =2(h/w)(fi + /o) (4)
Use (2) to eliminate (f; + f,) from (4).
N; — N, = =2(h/w)mv*/R (5)
Add (1) and (5), then isolate ;.

N; = mlg/2 — (h/w)v?*/R)] . (6)

The dimensions are correct. Force has the units of mass times acceleration. Inside the [ ] we
have the acceleration of gravity and a dimensionless fraction times v?/R which also has the
units of acceleration. The critical velocity is obtained by setting N; = 0.

Veritical = V/ QR?U/Zh‘ (7)

Veritical has the expected behavior. It increases with the radius of the turn and the span of
the tires. It decreases as the center of gravity rises higher above the road.

Example 3
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Two balls are dropped at virtually the same instant. The lower ball, 1, of mass M has a
vertical velocity —v when it strikes the ground. The collision with the ground is elastic and
it rebounds with an upward velocity v. It then strikes the upper ball, 2, of m&s 77 and
velocity —v in an elastic collision. What is the subsequent velocity of the upper ball?
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Conservation of momentum in the upward direction before and after the collision gives
Mv — mv = Mvy; + mu, (1)
Conservation of energy gives
(1/2)Mv? + (1/2)mv® = (1/2) M} + (1/2)mv; | (2)

We have two equations in the two unknowns v; and v,, but one of those equations is quadratic
in the variables. This means that there will be two possible solutions. We may have to solve
a quadratic equation. This is going to be messy, so it is wise to clean up the equations as
much as possible before looking for the solution. Rather than carrying both masses along
in the algebra, we will introduce the mass ratio r = m/M. Dividing (1) by M and (2) by
(1/2)M reduces the equations to

(1=r)v=v; +7109 (3)
and
(1+7)0* = v + rv} (4)
Solve (3) for v; as a function of v,
" = (1 - 7')'U — T'Ug (5)
Substituting this into (4) gives
(1+7r)” = (1 —r)*? = 2r(1 = r)vvy + r?vs + rol (6)
Collecting terms and then dividing by r leaves the quadratic equation for v, in terms of r
and v. P
(1+ 7')7?2 —2(l=r)ove — (3—1)v* =0 - =2 (7)
/9 2 : :\“ .__\‘ J ‘7:\
One can use the quadratic formula to find the two solutions. e ¥ E)\'\‘
3—-r
Up=——1U OF Uy=—0 8
b LY ’ (8)

The first of the solutions in (8) is the one we are looking for. Note that if r < 1 v, &~ 3v.
Since the kinetic energy goes as the square of the velocity and the maximum height of the
ball in the gravitational field is proportional to its energy, a much lighter upper ball will
rebound to 9 times its initial release height.

The second solution in (8) is interesting. It corresponds to the initial condition before the
collision. In elastic collision problems of this sort one of the two solutions must always
correspond to the initial conditions. The wise student will remember this. Knowing one
root of the quadratic equation allows one to factor the equation and find the other root
without using the quadratic formula.
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Practice Problems

Problem 1

A cannon has muzzle velocity vp and is aimed at angle ¢ }
. . . - % m
above the horizontal. Its projectile of mass m,, strikes and r L

sticks to a pendulum hanging from the ceiling. The pendu- JT
AT My
' H

lum bob has mass m; and is suspended by a rigid uniform
rod of length L and mass m,. The bob is a height H above, Vo
and a horizontal distance D away from, the cannon. For nE'/
what value of L will the pendulum just touch the ceiling on g

o - e
its first swing? |fe—— D —+|

This problem is subtle because the collision between the projectile and the bob is not elastic
(energy is not conserved) and conservation of momentum is difficult to use since one does
not know the force exerted on the rod by the ceiling. One must resort to conservation of
angular momentum. Let w be the rotation rate (counter-clockwise) of the pendulum just
after the collision.

The moment of inertia of pendulum about its pivot point at the ceiling (after the projectile
has become attached) is given by

I = (my+my)L* +m,L*/3 (1)
Conservation of angular momentum about the pivot point during the collision gives
mpLugcos 0 = Tw (2)

Conservation of energy between the moment after the collision and the moment the pendulum
comes to rest in the horizontal position gives

(1/2)1w? = (m, +my)Lg +m,.(L/2)g (3)

We must solve 3 equations in three unknowns 7, w, and L to find the critical value of L.
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Problem 2

|, R, T¢ w(t)
AN

A measurement of the moment of inertia I of a disk is carried out as shown above. The
disk is mounted on a low friction bearing. One end of a string is threaded into a notch on
the periphery of the disk. The string is wound around the disk several times and a weight
of mass m is hung vertically from its other end. The system is released from rest. As the
weight falls, the angular velocity of the disk increases at a uniform rate w,. After the string
slips out of the notch, the angular velocity of the disk decreases at a uniform rate w, (a
uegative quantity) due to a constant frictional torque 7;. The disk has a radius R and the
tension in the string is denoted by 7. The problem is to use the measured values of w; and
ws, together with the known parameters to determine /.

While the weight is attached

F'= ma on the weight gives
mg — T = my (1)

T = dL/dt applied to the disk gives
RT — 7 = Iuj (2)
Equating the velocity of the string and the velocity of the point of contact on the disk gives

After the weight has fallen off

T = dL/dt applied to the disk gives
—Tf = L’.UQ (4)

We are now faced with 4 equations in the 4 unknowns i, 7', I and P
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Problem 3

Vo Vi
— —
O ™ ©)
m
L @D 1
M

A uniform rod of length L and mass M, initially at rest, is struck at one end by ball of mass
m oving perpendicular to it at a speed vy. The collision is completely elastic. Find the
final speed of the ball, v, the velocity of the center of mass of the rod, v,, and the rate at
which the rod is rotating, w. The moment of inertia of the rod about its center of mass is
Lo = ML?{132.

Conservation of momentum gives

mvy = mvyg + Muv, (1)
Conservation of angular momentum about a point on the trajectory of the ball gives

0= Imw— Muv,.L/2 (2)

v AN
{ XM\

Conservation of energy gives Y

(1/2)mug = (1/2)mv} + (1/3)va + (1/2) L ppw? (3)

We must solve 3 equations in the 3 unknowns v 7y U and w.
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Problem 4

T T,
my - X2
v X3
mz, I, R —] -I—3
Y
ms3

Two blocks and a massive disk are connected by ropes. The long rope goes over a massless
fri~tionless pulley but is wrapped tightly around the disk such that the disk must rotate as
it falls. This problem has 7 variables: 3 accelerations &, @> and #3; 3 tensions T, T5, and
T3; and the angular acceleration of the disk w.

[

F = ma on the block moving horizontally gives
T\ = m @ (1)
F' = ma on the block moving vertically gives
mag — T3 = mads (2)

F' = ma on the disk gives
mog + T3 — Ty — T} = mods (3)

Torque equals the rate of change of the angular momentum applied to the disk gives
(T -T)R=1w (4)

The disk rotates as it descends, so
iy = wR (5)

The lengths of the ropes are fixed, which require that
Ty = 2y (6)
and

i) = 2 (7)

Find #; in terms of the three masses, the moment of inertia / and radius R of the disk, and
the acceleration of gravity.



Problem 5

The system shown on the left above is made up of two massive blocks, three massless,
frictionless pulleys and 3 ropes of fixed length. Students are asked to find the downward
acceleration of block 2 after the system is released from rest. The figure at the right defines 4
displacements and the tensions in each of the 3 ropes that are useful in solving the problem.

F = ma on block 1 gives
myg — T = my 9 (1)

F = ma on block 2 gives
mag — To = mays (2)

The middle pulley will accelerate at some finite rate. However since it has no mass, unless
the sum of the forces on it is zero, it would accelerate at an infinite rate. Thus

Ty = 2T; (3)
Similarly, the sum of the forces on the lower pulley must be zero.

Ty = 2T, (4)
The fact that the length of the rope with tension T} is fixed requires that

i =—Y3 (5)
The fact that the length of the rope with tension 73 is fixed requires that

i = 24, (6)
The fact that the length of the rope with tension 75 is fixed requires that

Y2 = 24 (7)

Incidentally, finding these last 3 relations is probably the hardest part of the problem. We
are now faced with solving 7 equations in seven unknowns: 4 accelerations and 3 tensions.

10




Solutions to Practice Problems

In all of the following solutions, the equation numbers refer back to the statement of that
particular problem.

Solution, Problem 1

Eliminate w by solving (2) for w and substituting it into (3)
L*m2vf cos® 0/21 = (my, + m, + (1/2)m,) Lg (4)
Multiply (4) by 27/L
Lm2vg cos® 6 = 2(my + my, + (1/2)m,)I g (5)
Now substitute I from (1) into (5)
Lm2vg cos® € = 2(my 4+ my, + (1/2)m,)(my + my, + (1/3)m,.)L?g (6)
Finally divide (6) by L and solve for L

2 i
ms vy cos” 0

L=
2(my +mp + (1/2)m,) (my + my, + (1/3)m,) g

(7)

This problem illustrates that even a few simple mathematical operations can lead to “messy”
answers. However we have grouped the terms to make it easy to check the units. The
expression for L begins with a dimensionless ratio of masses. The final term has the units of
velocity squared over an acceleration, which indeed reduces to a length. If the mass of the
projectile goes to zero, so does L. If the mass of the bob or the mass of the rod is very large,
L becomes very small. Finally, the necessary length of the rod grows as the initial velocity
of the projectile is increased.

Solution, Problem 2

First eliminate T" between (1) and (2). Multiply (1) through by R
MRg—-TR = MR} (5)
Add (5) and (2) and use (3) to eliminate 4
MRg — 7 = Iin + mRij = I, + mR%n, (6)

Use (4) to eliminate 7
| MRg + Iy = Lin + mR%&, (7)
All that is left is to solve for [

o mgR — mR%,

u:,'l "‘LLJQ
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The last term in the numerator together with the denominator show the correct units for
a moment of inertia: mass times distance squared. The first term in the numerator is
consistent with the second since g and Rw have the same units. There is no chance that the
denominator might go to zero since we noted earlier that w, was negative.

Solution, Problem 3

“Clear the decks” of extraneous material before proceeding. Define r = m /M. Note that we
are expecting a quadratic equation.

Dividing (1) by M gives
Ty = TVf + U, (4)

Dividing (2) by M L/2 and using the given expression for [, gives
0=wL/6— v, (5)
Dividing (3) by M/2 and again using the expression for I, gives
rvg = rv} +v; + (Lw)?/12 (6)
Use (5) to eliminate w from (6) and collect terms
vy = rv} + 4v? (7)
Use (4) to eliminate vy from (7) and collect terms
0= (4+ 1/r)v? — 2uyv, (8)

This is a quadratic equation for v,. Don’t be too quick to simplify it by dividing by v,. In
doing so you might miss the fact that v. = 0 is in fact a valid solution of the problem, just
not the one we are looking for. v, = 0 corresponds to the initial condition before the collision
takes place, one that obviously must satisfy all the conservation laws we have used. Factoring
out this root of the quadratic equation leaves a linear equation for the other root, the one we
are looking for. Solving for v,, then using this result to find the other two unknowns gives

, 2m : §] 2m dm — M
finee o we b o .
dm+ M ° Lam+M>® Y tmim ™ (9)

The center of mass of the rod always moves to the right and the rod always rotates clockwise.
However, the ball may or may not change direction. If M > m v, and w approach zero and
the ball simply changes its direction with no change in speed. If M < m v, is half of vy,
and the ball continues along its original path with little change in speed. If M = 4m, the
ball comes to rest after the collision.



Solution, Problem 4

Equation (3) contains most of the variables. Let’s use that as a starting point. First eliminate
the tensions. Tj is given directly by (1). 7> can be found by rearranging (4) and using the
result for 77 from (1)

Th=({/Rw+T) =({/R)w+ mi; (8)

T3 is found by rearranging (2)
Ty = mag — mds (9)

Substituting these expressions for the tensions into (3) gives
mag + mag — maxy — ([/R)w — m &) — myd = mads (10)
Use (5) to eliminate w and collect terms
(mg + I/RY)3s = (my + ma)g — 2my @) — mads (11)
Use (6) and (7) to eliminate 75 and 73
(1/2)(ma + I/ R = (mg + ma)g — 2my %) — (1/2)mad (12)
Multiply by 2, collect terms and solve for

B 2(ma + my)
S dmy+mat+ma+1 /R?

T g (13)

The dimensions are correct. We are looking for an acceleration and we have a dimensionless
ratio times the acceleration of gravity. The numerator of the fraction has the masses that
drive the motion, those that gravity moves directly. An increase in any of these contributes
to an increase in the acceleration. In the denominator we have all the masses and moments
that contribute to the inertia of the system. An increase in any of these tends to slow the
acceleration. Setting my = 0 and I = 0 is equivalent to replacing the disk by a massless,
frictionless pulley and the problem is reduced to one often used as an example in class. If
my and mg were zero, this would be equivalent to a falling yo-yo, a problem also used as an
example in class.

13



Solution to Problem 5

If we can find an expression for 75 in term of 7} we can use it in (2) then eliminate it between
(1) and (2). (3) and (4) taken together give

T, = (1/4)T; (8)
Substituting that into (2) and multiplying through by 4 gives
dmays = dmag — 1) (9)
Subtracting (1) from (9) gives
Amatfy — MYy = 4maeg — mag (10)
Using (7), (6) and (5) in succession gives
= —(1/4)1 (11)
Substituting (11) into 10 gives
dmoyo + (1/4)myya = (dme — my)g (12)
Solving for y> gives the final answer

_mg — (1/4)my
T my + (1/16)m,

(13)

The units are correct. We are looking for an acceleration and we have a dimensionless fraction
times the acceleration of gravity. If m; = 0 body 2 is simply in free fall with acceleration g.
In the limit my > my body 2 accelerates upward at 4 times the rate at which body 1 falls.
These are the results we would expect on simple physical grounds.

14
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) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Physics
Physics 8.01 Fall Term 2007

Practice Problems Final Exam

Part One: Concept Questions

Problem 1: A small cylinder rests on a circular turntable, rotating at a constant speed as
illustrated in the diagram below. Which of the vectors 1-5 below best describes the
velocity, acceleration and net force acting on the cylinder at the point indicated in
the diagram?

i
il F
—_—f — e F
—s V —_— —_— ) —_— ) N )
—a g=0 a=0
F a a
\]\ 2 3 4 5
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Problem 2: A hollow cylinder starts from rest and rolls without slipping down an incline.

0

Which of the following best describes the force of friction?

I. The force of friction is kinetic friction, with f = x4, N .
2. The force of friction is static friction, with f = u N .

@ The force of friction is static friction, with f equal to the force necessary to

prevent slipping, up to a maximum of f

= ‘LIS‘N 5 '\_/’"‘ v /
4. The friction is zero because the cylinder rolls without slipping. ‘



cho

Which of the arrows 1-5 best represents the i%applied to ball B by ball 4 during the
collision?

\} LA \ /

,\

| 2 N 5 )
J\ Q ”L ;‘, ?\l‘?ﬂ,'/}) 2 J" )\/ ’)){{f( \-.,/ (,-‘./

Problem 4: An object is dropped to the surface of the earth from a height of 10m.

Which of the following sketches best represents the kinetic energy of the object as a
function of time as it approaches the carth if friction can be neglec
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Problem 5: A bicycle wheel is initially spinning with non-zero angular speed about the
center of mass. The wheel is lowered to the ground without bouncing. As soon as the
wheel touches the level ground, the wheel starts to accelerate forward until it begins to
roll without slipping. S denotes a point on the ground along the line of contact between
the wheel and the surface.

From the moment the wheel touches the ground until it just begins to roll without
slipping, the angular g’ﬁmbm&?ﬁ@n is

I ()m,'!w: ? = (']-L'r."! Yh A\ 40 = ‘." \“,f .‘
1. constant about the wheel’s center of mass. AL
N, . =
Q; constant about the point S. [ ¢ Mg v 4 ‘ et

AN T} 00 ¢ T ‘ It
constant about both the wheel’s ccmmme point §'.

O changing about both the wheel s center of mass and the point §.

f;( < -‘ ; ( L / .‘" \
Problem 6: A puck of mass M is moving in a circle at uniform speed on a frictionless
table as shown below. The puck is attached to a massless, frictionless string that passes
through a hole in the table and which is in turn attached to a suspended bob, also of mass

M , at rest below the table. What 1s the magnitude of the centripetal acceleration of the
. -——-—"-——-.—.______
moving puck?

1. Lessthan g. A b P A
@ Equal to g . AL te s NERPC g {r
Greater than g. ‘ P v /
4. Zero I e < bl \ F£S¢ ( roptem
fSQ Insufficient information
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Problem 7: A tetherball is attached to a post by a string. The string passes through a hole
in the center of the post at the top. The string is gradually shortened by drawxng it through
the hole. Ignore gravity. Until the ball hits the post,

-
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1. the energy and grlgy_l_gx_mnmemgm about the center of the post are constant.

@ the cnergy of the ball is constant But the angular momentum about the center of

the post is changing. @ | (}W\H- "J; 4

U v
3. both the energy and the angular momentum about the center of the post are
changing.

@ the energy of the ball is changing but the angular momentum about the center of
the post is constant.
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Problem 8: The figure below shows the experimental setup to study the collision
between two carts.

‘ ¥ M ir L\' iy

| g La J LB ] oy

In the experiment cart A rolls to the right on the level track, away from the motion sensor

at the left end of the track. The graph below shows the distance from the motion sensor to
cart A as a function of time.

06250 R ET=pr his (6]
z ol faf;
0.1250
0 020 1.00 1.50 2.30
iime (s)
What objects collide when 7= 1.5 s? pRL Y ;
1. Cart B and the spring. ‘ o f
2. Cart B and the motion sensor. : ,;,L..,,_
‘; 3:} Carts A and B. 1 //HI

4. Cart A and the spring.

5. Cart A and the motion sensor.



Problem 9: A gyroscope has a wheel at one end of an axle, which is pivoted at point O
as shown in the Tigure. The wheel spins about the axle in the direction shown by the
arrow in the figure. At the moment shown in the figure, the axle is horizontal and in the

plane of the page. Let L be the angular momentum of the gyroscope about the center of
mass of the gyroscope. You may ignore the mass of the axle and assume the spin angular
velocity is much greater than the precessional angular velocity.

il

The direction of the vector dL/dt of the gyroscope at the moment shown in the figure is:

1. +i direction.
2. —i direction.
o , ARGELK T -
3. —j direction. L ’ N info pag@
J &’ - (\ A page
R { L { ¥ ’_! .
@ +k direction. L r }L
2K

A )
@ —_F direction.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
Physics 8.01 Fall Term 2008

Practice Problems Final Exam: Solutions

Part One: Concept Questions

Problem 1: A small cylinder rests on a circular turntable, rotating at a constant speed as
illustrated in the diagram below. Which of the vectors 1-5 below best describes the
velocity, acceleration and net force acting on the cylinder at the point indicated in
the diagram?

F
F F
—_— —_— ) —_— ) —_— ) -V
—a a=1) g={
F a a
1 2 3 4 5

Answer: 4: (Turntables went out when Jerry Garcia did, but that’s not part of the
problem.) The velocity is to the right in the figure; the acceleration and the force are
inward, down in the figure.

Problem 2: A hollow cylinder starts from rest and rolls without slipping down an incline.

A

J

S

Which of the following best describes the force of friction? The magnitude of the normal
forceis N .




The force of friction is kinetic friction, with f = 4, N .
The force of friction is static friction, with f = 4N .
3. The force of friction is static friction, with / equal to the force necessary to

max

prevent slipping, up to a maximum of f . =y N .
4. The friction is zero because the cylinder rolls without slipping.

Answer: 3. For rolling without slipping, the friction force cannot be kinetic. The static
friction force must be less than the product of the coefficient of static friction g, and the

magnitude N of the normal force.

Problem 3: The figure below depicts the paths of two colliding steel balls, 4 and B.

A
ot

s

4
/@“<

p \
’ \
/

Which of the arrows 1-5 best represents the impulse applied to ball B by ball 4 during

the collision?
\ /___..

1 2 3 4 5

Answer: 1; Ball B has changed its momentum in the upward direction in the figure, and
as far as the figure can show, there is no change in its horizontal (rightward) velocity.

Problem 4: An object is dropped to the surface of the carth from a height of 10m.

Which of the following sketches best represents the kinetic energy of the object as a
function of time as it approaches the earth if friction can be neglected? Take =0 as the
time when the object is dropped.

[N



l.a 2.b 3.¢ 4.d 5.e

Answer: 3 ¢. The object manifestly has no kinetic energy at ¢ =0, and increases at a rate
proportional to the square of the time ¢.

Problem 5: A bicycle wheel is initially spinning with non-zero angular speed about the
center of mass. The wheel is lowered to the ground without bouncing. As soon as the
wheel touches the level ground, the wheel starts to accelerate forward until it begins to
roll without slipping. In the figure below, S denotes a point on the ground along the line
of contact between the wheel and the surface.

From the moment the wheel touches the ground until it just begins to roll without
slipping, the angular momentum is

1. constant about the wheel’s center of mass.

2. constant about the point §.

3. constant about both the wheel’s center of mass and the point S .

4. changing about both the wheel’s center of mass and the point S'.
Answer: 2. The forces on the wheel are its weight and the normal force, and the friction
force at the contact point. The weight and the normal force are equal in magnitude and
opposite in direction, and hence exert no net torque about any point. The friction force,

directed horizontally to the left in the figure, exerts no torque about the point S, but does
exert a torque about the wheel’s center.



Problem 6: A puck of mass M is moving in a circle at uniform speed on a frictionless
table as shown below. The puck is attached to a massless, frictionless string that passes
through a hole in the table and which is in turn attached to a suspended bob, also of mass
M, at rest below the table. What is the magnitude of the centripetal acceleration of the

moving puck?
‘-”-__‘\
L o
¢ : -t
Do oA

Less than g .
Equal to g.
Greater than g .
Zero.

Insufficient information.

Gy g 00 o

Answer: 2 The puck is given as moving in a circle, and hence the suspended bob is not
moving, and hence the tension in the string is the weight Mg of the bob. It then follows

that the magnitude of the acceleration of the puck is Mg/ M =g .

Problem 7: A tetherball is attached to a post by a string. The string passes through a hole
in the center of the post at the top. The string is gradually shortened by drawing it through
the hole. Ignore gravity. Until the ball hits the post,

1. the energy and angular momentum about the center of the post are constant.

2. the energy of the ball is constant but the angular momentum about the center of
the post is changing.

3. both the energy and the angular momentum about the center of the post are
changing.

4. the energy of the ball is changing but the angular momentum about the center of
the post is constant.



Answer: 4. The crucial point in this problem is that the string passes through the center
of the post, and hence there is no net torque (in the absence of gravity) and hence the
angular momentum about the center of the post is constant. The displacement of the ball
will have an inward component, parallel to the string, and hence the string does work and
the energy changes.

Problem 8: The figure below shows the experimental sctup to study the collision
between two carts.

Ay
I, o5y omm

In the experiment cart A rolls to the right on the level track, away from the motion sensor
at the left end of the track. The graph below shows the distance from the motion sensor to
cart A as a function of time.

0.6250

distance(m)

0.1250 | —

0 020 1.00 1.50 230
time (s)

What objects collide when # = 1.5s7?
1. Cart B and the spring.
2. Cart B and the motion sensor.
3. Carts A and B.
4. Cart A and the spring.
5. Cart A and the motion sensor.
Answer: 3. During the time interval 1.0 s <f < 1.5, cart A is not moving, and only

begins moving to the left (indicated by the negative slope of the graph in the figure) only
after colliding with cart B, which has rebounded from the spring.

wn



Problem 9: A gyroscope has a wheel at one end of an axle, which is pivoted at point O
as shown in the figure. The wheel spins about the axle in the direction shown by the
arrow 1in the figure. At the moment shown in the figure, the axle is horizontal and in the

plane of the page. Let L be the angular momentum of the gyroscope about the center of
mass of the gyroscope. You may ignore the mass of the axle and assume the spin angular
velocity is much greater than the precessional angular velocity.

J
A

bl

The direction of the vector dL/dt of the gyroscope at the moment shown in the figure is:
L+i. 2.-1.3.+]. 4. +k. 5. —k.

Answer: 5, the —k direction (or, —k in the notation of the figure). By the right-hand
rule, the angular momentum is radially inward, the —i direction in the figure. Taking the
torque about O, the net torque is due to the weight of the gyroscope, and if R is the
position vector from point O to the center of the wheel, R x mg 1is into the page of the

figure, the —k direction. Although not part of this problem, the gyroscope will precess in
such a way as to move out of the page of the figure.



Part Two: Analytic problems.
Problem 1

Two point-like objects are located at the points A, and B, of respective masses
M, =2M, and M, = M, as shown in the figure below. The two objects are initially
oriented along the y-axis and connected by a rod of negligible mass of length D, forming
arigid body. A force of magnitude F = ’FI along the x direction is applied to the object at

B at r=0 for a short time interval Af. Neglect gravity. Give all your answers in terms

¥

of M and D as needed.

_\} co M
~f P l'\“ .\ y
A AV
a. Describe qualitatively in words how the system moves after the force is applied:
direction, translation and rotation. ] N ), x ) .
dov: vol (01difs =~ el
' b. How far is the center of mass of the system from the object at point B2, »

i e

] 4 .
c. What is the direction and magnitude of the linear velocity of the center-of-mass

after the collision? by, + Fad AP R
— - el \ :J,." j —_’,_{,“—
. . "y MO Shy 27
d. What is the magnitude of the angular velocity of the system after thé collision?
- 00 bact,

e. Is it possible to apply another force of magnitude F along the positive x direction
to prevent the system from rotating? Does it matter where the force is applied?

f. Is it possible to apply another force of magnitude F in some direction to prevent
the center of mass from translating? Does it matter where the force is applied?
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A satellite of mass m_ is initially in a circular orbit of radius r, around the earth. The
ecarth has mass m, >>m_ and radius R, . Let G denote the universal gravitational oM 0 (14
constant. Express all your answers in terms R,, m_, m_, G, and r, as needed.

P
Cfv" [Mq /

a) Find an expression for the speed v, of the satellite when it is in the circular orbit.

b) Find an expression for the @@y E, of the satellite when it is in the

circular orbit.

2 'i"]{" l’i*”J 7

As a result of an orbital maneuver the satellite trajectory is changed to an elliptical orbit.
This 1s accomplished by firing a rocket for a short time interval thus increasing the

Vale A tangential speed of the satellite. The apogee (farthest distance from earth) of the elliptical
futt o orbit is three times the closest approach (perigee), A el o hoin  Liup
\ oM Cdr ,r‘*"v_ £ 0p ot sSTl, Do T073
PU\ m"_’j i 7 S i \ef \ ] " ‘ , ",.'
Lt 1 r, =3r, =3r, lw',-( a o,
X\ v Lo U’““ : — I e A
\ -~ y Sl q
- N‘f} c) Use conservation of energy and angular momentum for the elliptic orbit to find an
expression for the speed of the satellite, v, immediately after the rocket has
finished firing.
U Dmaiy (" (-/ V A= i
! {
‘i ¢ ( 'ine Jne
C M. 1T
J ~ ’] ‘ ,/ T
= 5
\‘i;rf o Me (o6 ,f“,/ (
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Problem 3 =

A lgllo/wg_ylindcr of outer radius R and mass M with moment of inertia about the center
of mass I = MR’ starts from rest and moves down an incline tilted at an angle @ from

cm

the horizontal. The center of mass of the cylinder has dropped a vertical distance # when
it reaches the bottom of the incline. Let g denote the gravitational constant. The

cocfficient of static friction between the cylinder and the surface is 4, . The cylinder rolls

without slipping down the incline. The goal of this problem is to find an expression for

the smallest possible value of g _ such that the cylinder rolls without slipping down the

incline plane. - —_ TTTe—m——

ar ‘f’ il 7N

a) Draw a free body force diagram showing all the forces acting on the cylinder.

b) Find an expression for both the angular and linear acceleration of the cylinder in terms
of M, R, g, & and h as needed.

¢) What is the minimum value for the coefficient of static friction g, such that the

cylinder rolls without slipping down the incline plane? Express your answer in terms of
M, R, g, 8 and h asneeded.

e) What is the magnitude of the velocity of the center of mass of the cylinder when it

reaches the bottom of the incline? Express your answer in terms of M, R, g, € and h
as needed.

10



Problem 4

Particle 1 of mass M collides with particle 2 of mass 2M . Before the collision particle 1
1s moving along the x-axis with a speed v, , and particle 2 is at rest. After the collision,

particle 2 is moving in a direction 30” below the x-axis with a speed v, /3. (Note:

sin30” =1/2.) Particle 1 is moving upward at an angle & to the x-axis and has a speed
Vi s

Lf
- v, M/
. Vio 8]
» +X *30° X
M 2M "‘.
2M S
Vil \E
Before collision After collision

a. What is the magnitude of the velocity v, , of particle 1 after the collision?

b. What is the angle & that particle 1 makes with the x-axis after the collision?

c. Is the collision elastic or inelastic? Justify your answer.



Problem 5

In th}% angular momentum experiment, §hown LA srisbops 750 Suterficce 4
the right, a washer is dropped smooth side down 55
onto the spinning rotor. -

The graph below shows the rotor angular velocity
@ (rad -s™) as a function of time.

Assume the following:
e The rotor and washer have the same
moment of inertia 7.

e The friction torque 7, on the rotor is

constant during the measurement.

Note: express all of your answers in terms of / and numbers you obtain from the graph.
Be sure to give an analytic expression prior to substituting the numbers from the graph.

280

220

w (rad-s™)

100

60 ,

0 040 1.90 240 440
time(si

a) Find an expression for the magnitude |?fl in terms of / and numbers you obtain
from the graph.

b) How much mechanical energy is lost to bearing friction during the collision
(between +=1.90s and t=2.405s)?

¢) How much mechanical energy is lost to friction between the rotor and the washer
during the collision (between r =1.90s and 1t =2.405s)?

12



Problem 6

A demonstration gyroscope wheel is constructed from a bicycle wheel by removing the
tire, wrapping lead wire around the rim, and taping it into place. The wheel has a radius
R and the mass is m. You may assume that the entire mass is concentrated on the rim. A
shaft is connected to the axle and projects a distance ¢ at each side of the center of the
wheel. A person holds the ends of the shaft in two hands. The shaft is horizontal and the

wheel is spinning about the shaft with angular velocity @ .

a) Find the magnitude and direction of the force each hand exerts on the shaft when
the shaft is at rest.

b) Find the magnitude and direction of the force each hand exerts on the shaft when
the shaft is rotating in a horizontal plane about its center with angular velocity Q.

¢) At what rate must the shaft rotate in order that it may be suspended at one end
only? Draw a diagram showing which the relationship between which side the
shaft is supported and which way will it rotate in the horizontal plane.

Problem 7

A thin hoop of mass m and radius R rolls without slipping about the zaxis. It is
supported by an axle of length R through its center. The hoop circles around the z axis
with angular speed Q. (Note: the moment of inertia of a hoop for an axis along its

diameter is (1/2)mR*.)

a) What is the instantaneous angular velocity @ of the hoop? Specify the direction
and magnitude.

b) What is the angular momentum L of the hoop about a point where the axle meets
the z axis? Is L parallel to @ ?

13



Problem 8:

A rigid body is composed of a uniform disk (mass 1, radius R ) and a uniform rod (mass
m, length D) which is rigidly fixed to the center of the disk. This body is pivoted about
the center of the disk around a horizontal axis which 1s perpendicular to the plane of the
page. Assume the pivot is frictionless and the acceleration due to gravity is g .

d)

Find the moment of inertia /, about the pivot point.

Suppose the pendulum is swinging freely back and forth. Write down an
expression for the angular acceleration about the pivot point. You may leave your

answer is terms of m, g, R, I,, D and the angle @ as needed .

Suppose the angle € 1s small throughout the motion. That is, you may assume
sinf =@ and cos@=1. What is the period for this pendulum? Express your

answer in terms of m, R, D, g and IP.

Now suppose there is no restriction on the value of & (it can be large). What is
the minimum angular velocity @ . which the pendulum should have at the

bottom of its swing so that the pendulum can revolve completely around the pivot
point?

14



Problem 9

A drum 4 of mass m and radius R is suspended from a drum B also of mass m and
radius R, which is free to rotate about its axis. The suspension is in the form of a
massless metal tape wound around the outside of each drum, and free to unwind. Gravity
is directed downwards. Both drums are initially at rest. Find the initial acceleration of
drum A, assuming that it moves straight down.

A

15



Problem 10

A person of mass m is standing on a railroad car which is rounding an unbanked turn of
radius R at a speed v. His center of mass is at a height of L above the car midway
between his feet which are separated by a distance of . The man is facing the direction
of motion. What is the magnitude of the normal forces on each foot?

Problem 11
A proton makes a head-on collision with an unknown particle at rest. The proton
rebounds straight back with 4/9 of its mitial kinetic energy. Find the ratio of the mass of

the unknown particle to the mass of the proton, assuming that the collision is elastic.

Problem 12

A particle of mass m moves under an attractive central force of magnitude F = br° . The
angular momentum is equal to L.

a) Find the effective potential energy and make sketch of effective potential energy
as a function of r.

b) Indicate on a sketch of the effective potential the total energy for circular motion.

¢) The radius of the particle’s orbit varies between r, and 27, . Find r,.
Problem 13

A wrench of mass m is pivoted a distance [ from its center of mass and allowed to
swing as a physical pendulum. The period for small-angle-oscillations is 7.

a) What is the moment of inertia of the wrench about an axis through the pivot?

b) If the wrench is initially displaced by an angle 6, from its equilibrium position,

what is the angular speed of the wrench as it passes through the equilibrium
position?

16



Solutions:

a) The forces are the weight, the normal force and the contact force.

&

(/]

'-”rr

b) With the coordinates system shown, Newton’s Second Law, applied in the x - and y -
directions in turn, yields

Mgsin@ - f = Ma
N —Mgcosfd=0.

The equations above represent two equations in three unknowns, and so we need one
more relation; this will come from torque considerations.

Of course, any point could be used for the origin in computing torques, but the “obvious”

choice of the center of the cylinder turns out to make things easiest (judgment call, of
course). Then, the only force exerting a torque is the friction force, and so we have

fR=1,a=MR*(a/lR)=MRa

cm

where [ =M R* and the kinematic constraint for the no-slipping condition & =a/R
have been used. This leads to f = M a, and inserting this into the force equation gives
the two relations

f:%MgsinQ

1.
a=—gsind.
28

12
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Problem 4

¢) For rolling without slipping, we need /< N, so we need, using the second force
equation above,

]
(. >—tand .
2 >

d) The cylinder rolls a distance L =h/sin@ down the incline, and the speed v, at the
bottom is related to the acceleration found in part (b) by

5 | .
v; =2al = Z(Egsm ﬁj(h/sm 0)

This result can and should be checked by energy conservation (for rolling without
slipping, the friction force does no mechanical work). For the given moment of inertia,
the final kinetic energy is

2
o;

cm

| 51 . 1
K, =§Mv1?+—]

1 s 1 s 2
=—Mv; +=MR*(v;/R)
2 2
=Mv;,
and setting the final kinetic energy equal to the loss of gravitational potential energy leads
to the same result for the final speed.

-~
-

PartiEIe._L of mass M collides with particle 2 of mass 2M . Before the ,ced‘ﬁéion particle 1
1s moving along the x -axis with a speed v,, and particle 2 is qt__res"ﬁ After the collision,

particle 2 is moving in a direction 30° below the x-@l,xis’/i;ith a speed v, /3 and
particle 1 is moving upward at an angle @ to the fgpm‘fhe x -axis with speed v, ,. (Note:

sin30°=1/2, cos30° =+/372. e

-
s

\ r I
N
+y, ><_!_ sV M /
Vi ' L e ™ &) _
. — X \‘\ léﬂ
M P M \\ “‘.
@ m\\‘ -
v /3
P \\‘
Before collision | | After collision ]
" e
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a. What s the speed v, , of particle 1 after the collision?

S) ( Ghi 0 b. What is the angle & that particle 1 makes with the x -axis after the collision?

c. Isthe collision elastic or inelastic? Justify your answer.

Solutions:

We are not given that the collision is elastic, but in the absence of external forces that
would change the momentum, the vector momentum is the same before and after the
collision. Using the coordinate directions as given in the figure, the x- and y-

components of momentum before and after the collision are:

Peo =My,

Py =My cosf+ 2M’(v|_ﬂ /«,/g)cos 30°
=M, cos8+ My,

Pyo=0

P, =My, sinO—ZM(vll‘n /43 )sin30°

= My, sin@—-M(v,,/43)

where sin30°=1/2, co0s30°=+/3/2 have been used. Setting initial and final x-
components of momentum equal and canceling the common factor of M ,

Vo =V, ,COS 0+v,

0=v, cosd.

Setting initial and final y - components of momentum equal and canceling the common
factor of M,

. WV
0=v, , sind——2<

v \/3
le .
——=v, , sind.
B~

All parts of the problem involve simultancous solution of the second equations in each of
the two sets, one from each momentum component found above. The method presented
here follows the ordering of the parts of the problem.

a) Squaring both equations and adding, using cos® @ +sin’ @ = 1, yields

14



b) The second equation in found from considering the x -component of momentum gives
cosd =0, #=90° immediately.

It should be noted that the angle @, the result of part b), can be found immediately by
noting, as found above, that the incident particle has no x- component of momentum
after the collision, and hence must be moving perpendicular to the original direction of
motion. Then, using sin@ =1 in the above gives v, , quite readily.

¢) The initial kinetic energy is K, =(1/ 2)Mvio and the final kinetic energy is

1 5 |
K, =5Mv;‘f + 2(2}\/{)v(“r

:%M[%T +%(2M)(%Jz
|

:EMV'Z'U;

the collision is elastic.
The fact that the particles have the same final speed is mere coincidence.

Problem 5

In th'e gular momentum experiment, §h0wn SO ook 750 nteriace
the right, a~washer is dropped smooth side down S

onto the spinn‘h}ggtor.

The graph below shows'the rotor angular vclocny

(rad ‘8" ) as a function of nme e
Assume the following: v N
e The rotor and washer have the same
moment of inertia /. \‘-\

e The Ariction torque 7, on the rotor is

- “Constant during the measurement.

15



Note: express all of your answers in terms of / and numbers you obtain from the graph.
Be sure to give an analytic expression prior to substituting the numbers from the graph.

2180 f——

220}

w (rad-s™)

60

o i / \
0 040 5 1.90 240 440
: rime(s)

a) Find an expression for the magnitude [?fl in terms of / and numbers you obtain

from the graph.

b) How much mechanical energy is lost to bearing friction during the collision
(between t =1.90s and r=2.405)?

c) How m}léh mechanical energy is lost to friction between the rotor and the washer
during/the collision (between 1 =1.90s and 1 =2.405s)? '
\

Solutions:

a) First, make sure that the problem makes sense. Between times ¢#=0.40s and
t =1.90s, the magnitude of the angular acceleration is Aw /At =40 rad-s™ and between
times ¢=240s and 7=4.40s the magnitude of the angular acceleration is
Aw/At=20tad-s. During these two time intervals, the only torque is the friction
torque, assumed constant, and doubling the net moment of inertia halves the angular
acceleration.

We then have lff| =] (40 rad-s’z) . This is also |ff| = 21(20rad - s'z), but that’s not part

of this problem, just a consistency check.

For parts (b) and (c), denote @, =220rad-s ', @, =100rad-s™', so that

initial

16



K Lt 1(24,200rad2 -s'z)

initial — 2 initial —

—_—

Ky ==(21) @}y = 1(10,000rad* -5 7).

final —

(R}

b) The mechanical energy lost due to the bearing friction is the product of the magnitude
of the frictional torque and the total angle A@ through which the bearing has turned
during the collision. A quick way to calculate A@ is to use

A0 =, At =(160rad-s')(0.50s) =80rad

50 —AE, .., =|F,|A0 = 1(32001ad?).

bearing —
¢) The energy lost due to friction between the rotor and the washer is then

-AK +-AE, =K

bearing — Minitial

Ky —1(32001ad® ) = 7(11,000rad*).

17
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Problem 6

A demonstration gyroscope wheel is constructed from a bicycle wheel by removing the
tire, wrapping lead wire around the rim, and taping it into place. The wheel has a radius
R and the mass.is m. You may assume that the entire mass is concentrated on the rim. A
shaft is connectcd‘to__thc axle and projects a distance 4 at each side of the center of the
wheel. A person holds the ends of the shaft in two hands. The shaft is horizontal and the
wheel is spinning about the shaft with angular velocity @,
a) Find the magnitude and direction of the force each hand exerts on the shaft when
the shaft is at rest. ™~

b) Find the magnitude and direction of the. force each hand exerts on the shaft when
the shaft is rotating in a horizontal plane about its center with angular velocity Q.

c) At what rate must the shaft rotate in order that it'may be suspended at one end
only? Draw a diagram showing which the relationship, between which side the
shaft is supported and which way will it rotate in the horizontal plane.

,

Solutions:

a) If the shaft is at rest, there is no net torque on the gyroscope, and each hand exerts an
upward force with magnitude equal to half the weight mg .

b) The net torque about the center will be the product of the precession frequency Q and
the horizontal component of the wheel’s angular momentum, L, . =mR’® Thus the

horiz spin *
difference between the magnitudes of the applied forces, multiplied by the distance o, is
the product QmR’@,, . Denoting the two forces as F; and F, (for “Left” and “Right”),

spin -~

we have the two equations

(FL By )d =QmR’w
F +F, =mg.

spin

Dividing the first by ¢ and adding to the second, and then subtracting as well, yields

QR o,
F, = E{g +—>P*"J

2 d
m QRZQ) .
F 2L _ spin )
RT {g 7 J

¢) From the above, when Q = gd/R*w,__, the force that one hand exerts goes to zero. In

spin ?

the diagram below, the wheel is shown from the side, the person holding the wheel is

18



facing the wheel (and into the plane of the figure), F, has vanished and the angular
momentum of the wheel i1s as shown. Taking torques about the support point (the left

hand), R is directed to the right and the torque is into the page: the wheel will precess
away from the holder. Taking torques about the center of the wheel yields the
same result.

ol
—
= L
e
IS £
—
—
R me

Problem 7

\
A thin\-h\oop of mass m and radius R rolls without slipping about the z axis. It is
supported by an axle of length R through its center. The hoop circles around the z axis
with angular speed Q. (Note: the moment of inertia of a hoop for an axis along a

diameter is\(1/2)mR*.)

=2 VP
av.e
P
N 5 "-J‘L.,’,*
¥ R
\‘_‘. ;‘/4/. SR

a) What is the instantancous angular velocity @ of the hoop? Specify the direction
and magnitude. e
b) What is the angular momentum J: of the hoop about a point where the axle meets

“'the z axis? Is L parallel to & ?
Solutions: AN

a) Because the radius of the hoop and the length of the axle are the same, when the hoop
completes one circuit around the circle it also completes one complete revolution about
the axle. The result is that the spin angular velocity has the same magnitude as the orbital
angular speed, @, =Q. Due to this restriction, we cannot neglect the vertical

component of angular velocity or angular momentum. The angular velocity of the hoop

19



about its center is 6)=Q(ﬁ ~f') (note that the horizontal component is directed radially

inward in the above figure.

b) About the specified point, there are three contributions to the angular momentum: the
horizontal component (often known as the “spin” angular momentum), the motion of the
center of the wheel about the central shaft (often known as the “orbital” angular
momentum) and the fact that the wheel is also rotating about a vertical axis. The angular
momentum is then given by

L=w_ mR’ (—f‘)+Qle(lA{)+Q%mRz(12)=QmR3(%l§—f‘J;

spin

the angular momentum is not parallel to the angular velocity.

Pr&em 8:

A rigid bedy is composed of a uniform disk (mass m, radius R) and a uniform rod (mass
m, length "D ) that is rigidly fixed to the center of the disk. This body is pivoted about
thc center of the disk around a horizontal axis that is perpendicular to the plane of the
page. Assume t C{ivot is frictionless and the acceleration due to gravity is g .

Vot

a) Find the moment of inertia 7, about the pivot point.
N\

N

b) Suppose the pendulum is swinging fré\ely back and forth. Write down an
expression for the angular acceleration about.the pivot point. You may leave your
answer in terms of m, g, R, I D and the.angle ¢ as needed .

hY

c¢) Suppose the angle @ is small throughout the rnofio_n. That is, you may assume
sin@ =@ and cos@=1. What is the period for this pendulum? Express your
answer in terms of m, R, D, g and [

[=] pivot *

pivot ?



d) Now suppose there is no restriction on the value of @ (it can be large). What is
the minimum angular speed @, that the pendulum should have at the bottom of
its swing so that the pendulum can revolve completely around the pivot point?

Solutions:

Note: The answers given here will use the result of part (a) for the moment of
inertia of the pendulum about the pivot point.

a) From the parallel axis theorem, or a handy formula sheet, the moment of inertia of the
rod about the pivot point is [ =mD*/3. The pivot is the center of the disc, so

1 disc, pivot

Ly =m(R*/2+D*/3).

rod, pivot

=mR*/2 and the total moment of inertial about the pivot is

b) The weight of the disc (and any contact force between the disc bearings and the
pendulum) exert no torque, and the torque exerted by the weight of the rod, directed into
the page in the figure, is 7 =mg(D/2)sin@. The angular acceleration is then

gt mg(D/2)sin@ gsind
Ji m(RI/2+D1/3) R*/D+2D/3’

pivot

with the negative signs indicating a restoring torque.

c) The square of the frequency of small oscillations is given by the negative of the term
multiplying sin@ in part (b), and so the period of small oscillations is

T2 zR"/D+2D/3 _
g

d) Without the small angle approximation, this part of the problem cannot be solved
directly by using torques; energy considerations must be use. At the bottom of the swing,

the kinetic energy is (1/2)7,,,@,,;, and to just make it around the pivot point, the kinetic
energy at the top should be taken to be zero. Note that the center of mass of the disc does
not move, so in going from the bottom to the top, the change in gravitational potential
energy is due only to the change in height of the center of mass of the rod and hence

increased by AU =mgD . Therefore setting the change in kinetic energy equal to the
negative of the change in potential energy,
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1 2
5 ]pi\'m (U:;ﬂn = f?’lgD
P = mgD 2gD
"™ L. R/2+D/3
Therefore the angular speed is
2gD

a)min - 2 2
R /2+D°/3
Problem 9

A drum sof mass m and radius R is suspended from a drum B also of mass m and
radius R, which is free to rotate about its axis. The suspension is in the form of a
massless metal tape wound around the outside of each drum, and free to unwind. Gravity
is directed downwards. Both drums are initially at rest. Find the initial acceleration of
drum A, assuming that itmoves straight down.

Solution:

The key to solving this problem is to determine the relation between the three kinematic

quantities &, a, and a,, the angular accelerations of the two drums and the linear
acceleration of drum 4. One way to do this is to introduce the auxiliary variable z for
74

. d
the length of the tape that is unwound from the upper drum. Then, a,R = d—f The
/2

’ ; dz 2
linear velocity v, may then be expressed as the sum of two terms, the rate — at which

22



the tape 1s unwinding from the upper drum and the rate @,R at which the falling drum is
moving relative to the lower end of the tape. Taking derivatives, we obtain

d’z
ay=—ta,R=ayR+a,R .
Toodt” ' ‘

Denote the tension in the tape as (what else) 7. The net torque on the upper drum about
its center is then 7, =7TR, directed clockwise in the figure, and the net torque on the

falling drum about its center is also 7,=7R, also directed clockwise. Thus,
a,=TR/I=2T/MR, a,=TR/I1=2T/MR. Where we have assumed that the moment
of inertia of the drum and unwinding tape is 7 =(1/2)MR*. Newton’s Second Law,
applied to the falling drum, with the positive direction downward, is Mg -7 = Ma,. We
now have five equations,

dz d’z 2T 2T

—, a,=—¥+a,R, ay=—, a,=—, Mg-T=Ma,,

o, R = \
# 4 g MR " MR

-

. d'z
in the five unknowns o ,, @;, a,, = and 7.
: A

[t’s easy to see that
a;=ay.
Therefore
a,=a,R+a,R=2a,R.
The tension in the tape is then

_a,MR a,MR Ma,
2 4R 4

T

Newton’s Second Law then becomes

Ma

Mg ——==Ma
774

7

Therefore solving for the acceleration yields

23



This result is certainly plausible. We expect a, < g, and we also expect that with both

drums free to rotate, the acceleration will be almost but not quite g .

24



Pr(;blegn 10

S
A person of mass M is standing on a railroad car, which is rounding an unbanked turn of

radius R at a spced v. His center of mass is at a height of L above the car midway
between his feet, Wth\h are separated by a distance of d. The man is facing the direction
of motion. What is the magnitude of the normal force on each foot?

Solution:

A free-body diagram, done by an unskilled artist, is shown below. The distances 4 and
L are not shown to avoid clutter, and one would have to guess at the position of the
center of mass of the person.

A —
E \ FL
- — A
H -

Mg

Y

We expect that there will be some friction force, or other horizontal contact force,
between the feet and the car, but we aren’t given anything about the nature of these
forces. Using some foresight, we notice that there must be a net horizontal inward force,

shown as F,, in the figure, of magnitude Mv*/R applied to the feet.
If we take torques about the center of mass of the person, and denote the normal forces on
the feet as F, and F; for “Right” and Left”, the clockwise torque is the sum

(Mv"‘/ R)L+Fnd /2 and the counterclockwise torque is fd /2 (note that F, and F| are

R
the person’s right and left feet, not right and left in the diagram above). Equating these
torque magnitudes and using F, + F;, = Mg leads, after some basic algebra, to

25



F,=M(g/2+v'L/Rd), F,=M(g/2=v’L/Rd).

This makes sense; the larger force is on the outer foot, and if the car is moving fast
enough at some speed the force on the right foot will vanish, and the person will fall over.

There are other ways to do this problem that would not involve introduction of F,, at all,
and it’s reasonable to hope that there might be some simplification. For instance, choose
the point above the center of the circle as the origin (at the horizontal level of the
person’s feet). Then, the angular momentum has two components, a constant vertical
component with L, = MvR and a horizontal component with constant magnitude

L

problem with any angular momentum). The horizontal component changes direction, and
the magnitude of the rate of change is

= MvL (if you use this method, note the danger of confusing the distance “ L ™ in the

horiz

i
dr

~OL MV'L |

horiz

=L L=
R

The torque about this origin has no contribution from the horizontal forces on the feet;
this torque is horizontal and has magnitude

|| =F.(R+d)+Fy(R—d)- MgR .

Setting this equal to the magnitude of the rate of change of angular momentum and
substituting first /| = Mg —F, and solving for F and then doing an almost identical

calculation gives the result found above.

Problem 11

A proton makes a head-on collision with an unknown particle at rest. The proton
rebounds straight back with 4/9 of its initial kinetic energy. Find the ratio of the mass of
the unknown particle to the mass of the proton, assuming that the collision is elastic.
Solution:

Two methods will be presented here, one “standard” and one “almost too slick.”
Standard: For the head-on collision, given that the incident proton recoils with 4/9 of its

initial kinetic energy, it must recoil with 2/3 its initial speed. Taking the initial direction
of the proton to be the positive direction, and using m, for the mass of the proton, M,



for the unknown mass, v, for the initial speed of the proton and V, for the final speed of
the unknown particle, we have from conservation of linear momentum

2
mv, = —gmpvo MV

5
=my, = MV,
Equating initial and final kinetic energies and employing minimal algebra gives

1 , (4  ,) 1 3
Empv(; = E[EIJIPV6J+5MXVX
5 2 2
—mvy = M,Vy.

a4

Squaring the result of the momentum equation gives (25/9)m’v; = M3V ; dividing by

P

the simplified kinetic energy equation, the masses cancel and M, = Sm,.

Slick: In order for a rebound velocity of (~2/3)v, in a completely elastic collision, the
center of mass of the system must be moving with speed (1/ 2)(\»‘, +(—2/3)v0) =(1/6)v,.
This speed is v, =vym, / (m L+ My ) , leading to My =5m, . If you've memorized, or can
rederive the expression v, = (mp -M, )/(mp + Mx)"o , the result is the same.

(Note: There are no known stable nuclei with mass equal to five time the proton mass.)

Problem 12

A particle of mass m moves under an attractive central force of magnitude F = br® . The
angular momentum is equal to L.

a) Find the effective potential energy and make sketch of effective potential energy
as a function of r.

b) Indicate on a sketch of the effective potential the total energy for circular motion.
¢) The radius of the particle’s orbit varies between 7, and 2. Find r,.
Solutions:

a) The potential energy is, taking the zero of potential energy to be at » =0, is
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and the effective potential is

2 +U(r)= L-,+2r".
2mr- 4

U (r)=

5

2mr-

" A plot is shown below, including the potential (yellow if seen in color), the term L*/2m
(green) and the effective potential (blue). The minimum effective potential energy is the
horizontal line (red). The horizontal scale is in units of the radius of the circular orbit and
the vertical scale is in units of the minimum effective potential.

b) See the solution to part (a) above and the plot to the left below.

4

4

3 3 ]

S'i. :‘.
2 \ 3 ‘\‘

\ \
| _ | \/
0""02 04 0B 08 1 12 14 15 18 2 002 04 06 08 1 12 14 16 18 2
X X

c) In the left plot, if we could move the red line up until it intersects the blue curve at two
point whose value of the radius differ by a factor of 2, those would be the respective

values for r, and 2r,. A graph of this construction (done by computer, of course),

showing the corresponding energy as the horizontal magenta is at the right above, and is
not part of this problem.

To do this algebraically, we find the value of 7, such that U, (r,)=U,;2(r,). This is

eff

F . b I
) =——d
mry 4 ng(Z};) )

(2;’0)4.

g R

Rearranging and combining terms, and then solving for r,,



(L[
8mr;, 4
o L
L T—
10 mb

Thus, r, = (1 /\/E)r

circular

(not part of the problem), consistent with the auxiliary figure on

the right above.

Problem 13

A wrgnch of mass m is pivoted a distance /_, from its center of mass and allowed to
swing as a physical pendulum. The period for small-angle-oscillations is T .

a) What is the moment of inertia of the wrench about an axis through the pivot?

b) If the wrench is initially displaced by an angle @, from its equilibrium position,
what 1s the angular speed of the wrench as it passes through the equilibrium

position?

Solutions:

a) The period of the physical pendulum for small angles is 7' =27,/I,/ml_ g ; solving
for the moment of inertia,

szlcmg
11‘ =, _‘!4'.';[1— .

b) For this part, we are not given a small-angle approximation, and should not assume
that ) is a small angle. We will need to use energy considerations, and assume that the
pendulum is released from rest.

Taking the zero of potential energy to be at the bottom of the pendulum’s swing, the
initial potential energy is U, =mgl,, (1-cosf,) and the final kinetic energy at the

=0 and the final
at the bottom of the swing by

mitial cm

bottom of the swing is U, =0. The initial kinetic energy is K.

initial

kinetic energy is related to the angular speed @,

inal
K =(1/2) 1,07 . Equating initial potential energy to final kinetic energy yields

final

,  2mgl, (1-cosf,) 8z

cm
final —
I,

(1-cos@,).

2



Solutions:

a) The center of mass will move to the right in the figure, and the two masses will rotate
about the center of mass, counterclockwise in the figure.

b) The distance from the object originally at point B is M,D/(M, + M, )=(2/3)D, ata
position y_ =D/3 in the figure.

cm

¢) The magnitude of the linear momentum will be the magnitude FA¢ and, as in part (a),
the direction will be the right. The magnitude of the velocity is then (FAr)/(3M)

d) The quickest way to find the angular velocity is to consider the collision in the center
of mass frame. In this frame the angular impulse, and hence the magnitude of the angular

momentum, is (FAr)(2/3)D . The momentum of inertia about the center of mass is

I =(2M)(D/3)* +(M)(2D/3)? = (2/3)MD?

cm

and the magnitude @, of the final angular momentum is

(FAf)(2/3)D  FAt

w; = 3 .
(2/3)MD>  MD

¢) No. The force additional force would have to be applied at a distance 2D/3 above the
center of mass, which is not a physical point of the system.

f) An additional force of the same magnitude, in the negative x direction, would result in
no net force and hence no acceleration of the center of mass.



Solutions:

a) This preliminary part should be found directly from Newton’s Second Law and the
Universal Law of Gravitation. The magnitude of the acceleration for the circular orbit is
v‘f /1, and so

3 mam

0 .. ge
m,—=G—5
’() It)

Vo =JCGm_ /1.

b) The total mechanical energy is the sum of the kinetic energy and the gravitational
potential energy,

1 mm,
2 1

0

¢) Since r, =7, and 7, =31, , the condition that angular momentum is constant

rv, =1,v, becomes ryv, =(3r,)v,,s0 v, =v, /3. The condition that the mechanical
energy is constant then becomes,

1 5 mm. 1 m.am
Sy, —O——S = f—G st
I n
2
1 v m.m
=—m| = G——¢
3 3,
4 2 .m.
__Vsz_(; s
9 3

% =J(3/2)Grnc/r0.

As a simple check, note that v, >v,. As a further check, some minor algebra shows that

after the rocket burn, the final mechanical energy is £ =—Gmm, /(4r,)=—-Gmm, | A,
where A4 =7, + 31, is the major axis of the ellipse.
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