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F- ‘-‘jl

Force Law: F, = ¢(E,, +VxB,,)

|

¢

Force on Wire: Fq = J IdsxB

Faraday’s law ~

§i-ds=-<[[B-ai -

.

=)

(el

Gauss’s Law:

SEJS E-dA= Qriae | €

closed surface

Gauss’s Law for Magnetism:

#ﬁdf\:()

closed
surface

Ampere’s Law

§B-ds =, [[3-da+pe, < [E-di

Electric Potential Difference:

b
AV =V,-V,=-[E.ds

E=-VV il
Potential Energy:
AU =qAV
U=qV
)\
Capacitance:
=2
AV
U= 2 Q CAV2
2cC
Inductance: L=N®,/]

-
NPy

€., =-Ldl/d U, =iL _

Energ@ Stored in Fields:

u, =+&E5 u,=1B*/p, -

Current Density and Current:
[ 3-aa

open surface

Ohm’s Law: AV =1 R
J =0 E where o, is the conductivity

E= p, J where p, is the resistivity

Power Dissipated in Resistor:
P.,.=IAV=I"R=AV*/R

Joule .;
Constants: } \\//f /
k,=1/4re, =9%x10° N-m*-C? P

7 = 1 An x¥
U, /4 =10"T -m-A" T 7
'?{fl )'Ul""'f
Differential Equations and Solutions:
e-r-1% = 1(:)— ( ety
dt
dl - ¥ g
IR+L—-=0 IO=Ie™" \/= 1y
AC Circuits: ay =1/ LC 3
X, =wL ; X.=l/lwC ; X, =R
Series RLC :
Z=AR+X* = |R+(X,- X}
[.‘J;':f / [/l 1 2
i ST :
gty



tang=(X,~X.)/R; V,=1Z
tan(£7r/ 4)=+1 5 sin(27/4)= 42 /2 ;
cos(in'/4)=\/£/2

Waves: c =1/ 1€,
f=YT o=2nf k=2n/A
c=MT =\f =k

Double Slit Interference:

Constructive:
dsin@=mA;m=0,x1,+2,--

Destructive:

dsin@=(m+%]/1;m:0,il,i2,m

Single Slit Diffraction: Destructive:
asin@=nd;n=%1,+2, ...
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Physics 8.02

Force Laws: F =g(E,, +VxB,,)
for current ¥, = /L. xB
Source Equations:

. 1 dq.
Coulomb Law: dE = —f

dme, r
dB _ }lol d§2>< f'
4z r
p=r points from source to field point
s

1= [ J.di==

open surface

Gauss’s Law:
Cﬁ E dA msuic

closed surface

Ampere’s Law:
(§ B ds =L, ” J-di= Hol

closed path open surface
plus Displacement Current
. d
d 50 5. = Electric

q E.argzau()(lem.-'_I )

closed path

Gauss’s Law for Magnetism:
df B-dA=0

closed
surface

Faraday’s Law:

g=-2o

dt magnelic
Current Loop flux:
(Drarm' N q)cm;,h, turn

magnelic magnetic

Equation Sheet Final Xy
Please Remove this Tear Sheet from Your Exam

Electric Potential Difference:

b
AV =V, -V, =-[E-ds

Resistance: R = ﬂfi

9

Capacitance: C=—
AV

10 CAV2
20
Capacitors in Parallel. C,, =G+, 4=
1

e § ; 1 1
Capacitors in Series: — =—+—+---
eq 1 C2
P = RE
Ohm’s Law: AV =1 R
J = o E where o, is the conductivity

E = p, J where p, is the resistivity

. . 1 I 1
Resistors in Parallel; —=—+—+---
Req Rl 'R”..
Resistors in Series: R, =R + R, +--
. 2, AV?
Joule Heating: P, =/AV =1"R=

Magnetic Dipoles:ji =/ An
Torque: T=px B
dB,

Force: F. = p. =

Inductance:
NO

L= B.self,sgl coil




Kirkhoff’s Laws 2 Slit interference, spacing d: 6 =dsind
> I = Z 17" for anyjunction

Z;A ZJ / dt

1 Slit diffraction Slit width a: & = %sin 0

Cross-products of unit vectors:

AC Circuits: ixi=jxj=kxk=0
1
“=Tc ixj=k jxk=i kxi=j
X, =oL,llagsV X. :i, [ Leads V, Kinematics:
X, =R, in phase || =V /7
Series RLC :1(t)=1,sin(1) Circumferences, Areas, Volumes:
? m _ \/Rz +(X:. —XL-)E 1) The area of a circle of radius » is

tang= (X, ~X.)/R ;V,=1,Z ar?, the circumference is 27zr

2
Energy stored in fields: 2) The surface area of a sphere of

radius » is 47r*, the volume
2

1 5 B* 3
uHZEEOE_ : I{B: (4/3)”?

2
244,
3) The area of the sides of a cylinder
Energy Flow: of radius » and length [ is 277l .
I _ Its volume is 77°]
S=—ExB P, = [[S-di
Ho surface Integrals that may be useful
§
p=— P ="— absorbed K
p . . absorbed waves [=b-g
W 2|S| b
=— =—— reflected waves =
p - o { . =In(b/a)
Intensity ]=(|§|) fidr—(] 1)
Waves: . a
= JL =ofk=f\ Some potentially useful numbers
HoEy
b= =9x10°N-m?-C?
=1/T=wf2n k=2n/A ¢ e, g "
e=MT =M =ofk 107 T-m-A"
Interference: 4

) mA Constructive
Phase difference 6 = )
(m+1) A Destructive

i A
Far field: smﬂ—é
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FAMILY (last) NAME
GIVEN (first) NAME
Student ID Number
Your Section: L01 MW 10 am L02 MW 12 pm

Your Group (e.g. 10A):

No notes or calculators allowed. Please show all your work on the analytical
questions. Answers quoted without any work will receive no credit, regardless of
whether or not they are actually correct.

Score Grader

Problem 1 (40 points)

Problem 2 (20 points)

Problem 3 (30 points)

Problem 4 (30 points)

Problem 5 (20 points)

Problem 6 (40 points)

TOTAL (180 points)




Problem 1 10 Concept questions, 4 points each, 40 points total

1.A (4 pts)  IfI have a uniformly charged insulating sphere of radius R with total
charge Q, I find that outside the sphere at some arbitrary distance r away, I have an

electric field of E =——=F. Which of the following actions would change this E
TEGE .
field? 7 K not a0/

¢

a) Reducing R by Y. " d) None of the above
%22 Making the sphere conducting *'“ ~e) Idonotknow (1 pointt)
‘rather than insulating i T

{ ¢) Breaking the spherical symmetry, v/
such as deforming the sphere into the
shape of an egg

§ ' All o bt
DU/LQ (. J’Lf/ g@ W {// }‘)Q ‘ U| ‘L
[l 0qr / 6/ v I‘, i O wil W b/(j’(}' "’ ){

£l

1.B (4 pts) I have an AC power supply and two different circuit elements in series, R,
L, or C. If [ arbitrarily increase the driving frequency of my power supply, I find the
amplitude of the current measured always increases. Which two elements are in my

circuit? e
— pr bl i ¥y 3
o 2l Sy d) Ido notknow (1 pt)
—\// b) Rand L Y ', '_—":‘- \As A/
¢) LandC |

/
M,

1.C (4 pts)  If you place a negatively charged particle in an electric field, the charge
will move
a) from higher to lower electric potential and from lower to higher potential energy. ﬁ}
b) from higher to lower electric potential and from higher to lower potential energy.
/ (:? from lower to higher electric potential and from lower to higher potential energy.
)

.

from lower to higher electric potential and from higher to lower potential energy. &

[ don’t know (1 point) )



/
v
o
1.D (4 pts)  If I have a uniform charge distribution p over some :
semi-infinite volume as pictured at e volume the I
electric field dependence on distance x from the center is Py X
a) |E|« —1—2— ( €) IOC X :
1 eSS .
b) |E|e«— 1
¥ g) Idon’t know (1 : .
¢) |E|eIn(x) Py 3 P A Joot
‘@ Does not depend on x U &i/ a K J
: - oo, Qo' e . LNy
N U 4 T AP
{ t/u A= I } EXumpley
1.E (4 pts)  11Inexperiment 6 you 0
measure the current on the right 0.25
for your RC circuit, and plot =
X 05
ln(‘(([)l va. { What is the E
max E_.‘ -0.75
time constant? ) .
a. 2 seconds -1.25
@ 4 seconds 0 1 2 4 5
7 0.5 seconds time (seconds)

d. 0.25 seconds
9 I do not know (worth
1 point)

| \ ‘
Jzoqu gl yood of

)

Gz TH) ) — & T
\03 salg T .H‘) N \)
L mo\y

1k B e |
3 C\/’J’?’@'l‘/ ik 2| 0 ¢ YUy +



T ot ds it ol
_,{ 'L!w‘.y(—j W oL r\(; Wf'er -
heiter does | (iold

J \ bl
[Dut E"L ;/ csolV ||
1.F (4 pts) A parallel plate capacitor is charged up to charge Q with the plates _
separated by a distance D. The battery is then disconnected, then the plates are [ & 50 VL
moved closer, to a separation of@<9 What happens to the Stored Energy in the » j ;
capacitor U and the Voltage V'?

a) U increases, V increases f) U stays the same, V' decreases ( el ﬂ-] j
b) Uincreases, V' stays the same g) U decreases, V increases 0
¢) Uincreases, V decreases h) U decreases, V stays the same
d) U stays the same, V increases é U decreases, V decreases
@ U stays the same, V stays the 1) I do not know (1 point)
a

me = _. ) - \/ ( O
| ) L

-

._a.

1.G (4 pts) A circuit consisting of an inductor of
inductance L,, a battery providing voltage ¥, a switch S,
and two resistors of resistance R; and R, is shown on

the right. At time t=0, the switch is closed. After a
long time, what is the current through resistor R,?
0
@) VIR,
) VI(R+R,) Al gope
g N
d) V/(R,+1) _ A b tor
e) ¥Vxt/L

f) Idon’t know (1 pomt)




1.H (4 pts)  Two charged particles of identical mass and charge move in circular orbits
in the same constant magnetic field B= B z. The two particles have different

speeds.

—

N (¢ Vo)
The orbit of the particle with the larger speed will i
have a larger radius and a longer period as compared to that of the slower particle
have a larger radius and the same period as compared to that of the slower particle _
c) have a larger radius and a shorter period as compared to that of the slower particle {0/ my, fC{
d) have a smaller radius and a longer period as compared to that of the slower
particle Jilora] 5f L
e) have a smaller radius and the Eame per@q as compared to that of the slower
particle o
f) have a smaller radius and a shorter period as compared to that of the slower
particle
g) Ido not know (1 point)

/ i /
{ : =

S0 Sdm (T 9pelt

/
\J /}

1.I (4 pts) A wire loop carries current /;, and is | 5
located near an infinite wire carrying current /. The | [)
currents flow in the directions shown. The net force " 1 I
on the wire loop due to the presence of the infinite ) ' - 4

. / TN w
wire is l
a

,

a) )upwards F \ ‘

Eé downwards \ / Qv (e faf({J 51 g

c) tothe left l/ f,\ ‘J}-,)u-.r

d) to the right it )
e) Idon’t\know(l point)

T K K Cropel o p”
T(7 x0 ) /f o




1.J (4 pts) A current of value 7 goes in a semicircle of radius R, then radially in
a distance of R/2, then in another semicircle, and rejoins with the first
semicircle, as depicted. What is the magnetic field in the center of the circuit?

3pl .
a). —— . into the page
)\\ 4R & g

3p,d /
, out of the page '
4R S /

3 °I+ tol , into the page
2R  2zR’°
d) 3;‘ }": éu "; out of the page O T'- ‘ ,
T f“.“ 1 . ] ?; \ i
e) 1don’t know (1 point) (Pmbe, Slve i "J




&W"g”’bﬁ/ e L Formy J;',’i NV, ”

Problem 2 Charge Configuration (20 points) 2a
4 different charges lie on a square of side length 2a as depicted at o
right. The magnitude of charge starting from top left and moving
clockwise is +20, -0, -20, +30. We are interested in the point
P, which is on the right side of the square, halfway between the
corners 2a
) @fr
a) Use @n superpostition to find the
Electric field E at point P. Y 53¢
" (48 emrebor
_‘_i"’"f;" 4 {/ 7 VY C( rif ;‘; b j/ f)
'(r‘)-’:'.' da QA /
-k 3
re
b I
0 4 / 9 + Y q, g 1y
1 % ~ 0
q 7 Sa SaT
—— "1 7 s
(i = Xal+fa)® =4 a¢ <da’

‘ \ Mmong Cﬂmp)@x ﬁﬁn W /umL
L I W/ O/Q
é@ \~ Ty, N o reals p

1 Mﬂﬁ\jb Cmdﬁdﬁ

-“;

Jr”u(} . ,Yl ;




b) Which of the following “grass seed” representations (A-F) most accurately
describes the ;
i) field lines?

ii) equipotential lines?

10



:’/ v j,’! { ‘}{ (A

U (L U/
¢) How much energy would it take to move a test charge +¢ (¢>0) to point P ¥
assuming it started infinitely far away, where the potential is zero?

ol A e
ald oo Vollue 26 each SV \
b ot Vet |\ '

F- ke

&

/
d) You are given a single point charge whose position and magnitude you choose,

with the goal of making the E field zero at point P. Where do you put the charge
and what magnitude do you use? [Only fyou did not get an answer to part a):

assume the field at P has the form E = Exi +E )_| and use that to solve the problem
symbolically].

S0 9o -1 g,[0?
{G:"Q + ¢
e 494

~

tln f nd wwtgn/'W

11
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Problem 3 Resistive Bar on a pivot (30 points)

A very long resistive bar with P WOt
resistance per unit length » is” Ml ( d |0
attached to a conducting right (utttn 4 '

angle frame at oneend by a ¢« 1! © @ @ @ E{(IQM
©@ @\©® @®

r

pivot a distance 4 from the right h
angle, with the other end resting

on the bar, making a triangular

circuit. To simplify things

assume the frame has negligible
resistance. A constant magnetic

field with magnitude B 2 iy
perpendicular to the apparatus O] b3 )
permeates the area, coming out \
of the page as shown. 2 ; )
P mpose s Low Y foud %

The bar starts at /=0 along the y axis and is rotated counterclockwise about the pivot with
constant angular velocity o, such that the pivot angle & = wf. Assume the bar is long
enough such that it never loses contact with the horizontal side of the frame.

a) What is the magnetic flux penetrating the circuit as a function of (1, ,(B C) h,r)?

b
§8. ds =y, Lenc g5 h? tunlaf] O i

SV NN T

x (osB
O=mt v

/{/(o ]/l /{dﬂ ) L 4\_%@ - ]n_ B ) i"
[ﬂ(LZ G4 md) { (:’osé% - //{o)q’fwéir

b) What is the resistance of the circuit as a function of (¢, @, B, h, )?

V-1 Rl s h

¢ C’f[f/](j(
. 3 (D ¢ W‘fﬂad C"WJ"’EQ
Y _; oel/ 9 Hpd {1
et lond = " il
T ' ——



c¢) Using Faraday’s law, find the induced emf for our circuit and the resulting current,
again in terms of ¢, @, B,Ah, and r. Indicate which way the current will flow on the

. d 1 S |
diagram. ]tmayhelptoknowthatd—g(tan9)=coszg. di'\ “thiale ] ,,ml)éﬁl f’-fﬁ({{

cH 0 - = 4, WIT\:M@/_‘“
7 oy 261 Z /\Co&(/w)?

CL)(/ l\wl(yq

e G

Mgl b JE((P{

d) What is the force on the resistive bar in terms of #, @, B,h, and »? Be sure to indicate
magnitude and direction. Does it get easier or harder as time goes on to keep it rotating

at constant @?

Resis) force )
ﬁﬁ Mhft NI Joolc 9 (ﬂ‘f'(

ot is df( Cests idn((’ 4 (F, e foaw g

(})hr_ v o j
" 4V

"[;’/(? ﬂJ;

P (908) <2 f) <Ly
fﬁwlu{;. L agdl/,’
.t’/tghﬂt
02hry  Tr

— e
2r{mt) Gkt ) 2
’2/&77(} oyt
0 p&‘ro{m(}f il La/

\

= Bhwu h



Problem 4 Discharging Capacitor through a resistor (30 points)

A capacitor consists of two parallel circular plates of radius a separated by a distance d
(assume a >> d ). The capacitor is initially charged to a charge O,. At7 = 0, this
capacitor begins to discharge because we insert a circular resistor of radius @ and height
d between the plates, such that the ends of the Melectrical contact with
the plates of the capacitor.. The capacitor then discharges through this resistor for 1 >0,
so the charge on the capacitor becomes a function of time O(t). Throughout this problem
you may ignore edge effects.

1<0

Qo i Q(t)

a) Use Gauss’s Law to find the electric field between the plates in terms of O(). s this
electric field upward or downward?

d

1

p! | Yoy

0 |

14



£ d

'd

ﬁ’.ﬁ’; l’/r’c?f:] lewy = N o

Ynlmgs !

2e

b) For £ >0, consider an imaginary open surface of radius » < a inside the capacitor with

its normal dA upward (see figure)

dwa)
€«

(( (e

P(Cr

'im')

oaogl= (U 09}
vftﬁ

For ¢t =20, what is the conduction current flowing through this open surface in terms of

QO(t) or Qt( ) and the parameters given. Define the direction of positive current to be
T L do . = 5( )
upward, and be careful about signs, in particular because o 2l | = G b
0 cﬂ— d [ e ldo e v & "')“’/c@%
- N
Au [,f‘i/ro’ b
~. 9L
% M |
g [(,‘1?1‘ ar— A7 r"r\ Z
— & /‘ 2 T .!—:;{;_“—‘
o y —
=F = = -&@ - s naz
a. <O 0/ {on ()f

¢) For this same imaginary open surface, what is the time rate of change of the electric
——=and the parameters given (hint: use

Q()

Wugh the surface, in terms of Q7)) or ——

your answer above for E).

w(o: R
4[4}
)« Bmee

My2g,

vean Iﬂw 90

4@ «
Q>¢Q

Jf

I “tha
qots trg

YR

ay

0
& a

15
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d) What is the integral of the magnetic field around the contour bounding this open circle,
using the Ampere-Maxwell Law? Be careful of signs.

(PJ = M1 Cr¢

JtJlJ \/]0 ((/f_/@/LTﬁ ! QV)]OI/ I*MPO/QZ j(MV

6 . Q%(_LQ% 430 724

dk
=0

e) Does your answer in (d) make sense in terms of the energy dissipation and energy flow
in this problem? You must explain your answer clearly and logically to get credit.

N | . 1 | | i
/ 0 all eed 1o (v Ape 1// 00 om

\\/;Q5 Q/L QN@{ prmj %[* UIL

( @p(mbf\ mmdary is oghge
by AT

16



Problem 3 (25 pts): RC
circuit / v V \ | I

The circuit at right contains a
battery of emf e, 3 resistors
each of resistance R, a $ ‘o,
capacitor with capacitance C, &2
an inductor with inductance L, & R
and two switches — switch S, {~

switches the battery into the (

circuit, and S, switches either R
the resistor or the inductor into

the circuit (the dotted lines in
the figure indicate possible
connections for the switches).

- | \
~ : G : )
[ / / I/ ) 7 3 /—\ {
At first. S, is set to connect to the resistor into the circuit. GH\(}"M ))P C’r IWC"{ { < n[):Q
a. Att=0", S; is closed, putting the battery into the circuit. What is the instantaneous
current into the capacitorat time t=0+? 7\ S)l Oﬂt Oﬂl

A

f‘mj) )_é T = ||n-*}o C a/}'rﬁr"r;f f ‘,Kﬁ')‘ ! J'
[ =Z. ]

|
-

=

WIS S— or Om L T L oping T, 2
- “‘*‘__________k;! -] )/\\

b. After the capacitor is fully charged (at t = T), what is the total charge on the
capacitor?

, g
g Ve f.-’t‘/ [ (Owitd
J
i ( ey
~4g] A — Kpslel05 ([~ ford Jlg /
2R

17



c. Now, you open the switch S;. Use Kirchoff’s laws to write a differential e n

which governs the discharging of the capacitor. (S still connects to the resistor).
You do not need to solve the equation. What is the time constant for
discharging the capacitor?

Q‘\\] A _7e- 2R=0 i’g _T20=0
i .
> W v TR

(r VﬂO/f
Once the capacitor is fully discharged. S, is set to connect to the inductor into the circuit.

d. Let’s reset the time to =0 again and close switch S;. Now what is the
instantaneous current in the capacitor? Explain your answer.

i
T‘ Ny ;G : *'Mff/i&f i
by = () 'vd / o L ‘W‘QLQ__‘;_ i L
1 (v

ifvtﬂﬂw, \— i : c %0/0) "

J

"

e. After a while, after the capacitor becomes fully charged, you open switch S,
again. Now you have a damped undriven oscillator. Use Kirchoff’s laws to write
down a differential equation describing the circuit behavior. You do not need to
solve the equation. If one ignores the small effect of the resistance, what is the
fundamental frequency of this oscillator@ |

oL _
o R Y B B
%/_f -
k) (\ ) |y clnlly //

18



f.

If the decay time t for this circuit is 27, where T’ =2—7r is the period of oscillation,
[00]

sketch the charge on the capacitor as a function of time measured in units of the
period 7 on the graph below (be sure to label the y axis scale using the amount of
charge at r=0, when you first open the switch)

0

Org {)@ Q( |

Vm T)rru [gp 1

\

( ;“qt‘J da qu)

19



Problem 4 (26 pts): What’s in the box?
The circuit shown contains an AC
generator which provides a source of

sinusoidally varying emf &) = &,

sin(ot), a resistor with resistance R =2 £t

ohm, and a "black box", which contains

either an inductor or a capacitor, or both. R

The amplitude of the driving emf, &, is
1 Volt. We first measure the current in /u {_x__ ] S (Uit |
the circuit at an angular frequency @ =1 L Cm
radians/sec and find that it is leads the ( 015{0‘ 3 \‘/ﬁf 14 7
driving emf by exactly n/3 radians. We then measure the current in the circuit at an ' ’
angular frequency @ =2 radians/sec and find that it lags the driving emf by exactly n/3 /{1 ]

radians. [Note: 7/3 radians = 60 degrees, tan (n/3) = \/_] =7

a. What does the black box contain--an inductor or a capacitor, or both? Explain (
your reasoning. Agp

Changiog A

b. What is the numerical value of the current in the circuit at @ =1 radians/sec? At

@ =2 radians/sec? You do not have to determine the unknown L and/or C to
answer this question, and the varial}les L and C should not appear in your
answer. Your answer can involve Fquare roots.

I ")6\)"/(////’/\‘! -

— 1V
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d. Doing no math, tell us in which frequency range you would drive this circuit to
produce the maximum current (circle one)?

< | rad/sec be’tfveen 1 rad/sec and 2 rad/s > 2 rad/sec

Briefly explain why you choose the range you did (a plot might help).
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e. Now calculate the numerical value of the angular frequency for which the
current in the circuit will be a maximum. If you are uncertain in your answer in
(c), make sure you give you answer in terms of variables first.
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If your circuit contains an inductor, give an expression for the voltage drop across the
inductor as a function of time when the current is at a maximum. If you circuit does not
contain an inductor, give an expression for the voltage drop across the capacitor as a
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function of time when the current is at a maximum. You need only give one expression.
If you cannot decide which it was, choose one, but in all cases clearly indicate whether
your expression is for an inductor or for a capacitor. The amplitude of your time function
should be a numerical value in Volts.
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8.02 Final Exam Fall 2008

FAMILY (last)y NAME

GIVEN (first) NAME

Student ID Number

Your Section: L01 MW 10 am L02 MW 12 pm
Your Group (e.g. 10A):

No notes or calculators allowed. Please show all your work on the analytical
questions. Answers quoted without any work will receive no credit, regardless of
whether or not they are actually correct.

Score Grader

Problem 1 (40 points)

Problem 2 (20 points)

Problem 3 (30 points)

Problem 4 (30 points)

Problem 5 (20 points)

Problem 6 (40 points)

TOTAL (180 points)




Problem 1 10 Concept questions, 4 points each, 40 points total

1.A (4 pts)  IfI have a uniformly charged insulating sphere of radius R with total
charge O, I find that outside the sphere at some arbitrary distance » away, | have an

electric field of E :4—7‘;’71’ . Which of the following actions would change this E
field?

a) Reducing R by Y. d) None of the above

b) Making the sphere conducting e) 1do not know (1 pointt)
rather than insulating

¢) Breaking the spherical symmetry,

such as deforming the sphere into the

shape of an egg

None of the options affect the enclosed charge, while for c) some charge will be closer
and other will be further away, thus changing the field.

1.B (4 pts) [ have an AC power supply and two different circuit elements in series, R,
L, or C. If T arbitrarily increase the driving frequency of my power supply, I find the
amplitude of the current measured always increases. Which two elements are in my
circuit?

a) Rand C d) Ido notknow (1 pt)
b) Rand L
¢) LandC

In this case as you increase the frequency the current goes up. so the impedance goes
down, so there cannot be an inductor in the circuit. There is a resistor and a capacitor,
and because the capacitor impedance decreases with increasing frequency, you always
get higher current for higher frequency.

1.C (4 pts)  If you place a negatively charged particle in an electric field, the charge
will move
a) from higher to lower electric potential and from lower to higher potential energy.
b) from higher to lower electric potential and from higher to lower potential energy.
¢) from lower to higher electric potential and from lower to higher potential energy.
d) from lower to higher electric potential and from higher to lower potential energy.
e) Idon’t know (1 point)

Particles always move towards lower potential energy (remember F =—VU ) but for a
negative charge that means moving towards higher electric potential
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1.D (4 pts)  If I have a uniform charge distribution p over some :
semi-infinite volume as pictured at right, inside the volume the |
electric field dependence on distance x from the center is Py
2) |B|ec LZ e) ’E| oc X :
X = v

L f) |E| o x* 1
b) |E ‘x; g) Idon’t know (1 :

) [E|ecIn (x) P

d) Does not depend on x

Inside a volume, the total charge enclosed will be pAx where x is the distance from the
symmetry axis, and the flux will be £4, so the E field will be proportional to x.

1 A. (4 pts) In experiment 6
you measure the current on the 0
right for your RC circuit, and
10) -0.25
plot ln[ - J vs.t What —g 05
is the time constant? S 075
a. 2 seconds B
b. 4 seconds #
c. 0.5 seconds 1.25
d. 0.25 seconds 0 1 2 3 4
e. 1do not know (worth 1 T
point)

In an RC circuit, the current will start at a maximum and then decay to zero as the

e I(t 1
charge builds up, according to the expression I(t)=1_. e s0 ln( (7) 7 ): —[—jt.

max f

=1
This means you get the time constant from the slope of the line, t =(0-2% s) =45



1.E (4 pts) A parallel plate capacitor is charged up to charge Q with the plates
separated by a distance D. The battery is then disconnected, then the plates are
moved closer, to a separation of d<D. What happens to the Stored Energy in the
capacitor U and the Voltage V'?

a) Uincreases, V increases f) U stays the same, V' decreases
b) U increases, V stays the same g) U decreases, V increases

¢) U increases, V decreases h) U decreases, V stays the same
d) U stays the same, V increases i) U decreases, V decreases

e) U stays the same, V' stays the i) Ido not know (I point)

same

If the charge doesn’t change, neither does the E field, but the total energy is proportial to
the E times the volume, and the volume decreases so the Energy decreases, and the
Voltage is E time the distance, which also decreases, so the Voltage decreases.

1.F (4 pts) A circuit consisting of an inductor of A A A
inductance L,, a battery providing voltage V, a switch S, n ¢
and two resistors of resistance R, and R is shown on R /

the right. At time t=0, the switch is closed. After a h
long time, what is the current through resistor R,?

a) 0 - -
b) V/R, da. . R

¢) V/(R+R,)
d) V/(R,+L)

7

e Vxt/L
f) Tdon’t know (1 point)

After a long time, the inductor acts like a short. The current will take the path of least

resistance, and you can’t get less than zero! So all the current will run down the inductor,

none through the resistor.



1.G (4 pts)  Two charged particles of identical mass and charge move in circular orbits
in the same constant magnetic field B=B,Z. The two particles have different

speeds.

The orbit of the particle with the larger speed will

a) have a larger radius and a longer period as compared to that of the slower particle
b) have a larger radius and the same period as compared to that of the slower particle
¢) have a larger radius and a shorter period as compared to that of the slower particle
d) have a smaller radius and a longer period as compared to that of the slower
particle

e) have a smaller radius and the same period as compared to that of the slower
particle

f) have a smaller radius and a shorter period as compared to that of the slower
particle

g) Ido not know (1 point)

Here we combine the Magnetic Lorentz force with circular motion to find

2
goie = qvB —r= (%}: so the larger speed will have the larger radius. The period is
r q
; 2ar 2mm : :
givenby 7'=——= B so that is the same for both particles.
i q
1.H (4 pts) A wire loop carries current /;, and is | !

located near an infinite wire carrying current /. The |

currents flow in the directions shown. The net force i
on the wire loop due to the presence of the infinite
wire is i I,
a) upwards ;

b) downwards
c) to the left
d) to the right ;

- ————— T ——

e) Idon’tknow (1 point) L—

The current I, generates a magnetic field out of the page, which decreases with increasing
distance. For the two vertical legs the forces are equal and opposite, so they cancel,
while for the horizontal legs the lower one is in the area of higher field, so it is not
completely canceled bwthe upper leg’s contribution. From the right hand rule, the force
from the lower leg and therefore the net force is up.



1.1 (4 pts) A current of value / goes in a semicircle of radius R, then radially in
a distance of R/2, then in another semicircle, and rejoins with the first
semicircle, as depicted. What is the magnetic field in the center of the circuit?

a) 2l , into the page

3u,l
b) =, out of the page
) ir pag

34”01 Hol
c +-——, into the page
) 2R 2xR’ pag
d) ﬂ+ Hol , out of the page
2R 2xR

e) I don’t know (1 point)

This is an application of the Biot-Savart law. The two semicircles by the right hand rule
give a contribution out of the page. For a semicircle, we know

I d* 7 Rd@ i
,Ua xF | ‘ i“ IR2 = ’:‘;? , so we have to add the two together to find
7

B=

|]§| I /uoj + /”01 - 3u,1
4R 4% 4R
to the displacement, so the cross product is zero.

. The radial legs do not contribute at all, since the path is parallel



Problem 2 Charge Configuration (20 points)

4 different charges lie on a square of side length 2a as depicted at
right. The magnitude of charge starting from top left and moving
clockwise is +20, -0, -20, +3Q. We are interested in the point

P, which is on the right side of the square, halfway between the
corners

a) Use Coulomb’s Law and superpostition to find the
Electric field E at point P. b

Here we need to figure out the contribution from each charge,

and then add them all up. The positive charges are a distance J a*+ (2a)2 =/5a :
and the negative ones are a distance a away. It is easiest to use the » version of r'

-

. = q B : . : 3
Coulomb’s law: E =_BL) Breaking up into coordinates, we have:
e 47e 13

- | SPONE i) [ 4 - '::|
e 2ai - dj i
47!89(\/§a]\i A :I 4”80 5\/_ S‘E

U e []']Jl (o1

= 30 . 0 6 : 3 1
By = 3[2a1+aj:| d7g,a° [5\/_ 5\61}

_—_— L. 0 6 4 V2 3 2 Soy i
B _EE"  dng,d |i[5\/§ % Sx/g}g[&/g 55 g5 2}'}

= Q 2 o Sr T ’/} /)
T = A o 7
total 4ﬁ£0a |:J_ [ 5\/_] } ’i[iQ li L/jd \J
A 1 X pLrity
\/Q(J{ {.)/ (;{/.'l -?)\/\/ﬂ/, l
{

(l;- [j[f W i %/7 001 sor () Y }/ U/"/Q




b) Which of the following “grass seed” representations (A-F) most accurately
describes the
i) field lines? C
ii) equipotential lines? A

For the field lines, the zeros should be aligned along a horizontal line between the top and
bottom, but the lines should not be left right symmetric. Similarly, the equipotential lines
are vertical but also are not left-right symmetric.
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¢) How much energy would it take to move a test charge +¢ (¢>0) to point P
assuming it started infinitely far away, where the potential is zero?

Now we have to calculate the voltage, which we do in the same way, although it is a little
easier without the vector stuff:

V= e
: 4re, («/ga)
V,= il
dre, (\/_ a)
e
dme,a
v =2
dme,a
4
0 [2+3 0 X
o ; ' dmgal \5 4n‘80a[J_ J]
Now one just uses U=¢V and finds (U =gV, =£[\/§—3J
dre,a

d) You are given a single point charge whose position and magnitude you choose,

with the goal of making the E field zero at point P. Where do you put the charge
and what magnitude do you use? [Only 1f you ¢ did not get an answer to part a):

assume the field at P has the form E = E.i i+ E _| and use that to solve the problem
symbolically].
With just one charge, one has to place the charge in the line defined by the vector to be

able to cancel out both components, and then adjust the charge appropriately, depending
on how far away along that line you put it. Since P is at (a,0), | can put the charge ¢ at

2 Al oo
a+—a,—a| l—-——=| ||, it gives a contribution at P of:
( V5 ( 5V5 j]
= q 35 J
B = = P
[\r(s\r}
i () +(1-55) )

Adding this to our previous field, we find

= 1 2 s q
s | i so from here, to get zero
total 471'6'00'2 |:J_ ( 5\/‘] :| ( 3 g

—
b
N
=]
—
[a—
i
&
N
[¥]
S —
[F1E%]

3
field we just have to specify the magnitude|q = Q((j_s) +(l —;#)')2
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Problem 3 Resistive Bar on a pivot (30 points)

A very long resistive bar with PIV(}:[
resistance per unit length r is
attached to a conducting right

angle frame at one end by a

pivot a distance 4 from the right h
angle, with the other end resting

on the bar, making a triangular

circuit. To simplify things

assume the frame has negligible
resistance. A constant magnetic

field with magnitude B Z ﬁ
perpendicular to the apparatus @® X
permeates the area, coming out

of the page as shown.

The bar starts at /=0 along the y axis and is rotated counterclockwise about the pivot with
constant angular velocity ®, such that the pivot angle & = wr. Assume the bar is long
enough such that it never loses contact with the horizontal side of the frame.

a) What is the magnetic flux penetrating the circuit as a function of (¢, @, B, h ,#)?

The magnetic flux is just the triangular area times the B field. The area of the triangle is
just ¥z base time height, but the base length is changing with time as b = htan (1), so we

have 4=21h"tan(wt) —|P,, =1 Bh* tan(wr)

b) What is the resistance of the circuit as a function of (1, @, B, h, r)?

The resistance comes from the length of the rod in the circuit, which is also growing
since the length of the hypotenuse grows with time. The length of the hypotenuse is

g Mol nh

cos(wt) cos(wr)

12



c) Using Faraday’s law, find the induced emf for our circuit and the resulting current,
again in terms of 1, @, B,h, and r. Indicate which way the current will flow on the
1

cos’ @’

diagram. It may help to know that %(tan 0)=

Here we have to use Faraday’s law, to find the emf, and then divide by the Resistance for
the current:

dd, 1 _,d P 1
=— =——Bh*—(t =—=—Bh:e| ———
# dt ) dr( = (wt)) ) a{cosz(cgt)]
IZHZLBth v1 . cos ()

o cos” (co!) rh

Bhao

g = Adehs

2rcos(cut)

For direction, as the bar rotates into the frame, the flux outward is increasing, so by

Lenz’s law the flux will be

d) What is the force on the resistive bar in terms of ¢, @, B,h, and r? Be sure to indicate
magnitude and direction. Does it get easier or harder as time goes on to keep it rotating
at constant @?

Note that the force will always be perpendicular to the bar and to the B field, so it always
points opposite the direction of rotation, which is all you really need to say for direction.
For magnitude, since the bar and the B field are always at right angles, the magnitude will

Bw h . [ BRa
2rcos(wt) cos(w1) 2rcos’ (ot )

be |F‘| =J/.B= . To do it mathematically, one can

parameterize the bar as L = [sin (w1 )i —cos(ar) j] and just do the cross product:

cos(wt)
= Bho 2 S
L . o . Bk
3 2rcos(wt) cos(a?f)[sm(w[)l COS(W)J]X ji
= Bh*w 2 3
F=m[-m(“)'—5‘“(”‘)ﬂ
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Problem 4 Discharging Capacitor through a resistor (30 points)

A capacitor consists of two parallel circular plates of radius @ separated by a distance d
(assume a >> d ). The capacitor is initially charged to a charge O,. Att = 0, this
capacitor begins to discharge because we insert a circular resistor of radius @ and height
d between the plates, such that the ends of the resistor make good electrical contact with
the plates of the capacitor.. The capacitor then discharges through this resistor for 120,
so the charge on the capacitor becomes a function of time Q(t). Throughout this problem
you may ignore edge effects.

1<0 t=0

b_QO ‘(t)
d d
Q Q(t)

0

a) Use Gauss’s Law to find the electric field between the plates in terms of O(z). Is this
electric field upward or downward?

To use Gauss’s law, we must construct a volume in
which to enclose charge — let’s use a pillbox around the
lower disk of the capacitor, which has surface charge
density of o =—=, applying Gauss’s law we have:

E
A
Q
ma
cﬁﬁ-dzﬂ\ =EA=—(cAd)=>|E= Q, k or "up"
& ma’s,

1

b) For 1= 0, consider an imaginary open surface of radius < a inside the capacitor with
its normal dA upward (see figure)

Bl (1)

Q(t)

d

14



For ¢t =0, what is the conduction current flowing through this open surface in terms of

01 or L0

and the parameters given. Define the direction of positive current to be

dQ

upward, and be careful about signs, in particular because — < 0.
!

Here we want the conduction current flowing through the resistor in the area defined by r.

R d 1l 2 : e b
The current density is J = (—%J—,k where the minus sign is to make sure positive
t )mwa”

current goes up, in the k direction. So, the current inside a loop of radius r is
= do »*
i =|J]71'r2 = 40

dt a’

¢) For this same imaginary open surface, what is the time rate of change of the electric

Q()

flux though the surface, in terms of Q(#) or ——— and the parameters given (hint: use

your answer above for E).

Before we found E = =

k so we have D, =L2(7rr2)=~g(£;—J , and if we take a

ra’e, iy 2l
: ek, dd. J
time derivative we get: B e do
dt 5‘ dt

d) What is the integral of the magnetic field around the contour bounding this open circle,
using the Ampere-Maxwell Law? Be careful of signs.

Here you just add up the currents and apply Ampere’s law, and find

B-dl = #{ Qr /{/Zziﬂ

that the integral vanishes

e) Does your answer in (d) make sense in terms of the energy dissipation and energy flow
in this problem? You must explain your answer clearly and logically to get credit.

Yes, it does, because the energy that is flowing out of the capacitor is being immediately
dissipated in the form of Joule Heating by the resistor.

15



Problem 3 (25 pts): RC
circuit

:

e,
@!

The circuit at right contains a
battery of emfg, 3 resistors ,.'T., S«;
each of resistance R, a o L
capacitor with capacitance C, e

an inductor with inductance L, g == R
and two switches — switch S,
switches the battery into the
circuit, and S, switches either R
the resistor or the inductor into
the circuit (the dotted lines at
right indicate possible

connections for the switches).

At first, S is set to connect to the resistor into the circuit.
a. Att=0", S, is closed, putting the battery into the circuit. What is the instantaneous
current into the capacitor?

The capacitor acts like a short, so the circuit looks like a resistor in series with two

-1 ~
resistors which are in parallel. The total resistance is R, = R+ (% +%J =2R, so the

total current will be I, = i = ?—; but only-hatl-goes through the capacitor: |I, = %
3 .
N €

b. After the capacitor is fully charged (at t = T), what is the total charge on the
capacitor?

(51

o £
Now no current flows in this leg, so the total current has gone downto 1, = T and the

voltage across the capacitor is just the voltage drop on the resistor in parallel:
£ £ Ce

Z =T =R == p_p = O
c=Va Y™ =V 5 =|0=C 5

c. Now, you open the switch S;. Use Kirchoff’s laws to write a differential equation
which governs the discharging of the capacitor. (S, still connects to the resistor).
You do not need to solve the equation What is the time constant for discharging
the capacitor?
The capacitor discharges through the two resistors in the loop, so we have
Q d

=—JR-IR=0 I= 4 =3 iQ— = —-—I‘Q 7 =2RC| which makes sense because
&) dt dt 2RC

with two resistors it will take longer to discharge the capacitor.

Once the capacitor is fully discharged. S, is set to connect to the inductor into the circuit.

16



d. Let’s reset the time to =0 again and close switch S;. Now what is the
instantaneous current in the capacitor? Explain your answer.
Instantaneously the current will be zero still, because the inductor acts like an open and

doesn’t allow current to flow instantaneously.

c.

After a while, after the capacitor becomes fully charged, you open switch S;

again. Now you have a damped undriven oscillator. Use Kirchoff’s laws to write
down a differential equation describing the circuit behavior. You do not need to
solve the equation. If one ignores the small effect of the resistance, what is the

fundamental frequency of this oscillator @ ?

Now it’s a loop with Capacitor, Resistor, and Inductor, so from Kirchoff’s Law #2

with discharging capacitor: %— IR-L Z—I; =0

I:ﬁ:
dr

d2Q
dt’

1
4 — —
LCQ

R dO

Lt

Ignoring the resistance I get the equations for a simple harmonic oscillator, with the

Sfundamental frequency being

f.

w

If the decay time 7 for this circuit is 27, where T = 2l is the period of oscillation,

sketch the charge on the capacitor as a function of time measured in units of the

period 7 on the graph below (be sure to label the y axis scale using the amount of

charge at r=0, when you first open the switch)
Before we open the switch, the capacitor will charged up and there will be no current
flowing through it or the inductor, so the voltage drop will be the same as across the

e

0(0)-5

resistor just like in part b),V,. = % =

Then the charge will oscillate and

decay, with its maximum at time t=2T down one factor of e compared to at t=0

9
Ce2 I~ \

\

Ceg'2e

17



Problem 4 (26 pts): What’s in the box?
The circuit shown contains an AC
generator which provides a source of

sin(wt), a resistor with resistance R = 2
ohm, and a "black box", which contains
either an inductor or a capacitor, or both. R

The amplitude of the driving emf, &, is

1 Volt. We first measure the current in ' A Y,

the circuit at an angular frequency @ =1

radians/sec and find that it is leads the

driving emf by exactly /3 radians. We then measure the current in the circuit at an
angular frequency @ =2 radians/sec and find that it lags the driving emf by exactly n/3

radians. [Note: /3 radians = 60 degrees, tan (w/3) = NE) ].

sinusoidally varying emf &) = &,
<~ £

a. What does the black box contain--an inductor or a capacitor, or both? Explain
your reasoning.

For a circuit to be “capacitor like” (Current leading voltage) at one frequency and
“inductor-like” (Voltage leading current) at a higher frequency, you need to have both.

b. What is the numerical value of the current in the circuit at @ =1 radians/sec? At
w =2 radians/sec? You do not have to determine the unknown L and/or C to
answer this question, and the variables L and C should not appear in your
answer. Your answer can involve square roots.

We use the phase information to find out: tan(¢) = %and I= % Combining,

Ji= LY == LY == LY so for both frequencies we
VR+(X,-X) pfic(f5) 20\1+tn’s

have 1 =L I8 A

20 1+(\/§)2 E

c. What is the numerical value of the capacitance C or of the inductance L, or of
both, as the case may be? Indicate units. Your answer(s) will involve simple
fractions only. You will not need a calculator to find the value(s).

Now we have to use the information at each frequency separately. At each frequency, the
impedance from the capacitor/inductor combination is twice the resistance, which gives

1
us two equations to solve for L and C. The general equation is oL o =tan (¢)R.
@

Plugging in for our two values we have

18



1 I
(])L_Wm_‘/—;’(ZQ)—)E=2\/§+L

(2)L—L=\/5(29)—>2L—g(2\/§+L)=2J§:>%L=3\/§: L=23H

(2)c
%=2J§+2\/§:4J§:>

1
= §
43

d. Doing no math, tell us in which frequency range you would drive this circuit to
produce the maximum current (circle one)?

< | rad/sec between 1 rad/sec and 2 rad/sec > 2 rad/sec

Briefly explain why you choose the range you did (a plot might help).

If we are capacitor-like at 1 rad/s, which is below resonance, and inductor-like at 2
rad/s, i.e. above resonance, then somewhere between those two is resonance, which gives
the minimum impedance of R= 2 Ohms and therefore the maximum current.

e. Now calculate the numerical value of the angular frequency for which the
current in the circuit will be a maximum. If you are uncertain in your answer in
(c). make sure you give you answer in terms of variables first.
At resonance, the capacitor and inductor impedance cancel, so X, = X ..

1 1 1 d
COOL= ﬁras
S

—_ . = — =
o,C T Jzﬁxﬁ

f. If your circuit contains an inductor, give an expression for the voltage drop
across the inductor as a function of time when the current is at a maximum. If
you circuit does not contain an inductor, give an expression for the voltage drop
across the capacitor as a function of time when the current is at a maximum.
You need only give one expression. If you do not know, choose one, but in all
cases clearly indicate whether your expression is for an inductor or for a
capacitor. The amplitude of your time function should be a numerical value in

Volts.
We have an inductor, for which we know the Voltage is V, = IX, = IoL . At resonance,
vV v
the current is determined just by the resistor: I = e ;—Q = %A but the inductor voltage

leads the current by 90 degrees, so it will go like sin (a)ot +é2"-) = cos(wot). Putting all this

together, we have V, =1A(J§E)(2J§H)cos(ﬁt) = \/gcos(ﬁt)A .
2 s
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Please Remove this Tear Sheet from Your Exam
Some (possibly useful) Relations: AV ) ]L.fQ f
& 1 dq AL | = ‘_T 5 A .
dE - g?‘l’ # - ; from dq o ObS‘ k-/ ])cnhmic heating = '[AV = I R = l'i"_l }L
Cﬂ KE i dﬂ — eree, inside [ Gf !/(,
g ) 3
cloicdsurﬂ'me 0 i g If = lCA Vz - QAC (' C,{ ’ﬂ((a/‘f/'
dA points from inside to outside AV 2
b =RC X(. — 1/(1)C
Amen'ng from ato b — Vb B V; == IE ) dg
W = AU = qAV L _ N(Dﬁ,sclf.sg] coil thCk — '-L ﬂ
oV I dt
B =e Byt By =el
0z U; =L1EP
- L = dd t=L/R )1’1 =wl
ch-dE:-iHB-dA £=—N—tlon

dr . Z=AR+ X" =|R+(X,-X.)

. . i 8 Series RLC:
B= Junqvxr I |<<C dB = /uo er tan(D:X/R I/OZIUR

dr P iz
where r points from source to observer

o=2nf =2x7/T k—2n/;k
df B-dA=0 e =T =0 =ofk=(1e) ™
o Ey=viyB, ~ ExB=p
" do, s 1= = S 28

. = - S=—ExB 2 =—, P = —
wimB ds 1, [Ilhrough +&, e ) o absorb c reflect "
where Jiprough is the current flowing through e e T f
any open surface bounded by the contour: Cross-products of unit vectors: ~ da Tl
]mrnugh = _[ j ' d‘& ’

open surface IXIZJXJ—ka 0
ds is right-handed with respect to dA 1><i k jxk=i kxi=]
l ) B
U, =—&,E° Uy = E Some potentially useful numbers
F=g(E+VxB, dF =1dsxB,, A
a(E+¥xB,,) PP ol g X ggx1er 1D
Froy =mv?[r ety &
Breakdown of air E~3x10°V/m

i I46 Earth’s B Field B~5x 107 T=0.5 Gauss
n n : 8

- dB Speed of light c=3x10"m/s
T=puxB F.=p, ? Light (blue tored) A =400 nm to 700 nm

= Electron charge e=1.6x10"7C

AV = IR Avogadro’s number Nj =6.02 x 10% mol’
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Problem 1: Eight Short Questions. Circle your choice for the correct answer

Each problem is worth 5 points for the correct answer, 2 points for a partially correct answer (at
our discretion). If you don’t know the answer you can earn 1 point for admitting that by leaving
it unanswered and writing “I don’t know™ (make this clear!).

Question A (5 points out of 40 points):
In lab 1 you fixed the potential difference between
two plates and measured equipotential lines from
which you determined electric field lines and
approximate charge distributions. You are given a
layout with a conducting plate and conducting
circle, as pictured at left, with the circle held at
+5 V relative to the plate. Identify the most
accurate representation of the equipotential lines
and the electric field lines:

rf‘-f".lj 4 \/(
Equipotential Lines: #

2

o]©

bEE

6 o1 f( g‘r
Electric Field Lines: # ¢
A _
() N ~edin ’ hia (|1 I :
Nedn  Favad  dA ypA (on ator 426l )
Question B (5 points dut of 40 points): = Jlier  TEMR g

In the second lab you worked with a Faraday pail, two nested
conducting cylinders as pictured at left (in the lab the shaded
regions were thin). You held the outer cylinder at ground (i.e. at the
same potential as infinity) and measured the potential of the inner
cylinder relative to the outer cylinder. For one of the measurements
you started from a condition where both cylinders were uncharged,
introduced a positive charge producer into the central region, briefly
connected the inner at outer cylinders with a conductor (your finger)
and, after removing the connection, removed the positive charge
producer. The positive charge producer never touched either of the
cylinders during this measurement. Identify (circle) the sign of the
charge (positive, negative or zero) on each surface after doing this:

I: @ “3 &% —= 0oL 0 (=0 éo/
pd '

- o~

\ /
X ) & (= . an) o |
12: @ @ <0 s B oW Y= 9 Candp g
.j“/ LQ 4t J[ f)(, C (;"“‘, 9 -T’k @.\ { l’u‘t ) /'/\

DA T-‘)C‘fl |I 1 oV Jd A 0~/ \QQ %;‘)bi— [4 r:/y

\ qnd =

l J-/)/\ J (aﬁ \ _'J_ TL\_;JL/‘,J}/] J j\ L/\‘/ % {L

{
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Question C (5 points out of 40 points):

In the third lab you studied the effects of magnetic fields. A
current-carrying coil is placed in a uniform magnetic field pointing
to the right. The current flows as shown, out of the page in the
upper left and in on the lower right.

What are the direction of the force and torque on the coil (circle
one direction for each)?

\
G

\00 Q

Force (dipole will tend to move...):

=y ~ \
eﬁ Mostly Right Zero) 1o é&/i@ (A~
\\ ‘

U p‘},—.\ 1 :
(¢ ((l'(- . Torque (dipole will tend to rotate...): nl é‘wﬂ/\
1 lowind) n [
‘ N ;
|, (adda @\/Q%L”j :
Question D (5 points out of 40 points):

Q]'(U'O()]-EMG/PH L'/UD )
N~ Eah F

‘s /@J/QW‘

In the fourth lab you measured the force and
torque on a magnetic dipole in the field of a
Helmholtz coil (which you could energize in either
Helmholtz or Anti-Helmholtz mode). The picture
at right shows the field configuration created by
the coils after you have energized them in one of
these two ways.

If, before the above field is turned on, you place a
dipole so that it is very slightly below center and
points very slightly away from alignment with the
eventual field of the Helmholtz coil after it is
energized, what force and torque will it feel when
the coils are energized?

» _ﬂ'—fﬁ\;“-_
It will feel a force: @rds center) d@ (eiw/a? from center) no force
poe

- % . =S . -
It will feel a torque: (to align to anti-align no torque

VR !

|
0 ::‘\ 2y : [ o / A
[ \J("’In ‘ /( '{., Er"{' L.‘.,/(f‘:_{/

0/

Stconges)  Fylf L
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Question E (5 points out of 40 points):
In the fifth lab you measured the current and
calculated flux generated in a wire coil that was
moved from well above a magnet with its North
pole facing upwards to well below the magnet and
then back up again (see figure). We defined a
counter-clockwise (as viewed from above) current
as positive and defined the positive flux direction
accordingly. For the portion of the motion from
elow to well above the magnet, which two
TS =
of the following diagrams most closely resemble
what you should have measured for flux and
current respectively?

:{ ,-1(,/'(_’(1.'9{

4 + + %t
© + & v+t

\ \
Flux: C‘\ I{O

X C
Current: /jK \

@ B c0 0
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Question F (5 points out of 40 points):

In experiment six you set up a simple series LR circuit which consisted of the 750 function
generator and the coil (which as you may recall has both a resistance and an inductance). The
750 power supply was used as a “variable battery” which would periodically turn on and off, and
the current through the battery was plotted vs. time. In this experiment you had the opportunity
to measure the effect of inserting and removing an iron core from the coil as well as the effect of
adding an additional resistor either in series or in parallel with the coil. In moving between the
two plots below, which of those four things was done (circle one)?

1 1) Core was added
< 08 Before ?
= o6 Change ore was removed
g 0.4 %
3 o2 3) Resistor was added in parallel
0.0 7\‘-
026 ' 4) Resistor was added in series
2 0.20 - _ .
:'E’ 045 After 5) I'don’t know (1 point)
2 5104 Change
3 ]
O 0054
] ( f
000— ~ - .
000 025 050 " 100 Corp = X f//d [ N\ @V“J o

Time (s)

Cviront U

TOT. T i
Uiy [ dparstd ]

Question G (5 points out of 40 points):

In experiment seven you studied a driven |
series LRC circuit and recorded both the
power supply voltage (solid curve at right)
and current (dashed curve). Which leads and
are we at resonance or above or below the |
resonance frequency ?

Voltage
M

Current :'*._
N— ‘._.

Time

Which leads? @t Voltage neither C hodl, Y
Above or below? @ On Resonance

' P Qrg(}] [ l(j O/%'/l' }5{((,9/1
R

g '3 |
L)L\M"{ﬁ \ !/‘\ %u\“ lr WL

Q(/QW k/\p ‘qu IO/\

F )
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Question H (5 points out of 40 points):

In experiment eight you measured the angular dependence of the radiation from a spark gap
antenna by moving your receiver either horizontally or vertically around the transmitter.

Angular dependence - Horizontal Angular dependence - Vertical

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity over
the range of motion?
@lorizomal
2. Vertical )
3. Both show same range of change (-/
4. Idon’t know (1 point)

I D{(Ll ng‘// Jgn hf)&

—

\

Cﬁﬂc{ i ,L(fw'ﬁf/r} I IMZW (/‘
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Problem 2: Maxwell’s Equations (20 Pts)
The content of this course can almost completely be summarized in Maxwell’s equations. For
each of Maxwell’s equations please do the following:

1)
2)

3)

4)

State the NAME of the equation

Write the INTEGRAL FORM of the equation (in other words, write down the equation as
you have learned it)

Briefly EXPLAIN THE MEANING of the equation (that is, in words, explain the IDEA
behind the equation — do not simply give the meaning of the symbols).

For TWO OF THE FOUR equations (your choice): give a REAL WORLD EXAMPLE of
how you would use the equation to make an approximation of something. You have been
given lots of these on the problem sets this semester — feel free to choose one of those or
make up one of your own. Give values for all quantities in your approximation. Note that
you don’t need to do any more work here than you would if you really were doing the
approximation (i.e. don’t work through the problem in gruesome detail, just show how you
can make a quick approximation).

Gh ne  esiay o
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Problem 2: Maxwell’s Equations continued...
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Problem 3: Charges (10 points): +q +q +q
Twelve equal charges +q are situated in a circle with y +q
radius R, and they are equally spaced (see the figure). d
(O {Omb S +()
. . o +d +q
(a) What is the net force (magnitude and direction) on a
charge +Q at the center of the circle. | R
1ot | oy & 0 Coc Veciors +4 +y
( -
I 00a L O ;AU +¢ = +¢
q

—

| ;
f(\f 0 (\le EL’)/I ¢ = O 6\/ MM ( ;/ 7

We remove only the +q charge which is located at “3-0’clock.”
(b) What now is the force (magnitude and direction) on the charge +Q at the center of the circle?

1N
~

=X
Lo
=
—
£,
<
¢
o
0
S
.

—_—

}: - ﬂ b /\’(fjh']‘

Ny
R (et
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Problem 4: Generator (20 points) .

A simple electric generator (as shown below) is rotatmg about the y-axis with a frequency of
f[Hz]. There is a uniform magnetic ﬁeld B [T] in the +z direction. The rotor consists of a coil
of n windings each with an area § [m ]. The generator, through slipping contacts, is powering a
light bulb whose resistance is R [Q]. The ohmic resistance of the coil is negligibly small
compared to that of the light bulb. You ma}y also assume here, for simplicity, that the self-
inductance of the coil is negligibly small. .

(a) What is the maximum value (Imax) of the induced alternating current? Also indicate in the
figure one of the two positions of the coil when this maximum current occurs.

T - L l’]d‘( (5 FD{ .;,14 f/},:fl i
ol ”‘) /

i

o I ] ',/' : ‘
\..U’/Q/W" U‘f{t/élﬂ )}\1 é - /",g:){yl L’}"qﬂy !,(,C] @

\:é' ) | J‘@ | 1
R R Qd,r TR -’L )’15 04(”"

7
{

’\‘\

t?g,l

) m L
‘L[D; (‘\‘yjr)j rf/f/

(b) What is the ttme—averaged mechamcal power (in Watts) that must be supplied to maintain

l)
the rotation (neglect friction in the bearings)? “hoe [,/ IL
I u)]’ A ]99 he L{.ln'}g .L_) g /“ ' jwlj ‘
\; 0 (A~ ,‘/ N /u)‘_)‘/: A \ e e
\ il
(/ Vv D [ = l YA f N
_ T
- /Q
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Problem 5: Circuit (20 points)
The LRC circuit as shown is driven by a power supply whose EMF = Fycos(ot). In steady state,
the current through the ideal self-inductor is I, the current through the ideal capacitor is Ic and
the current through the resistor is Iz. Steady state means that you wait a long time so that all
transient phenomena have died out. Don’t even THINK of writing down a differential
equation. This problem is designed to ﬁm have an appreciation for how a
capacitor and a self-inductor behave i extreme situations. No fancy math is needed.
Express all your answers in terms of L, R, Cand V5.

( ['ii"‘("‘,

what ore cight

& *fo,o"

/ y/ (ﬂ //' v
(a) What are the maximum values of I, Ic and Iy in case ®=0 (zero frequency means that the
power supply is now a simple battery with zero internal resistance). We are asking you for

!
[ OW ( iy steady ,ﬂte_solutlonrs/,\ I?IS)T transient solutions. ot ( o po } oam Clramy taos
- T (/ ' '
\ i g ¥ L TN e
Chos N §=1R-0 0 70 f1q (-9 -
C =T . & - E—— — (
A m‘y( dlane . AP IL W = ( " ‘
L T ‘ T ; .- (\
| 6~ Tt I
l7 () al ] \ — N ey E O / J T —
. T . -Lir - T,
(onsts ? e 4 (" what
(nosts S " wha
- }l i, ) (b) Answer the same question as under “(a)” for the other extreme when ® approaches a value e

which is infinitely high.

/ ./ﬂ/ : ; ‘ -'/C';: Or
( L O -
S— o -0
‘ T ~ L ,{'},
( L 0 -

0 Thoghf 50/u2‘f'}'9"'j' Sl
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Problem 5: Circuit continued... _/, ; Yrin oy _J EL a7 T e, ' ___,./.';}

(c) Do you expect the maximum value of the current I to be higher or lower than the value you

found under “(a)” in the case that the frequency is somewhere between the two extremes?
Give your reasons.

£ Game  — QW% Thats W g
; : B } i)
4 L Y fl Cm 1 'Ml ?j.S org s @5 ‘73’”7} ( 4 /
[N }'Q/ﬂv/ ( G/ )7 \ -
( h ok (uspes o (M pe deaah | /7. b,

Cutenl™  hwos

)}‘.,«‘; i(_; VI LLE ( 1/

—_—

(d) There is one frequency (in steady state) for which Iy is zero. This is not so intuitive, but
given the fact that this is so, what do you think that frequency is? Please do not try to
calculate this frequency.

\ | ‘l‘/\/.’.lu;k/ e 4V, (d
L5 (T (Psondre@ od e
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Problem 6: Capacitor (30 points)

A parallel-plate capacitor consists of two circular plates, each
with radius R, separated by a distance d. The electric field E
between the plates is uniform and directed upwards (see \
sketch). i

s fodd 6 4y
(a) What is the total (éne y stored in the electric field of the
capacitor? Assumég that the electric field is uniform ' _ )

between the plates and zero outside of the plates (i.e.,..> /. : %o L]
neglect fringing fields). ’D Nor i l, J[ U ( [/\fi a 7,}’\@” (N z() ’lj
i\ : |

hﬂEov
Ygﬂtzafﬂﬁza
= QOTM)ZQ" (R

pa
101 ¥ i
" d{dn [ Iyl lon
(b) Now, suppose that the electric field is increasing with time (dE/dt > 0). The point P is _ -
located between the plates at radius » < R (see sketch). Derive an expression for the é (e L(?(-fﬁﬁ/t‘J ¢ el

magnitude of the magnet% point P and indicate its direction there on the sketch. /| wmesf

E 70 i@]\ 3"“/'! E7 /

T poms opo P

O)W)r@ J fg}O/afmz 7l

O (A7t |

8 i \/Mr) - Cj@,}]hu@lf ‘b,“‘j fw[ﬂ@q
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Problem 6: Capacitor continued...
(c) What is the Poynting vector at point P? Give both direction and magnitude.

_%Q o , e ) ‘ :
(O 5 wll / ; ’U!) ( ‘ s I:_.':(’{o Eo f }:(_E
s d P 70 M d

l

—

(d) Using the Poynting vector, determine the total electromagnetic energy flowing into or out of
the capacitor per unit time across » = R. Which is it (into or out of)? Write down an
equation relating this quantity to the electric energy contained in the capacitor (see p

A)e a | r;l 5 T f‘{ d /“"(75
g O‘J/Ef d72 [O//CIG sk o
v 8] O ’/27 10 (o por ¢

6 /2 §
- = 0 My

670
gj"@ em bD/ (& Jub } M/

) QJY b y 0 ZUW(
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Problem 7: Transmission Line (60 pts) " / ' i

The rest of this exam is an extended question dealing with transmission lines. There are a variety
of transmission lines used in the world. A simple example is two wires running next to each

other with current flowing one direction in one and the opposite in the other. Another example
that you considered in problem set 12 was the coaxial cable, where current flowed up the inside
wire and back along the outer shield.

In this problem you will calculate the properties of a microstrip transmission line. It consists of
two thin parallel plates of width w and length £, separated by a small distance d (they are

typically held apart by a dielectric, but to make your life simple let’s just pretend there is air
between the plates). It is shown both in side view and front view below.

w

The dimensions are such that you should assume that any fields created by the transmlssmn \
line are confined to the region between the two plates -

no ¥ 3
We use transmission lines to carry power from battenes or power supplies to loads (typically
modeled as resistors):

w /

+
I matterv ~ Resistor |
7 g =

In this problem you will calculate the capacitance and inductance of the microstrip transmission
line and then study energy flow at DC. -

4 \ i f

NOTE: PLEASE READ THIS CAREFULLY

In several parts of this problem you will be asked to calculate something that will require the use
of one of Maxwell’s equations. Make sure that you state the name of the equation and the write
it in the form that you plan to use it before you do that part. You do not need to describe the
equation as you were asked to do earlier in this exam, but you do need to be explicit in the
calculations and draw and label anything that you need to use to do the calculation. [ will not
provide any further drawings. Please duplicate drawings from this page (simplified to remove
the perspective of course) when you think they will be useful.

Do not forget to give both magnitude and direction of vector quantities.

Feel free to tear out this page so that you do not have to continually turn back to it.
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Problem 7A: Capacitance of the Microstrip Transmission Line

In the first two parts of this problem (A and B) we will consider the transmission line in
isolation (no battery or load resistor).

Calculate the capacitance of the transmission line.

(/-] ) y o~ & -¢l fl‘
g >

—

ég E C”z] - F/4 ~ Q_Qx?(_
2
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7
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ol g Letgueyp e
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Problem 7A: Capacitance of the Microstrip Transmission Line continued
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Calculate the inductance of the transmission line. @‘“

NOTE: There are two ways to do this. If you don’t recall either of them then I suggest that you
at least send some current through the transmission line and calculate the magnetic energy
between the plates.

| T4 "} ] 0
(; ﬂ}/ﬁg ) l il (S RIS,
o

Problem 7B: Inductance of the Microstrip Transmission Line

X
s o Tor —— O —©

{ | {’ 5 '.f P "/'L// /f/f_:',; =g , /(“().’1{1\.[ })dﬁf)ﬂt (/J-v‘f/'/&/{)
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Problem 7B: Inductance of the Microstrip Transmission Line continued
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line

We now connect the transmission line to a battery (EMF &) on the left and a resistor (resistance
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a
long time after this connection has been made (after any transient behavior has passed).

(a) What is the electric field between the plates? HINT: This is much easier than you probably
think now that the battery fixes the potential difference between the plates.

| o | 1
IRZA% fo =V
‘ W EA ¥ -f/i/ A e
HUAS > boN
/
/ I’_' % Ul/ v - é,
‘q

'O G
(b) What is the magnetic field between the plates? HINT: You probably already did this in 7B.
Feel free to just quote your previous result.

(

9 l/ ) (,}- 2 s _/{/{0 } P A £ Ov\ly I,w [ h"] 1 5
- ¢

~ i 5 \/ ‘]
U:ﬁ 2 £ A w7 b d
b2 = o W -
F 4 e -
\B"' ,f;!.,. , ( “— [ 1L Ve Cdlt
/ :- (0, |
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line continued

(c) What is the Poynting vector between the plates?
(R ] f‘ |

=
E 7 Zj / 7 {)j ‘\" i'if." v , Ly d.

// ( ]}‘.-':,;,:\ r
% Al {j

e ) \
~-0 Vi % ({ ,1

Ly

(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what
you would expect given the meaning of the Poynting vector.

L
Miae o/ei

Need o 9eF plsstd Joing

. bl  lgg

o H Q’)@@‘WU} pom. I

- "o gml, '\



MIT Department Of Physics p. 1 of 15

Problem 1: Eight Short Questions. Circle your choice for the correct answer

Each problem is worth 5 points for the correct answer, 2 points for a partially correct answer (at
our discretion). If you don’t know the answer you can earn 1 point for admitting that by leaving
it unanswered and writing “I don’t know” (make this clear!).

Question A (5 points out of 40 points):

" In lab 1 you fixed the potential difference between
two plates and measured equipotential lines from
which you determined electric field lines and
approximate charge distributions. You are given a
layout with a conducting plate and conducting
circle, as pictured at left, with the circle held at

+5 V relative to the plate. Identify the most
accurate representation of the equipotential lines

and the electric field lines:

Equipotential Lines: #
Electric Field Lines: #

Field lines must be perpendicular to surfaces.
Equipotentials must be closest where field is
strongest (between conductors)

4
6

@ |.|©

—
—
2z

|

Question B (5 points out of 40 points):

In the second lab you worked with a Faraday pail, two nested
conducting cylinders as pictured at left (in the lab the shaded
regions were thin). You held the outer cylinder at ground (i.e. at the
same potential as infinity) and measured the potential of the inner
cylinder relative to the outer cylinder. For one of the measurements
you started from a condition where both cylinders were uncharged,
introduced a positive charge producer into the central region, briefly
connected the inner at outer cylinders with a conductor (your finger)
and, after removing the connection, removed the positive charge
producer. The positive charge producer never touched either of the
cylinders during this measurement. Identify (circle) the sign of the
charge (positive, negative or zero) on each surface after doing this:

I: >0 <0 o1 >0 =0

12: =0 <0 02 >0 <0

When touching the two together negative charges flow to the inner conductor to shield the
positive charge. In the end they move to O1 and positive charges shield them at I2. Nothing is
at O2 because it is grounded, or at I1 because it is an interior surface.
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Question C (5 points out of 40 points):
In the third lab you studied the effects of magnetic fields. A
current-carrying coil is placed in a uniform magnetic field pointing
B to the right. The current flows as shown, out of the page in the
upper left and in on the lower right.

What are the direction of the force and torque on the coil (circle
one direction for each)?

Force (dipole will tend to move...):

Mostly left Mostly Right

Torque (dipole will tend to rotate...):

lockwise Counterclockwise None

No force in a uniform field. The dipole moment is up and to right (from right hand

rule) so torque to align makes it rotate clockwise.

It will feel a force:  up (towards center) |down (away from center)  no force

Question D (5 points out of 40 points):

In the fourth lab you measured the force and
torque on a magnetic dipole in the field of a
Helmholtz coil (which you could energize in either

Helmholtz or Anti-Helmholtz mode). The picture
at right shows the field configuration created by
the coils after you have energized them in one of %

these two ways. »-
If, before the above field is turned on, you place a r

dipole so that it is very slightly below center and
points very slightly away from alignment with the
eventual field of the Helmholtz coil after it is
energized, what force and torque will it feel when b
the coils are energized?

It will feel a torque: to anti-align no torque

This is an anti-Helmholtz configuration (field is zero at center). We are below center so
when the field is energized we will align with the field (ALWAYS!) and then move to
the region of strongest field, which is downwards.
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Question E (5 points out of 40 points):

In the fifth lab you measured the current and
calculated flux generated in a wire coil that was
moved from well above a magnet with its North
pole facing upwards to well below the magnet and
then back up again (see figure). We defined a
counter-clockwise (as viewed from above) current
as positive and defined the positive flux direction
accordingly. For the portion of the motion from
well below to well above the magnet, which two
of the following diagrams most closely resemble
what you should have measured for flux and
current respectively?

@ &

(©) 3 P 5 : < (D) b ; 2

Flux: D Current: @

Flux is always upwards (positive). The flux will increase then decrease (D). The current will
fight the increase by flowing clockwise, then fight the decrease by flowing ccw (C).
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Question F (5 points out of 40 points):

In experiment six you set up a simple series LR circuit which consisted of the 750 function
generator and the coil (which as you may recall has both a resistance and an inductance). The
750 power supply was used as a “variable battery” which would periodically turn on and off, and
the current through the battery was plotted vs. time. In this experiment you had the opportunity
to measure the effect of inserting and removing an iron core from the coil as well as the effect of
adding an additional resistor either in series or in parallel with the coil. In moving between the
two plots below, which of those four things was done (circle one)?

10 1) Core was added

T 08 Before

:C::’ 06 Change 2) Core was removed

=

= 04—

3 o2l 3) Resistor was added in parallel
O‘()ﬁ

4) Resistor was added in series ]

After 5) Idon’t know (1 point)
Change
050

Time (s)

0.25

0.20
0.15
0.10
0.05
0.00

000

Current (A)

The current decreased so resistance must have been added in series. In addition, the time
constant decreased (t = L/R) so this also makes sense.

Question G (5 points out of 40 points):

In experiment seven you studied a driven
series LRC circuit and recorded both the
power supply voltage (solid curve at right)
and current (dashed curve). Which leads and
are we at resonance or above or below the
resonance frequency ?

Voltage
P

Current
L 3

Time
Which leads? Voltage neither
Above or below? Above On Resonance

The current peaks first so it leads. Current leading is capacitor-like, so we are below the
resonance frequency, where the capacitor dominates.
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Question H (5 points out of 40 points):

In experiment eight you measured the angular dependence of the radiation from a spark gap
antenna by moving your receiver either horizontally or vertically around the transmitter.

Angular dependence - Horizontal Angular dependence - Vertical

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity over
the range of motion?

1. Horizontal T

2. Vertical
3. Both show same range of change
4. Idon’t know (1 point)

The vertical motion shows no change in intensity because there is symmetry that direction.
Horizontally the intensity decreases as you move away from alignment between transmitter and
receiver.
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Problem 2: Maxwell’s Equations (20 Pts)
The content of this course can almost completely be summarized in Maxwell’s equations. For
each of Maxwell’s equations please do the following:

1) State the NAME of the equation

2) Write the INTEGRAL FORM of the equation (in other words, write down the equation as
you have learned it)

3) Briefly EXPLAIN THE MEANING of the equation (that is, in words, explain the IDEA
behind the equation — do not simply give the meaning of the symbols).

4) For TWO OF THE FOUR equations (your choice): give a REAL WORLD EXAMPLE of
how you would use the equation to make an approximation of something. You have been
given lots of these on the problem sets this semester — feel free to choose one of those or
make up one of your own. Give values for all quantities in your approximation. Note that
you don’t need to do any more work here than you would if you really were doing the
approximation (i.e. don’t work through the problem in gruesome detail, just show how you
can make a quick approximation).

Gauss’s Law: (ﬁ E-dA= M means that charges create diverging electric fields
g

closed surface o
How much excess charge is on your finger when you get a shock on a doorknob?

E ~3x10° X; A = sphere of radius 1 cm:47r(l cm)z z10'3m2;£0 ~9x107" E
m m

So Q~€0EAz(9x10'” i)(3x106 1}(10--%112)~3><1o-8 C
m m

~ dd, .

Ampere-Maxwell Law: <§ B-ds =y, (Ithm“gh ol a’t{; ] means that current and changing
contour

electric fields create curling magnetic fields

How much magnetic field do you feel from a power line going into your house.

0% m

s = circumference of 3 m circle = 27r(3 m) =20 mypu, =41 T I =100A

il = N
So B J‘—“:[lw %)(IUOA)@O m)” ~2x107 T
s
(of course, there is typically another wire nearby taking current in the opposite direction that will

reduce this, but as a first approximation this is fine).

Magnetic Gauss’s Law: (ﬁ B-dA =0 means no magnetic monopoles

closed
strface

Faraday’s Law: (E.ds= L [B-dA means that changing magnetic fields can induce curling

dt
electric fields
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Problem 3: Charges (10 points):

Twelve equal charges +¢ are situated in a circle with
radius R, and they are equally spaced (see the figure).

(a) What is the net force (magnitude and direction) on a
charge +Q at the center of the circle.

4 points:

By symmetry the net force is zero.

p. 7 of 15
+(
$ et b
+g +¢
f )
+if t +<’ + ¢
R
+q +{j
+¢ gyt
+d

We remove only the +q charge which is located at “3-0’clock.”
(b) What now is the force (magnitude and direction) on the charge +Q at the center of the circle?

6 points:

With the 3-0’clock charge removed, the 9-0’clock charge is now unbalanced, so it exerts a force:

to the right
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Problem 4: Generator (20 points)

A simple electric generator (as shown below) is rotating about the y-axis with a frequency of
f[Hz]. There is a uniform magnetic field B [T] in the +z direction. The rotor consists of a coil
of n windings each with an area § [m?] . The generator, through slipping contacts, is powering a
light bulb whose resistance is R [(2]. The ohmic resistance of the coil is negligibly small
compared to that of the light bulb. You may also assume here, for simplicity, that the self-
inductance of the coil is negligibly small.

B
&

(a) What is the maximum value (Ijy) of the induced alternating current? Also indicate in the
figure one of the two positions of the coil when this maximum current occurs.
10 points:

The current is driven by the EMF induced by changing magnetic flux through the loop
(Faraday’s Law):

TG e 2 f
TR sin (27 /1) B cos (27 ft)

Max

So the maximum of the current is / =%Bn3’

The current is a max when the flux is changing the most which is when the loop is 90 degrees to
the way it is pictured above

(b) What is the time-averaged mechanical power (in Watts) that must be supplied to maintain
the rotation (neglect friction in the bearings)?

10 points:
<P> = <12R> = <(% BnScos(2n‘ﬁ))- R> H %M

. 2
Where the 'z out front comes from the time average of cos™.

o3
[ ]
[ ]
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Problem 5: Circuit (20 points)

The LRC circuit as shown is driven by a power supply whose EMF = Vycos(wt). In steady state,
the current through the ideal self-inductor is Iy, the current through the ideal capacitor is I¢c and
the current through the resistor is Iz. Steady state means that you wait a long time so that all
transient phenomena have died out. Don’t even THINK of writing down a differential
equation. This problem is designed to see whether you have an appreciation for how a
capacitor and a self-inductor behave in extreme situations. No fancy math is needed.
Express all your answers in terms of L, R, C and V).

(a) What are the maximum values of I, I¢ and I in case ©=0 (zero frequency means that the
power supply is now a simple battery with zero internal resistance). We are asking you for
steady state solutions, NOT transient solutions.

6 points:

At low frequency the capacitor will have a high impedance and the inductor will have a near
zero impedance, so all current goes through the inductor:

(b) Answer the same question as under “(a)” for the other extreme when « approaches a value
which is infinitely high.

6 points:

At high frequency the inductor will have a high impedance and the capacitor will have a near
zero impedance, so all current goes through the capacitor:
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Problem 5: Circuit continued...

(c) Do you expect the maximum value of the current Ig to be higher or lower than the value you
found under “(a)” in the case that the frequency is somewhere between the two extremes?
Give your reasons.

5 points:

In the two extreme limits one of the two parallel elements provides a short. In intermediate

frequencies this will not be the case so the impedance will be HIGHER and the current will be
LOWER.

ey e —_——

ot :-_,/ j\’{j Jl ( j\( 6 xILcjz

(d) There is one frequency (in steady state) for which Iy is zero. This is not so intuitive, but
given the fact that this is so, what do you think that frequency is? Please do not try to
calculate this frequency.

3 points:

This will happen when the frequency is such that the inductor and capacitor ring:

—_—
Ny
-
—
<
2,
=
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Problem 6: Capacitor (30 points)

A parallel-plate capacitor consists of two circular plates, each
with radius R, separated by a distance d. The electric field E
between the plates is uniform and directed upwards (see
sketch).

(a) What is the total energy stored in the electric field of the
capacitor? Assume that the electric field is uniform
between the plates and zero outside of the plates (i.e.,
neglect fringing fields).

The energy stored is in the electric field. Since E is nearly constant we can just multiply the
energy density by the volume inside the capacitor:

2
_ &k

2
Uy =u,-V= > ER2d=mE2

(b) Now, suppose that the electric field is increasing with time (dE/dt > (). The point P is
located between the plates at radius r < R (see sketch). Derive an expression for the
magnitude of the magnetic field B at point P and indicate its direction there on the sketch.

With the electric field increasing, we have an upwards displacement current:

_, do, _ d(Exr’) . dE
displacement 0 d t 0 d £ 0 d f
C'fB- dl =B-27r = ol 4 ccomens = Moo ‘;—f = B= %ﬂo%"% out of page at P

(c) What is the Poynting vector at point P? Give both direction and magnitude.

ExB = _I—E-l-yogord—E = lgor}i'é?— (to the right/inwards!)
Hy iy 2 dt 2 dt

(d) Using the Poynting vector, determine the total electromagnetic energy flowing into or out of
the capacitor per unit time across » = R. Which is it (into or out of)? Write down an
equation relating this quantity to the electric energy contained in the capacitor (see part (a)).

To find the total energy flowing in consider that the band at » = R has an area 4 = 2nRd, so
A, S(r=R)- 4= [lgomfﬁ (272Rd) = aondeEiﬁ; .
dt 2 dt dt

Notice that this is indeed the time derivative of Ug that we calculated in part (a).
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Problem 7: Transmission Line (60 pts)

The rest of this exam is an extended question dealing with transmission lines. There are a variety
of transmission lines used in the world. A simple example is two wires running next to each
other with current flowing one direction in one and the opposite in the other. Another example
that you considered in problem set 12 was the coaxial cable, where current flowed up the inside
wire and back along the outer shield.

In this problem you will calculate the properties of a microstrip transmission line. It consists of
two thin parallel plates of width w and length £, separated by a small distance d (they are

typically held apart by a dielectric, but to make your life simple let’s just pretend there is air
between the plates). It is shown both in side view and front view below.

wo o J e X,

The dimensions are such that you should assume that any fields created by the transmission
line are confined to the region between the two plates.

We use transmission lines to carry power from batteries or power supplies to loads (typically
modeled as resistors):

W 14
+ —— — e —
Ba:cte[y Resistor

a

In this problem you will calculate the capacitance and inductance of the microstrip transmission
line and then study energy flow at DC.

NOTE: PLEASE READ THIS CAREFULLY

In several parts of this problem you will be asked to calculate something that will require the use
of one of Maxwell’s equations. Make sure that you state the name of the equation and the write
it in the form that you plan to use it before you do that part. You do not need to describe the
equation as you were asked to do earlier in this exam, but you do need to be explicit in the
calculations and draw and label anything that you need to use to do the calculation. I will not
provide any further drawings. Please duplicate drawings from this page (simplified to remove
the perspective of course) when you think they will be useful.

Do not forget to give both magnitude and direction of vector quantities.

Feel free to tear out this page so that you do not have to continually turn back to it.
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Problem 7A: Capacitance of the Microstrip Transmission Line

In the first two parts of this problem (A and B) we will consider the transmission line in
isolation (no battery or load resistor).

Calculate the capacitance of the transmission line.
STEP 1: Place £Q on the plates and calculate the electric field between them?

We have a charge +Q on the top plate so an electric field will be
created pointing downwards. We will use Gauss’s Law to

-------

calculate the electric field between the plates: Cﬁ E-dA = Lane
Pillbox &,

We use a Gaussian pillbox with end cap area 4. The only

surface of the pillbox we care about is the one between the plates.

The field runs perpendicular to the area vector on the sides

(doesn’t penetrate them) and the field is zero outside because the

fields from the two plates cancel there.

cﬂ T L T L S ¢

il £ g, wl wle

STEP 2: Calculate the voltage difference between them

AV=Ed'= od
wggl?

STEP 3: Calculate the capacitance
C= 0 wilg,
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Problem 7B: Inductance of the Microstrip Transmission Line

Calculate the inductance of the transmission line.

NOTE: There are two ways to do this. If you don’t recall either of them then I suggest that you
at least send some current through the transmission line and calculate the magnetic energy
between the plates.

STEP 1: Place current £/ on the plates and calculate the magnetic field between them?

We have a current / flowing out the top plate and in the bottom
plate meaning that a magnetic field is created between the two

g plates pointing to the right (—i direction). The field is zero
—r @ outside by cancellation. We use Ampere’s Law with the
Amperian loop pictured at left and note that only the bottom
leg contributes (B=0 at top and is perpendicular to ds on the
sides):

3

g M3
W

enc

ﬁ-d§=Bx=yI
4 o

=
=p,—I=
w

STEP 2: Calculate the inductance

We will use energy to calculate the inductance. The magnetic field is uniform so we can just
multiply the energy density by the volume:

R =(”"I wed _Iatan Lpmlp sl
24 Wigp 2, 2 W 2 W
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line

We now connect the transmission line to a battery (EMF &) on the left and a resistor (resistance
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a
long time after this connection has been made (after any transient behavior has passed).

(a) What is the electric field between the plates? HINT: This is much easier than you probably
think now that the battery fixes the potential difference between the plates.

E--Zk
d

(b) What is the magnetic field between the plates? HINT: You probably already did this in 7B.
Feel free to just quote your previous result.

Bo b _taf;
w w R

(c) What is the Poynting vector between the plates?

2
g:_l_ﬁxﬁ=i[_£ﬁjx(_&.iij=5_Lj
Ho Ho\ d R wd

(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what
you would expect given the meaning of the Poynting vector.

The relevant area is the cross-sectional area of the transmission line, wd. The Poynting vector is
uniform so we can just multiply rather than integrate:

2

H S-dA=S84= % = Power dissipated by the resistor
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any open surface bounded by the contour:

ohmic heating —

Ilhrough = _“ j L dA
open surface
ds is right-handed with respect to dA
1 5 B’
u, ﬁEEOE“ Uy = i
F=q(E+9xB,) dF=1IdsxB,
F;:Cl'll. ”Ivz/r
iL=1I4n
AV = IR R B
A

2

P =JAV =I’R= AV j’ V/

Physics 8.02 Final Exam Fall 2005
Please Remove this Tear Sheet from Your Exam
Some (possibly useful) Relations:
=1 a’q . 0
dE = = —
4re, P AV
.. . 1 2 07
(ﬁ KE'dAZQfm;ms‘dc U:ECAV — 2C
cIﬂff:dsurfacc o e RC XC = I/C()C
dA points from inside to outside
F.d = B. dA \' =i dq:,sgl loop L _ Nq)l!.sulf.sgl coil P _ —L ﬁ
L e e
A mowr;r;matnb Vb_ :_JE ds Uf,z_;—sz
=Ll R X, =aoL
5 M, gV xF 5 M dsxr ) 2 2 2
B dB = = = — "
4z #* |v| == 4z #? Series RLC: ‘ £ \/R +(X" Ay )

where r points from source to observer tang = X/R o=1LR
qtjﬁﬁ.dgzo o =2nf =2n/T k =2m/A

cied =T =) =ofk=(pe,)”

q ]—3 -ds =H, (Ilhrough + &, dCDE J EO = v"S'ﬂ BO ExB = p

contour dt o l = S 2S

. i S=—ExB Pabsorb__; Peﬂct_

where finrougn is the current flowing through Th c

[f the function D(¢) satisfies the equation

%D(r) ~2® then Dry=D e

Cross-products of unit vectors:

ixi:jx]:f{xf&=0
ixj=k jxk=i kxi=]

Some potentially useful numbers
1 N m?
dreg ;

=9x%10°

k‘)= ,U”=472‘><10_7Tm
e A
Breakdown of air
Earth’s B Field
Speed of light

Light (blue to red)

E~3x10°V/m
B~5x10°T=0.5 Gauss
c=3x10%m/s

A =400 nm to 700 nm

Electron charge e=1.6x10"¢C
Avogadro’s number N =6.02 x 10** mol™
Calories 1cal=10"Cal=4.184 ]
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Problem 1: Ten Short Questions. Circle your choice for the correct answer
Each problem is worth 4 points for the correct answer or | point for admitting that you don’t
know how to do it. Unanswered or incorrectly answered problems will earn a 0.

Question A (4 points out of 40 points):
In lab 1 you fixed the potential difference between

A two plates and measured equipotential lines from
+ 2 which you determined electric field lines and
rT 1 + approximate charge distributions. You are given
bl e e the two conducting plates at left, with the top plate
B S B held at +5 V relative to the bottom plate. What can

you say about the relative magnitude of the charge
densities near the four locations indicated?

1L 1Q(A) ~ Q(C)] > [Q(B)| ~ |Q(D)
2.1Q(A) > |Q(B)| ~ [Q(C)| > [Q(D) |
QA ~ Q)| > [Q(C)] ~ [Q(D) 4 el
71QM) ~ Q) > [Q(B) ~ [Q(A)| N
5.1Q(B)| ~ [Q(D)| > |Q(A)| ~ [Q(C)|
6. 1Q(A) > |QMD)| ~ [Q(C)] > |Q(B)
7.1Q(C)| > |Q(A)] ~ [Q(B)| > |Q(D)

8. I don’t know (this answer is worth 1 point)

Question B (4 points out of 40 points):

In the second lab you worked with a Faraday pail, two nested
conducting cylinders as pictured at left. You held the outer cylinder
at ground (i.e. at the same potential as infinity) and measured the
potential of the inner cylinder relative to the outer cylinder. For one
of the measurements you started from a condition where both
cylinders were uncharged, introduced a positive charge producer
into the central region, briefly connected the inner at outer cylinders
with a conductor (your finger) and, after removing the connection,
removed the positive charge producer. The positive charge
producer never touched either of the cylinders during this
measurement. Which of the following statements about the surface
charges at the end of this measurement is true?

L".‘_'...

1. Q(1)=0; Q(O1)=10; Q(I2)=0;Q(02)=0
2.)Q(I1)=0; Q(OI) <0; Q(I2)>0; Q(02)=0
- QU1)=0; Q(O1) <0; Q(12)>0; Q(O2) <0 ; |}

4 QN =0: QOD>0; QU2 <0;:Q©)=0 (£ 1Hin b, from (o Hwo
5. Q(I1)=0; Q(O1)>0; Q(12) <0: Q(02) > 0

6. Q(IT) <0; Q(OI)>0; Q(2) <0; Q(02)>0

7. ldon’t know (this answer is worth 1 point) O )

= 4 .
L0 17
1| =0

O\ -
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Question C (4 points out of 40 points):

In the third lab you constructed the
circuit at left in order to study the effects
of capacitors in circuits. You measured
the current through and voltage across
the resistor R using the ammeter and
voltmeter as pictured at left. The_ battery
would periodically sthclfon and off)
allowing you to measure t itial’
values (right after the battery switched
on) and their “final” values (a long time
after the battery was switched on). After
measuring the behavior in this circuit
you had the opportunity to add a second
resistor_in parallel with the capacitor C.
After adding the second resistor which of the following statements is true?

1. Neither the initial current nor the final voltage changed C = [n .r-{ a { { v wl / 0
2. The initial current was smaller but the final voltage was the same e
3. The initial current was larger but the final voltage was the same I[
—=4, The initial current was the same but the final voltage was smaller {na \/U [) ¢
= The initial current was the same but the final voltage was larger ‘
6. [don’t know (this answer is worth 1 point) RU;:: .]{g/p 3/:0
T o
) 5 Y
i v
Question D (4 points out of 40 points): PO LSy

In the fourth lab you studied the effects of magnetic fields.
A current-carrying coil is placed in a uniform magnetic
field pointing upward. The current flows as shown, out of
the page in the upper left and in on the lower right.

What are the force and torque on the coil?
-~ No force or torque
No force, torque to rotate clockwise
gNo force, torque to rotate counterclockwise
4. Force up, no torque
5. Force up, torque to rotate clockwise
6. Force up, torque to rotate counterclockwise
7. Force down, no torque
8. Force down, torque to rotate clockwise
9. Force down, torque to rotate counterclockwise
10. I don’t know (this answer is worth 1 point)

Gif 2y Iy
(&?./}fﬂu d{(ﬁyﬂ]’/ (Dd_.ff/' N,{j"/ ’{(_; .}Li‘/[ﬂ { !L} '5
| 00 v &
D‘«Zw'f(,llﬂ Wiy f; [

Oc ‘) ’/ (r "'_‘_, : D Ho o




8.4 Torque on a Current Loop

What happens when we place a rectangular loop carrying a current / in the xy plane and

switch on a uniform magnetic field B = Bi which runs parallel to the plane of the Ioop,
as shown in Figure 8.4.1(a)?

o ¢ ! F]=' 0

P 1. PM@#{p

£ = _,_® ak IZ; @ = I( [‘7(8)

. © Feo o yn Womenky

Figure 8.4.1 (a) A rectangular current loop placed in a uniform magnetic field. (b) The
magnetic forces acting on sides 2 and 4.

From Eq. 8.4.1, we see the magnetic forces acting on sides 1 and 3 vanish because the
length vectors £, =—bi and £, = bi are parallel and anti-parallel to B and their cross

products vanish. On the other hand, the magnetic forces acting on segments 2 and 4 are
non-vanishing: | ! 1 [ ' (
\[. rc:' Py l ‘l’“ ’.I (1 J‘.' ( " ‘) | / .'l f{ I l’.’.“i. L] [

\
=1(= )x(B) 1 Bk
aj 1 a ‘(\/6’ [ 8.4.1)

F4 = l(aj)x(Bi) =-IaBk

with I:“?_ pointing out of the page and ?‘4 into the page. Thus, the '@ on the
rectangular loop is

F_ =F+F +E+F, :{j (8.4.2)

as expected. Even though the net force on the loop vanishes, the forcesf" and F, will

produce a torque which causes the loop to rotate about the y-axis (Figure 8.4. 2) The
torque with respect to the center of the Ioop is P
F Y
{. i
S

\j- C/(/LV‘- g h(—%tij +(gf}<ﬁ =[—%EJX(JaBQ)Jr(gi)x(—JaBR) /f (Zf ’

(8.4.3)
labB IabB
( > > )]—[abBJ lIABJ

l/v%f P
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where A =ab represents the area of the loop and the positive sign indicates that the
rotation is clockwise about the y-axis. It is convenient to introduce the area vector

A = Anwhere nis a unit vector in the direction normal to the plane of the loop. The
direction of the positive sense of n is set by the conventional right-hand rule. In our case,

we have n =+Kk . The above expression for torque can then be rewritten as

F=I/AxB (8.4.4)
Notice that the magnitude of the torque is at a maximum when B is parallel to the plane
of the loop (or perpendicular to A ).

Consider now the more general situation where the loop (or the area vector A ) makes an
angle @ with respect to the magnetic field.

Figure 8.4.2 Rotation of a rectangular current loop

From Figure 8.4.2, the lever arms and can be expressed as:

T, =§(—-sin9€+c059fc ) =T, (8.4.5)

and the net torque becomes

=1, xF, +¥,xF, =2F, xF, = 2-’1(—sinai+cos9ﬁ)x(1a311)
7 2 (8.4.6)
:Iastinej= IAxB
For a loop consisting of N turns, the magnitude of the toque is
7=NIABsin@ (8.4.7)
The quantity NJA is called the magnetic dipole moment fi:
ji=NIA (8.4.8)

8-9

§
t

1



Figure 8.4.3 Right-hand rule for determining the direction of fi

The direction of fi is the same as the area vector A (perpendicular to the plane of the
loop) and is determined by the right-hand rule (Figure 8.4.3). The SI unit for the magnetic
dipole moment is ampere-meter” (A -m?). Using the expression for fi, the torque exerted
on a current-carrying loop can be rewritten as n ‘ ). . s0id

Y ma I« ftc diw PYW gy

T=jixB (8.4.9)

The above equation is analogous to 7 =pxE in Eq. (2.8.3), the torque exerted on an
electric dipole moment p in the presence of an electric field E . Recalling that the

potential energy for an electric dipole is U =—p-E [see Eq. (2.8.7)], a similar form is
expected for the magnetic case. The work done by an external agent to rotate the
magnetic dipole from an angle @, to @ is given by

W, = [ 2d6'= [ (uBsin0)de’ = uB (cos6, - cos 0)
—AU=U-U,

(8.4.10)

Once again, W,

ext

=W, where W is the work done by the magnetic field. Choosing
U,=0at §,=n/2, the dipole in the presence of an external field then has a potential
energy of

U=-uBcosf=—ji-B (8.4.11)

The configuration is at a stable equilibrium when Ji is aligned parallel toB, making U a
minimum with U, =-uB . On the other hand, when g and B are anti-parallel,
U, =+4Bis a maximum and the system is unstable.

8-10



8.4.1 Magnetic force on a dipole

As we have shown above, the force experienced by a current-carrying rectangular loop
(i.e., a magnetic dipole) placed in a uniform magnetic field is zero. What happens if the
magnetic field is non-uniform? In this case, there will be a net force acting on the dipole.

Consider the situation where a small dipole ji is placed along the symmetric axis of a bar
magnet, as shown in Figure 8.4.4.

Figure 8.4.4 A magnetic dipole near a bar magnet.

The dipole experiences an attractive force by the bar magnet whose magnetic field is non-
uniform in space. Thus, an external force must be applied to move the dipole to the right.
The amount of force F, exerted by an external agent to move the dipole by a distance
Ax is given by

F Ax=W_ =AU =-uB(x+Ax)+ uB(x) =—-py[B(x+ Ax)- B(x)] (8.4.12)

ext

where we have used Eq. (8.4.11). For small Ax, the external force may be obtained as

__BGra)-Be)__ dB

- = (8.4.13)

ext

which is a positive quantity since dB/dx <0, i.e., the magnetic field decreases with
increasing x. This is precisely the force needed to overcome the attractive force due to the
bar magnet. Thus, we have

48 5 b (8.4.14)

F. =
Bﬂdxdx

More generally, the magnetic force experienced by a dipole ji placed in a non-uniform
magnetic field B can be written as

F,=V(i-B) (8.4.15)
wh e w1 y e ¢ II “hin,
o Gk all 1y o belles h paib
8-11
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
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Experiment 4 Solutions: Forces and Torques on Magnetic Dipoles

MEASUREMENTS
REQUIRED

Part 1: Dipole in Helmholtz Mode

Question 1:

Did the disk magnet rot rotate? (Was th there a torque on the magnet?)
Yes, it u:otatedﬂhgn w1th the field )
e - - —

Question 2:
Did the spring stretch or compress? (Was there a force on the magnet?)

No, there is no force on the magnet (it is sitting at the field maximum already)
N { | P
{ O 0T (Whgag @
Part 2: Reversing the Leads b S e \LJ{ ¢

Question 3:

What happened to the orientation of the disk magnet when you change the current direction
in the coils in the Helmholtz configuration? Is this what you expect? Why?

It did different things depending on how careful we were. Most of the time it flipped over to
align with the newly oriented field, but sometimes it would sit in the unstable equilibrium of
pointing OPPOSITE the field, until the table was bumped and it quickly flipped over.

Part 3: Moving a Dipole Along the Axis of the Helmholtz Apparatus

Question 4:

Starting from the bottom, describe the direction of the force (up or down) and the orientation
of the disk magnet, paying careful attention to locations where they change.

At the bottom the string is slightly compressed (there is an upwards force). As we raise
upwards to the center that compression decreases. Above the center the spring stretches.

Clearly the magnet wants to be at the center of the apparatus where the field is the strongest

The magnet never rotates (it is always ahgned with the field).

E04 Solutions-1



Question 5:
Where does the force appear to be the largest? The smallest? How should you know this?

The force is the smallest (zero). at the center. The magnet is happy being there so we know
there should be no force there. The force is the largest where the gradient is the largest, out
towards the coils.

. ( s ] Fsnd
Ny Tl (O (1
OPTIONAL ’ 0 ('( C C

Part 4: Dipole in Anti-Helmholiz

Question 6:

Did the disk magnet rotate? (Was there a torque on the magnet?)

Once the magnet moves it then does rotate to align with the field. It is hard to tell if it rotates
or moves first, but we know that it Sh"ﬁﬁ'ldn’tmhen exactly at the center
because the field there is zero.

i : T % | ) ( o (Ontlr
Question 7: { I} Lll_ Q)h!( u Ubl L./ritf
Did the spring stretch or compress? (Was there a force on the magnet?)

The spring did compress as the magnet leapt upwards.

Part 5: Moving a Dipole Along the Axis of an Anti-Helmholtz Coil

Question 8:

Starting from the bottom, describe the direction of the force (up or down) and the orientation
of the disk magnet, paying careful attention to locations where they change.

At the bottom the spring appears to be slightly compressed, like the magnet wants to go
upwards. It’s hard to tell here. As we pull upwards, the spring definitely stretches
downwards, pulling the dipole down towards the bottom coil. This whole time the dipole is
pointing down. Slightly above the center line the magnet flips over and then the spring
compresses as the magnet tries to push up towards the top coil. Themas we continue to pull
upwards the magnet remains oriented upwards, and the spring becomes uncompressed and
then stretches, again trying to get the magnet to near the center of the coils (slightly outside
of them).

Question 9:
Where does the force appear to be the largest? The smallest? How should you know this?

The force seems to be the largest at the center of the coil, when the magnet gets a BIG jump
when the dipole flips over. This makeés sense, since the gradient of the field is largest there.
The force should be zero where the field is a maximum (minimum), and it is, reaching nearly
zero just above the top coil and just below the bottom coil.

) UQ} Cn {0’

{/ ¢ . E04 Solutions-2



Magnetic moment

Magnetic Dipole Moment

the current loop are summarized in its magnetic moment

From the expression for the torque on a current loop, the characteristics of

]
f

http://230nsc1.phy-astr.gsu.eduw/hbase/magnetic/magmom.html

characteristics of the coil by the "magnetic moment" or

10f3

The torque on a current-carrying coil, as in a DC motor, can be related to the
"magnetic dipole

‘ y | - |
\.X 4)71 {, [7@ holma | \/@(/ Tﬂ/\
'y — IA y { ~ ) _l //‘a f
\( A=area — [A ((gf Q(— i 'gﬂ” 1w
rul@
The magnetic moment can be considered to be a vector quantity with
direction perpendicular to the current loop in the right-hand-rule direction. Index Ol L j 005 ‘lnb/"
The torque is given by - % A
[ Magnetic | p.a4, /
nord| Ve (H0 ~ " Eire® Pdic l/ 0ol
T=u x B applications
As s seen in the geometry of a current loop, this torque tends- ol h.ne up th the Magnetic
magneti he magnetic field B, so this ) this represents its lowest—, field
¢(energy configuration. The potential energy associated with the magnetic concepts
moment 18
U@b)=-u-B
so that the difference in energy between aligned and anti-aligned is
AU =2uB
These relationships for a finite current loop extend to the magnetic dipoles
of electron orbits and to the intrinsic magnetic moment associated with
electron spin. Also important are nuclear magnetic moments.
L
HyperPhysics***** Electricity and Magnetism Navﬁ Go Back O 7 \
No C)
i Lp
) " 3
% v to ¥
Index
Torque on a Current Loop
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Magnetic moment

20f3

moment". The torque exerted by the magnetic force (including both sides of the
coil) is given by

7= BILWsin6 |
The coil characteristics can be grouped as
u=1I1A (or u=NIA for n loops)

called the magnetic moment of the loop,
and the torque written as

T = uBsin®

Lever am =
g [
AL

The direction of the magnetic moment is W cos a
; s 2
perpendicular to the current loop in the
right-hand-rule direction, the direction of
the normal to the loop in the illustration.
Considering torque as a vector quantity,
this can be written as the vector product

-Wsine
2

|

\ ' ] ¥ ; },
T = .“ B =1 ) v ) 0! L:(;,b (,( (/I .’Y!
\j # I)\j | |‘2-1\ / /QV ¢ j.\/{q; & \[/€L 1 p ,.')\/]

Since this torque acts perpendicular to the magnetic moment, then it can cause
the magnetic moment to precess around the magnetic field at a characteristic
frequency called the Larmor frequency.

If you exerted the necessary torque to overcome the magnetic torque and rotate
the loop from angle zero to 180 degrees, you would do an amount of rotational
work given by the integral

" iy
W =~ [td6 =~ | uBsin6d6 = ~uBcost]; = 2uB
0 0

The position where the magnetic moment is opposite to the magnetic field is
said to have a higher magnetic potential energy.

Magnetic
force

applications

Go Back

http://230nsc 1.phy-astr.gsu.edw/hbase/magnetic/magmom.html
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Question E !4

points out of 40 points):

/\}@[y W!
O al (W/

wpr

r"!; ¢ V] ;'.ﬂ-.a/

In the fifth lab you measured the force and torque on a magnetic dipole in the field of a
Helmholtz coil (which you could energize in elther elmholtz or Anti-Helmholtz mode). The
picture above shows the field configuration of the coils after you have energized them in one of
these two ways.

If, before the above field is turned on, you place a dipole so that it is very slightly above center
and points very slightly away from alignment with the eventual field, what force and torque will

it feel when the coils are energized? \ { ({L
| it dets tum 20 04
1. It will feel no force or torque 7 _E
2. It will feel a force down (towards the center) but no torque .
3. It will feel a force up (away from the center) but no torque
t will feel no force but a torque to align with the field
It will feel a force down (towards the center) and a torque to align with the field 3 / / o
_,> It will feel a force up (away from the center) and a torque to align with the field 7 71 ( W j
7. It will feel no force but a torque to anti-align with the field
8. It will feel a force down (towards the center) and a torque to anti-align with the field
9. It will feel a force up (away from the center) and a torque to anti-align with the field
10. I don’t know (this answer is worth 1 point)

fote D (Y movird N0

Luﬂ” C“/v&[f) q’[ﬁ w/ 19,@
éf(@ (/\p ~ SN \W@ gfd b%ﬂﬂ?@)ﬁ

3 b Nt
" B oy~ (¢
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Question F (4 points out of 40 points):

In the sixth lab you measured the current and calculated flux generated in a wire coil that was
moved from w;k@\:: magnet with its North pole facing upwards to well below the magnet
and then back up again-— We defined a counter-clockwise current as positivmﬁned the
positive flux direction accordingly. For the portion of the motion from well below to well above
the magnet, which two of the following diagrams most closely resembles what you should have
measured for flux and current respectively?

£ lox
T CoeT

7] S| (f\,\/ .

5

@Z (flux) & B (current)
. A&D

2

3. C&B ,
4. C&D .
5. B&A 'Q (s Spe pow
6. B&C -

7. D& A Ll

(g) D&C g &5 ff o/l
9. Idon’t know (this answer is worth 1 point) / VO /

f
—

., Dz:) ﬂa Aciin b% 7:

WL

J~ess o onfurtd S0
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Question G (4 points out of 40 points):

In experiment seven you set up a simple series LR circuit which consisted of the 750 function
generator and the coil (which as you may recall has both a resistance and an inductance). The
750 power supply was used as a “variable battery” which would periodically turn on and off, and
the current through the battery was plotted vs. time. In this experiment you had the opportunity
to measure the effect of inserting and removing an iron core from the coil as well as the effect of
adding an additional resistor either in series or in parallel with the coil. In moving between the
two plots below, which of those four things was done?

1.0

: (1) Core was added
< °8 Before 2) Core was removed
E b Change 3 Res?stor was added %n pargllel
£ o (4) Resistor was added in series
O o2 ) Idon’t know (1 point)
0.0
1.0—T I -
< 0o S0
= 0.6 N .
S 04 f : “\\\“:'\.
3 o2 \ (G(-Q/K”} - \\_-
0.00 0.25 0.50 0.7 1.00 i '

Time (2) "",if;f'-‘f ad 2t lon Yo (_ h Yler L f

o~

[ - o oA () it tos
. S/‘/ pi"‘"-":’u{-'f_ U (LLTI7 ¢

'd

Question H (4 points out of 40 points): !

Covld als
In experiment eight you studied an undriven series LRC circuit and made a plot of energy stored
in the capacitor and in the inductor vs. time, which, in addition to oscillating with time, also
decayed with time. The total energy (the sum of these two) also decayed in time, but not always
at the same rate. When did the total energy in the system decrease most rapidly?

1. When the voltage across the capacitor was a maximum
23) When the voltage across the resistor was a maximum L7070 [ QAL GEL

L

When the voltage across the inductor was a maximum .‘ i h [
4. More than one of the above '
5. All of the above , (

6. None of the above . [
7. Idon’t know (1 point) /
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Question I (4 points out of 40 points):

In experiment nine you measured the angular dependence of the radiation from a spark gap
antenna by moving your receiver either horizontally or vertically around the transmitter.

Angular dependence - Horizontal Angular dependence - Vertical

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity over
the range of motion?

1. AHorizontal
. Vertical

3. Both show same range of change /
4. 1don’t know (1 point) \



MIT Department Of Physics p. 7 of 23

Question J (4 points out of 40 points):

In experiment ten you observed an “Initial” intensity pattern for light coming from two slits and
hitting a screen. If you had used a green laser rather than a red one, would you have seen a
pattern similar to “Final” below?

ﬂf\!\ > .3 4

i Initial

wivin
AYRULIATA
VY

|
_/\/\/\/\/V\M/VVVIVV\M/\/

[S¥]

——
P

-
AW AW}

AYe
Czjl;lo thef):stance d between the slits must have changed in going from Initial to Final
3. No, the width a of the slits must have changed in going from Initial to Final
4. No, the change depicted results from a change in wavelength the other direction (as if we had
started with green light in Initial and moved to red light in Final)
5. Idon’t know (this answer is worth 1 point)

ho Cle  o0n | 9n |
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Problem 2: Back of the Envelope Calculation — Numerical Estimation (15 Pts)

I hope that the back of the envelope calculations this semester have given you the confidence to
make numerical estimates about things that you aren’t exactly sure about (in addition to
improving your Google skills). To see if this is true, please estimate the following values.
NOTE: I know that you don’t necessarily know the answers to these (for example, the radius of
the Earth might not be stored in your brain). That is the point. You should be able to make good

estimates based on what you do know. For credit, give all answers in SI units.

Length
Thickness of notebook PaPEr ....swrsmmimssirisressissinisa ‘
Liength ofthe Infinilercamiden wuwmarwmmsdmmsmsimicssy C,KO” F/
N |
Radius 0f the Farth: c.veeeeveeee oo eeeeseeeeeesseeseeeenens | Nialy
L[ H r | Y
Time f
Time for Earth to rotate once about itS OWn axis: ......covvveeees. [[- A/ {{/ A
[ I/ CEAL

Acceleration

Peak acceleration of a good car: .....cccoeveecenveirinniiseerieeneenes

Energy

Power

Power consumed by a light bulb.......ccccooiiiiniie

Power generated by a power plant: ......ccooviivinniiniiiiicennnn,
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Electric Field

Electric field at your face from the lamp on your desk..........

Voltage

Voltage between finger and door when getting a shock .......

Magnetic Field
Magnetic field generated by an MRI magnet .........cceeeueeneee..

And finally...

Number of times (it might be less that one) you’d need to run from the bottom to the top of the
Green building to burn the calories in a candy bar
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Problem 3 Sliding Bar (25 points): A conducting bar has mass M. [t slides to the right along
two frictionless horizontal rails separated by a distance ¥, as shown in the sketch. The rails are

connected on the far right by a resistor of resistance R. The bar itself and the rails have zero

resistance. i ]
(L tomstent  speed

At time t = 0 the bar has slid (under its own mertla no one is pushing it anymore) to the point

pictured below, where everywhere to its right there is a constant magnetic field B, directed out

of the page. This is the om'y B field that you are to think about it th1s problem. At this time it
has a velocity v(r=0)= Vl B 2\0 \\V€ )

e

where i points to the rightin - P (P the
below picture. ~am! 'I, () | J{
! L

(a) As time goes on what will T
happen to the velocity of the
conducting bar? (Circle ans) \I{

1. Increases without limit
2. Increases to limiting value

ey \
— /\ : Akl |
“Rail reu. ch =

SIS I II TG IS5

3. Remains constant \\ .

r . . . J ] )rl |

@J)ecr eases to zero - Bar with mass M sliding to the right [ Gl e TNk

5. Decreases to zero, then | [ L. n‘ E =, mwgh)
reverses directions —\n 5o SOLITinGg p |l CLr75 ¢

] \ -
: R N S § : _ .
W e (nde 1071 ! ‘{” 9bl1¥g + do nglT ( oy

e i VA

(b) Briefly explain why this happens (use words, ((oﬂlfazﬁﬁ If you will need to use a
Maxwell equation to determine subsequent motion of the bar then explicitly state which
equation (by name), write the equation, and briefly explain what it means. T

loop 0/0q J/
Natur 0‘3"&;5@ thi

Go -l/.t)rga 9N s Lo 5%3,0 /
cy f‘¢ Comombn- ¥

hot svpposl b do fore ")za Abwa 7 0 PPPXES

o LL‘% [(laﬂgmé H 2 %}{:"@J’C’t/_(fi’ E 16’"9@ 11 {f(/.'
€

(c) Assume that at some Yater time ¢ the spéed of the bar is v(#). What is the current, if any, in © 50 (/r/u’ to 3

the Clrilj(lt? p/ ] (\‘ b aQ (Yrenl
.ﬁ/ ) j : N1

T=¢V %

<
=
=
-

Y
&
.
.

‘\
1
1
i

N i
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Problem 3: Sliding Bar continued [ par V\-Q( ﬂ h (n d lr ( J h 'L (
(d) What, if any, is the total magnetic force F on the moving bar at this time? 7a {o\m L{ | ('q L(’AZ '
= 7 \{/ o ¢ ~ il W\
F = VX ﬁ = T2 % 6) ( GCronirnte
b -+ W ' At haad 42

L]

%4 ~ 1

/

/ : " 11 1 / F= .
(O w0 Sepplihd g 1 ind ok g

Force V0 =G e o W, w x f
| R

~ P2 w?e(l)
)

(e) Is the kinetic energy of the bar changing? If so, where is that energy going to or coming
from? Do a calculation to demonstrate that your answer to this question is true. If not,
simply write down an expression for the kinetic energy of the bar. , N+

- " \ ‘ e r( ng OQQ mySs i
/\/Q/ State (O(fﬁ L, e " PL&J] (1 071‘7{,\ (/’PCTM/‘

L f i. —N-r.t : _Jip

A I f )
o vall ol efted but)

\

Cid -

o~ e o l/ A5 bar (s 55;}%@0

-~

poner
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Problem 4: Solenoid (45 pts) \l 0 ~ ey
Consider a very long solenoid of N turns, radius «, and length

h (h>> a) (as pictured at right). It is coaxial with the z-axis.

(a) By looking at the solenoid in cross-section (as I do
below) you can calculate the magnetic field at an
arbitrary point P, at a radius » < a. [fthe current through
the solenoid is I(f), explicitly calculate the magnetic field

B(t)at point P. Make sure that you state and briefly

explain which Maxwell’s equation you are using, and
that you draw and label anything needed to do the
calculation on the below image. Be completely clear
about every step you take (for example, if anything in the

calculation is zero, explain why). B : o
; / ‘ ] (Caily L 0y MAgrd T L

N\
’

/l/: F f&///‘j

- —

e sl what T ! ]
(58 p ‘/{4 /U T A {’ [/V'I/G ,/
/ : (C%Uv/ A

-a 1
ZLL all 5(9,0/(9, for ouwh,j

Q bLmP(

\ . Bl M, T S fecto ,n,,’,’
T0 (7MUL no Wf/éb
\“"Jf'}/éit/ )my
9 A
'p = Als IP.--?C
o I %—’E

Yadd pa of currg
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Problem 4: Solenoid continued bl W L2 I

This solenoid is an inductor of inductance L (which I'm sure you can calculate so I won’t ask
you to). We put it in a series LR circuit (pictured below) consisting of a battery with EMF ¢, a
resistor of resistance R and a switch S. At time 7 = 0 we close the switch in the circuit.

I
AAA o (D) Sketch the time dependence of the current in the circuit,
R and write an equation for /(7). Clearly identify the initial
(+=0) and final (t=0) values of the current. Briefly explain
+ i 1 - “/\ ’]
zl 7 why /the current behaves the way it does. e CJ, .’)TI ong! y
—|€ Ny « 3
N i & /';\ 4 - | A
\ i " 6 Feaapd ~/tall,
o S ;
# 1 o need 1
~_ ¢ J ) e <] /ju l /W{f'MI}f .7”"{
/\} L / Y- = A{fhrﬁ l}

|
/=
\_} _F/t\}

(c) From part (a) you know the magnetic field ﬁ(r) as a function of the current /(¢), which you

have just calculated in part (b). Now let’s look at the electric field that is induced inside the
solenoid. It is easiest to do that in a top view of the solenoid, which is provided below. i j _
il "C‘E'L_/ [’/v
, ,

‘wm Calculate the induced electric field E(¢)at point P. If you need to use one of Maxwell’s }

g equations tf_ten name _and briefly e?(plain it l?efore using it. Be very explicit about how you do / (4-7 3

|| h the calculation, drawing and labeiﬂmg anything that you need on the figure below. Feel free ‘ _

DALY SR to leave your answer in terms of B(¢)or Z(r) as you find convenient — there is no need to ./ /“J/)f@ép ‘ R
{{; /n, u;[i' 51@(«’[ substitute your results from part (a) or (b). ( _!ml \ oj,-,, p (.';)
L dond oo 100 E Cu (el

~ . A L P
OL Q/ s Fo e
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Problem 4: Solenoid continued
(d)You now have an electric field E(¢) and a magnetic field B(¢)at point P, meaning that there

is a Poynting vector there. Briefly explain the meaning of the Poynting vector (for example,
what units does it have?) and then calculate its value at point P. Feel free to leave the answer
in terms of the field magnitudes £(¢) and B(#) (you do not need to plug in your answers from
previous parts) but do explicitly state its direction. To be clear please indicate the direction
of the Poynting vector at point P on the diagram below. What does the direction indicate
about this system?

(O)k

(1)

(e) To demonstrate the meaning of the Poynting vector we typically have you integrate it over
some area and show that it is equal to something else. In the case of this solenoid, over what
area should we integrate? Be very clear here — probably the easiest thing to do is to state an
equation for the area. What should that integral be equal to (state this both in words and as
an equation)? There is no need to do the actual integral or to plug in values you calculated
above to demonstrate that this is indeed the case.
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1)
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Problem 5: Transmission Line (75 pts) ‘ \
The rest of this exam is an extended question dealing with transmission lines. There are a variety
of transmission lines used in the world. A simple example is two wires running next to each

other with current flowing one direction in one and the opposite in the other.

In this problem you will calculate the properties of a coaxial — — Q J /w?{bf
cable. It consists of a solid core or radius a and a thin outer M f!
“shield” conductor of radius b, both of length 4. They are
typically held apart by a dielectric, but to make your life
simple let’s just pretend there is vacuum between the
conductors. It is shown in perspective at right.

The dimensions are such that you should assume that any fields created by the transmission
line are confined to the region between to two conductors.

We use transmission lines to carry power from batteries or power supplies to loads (typically
modeled as resistors):

Battery

g Resistor

In this problem you will calculate the capacitance per unit length and inductance per unit length
of the microstrip transmission line and then study energy flow at DC. Finally, you will describe
its behavior when driven by an AC function generator.

NOTE: PLEASE READ THIS CAREFULLY

In several parts of this problem you will be asked to calculate something that will require the use

of one of Maxwell’s e M sure that you state the name of the equation and the write
i-Q'n’tHETJr/n;Kt%:tyTuc;)Ian to use it before you do that part: “You do not need to describe-the
equation as you were asked to do in earlier parts of this exam, but you do need to be explicitin —
the calculations and draw and label anything that you need to use to do the calculation. I will not
provide any further drawings. Please duplicate drawings from this page (simplified to remove

no !
the perspective of course) when you think they will be useful. no
Do not forget to give both magnitude and direction of vector quantities. Tﬂ v
Cx gy

Feel free to tear out this page so that you do not have to continually turn back to it.

[

Ly

< (p E A o In /]
J Jﬂ L(’},-, (A ’, e i ._;n Y (‘/’J//
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Problem 5A: Capacitance of the Coaxial Cable

In this part we will consider the transmission line in isolation (no battery or load resistor).
Assume that the inner conductor has a charge +Q and the outer conductor has a charge —Q.

(a) What is the electric field between the conductors?

i J(EFJO\ =

) U /( T L, {‘ FW%{/
éo h,’ [‘/lé I/\ OMY/DK,

(71[</1/o((5’
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Problem 5A: Capacitance of the Coaxial Cable continued
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(b) What is the voltage of the outer conductor relative to the inner conductor (that is, what is the
voltage difference AV = Vouer — Vinner between them)?

&

;/\]. 0mom .LQ- (

¢

(Ot bor )(?'

/.

(

K

) ““_S Fod,

nner

= O{ . 4 .

(c) What is the capacitance of the transmission line?

(=0
v

L

e

(d) What is the capacitance per unit length of the transmission line? Note that /# should not
appear in this answer — what [ mean by “per unit length” is that you need to multiply by the

length A to get the total capacitance.

oo Jlade

"]/O%-F{\ 4 (C f/“?'f " ?l!,

4
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Problem 5B: Inductance of the Coaxial Cable =) (RO 1" Y | . 7
Al b o 2 Ay '!{o [ (L

In this part we will assume that the transmission line has a constant current / traveling down the

inner conductor (in the +k direction, to the right) and back along the outer conductor (in the -k
direction).

(a) What is the magnetic field between the conductors?

=00 g-ps

(g ds = b Do v fZL ;e@ it T
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Problem 5B: Inductance of the Coaxial Cable continued
(b) What is the inductance of the transmission line? NOTE: There are two ways to do this. If

you don’t recall either of them then [ suggest that you at least calculate the magnetic energy
between the conductors.

Ol’\ J J v S f’ 6 /_ n/{?

-

P
'ngﬁ = gl
5

/ \
= Il {n [P
20 A%

-

(c) What is the inductance per unit length of the transmission line?

_ \

—_—F =~ ‘*’I(o ]
[ogh éﬁfﬁ(%)
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Problem 5C: DC Power Transmission with the Coaxial Cable o w4 L  Nony

<8

We now connect the transmission line to a battery (EMF &) on the left and a resistor (resistance
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a
long time after this connection has been made (after any transient behavior has passed). In
answering the below questions feel free to use the results from previous sections of this problem
(you do not need to derive them again) but express your answers only in terms of variables given
here and at the beginning of the problem (NOT in terms of QO or / from parts 5A and 5B).

(a) What is the electric field between the conductors?

;\ N

\

n o

\ i | ) 4 I f
\_

U L i

(b) What is the magnetic field between the conductors?
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Problem 5C: DC Power Transmission with the Coaxial Cable continued
(c) What is the Poynting vector between the conductors?

"

e e e e e ST
/ 11 A
,'l !9 Lol ‘,@, & il //

(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what
you would expect given the meaning of the Poynting vector.

oV ok u"é.f
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LS 9 C{ H - gf - C o ) ,/}—] -/\C‘./“
4 Lt ] (Qn [ i)/a/ /

s GL ‘/}) 3

R ’Sﬁl J&l(b/a,\ H/_{I P”LU“ d 5’/’4'\?'/

hf 05k




MIT Department Of Physics p. 22 of 23

Problem 5D: Transients and AC Transmission in the Coaxial Cable

You calculated that the transmission line has an inductance per unit length and a capacitance per
unit length. A typical way to model the behavior of the transmission line is as a collection of
inductors and capacitors, as pictured below left, or even more simply as just a single inductor and
capacitor, as pictured below right.

L L

o Ay A

e _ e s ag C —

These are “lossless™ models — we are ignoring the resistance of the transmission line itself.
Te— e

(a) Let’s first think about the transient behavior of this circuit. The instant after you attach a
battery (&) on the left and a resistive load (R) on the right, what is the current through the
load? Why? Describe what the inductive and capacitive parts of the transmission are
behaving like at this instant. -~

] s vardyle

Read  carlil v

[
i »
.q‘) il //. (/H lf { (/] d;’/li \'ﬂ/

1

, : o r/_ [ i \
lr& L///-/ P/‘\ :\, -"U/‘r C (,‘fl_l/‘{}L

(b) A long time after the battery £ and load resistor R have been connected what is the current
through R? Why? Describe what the inductive and capacitive parts of the transmission line

are behaving like at this instant.

(UP//%{IJK r”// f/ fQ/ = Q

ot 0 per T
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Problem 5D: Transients and AC Transmission continued

Now instead of attaching a battery on the left, let’s attach a function L
generator, driving a voltage V' =V sinwr. On the right we still have a ‘\Q_QQJ—_
resistive load, but to make life simpler let’s assume that it is a very large

resistor R. - -

(¢) You have already discussed the very low frequency (DC) behavior of
the transmission line. As we turn up the/frequency af the power

supply, QUALITATIVELY describe (no equations) what happens to
the voltage that the load sees. Why?

‘. '£ ) ] i ( ) N
(’\)l“v“_]f, |ng r | Vol 8 L / / -’PJ‘AL
Y ol =
( NQT ( ©r r/‘ ' ;
7 ({‘ ~ o J// l-' L‘.')a[ %'C/{f\fg
A . |
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}O (N dl./{ {'y( \T} onlrgi? ©

Culator  gefs 7 Ceacianty

A . ] ‘ | s '-rff“w ;
/R \ o] o / ) o
¥ 20 |0l r‘dqc DN/ 1r !'w'\s ' : Vi 2 L
¥ s | I ST ¢ = e (f On (¢ lore
\/“ LU’V‘ LY ).'"j gy i dif . ‘in {
. . 9 7
(d) I said above that you would want to assume that the load had a very large resistance R. /e

Typically when we say that something is very large, what we mean is that it is much larger
than something else. At non-zero frequencies, what should R be much larger than (give an
equation here)? Why?
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Problem 1: Ten Short Questions. Circle your choice for the correct answer
Each problem is worth 4 points for the correct answer or 1 point for admitting that you don’t
know how to do it. Unanswered or incorrectly answered problems will earn a 0.

Question A (4 points out of 40 points):

In lab 1 you fixed the potential difference between
A two plates and measured equipotential lines from
which you determined electric field lines and

approximate charge distributions. You are given

the two conducting plates at left, with the top plate
D B held at +5 V relative to the bottom plate. What can
you say about the relative magnitude of the charge

densities near the four locations indicated?

1. 1Q(A) ~Q(C) > |Q(B)] ~ |Q(D)|
2.1Q(A)| > 1Q(B)| ~ |Q(C)| > |Q(D)|
3.1QMA) ~ |Q(B)| > |Q(C) ~ QD)
4.1Q(D)| ~ 1Q(C)| > |Q(B)| ~ |Q(A)]
5.1Q(B) ~ QD) > [Q(A)| ~ 1Q(C)|
6.1Q(A) > |Q(D)] ~ |Q(C) > |Q(B)|
7.1Q(0O) > [Q(A)| ~ [Q(B)] > [Q(D)|

8. I don’t know (this answer is worth 1 point)

Question B (4 points out of 40 points):

1.
2,
e}
4.
3.
6.
7.

In the second lab you worked with a Faraday pail, two nested
conducting cylinders as pictured at left. You held the outer cylinder
at ground (i.e. at the same potential as infinity) and measured the
potential of the inner cylinder relative to the outer cylinder. For one
of the measurements you started from a condition where both
cylinders were uncharged, introduced a positive charge producer
into the central region, briefly connected the inner at outer cylinders
with a conductor (your finger) and, after removing the connection,
removed the positive charge producer. The positive charge
producer never touched either of the cylinders during this
measurement. Which of the following statements about the surface
charges at the end of this measurement is true?

Q(I1) =0; Q(O1)=0; Q(I2)=0;Q(02) =0
Q(I1)=0; Q(O1)<0; Q(12)>0:Q(02)=0
Q(I1)=0; Q(O1) <0; Q(12)>0;Q(02) <0
Q(I1)=0; Q(O1)>0; Q(I2) <0;Q(02) =0
Q(I1)=0; Q(O1)>0; Q(12) <0:Q(02)>0
Q(I1) <0; Q(O1)>0; Q(I2) <0;Q(02)>0
I don’t know (this answer is worth | point)
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Question C (4 points out of 40 points):

In the third lab you constructed the
circuit at left in order to study the effects
of capacitors in circuits. You measured
the current through and voltage across
the resistor R using the ammeter and
voltmeter as pictured at left. The battery
would periodically switch on and off,
allowing you to measure their “initial”
values (right after the battery switched
on) and their “final” values (a long time
after the battery was switched on). After
measuring the behavior in this circuit
you had the opportunity to add a second
resistor_in_parallel with the capacitor C.
After adding the second resistor which of the following statements is true?

Neither the initial current nor the final voltage changed

The initial current was smaller but the final voltage was the same
The initial current was larger but the final voltage was the same
The initial current was the same but the final voltage was smaller
The initial current was the same but the final voltage was larger

I don’t know (this answer is worth 1 point)

S e o (a3 19

Question D (4 points out of 40 points):

In the fourth lab you studied the effects of magnetic fields.
A current-carrying coil is placed in a uniform magnetic
field pointing upward. The current flows as shown, out of
the page in the upper left and in on the lower right.

What are the force and torque on the coil?
1. No force or torque

2. No force, torque to rotate clockwise
3. No force, torque to rotate counterclockwise
4. Force up, no torque

5. Force up, torque to rotate clockwise

6

7

8

9.

1

. Force up, torque to rotate counterclockwise

Force down, no torque

Force down, torque to rotate clockwise

Force down, torque to rotate counterclockwise
0. Idon’t know (this answer is worth 1 point)
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oo -

In the fifth lab you measured the force and torque on a magnetic dipole in the field of a
Helmholtz coil (which you could energize in either Helmholtz or Anti-Helmholtz mode). The
picture above shows the field configuration of the coils after you have energized them in one of
these two ways.

points out of 40 points):

If, before the above field is turned on, you place a dipole so that it is very slightly above center
and points very slightly away from alignment with the eventual field, what force and torque will
it feel when the coils are energized?

1. It will feel no force or torque

2. It will feel a force down (towards the center) but no torque

3. It will feel a force up (away from the center) but no torque

4. Tt will feel no force but a torque to align with the field

5. It will feel a force down (towards the center) and a torque to align with the field

6. It will feel a force up (away from the center) and a torque to align with the field

7. It will feel no force but a torque to anti-align with the field

8. It will feel a force down (towards the center) and a torque to anti-align with the field
9. It will feel a force up (away from the center) and a torque to anti-align with the field
10. I don’t know (this answer is worth 1 point)
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Question F (4 points out of 40 points):

In the sixth lab you measured the current and calculated flux generated in a wire coil that was
moved from well above a magnet with its North pole facing upwards to well below the magnet
and then back up again. We defined a counter-clockwise current as positive and defined the
positive flux direction accordingly. For the portion of the motion from well below to well above
the magnet, which two of the following diagrams most closely resembles what you should have
measured for flux and current respectively?

(A)

©)

1. A (flux) & B (current)
2. A&D

3. C&B

4. C&D

5. B&A

6. B&C

7. D& A

8. D&C

9. Idon’t know (this answer is worth 1 point)
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Question G (4 points out of 40 points):

In experiment seven you set up a simple series LR circuit which consisted of the 750 function
generator and the coil (which as you may recall has both a resistance and an inductance). The
750 power supply was used as a “variable battery”” which would periodically turn on and off, and
the current through the battery was plotted vs. time. In this experiment you had the opportunity
to measure the effect of inserting and removing an iron core from the coil as well as the effect of
adding an additional resistor either in series or in parallel with the coil. In moving between the
two plots below, which of those four things was done?

B 1) Core was added
% P Before 2) Core was removed
£ 064 Change 3) Resistor was added in parallel
g 04 4) Resistor was added in series
O o2 5) Idon’t know (1 point)

00—-

T T T T T

1.0 4
= 08
< ! After
5 0'4 ] Change
=S
O o024

00_- T ¥ ] . T T T

0.00 0.25 0.50 0.75 1.00
Time (s)

Question H (4 points out of 40 points):

In experiment eight you studied an undriven series LRC circuit and made a plot of energy stored
in the capacitor and in the inductor vs. time, which, in addition to oscillating with time, also
decayed with time. The total energy (the sum of these two) also decayed in time, but not always
at the same rate. When did the total energy in the system decrease most rapidly?

When the voltage across the capacitor was a maximum
When the voltage across the resistor was a maximum
When the voltage across the inductor was a maximum
More than one of the above

All of the above

None of the above

I don’t know (1 point)

SO ph s LR
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Question I (4 points out of 40 points):

In experiment nine you measured the angular dependence of the radiation from a spark gap
antenna by moving your receiver either horizontally or vertically around the transmitter.

Angular dependence - Horizontal Angular dependence - Vertical

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity over
the range of motion?

1. Horizontal

2. Vertical

Both show same range of change
I don’t know (1 point)

NLNN S
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Question J (4 points out of 40 points):

In experiment ten you observed an “Initial” intensity pattern for light coming from two slits and
hitting a screen. If you had used a green laser rather than a red one, would you have seen a
pattern similar to “Final” below?

A Initial

Yes

No, the distance d between the slits must have changed in going from Initial to Final

No, the width a of the slits must have changed in going from Initial to Final

No, the change depicted results from a change in wavelength the other direction (as if we had
started with green light in Initial and moved to red light in Final)

5. Idon’t know (this answer is worth 1 point)

B b i
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Problem 2: Back of the Envelope Calculation — Numerical Estimation (15 Pts)
[ hope that the back of the envelope calculations this semester have given you the confidence to
make numerical estimates about things that you aren’t exactly sure about (in addition to
improving your Google skills). To see if this is true, please estimate the following values.
NOTE: I know that you don’t necessarily know the answers to these (for example, the radius of
the Earth might not be stored in your brain). That is the point. You should be able to make good

estimates based on what you do know. For credit, give all answers in SI units.

Length

Thickness oF NOtEDO0K DAPEL ....remrerssrsssensssnsanssasssssassanssszsivss 100 um
Length of the infinite corridor: .......cccvvvieieneviciiieieceis 250 m

Radius of the Earth: .......eeceeveesmeereerssismeeseseessssssssesssenseee 6x10°m
Time

Time for Earth to rotate once about its own axis: .........cevuee. 1 day = 86.400 s
Time for Earth to orbit the sun:......cccccecevivnivivnnninccennnns ] year=32x 10%s _
Velocity

Speed of a commercial airplane:.......c.covevnviineiniicnnines 200 m/s

Speed of sound in air at atmospheric pressure:.......cueveinens 340 m/s
Acceleration

Peak acceleration Of 8 OO CAL: .v.uesssserssssrssssssssnsssssessaissnssns 5 m/s*

0 to 60 mph in 5 sec. Note that this 0 to 60 mph is not really a good determination of peak
acceleration because the gear change from 1% to 2™ slows things a little. Actually, many cars
intentionally put the 2™ to 3 gear shift just above 63 mph (100 km/hr) in order to make this
reported “acceleration time” shorter, even though it compromises the overall performance of the
car.

Energy

Lots of different kinds, but typical is 4 V for 2 A-Hr

Power

Power consumed by a light bulb........ooooiiiiiiiciene 100 W
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Electric Field

Electric field at your face from the lamp on your desk.......... 80 V/m
1 E; w
fetpip B AW o el 2(3x108m/s)[10‘7 , jloo_w
24, 2cty 4z (1 m) 47 (1 m)° A"/ (1 m)
Voltage
Voltage between finger and door when getting a shock ....... 10* v

Magnetic Field

Magnetic field generated by an MRI magnet ........c.cccoeeuene. 3T

And finally...

Number of times (it might be less that one) you’d need to run from the bottom to the top of the
Green building to burn the calories in a candy bar

................................................................................................ 10 times
1 candy bar ~ 200 Calories ~ 8x10° J
Green Building = 21 stories = 80 m
5
Energy to climb = mgh-N= N~ sl ] =10 times

m
(100 ke)(10 B/ }(80 m)
Of course, you are doing more work than just mgh, you probably don’t really weigh 100 kg and

the body only converts about half the food energy into useful energy, so this is all approximate,
but that’s the point after all.
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Problem 3 Sliding Bar (25 points): A conducting bar has mass M. It slides to the right along
two frictionless horizontal rails separated by a distance /¥, as shown in the sketch. The rails are
connected on the far right by a resistor of resistance R. The bar itself and the rails have zero
resistance.

At time t = 0 the bar has slid (under its own inertia — no one is pushing it anymore) to the point
pictured below, where everywhere to its right there is a constant magnetic field B, directed out
of the page. This is the only B field that you are to think about it this problem. At this time it
has a velocity ff(t = 0) = K,; ;

where i points to the right in the

below picture. o Rail

OO |w

(a) As time goes on what will
happen to the velocity of the
conducting bar? (Circle ans)

B
®
®
®
®

Increases without limit
Increases to limiting value
Remains constant Rail

Decreases to zero Bar with mass M sliding to the right
Decreases to zero, then

reverses directions

A

o 0 !

(b) Briefly explain why this happens (use words, not equations). If you will need to use a
Maxwell equation to determine subsequent motion of the bar then explicitly state which
equation (by name), write the equation, and briefly explain what it means.

As the bar slides in the magnetic field the loop that it forms the right hand leg of shrinks, so the
magnetic flux decreases. By Lenz’s law, nature doesn’t want this to happen so it exerts a
magnetic force on the bar, slowing and eventually stopping it.

)
We will use Faraday’s law, & =— dg{“ , to calculate the EMF and hence current around the loop.

Faraday’s Law says that changing magnetic fields are accompanied by (“generate™) electric
fields.

(c) Assume that at some later time ¢ the speed of the bar is v(f). What is the current, if any, in
the circuit?

ld(DB :li(B 1;)x)=——BO W‘V(f)
Rdt Ra? R

s 5
B counter-clockwise
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Problem 3: Sliding Bar continued
(d) What, if any, is the total magnetic force F, on the moving bar at this time?

% Bg w? v(t)

F=WxB= to the left

(e) Is the kinetic energy of the bar changing? If so, where is that energy going to or coming
from? Do a calculation to demonstrate that your answer to this question is true. If not,
simply write down an expression for the kinetic energy of the bar.

Yes, there is a force on the bar causing it to slow, and hence the kinetic energy is changing
(decreasing). The energy is being dissipated by the resistor:

= R

P=F-¥() =
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Problem 4: Solenoid (45 pts)

Consider a very long solenoid of N turns, radius a, and length ,{.(Q - d |“"
h (h>> a) (as pictured at right). It is coaxial with the z-axis.

(a) By looking at the solenoid in cross-section (as I do :\:\:___,»j
below) you can calculate the magnetic field at an N \%_—'/5
arbitrary point P, at a radius » < a. If the current through turns % h
the solenoid is /(¢), explicitly calculate the magnetic field )

E(t) at point P. Make sure that you state and briefly

explain which Maxwell’s equation you are using, and

that you draw and label anything needed to do the

calculation on the below image. Be completely clear ——
about every step you take (for example, if anything in the I(1)
calculation is zero, explain why).

We calculate the magnetic field using Ampere’s law:

o

Cf B-ds = u, I, which means that currents create magnetic

fields that circulate around them.

L, 1
'r_’i I We need to draw an Amperian loop, as pictured at left.
I I When we do the integral, the leg outside gives zero
contribution because the field outside the solenoid is zero
f I | (the field from the right half cancels the field from the left

half). The top and bottom legs also give zero contribution
because there B is perpendicular to ds (B is “up” while ds is
horizontal). So:

dB-ds=Bl=p,l, =ﬂaN%I:> B= =

. _ RIS R)
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Problem 4: Solenoid continued
This solenoid is an inductor of inductance L (which I’m sure you can calculate so I won’t ask
you to). We put it in a series LR circuit (pictured below) consisting of a battery with EMF ¢, a
resistor of resistance R and a switch S. At time # = 0 we close the switch in the circuit.

|+

t

(b) Sketch the time dependence of the current in the circuit,
and write an equation for /(). Clearly identify the initial
(~=0) and final (t=o0) values of the current. Briefly explain
why the current behaves the way it does.

The current increases to a final value of €/R after starting at
0. It behaves like that because the inductor initially fights
the change of current then eventually gives up.

I(I) :%(l—e””) where 7 :%

(c) From part (a) you know the magnetic field B(r) as a function of the current /(¢), which you

have just calculated in part (b). Now let’s look at the electric field that is induced inside the
solenoid. It is easiest to do that in a top view of the solenoid, which is provided below.

Calculate the induced electric field I_E(t) at point P. If you need to use one of Maxwell’s

equations then name and briefly explain it before using it. Be very explicit about how you do
the calculation, drawing and labeling anything that you need on the figure below. Feel free

to leave your answer in terms of B(t) or I(7) as you find convenient — there is no need to

substitute your results from part (a) or (b).

O

k

1)

From Faraday’s law a changing magnetic flux will induce
an electric field that “loops around™ the flux:

do, __d(ﬁ-zi)
di dt

4E-d§:E-27n‘=— =m‘ziB(r)
dt

E-= i—d—B(I) down
2dt

The loop is clockwise (down at P) by Lenz’s law: the E
field is created so that if it were to drive a current and
hence create a B field it would oppose the changing B
field. Here the B field is increasing out of the page so out
E field needs to be clockwise to try to make a B field in.
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Problem 4: Solenoid continued
(d)You now have an electric field E(¢) and a magnetic field B(¢)at point P, meaning that there

is a Poynting vector there. Briefly explain the meaning of the Poynting vector (for example,
what units does it have?) and then calculate its value at point P. Feel free to leave the answer
in terms of the field magnitudes E(¢) and B(r) (you do not need to plug in your answers from
previous parts) but do explicitly state its direction. To be clear please indicate the direction
of the Poynting vector at point P on the diagram below. What does the direction indicate
about this system?

The Poynting vector tells you the power flow per unit

I(t) ; i b :

@ i area .(W/m ) and point in the dlrf:ctlon that power is
flowing. AtP E is down and B is out of the page so the
cross product (the Poynting vector) is radially inward (to
the left), meaning that energy is entering the system.

e
/Lt()

S=—ExB

(e) To demonstrate the meaning of the Poynting vector we typically have you integrate it over
some area and show that it is equal to something else. In the case of this solenoid, over what
area should we integrate? Be very clear here — probably the easiest thing to do is to state an
equation for the area. What should that integral be equal to (state this both in words and as
an equation)? There is no need to do the actual integral or to plug in values you calculated
above to demonstrate that this is indeed the case.

You would integrate it over the cylindrical surface of the solenoid (4 = 2nah). That integral tells

you the rate at which energy is entering the system. so it is the time rate of change of the energy
stored in the solenoid, that is:

Hé-di:%(%u?}
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Problem 5: Transmission Line (75 pts)

The rest of this exam is an extended question dealing with transmission lines. There are a variety
of transmission lines used in the world. A simple example is two wires running next to each
other with current flowing one direction in one and the opposite in the other.

In this problem you will calculate the properties of a coaxial ——0 n
cable. It consists of a solid core or radius @ and a thin outer ~
“shield” conductor of radius b, both of length A. They are
typically held apart by a dielectric, but to make your life
simple let’s just pretend there is vacuum between the
conductors. It is shown in perspective at right.

——

The dimensions are such that you should assume that any fields created by the transmission
line are confined to the region between to two conductors.

We use transmission lines to carry power from batteries or power supplies to loads (typically
modeled as resistors):

" W i
Battery
_{,_

Resistor

+k
In this problem you will calculate the capacitance per unit length and inductance per unit length

of the microstrip transmission line and then study energy flow at DC. Finally, you will describe
its behavior when driven by an AC function generator.

NOTE: PLEASE READ THIS CAREFULLY

In several parts of this problem you will be asked to calculate something that will require the use
of one of Maxwell’s equations. Make sure that you state the name of the equation and the write
it in the form that you plan to use it before you do that part. You do not need to describe the
equation as you were asked to do in earlier parts of this exam, but you do need to be explicit in
the calculations and draw and label anything that you need to use to do the calculation. I will not
provide any further drawings. Please duplicate drawings from this page (simplified to remove
the perspective of course) when you think they will be useful.

Do not forget to give both magnitude and direction of vector quantities.

Feel free to tear out this page so that you do not have to continually turn back to it.
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Problem 5A: Capacitance of the Coaxial Cable

In this part we will consider the transmission line in isolation (no battery or load resistor).
Assume that the inner conductor has a charge +Q and the outer conductor has a charge —Q.

(a) What is the electric field between the conductors?

We have a charge +Q on the inner conductor so an electric field
will be created pointing outwards. We will Gauss’s Law to

calculate the electric field between the plates: (ﬁ E-dA = Qe
£

Pillbox o
We use a Gaussian cylinder with radius » and length L (L < h).
The only surface of the cylinder we care about is the rounded
surface (nothing penetrates the endcaps).

§f E-dA = E277L = G _ 9L _l5_
£ g h 27e rh

Pillbox 0 o o

(b) What is the voltage of the outer conductor relative to the inner conductor (that is, what is the
voltage difference AV = Vyyer — Vinner between them)?
b
@] b
) -_—— In =3
» 2ze,h  \a

Note the sign! It is negative because the outer conductor is at a lower potential.

AV:VOutcr- inner T '[Ed—__J dr_ Q
,2me rh 2me h

inner

In(r

(c) What is the capacitance of the transmission line?

e R
"~ AV In(b/a)

(d) What is the capacitance per unit length of the transmission line? Note that 4 should not
appear in this answer — what [ mean by “per unit length” is that you need to multiply by the
length A to get the total capacitance.

27e,

"I (b/a)
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Problem 5B: Inductance of the Coaxial Cable

In this part we will assume that the transmission line has a constant current / traveling down the

inner conductor (in the +k direction, to the right) and back along the outer conductor (in the K
direction).

(a) What is the magnetic field between the conductors?
We have a current / flowing down the center and back on the

outer conductor. The field is zero outside by cancellation. We
use Ampere’s Law with the Amperian loop pictured at left:

@ (clockwise)

CEE-d§=B-27rr:,u”1m = l=|B=-

27y

(b) What is the inductance of the transmission line? NOTE:
There are two ways to do this. If you don’t recall either of
them then I suggest that you at least calculate the magnetic
energy between the conductors.

We will use energy to calculate the inductance:

U, = [[[usav = m—dV j j jz,uo[zzj dr(rdqp)dy:i’;‘:’[iz‘;—[]z b%

y=0¢=0r=a
2
A g [EJ L N A [é)
47 a 2 2w a

(c) What is the inductance per unit length of the transmission line?

_L_ = il-’.’— In (EJ
length 27 \a
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Problem 5C: DC Power Transmission with the Coaxial Cable

We now connect the transmission line to a battery (EMF &) on the left and a resistor (resistance
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a
long time after this connection has been made (after any transient behavior has passed). In
answering the below questions feel free to use the results from previous sections of this problem
(you do not need to derive them again) but express your answers only in terms of variables given
here and at the beginning of the problem (NOT in terms of Q or / from parts 5A and 5B).

(a) What is the electric field between the conductors?

From before,

~ & ~
=

27g,rhin(bja)  |rin(b/a) @

= - 2
E Q rand AV =¢= 0 In 2 = E= 2l
2me,rh 2re,h \a

o

(b) What is the magnetic field between the plates?

£

P

ﬁz— JL[I) ]qaz_ auo
27y 2xr R

(c) What is the Poynting vector between the plates?

g la = 1 3 o ol & & 5
S:—EXB:— _r X(— (- ety — k
Hy Hy (1‘ In(b/a) J 27r R qa] 27r°RIn (b/a)
(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what

you would expect given the meaning of the Poynting vector.

The relevant area is the cross-sectional area of the transmission line. There is no angular
dependence so we just integrate in rings:

[¥]

b 2 2 b
S-dA dr g
S-dA = —78—.2 -d-:g_ ST Tarh !
” ,;[,QM"RIn(b/a) RLar R ,;[rln(b/a) R Power dissipated by the resistor
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Problem 5D: Transients and AC Transmission in the Coaxial Cable

You calculated that the transmission line has an inductance per unit length and a capacitance per
unit length. A typical way to model the behavior of the transmission line is as a collection of
inductors and capacitors, as pictured below left, or even more simply as just a single inductor and
capacitor, as pictured below right.

cT T T T CT

These are “lossless™ models — we are ignoring the resistance of the transmission line itself.

(a) Let’s first think about the transient behavior of this circuit. The instant after you attach a
battery (&) on the left and a resistive load (R) on the right, what is the current through the
load? Why? Describe what the inductive and capacitive parts of the transmission are
behaving like at this instant.

The instant the switch is closed no current will flow because the inductor acts like an open circuit
preventing the flow of current (and the capacitor looks like a short circuit since it is uncharged).

(b) A long time after the battery ¢ and load resistor R have been connected what is the current
through R? Why? Describe what the inductive and capacitive parts of the transmission are
behaving like at this instant.

A long time after the switch is closed the current will be €/R because the inductor acts like a
short circuit (constant current so the inductor does nothing) and the capacitor looks like an open
circuit (because it is “fully charged™).
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Problem 5D: Transients and AC Transmission continued L

Now instead of attaching a battery on the left, let’s attach a function

generator, driving a voltage V' =¥ sin@f. On the right we still have a _
resistive load, but to make life simpler let’s assume that it is a very large

resistor R. —

(¢) You have already discussed the very low frequency (DC) behavior of
the transmission line. As we turn up the frequency of the power
supply, QUALITATIVELY describe (no equations) what happens to
the voltage that the load sees. Why?

As we turn up the frequency the inductor progressively get a larger reactance and the capacitor
gets a smaller reactance, meaning that the voltage across the load will shrink.

(d) I said above that you would want to assume that the load had a very large resistance R.
Typically when we say that something is very large, what we mean is that it is much larger
than something else. At non-zero frequencies, what should R be much larger than (give an
equation here)? Why?

If you want to be able to ignore its resistance when thinking about current in the circuit then you
want it to have a large resistance compared to the reactance of the capacitor that it is in parallel
with:

R>>L
wC



Sources of Magnetic Fields

9.1 Biot-Savart Law

Currents which arise due to the motion of charges are the source of magnetic fields.
. . T —— s e Rp—— -

When charges move in a conducting wire and produce a-current-/, the magrnetic field at

any point P due to the current can be calculated by adding up the magnetic field

contributions, ¢B ., from small segments of the wire ds, (Figure 9.1.1).

dB ®
;‘.
r.o P
i- -
<
ds
[ ——

Figure 9.1.1 Magnetic field 4B at point P due to a current-carrying element /s .

These segments can be thought of as a vector quantity having a magnitude of the length
of the segment and pointing in the direction of the current flow. The infinitesimal current
source can then be written as /d's.

Let » denote as the distance form the current source to the field point P, and r the
corresponding unit vector. The Biot-Savart law gives an expression for the magnetic field

contribution, dB, from the current source, /ds,

i = Fo 148X (9.1.1)
4z 7
where , is a constant called the pczmeabih’ty of free space:
Uy, =4zx107T-m/A (9.1.2)

Notice that the expression is remarkably similar to the Coulomb’s law for the electric
field due to a charge element dg: , "

1, 7 a4,
/b; ;: L{.J——{—
dre, ¥’ (o

{

= 7
= i YV 19.1.3)

i I:

Adding up these contributions to find the magnetic field at the point P requires
integrating over the current source,
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(9.1.4)

The integral is a vector integral, which means that the expression for B is really three

integrals, one for each component of B. The vector nature of this integral appears in the
cross product /dsxr . Understanding how to evaluate this cross product and then
perform the integral will be the key to learning how to use the Biot-Savart law.

Interactive Simulation 9.1: Magnetic Field of a Current Element

Figure 9.1.2 is an interactive ShockWave display that shows the magnetic field of a
current element from Eq. (9.1.1). This interactive display allows you to move the position
of the observer about the source current element to see how moving that position changes
the value of the magnetic field at the position of the observer.

Figure 9.1.2 Magnetic field of a current element.

Example 9.1: Magnetic Field due to a Finite Straight Wire
A thin, straight wire carrying a current / is placed along the x-axis, as shown in Figure

9.1.3. Evaluate the magnetic field at point . Note that we have assumed that the leads to
the ends of the wire make canceling contributions to the net magnetic field at the point P .

," 0 i"\ & 61(;‘. -8 < | 4
” \ < » LN S :’j_ { { /l;/_‘-

Figure 9.1.3 A thin straight wire carrying a current /.
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Solution:

This is a typical example involving the use of the Biot-Savart law. We solve the problem
using the methodology summarized in Section 9.10.

(1) Source point (coordinates denoted with a prime)

Consider a differential element d'§ =+dx'i carrying current / in the x-direction. The

location of this source is represented by r'= x'i.
(2) Field point (coordinates denoted with a subscript “P)

Since the field point P is located at (x,y)=(0,a), the position vector describing P is

-

I, =aj.
(3) Relative position vector

The vector ¥ =r, —r' is a “relative” position vector which points from the source point

to the field point. In this case, F=aj—x'i, and the magnituder = F|=va’ +x" is the
distance from between the source and P. The corresponding unit vector is given by

Foaj-x'i Vector 000

r =-—=J—'=sin9j—0059i

s 12 ) -

a+x*
(4) The cross product tcﬁ]xf'

{‘ \‘% '{?‘0""“5 ;‘I‘ e’n',f{'-'l‘;’ O{QJA"ﬁl "’
The cross product is given by

d§xt = (+dx')x (~cosOi+sindj) = (dx'sinO)k

(5) Write down the contribution to the magnetic field dgeé Ids
/

The expression is /

w1 dx' sin@ i

-
4 r

which shows that the magnetic field at P will point in the +k direction, or out of the page.

(6) Simplify and carry out the integration
{/’“

J
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The variables &, x’ and r are not independent of each other. In order to complete the
integration, let us rewrite the variables x’ and r in terms of 8. From Figure 9.1.3, we have

{r =a/sin(r—0)=acscd

x'=acot(r—@)=—acotd = dx'=acsc’0dO

Upon substituting the above expressions, the differential contribution to the magnetic
field is obtained as

Hl (acse’0dO)sinG ¢ il g0t

dB = :
4 (acscB)” 4ra

Integrating over all angles subtended from 6, to 7 —6, (note our definition of &,), we

obtain
=l o, ~ Mol ~
B=—L sin@dfk = - [cos(r —6,)—cosb, |k
dra * dra : _
(9.1.5)
=’uL[(co:;6’q +cos¢9,)ﬁ
4ra B

The first term involving &, accounts for the contribution from the portion along the +x
axis, while the second term involving 6, contains the contribution from the portion along
the —x axis. The two terms add!

Let’s examine the following cases:

(i) In the symmetric case where &, =6, , the field point P is located along the

perpendicular bisector. If the length of the rod is 2L, then cos@, = L/ L’ +a* and the
magnetic field is

(9.1.6)

(ii) The infinite length limit L — o

This limit is obtained by choosing (6,,6,) =(0,0). The magnetic field at a distance «
away becomes

Hol
2ma

B= (9.1.7)




Note that in this limit, the system possesses cyﬂn@al symmetry, and the magnetic field
lines are circular, as shown in Figure 9.1.4.

=1

Figure 9.1.4 Magnetic field lines due to an infinite wire carrying current /.

In fact, the direction of the magnetic field due to a long straight wire can be determined
by the right-hand rule (Figure 9.1.5).

Current flowing
out of the page

Figure 9.1.5 Direction of the magnetic field due to an infinite straight wire

If you direct your right thumb along the direction of the current in the wire, then the
fingers of your right hand curl in the direction of the magnetic field. In cylindrical
coordinates (,¢,z) where the unit vectors are related by rx¢ =z, if the current flows in
the +z-direction, then, using the Biot-Savart law, the magnetic field must point in the ¢ -
direction.

Example 9.2: Magnetic Field due to a Circular Current Loop

A circular loop of radius R in the xy plane carries a steady current /. as shown in Figure
9.1.6.

(a) What is the magnetic field at a point P on the axis of the loop, at a distance z from the
center?

(b) If we place a magnetic dipole ji= p__ﬁ at P, find the magnetic force experienced by
the dipole. Is the force attractive or repulsive? What happens if the direction of the dipole
is reversed, i.e., i = —,u;f{
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Figure 9.1.6 Magnetic field due to a circular loop carrying a steady current.
Solution:

(a) This is another example that involves the application of the Biot-Savart law. Again
let’s find the magnetic field by applying the same methodology used in Example 9.1.

(1) Source point

In Cartesian  coordinates, the differential current element located at
F'=R(cos¢5'i+sin¢'j) can be written as Ids =1(dr'/ d¢")dg'=IRd¢'(—sing'i+cosgd']).

(2) Field point

Since the field point P is on the axis of the loop at a distance z from the center, its
position vector is given by r, =zk.

(3) Relative position vector ¥ =r, — '
The relative position vector is given by

F=F,—F'=—Rcosg'i—Rsing!j+zk (9.1.8)

and its magnitude

r=[f|=(-Rcosg')? +(~Rsing')’ + 2> =R + 77 (9.1.9)

is the distance between the differential current element and P. Thus, the corresponding
unit vector from Ids to P can be written as

|

>

Il
~ | =
5‘&

|
T Radl

=
|
=
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(4) Simplifying the cross product

The cross product d'sx (¥, —r') can be simplified as

dsx(r,—r") =quﬁ'(—sinqﬁ'i+cos¢'j)x[—Rcos¢'i—Rsin¢'j+zﬁ]
X L (9.1.10)
=Rdg¢'[zcosg'i+zsing'j+ RK]

(5) Writing down dB

Using the Biot-Savart law, the contribution of the current element to the magnetic field at
Pis

dézﬂﬂf dsxr _ Ml dsxr _ Ml dsx(r, —F")
4z ¥ 4 P 4z |F,—r'f
. 5 (9.1.11)
M IR zcos¢5'i+zsin¢5'j+de¢,
4z (R*+2°)"
(6) Carrying out the integration
Using the result obtained above, the magnetic field at P is
Bz;zOIR Lzrzcosgﬁ ljZSI,n?,,J+de¢' 9.1.12)
47 (RT+z7)'"
The x and the y components of B can be readily shown to be zero:
74 144 zZ 2
\.:_}J‘)LR:WL COS¢'d¢‘=—%SiH¢' R-ZO (9]13)
Yo Ap(RT+2z7) 4x(R°+z7)"" 0

_ HoIRz
Yo Ag(R*+ %)

Mo IRz

27 2
ing'dg'=————cos¢' =0 9.1.14
-[v sing dg 4 (R +2°)" ¢|o ( :

On the other hand, the z component is

U IR? 27 u, 2xIR? 1, IR’
0 L ¢ ' 0 0

“ar (R +2)7 e T Sl 9.1.15
2z 471_ (R2+22)312 47[ (R2+22)_7/- Z(R"'I‘Z'")yz ( )

Thus, we see that along the symmetric axis, B. is the only non-vanishing component of
the magnetic field. The conclusion can also be reached by using the symmetry arguments.

’ \ | —l: ’ i NN Oon J[‘—f‘:\ .' ;
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The behavior of B. /B, where B, = 1,/ /2R is the magnetic field strength at z=0, as a
function of z/ R is shown in Figure 9.1.7:

B-/By
3

z/IR

Figure 9.1.7 The ratio of the magnetic field, B. / B, , as a function of z/R

(b) If we place a magnetic dipole ji = . k at the point P, as discussed in Chapter 8, due
to the non-uniformity of the magnetic field, the dipole will experience a force given by

- L = dB. \~ A
F, =V(i-B)=V(1B.)=p, [—-Jk Nke (. DAPLIB)
dZ /F‘ vy
Upon differentiating Eq. (9.1.15) and substituting into Eq. (9.1.16), we obtain an |
)Y pal
SR ¢ 9.1.17)

B —_Z(RI +zz)5/2

Thus, the dipole is attracted toward the current-carrying ring. On the other hand, if the
direction of the dipole is reversed, ji =—z_k, the resulting force will be repulsive.

9.1.1 Magnetic Field of a Moving Point Charge

Suppose we have an infinitesimal current element in the form of a cylinder of cross-
sectional area 4 and length ds consisting of n charge carriers per unit volume, all moving
at a common velocity v along the axis of the cylinder. Let 7 be the current in the element,
which we define as the amount of charge passing through any cross-section of the
cylinder per unit time. From Chapter 6, we see that the current / can be written as

nAqly|=1 (9.1.18)

The total number of charge carriers in the current element is simply dN = n Ads, so that

using Eq. (9.1.1), the magnetic field @B due to the dN charge carriers is given by
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di = o (ndAq|V|)dsx¥  u, (nAds)gVxt  u, (dN)gVxr
47 r? 4z r? Az 2

(9.1.19)

where r is the distance between the charge and the field point P at which the field is being
measured, the unit vector ¥ =r/r points from the source of the field (the charge) 1o P.
The differential length vectord s is defined to be parallel to v. In case of a single charge,
dN =1, the above equation becomes

<!
=

X

ﬁ:f;—q - (9.1.20)

~

Note, however, that since a point charge does not constitute a steady current, the above
equation strictly speaking only holds in the non-relativistic limit where v <« ¢, the speed
of light, so that the effect of “retardation” can be ignored.

The result may be readily extended to a collection of N point charges, each moving with a
different velocity. Let the ith charge ¢, be located at (x,,y,,z,) and moving with velocity

v, . Using the superposition principle, the magnetic field at  can be obtained as:

ﬁ: & 5 (x—x,)i+(y—y,)j+(z-—-z,)fi (9121)
Z i I:(x_-xj)z'l'(y_yf)z+(z"zr)2]3l2

Animation 9.1: Magnetic Field of a Moving Charge

Figure 9.1.8 shows one frame of the animations of the magnetic field of a moving
positive and negative point charge, assuming the speed of the charge is small compared
to the speed of light.

gﬁ E '\’f’\,.ff,éﬂ--f /b"‘ﬁe/

\I’\t‘" Oy (Cﬂn g o /
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Animation 9.2: Magnetic Field of Several Charges Moving in a Circle

Suppose we want to calculate the magnetic fields of a number of charges moving on the
circumference of a circle with equal spacing between the charges. To calculate this field
we have to add up vectorially the magnetic fields of each of charges using Eq. (9.1.19).

Figure 9.1.9 The magnetic field of four charges moving in a circle. We show the
magnetic field vector directions in only one plane. The bullet-like icons indicate the
direction of the magnetic field at that point in the array spanning the plane.

Figure 9.1.9 shows one frame of the animation when the number of moving charges is
four. Other animations show the same situation for N =1, 2, and 8. When we get to eight
charges, a characteristic pattern emerges--the magnetic dipole pattern. Far from the ring,
the shape of the field lines is the same as the shape of the field lines for an electric dipole.

Interactive Simulation 9.2: Magnetic Field of a Ring of Moving Charges

Figure 9.1.10 shows a ShockWave display of the vectoral addition process for the case
where we have 30 charges moving on a circle. The display in Figure 9.1.10 shows an
observation point fixed on the axis of the ring. As the addition proceeds, we also show
the resultant up to that point (large arrow in the display).

1111:3" T g A O‘ ng [)
ﬂl‘ﬂﬂé@lﬁ‘ \

Figure 9.1.10 A ShockWave simulation of the use of the principle of superposition to
find the magnetic field due to 30 moving charges moving in a circle at an observation
point on the axis of the circle.



Figure 9.1.11 The magnetic field due to 30 charges moving in a circle at a given
observation point. The position of the observation point can be varied to see how the
magnetic field of the individual charges adds up to give the total field.

In Figure 9.1.11, we show an interactive ShockWave display that is similar to that in
Figure 9.1.10, but now we can interact with the display to move the position of the
observer about in space. To get a feel for the total magnetic field, we also show a “iron
filings” representation of the magnetic field due to these charges. We can move the
observation point about in space to see how the total field at various points arises from
the individual contributions of the magnetic field of to each moving charge.

9.2 Force Between Two Parallel Wires
We have already seen that a current-carrying wire produces a magnetic field. In addition,
when placed in a magnetic field, a wire carrying a current will experience a net force.

Thus, we expect two current-carrying wires to exert force on each other.

Consider two parallel wires separated by a distance a and carrying currents /; and /> in
the +x-direction, as shown in Figure 9.2.1.

Figure 9.2.1 Force between two parallel wires

The magnetic force, F,,, exerted on wire 1 by wire 2 may be computed as follows: Using
the result from the previous example, the magnetic field lines due to I going in the +x-
direction are circles concentric with wire 2, with the field B, pointing in the tangential
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direction. Thus, at an arbitrary point P on wire 1, we have B, =—(4,/, /27a)j, which
points in the direction perpendicular to wire 1, as depicted in Figure 9.2.1. Therefore,

K,

S ’ T LLlx
2=I,le2=Il(1i)x[—§—°ﬁjj}:—%k 9.2.1)

Clearly F,, points toward wire 2. The conclusion we can draw from this simple

calculation is that two parallel wires carrying currents in the same direction will attract
each other. On the other hand, if the currents flow in opposite directions, the resultant
force will be repulsive.

Animation 9.3: Forces Between Current-Carrying Parallel Wires

Figures 9.2.2 shows parallel wires carrying current in the same and in opposite directions.
In the first case, the magnetic field configuration is such as to produce an attraction
between the wires. In the second case the magnetic field configuration is such as to
produce a repulsion between the wires.

(b)

Figure 9.2.2 (a) The attraction between two wires carrying current in the same direction.
The direction of current flow is represented by the motion of the orange spheres in the
visualization. (b) The repulsion of two wires carrying current in opposite directions.

9.3 Ampere’s Law

We have seen that moving charges or currents are the source of magnetism. This can be
readily demonstrated by placing compass needles near a wire. As shown in Figure 9.3.1a,
all compass needles point in the same direction in the absence of current. However, when
I#0, the needles will be deflected along the tangential direction of the circular path
(Figure 9.3.1b).
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Figure 9.3.1 Deflection of compass needles near a current-carrying wire

| ) 41
| v ;/Z"C-!"f:

Let us now divide a circular path of radius » into a large number of small length vectors
AS = As¢, that point along the tangential direction with magnitude As (Figure 9.3.2).

Figure 9.3.2 Amperian loop

In the limit AS — 0, we obtain
- Mol
B-ds=Bads=| —— |(27r )=y, 9.3.1
g 4 (m}( )= o 93.1)

The result above is obtained by choosing a closed path, or an “Amperian loop™ that
follows one particular magnetic field line. Let’s consider a slightly more complicated
Amperian loop, as that shown in Figure 9.3.3

Figure 9.3.3 An Amperian loop involving two field lines



The line integral of the magnetic field around the contour abcda is

(f B.ds= _[ﬁ-d§+ jﬁ-d§+ Iﬁ-d§+ J.ﬁ-a’_s'
abeda ab be cd cd

(9.3.2)
=0+ B,(1,0)+ 0+ B[r,27 —6)]

where the length of arc be is n@, and 5 (27 —8) for arc da. The first and the third

integrals vanish since the magnetic field is perpendicular to the paths of integration. With
B, = pu I /27y, and B, = u,I /27, the above expression becomes

d B-ds= ol oy 2ol o —gy= ol o Bl an_oy=pr (933)
2zr, 7 27y 7 2

abeda T

We see that the same result is obtained whether the closed path involves one or two
magnetic field lines.

As shown in Example 9.1, in cylindrical coordinates (r,¢, z) with current flowing in the

+z-axis, the magnetic field is given by B =(z,//277)¢ . An arbitrary length element in
the cylindrical coordinates can be written as

dS=drt+rdp@+dzz (9.3.4)

which implies

_— I I I ..
§ B.ds= (i‘—“—}‘dw‘zi g dga:g—;(zn):yﬂf (9.3.5)

closed path closed path 27y closed path

In other words, the line integral of Cfﬁdé' around any closed Amperian loop is

proportional to /

enc ?

the current encircled by the loop.

1l . [ ]
bt ar itk sl be et

.D, | i

Figure 9.3.4 An Amperian loop of arbitrary shape.
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The generalization to any closed loop of arbitrary shape (see for example, Figure 9.3.4)
that involves many magnetic field lines is known as Ampere’s law:

dB-ds=p,l,, (9.3.6)

Ampere’s law in magnetism is analogous to Gauss’s law in electrostatics. In order to
apply them, the system must possess certain symmetry. In the case of an infinite wire, the
system possesses cylindrical symmetry and Ampere’s law can be readily applied.
However, when the length of the wire is finite, Biot-Savart law must be used instead.

, - ud rdSxrt
Biot-Savart Law B =t J : general current source
4z r ex: finite wire
S = current source has certain symmetry
Ampere’s law B-ds=pul e e
peres C}: Holene ex: infinite wire (cylindrical)

Ampere’s law is applicable to the following current configurations:

1. Infinitely long straight wires carrying a steady current / (Example 9.3)

2. Infinitely large sheet of thickness b with a current density J (Example 9.4).
3. Infinite solenoid (Section 9.4).

4. Toroid (Example 9.5).

We shall examine all four configurations in detail.

Example 9.3: Field Inside and Outside a Current-Carrying Wire

Consider a long straight wire of radius R carrying a current / of uniform current density,
as shown in Figure 9.3.5. Find the magnetic field everywhere.

Amperian loops

Figure 9.3.5 Amperian loops for calculating the B field of a conducting wire of radius R.
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Solution:

(i) Outside the wire where r > R, the Amperian loop (circle 1) completely encircles the
current, i.e., I, =/ . Applying Ampere’s law yields

Cfﬁ-d§=B(§ds:B(27rr)=yOI

which implies

(ii) Inside the wire where » < R, the amount of current encircled by the Amperian loop
(circle 2) is proportional to the area enclosed, i.e.,

IEHC :( ]rr; JI
TR

) ! ‘ ‘)
( (/m”'lmz: ’»( W/

Thus, we have

(;Fﬁ-d_s':B(Zm'):yO](ﬁ—":J R . T r”n"";
TR 2aR°

We see that the magnetic field is zero at the center of the wire and increases linearly with
r until »=R. Outside the wire, the field falls off as //r. The qualitative behavior of the
field is depicted in Figure 9.3.6 below:

B = mmir{e .} €L

Mol b Chy A

2nR ( 1 J
Becl/i

b= [l S -

Figure 9.3.6 Magnetic field of a conducting wire of radius R carrying a steady current 7 .

Example 9.4: Magnetic Field Due to an Infinite Current Sheet

Consider an infinitely large sheet of thickness & lying in the xy plane with a uniform
current density J= J,i. Find the magnetic field everywhere.



Figure 9.3.7 An infinite sheet with current density J= Joi ‘

Solution:

We may think of the current sheet as a set of parallel wires carrying currents in the -+x-
direction. From Figure 9.3.8, we see that magnetic field at a point P above the plane
points in the —y-direction. The z-component vanishes after adding up the contributions
from all wires. Similarly, we may show that the magnetic field at a point below the plane
points in the -+y-direction.

v i

| s
e L ¥ - S
r\n [0 - B BN U T BE BE BT BN BE B AN
(% & & @ @ @8 & & & & 6 & & @ &

b én e 8 ® & 8 B H B & B & 6 5 S

I R R R RN
E=2 — —
—t— e

S T

Figure 9.3.8 Magnetic field of a current sheet

We may now apply Ampere’s law to find the magnetic field due to the current sheet. The
Amperian loops are shown in Figure 9.3.9.

® & 9 @ (J & 8 |8 8 & g C] {
b © 9@ 8|0 o 8lo @ Zow ©|6 © ( ¥
& & 6 8 g5 aed 6 @8 P S £
o 80 8lv 8 a|le &8 @'y B8 ©

Figure 9.3.9 Amperian loops for the current sheets

For the field outside, we integrate along path C,. The amount of current enclosed by C|
is
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I, = [[3-d&=,0) (9.3.7)
Applying Ampere’s law leads to
dB-ds =B20) = 1, = 4, (Jb0) (9.3.8)

or B=p,J,b/2. Note that the magnetic field outside the sheet is constant, independent

of the distance from the sheet. Next we find the magnetic field inside the sheet. The
amount of current enclosed by path C, is

I, = [[J-dA=J,2]z|0) (9.3.9)
Applying Ampere’s law, we obtain
dB-ds=BQ20) = pyl,,, = #Jo(2] 2] 0) (9.3.10)

or B=u,J,|z|. At z=0, the magnetic field vanishes, as required by symmetry. The
results can be summarized using the unit-vector notation as

-

_1”0_‘]0b1, z% b2
2
—pdyz ], —bl2<z<b/2 (9.3.11)

“07“’05}, z2<-b/2

el
I

Let’s now consider the limit where the sheet is infinitesimally thin, with » — 0. In this
case, instead of current density J = Ji, we have surface current K = Ki, where K =.J,b.
Note that the dimension of K is current/length. In this limit, the magnetic field becomes

—’u"K_Ai, z>0
ey o 2 (9.3.12)
HoK =
0§, z<0
2

9.4 Solenoid
A solenoid is a long coil of wire tightly wound in the helical form. Figure 9.4.1 shows the

magnetic field lines of a solenoid carrying a steady current /. We see that if the turns are
closely spaced, the resulting magnetic field inside the solenoid becomes fairly uniform,
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provided that the length of the solenoid is much greater than its diameter. For an “ideal”
solenoid, which is infinitely long with turns tightly packed, the magnetic field inside the r[};:e_,‘-f-""
solenoid is uniform and parallel to the axis, and vanishes outside the solenoid.

~ { /

— . J 2 ) §

g

BRI = N-

Figure 9.4.1 Magnetic field lines of a solenoid

We can use Ampere’s law to calculate the magnetic field strength inside an ideal solenoid.

The cross-sectional view of an ideal solenoid is shown in Figure 9.4.2. To compute B,
we consider a rectangular path of length / and width w and traverse the path in a

counterclockwise manner. The line integral of B along this loop is
§B-ds=[B-ds+ [B-ds+ [B-ds+ [B-d5s
i 2 3 " (9.4.1)
=0 + 0.+ Bl + 0

I 1
L EEEEEEEEEEEE _
w12 4] A
| H - - )
1 [ \ 1o B PP N ;
et = WiaTp ) L -’.-‘f:~ _(’_A.‘__
= / /

- BRHEXRORRERRE)

Figure 9.4.2 Amperian loop for calculating the magnetic field of an ideal solenoid.

In the above, the contributions along sides 2 and 4 are zero because B is perpendicular to
ds . In addition, B=0 along side 1 because the magnetic field is non-zero only inside
the solenoid. On the other hand, the total current enclosed by the Amperian loop is
I = NI, where N is the total number of turns. Applying Ampere’s law yields

4B ds=5i= y{\g\) (9.4.2)
p :
\ €y

Og

(S

W b

or
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f\l - ’P[ ’]‘OJ’/;“J
F#[fﬂfkﬁh}

B=£%£=%M (9.4.3)

where| n =N /Iyepresents the number of turns per unit length., In terms of the surface
current; or current per unit length K = sl , the magnetic field can also be written as,

B=uK (9.4.4)

What happens if the length of the solenoid is finite? To find the magnetic field due to a
finite solenoid, we shall approximate the solenoid as consisting of a large number of
circular loops stacking together. Using the result obtained in Example 9.2, the magnetic
field at a point P on the z axis may be calculated as follows: Take a cross section of
tightly packed loops located at z” with a thickness dz', as shown in Figure 9.4.3

The amount of current flowing through is proportional to the thickness of the cross
section and is given bydl = I(ndz")=I1(N/[l)dz', where n= N/l is the number of turns
per unit length.

reid Figure 9.4.3 Finite Solenoid
The contribution to the magnetic field at 2 due to this subset of loops is

e B

A(z=zy" +RT"™ A(z-zY +R°T"

(nldz") (9.4.5)

Integrating over the entire length of the solenoid, we obtain

1/2

B :,qu[R2 J'_NZ dz' LonIR* z'-z
T2 MGV rRTE . 2 Ry iR

_ Hond (/12)-=z N ({/2)+z
2 | J=1/12+R Jz+1127 + R
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A plot of B./B,., where B, = y,nl is the magnetic field of an infinite solenoid, as a
function of z/R is shown in Figure 9.4.4 for /=10Rand / =20R.

BB,

|
1
|
1
; W oR 215 -0 -5 3 10 1s =R
o
1

1=20R
Figure 9.4.4 Magnetic field of a finite solenoid for (a) / =10R, and (b) / =20R.

Notice that the value of the magnetic field in the region|z|<//2is nearly uniform and
approximately equal to B, .

Examaple 9.5: Toroid

Consider a toroid which consists of NV turns, as shown in Figure 9.4.5. Find the magnetic
field everywhere.

Figure 9.4.5 A toroid with N turns
Solutions:
One can think of a toroid as a solenoid wrapped around with its ends connected. Thus, the
magnetic field is completely confined inside the toroid and the field points in the
azimuthal direction (clockwise due to the way the current flows, as shown in Figure

9.4.5.)

Applying Ampere’s law, we obtain
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B-d3 = Bds = Bdds =BQ2rr) = u,NI (9.4.7)
qB-d3 =q Bds =B

or

NI

2wy

B (9.4.8)

where r is the distance measured from the center of the toroid.. Unlike the magnetic field
of a solenoid, the magnetic field inside the toroid is non-uniform and decreases as1/r.

9.5 Magnetic Field of a Dipole

Let a magnetic dipole moment vector ji = —yﬁ be placed at the origin (e.g., center of the
Earth) in the yzplane. What is the magnetic field at a point (e.g., MIT) a distance r away
from the origin?

Figure 9.5.1 Earth’s magnetic field components

In Figure 9.5.1 we show the magnetic field at MIT due to the dipole. The y- and z-
components of the magnetic field are given by

B2 e peocll | BB e 9.5.1)
4 47 ¥ : 4 ¥’

Readers are referred to Section 9.8 for the detail of the derivation.

In spherical coordinates (r,6, ¢), the radial and the polar components of the magnetic
field can be written as

B, =B,sin6+ B, cosd =—ﬂ2—’jcose (9.5.2)
- 4 r
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and
B, =B, cos0-B.sin0 =-2Lsing (9.5.3)
respectively. Thus, the magnetic field at MIT due to the dipole becomes

r

B=5,0+5 f=~%’--‘-‘;(sin96+2cos9f) (9.5.4)
Ty

Notice the similarity between the above expression and the electric field due to an electric
dipole p (see Solved Problem 2.13.6):

E=— L (sin06+2c0s0%)

3

The negative sign in Eq. (9.5.4) is due to the fact that the magnetic dipole points in the
—z-direction. In general, the magnetic field due to a dipole moment i can be written as

B o 3D -

9.5.5
4 P ( )
The ratio of the radial and the polar components is given by
B _&2_/;1 cosd
Sro AR o206t (9.5.6)
B, —ﬁ%sin %
4 ¥

9.5.1 Earth’s Magnetic Field at MIT

The Earth’s field behaves as if there were a bar magnet in it. In Figure 9.5.2 an imaginary
magnet is drawn inside the Earth oriented to produce a magnetic field like that of the
Earth’s magnetic field. Note the South pole of such a magnet in the northern hemisphere
in order to attract the North pole of a compass.

It is most natural to represent the location of a point P on the surface of the Earth using
the spherical coordinates (7,8, #). where r is the distance from the center of the Earth, &

is the polar angle from the z-axis, with 0 <& <z, and ¢ is the azimuthal angle in the xy
plane, measured from the x-axis, with 0<¢ <27 (See Figure 9.5.3.) With the distance
fixed at » =7, , the radius of the Earth, the point P is parameterized by the two angles &
and ¢.
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Figure 9.5.2 Magnetic field of the Earth

In practice, a location on Earth is described by two numbers — latitude and longitude.
How are they related to & and ¢? The latitude of a point, denoted as &, is a measure of
the elevation from the plane of the equator. Thus, it is related to & (commonly referred to
as the colatitude) by ¢ =90°—@. Using this definition, the equator has latitude 0°, and
the north and the south poles have latitude £90°, respectively.

The longitude of a location is simply represented by the azimuthal angle ¢ in the

spherical coordinates. Lines of constant longitude are generally referred to as meridians.
The value of longitude depends on where the counting begins. For historical reasons, the
meridian passing through the Royal Astronomical Observatory in Greenwich, UK, is
chosen as the “prime meridian™ with zero longitude.

F4
|
| ~
|

north pole i

y

south pole

Figure 9.5.3 Locating a point P on the surface of the Earth using spherical coordinates.

Let the z-axis be the Earth’s rotation axis, and the x-axis passes through the prime
meridian. The corresponding magnetic dipole moment of the Earth can be written as

I, =, (sing, cosg, i+sin g, sin g, j+cos 6, k)

N X . (9.5.7)
= 11,(~0.0621+0.18 j—0.98K)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 11 Solutions

Problem 1: Current Slabs

The figure below shows two slabs of current. Both slabs of current are infinite in the x
and z directions, and have thickness d in the y-direction. The top slab of current is

=Jz out of the
page. The bottom slab of current is located in the region -d < y < () and has a constant
current density J, =—J 2 into the page.

located in the region 0 < y < d and has a constant current density J

aut

,u,f)- 7 /‘__r: 7 fi\ y d
> : 4 o) =
w0 W /0 JOU{
v ) v e =2 "X
| | 1§, i/.{i ® J in
-d

(a) What is the magnetic field for |y| >d ? Justify your answer.

Zero. The two parts of the slab create equal and opposite fields for | y| >d.

b) Use Ampere’s Law to find the magnetic field at y = (. Show the Amperian Loop
that you use and give the magnitude and direction of the magnetic field.

The field at y = 0 points to the right (both slabs make it point that way). So walk counter
clockwise around the loop shown in the above figure and Ampere’s Law gives:

> X

i |

 CAT



[jﬁ-d§=31+0+0+0=4—”1m = p, (Jld) =
(24

B = u,Jdi (to the right)

c) Use Ampere’s Law to find the magnetic field for 0 < y <d.  Show the Amperian
Loop that you use and give the magnitude and direction of the magnetic field.

I —— Amperian Loo A

oooooooooooooooo

!

-d
The field for 0 <y < d still points to the right. So walk counter clockwise around the
loop shown in the above figure and Ampere’s Law gives:

Uﬁ-d§:81+0+0+0=y,,fc,,c =4—ﬂﬂ(d—y):> ]§=y0J(d—y)i (to the right)
¢

(d) Plot the x-component of the magnetic field as a function of the distance y on the
graph below. Label your vertical axis.

Bx
sl | —

Lol o
Cagfi 1@ A
v



Problem 2:

An infinitely long wire of radius a carries a current density J, which is uniform and
constant. The current points "out of" the page, as shown in the figure.

-—"'<-"-.,~

-

a) Calculate the magnitude of the magnetic field B(r) for (i) » <a and (ii)

r>a. For both cases show your Amperian loop and indicate (with arrows)
the direction of the magnetic field. y LA - a A7
wt! ¢ (Mg e “""/ COMmE N 44
The dashed lines above are the Amperian loops I will use for (i) and (ii). They both
have a radius of », and in both cases the paths are counterclockwise, as is the B field,
due to a current out of the page (right hand rule).

(i) r<a.

From Ampere’s Law: \ Al o
ohly ‘u,/, 0 jhal Gog

)
4]3 - d8 = 2B = o] pypuire = Hoo7” =|B = 'u“;&‘ﬂr_ /: ’u“;"r counterclockwise
ar

(ii)r>a.

Now we just contain all of the current:

= J 2 J 2 L
B-ds=2mB=u,l, = .St =5 |B= Holo™ _ Holod o ounterclockwise
# 0~ penetrate (1= ] 2 e 2 r




' J . N | P
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(b) What happens to the answers above if the direction of the current is reversed so that it

\- ;

flows "into" the page ? — Thialy T !J:;\?"
If the direction of current flips then so does the direction of the magnetic field, so it is 0« Thd’
clockwise rather than counterclockwise. The magnitude of the field remains the same. ‘ R
(&7 { /) Lk {

¢) Consider now the same wire but with a hole bored throughout. The hole has radius b P
(with 2b < @) and is shown in the figure. We have also indicated four special points: O,

L, M, and N. The point O is at the center of the original wire and the point M is at the
center of the hole. In this new wire, the current density exists and remains equal to J,

over the remainder of the cross section of the wire. Calculate the magnitude of the
magnetic field at (i) the point M, (ii) at the point L, and (iii) at the point N. Show your
work.

Hint: Try to represent the configuration as the "superposition" of two types of wires.

The point here is that we have two wires superimposed on top of each other. The large
(radius a) wire carries current out of the page while the smaller (radius b) wire carries
current into the page (with the same current density). At all point L, M and N we are
inside the large wire and on the right, so the counterclockwise B field is pointing up the
page. What is happening from the small wire changes from place to place

(i) the point M:

Here we are at the center of the small wire, so it contributes nothing. We are at a radius
r= a - binside the big wire, so from part (a.i) of this problem we have:

B:M up




Problem 3: Sliding Bar on Wedges

A conducting bar of mass m slides down two frictionless R
conducting rails which make an angle € with the M

horizontal, separated by a distance ¢ and connected at the r !
top by a resistor R, as shown in the figure. In addition, a s

uniform magnetic field B is applied vertically upward. _/% B
The bar is released from rest and slides down. At time ¢ l
the bar is moving along the rails at speed v(7).

(a) Find the induced current in the bar at time 7. Which I
way does the current flow, from a to b or b to a? 2] (

The flux between the resistor and bar is given by
@, =Blx(t)cosd
where x(7) is the distance of the bar from the top of the rails.

Then,
S_—-id) ——-[-I—B!’x(l)COSH—~B€v(t)cos6’
& P

Because the resistance of the circuit is R, the magnitude of the induced current is
B |6‘| _ Blv(t)cosd
R R
By Lenz’s law, the induced current produces magnetic fields which tend to oppose the

change in magnetic flux. Therefore, the current flows clockwise, from b to a across the
bar.

!

(b) Find the terminal speed v, of the bar.

At terminal velocity, the net force along the rail is zero, that is gravity is balanced by the
magnetic force:

mgsin@ = IBlcosf = [W)Bﬂcos@

or
_ Rmgsin®

n0= (Bl cosb)’

After the terminal speed has been reached,

(c) What is the induced current in the bar?



(i) at the point L:

Here we are to the left of the small wire (at a radius r = b), so the clockwise field (as we
said in part b) is pointing up, just like the CCW field from the big wire We are at a radius
r= a - 2b inside the big wire, so:

B /—‘OJQ(;_'Zb)+ #02‘]05 up = #o‘fo(;_b) up

(iii)  at the point N:

Here we are to the right of the small wire (at a radius r = b), so the clockwise field is
pointing down, opposite the CCW field from the big wire so they subtract rather than add
We are at aradius r = a inside the big wire, so:

B Hod ya _/uojob up = .”u']o(a"b)

u
2 2 2 .

A comment about people’s work on this problem: I was stunned at how many people
tried to do Ampere’s law on the wire with a hole in it. Since the hole breaks the
cylindrical symmetry of the problem you just can’t do this. That is, since B is no longer

constant around an Amperian centered on O, fj.ﬁ-a@ #2mrB. B isn’t constant, so you

can’t just pull it out!



i

_Blv(t)cos8 Bé’cos@{ Rmgsinf ]_ mgsinf mg 1A

R R (Blcos@) ) Bfcos@ Bl

(d) What is the rate at which electrical energy is being dissipated through the resistor?

The power dissipated in the resistor is

{ P :'Tzﬁ_%(%tan QJ R

N0 LOf [('/';’i{l:'

J

(e) What is the rate of work done by gravity on the bar? The rate at which work is done
is F-¥. How does this compare to your answer in (d)? Why?

~
(]

A . 2
(F-ﬁlz (mgsin@)v,(1) = mgsin 8[ Rrmggsiti o J:(mg tan BJ R—P

(Bl cos@)? B¢

That is, they are equal. All of the work done by gravity is dissipated in the resistor,
which is why the rod isn’t accelerating past its terminal velocity.



Problem 4 EMF Due to a Time-Varying Magnetic Field

A uniform magnetic field B is perpendicular to a one-turn circular loop of wire of
negligible resistance, as shown in the figure below. The field changes with time as
shown (the z direction is out of the page). The loop is of radius »=50cm and is
connected in series with a resistor of resistance R =20 . The "+" direction around the
circuit is indicated in the figure. In order to obtain credit you must show your work;
partial answers without work will not be accepted.

, ! | Nai

T

6
second

R
oo
o

(a) What is the expression for EMF in this circuit in terms of B_(¢) for this arrangement?

Solution: When we choose a "+" direction around the circuit shown in the figure above,
then we are also specifying that magnetic flux out of the page is positive. (The unit vector

f=+k points out of the page). Thus the dot product becomes
B —Bk=n 0.1) J‘V"'/' el

From the graph, the z-component of the magnetic field B. is given by

(2.5T-s"Y);0<r<2s L : |
R T U al
50T:2s<f<4s o Seportl, AT LA
B = o 0.2) 1
I0T-(1.25T -s")r;4s<t<8s S [~
0:1>8s ‘ -

The derivative of the magnetic field is then

AT 0zt =xd s

0:2s<t<4
dB. _ S S , (0.3)
dt 125 Ty sl g <t <8y

0;t>8s

The magnetic flux is therefore

-,
G



(Dmagvrcuc = J-J-ﬁ ‘n dA = Jl_[B:dA = B_J'”‘2 (04)
The electromotive force is

d dB 2
E=—D = ——Iggp, 0.5
dt magnetic di Tl ( )

So we calculate the electromotive force by substituting Eq. (0.3) into Eq. (0.5)
yielding

—(25T-sar’;0<t<2s
0;2s<t<4s
g= ) . (0.6)
(125T-s")nr’;4s<t<8s

0:1>8s
Using » =0.5 m, the electromotive force is then

-1.96V;0<t<2s
0:2s<r<4s

&= (0.7)
098V :4s<r<8s

0:r>8s
Solution:

(b) Plot the EMF in the circuit as a function of time. Label the axes quantitatively
(numbers and units). Watch the signs. Note that we have labeled the positive direction of

the emf in the left sketch consistent with the assumption that positive B is out of the
paper.

Solution:
E
&.0 T
CV] 146 +
r l L
4 & §& i
- Lo -+ —
— 2.0 -




(c) Plot the current [ through the resistor R. Label the axes quantitatively (numbers and
units). Indicate with arrows on the sketch the direction of the current through R during
each time interval.

Solution: The current through the resistor (R =20 Q) is given by

—9.8x102 A;0<t<2s
0;2s<t<4
I . (0.8)
R 149x107 A;4s<1<8s

0:r>8s

2

o2 1T

TA]
a.

’—-

Y-y
P o
o
op

~

-0.
! sec

- 0.2

(d) Plot the power dissipated in the resistor as a function of time.

Solution: The power dissipated in the resistor is given by

19107 W:0<t<2s
0:2s<t<4s

P=PR= . .(0.9)
4.8x107 W;:4s<r<8s
0:1>8s
'P
o.2
W]
O.I-L
\ ; L
1 2 v 6 s +
Sec




Problem 5: Inductor

An inductor consists of two very thin conducting cylindrical
shells, one of radius @ and one of radius b, both of length A.
Assume that the inner shell carries current / out of the page,
and that the outer shell carries current / into the page,
distributed uniformly around the circumference in both
cases. The z-axis is out of the page along the common axis
of the cylinders and the r-axis is the radial cylindrical axis
perpendicular to the z-axis.

a) Use Ampere’s Law to find the magnetic field between
the cylindrical shells. Indicate the direction of the magnetic
field on the sketch. What is the magnetic energy density as
a function of » fora < r < h?

The enclosed current /., in the Ampere’s loop with radius 7 is given by

{ r'r\f?
0, r<a -
L. =4l g2r<h
0, r>b

Applying Ampere’s law, [jﬁ -d§ = BQmr) = u,l_., we obtain

enc ?

0, r<a

;"I @, a<r<b (counterclockwise in the figure)
wr

0, r>b

The magnetic energy density fora <r < b is

B? 1 [ #f 2 Hol®
uH = = . = 8?.[2’,2

It is zero elsewhere.

. 1 ;
b). Calculate the inductance of this long inductor recalling that U, =5L1 * and using

your results for the magnetic energy density in (a).

The volume element in this case is 2zrhdr . The magnetic energy is :



r I’h
U, = [uzdVol = j Mo \oghrdr =2 "1y [ )
s s Szr& : 47 a
fnus
2 “lintegcdde G
Since U, = ﬂf I (£)=%L12,the inductanceis o i
/3

a
L= .&]ﬁ.ln [é)
2 a

han
. c) Calculate the inductance of this long inductor by using the formula

0 2 o= . . "
& O=LI= I B-dA and your results for the magnetic field in (a). To do this you
| f open surface

g .14 must choose an appropriate open surface over which to evaluate the magnetic flux. Does
WALY D / "_‘ your result calculated in this way agree with your result in (b)?

] The magnetic field is perpendicular to a rectangular

surface shown in the figure. The magnetic flux through a
thin strip of area d4 =ldr is

Holh
27r

d®, = BdA = hdr)=—"—d,
= = 22| =

Thus, the total magnetic flux is

o, :/I';,;% ;;,m (h uolhfdr yUIh (_]

wr

Thus, the inductance is

=% _|Hh EJ
1 27 a

\IMKOW %0\0,(; vl \N & velor '/rr? v vor | NG

;\1 A o S T
AV P ) | .
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Problem 6: Trying to open the switch on an RL Circuit

The LR circuit shown in the figure contains a resistor R, and an inductance L in series
with a battery of emfe, . The switch S is initially closed. At = 0, the switch S is opened,

so that an additional very large resistance R, (with R, D?Rl) is now in series with the
other elements.

s
— o M
LW\/J Ry

R, gL

(a) If the switch has been closed for a long time before ¢ = 0, what is the steady current
I, in the circuit?

There is no induced emf before ¢ = 0. Also, no current is flowing on R».Therefore,

(b) While this current 7, is flowing, at time ¢ = 0, the switch S is opened. Write the
differential equation for 7(¢) that describes the behavior of the circuit at times 7 > 0.
Solve this equation (by integration) for /(¢f)under the approximation thatg, =0.

(Assume that the battery emf is negligible compared to the total emf around the circuit
for times just after the switch is opened.) Express your answer in terms of the initial
current /,,and R, R,,and L.

The differential equation is

Y (0)
&~ IR +R)=L—

Under the approximation that &, =0, the equation is

dl
—-I(1)(R, +R,) = L—dgl—)-

The solution with the initial condition /(0) = [, is given by



(Rl +R2) t

I(t)=1, exp(— L

)

(c) Using your results from (b), find the value of the total emf around the circuit (which
from Faraday's law is —Ld/dt) just after the switch is opened. Is your assumption in (b)
that &, could be ignored for times just after the switch is opened OK?

__ 4o
d

=10(R: +R2)

1=0

Since ], :8_0,
R

£ R,
g:jT“(R1 +R2)=(l +-R—-J £,>>8, (“R,>>R)

1 1

Thus, the assumption that &,could be ignored for times just after the switch is open is
OK.

(d) What is the magnitude of the potential drop across the resistor R, at times? > 0, just
after the switch is opened? Express your answers in terms of ¢,. R, and R,. How does
the potential drop across R, just after + = 0 compare to the battery emf g,, if
R,=100R?

The potential drop across R; is given by

R7 R‘) 2
AV, = — - 1+& eoziso
R+ R, R, +R, R, R,

AV, =100 &,

This is why you have to open a switch in a circuit with a lot of energy
stored in the magnetic field very carefully, or you end up very dead!!

If R,=100R,,



Problem 7: LC Circuit

An inductor having inductance L and a capacitor having capacitance C are connected in
series. The current in the circuit increase linearly in time as described by / = Kr. The
capacitor initially has no charge. Determine

(a) the voltage across the inductor as a function of time,

The voltage across the inductor is

g, = —Lﬂ = —Li
dt dt

(Kt)=-LK

(b) the voltage across the capacitor as a function of time, and

. d ) a ; 4
Using I = 7? . the charge on the capacitor as a function of time may be obtained as

o) = rJ‘J'a’t‘ = ]Kt'a’f' = lKr2
0 0 2

Thus, the voltage drop across the capacitor as a function of time is

2

A 20 K
@ 2C

(c) the time when the energy stored in the capacitor first exceeds that in the inductor.

The energies stored in the capacitor and the inductor are

702 2,4
U(:—I-C(Af/()—:lc —K—[ :K :
2 2 2C 8C

U, =1L12 =-1_L(K:)2 =iLK2F
S 2 2

The two energies are equal when

1 2,2 ’ J_
5 :ELKt ==

Therefore, U. >U, when t>1".



Problem 8: LC Circuit
(a) Initially, the capacitor in a series LC circuit is charged. A switch is closed, allowing
the capacitor to discharge, and after time 7 the energy stored in the capacitor is one-

fourth its initial value. Determine L if C and 7 are known.

The energy stored in the capacitor is given by

U(" (f ) 5

o’ _ (0, cos wyt)’ .9
-

cos” @l
206 2C 2C

Thus,

Up(T) _cos’ o, _cos’ o1 _1
U.(0) cos*(0) 1

1
= cosa, = 5

which implies that o,7 = %rad =60°. Therefore, with @, = , we obtain

1
NLC

T2 = F e = L=%[£]

3w, 3 T

(b) A capacitor in a series LC circuit has an initial charge O, and is being discharged.

The inductor is a solenoid with N turns. Find, in terms of L and C, the flux through each
of the N turns in the coil at time ¢, when the charge on the capacitor is O(¢).

We can do this two ways, either is acceptable. First,we can make the explicit assumption that

do

O(1) = O, cos w, and the total flux through the inductor is L/ = LE =—Lw,0, sin ot

; ; ; LayOy .
Therefore the flux through one turn of the inductor at time ¢ is ® = —%sm @yt

one tum

or in terms of L and C, ® ST

one turm

sin@,f. Or second, we can simply leave O(¢)

as an unspecified function of time and write (using the same arguments as above) that

_ L0
one turn N df "

(¢) An LC circuit consists of a 20.0-mH inductor and a 0.500-xF capacitor. If the

maximum instantaneous current is 0.100 A, what is the greatest potential difference
across the capacitor?



The greatest potential difference across the capacitor whenU,. . =U

max Lmax *

or

1 Pl [L (20.0mH)
—CV: ==L} = V. =.[=I_=|———>=(0.100A)=20V
2 "max 2 max Cmax C max (0500“1:-) ( )
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Physics 8.02

Some (possibly useful) Relations:

df Bah -

closed
surface
Edi=-< ([ B,, dA
k=) d total
closed l open
path surface

=2 [ [Buuus By |-d

open
surface

¢f B-aA=0
closed
surface

q B-ds =

closed
path

d
Juo'[rhru * #u Eo E q).':'

where @, = H E-dA

open

surface
ueh’t = 8OE;2
“nmg = _]_ Bz
2p,

B _[ . J- ﬂ[dijxf'

Source source 4” r-
”,, =gE +qvx B
dF =1dsxB
dE = lfﬁ“

dmg, r

=1 [225
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Final Exam

The electric potential at point P,

minus that at point P, is given by

Py
V(P,)-V(P)==[E-d§
n

a=l 54
dmeg, T T,
AV = IR
Per.’e Heating = IER = AVJ /R
|o|=c|aV|
Ucnpacimr =1C‘[AV ’ _.:g
2 2C

i ” Bwff field -dA = L1

oane lurn

U Li-
inductor 2
-~ |
v JIC
]
c —]

MUSD
F=UT
o=2xnf =2n/T
k=2n/h

e=A/T=)\f =wfk

§-LExB

Ho

!

Spring 2005

DOUBLE SLIT:
constructive:

dsin© = mh,
destructive:

dsin® =[m+%]7t. m=0,+1,+2,+3,..

SINGLE SLIT:
destructive:
asin@=nk, n==x1,£2,£3,..

Areas, Volumes, etc.:

1) The area of a circle
of radius r is 7#° Its
circumference is 27 r

2) The surface area of a
sphere of radius r is
47+, Its volume is

—ar

3) The area of the sides
of a cylinder of
radius r and height A
is 2z r h. Its volume

is 7’ h
USEFUL INTEGRALS:
(rf
J-dr =d-c

[ )e(=-2)

m=0E], £2, %3, ..
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8.02 Final Exam Spring 2005
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Your Section (check one): _ MW 10 am MW 12 noon MW 2 pm
__ _TTh 10 am TTh 12 noon TTh 2 pm
Your Group (e.g. 10A):
Problem Score Grader

1 (40 points)

2 (40 points)

3 (40 points)

4 (40 points)

5 (40 points)

6 (40 points)

TOTAL
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Problem 1: Eight Conceptual Questions (40 points out of 240 total). Circle your
choice for the correct answer to the question.

Question A (5 points):
Consider a cubic volume with sides of length @ oriented Y
as shown in the figure. An electric field fills the space
both inside and outside the cube and this electric field
everywhere points in the +x direction. The magnitude of
the field is independent of y and z but varies with x. The
value of the electric field at x = 0 is

E

3 .
., =i— Volts/meter and the value of the electric
x= g

a

field atx = a is EL=0 =

g,a
charge contained inside the cube is / 2 [ Ny .-';,7,:
-~ (=3 F 5 i
(a) -10 Coulombs (,b) -4 Coulombs ) | | . ’ 1'\
(c) 0 Coulombs (d);+4 Coulombs = V' W
(e) +7 Coulombs f)/Not enough information gwen to answer

,,i‘_ - . . l I \l
Question B (5 points): - Sl | P2

Consider three equal charges, A, B. and C. Each one sits at the origin (x = 0) butin a

different electric potential, as follows: F . /f 2
Charge A sits at x = 0 in a potential which is constant and identically zero b A
Charge B sits at x = 0 in a potential which is constant and non zero 16 o
Charge C sits atx = () in a linear potential (V' proportional to x). ":-f \

Which statement is true: k =7

a)/None of the charges will accelerate
(b)Only B will accelerate

((€) Only C will accelerate
(d) All charges will accelerate, but B will have the largest acceleration
(e) All charges will accelerate, but C will have the largest acceleration
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Question C (5 points):

The circuit contains a battery, a capacitor, a bulb 0\50
and a switch. The switch is initially open as ©
shown in the diagram, and the capacitor is —t e
uncharged. L — e o ®

Which correctly describes what happens to the Q
bulb when the switch is closed?

(a) The bulb is dim and remains dim.

(b) At first the bulb is dim and it gets brighter and brighter until its brightness levels

off.

(c) The bulb is bright and remains bright.

(dy/At first the bulb is bright and it gets dimmer and dimmer until it goes off.

(e) None of these is correct.

Question D (5 points):

Wire 1 carries a current / flowing into the page, as =
shown in the diagram. Wire 2 has the same current /, i ®
but flowing out of the page. Which direction are the \ \'\

magnetic fields at positions P and R?

§ P R
ra \
(a) \ "
7
&)
Lout

(h) \
(c) "

¥ 7 ¥ 7

() \

(c) None of these oy
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Question E (5 points):

An infinite sheet of positive charge in the yz plane (see figure below) is shaken up and
down in the y direction. This shaking of the sheet generates a plane wave to the left of
the sheet. Which of the following is the correct representation of the electromagnetic
wave generated to the left of the sheet of charge as a result of this shaking.

(W
C sheet of charge C (
E

(b)

N %

(e) None of these is correct.
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Question F (5 points):
An antenna is oriented as shown and is C
emitting electric dipole radiation. The
observations points 4, B, and C are all
located at the same distance from the center
of the antenna, and are very far away. Let

E, be the positive amplitude of the P \ “B

radiation electric field at observation point B W e R
A, and so on. : A"_,"
Which of the following is true?
(a) EA = EC= Eg
Ezl > EC: E,B [ A :( p
@EA=EC>EB \/ # D)
Es<Ec=Epg

(e) E4 =Ec<Ep

Question G (5 points):

] /

L/{w{ s /J ‘:{ﬂﬂ’

v a

Monochromatic light waves impinge on two long narrow apertures (slits)

that are separated by a distance d. Each aperture has width a, with a << d.
The resulting pattern on a screen far away is shown above. The distance A
between the zeroes of the envelope (see figure) is determined by

(a) d

(b) d*/a akd
(a |
d) a*/d

(&) \Jad
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Question H (5 points):
The circuit contains a battery, an inductor, a bulb
and a switch. The switch is initially open as shown 3

in the diagram. =

Which correctly describes what happens to the Y ——
bulb when the switch is closed?

first the bulb is dim and it gets brighter
and brighter until its brightness levels off at .
a constant level.
(3) The bulb is bright and remains bright.
(4) At first the bulb is bright and it gets dimmer and dimmer until it goes off.
(5) None of these is correct.

@e bulb is dim and remains dim. ()
(2)
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Problem 2 (40 points out of 240 total):
An electromagnetic wave has a wave length A of 3 meters and a frequency fof 10° Hertz
(Hertz = cycle per second). The time averaged value of the Poynting flux vector is given

by

2

y - B’
ORI

0

(a) In which direction does this wave propagate? Be sure to indicate the direction of
propagation with a unit vector (i, j, or k ) and an appropriate sign (+ or —). Briefly
explain why you choose this direction

(b) The electric field of the wave is along the x-axis. Write a vector equation for the
electric field of this wave, in terms of #, x, y, z. 1, ¢, B,, u,, and/or &, (your equation
should involve only these quantities, and numbers, but you do not have to use all of these

in your answer). Is the equation you write for the electric field determined uniquely by
the information you have been given? Explain.
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(c) What is the corresponding magnetic field vector equation in terms of
T, x, ¥, z,t,¢, B, ,and/or g (your equation should involve only these quantities, and

numbers, but you do not have to use all of these in your answer)?

(d) Suppose this wave is perfectly reflected by a conducting plane at z = (). Write a
vector equation for the electric field of the reflected wave, given the expression for the
electric field you gave in (b).

(e) Write a vector equation for the magnetic field of this reflected wave, given the
expression for the magnetic field you gave in (c).
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Problem 3: (40 points out of 240 total)

Consider two long concentric hollow conducting cylinders. The inner cylinder has radius
a, and the outer cylinder has radius b, and the length of both is A, with #>> b, as shown
in the figures. The inner conducting cylinder carries a total charge +Q spread uniformly
on the outer part of the inner surface (giving an effective change per unit length of

A =0/ h), and the outer conducting cylinder carries a charge —Q spread uniformly on
the inner surface of the outer cylinder.

h
EEEE——

(a) Find the direction and magnitude of the electric field E in the region a < r < b,
ignoring end effects, in terms of ,Q, €, 7, h, a, and b (your expression should involve

only these quantities, but you do not have to use all of these in your answer). State
which Maxwell equation you use (write the equation, do not just give the name) and
show explicitly how you find this electric field.

(b) What is the potential difference AV =V, —V, between the inner and outer cylinder.

Write your answer in terms of O, &, 7, h, a,and b (your expression should involve only
these quantities, but you do not have to use all of these in your answer)
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(¢) Using your result (b), rewrite your expression for the electric field obtained in (a) in
terms of r, AV, a, and b (your expression should involve all of these quantities and only

these quantities)

Now consider the same two long concentric hollow conducting
cylinders. Suppose a current 7 is uniformly distributed over the
surface of the inner conductor and flows ouf of the page on the
inner conductor. The same current flows into the page on the
outer conductor, and is also distributed uniformly over its
surface.

(d) Find the direction and magnitude of the magnetic field B in
the region a < r < b, ignoring end effects, in terms of
r, I, u, h,a,and b (your expression should involve only these

Q

quantities, but you do not have to use all of these in your answer). State which Maxwell
equation you use (write the equation, do not just give the name) and show explicitly how
you find this magnetic field.
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(e) Now we combine the two cases

above. That is, our conducting cylinders s h
carry both current and charge exactly as e

described above. We do this by hooking
up a battery with voltage AV as shown in
the figure. What is the Poynting flux

vector S fora < r<b interms of
r,AV,I,7,a,and b (your expression
should involve all of these quantities and
only these quantities)?. Calculate the

magnitude and clearly indicate the direction S on the figure.

() By integrating S over the appropriate surface, find the rate at which energy flows in
the region @ < r < b. What should you expect this value to be in terms of A} and the
other quantities given above? You will get significant credit if you answer this last

question correctly, even if you do not have the right expression for S and/or do not do
the integral correctly.
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Problem 4 (40 points out of 240 total)

Consider a discharging capacitor made out of two
identical circular conducting plates of radius a. One
plate is placed on the xy plane centered at the origin,
and the second is at a distance d up the z-axis at z =
d (see Figure). The bottom plate carries charge
+Q(¢) and the top plate carries a charge —-QO(¢). The

capacitor is discharging, and Q(#) = Q,e™'", where
7 is the time constant.

(a) Derive an expression for the electric field
between the plates at time 7 in terms of
t,0,,a,7,7,and g, . Write down the Maxwell’s
equation you are using and show your steps in
obtaining this expression.

page 13

(b) Calculate the (time-deﬂ,endenl) displacement current 7,(r,¢)through a loop of radius

r < a as shown in the ﬁgufc (the normal to this loop is in the positive z-direction). Give
your answer in terms of rolls Q,.a,t,m,and ¢,. Is this displacement current upward or

downward?
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(c) Use Ampere-Maxwell's law to calculate the induced magnetic field B(r,7) inside the
capacitor for » <a, interms of r,1,Q,, x,, a, 7,and 7. Draw the direction of the
magnetic field at point P on the figure below.

(d) In what direction is the Poynting flux at » = @? State in words the relationship
between the surface integral of the Poynting flux over the sides of the capacitor and the
electrostatic energy stored inside the capacitor.
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Problem 5 (40 points out of 240 total):
A conducting rod with zero resistance
slides without friction on two parallel
perfectly conducting rails. The distance

between the rails is w. An external agent
forces the rod to move at constant speed

V to the right. Resistor R is connected R é
across the ends of the rails to form a

circuit, as shown. A constant magnetic

=

Bo

—=—>

field B is directed out of the page.

(a) What is the rate of change of the magnetic flux through the loop formed by the bar,
the resistor, and the rails? In calculating this flux, ignore any self-magnetic field due to
the induced current in the loop.

(b) Starting from a Maxwell equation (indicate which one). what is the current flowing
through the resistor R? Gives its magnitude and indicate its direction on the figure.
Why did you choose this direction for the current?

(c) What is the magnitude and direction of the magnetic force that is exerted on the
sliding rod?
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(d) If the external agent moving the rod only has to provide enough force to
counterbalance the magnetic force, show that the rate at which the external agent does

work (an -V is equal to the rate at which energy is being dissipated in the resistor.

ent
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Problem 6 (40 points out of 240 total):

Consider two nested, spherical, conducing shells. The first conducting shell has inner
radius a and outer radius 5. The second conducting shell has inner radius ¢ and outer
radius d. The outer surface of the outer conductor is tied to_ground, which means that it
can bring in as much positive or negative charge as needed in order to make the potential
of the outer surface of the outer conductor zero, the same as the potential at » = infinity.

I. The inner conductor is initially uncharged. A
charge +Q is then fixed at the origin (see figure).

(a) What is the net charge in each of the following
regions? y,

W/
Inner surface of inner conductor:

—

Interior of the inner conductor: O -
@

Quter surface of the inner conductor:

Inner surface of the outer conductor: G)

Interior of outer conductor: O

Quter surface of the outer conductor: O
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(b) What is the electric field in the following regions. Write your answers in terms of
r,Q,¢&,,m, a,b,cand d (your expression should involve only these quantities, but you

do not have to use all of these in your answer)
r<a: l1adas
Guass v g

SF |2 % calc g
.= 7

a<r<b:
b<r<e:

(c) What is the potential ¥, at the inner surface of the outer conductor?

'\ram ' (tard 2 4
(rpaw f” W‘}? G J: So Q — C"{ \iJ.u:?__;nd
(d) What is the potentlal V, at the outer surfaée of the nner conductor? o . N N
-1, = 5 chity,

| [ — -_r
D kL. )H t J S (’T },

l

( | ] | b |
\ / T (— Cfud, My
L ) ¥ l

(d) What is the potential ¥, at the inner surface of the inner conductor (you may| use ¥, in
your answer)? ( Cgeu
51 S

C — .
AUV As { bese

'J-‘fr‘l."(’
JA ! ;)
i Cong LV

s N
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II. Now the charge +Q is moved from the origin and placed on the inner conductor, and

allowed to redistribute itself on that conductor. The outside of the outer conductor is still
maintained at zero potential.

(e) What now is the net charge in each of the
following regions?

Inner surface of inner conductor: O Tokal (Charde’:+Q

Interior of the inner conductor: C)

Quter surEq)ce of the inner conductor:

I I/ ) \ fl {4 /
O | vl a {, .
=)
Inner surface of the outer conductor: (

" \ {
. 1 . .'
Interior of outer conductor: O S0 ) NS ¢¢ }

Outer surface of the outer conductor: ()
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Problem 1: Eight Conceptual Questions (40 points out of 240 total). Circle your
choice for the correct answer to the question.

Question A (5 points):
Consider a cubic volume with sides of length « oriented Y
as shown in the figure. An electric field fills the space
both inside and outside the cube and this electric field
everywhere points in the +x direction. The magnitude of
the field is independent of y and z but varies with x, The
value of the electric field atx = 0 is

2 a

El = i;2 Volts | meter and the value of the electric
= £,a

' ] a

fieldatx =ais E|r_0 =i——= Volts/ meter . The total Z 4
o gﬂa—

charge contained inside the cube is
(a) -10 Coulombs (b) -4 Coulombs
(¢) 0 Coulombs (d) +4 Coulombs CORRECT
(e) +7 Coulombs (f) Not enough information given to answer

Question B (5 points):
Consider three equal charges. A, B, and C. Each one sits at the origin (x = 0) butin a
different electric potential, as follows:

Charge A sits at x = () in a potential which is constant and identically zero
Charge B sits at x = 0 in a potential which is constant and non zero
Charge C sits at x = 0 in a linear potential (V' proportional to x).

Which statement is true:

(a) None of the charges will accelerate

(b) Only B will accelerate

(c) Only C will accelerate CORRECT

(d) All charges will accelerate, but B will have the largest acceleration
(e) All charges will accelerate, but C will have the largest acceleration
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Question C (5 points):

The circuit contains a battery, a capacitor, a bulb 0\50
and a switch. The switch is initially open as ©
shown in the diagram, and the capacitor is |-
uncharged. L — N

Which correctly describes what happens to the @
bulb when the switch is closed?

(a) The bulb is dim and remains dim.

(b) At first the bulb is dim and it gets brighter and brighter until its brightness levels

off.

(c) The bulb is bright and remains bright.

(d) At first the bulb is bright and it gets dimmer and dimmer until it goes off.

CORRECT

(e) None of these is correct.

Question D (5 points):

Wire 1 carries a current / flowing into the page, as "
shown in the diagram. Wire 2 has the same current 7, & ®

but flowing out of the page. Which direction are the
magnetic fields at positions P and R?

R

(a)

= (?P -
&

(b)

(c)

(d)

¥ ¥ A A=
¥ X ¥ X

(e) None of these

(a) CORRECT
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Question E (5 po a{ng,);

An infinite sheet 6f positive-charge in the yz plane (see figure below) is shaken up and

down in the y direction. This shaking of the sheet generates a plane wave to the left of
mmgls the-cqrrect representation of the electromagnetic

%ﬁof the sheet of cﬁargc as a result of this shaking.

sheet of charge

y
|
I
Sy
rrrsrrierre
228sr927222
¥y
-
E 4
e
7]
y 7
)
A
r
27
24
22 ™
7 77| I,P {) '
LEPLIILEY - l-'
FIPLPEI I
ey
ey
ey
. 27
/ >
I? # { [ i { %
! T { Nre (€ 7
4 | 1 7 ‘ ]; -t [“ \ [ N3 > ¢
(e) LAMS | £ \ (€] '

____sheet of charge

(e) None of these is correct.

{ i1 gf



MIT PHYSICS DEPARTMENT

Question F (5 points):

An antenna is oriented as shown and is
emitting electric dipole radiation. The
observations points 4, B, and C are all
located at the same distance from the center
of the antenna, and are very far away. Let
E, be the positive amplitude of the
radiation electric field at observation point
A, and so on.

Which of the following is true?
(@) E4=Ec=Ep
(b) E4 > Ec=Ep
(¢) E4 = Ec> Ez CORRECT
(d) Ey<Ec=Ejp
() Ey=Ec<Ep

Question G (5 points):

a

page 6

=N

Monochromatic light waves impinge on two long narrow apertures (slits)

that are separated by a distance d. Each aperture has width a, with a <<d.
The resulting pattern on a screen far away is shown above. The distance A
between the zeroes of the envelope (see figure) is determined by

(a) d

(b) d*/a

© a CORRECT
d) a*/d

(©) Jad
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Question H (5 points):

The circuit contains a battery, an inductor, a bulb

and a switch. The switch is initially open as shown 5
2 —oo\o

in the diagram.

Which correctly describes what happens to the i
bulb when the switch is closed?
(1) The bulb is dim and remains dim. @

(2) At first the bulb is dim and it gets brighter
and brighter until its brightness levels off at
a constant level. CORRECT

(3) The bulb is bright and remains bright.

(4) At first the bulb is bright and it gets dimmer and dimmer until it goes off.

(5) None of these is correct. CORRECT AS WELL
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Problem 2 (40 points out of 240 total):
An electromagnetic wave has a wave length A of 3 meters and a frequency fof 10° Hertz

(Hertz = cycle per second). The time averaged value of the Poynting flux vector is given
by

g e 0
( >lime averaged 2#
0

(a) In which direction does this wave propagate? Be sure to indicate the direction of
propagation with a unit vector (i . j, or k ) and an appropriate sign (+ or —). Briefly
explain why you choose this direction

In the —k direction. Since the energy flow is in this direction, the wave must propagate
in this direction.

(b) The electric field of the wave is along the x-axis. Write a vector equation for the
electric field of this wave, in terms of 7, x, y, z,, ¢, B,, 1, and/or €, (your equation

should involve only these quantities, and numbers, but you do not have to use all of these
in your answer). Is the equation you write for the electric field determined uniquely by
the information you have been given? Explain.

5 . 9
K= l1=1¢c8, cos(4z+ 27 x10%f) Only determined to a phase, i.e. we can add any
=)

phase angle to this expression.
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(c¢) What is the corresponding magnetic field vector equation in terms of
m,x, ¥, 2z, t,¢c, B, i, and/or £ (your equation should involve only these quantities, and

o?

numbers, but you do not have to use all of these in your answer)?

- A )
B(z.)=-] B, cos(T”Hznx 10%1)

(d) Suppose this wave is perfectly reflected by a conducting plane at z = (. Write a
vector equation for the electric field of the reflected wave, given the expression for the
electric field you gave in (b).

E(z,1)=—i cB, cos(zTﬁz—ZHx 10°7)

(e) Write a vector equation for the magnetic field of this reflected wave, given the
expression for the magnetic field you gave in (c).

B(z,t)=-j B, cos(%”z—zm 10%7)
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Problem 3: (40 points out of 240 total)

Consider two long concentric hollow conducting cylinders. The inner cylinder has radius
a, and the outer cylinder has radius b, and the length of both is 4, with 4 >> b, as shown
in the figures. The inner conducting cylinder carries a total charge +Q spread uniformly
on the outer part of the inner surface (giving an effective change per unit length of
A=Q/h), and the outer conducting cylinder carries a charge —Q spread uniformly on

the inner surface of the outer cylinder.

(a) Find the direction and magnitude of the electric field E in the region a < r < b,
ignoring end effects, in terms of »,Q, &,, 7, h, a, and b (your expression should involve

only these quantities, but you do not have to use all of these in your answer). State
which Maxwell equation you use (write the equation, do not just give the name) and
show explicitly how you find this electric field.

2zrhE=Qle, E= o
2rrhe,

C&( ’\{'\d(@'

(b) What is the potential difference AV =V, —V, between the inner and outer cylinder.
Write your answer in terms of O, €,, 7, h, a, and b (your expression should involve only
these quantities, but you do not have to use all of these in your answer)

AV =V, -V, == [B-ds=- O e E h{é)
: 2nrhe, 2rhe, \a

b




MIT PHYSICS DEPARTMENT ’ page 11

(c) Using your result (b), rewrite your expression for the electric field obtained in (a) in
terms of r, AV, a, and b (your expression should involve all of these quantities and only

these quantities)

Now consider the same two long concentric hollow conducting
cylinders. Suppose a current / is uniformly distributed over the
surface of the inner conductor and flows out of the page on the
inner conductor. The same current flows into the page on the
outer conductor, and is also distributed uniformly over its
surface.

(d) Find the direction and magnitude of the magnetic field B in
the region a < r < b, ignoring end effects, in terms of
r, 1, 1, h, a, and b (your expression should involve only these

quantities, but you do not have to use all of these in your answer). State which Maxwell
equation you use (write the equation, do not just give the name) and show explicitly how
you find this magnetic field.

Cf B-ds=ul,, 2xrB=pl B= ;ILI counterclockwise

closed r

path
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(e) Now we combine the two cases

above. That is, our conducting cylinders ot ne e o

carry both current and charge exactly as e———
described above. We do this by hooking Wﬁ-
up a battery with voltage AV as shown in : o
the figure. What is the Poynting flux
vector S fora < r<b interms of

r, AV, I, ,a,and b (your expression
should involve all of these quantities and
only these quantities)?. Calculate the

magnitude and clearly indicate the direction S on the figure.

§=EXB IQI:L AVb l[#ﬂf}= c > to the left, away from the
U, By 1y [_) r| 2mr 2772 (_)
a a
battery

(f) By integrating S over the appropriate surface, find the rate at which energy flows in
the region @ < r < b. What should you expect this value to be in terms of A} and the
other quantities given above? You will get significant credit if you answer this last

question correctly, even if you do not have the right expression for S and/or do not do
the integral correctly.

b b b
f§-dz§= jszmdr= Iﬂ—%rrdr: AHET

a g pt In(ﬁ] In (EJ a’
a a
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Problem 4 (40 points out of 240 total)

Consider a discharging capacitor made out of two
identical circular conducting plates of radius a. One
plate is placed on the xy plane centered at the origin,
and the second is at a distance d up the z-axis at z =
d (see Figure). The bottom plate carries charge
+Q(t) and the top plate carries a charge —QO(¢). The

capacitor is discharging, and Q(1) = Q.e™'", where
7 is the time constant.

(a) Derive an expression for the electric field
between the plates at time 7 in terms of
1,0,,a,7,7,and g,. Write down the Maxwell’s

equation you are using and show your steps in
obtaining this expression.

(b) Calculate the (time-dependent) displacement current 7, (r,¢) through a loop of radius

r < a as shown in the figure (the normal to this loop is in the positive z-direction). Give
your answer in terms of »,1, 0,.a. 7, 7.and ¢, . Is this displacement current upward or

downward?

L A, o |
[ ¥ O =:'[f “H/ —0fe 1¥y qolag

v, p AN .
Va0 gl . s " T a
1,(r.t) =71, £ e ——2—Qi,e m where the minus sign indicates the current is _ 74
T 7p
downward . r
0/ L Cal "/
[ 4
Ul ] fl,()(j

"(ML\ Sopf e 9 2 A
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(¢) Use Ampere-Maxwell's law to calculate the induced magnetic field B(r,7) inside the
capacitor for » <a, in terms of r,1,0,, u,, a, r,and 7. Draw the direction of the
magnetic field at point P on the figure below.

Z
2rrB=p 1, (r,t)=—py, r—,g‘-’—e‘”r
a T
B= —ﬂ,—%e“” direction clockwise as
2ra” T

viewed from above

(d) In what direction is the Poynting flux at » = ¢? State in words the relationship

between the surface integral of the Poynting flux over the sides of the capacitor and the
electrostatic energy stored inside the capacitor.

The Poynting flux is outward. Its surface integral is equal to the time rate of change of
the energy stored inside the capacitor.
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Problem 5 (40 points out of 240 total): I S

A conducting rod with zero resistance ) Lo/ 4 (S Do (0 J D0V

slides without friction on two parallel - /

perfectly conducting rails. The distance

between the rails is w. An external agent

forces the rod to move at constant speed T
R E

V to the right. Resistor R is connected
across the ends of the rails to form a \L
circuit, as shown. A constant magnetic

field B is directed out of the page.

(a) What is the rate of change of the magnetic flux through the loop formed by the bar,
the resistor, and the rails? In calculating this flux, ignore any self-magnetic field due to
the induced current in the loop.

-iCDB =VwB
dt

(b) Starting from a Maxwell equation (indicate which one), what is the current flowing
through the resistor R? Gives its magnitude and indicate its direction on the figure.
Why did you choose this direction for the current?

d VB o . :
IR =emf =~—§®H I —%— direction is clockwise, so that the self flux tries as to

counter the increasing flux as the loop expands

(c) What is the magnitude and direction of the magnetic force that is exerted on the
sliding rod?

Vw?B?

Direction to the left, F = lwB =
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(d) If the external agent moving the rod only has to provide enough force to
counterbalance the magnetic force, show that the rate at which the external agent does

work (Fag(,m .V is equal to the rate at which energy is being dissipated in the resistor.

iRt

FV = =K
R
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Problem 6 (40 points out of 240 total):

Consider two nested, spherical, conducing shells. The first conducting shell has inner
radius @ and outer radius 5. The second conducting shell has inner radius ¢ and outer
radius d. The outer surface of the outer conductor is tied to ground, which means that it
can bring in as much positive or negative charge as needed in order to make the potential
of the outer surface of the outer conductor zero, the same as the potential at » = infinity.

I. The inner conductor is initially uncharged. A
charge +Q is then fixed at the origin (see figure).

(a) What is the net charge in each of the following
regions?

Inner surface of inner conductor: -Q

Interior of the inner conductor: 0

Quter surface of the inner conductor: +Q
Inner surface of the outer conductor: -Q
Interior of outer conductor: 0

Outer surface of the outer conductor: 0
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(b) What is the electric field in the following regions. Write your answers in terms of
r.0Q,¢€,,m,a,b,cand d (your expression should involve only these quantities, but you

do not have to use all of these in your answer)

r<a:

(c) What is the potential ¥, at the inner surface of the outer conductor?

ZET0

(d) What is the potential ¥ at the outer surface of the inner conductor?

b od o Q[l 1]

b
L =_;.‘E.d?.:_!47r£”r2 i 47r£”r|n_ A dre, b ¢

(d) What is the potential V/,at the inner surface of the inner conductor (you may use V, in

your answer)?

The same as above, Q [l--l-}
dre, | b ¢

a



MIT PHYSICS DEPARTMENT ’ page 19

II. Now the charge +Q is moved from the origin and placed on the inner conductor, and

allowed to redistribute itself on that conductor. The outside of the outer conductor is still
maintained at zero potential.

(e) What now is the net charge in each of the
following regions?

Inner surface of inner conductor: 0 Torak. CLETge +Q

Interior of the inner conductor: 0

Quter surface of the inner conductor:

+Q

Inner surface of the outer conductor: -Q

Interior of outer conductor: 0

Quter surface of the outer conductor: 0
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