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Force Law. Fq - q(E",+ v XBm ) l' E = - LdIldt U =l.U' r2 b"k L, J 
Force on Wire: Fq = ,L JasxB En~~~ S~:ed, in F ields: 

II,, - ,Eo , " B- , B / /10 
Faraday's law [---J. 
~EdS = -:fJBd3 t':; di q 
Gauss's Law: 

<# it· iA = Q;a'id' / Eo 
closed surface 

Gauss' s Law for Magnetism : 

<# B ·dA=O 
closed 
sfllf(lce 

Current Density and Current: 

1= If J ·dii 
open surface 

Ohm 's Law: t.V = I R 

J = a,it where a, is the conductivity 

it = p, J where p, is the resistivity 

Power Dissipated in Resistor : 

~,"I' = J t. V = J' R = t. V' / R 1 
J~j)J, B 

Ampere's Law 

~B as = /1oIfJ· dii + /1oEo ~ If it dii Constants: 

Electric Potential Difference: 
b 

t.V=Vb-Vo=-l it.as 

it=-VV 
':-J 

Potential Energy: 
t.U = qt.V 

Lh q,v 
Capacitance: 

C= JL 
t.V 

U =.!.Q' =.!.Ct.V' 
2 C 2 

Inductance: L = N <PB / J 

-

k, = J / 47rEo = 9x lO' N· m' ·C' 

-=1t~'A 8 
f l' 

(),(f~ v>o/rl'Ol{ 
Differentia l Equations and Solutions: 

dJ 
£-JR-I. - =O 

dt 

1(1) = Joe-lil ll
. 

AC Circuits: OJo = 1/ -J I. C ; 

Series RLC : 

Z=.JR'+X' = j R'+ (X L -X.)' 

&-5 Lev ~ (f(f ' ;J.,_ 

! 

~-> ),(Q L \-l. ..-> 

U t (ell G - as f. f -J 

Lt(f' ( L 

[ flf I ef.pr~.-1 

r ... Ou,-lt rn 
rr '. Jn hv 

I '"'t.. 



tan¢=(XL-X, ) / R; Vo =10Z 

tan(±7r / 4) = ±I ; sin(±7r / 4) = ±.fi / 2 ; 

cos(±7r / 4) =.fi / 2 

Waves: c = I / )110£0 

/ = I/T ro = 2rt/ k = 2rt/A 

c = A/T = Aj = ro/ k 

Double Slit Interference: 

Constructive: 
d sin 8 = lilA ; III = 0, ± I, ± 2, 

Destructive: 

dsin8 =(IIl+~)A ; 111 = 0, ± I, ± 2, ··· 

Single Slit Diffraction: Destructive: 
asin8 = nA ; n=±I, ±2,.·· 
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Physics 8.02 Equation Sheet Final 
Please Remove this Tear Sheet from Your Exam 

Force Laws: F = q(E,,, + vxB,,, ) 
for current F. = if, x B 

Source Equations: 
- I dq 

Coulomb Law: dE = ----r 
47Z"B'o r2 

dB = Ji,! dS x r 
47T r 2 

, r 
r = - points from source to field point 

r 

Current Density and Current: 

1= If - dq 
J·dii=-

open surfnce 
dl 

Gauss's Law: 

closed surface 

Ampere's Law: 

q B . as =Jio If J . dii = floI"". 
closed palh open surface 

plus Displacement Current 
d 

1(/ = &0 - cl) Elec/rit' 
dl 

q B ·dS =Jio(I,,,, + Id) 
closed path 

Gauss's Law for Magnetism: 

cff B·dA=O 
closed 
surface 

Faraday's Law: 
d 

I; = - dt cD nmgllcfir; 

Current Loop flux: 
c1J lOwl . = N q,-I"illglc 111m 

magllellc nJ(I!;" Clic 

Electric Potential Difference: 
b 

6V = Vb - Va =-fE.dS 
a 

Resistance: R = pL 
A 

Capacitance: C = Q 
6V 

U=~Q' = ~ C6 V2 
2 C 2 

Capacitors in Parallel: C = C + C, + ... eq I _ 

C . . S· I I I apacltors 10 enes: - = - + - + ... 
C,q C, C, 

' RC = RC 
Ohm's Law: 6V = I R 

J = (T,E where (T, is the conductivity 
- -
E = p, J where p, is the resistivity 

Resistors in Parallel: -1- = -1- + -1- + ... 
R,q R, R, 

Resistors in Series: R = R + 0 + ... eq I ~ ~ 

Joule Heating: P,,,,, = 16V = I ' R = 6V' 
R 

Magnetic Dipoles: ji =1 A Ii 

Torque: T = ji x B 
dB 

Force: F. = Ji. -' . . dz 

Inductance: 

L = N cD l3.self.sgl coil 

I 
dl 

C hock =-L­
dl 

U = ~L1 ' 
I. 2 

' RL = LI R 



Kirkhoffs Laws 

'I,1:" = 'I/;'" for any junction 

'I 'I 
dl 

/lV- L _ 1 = 0 
i I j } dl 

AC Circuits: 
I 

mo = ~LC 
I 

X L =mL, I lags Y X c =-, I Leads Y, 
mC 

X R = R, in phase 

Series RLC : 1 (I) = 10 sin (ml) 

2=.JR'+X' =~R'+ (XI, -XJ' 
tan¢=(XL -Xc ) / R ;Vo =/02 

Energy stored in fields: 

B' 
u}J = -

2f-10 

Energy Flow: 

- 1 --
S =-Ex B Ppower= 

f-Io 
JJS'Ga 

sur/ ace 

ji = U P = lSi absorbed waves 
c c 

2U 21S1 
ji = - p = - reflected waves 

c c 

Intensity I = (lSi) 
Waves: 

c = J I = wi k = fA 
J.1oEo 

f = I/T = w/2n k = 2n/'A 
c = 'AjT = V = w/k 
Interference: 

iliA Constructive 
Phase difference t5 = (m + +)}, Destructive 

Far field: sin f) = ir 

2 Slit interference, spacing d: t5 = d sin f) 

1 Slit diffraction Slit width a: t5 = ~sin f) 
2 

Cross-products of unit vectors: 

" " " " " " 
i x i = j x j = k x k = O 

,.. ,.. " "" " 
i x j = k j x k = i k x i=j 

Kinematics: 

Circumferences, Areas, Volumes: 

I) The area of a circle of radius r is 

frr' , the circumference is 2nr 

2) The surface area of a sphere of 

radius r is 4nr' , the volume 

(4/3)Jrr ' 

3) The area of the sides of a cylinder 
of radius r and length [ is 2m'! . 
Its volume is frr'[ 

Integrals that may be useful 

b 

fdr=b-a 
a 

b dr f- = In(b / a) 
( I r 

b I ( I I I 
f,dr=l---) 
(I r a b 

Some potentially useful numbers 
I 

k =--=9 x IO' N, m' ,C' 
e 47TEo 

Po - 10-' T A" - - 'm' 
4n 

2 



8.02 Final Exam Fall 2008 

I I I I I I I I I I I I I I I I I 
FAMIL Y (last) NAME 

I I I I I I I I I I I I I I I I I 
GIVEN (first) NAME 

IIII rn IIIII 
Student ID Number 

Your Section: LOI MW 10 am __ L02 MW 12 pm 
Your Group (e.g. lOA): 

(04 1':j 
~(\o 1-

c4cJ, 

No notes or calculators allowed. Please show all your work on the analytical 
questions. Answers quoted without any work will receive no credit, regardless of 
whether or not they are actually correct. 

Score Grader 

Problem I (40 points) 

Problem 2 (20 points) 

Problem 3 (30 points) 

Problem 4 (30 points) 

Problem 5 (20 points) 

Problem 6 (40 points) 

TOTAL (180 points) 
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Problem 1 10 Concept questions, 4 points each, 40 points total 

l.A (4 pts) If I have a uniformly ~harged insulating sphere of radius R with total 
charge Q, I find that outs ide the sphere at some arbitrary distance r away, I have an 

electric field of E = _SL_,r. Which of the fo llowing actions would change this E 
4,':"co' - s~==-.=.-

fie ld? r R tiel I" f!) / Q -

-)( 
a) Reducing R by 1,. ./ d) 

)') 1) '" .JTh Making the sphere conducting ' i I tl e e) 
'tittber than in sulating "-' ,t,/ 

(9 Breaking the spherica l symmetry, 
such as deforming the sphere into the 
shape of an egg 

f)o~ CMo!~ 
Clo.s(?r /fllrl'Ur 

f'tetd 

villi be.... D\ It O . • )1vt " 

(} "WI LV fyvi~'{13 

None of the above 
I do not know (1 point!) 

r I I 
v 

E 

l.B (4 pts) I have an AC power supply and two different c ircuit e lements in series, R, 
L, or C. If I arbitrarily increase the driving frequency of my power supply, I find the 
amplitude of the current measured always increases. Which two e lements are in my 

circuit? I (, (,'{) te-
r'1vr"f l'J t. 

@ RandC 
--J' b) RandL 

c) Land C j 

(~--( 
d) I do not know (1 pt) 

---jLw 

l.e (4 pts) I f you place a negatively charged particle in an electric field , the charge 
will move 
a) from higher to lower electric potential and from lower to higher potential energy. & 

/ 
b) from higher to lower electric potential and from higher to lower potential energy. 

~ 
from lower to higher electric potential and from lower to higher potential energy. 

) from lower to higher electric potential and from higher to lower potential energy. 6 
. I don ' t know (I point) 

/," 
~ 

f 
~-

7\ T ( 
..\- 4 

(j) I 

f )f'i' )) c: hu(00 C f-
! hill 

~-
(.t·~ I 



1.D (4 pis) If I have a uniform charge distribution p over some 
semi-infinite volume as pictured at riglYf(fnside ?¥e volume the 
electric field dependence on distance x from the center is 

a) lEI oc J, @Yloc x 

P I - - - - I 

_ "~ f) lEI oc x ' 

b) lEI oc -; g) I don ' t know ( I 

c) IEl oc In(x) 

~ Does not depend on x r 
" I 

I.E (4 pis) I In experiment 6 you 
measure the current on the right 
for your RC circuit, and plot 

In e()(.JVS. 1 What is the 

time constant? 

a. 2 seconds 
/[) 4 seconds 
'--<! 0.5 seconds 

d. 0.25 seconds 
rfe:l I do not know (worth 
\.../ I point) 

o 

-0.25 

-s- ·0.5 
E 

~ -0.75 

-1 

-1.25 

o 

pt) 

~ 

(' 
I 

-G~00 -tlil ,jOO ( CAl 

~ 

t!V~ ( !+ X 

{UvX= E!-l 

~ 
~ 

2 3 4 

time (seconds) 

F<l ') cvrfW~ (;viii ~tdr ~ d-I (YlV\.K ~ 
\jR.-CrA'! k 0 

- . ~ liT'-
t [ n ~ 1 fl\v"X: e ~ 

x 

;v.)r 
IUIOw 
t'Kal'1pl ~ 

----. 
5 

-lJV\(W11_ ~i t 
I;lY\v\y J 

J d /10 t- \(tW', 

(0,,, .• \ eJ h 

fh 'I " 
(vt ll Ja ca{(J /tl fiiYls 

Y :: I k),~ UClciw(Sd ':, 



l oe;:, h(Ji l hal'~Q -:1 

I? (:p fJ 

l.F (4 pts) A parallel plate capacitor is charged up to char~~ with t~ ~lf ~ LI.o V ~ So J ,t, 
separated by a distance D. The banery is then disconnected, then the plates are V:::- E.d 
moved closer, to a separation o~. What happens to the Stored Energy in the DI",,( 
capacitor U and the Voltage V? 
a) U increases, V increases 
b) U increases, V stays the same 
c) U increases, V decreases 
d) U stays the same, V increases 

('e'» U stays the same, V stays the 

f) U stays the same, V decreases 
g) U decreases, V increases 

~ 
U decreases, V stays the same 

i) U decreases, V decreases 
J I do not know (I point) 

'-?ame 

-cl . V ({=Q - (' 

t Q -...---r-T --_ 

l.G (4 pts) A ci rcuit consisting of an inductor of 
inductance L" a banery providing vo ltage V, a switch S, 
and two resistors of res istance RJ and R2 is shown on 
the right. At time 1= 0, the switch is closed. After a 
long time, what is the current through resistor R2? 

~ ~ /~ 
c) V I ( ~, + lS) Otll5oe> 
d) V I (1S + L) / In Letor 
e) V x / I L 
f) I don' t know ( I point) 

o ( E , (haf'JP) 

L 
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I.H (4 pts) Two charged particles of identical mass and charge move in circular orbits 
in the same constant magnetic fie ld B = Boi., The two particles have different 

speeds, 

" <--:-j-'-II--!Ir-----> 

z 
II 

< 01_~Y 
X 

-:: lO(€lO' (0 d J ') 
{ { 

> 

The orbit of the particle with the turfier speed will 
~ have a larger rad ius and a longer period as compared to that of the slower particle 
W have a larger radius and the same period as compared to that of the slower particle r r I 
c) have a larger radius and a shorter period as compared to that of the slower particle TO( IYlv q 
d) have a smal ler radius and a longer period a~ compared to that of the slower t 

particle J tf.fM'1i 5 e "-
e) ?ave a smaller radius and the eame p~ as compared to that of the slower 
particle 
f) have a smal ler radius and a shorter period as compared to that of the slower 
particle 
g) I do not know (I point) 

J 

1.1 (4 pts) A wire loop carries current h and is 
located near an infinite wire carrying current h The 
currents flow in the directions shown, The net force 
on the wire loop due to the presence of the infinite 

W
'reis 

a upwards 
- downwards 
c) to the left 

J 
d) to the right 
e) I don ' t know (I point) 

--~-~ 

de(/c~> T 
\ ,) l' l',;!t~ 

F ~l(v 4]) 
-c:x0=1 ~ / ( ~V1 ~ 

010J 
, 

--\h I) I> 

1v4 VI III (0 p qrJ J 'vv 

\ 

.~ 

-I 
IV 

I ;-rAP I ( 
a 
I 



l.J (4 pts) A current of value I goes in a semicircle of rad ius R, then radially in 
a distance of Rl2, then in another semicircle, and rejoins with the fi rst 
semicircle, as depicted. What is the magnetic fie ld in the center of the circuit? 

~
3f1o/. h -- Into t e pane 
4R ' " o 3 Pol , out of the page 

~ 4R J 
3Pol + Pol into the pane 
2R 27rR ' " 
'I I 

d) JPo +~ out of the pa"e 
2R 27rR ' " 

e) I don't know (1 point) 

~ £ d Js ..:: Aid r el1 ( 

lfJi(( T QfL _ 1JI 

e - fiu l' 7f~ l( 
Au I P ~ 

1 7) 1{ 
? j 

L~ ~ ../)0 ..Mo J: 4?1 A 
::-

'L- l( 

U u+ o( P3 
J- -1 J,-{ j 
2 '--( 

-+ 
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r I ol" ll 0 

Problem 2 Charge Configuration (20 points) 2a 
4 different charges lie on a square of side length 2a as depicted at 
right. The magnitude of charge starti ng from top left and moving 
clockwise is + 2Q, -Q, -2Q, + 3Q. We are interested in the point 
P, which is on the right side of the square, halfway between the 
corners 2a 

a) Use ~u-Io-m-b '-s -La-~~ ~~:erpostition to find the 

Electric field E at point P. 

kil1&t Qfrlr'f',/YVI.I'-'I 

• 

~ 011 , ( on ia) t(J(/~ 
{ otl )' de{ 7V 1/ 

t.I . 

..------ ---
'/I 

+ -\ 

CIJ(YI r l-e'f 

r wro/~ 

1\ c{v-( tQ tna k V P 
__________ 'l At.? c(Jwd(,,~~ ) 

J~( [ioui ~ 9 /f -) J 



b) Which of the fo llowing "grass seed" representations (A-F) most accurately 
describes the 1/ C J 
i) fie ld lines? (e.~ ().y "))I{" A 
ii) equi potential lines? ~ re Q 1\ (V'-

(E) 

o:P~C'tS 
J (f~fr,l­

, (ovll, 

(F) 

10 



c) How much energy would it take to move a test charge +q ~of.~~~f~~~ ~ V bvl 
assuming it started infinitely far away, where the potential is zero? f 0, ~ Q~ 

U ~ 'vv~ cd ~9() '11\ 4 V 
r !?tIt J ( 

aU I vp Vo lfA.1 C2 

,~ 4 0IJt VeclOr 

d) You are given a single point charge whose position and magnitude you choose, 

with the goal of making the it field zero at point P. Where do you put the charge 
and what magnitude do you use? [Only fyou did not get an answer to part a): 

assume the field at P has the form it = E) + E)'J and use that to solve the problem 

symbolically]. 

ttJ OQf 0 

-~ ( ) -~ 
~\ 

\I 



h 

Problem 3 Resistive Bar on a pivot (30 points) 

A very long resistive bar with Pi~ot 
resistance per unit length r is'" +lW'fC 
attached to a conductino right CCI((Pn 1 

o r 1'1 
angle frame at one end by a or p (' 
pivot a distance h from the right h 
angle, with the other end resting 

@ @ ~{!e(d 

@ on the bar, making a triangular 
circuit. To simplify things 
assume the frame has negligible 
resistance. A constant magnetic 
field with magnitude B 
perpendicular to the apparatus 
permeates the area, coming out 
of the page as shown. 

(" () f) f-tt. II ~ 
Y ~==========~~L============~ 

The bar starts at 1=0 along the y axis and is rotated counterclockwise about the pivot with 
constant angular velocity (0, such that the pivot angle B = ())/. Assume the bar is long 
enough such that it never loses contact with the horizontal side of the frame. 

~. V~ T ~ 

" :;- -~ ~ ~ 

~l:D~ "fq,~ 

1lt1 Jo~~KI( 8 

.. , 
JVh - $ {(I1fl~ !2¥I-V!19" 



c) Using Faraday ' s law, find the induced emf for our circuit and the resulting current, 
again in terms of I, OJ, B,", and r. Indicate which way the current will flow on the 

diagram. Itmayhelptoknowthat~(tan e)= -I,_ . ah J" I L 1 /', /YIn r,d <{"'"cd de cos-e - I n /" , . . ,( (, I I: 

d) What is the force on the resist ive bar in terms of I, OJ, B,", and r? Be sllre to indicate 
magnitude and direction . Does it get easier or harder as time goes on to keep it rotating 

at constant OJ? « , I {01~11/~ rIO/" e.-

ft \;v~,) hut! 
I f\ Ipok ('" :) r6Jr{ <N.. 

\;vhut- J~f~ (6~ fc{l\(f <r (e <);~If/e /"' 
l> to''Le I 

'(pro (I, 1)/ T' 
fo"lt pi, , 

F 0 q,,( if xf) 
,·rr 

- lCCx a) ~! ~9 ~ 

r Vv~ls l rAga / 

G~v<{ h 
,~rtght 

-
'ied-or ~ 

, 
13 
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Problem 4 Discharging Capacitor through a resistor (30 points) 
A capacitor consists of two parallel circular plates of radius a separated by a di stance d 
(assume a» d) . The capac itor is initially charged to a charge Qo. At 1 = 0, this 

capacitor beg ins to discharge because we insert a circular resistor of radius a and height 
d between the plates, such that the ends of the -;:-esistor maKe good electrical contact with 
the plates of the capac itor. . The capacitor then discharges through thi s res istor fo r I ;:: 0 , 
so the charge on the capacitor becomes a function of time Q(I}. Throughoullhis problem 
you may ignore edge effecis. 

1< 0 1;:: 0 

d 

a) Use Gauss's Law to find the electric fi eld between the plates in terms of Q{I). Is thi s 
electric fi eld upward or downwa rd? 

7' 
bee 
{L 
[0 

: 0.0 -
fG 

~O.Ml 

\~ 

14 



-th,,L J 0"" ~ 
O~ Oil t~{) 

b) For t ~ 0 , consider an imaginary open surface of radius r < a inside the capacitor with 

its normal dA upward (see figure) 

t) 
d d ~>Place~1 1- (u((PlJf 

~rJ-~ 

For t ~ 0 , what is the conduction current flowing through this open surface in terms of 

Q(t) or dQ(t) and the parameters given. Define the direction of positive current to be 
dt -

upward, and J carefu l about signs, in particular because :7 < o. J::::- :- d~ ~ 
cl+ 1TliJ.'C 

r JOt. d(f vv.e !:, "pJ?~r{ 
~o II-Vlo\(,. ~ 

1)\ ('2... 
a - T -::>,;--­
r - 1)' cP 

c) For this same imaginary open surface, what is the time rate of change ofth~ electric 

flux though the surface, in terms of O(t) or dQ(t) and the parameters given (hint: use 
....------- - dt 

por1 (0/1 of 

t= -fhltt 
0PeJ t-(~ your answer above for E). 

fo r q,i t I) 

q (1\ "- f 
,~ c; 
I=-

tI\x? ( 

Ovt 

p ( ( 

~O? 

, 

~~ ~rr\(-2 _ 
ffia?. fo 

-t(~V ~ ~ 15 



d) What is the integral of the magnetic field around the contour bounding this open circle, 
using the Ampere-Maxwell Law? Be careful of signs. 

5 B n d) -- fiu 1 rt1( 

(AJJ Vf CiJrrQi'Vt) +- o.p?L{ ;trYlpprei 

j e,dP c Ao (=1f-¥ +~o t 

e) Does your answer in Cd) make sense in terms of the energy dissipation and energy fl ow 
in this problem? You must explain your answer c learly and logically to get credit. 

'lea rea1/i f'€eJ h ce0tfl- r('(J~el'\ 

~) hie £V'l"J{ fiPw>J 9v/-- of-

('qp CCct~Jr- ;fY1 ~cl (()Jy ~{> ;fq!eJ 
~i res {/)rPl' 

16 



Problem 3 (25 pts) : RC 
circuit 

The circuit at right contains a 
battery of emf E, 3 resistors 
each of resistance R, a 
capac itor with capacitance C, 
an inductor with inductance L, 
and two switches - switch S, 
switches the battery into the 
circuit, and S2 switches either 
the resistor or the inductor into 
the circuit (the dotted lines in 
the figure indicate possib le 
connections for the switches). 

At first. S2 is set to connect to the resistor into the circuit. 

R 

R L 

a. At t=0+, S, is closed, putting the battery into the circu it. What is the instantaneous :"L 
current into the capacitorat time t=0+? Ot.. [,' 1101+ 

IV~J-r-- 1 =:- 0 I'~f) Co, p ~Cfllo r . . p;(~t I ! l 
~ tales 1 ;~ fa C¥]P(~C c/p 
~( 0(11 I (liP Irj~ 

b. After the capac itor is fully charged (at t = T), what is the total charge on the 
capacitor? 

Q CV -c 
C( 

-- . 2 ' (' 
7 v,h>{.l I) h iS ( 

l/Jop I t1w ~ ~\ i) I h~/£ 10 do fJlI 

ho C (j/refL f {lOcN;1lj 
l tof t - R e.~;!Jo (5' 

( 

{/l, f/JDtu//e I 
2({ 
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c. Now, you open the switch S,. Use Kirchoff's laws to write a d~n 
which governs the discharging of the capacitor. (S2 still connects~istor). 
You do not need to solve the equation. What is the time constant for 
discharging the capacitor? 

J 
~ 1"10/p 

Once the capacitor is full v discharged. S, is set to connect to the inductor into the circuit. 

d. Let's reset the time to 1=0 again and close switch S, . Now what is the 
instantaneous current in the capacitor? Explain your answer, L I 

, d/l .A/ 'CY \ t .::- 0 0-0~ 11 G (~ ~()' 
'11'1It ~') ChOf~Q 

v 
e. After a whi le, after the capacitor becomes fully charged, you open switch S, 

again. Now you have a damped undriven oscillator. Use Kirchoff's laws to write 
down a differential equation describing the circuit behavior. You do not need to 
solve the equation. If one ignores the small effect of the resistance, what is the 
fundamen tal frequency of this oScili ator~ d r 

1 {\ T+ = 
~~L[tL1-R ~ a 
C M 

" lo 
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f. [fthe decay time T for thi s circuit is 2T, where T = 27r is the period of oscillation, 
(j) 

sketch the charge on the capacitor as a function of time measured in units of the 
peri od T on the graph below (be sure to label the y axis scale using the amount of 
charge at t=O, when you fi rst open the switch) 

O(t) 

r 
fQf ;~ 

1n~ l~ q 0p,;j-­

( ~d etl\ 
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Problem 4 (26 pts): What's in the box? 
The circuit shown contains an AC 
generator which provides a source of 

sinusoidally varying emf crt) = £'1/ 
sin( ml} , a resistor with resistance R = 2 
ohm, and a "black box", which contains 
either an inductor or a capacitor, or both. 

.--. [ (tl 
, 
.- .. 

R 

-:l C(/((el/ ~ 
The amplitude of the driving emf, £'1/, is 
I Volt. We first measure the current in 
the circuit at an angular frequency m =1 
radians/sec and find that it is leads the 
driving emfby exactly re/3 radians. We then measure the current in the circuit at an 

lead> viJ lliW< ~ 
angu lar rrequency m =2 radians/sec and find that it lags the driving emfby exactly re/ltu ~ L 
radians. [Note: re/3 radians = 60 degrees, tan (re/3) = J3]. ~I \ 

c c,rrell: cI-0S 
a. What does the black box conta in--an inductor or a capacitor, or both? Explain Vol1rz~~ -V 

3 your reasoning. 

J 

b. What is the numerical va lue of the current in the circuit at m =1 radians/sec? At 
m =2 radians/sec? You do not have to determine the unknown Land/or C to 
answer this question, and the variab les La C should not appear in your 
answer. Your answer can involve 

1= t s~I\(~)I ) 
-hc,! 1A0-1\ f- lo --C\ -1-1} I' 5 t~e I 

~~ VO ((leJ wi -n""1 
---'- \i IV IV 

~ 

?= 
--... -~ J R 1, ()( - "Xc )2 -

({ I I I ( X~ ~ Xc 
'1 V 

G±1 20 

2Jl J i r 'ieA/) 7. cd -: 

L [A-
rJ3 

2 



; A {~( "II[ioo . C,,,, " QC ~ (If! q, Sr P~4! I r, M c Ii£, 0 f;eq, 

: fl1 ~J Q~~t is th: numerIc~ value 0 ~e ca~~Lce 7:-or ~r(he int:ctanc~£~~f for L ~ C 
both, as the case may be? Indicate units. Your answer(s) will involve simple 

_ _ ___ .:.:fractions jand square roots. You wi ll not need a calculator to find t e valueCf2. , ~ [u( L -.L _ VVhctl;, 11?h rtPol w-A::y 1-0 ("Ii P1;S rJgO(/7 I 

I 4 t L - +0,(\ ~ ( : t1Cj ~ = ) ( 5 
---------------------
L-l­

Ie 
L l 

Ie 

) / J- :- I - -Jl (?) Jf)~ 0Ec 

~ Ji(z) ,,', ~ ~ 121 ~I c 

d D · h II . h( h~fill ~ I Id d ' h' . . . omg no mat , te us m w IC requency range you wou rIve t IS circuit to 
produce the maximum current (circle one)? 

< I rad/sec 
--- - -.-~ "-/ 

<:l1etween I rad/sec and 2 ra~ec > 2 rad/sec 

Briefly exp lain why you choose the range you did (a plot might help) . 

• IDc, V,l...I: 7 -"7\J, 

-----l~-=~·1 1'1 

~ JJ.t -0 I 
\lfJ 

e. Now calculate the numerical value of the angular frequency for which the 
current in the circuit will be a maximum. If you are uncertain in your answer in 
(c), make sure you give you answer in terms of variables first. 

) 

If your circuit contains an inductor, give an expression for the voltage drop across the 
inductor as a function of time when the current is at a maximum. If you circuit does not 
contain an inductor, give an expression for the voltage drop across the capacitor as a 
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function of time when the current is at a maximum. You need only give one expression. 
[fyou cannot decide which it was, choose one, but in all cases clearly indicate whether 
your expression is for an inductor or for a capacitor. The amplitude of your time function 
should be a numerical value in Volts. 

Q 
c 

tt 0 h liVl, 1\ ~~O-IJ L~e 

',,;\1 )f( kjf .1 rtf J C 0"+ Ie "'5t r; j Ii.- for.eJi'l) 9 rl C c( 

1== ~ ~ lA 
' ~ ' 7 
Ov il)dvefLY ked.> CV(({!/I7- by 9() p 

~~Cud ./ 1Jl) ~ ( ~5l vUto t ) 
~ c ~ A ()i C!tf )~ l/ C", (JfjJ 

~ ~ CoW) !4 

/} lik 
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8.02 Final Exam Fall 2008 

I I I I I I I I I I I I I I I I I 
FAMILY (last) NAME 

I I I I I I I I I I I I I I I I I 
GIVEN (first) NAME 

IIII rn II III 
Student ID Number 

Your Section: LOI MW 10 am __ L02 MW 12 pm 
Your Group (e.g. lOA): 

No notes or calculators allowed. Please show all your work on the analytical 
questions. Answers quoted without any work will receive no credit, regardless of 
whether or not they are actually correct. 

Score Grader 

Problem I (40 points) 

Problem 2 (20 points) 

Problem 3 (30 points) 

Prob lem 4 (30 points) 

Problem 5 (20 points) 

Problem 6 (40 points) 

TOTAL (180 points) 
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Problem 1 10 Concept questions, 4 points each, 40 points total 

L A (4 pts) If I have a uni fo rmly charged insulating sphere of radius R with tota l 
charge Q, I fi nd that outside the sphere at some arbitrary distance r away, I have an 

electric fie ld of it =J, f . Which of the fo llowi ng actions would change thi s it 
4;rco, 

fi eld? 

a) Reduc ing R by \I, . 
b) Making the sphere conducting 
rather than insulating 
c) Breaking the spherica l symmetry, 
such as deforming the sphere into the 
shape of an egg 

d) None of the above 
e) I do not know ( I pointt) 

None of the options affect the enclosed charge, while for c) some charge will be closer 
and other will be further away, thus changing the fi e ld. 

1.B (4 pts) I have an AC power supply and two different c ircuit e lements in series, R, 
L, or C. If! arbitrarily increase the drivi ng frequency of my power supply, I find the 
ampli tude of the current measured always increases. Which two elements are in my 
c ircui t? 

a) R and C d) I do not know ( I pt) 
b) R and L 
c) Land C 

Tn this case as you increase the fTequency the current goes up, so the impedance goes 
down, so there cannot be an inductor in the c ircuit. There is a resistor and a capac itor, 
and because the capacitor impedance decreases with increasing frequency, you always 
get higher current for higher frequency. 

I.e (4 pts) If you place a negatively charged particle in an e lectric fi eld, the charge 
w ill move 
a) fro m higher to lower electric potential and fro m lower to higher potential energy. 
b) from higher to lower electric potential and fro m higher to lower potential energy. 
c) from lower to higher electric potential and from lower to higher potential energy. 
d) from lower to hi gher electric potential and fro m higher to lower potential energy. 
e) I don' t know ( I poi nt) 

Part icles always move towards lower potential energy (remember F = -\lU) but for a 
negati ve charge that means moving towards higher e lectric potentia l 
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I.D (4 pts) If I have a uni fo rm charge distribution p over some 
semi-in fi nite volume as pictured at ri ght, inside the volume the 
e lectric fi eld dependence on distance x from the center is 

a) lEI ex: J, e) lEI ex: x 

_ ~ t) lEI ex: x' 
b) lEI ex: ~ 

c) lEI ex: In (x) 
d) Does not depend on x 

g) I don' t know ( I 
pt) 

p 

Inside a volume, the total charge enclosed wi ll be pAx where x is the d istance from the 

symmetry axis, and the fl ux will be EA, so the E fie ld wi ll be proportiona l to x. 

1 A. (4 pts) In experiment 6 
you measure the current on the 
right for your RC c ircui t, and 

o 

-0.25 

~ ~O . 5 
.§ 

, 
~ 
~ 

plot In e (X.J vs. f What 

is the time constant? 
a. 2 seconds ~ 

~ -0.75 

-1 b. 4 seconds 
c. 0.5 seconds 
d. 0.25 seconds 
e . I do not know (worth I 

po int) 

-1.25 

o 2 3 

tim e (seconds) 

In an RC circuit, the current will start at a maximum and then decay to zero as the 

charge builds up, according to the expression l(t) = I,,,, e-'/c so In e (){,J = - ( ~ } . 

This means you gellhe time conslant f rom the slope of the line, r =.( 0.2,Xs r = 4s 

5 

x 

-........ 
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1.E (4 pts) A para llel plate capacitor is charged up to charge Q with the plates 
separated by a distance D. The battery is then di sconnected, then the plates are 
moved closer, to a separation of d<D. What happens to the Stored Energy in the 
capacitor U and the Voltage V? 
a) U increases, V increases f) U stays the same, V decreases 
b) U increases, V stays the same g) U decreases, V increases 
c) U increases, V decreases h) U decreases, V stays the same 
d) U stays the same, V increases i) U decreases, V decreases 
e) U stays the same, V stays the j) I do not know (I point) 
same 

If the charge doesn' t change, ne ither does the E fi e ld, but the total energy is pro portia I to 
the e times the volume, and the volume decreases so the Energy decreases, and the 
Vo ltage is E t ime the distance, which also decreases, so the Voltage decreases . 

l.F (4 pts) A circuit consisting of an inductor of 
inductance L" a battery providing voltage V, a switch S, 
and two resistors of res istance R, and R2 is shown on 
the right. At time t=0, the switch is c losed. After (/ 
IOl/g time, what is the current through resistor R2? 
a) 0 
b) V I R, 

c) VI (R, + R,) 

d) V I (R, + L) 

e) V x / I L 
f) I don' t know ( I point) 

After a long time, the inductor acts li ke a short. The current will take the path of least 
resistance, and you can ' t get less than zero! So all the current will run down the inductor, 
none through the resistor. 

6 
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I.G (4 pts) Two charged particles of identical mass and charge move in circu lar orbits 
in the same constant magnetic field B = B).. The two particles have different 

speeds. 

z 

c c: 
x 

The orbit of the particle with the larger speed will 

> 

a) have a larger radius and a longer period as compared to that of the slower particle 
b) have a larger radius and the same period as compared to that of the slower particle 
c) have a larger radius and a shorter period as compared to that of the slower particle 
d) have a smaller radius and a longer period as compared to that of the slower 
particle 
e) have a smaller radius and the same period as compared to that of the slower 
particle 
f) have a smaller radius and a shorter period as compared to that of the slower 
particle 
g) I do not know (I point) 

Here we combine the Magnetic Lorentz force with circular motion to find 

mv' = qvB --7 r = (.!!2.. ) v so the larger speed will have the larger radius. The period is 
r qB 

. b 27<r 27<111 h· h ~ b h . I given y T = -- = -- so t at IS t e same lor at partlc es. 
v qB 

I.H (4 pts) A wire loop carries current h and is 
located near an infinite wire carrying current h The 
currents flow in the directions shown. The net force 
on the wire loop due to the presence of the infinite 
wire IS 

a) upwards 
b) downwards 
c) to the left 
d) to the right 
e) I don ' t know (I point) 12 

I 

f 
~ 

II 
III 

~ 

• 
The current 12 generates a magnetic field out of the page, which decreases with increasing 
distance. For the two vertical legs the forces are equal and opposite, so they cancel, 
while for the horizontal legs the lower one is in the area of higher field, so it is not 
completely canceled b~the upper leg's contribution. From the right hand rule, the force 
from the lower leg and therefore the net force is up. 

7 
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1.1 (4 pts) A current of value 1 goes in a semicircle of radius R, then radially in 
a distance of R/2, then in another semicircle, and rejoins with the first 
semicircle, as depicted. What is the magnetic field in the center of the circuit? 

) 3Jio!· h a ~,mto t e page 

o I 
b) jJio , out of the page 

4R 

) 3Jiol + Jiol into the paGe 
c 2R 21fR ' <> 

O! I 
d) j Jio +...&..... , out of the page 

2R 21fR 
e) I don ' t know (I point) 

This is an application of the Biot-Savar! law. The two semicircles by the right hand rule 
give a contribution out of the page. For a semicircle, we know 

- Ji!dS x r 1-'1 Ji! fRdB Ji! B = _ 0 ___ , - => B = _ 0 __ -
2

- = _ 0_ , so we have to add the two together to find 
41f r- 41f R 4R 

IBI = Jiol + Jiol = 3Jiol . The radial legs do not contribute at all, since the path is parallel 
4R 41 4R 

to the displacement, so the cross product is zero. 
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Problem 2 Charge Configuration (20 points) 
4 di fferent charges lie on a square of side length 2a as depicted at 
ri ght. The magnitude of charge starting from top left and moving 
clockwise is +2Q, -Q, -2Q, + 3Q. We are interested in the point 
P, which is on the right side of the square, halfWay between the 
corners 

a) Use Coulomb 's Law and superpostition to find the 

Electric field E at point P. 

Here we need to fi gure out the contri bution from each charge, 

2a 

.J5a 
tii 2a 

and then add them all up. The positive charges are a distance ~a' + (2a)' = 15a , 
and the negative ones are a distance a away. It is eas iest to use the r3 version of 

Coulomb ' s law: E = q I , i' Break ing lip into coordinates: we have: 
4 7Z'GoK 

- 2Q f " ] Q [ 4 , 2 'J E = . 201-aJ = --I - --J 
I 47Z'Go (15a ' . .,.. \ t t 47Z'G[oa ' 5151 515 

(W (d 11'10 (}~t, 7 
- 3Q " Q 6, 3 , 
E, = 47Z'G

o 
(15a )' [ 201 + aJ] = 47Z'Goa ' 515 1 + 515 J J 

- - 2Q ['] Q [ ' ] E, = , aJ = , - 2J 
47Z'Go ( a ) 47Z'Goa 

( fPc h~ fJ ~/1 QW >('r f('OPtp~ 

'~ ~3 [;1 
. 1" vedo(' (Q {'l(.l11'411·t 

~d~ vp ~ 

( 



repel/ 

b) Which of the fo llowing "grass seed" representations (A-F) most accurately 
describes the 
i) fi e ld lines? C 
ii) equipotential lines? A 

For the fi e ld lines, the zeros should be a ligned along a horizontal line between the top and 
bottom, but the lines should not be left right symmetric. Similarly, the equipotential lines 
are vertical but al so are not left-right symmetric. 

(E) 
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c) How much energy would it take to move a test charge +q (q>O) to point P 
assuming it started infinitely far away, where the potential is zero? 

Now we have to calcu late the vo ltage, which we do in the same way, although it is a li tt le 
easier without the vector stuff: 

20 

V, 47Cco (Fsa ) 

V, = 3Q 
• 47Cco (Fsa ) 

-2Q v,=--
47Ccoa 

- 0 
V, =---

47Ccoa 

V = ~ V =~[2+3 -,]=~[ ~5-'J IOlal ~ f .) vJ .) 
;., 47Ccoa Fs 47Ccoa 

Now one just uses U=q V and fi nds U = q V"lo' = ...!!.SL.[Fs - 3J 
47Ccoa 

d) You are given a single point charge whose pos ition and magnitude you choose, 

with the goal of making the it fi eld zero at point P. Where do you put the charge 
and what magnitude do you use? [Only if you did not get an answer to part a): 

assume the fi eld at P has the fo rm it = E) + E)'J and use that to so lve the problem 

symbolically]. 

With just one charge, one has to place the charge in the line defined by the vector to be 
able to cancel out both components, and then adj ust the charge appropriate ly, depending 
on how fa r away along that line you put it. Since P is at (a,O) , I can put the charge q at 

(a+Tsa,-a( l - sTs )J , it g ives a contribution at P of: 

'(1 ,/ ( ,n1[-J,i+h:rs)1] 
47Ccoa 75 + I- srs 

Adding this to our previous fi e ld, we fi nd , 

Q- q 3 so from here, to get zero 

(( i )' +(J-sts)')' 

( 
2 ' )! field we just have to spec ify the magnitude q = Q ( i ) + (I-ir,) 2 

II 



Problem 3 Resistive Bar on a pivot (30 points) 

Pivot 

h 

A very long res istive bar with 
resistance per unit length r is 
attached to a conducting right 
angle frame at one end by a 
pivot a distance h fro m the right 
angle, with the other end resting 
on the bar, making a triangular 
circuit. To simplify things 
assume the frame has neg ligible 
res istance. A constant magnetic 
fi eld with magnitude E 
perpendicular to the apparatus 
permeates the area, coming out 
of the page as shown. 

y ~==========~~==========~ 

The bar starts at 1=0 along the y axis and is rotated counterclockwise about the pivot with 
constant angular velocity CD , such that the pivot angle e = OJI . Assume the bar is long 
enough such that it never loses contact with the horizontal s ide of the frame. 

a) What is the magnetic flux penetrating the circui t as a function of (I, OJ, E, h ,I) ? 

The magnetic flu x is just the tr iangular area times the B fi e ld. The area of the triangle is 

just 1, base time height, but the base length is changing w ith time as b = h tan (OJI) , so we 

have A = th' tan (OJI) - > IC!>" = t Eh' tan (OJI )1 

b) What is the res istance of the circuit as a function of (I, OJ, E, h, /)7 

The res istance comes fro m the length of the rod in the c ircuit, whi ch is a lso growing 
s ince the length of the hypotenuse grows with time. The length of the hypotenuse is 

h rh 
I = =:> R = rl = ----;---:-1 

cos (OJI) cos (OJI) 
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c) Using Faraday's law, find the induced emf for our circuit and the resulting current, 
again in terms of I, m, B,h, and r. Indicate which way the current will flow on the 

diagram. It may help to know that ~(tan e) = _1_, -. 
de cos- e 

Here we have to use Faraday' s law, to find the emf, and then divide by the Resistance for 
the current: 

,,= ___ M = - - Bh' - ( tan (M)) = - - Bh-m - ,'-'-""-det> I d 1 , ( I J 
dl 2 dl 2 cos- (ml) 

I=J:l = ~Bh'm ( I Jx( cOS(ml) ) 
R 2 cos' ( ml ) rh 

1= Bhm 
2r cos ( ml ) 

For direction, as the bar rotates into the frame, the flux outward is increasing, so by 

Lenz' s law the flux will be Iclockwisel 

d) What is the force on the res istive bar in terms of I, m, B,h, and r? Be sure to indicate 
magnitude and direction. Does it get easier or harder as time goes on to keep it rotating 
at constant m? 

Note that the force will always be perpendicular to the bar and to the B field , so it always 
points opposite the direction of rotation, which is all you really need to say for direction. 
For magnitude, since the bar and the B field are always at right angles, the magnitude will 

be IFI = ILB = Bh() ~) B = B' h,'() . To do it mathematically, one can 
2r cos ml cos ml 2r cos- mt 

parameterize the bar as L = ~) [ sin (ml); - cos( ml) 1] and just do the cross product: 
cos ml 

- Bhm [ h [ , 'J'] F= () () sin(ml)i-cos(ml)j x Bk 
2rcos ml cos ml 

- Bh' m [ , 'J F= ' () - cos(ml)i-sin(ml)j 
2r cos ml 

13 



Problem 4 Discharging Capacitor through a resistor (30 points) 
A capacitor consists of two parallel ci rcular plates of radius a separated by a distance d 
(assume a » d) . The capacitor is initia lly charged to a charge Qo. At 1 = 0, thi s 

capacitor begins to discharge because we insert a circular resistor of radius a and height 
d between the plates, such that the ends of the resistor make good electrical contact with 
the plates of the capac itor. . The capacitor then discharges through this resistor fo r 1 ~ 0 , 
so the charge on the capacitor becomes a function of time Q{I) . Throllgholillhis problem 
you may ignore edge effecis. 

1< 0 I ~ O 

t) 
d 

a) Use Gauss ' s Law to find the electric fie ld between the plates in terms of Q(I}. Is this 
electric fi e ld upward or downward ? 

To use Gauss's law, we must construct a volume in 
which to enclose charge - let's use a pill box around the 
lower disk of the capacitor, which has surface charge 

density of u = Q" applying Gauss's law we have: 
7[(1-

rf{ - - I - O· 
'ffE.dA = EA = - (uA) => E = -T-k or "up" 

&0 7rG Eo 

E 

b) For 1 ~ 0 , consider an imag inary open sur face of radius r < a inside the capac itor with 

its normal dA upward (see fi gure) 

(t) 
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For t ~ 0 , what is the conduction current flowing through thi s open surface in terms of 

Q(t) or d~;t) and the parameters g iven. Define the direction of positive current to be 

upward, and be carefu l about signs, in particular because dQ < O. 
dl 

Here we want the conduction current flowing through the resistor in the area defined by r. 

Th d ·· J- ( dO ) I k' hi' .. k .. e current enslly IS = --= --, were t le mmus sign IS to ma e sure positive 
dt Tra-

current goes up, in the k direction . So, the current inside a loop of radius r is 

I-I ' dQ r' J = J J[! ' - = --;;;--;; 

c) For this same imaginary open surface, what is the time rate of change of the electric 

flux though the surface, in terms of Q(t} or d~;t) and the parameters given (hint: use 

your answer above for E). 

Before we found it = ~ k so we have <1> J! = +( Trr' ) = R( r: J, and if we take a 
1'(0 So frQ So £::0 a 

. d" de!) r I ( r' J dO tllne envallve we get: --' = - - , -= 
dt lio a- dt 

d) What is the integral ofthe magnetic fi e ld around the contour bounding this open circle, 
using the Ampere-Maxwell Law? Be careful of signs. 

Here you just add up the currents and apply Ampere' s law, and find 

,.( - - [ dO r' ../[ I r' dO ]J,------;;] ':I' B·dl = flo --=-, + y o ../ , -= c.Qj 
dl a y o a dt 

that the integral vani shes 

e) Does your answer in (d) make sense in terms of the energy dissipation and energy flow 
in this prob lem? You must explain your answer clearly and logically to get credit. 

Yes, it does, because the energy that is fl owing out of the capacitor is being immediately 
dissipated in the form of Joule Heating by the resistor. 
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Problem 3 (25 pts): RC 
circuit 

The circuit at right contains a 
battery of emf E, 3 resistors 
each of resistance R, a 
capacitor with capacitance C, 
an inductor with inductance L, 
and two switches - switch S\ 
switches the battery into the 
circuit, and S2 switches eilher 
the resistor or the inductor into 
the circuit (the dotted lines at 
right indicate possible 
connections for the switches). 

•• + ••• S2 .+ .• 

R 

R 

At first. S2 is set to connect to the resistor into the circuit. 
a. At t=0+, S\ is closed, putting the battery into the circuit. What is the instantaneous 

current into the capacitor? 

The capacilor acts like a short, so Ihe circllillooks like a resistor in series wilh Iwo 

resistors which are in parallel. The lolal resistance is R,,, = R + ( ~ + ~ JI = % R , so Ihe 

lolal currenl will be 1,., = ~ = ~o bUI only-haH1 oes Ihrough Ihe capacilor: I Ie = 0 I 
i R oR ~ct lr 3R 

b. After the capacitor is fully charged (at t = T), what is the total charge on the 
capacitor? 

NolV no currenl flows in Ihis leg, so Ihe tolal currenl has gone dOlVn 10 1M = 2°R ' and Ihe 

vollage across Ihe capacilor isjust Ihe vollage drop on Ihe resislor in parallel: 

Ve = VII = Rl,., =~R =::;. Ve =~=::;. I o=cv = Col 
2R 2 - 2 

c. Now, you open the switch S\. Use Kirchoff's laws to write a differential equation 
which governs the dischargihg of the capacitor. (S2 still connects to the resistor). 
You do not need to solve the equation What is the time constant for discharging 
the capacitor? 

The capacilor discharges Ihrough Ihe IlVO resislors in Ihe loop, so we have 

=-JR-IR = 0 1 = - -= =::;. -= = ---0 T = 2RC whIch makes sense because o dO IdO I I' 
C dl . dl 2RC - . 
wilh I1VO resiSlors il lVilllake longer 10 discharge Ihe capacilor. 

Once the capacitor is fully discharged. S2 is set to connect to the inductor into the circuit. 
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d. Let's reset the time to t ~ O again and close switch S,. Now what is the 
instantaneous current in the capacitor? Explain your answer. 

Instantaneously the current will be zero still, because the inductor acts like an open and 
doesn 't allow current to jlow instantaneously. 

e. After a while, after the capacitor becomes fully charged, you open switch S, 
again. Now you have a damped undriven oscillator. Use Kirchoff's laws to write 
down a differential equation describing the circuit behavior. You do not need to 
solve the equation. If one ignores the small effect of the resistance, what is the 
fundamental frequency of this oscillator UJ? 

Now it 's a loop with Capacitor, Resistor, and Inductor, so from Kirchoff's Law #2 

. . 0 dI -dQ d ' O I R dO 
withdlschargingcapacilor: =-IR-L- =O I= --=> --=+- 0=---= . 

C dt dt dt' LC - L dt 

Ignoring the resistance I get the equations for a simple harmonic oscillator, with the 

fundamentalfrequency being IUJo = "'~C I 

f. If the decay time .. for this circuit is 2T, where T = 2JT is the period of oscillation, 
UJ 

sketch the charge on the capacitor as a function of time measured in units of the 
period T on the graph below (be sure to label the y axis scale using the amount of 
charge at t ~O, when you first open the switch) 

Before we open the switch, the capacitor will charged up and there will be no current 
jlowing through it or the inductor, so the voltage drop will be the same as across the 

resistor just like in part b), Vc = ~ => IQ(O) = CE I Then the charge will oscillate and 
2 2 

decay, with its maximum at time t ~2T down one factor of e compared to att~O 

(t) 

Cd2 , 
\ 

Cd 2e . ......... , 

\ , , -

-, , 
7 ·················· ···· , ................ ..... :;;;;, .... jIMII' 

2T 
I 

, -
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Problem 4 (26 pts): What's in the box? 
The circuit shown contains an AC 
generator which provides a source of 

sinusoidally varying emf crt) = £,,, 
sin( (ill), a resistor with resistance R = 2 
ohm, and a "black box", which contains 
either an inductor or a capacitor, or both. 

The amplitude of the driving emf, £,,,, is 

I Volt. We first measure the current in 
the circuit at an angu lar frequency w =1 
radians/sec and find that it is leads the 

---' £ (tl 

R 

driving emfby exactly re/3 radians. We then measure the current in the circuit at an 
angular frequency w =2 radians/sec and find that it lags the driving emfby exactly re/3 

radians. [Note: re/3 radians = 60 degrees, tan (re/3) = .J3]. 

a. What does the black box conta in--an inductor or a capacitor, or both? Explain 
your reasoning. 

For a circuit to be "capacitor like " (Current leading voltage) at oneji-equency and 
"inductor-like " (Voltage leading current) at a higher frequency, you need 10 have both. 

b. What is the numerical value of the current in the circuit at w = 1 radians/sec? At 
w =2 radians/sec? You do 110/ hllve /0 de/ermille the unknown Land/or C to 
answer this question, and the variables Land C shou ld not appear in your 
answer. Your answer can involve square roots. 

We lise the phase information to find out: tan (¢) x -X . V 
I . ( and 1 = -. Combining, 

R Z 

1= IV = IV 

JR' + (Xl. - Xc)' R I + (,",7,x,. )' 
= I V so for both ji-equencies we 

2n.j1 +tan ' ¢ 

have 1 = I V I± A I 
2n)1 +( .J3)' 

c. What is the numerical value of the capacitance Cor of the inductance L, or of 
both, as the case may be? Indicate units. Your answer(s) will involve simple 
fractions only. You will not need a calculator to find the valuers). 

Now we have to use the information at each frequency separately. At eachji-equency, the 
impedance from the capacitor/inductor combination is twice the resistance, \Vhich gives 

us two equations to solvefor Land C. The general equation is {v L __ 1- = tan (¢)R. 
wC 

Plugging infor our two values \Ve have 

18 
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(I)L __ ()I =- ..)3(20.)---t .!...- =2..)3+ L 
IC C 

(2)L- (2;C =..)3 (20.)---t2L-t(2..)3+L)=2..)3 =>%L=3..)3 => IL = 2..)3 HI 

.!...- = 2..)3 + 2..)3 = 4..)3 => IC = If,;" FI 
C 4~3 

d. Doing no math, tell us in which frequency range you would drive thi s circuit to 
produce the maximum current (circle one)? 

< I rad/sec between I rad/sec and 2 rad/sec > 2 rad/sec 

Briefly explain why you choose the range you did (a plot might help). 
If we are capacitor-like at 1 rad/s, which is below resonance, and inductor-like at 2 
rad/s, i.e. above resonance, then somewhere between those /lVO is resonance, which gives 
the minimum impedance of R~ 2 Ohms and therefore the maximum current. 

e. Now calculate the numerical value of the angular frequency for which the 
current in the circuit wi ll be a maximum. If you are uncertain in your answer in 
(c), make sure you give you answer in terms of variables first. 

At resonance, the capacitor and inductor impedance cancel, so X I. = X c ' 

I I I = I {;:;2 rads I 
aJoL = aJoC => Wo = .J LC '2..)3 x -L ~ L S 

" 4.J3 

f. If your circuit contains an inductor, give an expression for the voltage drop 
across the inductor as a function of time when the current is at a maximum. If 
you circuit does not contain an inductor, give an expression for the voltage drop 
across the capacitor as a function of time when the current is at a maximum. 
You need only give one expression. If you do not know, choose one, but in a ll 
cases clearly indicate whether your expression is for an inductor or for a 
capacitor. The amplitude of your time function should be a numerical value in 
Volts. 

We have an inductor, for which we know the Voltage is VI. = IXI. = 1 wL. At resonance, 

the current is determined just by the resistor: 1 = V = ~ =.!. A but the inductor voltage 
R 20. 2 

leads the current by 90 degrees, so it will go like sin (wot +1') = cos (wot). PUlling all this 

together, we have VI. = ± A ( J2 r:d )( 2..)3 H ) cos ( J2t ) = 1.)6 cos ( J2t )Ai. 
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Physics 8.02 Fi nal Exam Spring 2006 
Please Remove this Tear Sheet from Your Exam 

Some (possibly useful) Relations: 
- I dq, , r 

dE=----r ; r=- from dq to obs. 
4 71"& r' r 

" 

closed surface 

dA points from inside to outside 
b 

L'>V = V. -V =-fE.as mO\1ng from a 10 b b (/ 

" w = L'>U = qL'>V 

iN av Ex =--, Ey - --, 
ax ay 

av Ez = --
az 

cf - - d fS- -E·ds=-- B ·dA 
dl 

d¢ sgl loop 
o=-N - ="'­

dl 

S = .&. q v x r Ivl« c dB = f.LJ as x r 
47T ,.2 47r r2 

where r points from source to observer 

<# S·dA =0 
citm:d 
surfaci! 

where 1,luough is the current flowing through 
any open surface bounded by the contour: 

Im""'h = f j ·dA 
open surface 

ds is ri ght-handed with respect to dA 

I , 
II I! = "2 &0£-

F = q( E+ vxS", ) 

B' 
ufj =-

2Jl" 

dF=las x Sw 

ii =L4ii 

T=ii xS F = dB, 
, f.L, dz 

L'>V = IR 

= lL'> V=l' R = L'>V' 
P ohmic heating R 

L = N <I> B.stlf.S81 coil 

1 

U =+LI' I. _ 

T = LI R X I. = (j)L 

Series RLC: Z =.J R' + X ' = ~R' + (XI. - Xc )' 

tan rp = XI R Vo = l oR 

(i) = 2rrf = 2"f[I T k = 2"f[/A 

c = AI T = A.f = wi k = (floEo rY, 
Eo = Vlight Eo ExB=p 
- I -. -S=-ExB S 2S 

Pabsorb = -; ~cncct = 
110 e e 

Cross-proc!ue/s of uni/ vee/ors: 

lxl = jxj =kx k =O 
,.. " " "" " .. " " ixj =k jxk =i kxi = j 

Some potentially useful numbers 

k =_I_ = 9x I 09 N m' 
, 471"&0 C' 

7 Tm 
'I = 471" x 10- --r o A 

E - 3 X 106 Vim 

e flo {i 

C iJVI:;t1l1 f 

Breakdown of air 
Earth' s B Field 
Speed of light 

B - 5 x 10-5 T = 0.5 Gauss 
c = 3 X 108 m/s 

Light (blue to red) 
Electron charge 
Avogadro ' s number 

A = 400 nm to 700 nm 
e = 1.6 x 10-19 C 
NA = 6.02 X 1023 

m Or
l 
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Problem 1: Eight Short Questions. Circle your choice for the correct answer 
Each problem is worth 5 points for the correct answer, 2 points for a partially correct answer (at 
our discretion). If you don ' t know the answer you can earn I point for admitting that by leaving 
it unanswered and writing "I don't know" (make this clear!) . 

Question A (5 points out of 40 points): 

1 
In lab I you fixed the potential difference between 
two plates and measured equipotential lines from 
which you determined electric field lines and 
approximate charge distributions. You are given a 
layout with a conducting plate and conducting 
circle, as pictured at left, with the circle held at 
+5 V relative to the plate. Identity the most 
accurate representation of the equipotential lines 
and the electric field lines: 

eve" \...{ 
Equipotential Lines: #_ ----:,..,.-__ 

ode[ ¢ 
Electric Field Lines: # S;) - -=----

y.: €?ivt j ?'pctd 4J)- ynpte 
Question B (5 points dut of 40 points): 

o~ '1f~;;1 VI '1 k ('I k rr u I 
l()' OtCf frJ) 

11: 

12: 

- (f) G> <0 

@ ~ <0 
\ 

wlA2vt 
L~ 

/' 

( 

In the second lab you worked with a Faraday pail, two nested 
conducting cyl inders as pictured at left (in the lab the shaded 
regions were thin). You held the outer cylinder at ground (i.e. at the 
same potential as infinity) and measured the potential of the inner 
cylinder relative to the outer cylinder. For one of the measurements 
you started from a condition where both cylinders were uncharged, 
introduced a positive charge producer into the central region, briefly 
connected the inner at outer cylinders with a conductor (your finger) 
and, after removing the connection, removed the positive charge 
producer. The positive charge producer never touched either of the 
cy linders during this measurement. Identity (circle) the sign of the 
charge (positive, negative or zero) on each surface after doing this: 

01: >0 ~ G;) 

02: >0 <0 

1 Ok~~:9 fl<- e {~vv ;1\ 
11&'\ it W(.JV ld '" 0-/ ~Q hvG~ ;'j 

~~ Ii _rd , 

0f;~ hv~Mf t'~w d 
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Question C (5 points out of 40 points): 

I 

In the third lab you studied the effects of magnetic fields. A 
current-carrying coil is placed in a uniform magnetic field pointing 
to the right. The current flows as shown, out of the page in the 
upper left and in on the lower right. 

What are the direction of the force and torque on the coi l (circle 
one direction for each)? 

Force (dipole will tend to move ... ): 

~eft Mostly Right 

Torque (dipole will tend to rotate . .. ) : 

~e None 

yto t-OiLe 
VV\ {(P('iI 
f fe Id 

, \ 

I 

/" 

Question D (5 points out of 40 points): 
l Inci" gJ~V') 

d (O~ot.eI"\fW.t ~ vf .~ 
In the fourth lab you measured the force and 
torque on a magnetic dipole in the field of a 
Helmholtz coil (which you could energize in either 

..H.elmhQ/g or Anti-Helmholtz mode). The picture 
at right shows the held configuration created by 
the co ils after you have energized them in one of 
these two ways. 

I f, before the above field is turned on, you place a 
dipole so that it is very slightly below center and 
points very slightly away from ali gnment with the 
eventual field of the Helmholtz coil after it is 
energized, what force and torque wi ll it feel when 
the coils are energized? 

It will feel a force: @ rds center) d~ from center) no force 

It wi ll feel a torque: to ali if.l to anti-align no torque 

~ ~O~ (i-- re~111 VV1Ih.u 

Ol\~ { tie; (h ho ) /)J-- ~ 6 oJ (frt!-Q/ 

5-h-~ Vt0efrj· ftld U 

rig1 ~ 
f"(QJQw 
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Question E (5 points out of 40 points): 
In the fi fth lab you measured the current and 
calculated flu x generated in a wire coil that was 
moved from well above a magnet with its North 
po le fac ing upwards to we ll be low the magnet and 
then back up again (see fi gure). We defined a 
counter-clockwise (as viewed from above) current 
as pos itive and defined the pos itive flu x direction 
accordingly. For the portion of the motion from 
~ well above ~e magnet, which two 
of the fo llowing d iagrams most c losely resemble 
what you should have measured for fl ux and 
current respectively? 

1: l 
0 

J 
t 

(A) .• ., (8 ) 

I-~ 

(C) 
L-..-i-.• ----<.,---l----+--__+_ t (D) 

FIUX: _ _ ~~(j_ 

(J etC VI. la 0 
p. 3 0f20 

., r 
~ 1-
• 
• 

t ., 

t ., 

Current: _ _ ----'..,&.J.--''--L _ _ _ 
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Question F (5 points out of 40 points): 

In experiment six you set up a simple series LR circuit which consisted of the 750 function 
generator and the coil (which as you may recall has both a resistance and an inductance). The 
750 power supply was used as a "variable battery" which would periodically turn on and off, and 
the current through the battery was plotted vs. time. In this experiment you had the opportunity 
to measure the effect of inserting and removing an iron core from the coil as well as the effect of 
add ing an additional resi stor either in series or in paralle l with the coil. In moving between the 
two plots below, wh ich of those four things was done (circle one)? 

1.0 

~ 0.8 

C 0.6 

~ 0.4 :; 

Before 
Change 

U 0.2 

0.25 

« 0.20 

"E 0.15 
Q) 
~ 0.10 ~ 

After 
Change 

::> 
() 0.05 

0.00 

0.00 0.25 0.50 

Time (s) 
0.75 

, 

~vllJ~\'1 
Question G (5 points out of 40 points): 

In experiment seven you studied a driven 
series LRC circuit and recorded both the 
power supply voltage (solid curve at right) 
and current (dashed curve). Which leads and 
are we at resonance or above or below the 
resonance frequency? 

Wh ich leads? 

Above or below? 

L 

-) 

c 

[i-

1.00 

I) Core was added 

~ore was removed 

3) Resistor was added in parallel 

esistor was added in series 

5) I don ' t know (I point) 

(~(P- ::: 

Time 

neither 

On Resonance 

.~ ~( l~ 
C~f(CcAtilr 
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Question H (5 points out of 40 points): 

In experiment eight you measured the angular dependence of the radiation from a spark gap 
antenna by moving your receiver either horizonta lly or verti cally around the transmitter. 

~Q • 

Angular dependence - Hori zonta l 

'- . 

Angular dependence - Vertical 

Which kind of motion, horizontal or vertical, shows a larger change in radi ati on in tensity over 
,JE;~nge of motion? 

~orizonta l 
2. Vertical 
3. Both show same range of change 
4. I don' t know (I point) 

C\ I ful 
r (f 
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Problem 2: Maxwell's Equations (20 Pts) 
The content of thi s course can almost completely be summarized in Maxwell ' s equations. For 
each of Maxwell 's equations please do the following: 

I) State the NAM E of the equation 
2) Write the INTEGRAL FORM of the equation (in other words, write down the equation as 

you have learned it) 
3) Briefly EXPLAIN TH E MEAN ING of the equation (that is, in words, explain the IDEA 

behind the equation - do not simply give the meaning of the symbols). 
4) For T WO OF THE FOUR equations (your choice): give a REAL WORLD EXAMPLE of 

how you would use the equation to make an approximation of something. You have been 
given lots of these on the prob lem sets thi s semester - feel free to choose one of those or 
make up one of your own. Give va lues for all quantities in your approx imation. Note that 
you don' t need to do any more work here than you would if you really were doing the 
approx imation (i.e. don't work through the problem in gruesome detail, just show how you 
can make a quick approximation). 

6h 
' \ 

'(\0 eS~().1 n 

;(:,A fYlP el Q 6f.A }J 

~ f ds - ~ Q 

Am Ie lAI 

SA d? 

t:-o ( Ov (d,,", ( 

6 fods 

(0 

t v.-tIl 

"- Ao C I r0/Q i ~) 
cJ r 
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Problem 2: Maxwell's Equations continued ... 

, 
(5 

{j\O 1Yt~8~7(C 
(h OVl(} llJl (IS 

p. 70[20 
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Problem 3: Charges (10 points): 

Twelve equal charges +q are situated in a circle with 
radius R, and they are equally spaced (see the fi gure) . 

Co 1011)15 
(a) What is the net force (magnitude and direction) on a 

charge +0 at the center of the circle. 

{10+ ~cd 6pt Ie C-O( 
~. dOli q. [0,,( It 

We remove only the +q charge which is located at "3-0'clock." 

+q 

+q 

p. 8 0f20 

+'1 ____ ----___ + 1/ 

--..---­
+q 

+q 

(b) What now is the force (magnitude and direction) on the charge +Q at the center of the circle? 
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Problem 4: Generator (20 points) / -' .; 
A simple electric generator (as shown below) is r9tating about the y-axis with a frequency of 
![Hz] .. T~ere is a uniform magnetic ~eld B [T] In the +z direction: The rotor consists of a coil 
of n wmdmgs each with an area S [m-] . The generator, through shppmg contacts, IS powenng a 
light bulb whose resistance is R en]. The oyrtic resistance of the coil is negligibly small 
compared to that of the light bulb. You m~ also assume here, for simplicity , that the self-
~tance of the coil is negligibly small. '""""--

, -
-------------y:---~ y 

X ft-- , 

(a) What is the maximum value (1m.,) of the induced alternating current? Also indicate in the 
figure one of the two positions of the coil when thi s maximum current occurs. 

t - W~d t ;5 pr(,t(,(Pd l /,p re: 
o . I 

l~U((ell<t- 1'1 § {roM. 

) 

Ii ~ . 0 -k ~ B n5 5.~(2 llft-l 
7' fret{; ."- '~r ~ B./[S (o~ {2!l'f!) \ .. . 

(b) What IS the tllne:averaged mechanccal power (m Watts) that must be supphed to mamtam 
the rotation (neglect friction in the bearings)? L fnGl)(. ::::- '2 rr f.-

r~V'J/- ~~9 k crhle h L '-If' 8VL5 j 
(oJ \.f-/!.p !!ph/l ~ ----

J 
WU I, '1 rvt 

I 

1- l( 
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Problem 5: Circuit (20 points) 
The LRC circu it as shown is driven by a power supply whose EMF ; VaCOS(rot) . In steady state, 
the current through the ideal self-inductor is lL, the current through the ideal capacitor is Ie and 
the current through the resistor is IR. Steady state means that you wait a long time so that all 
transient phenomena have died out. Don't even THINK of writing down a differential 
equation. This problem is designed to see , lher-yo~ have an appreciation for how a 
capacitor and a self-inductor behave i ext erne ituatlOns. No fancy math is needed. 
Express all your answers in terms of L, R, an Va. 

R 
. , 

C_-.--_ L 

~ I po ,alle I 
,A 

J ~5 SilVIe-v... 
(a) What are the maximum values of IL, Ie and lR in case ro;Q (zero frequency means that the 

) 
r:. power supply is now a simple battery with zero internal resistance). We are asking you for 

0vI r /U{;' steady~.e.solJ!tions, NOT transient solutions. I. '{t} n I C·, I h 
- f"'I."'l' r ' ~ l t:" ~lr()a.-.. dYl1.j r-./( 175 

,~(qV) ~ - fA- - Q =; 0 Ie;= 0 € ~ r~ [-~ 
I M~ U(({f\((? C lQ ="1 L "Ik I ~ f - ~ 

So cd\ e -t~- L# ~ O ----r\ {\ 7t ~LU;; ~ IL 
C ~O(J}Q.;' 
. \ Jlr-of 
,:\ \l, 

(b) Answer the same question as under "(a)" for the other extreme wh!;;; ro approaches a value 
which is infinitely high. 

L e'l " !lkttV lilt 
"'-

<-

r w~&!f-
I 

e jp 

(')vla ;I ~~ 
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Problem 5: Circuit colltillued ... s 0 ~rj" -; 'j p"f (J i-+ , f'1' 

(c) Do you expect the maximum value of the current IR to be higher or lower than the value you 
found under "(a)" in the case that the frequency is somewhere between the two extremes? 
Give your reasons. 

\ 

lin fd eUI( ~ ~ 111(y-
( v rre4i- LpwQ../ 

M t.~ ~('ih J-­ Porvvlk I 
J-

f 6(~ {Lel cifcUJ 
r 

JJ.iQ -'"=---\--_ 
(d) There is one frequency (in steady state) for which IR is zero . This is not so intuitive, but 

given the fact that this is so, what do you think that frequency is? Please do not try to 
calculate this frequency. 

( e Sf)I\O f '{ fL J 

"'-h£d h (/"' 
I I 

, r 

d { 
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Problem 6: Capacitor (30 points) 
A parallel-plate capacitor consists of two circular plates, each 
with radius R, separated by a distance d. The electric field E 
between the plates is uniform and directed upwards (see I E .... ~ ........ I:: =h 

~ ' 
sketch) . _~ (NJ 11 q J , 
(a) What is the total ,~~ y stored in the electric field of the 

capacitor? Assun~;rat the electric field is uniform 

r i p............ E ,d 

between the plates and zero outside of the plates (i.e· e f- \ I 
neglect fring ing fields). Q. V\O-j ,~ (.(2 (j. 

)[ 46) ~ To j1F? V 
~ 

ct 

\ [(' E 2 
0 

.....--
'2. 

E -

<t :,Q.(ll'\.? ' r'/~ J' 'f f· t/ Ict.1 · ~I/ WI) 
(b) Now, suppose that the electric field is increasing with time (dEldl > 0) . The point Pis { 

located between the plates at radius r < R (see sketch). Derive an expression for the (\ (*«l./l1'vli [I{i',d 
magnitude of the magnetic field B at point P and indicate its direction there on the sketch. :;1,1/ MVJf .b --=-==-

dE 7() Lv) f 1 
I 

J IS f (a{.fy.t 11 
{U(ell ~ 

rOb~'1 
lAe. E (;() 

tzfi>&l VI.(~O~ 
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Problem 6: Capacitor continued ... 
(c) What is the Poynting vector at point P? Give both direction and magnitude. 

~ 0 o )Ao r Z \ tAo f6 r de (~J'(~I( 
6 /2~ ·.M.6 

- -, 
'2- df 1'1. iM'-( d. l. 

)A- '"1 
v 

72t i /Jj·I y)( F o ~)(jf 1.. 

~ 

--

(2~ 

(d) Using the Poynting vector, determine the total electromagnetic energy flowing into or Ollt of 
the capacitor per unit time across r ~ R. Which is it (into or out of)? Write down an 
equation relating this quantity to the electric energy contained in the capacitor (see p~ 'r r d f ;·f c:( II,U{i5 

)'" U ut{ r L J L r cL r d e- Q5 kj Y(}J 
o 0 6 ~ 2 R ./-0 C(}ll1lJf e 

C/O !JV"t 
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Problem 7: Transmission Line (60 pts) 
f ((J ~.p"" 6R, fC/fJ 

The rest of this exam is an extended question dealing with transmission lines. There are a variety 
of transmission lines used in the world. A simple example is two wires running next to each 
other with current flowing one direction in one and the oppos ite in the other. Another example 
that you considered in problem set 12 was the coaxial cable, where current flowed up the inside 
wire and back along the outer shie ld . 'C. 
In this problem you will calculate the properties of a microstrip transmission line. It consists of 

two thin parallel plates of width ]V and length e, separated by a small distance d (they are 

typically held apart by a dielectric, but to make your life simple let's just pretend there is air 
between the plates) . It fs shown both in side view and front view below. 

w f {Id Cd 

w 
d ~ ~" . , 

The dimensions are such that you should assume that any fields created by the transmission t{ t 
line are confined to the region beh~two lates. rr f et-<J /" 

no e ~~ Qrre 5 0~'2c / 
We use transmiss ion lines to carry power from batteries or power supplies to loads (typically 
modeled as resistors): 

+ 
l=::--s-mtery 

T T 
w .e 

-d-'-i~esistor ~ 
In thi s problem you will calculate the capacitance and inductance of the microstrip transmission 
line and then study energy flow at DC. - ------ ___ _ 

NOTE: PLEASE READ THIS CAREFULLY 

In several parts of this problem you will be asked to calculate something that will require the use 
of one of Maxwell ' s equations. Make sure that you state the name of the equation and the write 
it in the form that you plan to use it before you do that part. You do not need to describe the 
equation as you were asked to do earlier in this exam, but you do need to be explicit in the 
calculations and draw and label anything that you need to use to do the calcul ation. [ will not 
provide any further drawings. Please duplicate drawings from this page (simplified to remove 
the perspective of course) when you think they will be useful. 

Do not forget to give both magnitude and direction of vector quantities. 

Feel free to tear out this page so that you do not have to continually turn back to it. 
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Problem 7 A: Capacitance of the Microstrip Transmission Line 

In the first two parts of this problem (A and B) we will consider the transmiss ion line in 
isolation (no battery or load res istor). 

Ca lculate the capacitance of the transmission line . 

9{ 

g F J ~ - [ 1/ ~ ~ r0( 
~J 

~ " 0 
~£~ 

l' tlAY!·( (-~ rlJd 

lj J ~ Fd , Qd 
-------\V2 €o 

So [ \Mls d()}Q 

r J' v~ -) [} q,ve.. vp 
,qx-}r 

- )/'''' e I" " . 
)'V\~hk 
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Problem 7A: Capacitance of the Microstrip Transmission Line conlil/lled 



., 
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Problem 7B: Inductance of the Microstrip Transmission Line 

Calculate the inductance of the transmission line. 
NOTE: There are two ways to do this. If you don ' t recall either of them then I suggest that you 
at least send some current through the transmission line and calculate the magnetic energy 
between the plates. 

(' 
( 

, 
ti 

q() ~SBq A-

f g ;we'? c (1r )/0 lQ/( 
J 

£, '211' r :::: Ao 1fc ( 2 

() Y ~ 
1) / , ~ Ao ~ ~ 

Q ~ -AloI-
\J 

~ 

c().ir(, iai-e C,~/0,( to 

>': - , 
- ----i'---t-' ----' 0~\ 

U \J 'I I{ 
16/\ 1'1 'raffo,,,, w.1PIUf) 

--- - .- - - 0) 

I~ dve }-q,,(~ 
\Jwr 

( fvf.r'0Y Jellb~l( ? \I{) ivrt'r?) 

r- )L E \J~d "" 
vjJ 1 Jjt; .£d j1 (t / . = 

2~o 2Ao Lv ~ 
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Problem 7B: Inductance of the Microstrip Transmission Line cOlltillued 



-----~--
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line 

We now connect the transmission line to a battery (EMF &) on the left and a resistor (resistance 
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a 
long time after this connection has been made (after any transient behav ior has passed). 

(a) What is the e lectric fie ld between the plates? HINT: This is much eas ier than you probably 
think now that the battery fixes the potentia l d ifference between the plates . 

(r J 11 - _ OJ 
,) C' l!Jj - ~ 

1-_ '- -

"0 F 

f = ~ 

v 
cl 

(b) What is the magnetic field between the plates? HINT: q,.ou probably already did thi s in 7B. 
Feel free to just quote your previous result. 

).).0 f(( ( -_.--
-:((/ 

v .. 

r:- Ii k r~ avd ( 
(Or 

Aot Q 

B Mor --)jo L -~.£ --
? 

-0 "Iv n 
t,r 

CLv 
? (j 1 rV~r/~ 

e' 
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line cOlltinlled 

Cc) What is the Poynting vector between the plates? 

...? ..J I' I ( J f T B ( rJ...r;;Ia. it !/l'WI!1.!.-

A CkOlji j 

Cd) Integrate the Poynting vector over a re levant area and show that the result simplifies to what 
you would expect g iven the meaning of the Poynting vector. 

9 --Velvlv-t- G I IYI P I [ ~ ( 
~rf ClC~ 0 ((!0\. 

rvee~ ~\o gef- pw~d dO{(lJ 

Vvor k -, :; ~(; l'i t ie&{(1 

0e~(1l0 f\1nb)- vI!(j >\~ 
-') {\()~ 009~ \ ~ 
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Problem 1: Eight Short Questions. Circle your choice for the correct answer 
Each problem is worth 5 points for the correct answer, 2 points for a partially correct answer (at 
our discretion). If you don't know the answer you can earn I point for admitting that by leaving 
it unanswered and writing " I don ' t know" (make this clear!). 

Question A (5 points out of 40 points): 

1 2 

5 6 

£rU 

In lab I you fixed the potential difference between 
two plates and measured equipotential lines from 
which you determined e lectric field lines and 
approximate charge distributions. You are given a 
layout with a conducting plate and conducting 
circle, as pictured at left, with the circle held at 
+5 V relative to the plate. Identity the most 
accurate representation of the equipotential lines 
and the electric field lines: 

Equipotential Lines: #--"-_4,,--,-_ 

Electric Field Lines : # 5 ----'--""---'--

Field lines must be perpendicular to surfaces. 
Equipotentials must be closest where field is 
strongest (between conductors) 

Question B (5 points out of 40 points): 

11: >0 <0 

12: =0 <0 

In the second lab you worked with a Faraday pail, two nested 
conducting cylinders as pictured at left (in the lab the shaded 
regions were thin). You held the outer cylinder at ground (i.e. at the 
same potential as infinity) and measured the potential of the inner 
cylinder relative to the outer cylinder. For one of the measurements 
you started from a condition where both cylinders were uncharged, 
introduced a positive charge producer into the central region, briefly 
connected the inner at outer cylinders with a conductor (your finger) 
and, after removing the connection, removed the positive charge 
producer. The positive charge producer never touched either of the 
cy linders during this measurement. Identity (circle) the sign of the 
charge (positive, negative or zero) on each surface after doing thi s: 

01: >0 =0 

02: >0 <0 

When touching the two together negative charges flow to the inner conductor to shield the 
positive charge. In the end they move to 01 and positive charges shie ld them at 12. Nothing is 
at 02 because it is grounded, or at II because it is an interior surface. 
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Question C (5 points out of 40 points): 

I 
In the third lab you studied the effects of magnetic fields. A 
current-carrying coil is placed in a uniform magnetic field pointing 
to the right. The current flows as shown, out of the page in the 
upper left and in on the lower right. 

What are the direction of the force and torque on the coil (circle 
one direction for each)? 

Force (dipole will tend to move ... ): 

Mostly left Mostly Right 

Torque (dipole will tend to rotate ... ): 

iClockwis~ Counterclockwise None 

No force in a uniform field. The dipole moment is up and to right (from right hand 
rule) so torque to align makes it rotate clockwise. 

Question D (5 points out of 40 points): 

In the fourth lab you measured the force and 
torque on a magnetic dipole in the field of a 
Helmholtz coil (which you could energize in either 
Helmholtz or Anti-Helmholtz mode). The picture 
at right shows the field configuration created by 
the coils after you have energized them in one of 
these two ways. 

I f, before the above field is turned on, you place a 
dipole so that it is very slightly below center and 
points very slightly away from alignment with the 
eventual field of the Helmholtz coil after it is 
energized, what force and torque will it feel when 
the coils are energized? 

It will feel a force: up (towards center) @own (away from center)1 

It will feel a torque: ~o alig~ to anti-align 

no force 

no torque 

This is an anti-Helmholtz configuration (field is zero at center). We are below center so 
when the field is energized we will align with the field (ALWAYS!) and then move to 
the region of sh·ongest field, which is downwards. 
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Question E (5 points out of 40 points): 
In the fifth lab you measured the current and 
calculated flux generated in a wire coi l that was 
moved from well above a magnet with its North 
pole facing upwards to well below the magnet and 
then back up again (see figure). We defined a 
counter-clockwise (as viewed from above) current 
as positive and defined the positive flux direction 
accordingly. For the portion of the motion from 
well below to well above the magnet, which two 
of the following diagrams most closely resemble 
what you shou ld have measured for flux and 
current respectively? 

t 
(A) (8) 

., 

t 
(C) ., ., (D) 

Flux: _ _ .ll;ij~ ____ _ 

., 

<+---+ 
• 

., 

Current: 

Flux is always upwards (positive). The flu x will increase then decrease (D). The current will 
fight the increase by flowing clockwise, then fight the decrease by flowing ccw (C). 

t 

t 
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Question F (5 points out of 40 points): 

In experiment six you set up a simple series LR circuit which consisted of the 750 function 
generator and the coil (which as you may recall has both a resistance and an inductance). The 
750 power supply was used as a "variable battery" which would periodically turn on and off, and 
the current through the battery was plotted vs. time. In this experiment you had the opportunity 
to measure the effect of inserting and removing an iron core from the coil as well as the effect of 
adding an additional resistor either in series or in parallel with the coil. In moving between the 
two plots below, which of those four things was done (circle one)? 

1.0 

« O.S 

c O.G 

~ 0.4 

Before 
Change 

I) Core was added 

2) Core was removed 

=> 
U 0.2 3) Resistor was added in parallel 

0.0 

0.25 4) Res istor was added in series 

~ 0.20 

C 0.15 

~ 0.10 
=> 
U 0.05 

0 ,00 

0.00 0.25 0.50 

Time (s) 

After 
Change 

0.75 

5) I don ' t know (I point) 

1.00 

The current decreased so resistance must have been added in series. In add ition, the time 
constant decreased (T = LlR) so thi s a lso makes sense. 

Question G (5 points out of 40 points): 

In experiment seven you studied a driven 
series LRC circuit and recorded both the 
power supp ly voltage (solid curve at right) 
and current (dashed curve) . Which leads and 
are we at resonance or above or below the 
resonance frequency? 

Which leads? IClIrren~ Voltage 

Above or below? Above 

neither 

On Resonance 

The current peaks fi rst so it leads. Current leading is capac itor-like, so we are below the 
resonance frequency, where the capacitor domi nates . 

Time 
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Question H (5 points out of 40 points) : 

In experiment e ight you measured the angul ar dependence of the radiation from a spark gap 
antenna by mov ing your receiver e ither horizonta lly or verti cally around the transmitter. 

'-

Angular dependence - Horizontal Angul ar dependence - Vertical 

Which kind of moti on, horizontal or vertical, shows a larger change in radiat ion intensity over 
the range of motion? 

I I. Horizontal 

2. Vertical 
3. Both show same range of change 
4 . I don' t know (I point) 

The vertical motion shows no change in intensity because there is svmmetrv that di rection. 
Horizontally the intensity decreases as you move away from a lignment between transmitter and 
receiver. 
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Problem 2: Maxwell's Equations (20 Pis) 
The content of this course can almost completely be summarized in Maxwell ' s equations. For 
each of Maxwell ' s equations please do the following: 

I) State the NAME of the equation 
2) Write the INTEGRAL FORM of the equation (in other words, write down the equation as 

you have learned it) 
3) Briefly EXPLAIN THE MEANING of the equation (that is, in words, explain the IDEA 

behind the equation - do not simply give the meaning of the symbols). 
4) For TWO OF THE FOUR equations (your choice): give a REAL WORLD EXAMPLE of 

how you would use the equation to make an approximation of something. You have been 
given lots of these on the problem sets this semester - feel free to choose one of those or 
make up one of your own. Give values for all quantities in your approximation. Note that 
you don ' t need to do any more work here than you would if you really were doing the 
approximation (i .e. don ' t work through the problem in gruesome detail, just show how you 
can make a quick approximation). 

Gauss's Law: it· dA = Q,,,,. ;,,;d, means that charges create diverging electric fields 
closed surface 

How much excess charge is on your finger when you get a shock on a doorknob? 

6 V . ()' _" -I' F E",3 x 10 - ;A"'sphereofradlUs I cm = 4n Icm ",10 ' m'; co ",9x I0 ' 
m m 

So Q - coEA '" (9X W" : )( 3x 10' ~ )(W3 m' ) - 3x W' C 

Ampere-Maxwell Law: q B· as =p , (1" ",,", + Co d: E) means that current and changing 
contour 

electric fields create curling magnetic fields 
How much magnetic field do you feel from a power line going into your house. 

s '" circumference of 3 m circle = 2n (3 m) '" 20 m;p, '" 4n x 10-7 T~n;l = 100 A 

So B - P;! '" ( 10-6 T~n } IOOA)(20 m t -2 x W ' T 

(of course, there is typically another wire nearby taking current in the opposite direction that will 
reduce this, but as a first approximation thi s is fine). 

Magnetic Gauss's Law: cff B· dA = 0 means no magnetic monopoles 
dOJcd 
mrfuce 

Faraday's Law: c}it .dS =-; fJB .dA means that changing magnetic fields can induce curling 

electric fields 
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Problem 3: Charges (10 points): 

Twelve equal charges +q are situated in a circle with 
radius R, and they are equally spaced (see the figure). 

(a) What is the net force (magn itude and direction) on a 
charge + Q at the center of the circle. 

4 po ints: 

By symmetry the net force is zero. 

+q 

+q 

We remove on ly the +q charge which is located at "3-0 'clock." 

p.70f15 

q 
+q ----...+q 

+q +q 
+q 

(b) What now is the force (magnitude and direction) on the charge +Q at the center of the ci rcle? 

6 points: 

With the 3-0' clock charge removed, the 9-0'c lock charge is now unbalanced, so it exerts a force: 

- kqO 
F = ~ to the right 

R-
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Problem 4: Generator (20 points) 
A simple e lectric generator (as shown below) is rotating about the y-axis with a frequency of 
j [Hz]. There is a uniform magnetic fi e ld B [T] in the +z direction. The rotor consists of a co il 
of 11 w indings each with an area S [m2

] . The generator, through slipping contacts, is powering a 
light bulb whose resistance is R [0]. The ohmic resistance of the co il is negligibly small 
compared to that of the light bulb. You may also assume here, for simplicity, that the se lf­
inductance of the co il is negligibly small. 

B 

, 
, , 

- - - - - - - - - - - , "": - - - i> Y - , R 
X fo." , 

(a) What is the maximum value (l max) of the induced a lternating current? Also indicate in the 
fi gure one of the two positions of the co il when thi s max imum current occurs. 

10 points: 

The current is driven by the EMF induced by changing magnetic flux through the loop 
(Faraday's Law) : 

Ii I dr!J I dS' ( fi) 27r j S ( fi ) 1 =- =--=--BI1 sm 27r I =--BI1 cos 27r I 
R R dl R dl R 

So the maximum of the current is 1"" = 2~j BI1S 

The current is a max when the flu x is changing the most which is when the loop is 90 degrees to 
the way it is pictured above 

(b) What is the time-averaged mechanica l power (in Watts) that must be supplied to maintain 
the rotation (neglect fri ction in the bearings)? 

10 points: 

(p) = (1211 ) = ( ( 2;{ BI1Scos( 27r/t) J R) = ~ 47r2j 2: 211
2
S 2 

Where the Y, out fro nt comes ITom the time average of cos2
. 
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Problem 5: Circuit (20 points) 
The LRC circuit as shown is driven by a power supply whose EMF = Vocos( wt). In steady state, 
the current through the ideal self-inductor is IL, the current through the ideal capacitor is Ie and 
the current through the resistor is IR• Steady state means that you wait a long time so that all 
transient phenomena have died out. Don't even THINK of writing down a differential 
equation. This problem is designed to see whether you have an appreciation for how a 
capacitor and a self-ind uctor behave in extreme situations. No fancy math is needed. 
Express all your answers in terms of L, R, C and Vo. 

R 

I -----­R 

C_-.-_ L 

(a) What are the maximum values of IL, Ie and IR in case w=O (zero frequency means that the 
power supply is now a simple battery with zero internal resistance). We are asking you for 
steady state solutions, NOT transient solutions. 

6 points: 

At low frequency the capacitor wil l have a high impedance and the inductor wil l have a near 
zero impedance, so a ll current goes through the inductor: 

Vo 0 / - / -_. / -
R - I. -

R
' c-

(b) Answer the same question as under " (a)" for the other extreme when w approaches a value 
which is infinitely high. 

6 po ints: 

At high frequency the inductor will have a high impedance and the capacitor will have a near 
zero impedance, so a ll current goes through the capacitor: 
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Problem 5: Circuit continued .. . 

(c) Do you expect the maximum value of the current IR to be higher or lower than the va lue you 
found under "(a)" in the case that the frequency is somewhere between the two extremes? 
Give you r reasons. 

5 points: 

In the two extreme limits one of the two parallel elements provides a short. In intennediate 
frequencies thi s will not be the case so the impedance will be HIGHER and the current will be 
LOWER. 

(d) There is one frequency (in steady state) for which IR is zero. This is not so intuitive, but 
given the fact that thi s is so, what do you think that frequency is? Please do not try to 
calculate this frequency. 

3 points: 

This wi ll happen when the frequency is such that the inductor and capacitor ring: 

I 
0)=--

.JLC 

: { !ePIlI.) ) ;~ Ire hU/e" /0 f}.ofl'OII~ fk IrIh/J1e 

hop\ - \ve{l he abl[ (0 opf" fie. (U,~ 
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Problem 6: Capacitor (30 points) 
A parallel-plate capacitor consists of two circular plates, each 
with radius R, separated by a distance d. The electric field E 
between the plates is uniform and directed upwards (see 
sketch). 

(a) What is the total energy stored in the electric field of the 
capacitor? Assume that the electric field is uniform 
between the plates and zero outside of the plates (i.e., 
neglect fringing fields). 

p. II of 15 

The energy stored is in the electric field. Since E is nearly constant we can just multiply the 
energy density by the volume inside the capacitor: 

U - . V - ooE' R'd = oo7fR' d E ' 
E - 21E - 2 7f 2 

(b) Now, suppose that the electric field is increasing with time (dE/d/ > 0). The point Pis 
located between the plates at radius /' < R (see sketch). Derive an expression for the 
magnitude of the magnetic field B at point P and indicate its direction there on the sketch. 

With the electric field increasing, we have an upwards displacement current: 

d<P . d (E7f/, ' ) , dE 
J - 0 E - 0 - 0 7fr 

diJplacenJel1l - 0 dt - 0 dl - 0 dt 
,.{ , dE I dE 
'i B· dl = B· 2m' = JioId"p"" ",,", = Jiooom'- --;j/ =:> B = '2 Jiooor --;j/ out of page at P 

(c) What is the Poynting vector at point P? Give both direction and magnitude. 

- ExB I I dE I dE . . 
S = --= -E - Jiooor- = - oorE- (to the nght/mwards!) 

Jio Jio 2 dl 2 dl 

(d) Using the Poynting vector, determine the total electromagnetic energy flowing into or out of 
the capacitor per unit time across r = R. Which is it (into or out of)? Write down an 
equation relating this quantity to the electric energy contained in the capacitor (see part (a)). 

To find the total energy flowing in consider that the band at r = R has an area A = 2nRd, so 

dU -( ) - (I dE )( ) , dE - = S r = R . A = - ooRE- 27fRd = oo7fR-dE- . 
dl 2 dl dl 

Notice that this is indeed the time derivative of UE that we calculated in part (a). 
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Problem 7: Transmission Line (60 pts) 
The rest of this exam is an extended question dealing with transmission lines . There are a variety 
of transmission lines used in the world. A simple example is two wires running next to each 
other with current flowing one direction in one and the opposite in the other. Another example 
that you considered in problem set 12 was the coaxial cable, where current fl owed up the inside 
wire and back along the outer shield. 

In this problem you will calculate the properties of a microstrip transmission line. It consists of 

two thin para llel plates of width IV and length t , separated by a small distance d (they are 

typically held apart by a dielectric, but to make your life si mple let' s just pretend there is air 
between the plates). It is shown both in side view and front view below. 

w 
d 

The dimensions are such that you should assume that any fields created by the transmission 
line are confined to the region between the two plates. 

We use transmission lines to carry power 1T0m batteries or power supplies to loads (typically 
modeled as resistors) : 

+ 
Battery 

w 
_ --......:R:....: esis tor 

d 
In this problem you will calculate the capac itance and inductance of the microstrip transmission 
line and then study energy fl ow at DC. 

NOTE: PLEASE READ THIS CAREFULLY 

In several parts of this problem you will be asked to calculate something that will require the use 
of one of Maxwell 's equations. Make sure that you state the name of the equation and the write 
it in the form that you plan to use it before you do that part. You do not need to describe the 
equation as you were asked to do earlier in this exam, but you do need to be explicit in the 
calculations and draw and label anything that you need to use to do the calculation. I will not 
provide any further drawings. Please duplicate drawings from this page (simplified to remove 
the perspective of course) when you think they will be usefu l. 

Do not forget to give both magnitude and direction of vector quantities. 

Feel free to tear out thi s page so that you do not have to continually turn back to it. 
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Problem 7 A: Capacitance of the Microstrip Transmission Line 

In the first two parts of thi s problem (A and B) we will consider the transmission line in 
iso lation (no battery or load resistor). 

Calculate the capacitance of the transmiss ion line. 

STEP 1: Place ±Q on the plates and calculate the electric fie ld between them? 

... .. 

..... 

We have a charge +Q on the top plate so an electric fi eld will be 
created pointing downwards . We will use Gauss ' s Law to 

ca lculate the electric fi eld between the plates: <If it· dA = Q,", 
Pillbox &0 

We use a Gaussian pillbox with end cap area A. The only 
surface of the pillbox we care about is the one between the plates. 
The fie ld runs perpendicular to the area vector on the sides 
(doesn' t penetrate them) and the fi eld is zero outside because the 
fi e lds from the two plates cancel there. 

STEP 2: Calculate the voltage di fference between them 

t;V = Ed = Qd 
wi c, 

STEP 3: Calcul ate the capacitance 
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Problem 7B: Inductance of the Microstrip Transmission Line 

Calculate the inductance of the transmission line. 
NOTE: There are two ways to do thi s. If you don' t recall either of them then I suggest that yo u 
at least send some current through the transmiss ion line and calculate the magnetic energy 
between the plates . 

STEP I: Place current ±l on the plates and calculate the magnetic fie ld between them? 

x 

--.. l .. ··-· oi-·~ --@ 
...... 

---@ 

STEP 2: Calculate the inductance 

We have a currentJ fl owing out the top plate and in the bottom 
plate meaning that a magnetic fie ld is created between the two 

plates pointing to the right ( -; d irection). The fi e ld is zero 
outside by cance llation. We use Ampere 's Law with the 
Amperian loop pictured at left and note that only the bottom 
leg contributes (B=O at top and is perpendicular to ds on the 
sides): 

,.{ - x ~flJO 'i B · as = Ex = flJ"" = fI, -/ => B = ---1 
W W 

We wi ll use energy to ca lculate the inductance. The magnetic fi e ld is unifo rm so we can just 
multi ply the energy density by the volume: 
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Problem 7C: DC Power Transmission with the Microstrip Transmission Line 

We now connect the transmission line to a battery (EMF 0) on the left and a resistor (resistance 
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a 
long time after this connection has been made (after any transient behavior has passed). 

(a) What is the electric field between the plates? HINT: This is much easier than you probably 
think now that the battery fixes the potential difference between the plates. 

- 0 " E=--k 
d 

(b) What is the magnetic field between the plates? HlNT: YOll probably already did this in 78. 
Feel free to just quote your previolls result. 

B = - ,110 Ii = _ ,110 ~ i 
w w R 

(c) What is the Poynting vector between the plates? 

(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what 
you would expect given the meaning of the Poynting vector. 

The relevant area is the cross-sectional area of the transmission line, wd. The Poynting vector is 
uniform so we can just multiply rather than integrate: 

2 ffS . dA = SA = ~ = Power dissipated by the resistor 
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Physics 8.02 Final Exam Fall 2005 
Please Remove this Tear Sheet from Your Exam 

Some (possibly useful) Relations: 

dE = _I_ dqr 
47TEo r 2 

- - 0 , · ·d K E . dA = - ree, In SI t 

closed surface 

dA points from insid to outside 

e= _ NdcD sg"OOP 
dl 

b 

moving from 1I tob = Vb -v:, = - fE. d'S 
" 

B =~ qv x r Ivl« c elB = I1J dS x r 
47r r 2 47T r 2 

where r points from source to observer 

<# B ·dA=O 
closed 
s llr/ace 

A - ( d()) ' .. J 'j B· as =J1-o Ithrough + Go dt 
,ontOUT 

where I thmugh is the current flowing through 
any open surface bounded by the contour: 

I"""gh = f j·dA 
open surface 

ds is right-handed with respect to dA 
1 , 

u". =2&0£-

F=q(E+vxBm ) 

~ent. = mv
2
/r 

/i =IAii 

i=/i x B 

B' 
Il ll = --

211" 

dii = 1 dsxB,,, 

6. V = IR R =pL 
A 

P __ I AV -- I ' R __ t3.V ' 
ohmic heating D. 

R 

L 
N ct) B,st IC,s!;1 coil dl 

cback = -L -
dt 1 

U,. =t u ' 

r = LI R X I. = wL 

Series RLC: Z =.j R' +X' = ~R' + (X,. -Xc )' 
tanrp=X/ R Vo = l oR 

w = 2nf = 2n/T k = 2n/A. 

c = A./T = V = w/ k = (!loEo r>l 
-. I - -. 
S = - E x B 

!lo 

E x B = p 

5 
~bsorb = ­

C 

25 
~enect = ­

C 

If the function D(t) satisfies the equation 

.:!.. D(t) = - D(t) , then D(t) = Due-'" 
dt r 

Cross-products of unit vectors: 

ixi=]xj=kxk=O 

ixj=k j x k=i kxi=j 

Some potentially useful numbers 

k,. =_I_=9 x I09N m ' 11 =4n x lO-, Tm 
47fco C2 

(1 A 

Breakdown of air E - 3 x 106 V fm 
Earth 's B Field B - 5 X 10-5 T = 0.5 Gauss 
Speed of light c = 3 x 108 mfs 
Light (blue to red) A. = 400 nm to 700 nm 
Electron charge e = 1.6 x 10-19 C 
Avogadro 's number N A = 6.02 x 1023 marl 
Calories I cal = 10-3 Cal = 4. 184 J 
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Problem 1: Ten Short Questions. Circle your choice for the correct answer 
Each problem is worth 4 points for the correct answer or I point for admitting that you don ' t 
know how to do it. Unanswered or incorrectly answered problems will earn a O. 

Question A (4 points out of 40 points): 

+ t-+ 

In lab I you fixed the potential difference between 
two plates and measured equ ipotential lines from 
which you determined electric field lines and 
approximate charge distributions. You are given 
the two conducting plates at left, with the top plate 
held at +5 V relative to the bottom plate. What can 
you say about the relative magnitude of the charge 
densities near the four locations indicated? 

D--------<,s 

1· IQ(A)I-IQ(c)I> IQ(B)I-IQ(D)I 
2. IQ(A)I > IQ(B)I- IQ(c)1 > IQ(D)I 

rJ."1O(A)1 - IQ(B)I > IQ(c)I-IQ(D)1 
'4.[Q(D)1 - IQ(c)1 > IQ(B)I-IQ(A)I 

5· IQ(B)I-IQ(D)1 > IQ(A)I- IQ(C)I 
6. IQ(A)I > IQ(D)I - IQ(C)I > IQ(B)I 
7· IQ(c)1 > IQ(A)I- IQ(B) I > IQ(D)I 

<' 

8. I don ' t know (this answer is worth I point) 

Question B (4 points out of 40 points): 

In the second lab you worked with a Faraday pail, two nested 
conducting cylinders as pictured at left. You held the outer cylinder 
at ground (i.e . at the same potential as infinity) and measured the 
potential of the inner cylinder relative to the outer cylinder. For one 
of the measurements you started from a condition where both 
cylinders were uncharged, introduced a positive charge producer 
into the central region, briefly connected the inner at outer cy linders 
with a conductor (your finger) and, after removing the connection, 
removed the positive charge producer. The positive charge 
producer never touched either of the cylinders during th is 
measurement. Which of th e following statements about the surface 
charges at the end of this measurement is true? 

c}> Q(lI) = 0; Q(OI) = 0; Q(12) = 0; Q(02) = 0 
2. Q(lI) = 0; Q(O I) < 0; Q(l2) > 0; Q(02) = 0 

. Q(lI) = 0; Q(O I) < 0; Q(l2) > 0; Q(02) < 0 
4. Q(I1) = 0; Q(OI) > 0; Q(l2) < 0; Q(02) = 0 
5. Q(lI)=O; Q(OI»O; Q(12)<0;Q(02»0 
6. Q(I1) < 0; Q(O I) > 0; Q(l2) < 0; Q(02) > 0 
7. I don't know (this answer is worth I point) 01 

'II 
0 \ 

11 -+ 
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Question C (4 points out of 40 points): 

p. 20f23 

In the third lab you constructed the 
circuit at left in order to study the effects 
of capacitors in circuits. You measured 
the current through and voltage across 
the resistor R using the ammeter and 
voltmeter as pictured at left. The battery 
would periodically switcnon and off,) 
allowing you to measure'Thtm-''intfiaf' 
values (right after the battery switched 
on) and their " final" values (a long time 
after the battery was switched on). After 
measuring the behavior in this circuit 
you had the opportunity to add a second 
resistor in parallel with the capacitor C. 

After adding the second resistor which of the following statements is true? 

I. Neither the initial current nor the final voltage changed 
2. The initial current was smaller but the final voltage was the same 
3. The initial current was larger but the final voltage was the same 

--4. The initial current was the same but the final voltage was smaller 
.:=f5.l. The initial current was the same but the final voltage was larger 

'-6. [don ' t know (this answer is worth I point) 

Question D (4 points out of 40 points): 

[n the fourth lab you studied the effects of magnetic fields. 
A current-carrying coi l is placed in a uniform magnetic 
field pointing upward. The current flows as shown, out of 
the page in the upper left and in on the lower right. 

What are the force and torque on the co il? 

No force, torque to rotate clockwise &
" No force or torque 

3' No force , torque to rotate counterclockwise 
4. Force up, no torque 
5. Force up, torque to rotate clockwise 
6. Force up, torque to rotate counterclockwise 
7. Force down, no torque 
8. Force down, torque to rotate clockwise 
9. Force down, torque to rotate counterclockwise 
I O. I don't know (this answer is worth 1 point) 
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8.4 Torque on a Current Loop 

What happens when we place a rectangular loop carrying a current I in the xy plane and 

switch on a uniform magnetic field Ii = Bi which runs parallel to the plane of the loop, 
as shown in Figure 8.4.1 (a)? 

0 - ' 1.- ~j====7-J ..... , 
_/aI07' ~/_------~~ZL"'" ._ 07:: ii 

I 
CD I--- b---

F, 

z 

Lex 
1/ 

I 

I 
) 

(, / 

7 

Figure 8.4.1 (a) A rectangular current loop placed in a uniform magnetic field. (b) The 

magnetic forces acting on sides 2 and 4. 

From Eq. 8.4.1 , we see the magnetic forces acting on sides I and 3 vanish because the 

length vectors £, = -bi and £3 = bi are parallel and anti-parallel to Ii and their cross 

products vanish. On the other hand, the magnetic forces acting on segments 2 and 4 are 

non-vanishing: [ ~\v ~ -he. ~I of~ d;r J 

{

_ " , t 
F, = J(-aj) x(B i) = laBk (' r 

t t Od! r ' (8.4.1) 
ii4 = l(aj) x(Bi)= -JaBk 

with ii, pointing out of the page and ii, into the page. Thus, 

rectangu lar loop is 
the-8 on the 

(8.4.2) 

as expected. Even though the net force on the loop vanishes, the forces ii, and ii, will 

produce a torque which causes the loop to rotate about the y -axis (Figure 8.4.2). The 
torque with respect to the center of the loop is (' 

~ I 

(' h -
-.::>.....,. ( b, J - ( b 'J - ( ~'J ( 1.. ' ) (b ~ J ( t '-I ') j-- c j). 7\. e T = -'2 i xF, + '2i x F, = -'2 i x laBk + '2i x -laBk I A o~ cdl 

(8.4.3) C" I ~ laI{ I. 
( 

labB labB J' , \. ? ) 
= -2-+-2- j = labBj=if!!!!l; 

8-8 



(j'reo.. 
where A = ab represents the area of the loop and the positive sign indicates that the 
rotation is cLgQkwise about the y-axis. It is convenient to introduce the area vector 

A = A ii where ii is a unit vector in the direction normal to the plane of the loop. The 
directiortofthe positive sense of ii is set by the conventional right-hand rule. In our case, 

we have ii = + k . The above express ion for torque can then be rewritten as 

T= fA x B (8.4.4) 

Notice that the magnitude of the torque is at a maximum when B is parallel to the plane 

of the loop (or perpendicular to A). 

Consider now the more general situation where the loop (or the area vector A) makes an 
angleB with respect to the magnetic field. 

<ll • 

hfl ~<:,---.. jj 

o "L, 

Figure 8.4.2 Rotation of a rectangular current loop 

From Figure 8.4.2, the lever arms and can be expressed as: 

1', =%( -sinBl+cosBk )=-1', 

and the net torque becomes 

T = 1', x ii, + 1', x ii, = 21', x F, = 2.%( -sin til +cos ti k) x ( JaBk) 

= IabBsin tij = IAxB 

For a loop consisting of N turns, the magnitude of the toque is 

T=NIABsi nB 

The quantity N I A is called the magnetic dipole moment Ii: 

(8.4.5) 

(8.4.6) 

(8.4.7) 

(8.4.8) 

8-9 
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Figure 8.4.3 Right-hand rule for determining the direction of ji 

The direction of ji is the same as the area vector A (perpendicular to the plane of the 

loop) and is determined by the right-hand rule (Figure 8.4.3). The SI unit for the magnetic 
dipole moment is ampere-meter2 (A· m' ). Using the expression for ji , the torque exerted 

on a current-carrying loop can be rewritten as it M (,l~1{, \ ; ( J ((.I pO k ~~ 
IT = ji x BI (8.4.9) 

The above equation is analogous to T = P x it in Eq. (2.8.3), the torque exerted on an 

electric dipole moment p in the presence of an electric field it. Recalling that the 

potential energy for an electTic dipole is U =-p·it [see Eq. (2.8.7)], a similar form is 

expected for the magnetic case. The work done by an external agent to rotate the 
magnetic dipole from an angle f)o to f) is given by 

W'" = r" rdf)'= 1 (fIBsinf)')df)'=fIB(cosf)o-cosf)) 
.10, , (8.4.10) 

Once again, ~" = -W, where W is the work done by the magnetic field. Choosing 

Uo = 0 at f)o = 7r 12, the dipole in the presence of an external field then has a potential 

energy of 

U = -fIBcos f) = -ji. B (8.4.11) 

The configuration is at a stable equilibrium when ji is aligned parallel to Ii , making U a 

minimum with U m;" = -fiB. On the other hand, when ji and Ii are anti-parallel, 

U",., = +fIB is a maximum and the system is unstable. 

8-10 



8.4.1 Magnetic force on a dipole 

As we have shown above, the force experienced by a current-carrying rectangular loop 
(i.e., a magnetic dipole) placed in a uniform magnetic field is zero . What happens if the 
magnetic field is non-uniform? In this case, there will be a net force acting on the dipole. 

Consider the situation where a small dipo le ii is placed along the symmetric axis of a bar 

magnet, as shown in Figure 8.4.4. 

Figu re 8.4.4 A magnetic dipo le near a bar magnet. 

The dipole experiences an attractive force by the bar magnet whose magnetic fie ld is non­
uniform in space. Thus, an external force must be app lied to move the dipole to the right. 
The amount of force F" , exerted by an external agent to move the d ipo le by a distance 

& is given by 

(8.4.12) 

where we have used Eq. (8.4.1 1). For small /';x , the external force may be obtained as 

F [B(x+ .6x)-B(x)] 
eX! = - f.1 /1.x 

dB 
-p­

dx 
(8.4.13) 

which is a positive quantity since dB / dr < 0 , i.e., the magnetic field decreases with 
increasing x. This is precisely the force needed to overcome the attractive force due to the 
bar magnet. Thus, we have 

F - dB _ d (0' B- ) 
8 - /-1 - - - " . 

dx dr 
(8.4.14) 

More generally, the magnetic force experienced by a dipole ii placed in a non-uniform 

magnetic fie ld B can be written as 

FB = V(ii · B) (8.4 .15) 

her p le55 
( 

where OJ! all 
I \}.fl:; (f\. pt()b~ fM() 

5effl1) (2) 
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Experiment 4 Solutions: Forces and Torques on Magnetic Dipoles 

MEASUREMENTS 

REQUIRED 

Part 1: Dipole in Helmholtz Mode 

Question 1: 

Did the disk magnet rotat? as there a torque on the magnet?) 
-, 

Yes, it~ate to a lign with the fi e ld 

Question 2: 

Did the spring stretch or compress? (Was there a force on the magnet?) 

'-No, there is no force on the magnep it is sitting at the fi eld maximum already) 

Part 2: Reversing the Leads - d ~ 110+ C h..ql\.~ Q 

Question 3: 

What happened to the orientation of the disk magnet when you change the current direction 
in the coils in the Helmholtz configuration? Is this what you expect? Why? 

It did different things depending on how careful we were. Most of the time it flipped over to 
a lign with the newly oriented fi eld, but sometimes it would sit in the unstable equilibrium of 
pointing OPPOSITE the fi eld, until the table was bumped and it quickly flipped over. 

Part 3: Moving a Dipole Along the Axis of the Helmholtz Apparatus 

Question 4: 

Starting from the bottom, describe the direction of the force (up or down) and the orientation 
of the disk magnet, paying careful attention to locati ons where they change. 

At the bottom the string is s lightly compressed (there is an upwards fo rce). As we raise 
upwards to the center that compression decreases. Above the center the spring stretches. 
Clearly the magnet wants to be at the center of the apparatus where the field is the strongest. 
The magnet never rotates (it is always aligned with the fi eld). 

E04 Solutions- I 



Question 5: 

Where does the force appear to be the largest? The small est? How should you know thi s? 

The force is the smaUest..(.zero)_at the center. The magnet is happy be ing there so we know 
there sh'ould be no fo rce there. The force is the largest where the gradient is the largest, out 
towards the co il s. 

OPTIONAL 

Part 4: Dipole in Anti-Helmholtz 

Question 6: 

(\(J 

Did the di sk magnet rotate? (Was there a torque on the magnet?) 

Once the magnet moves it then does rotate to align with the fi e ld. [t is hard to tell if it rotates 
or moves fi rst, but we know that i tsnouldn ' t-reel any torque when exactly at the center 
because the fi e ld there is zero. 

Question 7: ~----

Did the spring stretch or compress? (Was there a fo rce on the magnet?) 

The spring did compress as the magnet leapt upwards. 

Part 5: Moving a Dipole Along the Axis of an Anti-Helmholtz Coil 

Question 8: 

Starting fro m the bottom, describe the di rection of the force (up or down) and the orientat ion 
of the di sk magnet, pay ing careful attention to locations where they change . 

At the bottom the spring appears to be slightly compressed, li ke the magnet wants to go 
upwards. It's hard to te ll here. As we pull upwards, the spring definite ly stretches 
downwards, pulling the dipole down towards the bottom co il. This who le time the dipole is 
pointing down. S li ghtly above the center line the magnet flips over and then the spring 
compresses as the magnet tries to push up towards the top coIl. I hen as we contmue to pull 
upwards the magnet remains oriented upwards, and the spring becomes uncompressed and 
then stretches, again trying to get the magnet to near the center of the coils (slightly outside 
of them). 

Question 9 : 

Where does the force appear to be the largest? The smallest? How should you know thi s? 

The force seems to be the largest at the center of the coil , when the magnet gets a BIG jump 
when the dipo le flip s over. T hi s makes sense, smce the gradient of the fi eld is largest there. 
The force should be zero where the fi eld is a maximum (minimum), and it is, reaching nearly 
zero just above the top coil and just below the bottom coil. 

E04 Solut ions-2 
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Magnetic Dipole Moment 

From the expression for the torque on a current loop, the characteristics of 
the current loop are summarized in its magnetic moment 

(' 11 hof al 
1'1 ti lr · O~ 

VeL-+O!' 

r Jhf- hU1,L 
(V/Q 

The magnetic moment can be considered to be a vector quantity with 
direction per endicular to the current loop in the right-hand-rule direction. 
The torque is given y -

\f\or/li~ I ve(flJ r 
T=J.1 X B 

As seen in the geometry of a current loop. this tnrque...tends-t ~ 
----a e . . . he...magne.tic..field B. so this represents its lowes 
~ergy configurati _ he potential energy associated with the magnetic 
moment is 

V(O) = -11 . B 

so that the difference in energy between aligned and anti-aligned is 

!-.V = 2J.18 

These relationships for a [mite current loop extend to the magnetic dipoles 
of electron orbits and to the intrinsic magnetic moment associated with 
electron spin. Also important are nuclear magnetic moments. 

HyperPhysics***** Electricity and Magnetism 

Torque on a Current Loop 
The torque on a current-carrying coil, as in a DC motor, can be related to the 
characteristics of the coil by the "magnetic moment" or "magnetic dipole 

Magnetic 

applications 

Magnetic 
field 

concepts 

ok - Jo ps ~a<l 
~~+(,~ pro~ 

Magnetic 
force 
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moment" . The torque exerted by the magnetic force (including both sides of the 
coil) is given by 

r =~w~ 
TIle coil characteristics can be grouped as 

Ji = fA (or Ji = NfA for II loops ) 

called the magnetic moment of the loop, 
and the torque written as 

r = JiB sin£) 
-~ jew/) 

The direction of the magnetic moment is 
perpendicular to the current loop in the 
right-hand-rule direction, the direction of 
the normal to the loop in the illustration. 
Considering torque as a vector quantity , 
this can be written as the vector product 

Lever arm = 

w cos (). Normal 
2 to loop 

= W sin 0 
2 

Since this torque acts perpendicular to the magnetic moment, then it can cause 
the magnetic moment to precess around the magnetic field at a characteristic 
frequency called the Larmor frequency. 

If you exerted the necessary torque to overcome the magnetic torque and rotate 
the loop from angle zero to I 80 degrees, you would do an amount of rotational 
work given by the integral 

ii II 

W = - f rd£) = - f J1l3 sin ed£) = - JiBeo £)1;: = 2JiB 
n n 

The position where the magnetic moment is opposite to the magnetic field is 
said to have a higher magnetic potential energy. 

HyperPhysics···· * Electricity and Magnetism RNave 
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;1\ helvY\ ~I t 1-

o CA t (e~. /vf 

In the fi Ith lab you measured the force and tor ue on a magnetic dipole in the field of a 
Helmholtz coil (which you could energize in either e mholtz or Anti-Helmholtz mode). The 
picture above shows the field configuration of the coils after yo u have energized them in one of 
these two ways. 

If, before the above field is turned on, you place a dipole so that it is very slightly above center -and points very slightly away from alignment with the eventual field , what force and torque will 

it feel when the coils are energized? ~+ J(J{2) tvfVl 0(1 

I. It will feel no force or torque 0 ff 
2. It will feel a force down (towards the center) but no torque 
3 . . It will feel a force up (away from the center) but no torque 

(")(')t will feel no force but a torque to align with the field 
~'It will feel a force down (towards the center) and a torque to align with the field 

l.§./ It will feel a force up (away from the center) and a torque to align with the field 
7. It will feel no force but a torque to anti-align with the fi e ld 
8. It will feel a force down (towards the center) and a torque to anti-align with the field 
9. It will feel a force up (away !Tom the center) and a torque to anti-align with the field 
10. I don ' t know (this answer is worth I point) 

BI[~ -) 15 8 Mov/rj \1'\0 
~ 

~di q~c:t lS 

S 1 (/1 

aJ~'l ~ ;(;J Id 
force up ~ 
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Question F (4 points out of 40 points): 
In the sixth lab you measured the current and calculated flux generated in a wire coil that was 
moved from w~ove a magnet with its North pole facing upwards to well below the magnet 
and then back up agliln_ We defined a counter-clockwise current as positive and defined the 
positive flux direction accordingly. For the portion of the motion ITom well below to well above 
the magnet, which two of the following diagrams most closely resembles what you should have 
measured for flux and current respectively? 

~ / , 
\ / 

I \ / 

., 

• \ / I 
"-V 

t ., 

.: +(~W --1----1--------'---

@ . ." t 
~==~ ____ -+ ____ -2~ t ., 

~ ) (flux) & B (current) 
Y.~ &D 

3. C&B 
4. C&D 
5. B&A Leis 
6. B&C 
7. D&A 

@) D&C 
9. I don ' t know (this answer is worth I point) 

d- s!; II 
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Question G (4 points out of 40 points): 

In experiment seven you set up a simple series LR circuit which consisted of the 750 function 
generator and the coil (which as you may recall has both a resi stance and an inductance). The 
750 power supply was used as a "variable battery" which would periodically turn on and off, and 
the current through the battery was plotted vs. time . In this experiment you had the opportunity 
to measure the effect of inserting and removing an iron core from the coil as well as the effect of 
adding an additional resistor either in series or in parallel with the coil. In moving between the 
two plots below, which of those four things was done? 

1.0 

<C 0.8 

c: 0.6 

i!! 0.4 :; 
() 0.2 

0.0 

1.0 

<{ 0.' 

c: 0.6 

~ 0.4 

" () 0.2 

0.0 

0.00 0.25 0.50 

Time (s) 

Before 
Change 

After 
Change 

O' r 1.00 
0p<'f 0!l tJvt 

Question H (4 points out of 40 points): '; COv ld 

I :tore was added 
2) Core was removed 

~
Resistor was added in parallel 

'4" esistor was added in series 
(don't know (I point) 

s:'a L~-__ 

J (~t-O/f"lf " 
9r Clh 

{ J\ {~le! 

In experiment eight you studied an undriven series LRC circuit and made a plot of energy stored 
in the capacitor and in the inductor vs. time, which, in addition to oscillating with time, also 
decayed with time. The total energy (the sum of these two) a lso decayed in time, but not always 
at the same rate. When did the total energy in the system decrease most rapidly? 

I. When the voltage across the capacitor was a maximum I m When the voltage across the resistor was a maximum f::- (,., ~.'f 
Y. When the voltage across the inductor was a maximum 
4. More than one of the above 
5. All of the above 
6. None of the above 
7. I don ' t know (I point) .J 
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Question I (4 points out of 40 points): 

In experiment nine you measured the angular dependence of the radiation from a spark gap 
antenna by moving your receiver either horizontally or vertically around the transmitter. 

j 
'-

Angular dependence - Horizonta l Angular dependence - Vertical 

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity over 
the range ormotion? 

/l.' ] orizontal 
L?"~ ertical 

3. Both show same range of change J 
4. I don ' t know (1 point) 
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Question J (4 points out of 40 points): 

In experiment ten you observed an " Initial" intensity pattern for light coming from two slits and 
hitting a screen. If you had used a green laser rather than a red one, would you have seen a 
pattern similar to "Final" below? 

fI 1\ I . I t 
" " 

-nIt Ia-

f\ f\ . -

L ./"\I'\/'\. ./\I V\,..,J V V ~'v'\ ./\f\r.... , 

-2 y o 2 

y-, • I ~ 
.l1Inal 

fI fI 
;,. .I'\~ ~ J\I\J\. Jl/V\w JVV\.JII\r... .Af"v... J'\f'v... J\. 

~ 
-2 Y 0 2 

I. es 8 e.{i,.~_d 
. No, the distance d between the slits must have changed in going from Initial to Final 

3. No, the width a of the slits must have changed in going from Initial to Final 
4. No, the change depicted results from a change in wavelength the other direction (as if we had 

started with green light in Initial and moved to red light in Final) 
5. I don't know (tItis answer is wortIll point) 

cle 
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Problem 2: Back of the Envelope Calculation - Numerical Estimation (15 Pts) 
I hope that the back of the envelope calculations this semester have given you the confidence to 
make numerical estimates about things that you aren ' t exactly sure about (in addition to 
improving your Google skills). To see if this is true, please estimate the following values. 
NOTE: I know that you don't necessarily know the answers to these (for example, the radius of 
the Earth might not be stored in your brain). That is the point. You shou ld be able to make good 

estimates based on what you do know. For credit, give all answers in SI units. 

Length 

Thickness of notebook paper ........ .......... ............... ... ..... ........ ________ _ 

Length of the infinite corridor: .............................................. ________ _ 

Radius of the Earth: ...... ... ..................... ................... ............ .. _______ _ 

Time for Earth to rotate once about its own axis: .. ......... .. .. .. . ________ _ 

Time for Earth to orbit the sun: ........... .... ............................... _ _____ __ _ 

Velocitv 

Speed ofa commercial airplane: ............................. ............... ________ _ 

Speed of sound in air at atmospheric pressure: ...... .......... .. ... . ________ _ 

Acceleration 

Peak acceleration of a good car: .............. ............... ............... ____ ____ _ 

Energy 

Energy stored in a cell phone battery: ....................... .. ........... ______ __ _ 

Power consumed by a light bulb ............................................ ___ _____ _ 

Power generated by a power plant: ...................................... ... ________ _ 

dQf1 ~ 
l'I1(/l k_ th(.5 

LJ(ll }p 

III1C ludecl 
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Electric Field 

Electric field at your face from the lamp on your desk .......... _ _______ _ 

Voltage 

Voltage between finger and door when getting a shock ....... ________ _ 

Magnetic Field 

Magnetic field generated by an MRI magnet ... ... .... ............... ________ _ 

And finally ... 

Number of times (it might be less that one) you'd need to run from the bottom to the top of the 
Green building to burn the calories in a candy bar 

................................................................................................ _-------
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Problem 3 Sliding Bar (25 points): A conducting bar has mass M. It slides to the right along 
two fTictionless horizontal rai ls separated by a distance W, as shown in the sketch. The rails are 
connected on the far right by a resistor of resistance R. The bar itself and the rails have zero 
resistance. 

~ l1vtShl/'t 5 eeL 
At time t = 0 the bar has slid (under its own i!:!g.!ia - no one is pushing it anymore) to the point 
pictured below, where everywhere to its right there is a constant magnetic field Bo directed out 
of the page. This is the ollly B field that you are to think about it this problem. At this time it 

has a ve locity v (I = 0) = voi, 1 Vf- g 0 

:e~~~ !i~~~~ts to the right in C:::-t-~-~B=----:B=-o-=t;=::':::;-~11IO( f~C~ 
(a) As time goes on what wi ll 0 0 0 0 - 0 0 

happen to the velocity of the W 0 0 0· 0 0 R ~> 

I. Increases without limit 
2. Increases to limiting value 

conducting bar? (Circ le ans) 
~ 000" 00 

_0_-_0_" _0_-... 0~' .....,.._~iiiii0..,....0~./ AreCL b~r;t1 ~;tc9 ! 
"- )( ail 1 , 3. Remains constant 

~ecreases to zero 
). Decreases to zero, then 

reverses directions 

13ar with mass M sliding to the right (J (J V\?,J rhl1k L I J ~ r"" 1- /vb.A)h) 
VY) €(S ~r>€I}~ q eJe C( (LItj . ( ( 

W - 1~ (/ld"dIQIJ l-kfl for~€tr:J ~ J" '101- (ko/~" 
(b) Briefly exp lain why thi s happens (use words,€, equa I ~. If you will need to use a L 

Maxwell equation to determine subsequent motion ot the bar then explicitly state which _'I {1{,,'/\ 
equation (by name), write the equation, and briefly explain what it means. 7 ~ h,d '1) --
£-8· d 5 ,M" LAc zL ~ ~ 8 I JJ4- oop O/(?ct 1 
3 ;: l !b f'l d f1 0., ~(/(Q Of a-,56 L-, (' ( o [2 tZ ) ~ c!.. l{ -- U '[,0/, ~ rv \ h ./ 

15' '" '7 - M-() 8' V £0 fo!'u 0f] bO I' h J~f ;~ 
, , ~ ~ ( W' 0 f' J (eiY€I>'l~1,.--:t 

F?ftdCt r U u~oi 5vppO<JJJ. f., cG k~ (-t)(((! tJ.{w!(, (5 0 P'Pfl5 t -:. - d cllatI9/1\' G -j qetP(dJe~ E cl1w\ye ,'1 {Iv;<. 
(c) Assume tliat at somJa~er time 1 the sp~ed of the Dar is v(t). What is the current, if any, in So (;(Jqlps 

the cit; ( :::- I R J _ dJl V C\. { Vr!f Ii/-

1=£ ; ~ f-
f:c -di R f< 

cH 
l' ~ 8 ~v V 

K 
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Problem 3: Sliding Bar cOl/til/lied I pa,r he~1h t ;"1 J Ir C Jff.Yt1 ~ ~ 
(d) What, if any, is the IOtal magnetic fo rce , . on the moving bar at this time? !'f~J~ d V;Gl, Lell2- ' 

J 7/ 'V J /' i' , \1 f.: V Xli - I d y {] 0 M!p",htf 
B ~ 0#~~~ 

~ ore 

Foret 

( ~thu 

\,vO )v f (f?tJ:r) \ if { ;"d r;,q~ /'h f) , 

-0J x (0 ~ ~ le tt 
kNlcl ToJ e{«;cf U{~) 

Go w v ~ Iv 'x., 8 
R 

~ fL2 i~}VO) 
~ 

(e) Is the kinetic energy of the bar changi ng? Ifso, where is that energy going to or coming 
from? Do a calculation to demonstrate that your answer to thi s question is true, I f not, 
simply write down an express ion for the kinetic energy of the bar. fld- l-

f' \ r :? flO" FO'1e (YI.YS 

!v~ ( 5rf tr fo-4R-~~ lot P~I If] oT-kr ~;lPcJ;OI1 
'bvt- f- JM 1 f'll" tril ~ r ~ rtf-, 

( ~ 

J '(!?>{(! cJJeJ b7 (e5~~r 

= _82 ~ v2
{;) -::: 1'" L } 

fJ\ -- A 
fl? ((}ql,( { (Jr; '~, 



c{o ;Aj f(q)(~(! 
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Problem 4: Solenoid (45 pts) !J 0 

p. 120f23 

Consider a very long soleno id of N turns, radius a, and length 
h (h » a) (as pictured at right). It is coaxial with the z-axis. 

~/tfo/( 
[(t) 

--:r-::.:;......,.~_....,.......::.;a:.....l...-

(a) By looking at the so lenoid in cross-section (as I do 
below) you can calculate the milgnetic field at an 
arbitrary point P, at a radius r < a. If the current through 
the solenoid is 1(1), explicitly ca lculate the magnetic field 

N 
turns h 

B(t) at point P. Make sure that you state and briefly 

explain which Maxwell ' s equation you are using, and 
that you draw and label anyth ing needed to do the 
calculation on the below image. Be completely clear 
about every step you take (for example, if anyth ing in the 

~l --.----
calculation is zero, explain why). 

!(t) 

j ~ve to rell 1/y ahJr 

I 
I 

'l 

-

S I} (9"6~_1 

~Dte ~ 
( eO)! 7 he ezl 
1 ~ leo(" 
{h~ 

(; t {d (;fvt1-

~Bl ::4 (IJ T 
8 - ljJJLt 

f 

c.lc.llc 'tN' Hit ",,/WJ I ~ 
; A /111.> W~ I w/It 

(~tLiI'1 ~ VjV 

all St e"o.;'ra , C;r o/te4~ 
''1c b, x. 

) 
81 -:: AAo r so~~ ftlC f 0" . +>1 I'J '7 

'\ () SId..L "10 w;;~ 

L ___ ~ 
i1rtl 0 

~~r h()y 
t 

~ ~o Ie l/(.. 
Vo~ 

~ ){b N +-T 
l' {rC{ci (O"i of Cc/(~1 
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Problem 4: Solenoid continued vi 

This solenoid is an inductor of inductance L (which I' m sure you can calculate so I won't ask 
you to). We put it in a series LR circuit (pictured below) consisting of a battery with EMF 8 , a 
resistor of resistance R and a switch S. At time I = 0 we close the switch in the c ircuit. 

1 
• 

R' 

(b) Sketch the time dependence of the current in the circuit, 
and write an equation fo r 1(1). Clearly identify the initial 
(1=0) and fi nal (t=oo) va lues of the current. Briefl y explain 

+ L why the current behaves the way it does . 'j gD1- (~I/'-j 
-TE 1~ if -, 
~~ r[' (5 fPvl!dr?rL 

S 

( 
-I~ I 

j- e ) 
] :01--------

(c) From part (a) you know the magnetic fi eld B(I) as a function of the current 1(1), which you 

have just ca lculated in part (b) . Now let ' s look at the e lectr ic fi eld that is induced inside the 
solenoid . It is eas iest to do that in a top view of the so lenoid, which is prov ided below. ' J. I 
Calculate the induced electric fi eld it (1) at point P. I f you need to use one of Maxwe ll ' s /11 I.(e a hj 
equations then name and briefl y expla in it before using it. Be very explic it about how you doL Of) 2- I 

) ":'d:.I~ j-Jp the calculati on, drawing and labeling anything that you need on the fi gure below. Feel free _ 

to leave your answer in terms of B (I) or 1(1) as you fi nd convenient - there is no need to () PfCJS0, , -J 

f; (lilt/IcY S~ I substitute your results from part (a) or (b). U1C1.11.~ ('14 g 
If Cbll 1 V,.,Ol1f f (vo ~5 ~ ~J 

G)k Q f /6 ro ~~ 
("/- ) )E 4 ds - ;f(1 

to Forde d rAI 5 

(l } ) d ,wwlWI j-ill5 PIP! '0/7 

l' 

~ 2rr r ~~ l-

'- d(Bol-1) 
d ·f 

d- (B) 
, fJ'(2- J B 

\-~L J;0'(] \ rr 
~ - 7.-
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Problem 4: Solenoid continued 

(d) You now have an electric field E(t) and a magnetic field B (t) at point P, meaning that there 

is a Poynting vector there. Briefly explain the meaning of the Poynting vector (for example, 
what units does it have?) and then calculate its value at point P. Feel free to leave the answer 
in terms of the field magnitudes E(t) and B(t) (you do not need to plug in your answers from 
previous parts) but do explicitly state its direction. To be clear please indicate the direction 
of the Poynting vector at point P on the diagram below. What does the direction indicate 
about this system? 

(e) To demonstrate the meaning of the Poynting vector we typically have you integrate it over 
some area and show that it is equal to something else. In the case of this solenoid, over what 
area should we integrate? Be very clear here - probably the easiest thing to do is to state an 
equation for the area. What should that integral be equal to (state this both in words and as 
an equation)? There is no need to do the actual integral or to plug in values you calculated 
above to demonstrate that this is indeed the case. 
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Problem 5: Transmission Line (75 pts) 
:,;fobltJA 

The rest of this exam is an extended question dealing with transmission lines. There are a variety 
of transmission lines used in the world. A simple example is two wires running next to each 
other with current flowing one direction in one and the opposite in the other. 

In this problem you wi ll calcu late the properties of a coaxial 
cable. It consists of a solid core or radius a and a thin outer 
"shield" conductor of radius b, both of length h. They are 
typically held apart by a dielectric, but to make your life 
simple let's just pretend there is vacuum between the 
conductors. It is shown in perspective at right. 

h 

The dimensions are such that you should assume that any fields created by the transmission 
line are confined to the region between to two conductors. 

We use transmission lines to carry power [Tom batteries or power supplies to loads (typically 
modeled as resistors): 

h 

Battery 
+------r Resistor 

~--------~----

In this problem you wil l calculate the capacitance per unit length and inductance per unit length 
of the microstrip transmission line and then study energy flow at DC. Finally, you will describe 
its behavior when driven by an AC function generator. 

NOTE: PLEASE READ THIS CAREFULLY 

In several parts of this problem you will be asked to calculate something that will require the use 
of one of ~~ sure that you state the' name onne equatlon-and-the.c ite 
i ~f11e1'Orm that you plan to use it before you do that par ,-Y<5UClo non reed-to-cleser-ibe-the 

oJ 

equation as you were askea to ao in ea lier-parts of this exam, but you do need to be explicit in ....----.. 
the calculations and draw and label anything that you need to use to do the calculation. I will not 
provide any further drawings. Please duplicate drawings from this page (simplified to remove , I 
the perspective of course) when you think they will be useful. i'1 (I 

Do not forget to give both magnitude and direction of vector quantities. ih /) 
Feel free to tear out this page so that you do not have to continua lly turn back to it. C)c ct"'{ 

t 
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Problem SA: Capacitance of the Coaxial Cable 

In this part we wi ll consider the transmission line in isolation (no battery or load resistor). 
Assume that the inner conductor has a charge +Q and the outer conductor has a charge -Q. 

(a) What is the electric fie ld between the conductors? 

\.. ) 

\N~~ 'I ~ 

~k ~ 
Jonl 

~i/r( t{C( C y I '(tJ, d Q f 

(/\ ~ ; dJ Ie 

'f ~J:7er' 

C{s L 
t: 

'7':+- f~(+i,,1 
0fji y / Dr 

o.liAA(' ~ 
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Problem SA: Capacitance of the Coaxia l Cable cOlltillued 
~ .s r frJ) r"\ shri- 9f 

(b) What is the voltage of the outer conductor relative to the inner conductor (that is, what is the 
voltage difference !J. V = Vouler - V;nncr between them)? 

~' .Ovt-fO( (~ B 
~ \/::: -j 1=? dj -Sr:u dr t 

~e{\"Qt'l 1Q, r ( 1l1lQ( ~6 2 fi r 

) , ~. 
(y 

((?M/1bor ~ 1 = Qt1 (' d~{~ ) 
~ Q 

)r(~ 
(0 ?tT' 

(c) What is the capacitance of the transmission line? 

( ~ Q ,~ fa Tn ~ (L) ~ 

V a t~(t) - P, (~ ~o ?1i1 

(d) What is the capac itance per unit length of the transm ission line? Note that h should not 
appear in this answer - what I mean by "per unit length" is that you need to mUltiply by the 
length h to get the tota l capacitance. 

11" d 'l/;clQ 

+01 11. I "' ( (1/(1" 
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Problem 5B: Inductance of the Coaxial Cable I J 
In this part we will assume that the transmission line has a constant current J traveling down the 

, , 
inner conductor (in the +k direction, to the right) and back along the outer conductor (in the -k 
direction). 

(a) What is the magnetic field between the conductors? 

L>Nth 
-I'll 

S B d) ~ Jlo Ie~c 

~~?nr~ Ao~ 

Q ~r;J~ 

~~J~ 

~r~ 
,X .~ 

/ ~ J51-__ ke€~ . d r 
e:; +~ 5 (t1ce r 

(5 JeO~(( 
c[5 (c/((fI t 

lIh -{ Johv; v.Q f~wgl -I gef Sj~ th::j 'wMI; 

k: O}(J tfJ p ! ( ef -e ('/Rr 0\~(Wk7t) 'r --j N v'hC'7 Nt-
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Problem 5B: Inductance of the Coaxial Cable contil/lled 

(b) What is the inductance of the transmiss ion line? NOTE: There are two ways to do this. If 
you don ' t recall either of them then I suggest that you at least calculate the magnetic energy 
between the conductors. 

1' 0 
IV() / II 

.. 
(c) What is the inductance per unit length orthe transmission line? 



(lot (Pt?'t~(It1J .~fv(f 
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f,;1 /Pf.ll ~O'r-t.. Problem 5C: DC Power Transmission with the Coaxial Cable 

We now connect the transmission line to a battery (EMF c) on the left and a resistor (resistance 
R) on the right, as pictured at the beginning of thi s problem. We are interested in what happens a 
long time after this connection has been made (after any transient behavior has passed). In 
answering the below questions feel free to use the results from previous sections of this problem 
(you do not need to derive them again) but express your answers only in terms of variab les given 
here and at the beginning of the problem (NOT in terms of Q or / from parts 5A and 5 B). 

(a) What is the electric field between the conductors? 

E-v .- -
J 

Q i ll It ) 
d f6 2 rr h 2 

(b) What is the magnetic field between the conductors? 
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Problem 5C: DC Power Transmission with the Coaxial Cable continued 

(c) What is the Poynting vector between the conductors? 

Q Q'l (~) 

d fa 2 IT cl 

(d) Integrate the Poynting vector over a relevant area and show that the result simplifies to what 
you would expect given the meaning of the Poynting vector. 

o 

v,~J .;, e 
i; I 2 .. 

5 
o 2/Jil'cr 

d ;(~ ;(ld )eJ 
(" e ~ (;;,/-o /' 
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Problem 5D: Transients and AC Transmission in the Coaxial Cable 

You calcu lated that the transmission line has an inductance per unit length and a capacitance per 
unit length. A typical way to model the behavior of the transmission line is as a collection of 
inductors and capac itors, as pictured below left, or even more simply as just a single inductor and 
capacitor, as pictured below right. 

L 

T T T 
These are " Iossless" models - we are ignoring the resistance of the transmission line itself. - == 
(a) Let' s first think about the transient behavior of this circuit. The instant after you attach a 

battery (0) on the left and a resistive load (R) on the right, what is the current through the 
load? Why? Describe what the inductive and capacitive parts of the transmission are 
behaving like at this instant. . .. 

1 15 v(),(~b~ 

cw-efd Iy 

ho ( v ((fin { (11 

C v(Tp!\~ 'S~O/'~ 
i I 

C (rll/(f 

(b) A long time after the battery 0 and load resistor R have been connected what is the current 
through R? Why? Describe what the inductive and capacitive parts of the transmiss ion line 
are behaving like at this instant. 

, 

( q p ( (ud-Dr 

; f! dvGtor-
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Problem SD: Transients and AC Transmission cOlltilllled 

Now instead of attaching a battery on the left, let's attach a function 
generator, driving a voltage V = Vo sin WI . On the right we still have a 

resistive load, but to make life simpler let's assume that it is a very large 
resistor R. 

(c) You have already discussed the very low frequenc (DC) behavior of 
the transmission line. As we turn up th~ requency fthe power 
supply, Q.UA~IT ATIVEL Y describe (no equatiOnS) what happens to 
the voltage that the load sees. Why? 

) 

vo· ( ({I2> v--j 

p. 23 of23 

. 1 ,U (ea.cr&{(\ ( e . 
/i/I.!I( r CA p{c-.1." ( dcrdnuM ~ 'J;,,,duyc) r-(Ofl\ (jI vv V 

[f1 dl-(~or JOV1 ~/'~ 1e L 
r;l/ dvcl-or eye f? r fe a. (} -lIiCe 

rr Ott 

(d) I said above that you would want to assume that the load had a very large resistance R. 
Typical ly when we say that something is very large, what we mean is that it is much larger 
than something else. At non-zero frequencies, what should R be much larger than (g ive an 
equation here)? Why? 

( 

I ~ t;zt:c/.[Y---0 ;:-----C Cf ~-;( "dJ4'. 're 
r / 
( ( M& Pr 

/0 {JO. 

/ + lA QIl+ 
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Problem 1: Ten Short Questions. Circle your choice for the correct answer 
Each problem is worth 4 points for the correct answer or I point for admitting that you don ' t 
know how to do it. Unanswered or incorrectly answered problems will earn a O. 

Question A (4 points out of 40 points): 

1. IQ(A)I-IQ(Cl I > IQ(B)I -IQ(D)I 
2. IQ(A)I > IQ(B)I-IQ(ClI > IQ(D)I 
3·IQ(A)I-IQ(B)I> IQ(ClI-IQ(D)1 
4. IQ(D)I-IQ(ClI > IQ(B)I-IQ(A)I 
5. IQ(B)I-IQ(D)1 > IQ(A)I-IQ(C)I 
6. IQ(A)I > IQ(D)I -IQ(C)I > IQ(B)I 
7. IQ(C)I > IQ(A)I -IQ(B)I > IQ(D)I 

In lab I you fixed the potential difference between 
two plates and measured equipotential lines from 
which you determined electric fie ld lines and 
approximate charge di stributions. You are given 
the two conduciing plates at left, with the top plate 
held at +5 V relative to the bottom plate. What can 
you say about the relative magnitude of the charge 
densities near the four locations indicated? 

8. I don ' t know (this answer is worth I point) 

Question B (4 points out of 40 points): 

In the second lab you worked with a Faraday pail, two nested 
conducting cylinders as pictured at left. You held the outer cylinder 
at ground (i.e. at the same potential as infinity) and measured the 
potential of the inner cylinder relative to the outer cylinder. For one 
of the measurements you started from a condition where both 
cylinders were uncharged, introduced a positive charge producer 
into the central region, briefly connected the inner at outer cylinders 
with a conductor (your finger) and, after removing the connection, 
removed the positive charge producer. The positive charge 
producer never touched either of the cylinders during this 
measurement. Which of the fo llowing statements about the surface 
charges at the end of this measurement is true? 

I. Q(Il) = 0; Q(OI) = 0; Q(l2) = 0; Q(02) = 0 
2. Q(I1) = 0; Q(O 1) < 0; Q(l2) > 0; Q(02) = 0 
3. Q(ll) = 0; Q(OI) < 0; Q(l2) > 0; Q(02) < 0 
4. Q(ll) = 0; Q(OI) > 0; Q(l2) < 0; Q(02) = 0 
5. Q(Il) = 0; Q(OI) > 0; Q(12) < 0; Q(02) > 0 
6. Q(Il) < 0; Q(OI) > 0; Q(l2) < 0; Q(02) > 0 
7. I don't know (this answer is worth I point) 
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Question C (4 points out of 40 points): 
In the third lab you constructed the 
circuit at left in order to study the effects 
of capacitors in circuits. You measured 
the current through and voltage across 
the resistor R using the ammeter and 
voltmeter as pictured at left. The battery 
would periodically switch on and off, 
allowing you to measure their " initial" 
values (right after the battery switched 
on) and their " final" values (a long time 
after the battery was switched on). After 
measuring the behavior in this circuit 
you had the opportunity to add a second 
resistor in parallel with the capacitor C. 

After adding the second resistor which of the following statements is true? 

I. Neither the initial current nor the final voltage changed 
2. The initial current was smaller but the final voltage was the same 
3. The initial current was larger but the final voltage was the same 
4. The initial current was the same but the final voltage was smaller 
5. The initial current was the same but the final voltage was larger 
6. I don't know (this answer is worth I point) 

Question D (4 points out of 40 points): 

In the fourth lab you studied the effects of magnetic fields. 
A current-carrying coil is placed in a uniform magnetic 
field pointing upward. The current flows as shown, out of 
the page in the upper left and in on the lower right. 

What are the force and torque on the coil? 
I. No force or torque 
2. No force, torque to rotate clockwise 
3. No force, torque to rotate counterclockwise 
4. Force up, no torque 
5. Force up, torque to rotate clockwise 
6. Force up, torque to rotate counterclockwise 
7. Force down, no torque 
8. Force down, torque to rotate clockwise 
9. Force down, torque to rotate counterclockwise 
10. I don't know (this answer is worth 1 point) 
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In the fifth lab you measured the force and torque on a magnetic dipole in the field of a 
Helmholtz coil (which you could energize in either Helmholtz or Anti-Helmholtz mode). The 
picture above shows the field configuration of the coils after you have energized them in one of 
these two ways. 

If, before the above field is turned on, you place a dipole so that it is very slightly above center 
and points very slightly away from alignment with the eventual field , what force and torque will 
it feel when the coils are energized? 

I. It will feel no force or torque 
2. It will feel a force down (towards the center) but no torque 
3. It will feel a force up (away from the center) but no torque 
4. It will feel no force but a torque to align with the field 
5. It will feel a force down (towards the center) and a torque to align with the field 
6. It will feel a force up (away from the center) and a torque to align with the field 
7. It will feel no force but a torque to anti-align with the field 
8. It will feel a force down (towards the center) and a torque to anti-align with the field 
9. It will feel a force up (away from the center) and a torque to anti-align with the field 
10. I don ' t know (this answer is worth I point) 
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Question F (4 points out of 40 points): 
[n the sixth lab you measured the current and calculated flux generated in a wire coil that was 
moved from well above a magnet with its North pole fac ing upwards to well below the magnet 
and then back up again. We defined a counter-clockwise current as pos itive and defined the 
positive flux direction accord ingly. For the portion of the motion from well below to well above 
the magnet, which two of the fo llowing diagrams most closely resembles what you should have 
measured for flu x and current respectively? 

o 

(A) 
\ 

I 
1 

r 
., 

., +--+----"-' 

(C) .. ., 

I. A (flu x) & 8 (current) 
2. A& D 
3. C& 8 
4. C& D 
5. 8 &A 
6. 8 &C 
7. D &A 
8. D &C 

I I 

1\;1 t 

d 
t 

9. [don' t know (thi s answer is worth I point) 
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Question G (4 points out of 40 points): 

In experiment seven you set up a simple series LR circuit which consisted of the 750 function 
generator and the coil (which as you may recall has both a resistance and an inductance). The 
750 power supp ly was used as a "variable battery" which would periodically turn on and off, and 
the current through the battery was plotted vs. time. In this experiment you had the opportunity 
to measure the effect of inserting and removing an iron core from the coil as well as the effect of 
adding an additional resistor either in series or in parallel with the coil. In moving between the 
two plots below, which of those four things was done? 

1.0 

« 0.8 

C D .• 

i!! OA 
~ 

::J 
u 0.2 

0.0 

1.0 

g 0.8 

C 0.6 

~ 0.4 
::J 
o 0.2 

0.00 0.25 0.50 

Time (s) 

Before 
Change 

After 
Change 

0.75 

Question H (4 points out of 40 points): 

I) Core was added 
2) Core was removed 
3) Resistor was added in parallel 
4) Resistor was added in series 
5) I don't know (I point) 

1.00 

In experiment eight you studied an undriven series LRC circuit and made a plot of energy stored 
in the capacitor and in the inductor vs. time, which, in addition to oscillating with time, also 
decayed with time. The total energy (the sum of these two) al so decayed in time, but not always 
at the same rate. When did the total energy in the system decrease most rapidly? 

I. When the voltage across the capacitor was a maximum 
2. When the voltage across the resistor was a maximum 
3. When the voltage across the inductor was a maximum 
4. More than one of the above 
5. All of the above 
6. None of the above 
7. I don ' t know (I point) 
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Question I (4 points out of 40 points): 

In experiment nine you measured the angular dependence of the radiation from a spark gap 
antenna by moving your receiver either horizontally or vertically around the transmitter. 

l 

'-. 

Angular dependence - Horizontal Angular dependence - Vertical 

Which kind of motion, horizontal or vertical , shows a larger change in radiation intensity over 
the range of motion? 

I. Horizonta l 
2. Vertical 
3. Both show same range of change 
4. I don ' t know (I point) 
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Question J (4 points out of 40 points): 

In experiment ten you observed an " Ini tial" intensity pattern for light coming from two s lits and 
hitting a screen. If you had used a green laser rather than a red one, would you have seen a 
pattern simi lar to "Final" below? 

f\ f'I ..".. • .. 
" " 

In It: al 
-

f\ f\ 
L ./'\/\/"... ./\I~ ~ V 'vJ\I\A f\/\r.... 

-2 .y o 2 

-2 y o 2 

I. Yes 
2. No, the distance d between the sl its mllst have changed in going from Initial to Fina l 
3. No, the width a of the slits must have changed in going from Initial to Final 
4. No, the change depicted results from a change in wavelength the other direction (as if we had 

started with green light in Ini t ia l and moved to red light in Final) 
5. I don't know (this answer is worth 1 point) 
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Problem 2: Back of the Envelope Calculation - Numerica l Estimation (15 Pts) 
I hope that the back of the envelope ca lculations this semester have given you the confidence to 
make numerical estimates about thi ngs that you aren ' t exactly sure about (in addition to 
improving your Google skills). To see if this is true, please estimate the following values. 
NOTE: I know that you don ' t necessari ly know the answers to these (for example, the radius of 
the Earth might not be stored in your brain). That is the point. You shou ld be able to make good 

estimates based on what you do know. For credit, give all answers in SI units. 

Length 

Th ickness of notebook paper .... ...... .. .. ... ... .... .... .. .. ...... .. .......... __ .!..:I O"'O"-"bl"'m"--___ _ 

Length of the infinite corridor: ..... .. .. ... .. .. .... .. ... ... .... ............ ... __ 2fc),!C-OUlm"--___ _ 

Radius of the Earth: .. ... .. .......... ....... .. ... ... .. ............... .... .. ... .. .. . 

Time for Earth to rotate once about its own axis: ..... .... ..... .... I dav = 86.400 s 

Time for Earth to orbit the sun :. .. .... .. ... .. ..... .. .. .. .. .. ........ ... ..... . I vear = 32 x IOQ s 

Velocitv 

Speed of a commercial airplane: ... ... ... ... .. ... .. .. .. ......... ... .. ..... .. _ fc20"'0U!m!!l2,s ____ _ 

Speed of sound in air at atmospheric pressure: ... .. .. ... .......... .. _"'34"'0"-"n"'1/-"-s ____ _ 

Acceleration 

Peak acceleration of a good car: ...... .. .... ................... .. ... ... .. .. . 5 m/s£-,-_--,--.,._ ° to 60 mph in 5 sec. Note that this ° to 60 mph is not really a good determination of peak 
acceleration because the gear change from I st to 20d slows things a little. Actually, many cars 
intentionally put the 2nd to 3rd gear shift just above 63 mph (100 km/hr) in order to make this 
reported "acceleration time" shorter, even though it compromises the overall performance of the 
car. 

Energy 

Energy stored in a ce ll phone battery: .. .. .. .. .. .. .. ... .. ................. 3 x 101"'1 ___ _ 
Lots of different kinds, but typical is 4 V for 2 A-Hr 

Power consumed by a light bulb .. ....................... .. .... .. .... ....... __ I!..!O~OL.C!:W~ ____ _ 

Power generated by a power plant: .. .. .. .. ........... .. .. .. .. ............ . __ I""""G"'W"-____ _ 
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Electric Field 

Electric fi eld at your face from the lamp on your desk .... ...... -;:::::8::0=V=/m====;==--_ --,--__ _ 

I=_I_ E B = E; '" 100 W -=::; E = 2ef.i, 100W _ 2 (3x I08 m/S) ( 1O-7 ~) 100W 
2f.i, " 2el', 4JT(1 m)' , 4JT (I m) ' - A' (1 m)' 

Voltage 

Voltage between finger and door when getting a shock .... ... ---1.Q1_V'--___ _ 

Magnetic Field 

Magnetic fie ld generated by an MRI magnet .... .. .. ...... .. ........ _~3~T ____ _ 

And fina llv .. . 

Number of times (it might be less that one) you'd need to run from the bottom to the top of the 
Green bui lding to burn the calories in a candy bar 

I 0 tl' lnes ... .. ... . .. ... . . ....... .... . . .... .. ....... . . . . ... ... .. ..... .. ....... .. .... .. .... .... ..... .... .. .. _ '-"--'''-'-'-''=---

I candy bar '" 200 Calories'" 8 x 10' J 

Green Building = 2 1 stories'" 80 m 

. 8x 10' J 
Energy to climb '" mgh · N -=::; N '" ( ) 

(100 kg) 10 ;{, (80 m) 
10 times 

Of course, you are doing more work than just mgh, you probably don' t really weigh 100 kg and 
the body only converts about half the food energy into useful energy, so this is all approximate, 
but that's the point after all. 
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Problem 3 Sliding Bar (25 points): A conducting bar has mass M. It slides to the right along 
two frictionless horizontal rails separated by a distance W, as shown in the sketch. The rails are 
connected on the far right by a resistor of resistance R. The bar itself and the rails have zero 
resistance. 

At time t = 0 the bar has slid (under its own inertia - no one is pushing it anymore) to the point 

pictured below, where everywhere to its right there is a constant magnetic field Bo directed out 

of the page. This is the ollly B fie ld that you are to think about it this problem. At this time it 

has a velocity v (I = 0) = Vo; , 

where; points to the right in 
B = Bo below picture . Rail 

(a) As time goes on what will t 0 0 0 0 0 0 0 
happen to the velocity of the 0 0 0 0 0 0 0 R~ conducting bar? (Circle ans) W 

~ 
0 0 0 0 0 0 0 

I. Increases without limit 0 0 0 0 0 0 0 
2. Increases to limiting value 
, 

Remains constant '- Rail J. 

4. Decreases to zero Bar with mass M sliding to the right 
5. Decreases to zero, then 

reverses directions 

(b) Briefly explain why this happens (use words, 110/ equations). If you will need to use a 
Maxwell equation to determine subsequent motion of the bar then explicitly state which 
equation (by name), write the equation, and briefly exp lain what it means. 

the 

As the bar slides in the magnetic fi e ld the loop that it forms the right hand leg of shrinks, so the 
magnetic flu x decreases . By Lenz ' s law, nature doesn ' t want this to happen so it exerts a 
magnetic force on the bar, slowing and eventually stopp ing it. 

We will use Faraday ' s law, Ei = - drJ.) 1I , to calculate the EMF and hence current around the loop . 
dl 

Faraday's Law says that changing magnetic fields are accompanied by ("generate") electric 
fields. 

(c) Assume that at some later time 1 the speed of the bar is v(t) . What is the current, ifany, in 
the circuit? 

1 _- _Ei __ _ I d¢ /I = _1 _d (B \I'X) = Bo WV(I) -'-- -'--'- counter-clockwise 
R R dl R dl 0 R 
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Problem 3: Sliding Bar continued 
(d) What, if any, is the total magnetic force Fn on the moving bar at this time? 

_ _ B~W2 V(/ ) 
F = 1\" x B = to the left 

R 

(e) Is the kinetic energy of the bar changing? If so, where is that energy go ing to or coming 
from? Do a calculation to demonstrate that your answer to this question is true. Ifnot, 
simply write down an expression for the kinetic energy of the bar. 

Yes, there is a fo rce on the bar causing it to slow, and hence the kinetic energy is changing 
(decreas ing). The energy is being dissipated by the res istor: 

J' R 
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Problem 4: Solenoid (45 pts) 
Consider a very long solenoid of N turns, radius G, and length 
h (h» G) (as pictured at right). It is coaxial with the z-axis. 

(a) By looking at the solenoid in cross-section (as I do 
below) you can calculate the magnetic field at an 
arbitrary point P, at a radius r < G. If the current through 
the solenoid is /(1), explicitly ca lculate the magnetic field 

N 
turns h 

B(t)at point P. Make sure that you state and briefly 

explain which Maxwell's equation you are using, and 
that you draw and label anything needed to do the 
calculation on the below image. Be completely clear 
about every step you take (for example, if anything in the 
calculation is zero, explain why). 

--[m 

We calculate the magnetic fi e ld using Ampere's law: 

! 

I I 

1 
k 

IX 4 B· as = I'"I,", which means that currents create magnetic 

fields that circulate around them. 
• 

~- X I 
-r-~ X I 

I I 
.e I I -

We need to draw an Amperian loop, as pictured at left. 
When we do the integral, the leg outside gives zero 
contribution because the fie ld outside the solenoid is zero 
(the field from the right half cancels the field from the left 
half). The top and bottom legs a lso give zero contribution 
because there B is perpend icular to ds (B is "up" while ds is 
horizontal). So: 
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Problem 4: Solenoid continued 
This solenoid is an inductor of inductance L (which I' m sure you can calculate so I won't ask 
you to). We put it in a series LR circuit (pictured below) consisting ofa battery with EMF E, a 
resistor of resistance R and a switch S. At time t ~ 0 we close the switch in the circuit. 

1 
• 

J 

R 

(b) Sketch the time dependence of the current in the circuit, 
and write an equation for J(t). Clearly identifY the initial 
(FO) and final (c-oo) values of the current. Briefly explain 
why the current behaves the way it does. 

The current increases to a final value of E/R after starting at 
O. It behaves like that because the inductor initially fights 
the change of current then eventually gives up. 

(c) From part (a) you know the magnetic field Ii(t) as a function of the currentI(I), which you 

have just calculated in part (b). Now let ' s look at the electric field that is induced inside the 
solenoid. It is easiest to do that in a top view of the solenoid, which is provided below. 

Calculate the induced electric field E(I) at point P. If you need to use one of Maxwell ' s 

equations then name and briefly explain it before using it. Be very explicit about how you do 
the calculation, drawing and labeling anything that you need on the figure below. Feel free 

to leave your answer in terms of Ii (I) or J(t) as you find convenient - there is no need to 

substitute your results from part (a) or (b). 

From Faraday's law a changing magnetic flux will induce 
an electric field that " loops around" the flux: 

,r - d<lJ 
'jE.ds ~ E.2nr ~ ---1I ~ 

- rd 
E~ --B(t) down 

2 dl 

dt 

d(liA) 
dt 

nr2!!.-B(I) 
dt 

The loop is clockwise (down at P) by Lenz 's law: the E 
field is created so that ifit were to drive a current and 
hence create a B field it would oppose the changing B 
field. Here th e B field is increasing out of the page so out 
E field needs to be clockwise to try to make a B field in. 
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Problem 4: Solenoid con til/ lied 

(d)You now have an electric fie ld E(/) and a magnetic fie ld B(/) at point P, meaning that there 

is a Poynting vector there. Briefl y explain the mean ing of the Poynting vector (for example, 
what uni ts does it have?) and then ca lculate its value at point P. Fee l free to leave the answer 
in terms of the fi eld magnitudes E(t) and B(I) (you do not need to plug in your answers from 
prev ious parts) but do explicitly state its direction . To be clear please indicate the direction 
of the Poynting vector at point P on the diagram below. What does the direction indicate 
about this system? 

The Poynting vector te lls you the power fl ow per unit 
area (W/m2) and point in the direction that power is 
fl owing. At P E is down and B is out of the page so the 
cross product (the Poynting vector) is radia lly inward (to 
the left), meaning that energy is entering the system. 

I - -. 
S=-ExB 

1'0 

(e) To demonstrate the meaning of the Poynting vector we typ ically have you integrate it over 
some area and show that it is equal to something e lse. In the case of this so lenoid, over what 
area should we integrate? Be very clear here - probab ly the easiest thing to do is to state an 
equation fo r the area. What should that integral be equal to (state this both in words and as 
an equation)? There is no need to do the actual integral or to plug in values you calculated 
above to demonstrate that this is indeed the case . 

You would integrate it over the cylindrical surface of the so lenoid (A = 2rtah). That integral te lls 
you the rate at which energy is entering the system, so it is the time rate of change of the energy 
stored in the solenoid, that is: 
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Problem 5: Transmission Line (75 pts) 
The rest of this exam is an extended question dealing with transmission lines. There are a variety 
of transmission lines used in the world. A simple example is two wires running next to each 
other with current flowing one direction in one and the opposite in the other. 

In this problem you will calculate the properties ofa coaxial 
cable. It consists of a solid core or radius a and a thin outer 
"shield" conductor of radius b, both of length h. They are 
typically held apart by a dielectric, but to make your life 
simple let ' s just pretend there is vacuum between the 
conductors. It is shown in perspective at right. 

h 

The dimensions are such that you should assume that any fields created by the transmission 
line are confined to the region between to two conductors. 

We use transmission lines to carry power from batteries or power supplies to loads (typically 
modeled as resistors): 

Battery 
+-----....J([' Resistor 

~--------r_----
+k 

In this problem you will calculate the capacitance per unit length and inductance per unit length 
of the microstrip transmission line and then study energy flow at DC. Finally, you will describe 
its behavior when driven by an AC function generator. 

NOTE: PLEASE READ THIS CAREFULLY 

In several parts of this problem you will be asked to calculate something that will require the use 
of one of Maxwell ' s equations. Make sure that you state the name of the equation and the write 
it in the form that you plan to use it before you do that part. You do not need to describe the 
equation as you were asked to do in earlier parts of this exam, but you do need to be explicit in 
the calculations and draw and label anything that you need to use to do the calculation. I will not 
provide any further drawings. Please duplicate drawings from this page (simplified to remove 
the perspective of course) when you think they will be useful. 

Do not forget to give both magnitude and direction of vector quantities. 

Feel free to tear out this page so that you do not have to continually turn back to it. 
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Problem SA: Capacitance of the Coaxial Cable 

In this part we will consider the transmission line in isolation (no battery or load resistor). 
Assume that the inner conductor has a charge +Q and the outer conductor has a charge -Q. 

(a) What is the electric field between the conductors? 

We have a charge +Q on the inner conductor so an electric field 
will be created pointing outwards. We will Gauss's Law to 

calculate the electric field between the plates: cff E· dA = Q", 
Pillbox Go 

We use a Gaussian cylinder with radius r and length L (L < h). 
The only surface of the cylinder we care about is the rounded 
surface (nothing penetrates the endcaps). 

,-H - - 0 QL - 0 
'H E·dA = E27r1L=~=--=> E = - r 

Pillbox Eo Go h 27rfiorh 

(b) What is the voltage of the outer conductor relative to the inner conductor (that is, what is the 
voltage difference!'!.V = Voutc,- V;,,,,,, between them)? 

0"'" _ h Q 0 b 0 (b) 
!'!.v=v -v = - fE .dS =-f dr=----In(r) =-- - -In-

outer mner. 21r& rh 27[£ h 27[£ h a 
mner r =ao 0 a 0 

Note the sign! It is negative because the outer conductor is at a lower potential. 

(c) What is the capacitance of the transmission line? 

c = Q = 21(£:)1 
!'!.V In (b/a) 

(d) What is the capacitance per unit length of the transmission line? Note that h should not 
appear in this answer - what I mean by "per unit length" is that you need to mUltiply by the 
length h to get the total capacitance. 

c = -,-::2.,-1(,,:-1i!!-,, ""C 

In (b/a) 
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Problem SB: Inductance of the Coaxial Cable 

In thi s part we will assume that the transmission line has a constant current I traveling down the 

inner conductor (in the +k direction, to the right) and back along the outer conductor (in the -k 
direction). 

(a) What is the magnetic field between the conductors? 

(~) 
We have a current! flowing down the center and back on the 
outer conductor. The field is zero outside by cancellation. We 
use Ampere ' s Law with the Amperian loop pictured at left: 

q B· as = B· 2ITI" = ,uJ", = ,u, I => B = - 2,uJ ;p (clockwise) 
~ __ -=~IT~r __________ ~ 

(b) What is the inductance orthe transmission line? NOTE: 
There are two ways to do this. lr you don ' t recall either of 
them then I suggest that you at least calculate the magnetic 
energy between the conductors. 

We will use energy to calculate the inductance: 

(c) What is the inductance per unit length orthe transmission line? 

_L _ .&..In (~) 
length 2IT a 
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Problem SC: DC Power Transmission with the Coaxial Cable 

We now connect the transmission line to a battery (EMF £) on the left and a res istor (resistance 
R) on the right, as pictured at the beginning of this problem. We are interested in what happens a 
long time after thi s connection has been made (after any transient behavior has passed). In 
answering the below questions feel free to use the results from previous sections of this problem 
(you do not need to derive them again) but express your answers only in terms of variables given 
here and at the beginning of the problem (NOT in terms of Q or J ITom parts 5A and 58). 

(a) What is the electric field between the conductors? 

From before, 

E= Q r and ~V=£=~ln (~) =>E= 27l"£,MV r= £ r 
27l"£arh 27l"£,h a 27l"£,rh In (bl a) r In (bl a) 

(b) What is the magnetic field between the plates? 

(c) What is the Poynting vector between the plates? 

S - - E x B - - r x ---- rp = k - _ I - - _ I ( £ ' ) ( 1'0 £ ') £ ' , 

1'0 1'0 r In (bl a) 2m" R 2m"' R In (bl a) 

(d) Integrate the Poynting vector over a re levant area and show that the result simplifies to what 
you would expect given the meaning of the Poynting vector. 

The relevant area is the cross-sectional area of the transmiss ion line" There is no angular 
dependence so we just integrate in rings: 

b 2 2 b 

fJ- - f £ £ f dr S ·dA = . 2m"dr- -
,. ,, 27l"r' Rln(bla ) - R ,." rln(bla ) 

, 
~ = Power diss ipated by the resistor 
R 
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Problem SD: Transients and AC Transmission in the Coaxial Cable 

You calculated that the transmission line has an inductance per unit length and a capac itance per 
unit length. A typical way to model the behavior of the transmission line is as a collection of 
inductors and capacitors, as pictured below left, or even more simply as just a s ing le inductor and 
capacitor, as pi ctured below right. 

L 

T T T 
These are " loss less" models - we are ignoring the resistance of the transmiss ion line itse lf. 

(a) Let' s first think about the transient behav ior of this c ircuit. The instant afte r you attach a 
battery (e) on the left and a resistive load (R) on the ri ght, what is the current through the 
load? Why? Describe what the inductive and capacitive parts of the transmiss ion are 
behaving like at this instant. 

The instant the switch is closed no current will fl ow because the inductor acts like an open circuit 
preventing the fl ow of current (and the capac itor looks li ke a short c ircuit si nce it is uncharged). 

(b) A long time after the battery e and load resistor R have been connected what is the current 
through R? Why? Describe what the inductive and capacitive parts of the transmission are 
behaving like at thi s instant. 

A long time after the switch is closed the current w ill be EfR because the inductor acts li ke a 
short circui t (constant current so the inductor does nothing) and the capacitor looks like an open 
circuit (because it is " fully charged"). 
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Problem 50: Transients and AC Transmission cOlltilllled 
Now instead of attaching a battery on the left, let ' s attach a function 
generator, driving a voltage V = Vo sin mi . On the right we still have a 

res istive load, but to make life simpler let' s assume that it is a very large 
resistor R. 

(c) You have already di scussed the very low frequency (DC) behav ior of 
the transmission line. As we turn up the frequency of the power 
supply, Q UALITATIVELY describe (no equations) what happens to 
the voltage that the load sees. Why? 

p. 20 of20 

As we turn up the frequency the inductor progressively get a larger reactance and the capacitor 
gets a sma ller reactance, meaning that the vo ltage across the load will shrink. 

(d) I said above that you would want to assume that the load had a very large res istance R. 
Typically when we say that something is very large, what we mean is that it is much larger 
than something e lse . At non-zero frequencies, what should R be much larger than (give an 
equation here)? Why? 

I f you want to be able to ignore its res istance when th inking about current in the c ircui t then you 
want it to have a large resistance compared to the reactance of the capacitor that it is in paralle l 
with: 

1 
R » ­me 



Sources of Magnetic Fields 

9.1 Biot-Savart Law 

Currents which arise due to the motion of charges are the source of magnetic fields. 
When charges move in a conducting wire ana produce a-cuffent-/;-tlre agne IC field at 
any point P due to the current can be calculated by adding up the magnetic field 

contributions, dB, from small segments of the wire ds , (Figure 9. 1.1). 

dB @ .. 
p 

1 -

Figure 9.1.1 Magnetic field dB at point P due to a current-carrying element 1 d s. 

These segments can be thought of as a vector quantity having a magnitude of the length 
of the segment and pointing in the direction of the current flow . The infinitesimal current 
source can then be written as 1 d s . 

Let r denote as the distance form the current source to the field point P, and r the 
corresponding unit vector. The Biot-Savart law gives an expression for the magnetic field 

contribution, dB , from the current source, Ids , 

dB = flo Ids x r 
47T ,. ' 

(9 .1.1 ) 

where fl o is a constant called the permeability of free space: 

(9 .1.2) 

Notice that the expression is remarkably similar to the Coulomb's law for the electric 

III rJ . { J ( 
field due to a charge element dq: l m 

vV'1I2..-
dE = _I_dq r I I. (' L (9.13) 

4m,0 ,.' C,;I [J11\ U 

Adding up these contributions to find the magnetic field at the point P requires 
integrating over the current source, 

9-3 



B = J dB = f.ioI J d'S;' 
wire 4n wire r 

(9 .1.4) 

The integral is a vector integral, which means that the expression for B is really three 

integrals, one for each component of B . The vector nature of this integral appears in the 
cross product Ids x,. Understanding how to evaluate thi s cross product and then 

perform the integra l will be the key to learning how to use the Biot-Savart law. 

Interactive Simulation 9.1: Magnetic Field of a Current Element 

Figure 9. 1.2 is an interactive ShockWave display that shows the magnetic field of a 
current element from Eq. (9.1.1). This interactive diw lay allows you to move the position 
of the observer about the source current element to see how moving that position changes 
the value of the magnetic field at the position of the observer. 

Figure 9.1.2 Magnetic field of a current e lement. 

Example 9.1: Magnetic Field due to a Finite Straight Wire 

A thin , straight w ire carrying a current J is placed along the x-axis, as shown in Figure 
9.1.3. Evaluate the magnetic fie ld at point P. Note that we have assumed that the leads to 
the ends of the wire make cance ling contributions to the net magnetic field at the point P. 

~J'~ v(J 

oj l 1It pO!lIf) 

Figure 9.1.3 A thin strai ght wire carrying a current I. 
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Solution: 

This is a typical example invo lving the use of the Biot-Savar! law. We solve the problem 
using the methodology summarized in Section 9.1 0. 

(I) Source point (coordinates denoted with a prime) 

Consider a differential element ds = +dx'l carrying current 1 in the x-direction. The 

location of this source is represented by 1" = x' I. 

(2) Field point (coordinates denoted with a subscript "P" ) 

Since the field point P is located at (x, y ) = (0, a) , the position vector describing P is 

1'" = aj . 

(3) Relative position vector 

The vector I' = rp -I" is a " relative" position vector which points from the source point 

to the fie ld point. In this case, I' = a j - x' I, and the magnitude r =I 1' 1= ,j a' + x" is the 

distance from between the source and P. The corresponding unit vector is given by 

Vidf'r p~',,, J 
" raj-xl i 
r -- - -,=~== sine j-cosei 

- r - ,j a' +x " Y' f V"1 /p"'V ~}-

(4) The cross product knlx r 
LL ~lffQ~11j(JI (Vffel1.{ e/f!AI/J 

The cross product is given by 

ds x r = (+ill:'l) x (- cose I + sin e j) = (ill: 'sin e) k 

(5) Write down the contribution to the magnetic field du · to Ids 

The expression is 

dB Pol s x r 
4" r -

Pof dx' sin e k 
47T r 2 

which shows that the magnetic field at P wi ll point in the +k direction, or out of the page. 

(6) Simpli fy and carry out the integration 
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The variables e, x ' and r are not independent of each other. In order to complete the 
integration, let us rewrite the variables x ' and r in terms of e. From Figure 9.1.3 , we have 

{

r = a/sin(Jr-e) = acsce 

x' = acot(Jr-e) = -acote :::> dx' = acsc' ede 

Upon substituting the above expressions, the differential contribution to the magnetic 
field is obtained as 

dB=,uo!(acsc' ede)sine k = ,uo! sinedek 
4Jr (a csc e)' 4Jra 

Integrating over all angles subtended from e, to Jr - e, (note our definition of e, ), we 

obtain 

- JI ! £"-0, ',u J 1 ' B = _0_ sin ede k = __ 0_[ cos(Jr -e, )-cose, k 
4Jra , 4Jra 

,u! ' 
= _ O-(cose, + cose,)k 

4Jra 

(9.1.5) 

The first term involving e, accounts for the contribution from the portion along the +x 

axis, while the second term involving e, contains the contribution from the portion along 

the -x axis. The two terms add! 

Let's examine the following cases: 

(i) In the symmetric case where e, = e" the field point P is located along the 

perpendicular bisector. I f the length of the rod is 2L , then cos e, = L /,j L' + a' and the 

magnetic field is 

(9.1.6) 

(ii) The infinite length limit L ~ 00 

This limit is obtained by choosing (e"e,) = (0, 0). The magnetic field at a distance a 
away becomes 

[B = ,uOJ [ 
2Jra 

(9.1.7) 
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Note that in this limit, the system possesses cy~al symmetry, and the magnetic field 
lines are c ircular, as shown in Figure 9.1.4. 
~ 

-J::-
(~~- ---

---~ ---

Figure 9.1.4 Magnetic field lines due to an infinite wire carry ing current I . 

In fact, the direction of the magnetic field due to a long straight w ire can be determined 
by the right-hand rule (Figure 9.1.5). 

CurrcnI nowing 
OUI of lhc page 

Figure 9.1.5 Direction of the magnetic field due to an infinite straight wire 

If you direct your right thumb a long the direction of the current in the wire, then the 
fingers of your right hand curl in the direction of the magnetic field. In cylindrical 
coordinates (r , cp, z) where the unit vectors are related by r x <p = i , if the current fl ows in 

the +z-direction, then, using the Biot-Savart law, the magnetic fi eld must point in the rp ­

direction. 

Example 9.2: Magnetic Field due to a Circular Current Loop 

A circular loop of radius R in the xy plane carries a steady current I, as shown in Figure 
9.1.6. 

(a) What is the magnetic fi e ld at a point P on the axis of the loop, at a di stance z from the 
center? 

(b) If we place a magnetic dipole ji = ,u,k at P, find the magnetic force experienced by 

the dipole. Is the force attractive or repul sive? What happens if the direction of the dipole 

is reversed, i.e., ji = -,u,k 
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~(1 of (A so (lO~a 

lett Hll~I-J 
MIl' • ~dds So vp 1' 1 

-10 0 J 

! ' 
rQ 

x 

Figure 9.1.6 Magnetic fi eld due to a circular loop carrying a steady current. 

Solution: 

(a) This is another example that involves the application of the Biot-Savar! law. Aga in 
let 's find the magnetic field by applying the same methodology used in Example 9.1. 

(I) Source point 

In Cartesian coordinates, the differential current element located at 

c' = R(cos¢ ' i + sin ¢ ' j) can be written as IdS = l(ar'/ d¢')d¢' = IRd¢ '(- sin ¢' i + cos¢ 'j) . 

(2) Field point 

Since the field point P is on the axis of the loop at a di stance z from the center, its 

position vector is given by 1'1' = zk . 

(3) Relative position vector I' = 1',. - 1" 

The relative position vector is given by 

I' = 1'1' - c' = -Rcos¢' l - Rsin¢~j + zk (9.1.8) 

and its magnitude 

r =11'1 = J(-RCOS¢ ') ' + (-Rsin¢') ' +z' = .JR' + z' (9.1.9) 

is the di stance between the differential current element and P. Thus, the corresponding 
unit vector from ld 5 to P can be written as 

... r fp - r' 
r = -

r i l'l' -1" 1 
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(4) Simplifying the cross product 

The cross product ds x(f l' -f') can be simplified as 

ds X (fl' - f') = R d¢ '(-sin ¢'i + cos¢ 'J) x [-Rcos ¢'i - R sin ¢ 'j + z k] 

= R d¢'[zcos¢ 'i + zsin ¢'j + Rk] 

(5) Writing down dB 

(9. I. I 0) 

Using the Biot-Savart law, the contribution of the current element to the magnetic field at 
Pis 

Jio1 dsx(fl' -f') 

4ff I f l' -f' 13 

= JioJR zcos¢'i + zsin¢'j + Rk d¢' 
4ff (R' + z' )3I' 

(6) Carrying out the integration 

Using the result obtained above, the magnetic field at P is 

, " 
B = JiolR r'" zcos¢'i + zsin ¢'j + Rk d¢' 

4ff .l, (R' + Z')312 

The x and the y components of B can be readily shown to be zero: 

B = r o cos r d r = 0 sin I = 0 " 1Rz I" Ji 1Rz 12ff 
., 4ff(R' + z' )3I' ¢ ¢ 4ff(R' + Z')312 ¢ 0 

B Jio1Rz r'< . ¢'d¢ ' 
)' = 4ff(R' + Z') 312 .l, Sin = 

'-0 cos' = 0 " 1Rz 12ff 
4ff(R' + Z')3 12 ¢ 0 

On the other hand, the z component is 

Jio JR' 1'r. d' 1'0 2ff JR' B - -
, - 4ff (R' + Z') 312 ¢ - 4ff (R' + Z') 312 2(R' + Z' ) 312 

(9.I.I I) 

(9.1.12) 

(9.1.13) 

(9.1.14) 

(9.1.15) 

Thus, we see that along the symmetric axis, B, is the only non-vanishing component of 

the magnetic field. The conclusion can also be reached by using the symmetry arguments. 

1: JNb+ fh ~ IN /11 bt Q II fe;J' 
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The behavior of B, / Bo where Bo = Jiol / 2R is the magnetic field strength at z = 0 , as a 

function of z / R is shown in Figure 9. 1.7: 

zlR 

Figure 9.1. 7 The ratio of the magnetic field , BJ Bo, as a fu nction of z / R 

(b) If we place a magnetic dipole Ii = Ji. k at the point P, as discussed in Chapter 8, due 

to the non-uniformity of the magnetic field , the dipole wi ll experience a force given by 

\~e v °19.1.16) P (,\I, 'r - {o/tft.r jf'f!G'f ({J 

Upon differentiating Eq. (9.1. 15) and substituting into Eq. (9. 1.1 6), we obtain 89 hd.~ ; 

3Ji,JloIR' z k 
2( R' + z' )''' 

d l7 1 
(9.1.17) .7 v , 

Thus, the dipole is attracted toward the current-carrying ri ng. On the other hand, if the 

direction of the dipole is reversed, Ii = -Jl.k , the resulting force wi ll be repulsive. 

9.1.1 Magnetic Field ofa Moving Point Charge 

Suppose we have an infinitesimal current element in the form of a cylinder of cross­
sectiona l area A and length ds consisting of n charge carriers per unit volume, all moving 
at a common velocity v along the axis of the cylinder. Let 1 be the current in the e lement, 
which we define as the amount of charge passing through any cross-section of the 
cylinder per unit t ime. From Chapter 6, we see that the current 1 can be written as 

(9.1.1 8) 

The total number of charge carriers in the current element is simply dN = n A ds, so that 

using Eq. (9. 1.1 ), the magnetic field dB due to the dN charge carriers is given by 
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dB= flo (nAql vDds x r 
41f r 2 

flo (nA ds)qvxr flo (dN)qvxr 
= 

4n r' 4n r' 
(9.1.19) 

where r is the distance between the charge and the field point P at which the field is being 
measured, the unit vector r = r / r points from the source of the field (the charge) 10 P. 
The differential length vectords is defined to be parallel to v. In case ofa single charge, 

dN = I , the above equation becomes 

(9.1.20) 

Note, however, that since a point charge does not constitute a steady current, the above 
equation strictly speaking only holds in the non-relativistic limit where v« c, the speed 
of light, so that the effect of " retardation" can be ignored. 

The result may be readily extended to a collection of N point charges, each moving with a 
different velocity. Let the ith charge q, be located at (x" y" z,) and moving with velocity 

v,. Using the superposition principle, the magnetic field at P can be obtained as: 

B- =~!2 - [ (x-x,)i +(y-y,)]+(z-z,)k ] 
~ q,v; X 3/ 2 

'.14n [(x-x,)' +(y- y,)' +(z-z,)'] 
(9.1.21) 

Animation 9.1: Magnetic Field of a Moving Charge 

Figure 9.1.8 shows one frame of the animations of the magnetic field of a moving 
positive and negative point charge, assuming the speed of the charge is small compared 
to the speed of light. 

, , I . " 

I 1 

I 

Figure 9.1. The magnetic field of (a) a moving posItIve charge, and (b) a moving 
negative cha ge, when the s~eed of the charge is small compared to the speed of light. 

L I H' 
~tt"u 0e IAj (I 

( 

~(L~r ('!Jf/ 
-\hlll/'O r (/( ·(I.f.c, • If) f 
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Animation 9.2: Magnetic Field of Several Charges Moving in a Circle 

Suppose we want to calculate the magnetic fields of a number of charges moving on the 
circumference of a circle with equal spacing between the charges. To calculate this field 
we have to add up vectorially the magnetic,fields of each of charges using Eq. (9.1.19) . 

Figure 9.1.9 The magnetic field of four charges moving in a circle . We show the 
magnetic fi eld vector directions in only one plane. The bullet-like icons indicate the 
direction of the magnetic field at that point in the array spanning the plane. 

Figure 9.1.9 shows one frame of the an imation when the number of moving charges is 
four. Other animations show the same situation for N = I, 2, and 8. When we get to eight 
charges, a characteristic pattern emerges--the magnetic dipole pattern. Far from the ring, 
the shape of the field lines is the same as the shape of the field lines for an electric dipole. 

Interactive Simulation 9.2: Magnetic Field of a Ring of Moving Charges 

Figure 9.1.1 0 shows a ShockWave display of the vectoral addition process for the case 
where we have 30 charges moving on a circle. The display in Figure 9.1.10 shows an 
observation point fixed on the axis of the ring. As the addition proceeds, we also show 
the resultant up to that point (large arrow in the display). 

I 

C:l~'-
+. 

Figure 9.1.10 A ShockWave simulation of the use of the principle of superposition to 
find the magnetic field due to 30 moving charges moving in a circle at an observation 
point on the axis of the circle. 
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Figure 9.1.11 The magnetic field due to 30 charges moving in a circle at a given 
observation point. The position of the observation point can be varied to see how the 
magnetic field of the individual charges adds up to give the total field. 

In Figure 9.1.11 , we show an interactive ShockWave display that is similar to that in 
Figure 9.1.10, but now we can interact with the display to move the position of the 
observer about in space. To get a feel for the total magnetic field , we also show a " iron 
filings" representation of the magnetic field due to these charges. We can move the 
observation point about in space to see how the total field at various points arises from 
the individual contributions of the magnetic field of to each moving charge. 

9.2 Force Between Two Parallel Wires 

We have already seen that a current-carrying wire produces a magnetic field. In addition, 
when placed in a magnetic field , a wire carrying a current will experience a net force. 
Thus, we expect two current-carrying wires to exert force on each other. 

Consider two parallel wires separated by a distance a and carrying currents I, and h in 
the +x-direction, as shown in Figure 9.2.1. 

I ii, 

?:j- /~ 
~ . : ~..: 

\ ••••• • ••• ,..:~ I , 

Figure 9.2.1 Force between two parallel wires 

The magnetic force, F" , exerted on wire I by wire 2 may be computed as follows: Using 

the result from the previous example, the magnetic field lines due to 12 going in the +x­

direction are circles concentric with wire 2, with the field ii, pointing in the tangential 
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direction. Thus, at an arbitrary point P on wire I, we have B, = -(Pol , I 27ra)], which 

points in the direction perpendicular to wire I, as depicted in Figure 9.2. I. Therefore, 

(9.2. J) 

Clearly F
1
, points toward wire 2. The conclusion we can draw fTom this simple 

calculation is that two parallel wires carrying currents in the same direction will attract 
each other. On the other hand , if the currents flow in opposite directions, the resultant 
force will be repulsive. 

Animation 9.3: Forces Between Current-Carrying Parallel Wires 

Figures 9.2.2 shows parallel wires carrying current in the same and in opposite directions. 
In the first case, the magnetic field configuration is such as to produce an attraction 
between the wires. In the second case the magnetic field configuration is such as to 
produce a repulsion between the wires. 

(a) (b) 

1'1 
e:- -7 
( .p pP I 

Figure 9.2.2 (a) The attraction between two wires carrying current in the same direction. 
The direction of current flow is represented by the motion of the orange spheres in the 
visualization. (b) The repulsion of two wires carrying current in opposite directions. 

9.3 Ampere's Law 

We have seen that moving charges or currents are the source of magnetism. This can be 
readily demonstrated by placing compass needles near a wire. As shown in Figure 9.3.la, 
all compass needles point in the same direction in the absence of current. However, when 
f "" 0 , the needles will be deflected along the tangential direction of the circular path 
(Figure 9.3.1 b). 
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I J 
if 

Figure 9.3.1 Deflection of compass needles near a current-carrying wire 

Let us now divide a ci rcular path of radius r into a large number of small length vectors 
t. s = t.s<J> , that point along the tangential direction with magnitude t.s (Figure 9.3.2). 

Figure 9.3.2 Amperian loop 

In the limit t.s ~ 0 , we obtain 

(9.3. 1 ) 

The result above is obta ined by choosing a closed path, or an "Amperian loop" that 
follows one particular magnetic field line. Let's cons ider a slightly more compl icated 
Amperian loop, as that shown in Figure 9.3.3 

c 
, , , , , , , , , , , , , 
', ...... 

b ",-.-,..-- ./ i Ob lid (0.-1' I 

Figure 9.3.3 An Amperian loop invo lving two field lines 
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The line integral of the magnetic field around the contour abeda is 

c} B·ds= fBds + fBds + fB.ds + fB ds 
ubcda (lh be cd cd (9.3.2) 

where the length of arc be is r,B, and ,,(271" - B) for arc da. The first and the third 

integrals vanish since the magnetic fie ld is perpendicular to the paths of integration. With 

B, = 1101 12mj and B, = 1101 I 271"r" the above expression becomes 

,.( - _ III III III II I 'i B· d s = - O-(r,B) + _ O_[lj (271"-B)] = _ o_ B + - 0-(271" - B) = 1101 
abel/a 2;rr2 2711j 2n 2;r 

(9.3.3) 

We see that the same result is obtained whether the closed path involves one or two 
magnetic fi eld lines. 

As shown in Example 9.1 , in cylindrical coordinates (r , rp, z) with current flowing in the 

+z-axis, the magnetic fi eld is given by B = (Pol 12m·).p . An arbitrary length element in 

the cy lindrical coord inates can be written as 

ds = dl' Ie +rdrp .p + dzz (9.3.4) 

which implies 

ii · d s = ,.( ( 110
1 )1' drp = Pol ,.( drp = 110

1 
(271") = 1101 

'i 271"1' 271" 'i ?71" 
closed path closed path closed path -

(9 .3.5) 

In other words, the line integral of c}ii.ds around any closed Amperian loop is 

proportional to I,,,, the current enc ircled by the loop. 

bvi /If' C ;( {If 

rrWUJh 13 
be 

Figure 9.3.4 An Amperian loop of arbitrary shape. 
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The generalization to any closed loop of arbitrary shape (see for example, Figure 9.3.4) 
that involves many magnetic field lines is known as Ampere 's law: 

(9.3.6) 

Ampere's law in magnetism is analogous to Gauss 's law in electrostatics. In order to 
apply them, the system must possess certain symmetry. In the case of an infinite wire, the 
system possesses cylindrica l symmetry and Ampere 's law can be readily applied. 
However, when the length of the wire is fin ite, Biot-Savart law must be used instead. 

Biot-Savart Law B = f.10
1 Ids:" genera l current source 

41T r - ex: finite wire 

Ampere's law 1B.ds =;il current source has certain symmetry 
o enc ex: infinite wire (cylindrical) 

Ampere's law is applicable to the following current configurations: 

I. Infinitely long straight wires carrying a steady current I (Example 9.3) 

2. Infinitely large sheet of thickness b with a cu rrent density J (Example 9.4). 

3. Infinite so lenoid (Section 9.4). 

4. Toroid (Example 9.5). 

We shall exam ine all four configurations in detail. 

Example 9.3: Field Inside and O utside a Current-Carrying Wi re 

Consider a long straight wire of rad ius R carrying a current I of uniform current density, 
as shown in Figure 9.3.5 . Find the magnetic field everywhere. 

Amperian loops 

\: ."--" . '. • • , . , , 
• • • 
• 
~ 
• • 

• • • I 
:---
• • 

~~, ,,~ 
.......... -...... ~ 

Figure 9.3.5 Amperian loops for calculating the B field ofa conducting wire of radius R. 
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Solution: 

(i) Outside the wire where r ? R , the Amperian loop (circle I) completely encircles the 

current, i.e., I", = 1 . Applying Ampere's law yields 

which implies 

B = flol 
2m' 

(ii) Inside the wire where r < R , the amount of current encircled by the Amperian loop 
(circle 2) is proportional to the area enclosed, i.e., 

Thus, we have 

B = flolr 
27iR' 

We see that the magnetic field is zero at the center of the wire and increases linearly with 
r until r=R. Outside the wire, the field falls off as 1/r. The qualitative behavior of the 
field is depicted in Figure 9.3.6 below: 

B 

---4L---~-------------- r 
R 

Figure 9.3.6 Magnetic field ofa conducting wire of radius R carrying a steady current J. 

Example 9.4: Magnetic Field Due to an Infinite Current Sheet 

Consider an infinitely large sheet of thickness b lying in the xy plane with a uniform 

current density J = J oi . Find the magnetic field everywhere. 
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Figure 9.3.7 An infinite sheet with current density j = Joi. 

Solution: 

We may think of the current sheet as a set of paralle l wires carrying currents in the +x­
direction . From Figure 9.3.8, we see that magnetic fi eld at a point P above the plane 
points in the -y-direction. The z-component vanishes after adding up the contributions 
from all wires. Simi larly, we may show that the magnetic field at a point below the plane 
points in the +y-direction . 

I' , 

Figure 9.3.8 Magnetic field of a current sheet 

We may now apply Ampere' s law to find the magnetic field due to the current sheet. The 
Amperian loops are shown in Figure 9.3.9. 

-• il - C, 

.. .. 
b "1i";:'711":;;:"':;;"'±~ .. "+-· !' 

" .. 

Figure 9.3.9 Amperian loops for the current sheets 

For the field outside, we integrate along path C, . The amount of current enclosed by C, 

is 
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(9.3.7) 

Applying Ampere's law leads to 

(9.3.8) 

or B = f.1oJ ob / 2. Note that the magnetic field outside the sheet is constant, independent 

of the distance from the sheet. Next we find the magnetic field inside the sheet. The 

amount of current enclosed by path C, is 

(9.3.9) 

Applying Ampere ' s law, we obtain 

(9.3.\0) 

or B = f.10./0 1 z I. At z = 0, the magnetic field vanishes, as required by symmetry. The 

results can be summarized using the unit-vector notation as 

_f.1o~obj, z>b/2 

B = -f.1oJ oz j, -b / 2 <z< b / 2 

f.1oJob , z < -b /2 
~J, 

(9.3.11) 

Let's now consider the limit where the sheet is infinitesimally thin, with b -+ o. In this 

case, instead of current density J = ./oi , we have surface current K = Ki , where K = Job. 

Note that the dimension of K is current/length. In this limit, the magnetic field becomes 

i
f/oK, 0 ---J, z > 

- 2 B= 
"K -_r_o_j, z < O 

2 

(9.3.12) 

9.4 Solenoid 

A solenoid is a long coil of wire tightly wound in the helical form. Figure 9.4.1 shows the 
magnetic field lines ofa solenoid carrying a steady current 1. We see that if the turns are 
closely spaced, the resulting magnetic field inside the solenoid becomes fairly uniform, 
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prov ided that the length of the solenoid is much greater than its diameter. For an " idea l" I 

so lenoid, which is infinitely long with turns tightly packeCI;tfie magnetic fi e ld inside the 1911tJ1O 
so lenoid is uniform and para lle l to the ax is, and vanishes outside the solenoid. 

e d(1Q Qff~b 

Figure 9.4.1 Magnetic fie ld lines of a so lenoid 

We can use Ampere's law to ca lculate the magnetic fi e ld strength inside an idea l so leno id . 

The cross-sectional view of an idea l solenoid is shown in Figure 9.4.2. To compute B, 
we consider a rectangul ar path of length I and width 1\1 and traverse the path in a 

counterclockwise manner. The line integral of B along this loop is 

qBds = fB.ds+ fB.ds+ fB.ds+ fB.ds 
I 234 (9.4 .1 ) 

= 0 + 0 + Bl + 0 

- ,- ,---------1 
I I I I 

==~=== '" 12 4 I 
I I : --:::;;!:=o , . 

I C9 12: B 
I 

.==~=== 
Figure 9.4.2 Amperian loop for ca lculating the magnetic field of an idea l so lenoid. 

In the above, the contributions along sides 2 and 4 are zero because B is perpendicular to 

ds. In addition, B = ij along side I because the magnetic fie ld is non-zero only inside 

the solenoid. On the other hand, the total current enclosed by the Amperian loop is 
1,", = NI , where N is the total number of turns. Applying Ampere ' s law yields 

(9 .4.2) 

or 
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rJ = tt o{ WI!; 

t\ -df toJr fL S 
P9( ()Il if le~O h ~ fl Nl 

B = _ 0 _ = flonl 
I 

(9.4.3) 

where n = N / I epresents the number of turns per unit length., In terms of the surface ~
I 

curren , or current per unit length K = nl , the magnetic field can also be written as, 

(9.4.4) 

What happens if the length of the so lenoid is finite? To find the magnetic field due to a 
finite soleno id, we sha ll approx imate the soleno id as consisting of a large number of 
circular loops stacking together. Using the result obtained in Example 9.2, the magnetic 
field at a point P on the z axis may be calcul ated as fo llows: Take a cross section of 
tightly packed loops located at z' with a thickness dz' , as shown in Figure 9.4.3 

The amount of current flowing through is proportional to the thickness of the cross 
section and is given by d! = l(ndz ') = leN /l)dz' , where n = N /I is the number of turns 
per unit length . 

e~~£ e?(ds 
o JOt1 t- (t)J d 

-In \""\0"" 

Figure 9.4.3 Finite Solenoid 

The contribution to the magnetic fie ld at P due to this subset of loops is 

R' , 
dB. = flo, - '"" d! = flo~-, "" (nldz') 

- 2[(z-z')- + R- ], - 2[(z - z')- + R- ],-

Integrating over the entire length of the solenoid, we obtain 

B = JlonlR2 r/ 2 dz I = ponIR2 z '- z 

, 2 L I2 [(z-z')'+ R' l' l2 2 R' )(z-z')'+ R' 
-1/ 2 

1/ 2 

pon! [ (l / 2) - z (//2) + z ] 

=2 )(z-1I2)'+ R' + )(z+1I2)'+ R' 

(9.4.5) 

(9.4.6) 
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A plot of E, / Eo, where Eo = flonl is the magnetic field of an infinite solenoid, as a 

fu nction of z / R is shown in Figure 9.4.4 for 1= IORand 1= 20R . 

IJ! O" B.JBo 
I-lvh.af I wI' (we 

" (l /\ Qi>ovf-
•• 0.6 (.1]/15 Ie' (1.1--
" 0.4 

0.1 
, 

0.2 
, , ) , '\ 

- I> _w w " 
:IR " - 10 -5 '" " 

'/11 

, 
f o: lOR i I, 

I c:= 20R 
, 

Figure 9.4.4 Magnetic field of a finite solenoid for (a) I = lOR , and (b) 1= 20R . 

Notice that the value of the magnetic field in the region I z 1< II 2 is nearly uniform and 

approximately equa l to Eo. 

Examaple 9.5: Toroid 

Consider a toroid wh ich consists of N nlflls, as shown in Figure 9.4.5. Find the magnetic 
field everywhere. 

Figure 9.4.5 A toroid with N turns 

Solutions: 

60 lr'dno{ d 
h/(o.ppe d OfOvl1cl 

One can th ink of a toroid as a solenoid wrapped around with its ends connected. Thus, the 
magnetic field is completely confined inside the toroid and the field points in the 
azimuthal direction (clockwise due to the way the current flows, as shown in Figure 
9.4.5.) 

Applying Ampere ' s law, we obtain 
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or 

c.fB. ds = c.f Bds = Bc.fds =B(2Jrr) = PaN! 

B = PaN! 
2;rr 

(9.4.7) 

(9.4.8) 

where r is the distance measured from the center of the toroid .. Unlike the magnetic field 
of a so lenoid, the magnetic field inside the toroid is non-uniform and decreases as I / r. 

9.5 Magnetic Field of a Dipole 

Let a magnetic dipo le moment vector ~ = -pk be placed at the origin (e.g. , center of the 

Earth) in the yz plane. What is the magnetic fi eld at a point (e.g. , MIT) a distance r away 

from the origin? 

e 
~ 1'---- - - --- Y 

Figure 9.S.1 Earth's magnetic field components 

In Figure 9.5. 1 we show the magnetic field at MIT due to the dipole. The y - and z­
components of the magnetic field are given by 

B Po 3p . e e )' = ---_ Sin cos , 
47r r :> 

B. = _.&.. P. (3 cos' e-1) 
. 4;r r ' 

Readers are referred to Section 9.8 for the detail of the derivation. 

(9 .5. 1 ) 

Tn spherical coordinates (r,e, ¢) , the rad ial and the polar components of the magnetic 
fie ld can be written as 

(9.5.2) 
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and 

B B e B . e Po P . e = cos - SIn = - --SIn 
o y = 472" 1' 3 

(9 .5.3) 

respectively. Thus, the magnetic field at MIT due to the dipole becomes 

- " P P " B = Bo e + B, r = _ _ 0 ,(sinee + 2cose r ) 
47l' I' 

(9.5.4) 

Notice the similarity between the above expression and the electric field due to an e lectric 
dipole Ii (see Solved Problem 2.13.6): 

- I P " E = -----,;-(sin ee + 2coser) 
4Jr&'o r~ 

The negative sign in Eq. (9 .5.4) is due to the fact that the magnetic dipole po ints in the 
-z-direction. In genera l, the magnetic field due to a dipole moment ii can be written as 

13= Po 3(ii· r)r -ii 
47l' 1" 

(9.5.5) 

The ratio of the radial and the polar components is given by 

2cote (9.5.6) 

9.5.1 Earth's Magnetic Field at MIT 

The Earth ' s field behaves as if there were a bar magnet in it. [n Figure 9 .5.2 an imag inary 
magnet is drawn inside the Earth oriented to produce a magnetic field like that of the 
Earth 's magnetic field. Note the South pole of such a magnet in the northern hemisphere 
in order to attract the North pole of a compass. 

It is most natural to represent the location of a point P on the surface of the Earth using 
the spherical coordinates (r ,e,rp) , where r is the distance from the center of the Earth, e 
is the polar angle from the z-axis, with 0 ::; e ::; 7l' , and rp is the azimuthal angle in the xy 
plane, measured from the x-axis, with 0 ::; rp ::; 27l' (See Figure 9.5.3 .) With the distance 

fi xed at r = rE , the rad ius of the Earth, the point P is parameterized by the two angles e 
and rp. 
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Figure 9.5.2 Magnetic field of the Earth 

In practice, a location on Earth is described by two numbers - latitude and longitude. 

How are they related to Band ¢? The latitude of a point, denoted as (5, is a measure of 

the elevation from the plane of the equator. Thus, it is related to 8 (commonly referred to 
as the colatitude) by (5 = 90° - 8. Using this definition, the equator has latitude 0°, and 
the north and the south poles have latitude ±90° , respectively. 

The longitude of a location is simply represented by the azimuthal angle ¢ in the 

spherica l coordinates. Lines of constant longitude are generally referred to as meridians. 
The value of longitude depends on where the counting begins. For historical reasons, the 
meridian passing through the Royal Astronomical Observatory in Greenwich, UK, is 
chosen as the " prime meridian" with zero longitude. 

z 

; 

ii 

. . 
y 

equator 

X 
south poll! 

Figure 9.5.3 Locating a point P on the surface of the Earth using spherical coordinates. 

Let the z-axis be the Earth 's rotation axis, and the x-axis passes through the prime 
meridian. The corresponding magnetic dipole moment of the Earth can be written as 

- --li E = ,£1,, (sin 80 cos¢o i +sin80 sin¢o j +cosBo k) 

- - - (9.5.7) 
= ,£1,, (-0.062 i + O.IS j-0.9Sk) 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Problem Set 11 Solutions 

Problem 1: Current Slabs 

Spring 2010 

The figure below shows two slabs of current. Both slabs of current are infinite in the x 
and z directions, and have thickness d in the y-direction. The top slab of current is 

located in the region 0 < y < d and has a constant current density J",,, = J i out of the 

page. The bottom slab of current is located in the region -d < y < 0 and has a constant 

current density J;" = -J z into the page. 

Oht \h~3 r tvC\.s vtvO/ 
y d 

0 J 500\J CJ,~ \.vaj VI ~!Q. out 
~X 

10 51{)(~ n \001' ® J in 

-d 

(a) What is the magnetic field for iy i > d? Justify your answer. 

Zero. The two parts of the slab create equal and opposite fie lds for iyi > d . 

~~~ 
b) Use Ampere ' s Law to find the magnetic field at y = O. Show the Amperian Loop 

that you use and give the magnitude and direction of the magnetic field. 

9 fit SI d e ~ Q.............. Amperian Loop 

(~f)d of C(),fifd- ~ ~ ~ -
'2 &I~Q) --0) ~ ~ 0 Jout 

y d [iO-~ h,v fi, 
X 'joJ 1ril.'11 19 

--1-- o J in 
tIe 11!.,JrQ. : ~ 

-d 

The field aty = 0 points to the right (both slabs make it point that way) . So walk counter 
clockwise around the loop shown in the above figure and Ampere 's Law gives: 



~~ ( l Y21\6~1( r 
vor; d. ~\OS 

[jB. as = Bl + 0 + 0 + 0 = 4; I ,,,, =,l1o (Jld) => 113 = ,l1oJdl (to the right )1 

c) Use Ampere's Law to find the magnetic field for 0 < y < d. Show the Amperian 
Loop that you use and give the magnitude and direction of the magnetic fie ld. 

_.............. Amperian Loop 

(a=u~! !~ J ~ : : out . . ................ 

y d 

-1- ;> x 

® Jin 

-d 

The field for 0 < y < d still points to the right. So wa lk counter clockwise around the 
loop shown in the above figure and Ampere 's Law gives: 

[jB.aS = SI + 0 + 0 + 0 = ,l1),,,, = 4; Jl(d - y) => r:IB=-=- ,l1- o-J-(-d---y-j'=-j -(t-o-th-e-r-ig-ht-')I 

Cd) Plot the x-component of the magnetic field as a function of the distance y on the 
graph below. Label your vertica l axis. 

Bx 
,l1oJd+-----------------------.. ~----~--------r_------

o~----~----------~-----~----~-----
-( d y 



Problem 2: 

An infinitely long wire o f radiu s a carries a current density J o which is uniform and 

constant. The current points "out of' the page, as shown in the figure . 

.... --c-- .... 
; .... ,- , 

" , 
/ , 

I J ; \ 

" 8/ \ 1 1 ' 
, \ r I >1 
\ , V I 
\ '~; I 

I 
/ 

, " .... ,-
..... - -)to- .... .". 

a) Calculate the magnitude of the magnetic field B(r) for (i) r < a and (ii) 

r > a. For both cases show your Amperian loop and indicate (with arrows) 

the direction o f the magnetic fi e ld. vrell r Cko"~e5 '-v'/ CJ91l1t f1, '", 
The dashed lines above are the Amperian loops I will use for (i) and (ii). They both J 
have a radius of r, and in both cases the paths are counterclockwise, as is the B field , 
due to a current out of the page (right hand rule). 

(i) r < a. 

From Ampere's Law: 

,f - . _ _ _ , ~ B _ Po .!jzrr'! p oJ or k . 
'jB as - 27rrB - P o! p',,",m" - Po.!o7rr ~ - :...:!..,-"'.....,-l -countercloc WI S 

L-___ 2~7rr~ ____ ~2 ____________ ~ 

(ii) r > a . 

Now we just contain a ll of the current: 



th'Lo I ~ -l oo ~/ J ~9 h 011 

t. P:r\-
(b) What happens to the answers above if the direction of the current is reversed so that it , 
fl ows "into" the page? - Th"J, HuJsco 

I f the direction of current flips then so does the direction of the magnetic fi eld, so it is 9J-', J tJ... a1 
clockw ise rather than counterclockwise. The magnitude of the field remains the same. 

c) Consider now the same wire but with a hole bored throughout. The hole has radius b 
(with 2b < a) and is shown in the figure. We have also indicated four special points: 0 , 
L, M, and N. The point 0 is at the center of the original wire and the point M is at the 

center of the hole. In this new wire, the current density ex ists and remains equal to J. 

over the remainder of the cross section of the wire. Calculate the magnitude of the 
magnetic fi eld at (i) the point M, (ii) at the point L, and (i ii) at the po int N. Show your 
work. 

I-lint: Try to represent the confi guration as the "superpos ition" of two types of wires. 

The point here is that we have two wires superimposed on top of each other. The large 
(radius a) wire carries current out of the page while the smaller (rad ius b) w ire carries 
current into the page (with the same current density) . At all po int L, M and N we are 
inside the large wire and on the right, so the counterclockwise B fi eld is pointing up the 
page. What is happening from the small wire changes from place to place 

(i) the point M: 

Here we are at the center of the small wire, so it contributes nothing. We are at a radius 
r = a - b inside the big wire, so rrom part (a.i) of this problem we have: 

B = !1. J. (a - b) 
up 

2 



Problem 3: Sliding Bar on Wedges 

A conducting bar o f mass 111 slides down two fri ctionless 
conducting rails which make an angle B with the 

horizontal, separated by a distance e and connected at the 
top by a resistor R, as shown in the figure. In addition, a 

uniform magnetic fi e ld B is applied verti ca lly upward. 
The bar is released from rest and slides down. At time f 

the bar is moving along the rails at speed v(t ). 

(a) Find the induced current in the bar at time f . Which 
way does the current flolV, from a to b or b to a? 

The flux between the resistor and bar is g iven by 
(D" = B l x(t)cosB 

where x(t) is the distance of the bar from the top of the rails . 

Then, 
d d 

c = --«(:I /I = -- B f x(t)cosB = - B l v(t)cosB 
df df 

Because the resistance orthe ci rcuit is R, the magn itude of the induced current is 

I J:L B ev(t)cosB 
R R 

By Lenz' s law, the induced current produces magnetic fields which tend to oppose the 
change in magnetic flux. Therefore, the current fl ows c lockwise, from b to a across the 
bar. 

(b) Find the terminal speed vT of the bar. 

At terminal velocity, the net fo rce along the rail is zero, that is gravity is balanced by the 
magnetic force: 

(
B f V (t)COSB ) 

mgsinB = lB f cosB = ' R Bf cosB 

or 

() 
_R_""",' g,,-s,--in.,..B:..,-v t = 

, (BecosB) ' 

After the terminal speed has been reached, 

(c) What is the induced current in the bar? 



(ii) at the point L: 

Here we are to the left of the small wire (at a radius r = b), so the clockwise field (as we 
said in part b) is pointing up, just like the CCW field from the big wire We are at a radius 
r = a - 2b inside the big wire, so: 

B = f.loJo (a - 2b) + f.loJ ob up = f.loJ 0 (a - b) up 
2 2 2 

of Covrcp 
(i ii) at the point N: rrr r: [1 
Here we are to the right of the small wire (at a radius r = b), so the clockwise field is ~ \' Ie c" 
pointing down, opposite the CCW field from the big wire so they subtract rather than add 
We are at a radius r = a inside the big wire, so: 5CttvlL €JO(l:/l') 

B = f.loJ oa _ f.loJ ob up = f'oJ o(a-b) up 
2 2 2 

A comment about people 's work on this problem : I was stunned at how many people 
tried to do Ampere's law on the wire with a hole in it. Since the hole breaks the 
cylindrical symmetry of the problem you just can ' t do this. That is, since B is no longer 

constant around an Amperian centered on 0 , fi3· as '" 2mB. B isn ' t constant, so you 

can't just pull it out! 



1= B eV,(t)cosO 
R 

= =-tan O 
B ecosO( RmgsinO J mgsinO mg 

R (B f cosO)' BecosO Be 

(d) What is the rate at which electrical energy is being diss ipated th ro ugh the resistor? 

The power dissipated in the resistor is 

(p = -nrC;; tan 0)' R 
hevo, Eo 'g~f 

(e) What is the rate of work done by grav ity on the bar? The rate at which work is done 

is F· v. How does this compare to your answer in (d)? Why? 

~/} . . ( RmgsinO ) ( mg )' F.V~ (mgs ln O)v, (t)=mgsIllO , = -tanO R=P 
(BRcosOt Bf 

That is, they are equal. All of the work done by grav ity is di ss ipated in the resistor, 
which is why the rod isn ' t accelerating past its terminal velocity. 



Problem 4 EMF Due to a Time-Varying Magnetic Field 

A uniform magnetic field Ii is perpendicular to a one-turn circular loop of wire of 
negligible resistance, as shown in the figure below. The field changes with time as 
shown (the z direction is out of the page). The loop is of radius r = 50 cm and is 

connected in series with a resistor of resistance R = 20 Q. The "+" direction around the 

circuit is indicated in the figure. In order to obtain credit you must show your work; 
partial answers without work will not be accepted. 

....:> 

@ 

@ 

@) @ @ 
@ 

@ 

@ 

@ 

5.0 ho(~ ,·f .) 8 
o 2 4 

R 

6 
second 

10 

{h .. i- [hI1.AQ()5 

(a) What is the expression for EMF in this circuit in terms of B, (I) for this arrangement? 

Solution: When we choose a "+" direction around the circuit shown in the figure above, 
then we are also spec ifying that magnetic flux out of the page is positive. (The unit vector 

Ii = +k points out of the page). Thus the dot product becomes 

(0.1) 

From the graph, the z-component of the magnetic fi eld B. is given by 

(2.5 T· S'])I ; 0 < I < 2 s 

5.0T ; 2s<I < 4s 
. (0.2) 

lOT - (1.25 T· S'])I ; 4 s < I < 8 s 

0;1>8s 

The derivative of the magnetic field is then 

2.5 T· s· ] ; 0 < I < 2 s 

dB. 0 ; 2 s < I < 4 s 
--' = 
dl -1.25 T· s·] ; 4 s < I < 8 s 

0;1 > 8s 

The magnet ic flux is therefore 

(0.3) 



<I> magn"" = fJB . fi dA = fJ B,dA = B,n r' .(0.4) 

The electromotive force is 

co = _~<I> = _ dB, ., (0 .<) 
G magnetic 7r 1 . j 

dl cll 

So we calculate the electromoti ve force by substituting Eq. (0.3) into Eq. (0.5) 
yielding 

c = 

- (2 .5 T ·s·')nr' ; 0 < 1 < 2s 

0 ;2s< 1 < 4 s 

(1.25 T · s·, )nr' ; 4 s < I < 8 s 

0 ; 1 > 8 s 

(0.6) 

Us ing r = 0.5 m , the e lectromotive force is then 

c= 

Solution: 

- 1.96V;0 < 1 < 2 s 

0 ;2s< 1 < 4 s 

0.98 V ; 4 s < 1< 8 s 

0 ; 1>8s 

(0.7) 

(b) Plot the EMF in the circuit as a function of time. Labe l the axes quantitatively 
(numbers and units). Watch the signs. Note that we have labe led the positi ve direction of 

the emf in the left sketch consistent with the assumption that pos itive B is out of the 
paper. 

Solution : 

CI .O 

CYJ /.0 

f 

- I .e -
S""c. 

-~ .C 



(c) Plot the current / through the resistor R. Label the axes quantitatively (numbers and 
units). Indicate with arrows on the sketch the direction of the current through R during 
each time interval. 

Solution: The current through the resistor (R = 20 Q) is given by 

C 
/ - - -- -

R 

-9.8 x I0-2 A;0<1 < 2 s 

0 ; 2 s< I < 4s 

4.9 x I0-2 A ;4s < 1 < 8 s 

0 ; 1 > 8s 

:c 
(>-1 

Llt1 
0.' 

-0.' 
-0., 

(0 .8) 

(d) Plot the power di ssipated in the resistor as a function of t ime. 

Solution: The power dissipated in the resistor is given by 

p = / 2R = 

1.9 x I 0- 1 W; 0 < 1 < 2 s 

0 ;2s<t <4s 
. (0.9) 

4.8 x 10-2 W ; 4 s < t < 8 s 

0 ; t >8 s 

l' 

r , 

-



Problem 5: Inductor 

An inductor consists of two very thin conducting cylindrical 
shells, one of radius a and one of radius b, both of length h. 
Assume that the inner shell carries current lout of the page, 
and that the outer shell carries current I into the page, 
distributed uniformly around the circumference in both 
cases. The z-ax is is out of the page along the common axis 
of the cylinders and the r-ax is is the radial cylindrical axi s 
perpendicular to the z-axis. 

a) Use Ampere ' s Law to find the magnetic field between 
the cylindrical shells. Indicate the direction of the magnetic 
field on the sketch . What is the magnetic energy density as 
a function of r for a < r < b? 

The enclosed current l eo, in the Ampere's loop with radius r is given by 

I ", J~: ~ : : < b la, r > b 

Applying Ampere' s law, di B. cis = B(27fr) = 110/"", we obtain 

0, r < a 

B __ 1101 ---<p, 
27fr 

0, r > b 

a < r < b (counterclockwise in the figure) 

The magnetic energy density for a < r < b is 

u = B' = _1_( 110/ )' = 1101' 
" 2110 2110 27fr 87f' r' 

It is zero elsewhere. 

b 

I 
® 

1 t ~ 1\{~ floj ((j? 

teSt ~ower 
i ;~ 

b). Calculate the inductance of this long inductor recalling that U II = + u ' and using 

your results for the magnetic energy density in (a). 

The volume element in this case is 2m·helr. The magnetic energy is : 



~k 
O(Q... 

~2 
Itvdi) 

hi 
( C\1cu~. 

(' 
( fi ( 

U/J = fU/JdVol = hi flo; ', ) 27rhrdr = flo] ' h In ( ':.-) 
v !l S7r 6 , 47r a 

]'1 (b) I /"IV~'If]i~~(q lr avo, (' 
Since U/J = ~ In - = - LI' , the inductance is (J 

47r a 2 

L = floh In ( ':.-) 
27r a 

c) Calculate the inductance of this long inductor by using the fo rmula 

cD = LI = f B· dA and your results for the magnetic fi e ld in (a) . To do thi s you 
(Jpell slIrfilce 

must choose an appropriate open surface over which to eva luate the magnetic flu x. Does 
your result calculated in this way agree with your resul t in (b)? 

I 

r 

B 
====::: 

, , 

- ---- - -_ ... 

" 

The magnetic fi eld is perpendicular to a rectangular 
surface shown in the fi gure. The magnetic flux through a 
thin strip of area dA = Idr is 

d rJJ /J = BdA = ( flol J (h dr) = flolh dr 
2m' 27rr 

T hu s, the tota l magnetic flu x is 

Thus, the inductance is 

which agrees with that obta ined in (b). 

c;JJ\ \ f\ d v(; 1 or ad vet 1/ y 
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Problem 6: Trying to open the switch on an RL Circuit 

The LR circuit shown in the figure contains a res istor R, and an inductance L in series 

with a battery of emf"o. The switch S is initially closed. At ( = 0, the switch S is opened, 

so that an additional very large resistance R, (with R, ~ 7R,) is now in series with the 

other e lements. 

I 

(a) I f the switch has been closed for a long time before ( = 0, what is the steady current 
10 in the circuit? 

There is no induced emf before ( = 0. Also, no current is flowing on R2.Therefore, 

J = ~ 
o R , 

(b) While this current Jo is fl owing, at time ( = 0, the switch S is opened. Write the 

differential equation for 1(1) that describes the behavior of the circuit at times I 2: 0. 

Solve this equation (by integration) for l(t) under the approximation that "0 = 0 . 

(Assume that the battery emf is negligible compared to the total emf around the circuit 
for times just after the switch is opened.) Express your answer in terms of the initial 
current 10 , and R" R" and L. 

The differential equation is 

dl(t) "0 - J(t)(R, + R, ) = L--
- dl 

Under the approximation that "0 = 0 , the equation is 

- J(t)(R + R, ) = L dl(t ) 
, - dl 

The solution with the initial cond ition 1(0) = 10 is given by 



(R,+R, ) t) 
1 (I) = 10 exp( L 

(c) Using your results from (b), find the value of the total emf around the circuit (which 
from Faraday's law is -Ld 1/ dl ) just after the switch is opened. Is your assumption in (b) 
that °0 could be ignored for times just after the switch is opened OK? 

S· °0 lI1ce 10 = ­R · , 

dI(I) 1 o =-L-- = l o(R, + R, ) 
dl ,: 0 

Thus, the assumption that °0 could be ignored for times just after the switch is open is 

OK. 

(d) What is the magnitude of the potential drop across the resistor IS. at times I > 0, just 

after the switch is opened? Express your answers in terms of °0 , R" and IS. . How does 

the potential drop across IS. just after I = 0 compare to the battery emf °0 , if 

IS. = IOOR, ? 

The potential drop across R2 is given by 

R, ( R' J( R, J R, 6 V,= - 0= - 1+ - - °0=- -°0 
- R, + R, R, + R, R, R, 

If IS. = I OOR" 

i1V2 = 100 Co 

This is why you have to open a switch in a circuit with a lot of energy 
stored in the magnetic field very carefully, or you end up very dead!! 



Problem 7: LC Circuit 

An inductor hav ing inductance L and a capacitor hav ing capacitance C are connected in 
series. The current in the circui t increase linearly in time as descri bed by 1 = KI. The 
capacitor initia lly has no charge . Determine 

(a) the vo ltage across the inductor as a function of t ime, 

The voltage across the inductor is 
dJ d 

E: =-L-= -L-(Kt)=-LK 
I. dt dt 

(b) the vo ltage across the capac itor as a function of time, and 

Using 1 = dQ , the charge on the capacitor as a functi on of time may be obtained as 
dt 

, , I 
Q(t) = f Jdt' = f KI 'dl , = - Kl ' 

o 0 2 

Thus, the vo ltage drop across the capacitor as a fun ction of t ime is 

Q Kt ' 
~v. = --= - -

c C 2C 

(c) the time when the energy stored in the capac itor first exceeds that in the inductor. 

The energies stored in the capacitor and the inductor are 

UC =~C (~VC ) 2 =~C(- ~~ J' =~~4 
U = ~ LI' = ~ L(Kt)2 = ~ LK't ' 

1 22 2 

The two energ ies are equal when 

K ' "I I 1 _ LK 2 , 2 - - - - 1 
8C 2 

=> I ' = 2.J LC 

Therefore, Uc > UI when t > t' . 



Problem 8: Le Circuit 

(a) Initially, the capacitor in a series LC circuit is charged. A switch is closed, allowing 
the capacitor to di scharge, and after time T the energy stored in the capacitor is one­
fourth its initial value. Determine L if C and Tare known. 

The energy stored in the capac itor is given by 

Thus, 

Q(t)' (QoCOS lVol)' 
U c (t) = -2-C- = -'-=-2-C----'--'-

U c (T) cos' lVoT 

U c (0) = cos' (0) 

cos' lVoT 
= 

4 

I 
=> cos lVoT = -

2 

which implies that lVoT = 1( rad = 600 
• Therefore, with lVo = ~ , we obtain 

3 "LC 

_ I (3T )' => L - - -
C 1( 

(b) A capacitor in a series LC circuit has an initial charge Qo and is being di scharged. 

The inductor is a solenoid with N turns. Find, in terms of Land C, the flux through each 
of the N turns in the coil at time I, when the charge on the capacitor is Q(t). 

We can do thi s two ways, either is acceptable. First,we can make the exp licit assumption that 

Q(I) = Qo cos lVol and the total flux through the inductor is Ll = L :7 = - LlVoQo sin lVol 

Therefore the flux through one turn of the inductor at time I is cD o"",m = .=L-=lV-"-O",,Q. . - Slll lV I N 0 

or in terms of Land C, ct> , = - (L Qo s in lVol. Or second, we can simply leave 0(1) 
-- ~~N -

as an unspecified function of time and write (using the same arguments as above) that 

ct> =..£ dQ 
one lum N dl 

(c) An LC circuit consists of a 20.0-mH inductor and a 0.500-,uF capacitor. If the 

maximum instantaneous current is 0.100 A, what is the greatest potential di fference 
across the capacitor? 



The greatest potential di fference across the capac itor when U C m>' = ULm"" or 

~CV2 _ ~LJ2 2 C ma,x - 2 ma:< => v = iLl = (20 .0mH) (O. IOOA) = 20 V 
C m' ., ~C m", (0.500 ~lF) 
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Physics 8.02 

Some (possibly useful) Relations: 

cf.f E· d A == Q t lrc/rJSt:d 

c/f)5l:d ell 
SlJ rjoCt! 

4 - d ff - -E ·dS=-- B · dA dl lolal 
closed Opl'lI 

pm" .fllr/acl' 

= ~ JJ [B""",,,, + B",rl dA 
optn 
slIrfi,cr 

cf.f BdA = 0 
r:Iv.sed 
surface 

4 B·ds = 
closed 
pOlh 

d 
" 1 + " fi -<I' . '-0 //1'11 '-0 0 dl . I~ 

where <1> ,- = JJ it·dA 

=_I_B' Umflg 
2110 

open 
surface 

J - J Po IdS,x r B= dB= 
4Jr 1'-

sor/ rel' sourer: 

dF=lds x B 

it=_I_Jdqr 
4 Jrfi 1" o V 

(iiI 

Final Exam 

The electric potential at point p] 

minus that of point P, is given by 

". 
V( P,) -V(P, )= - Jt .as 

'\ 

!!.V =lR 

P . =/' R=!!.V'/ R Jurl/e lfe(J(mg 

one tunr 

U - ~LI ' 
inductor - 2 

I 
llJO = .J Le 

c = J Il:Eo 

/= IfT 

OJ = 21(/ = 21(IT 

k = 21(/A 

c = AIT = AI = OJI k 

-. I - -
S = - ExB 

110 

Spring 2005 

DOUBLE SLIT: 

constructive: 

dsi n 8 == mA, III == 0, ± I, ± 2, ± 3, ... 

destruct ive: 

dsin 9 = (111 +~) A. III = O. ± I. ± 2. ±3 • .. 

SINGLE SLIT: 

destructive: 
asin9=nA. n=± I. ±2. ±3 • .. . 

Areas, Volumes, etc.: 

I) The area of a circle 
of radius I' is Jr r 2 Its 
circumference is 2Jr I' 

2) The surface area of a 
sphere of radius I' is 
41r/ Its vo lume is 
4 
- 7[ r3 
3 

3) The area of the sides 
ofa cylinder of 
radius I' and height h 
is 21r r h. Its volume 
is 1r / h 

USEFU L INTEGRALS: 

" 
Jdx=d-c 
,. 

'[ IJ d - dr = In-
r c ,. 

"[ I J ( I I ) f?dr=~-d 
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Problem 1: E ight Conceptual Q uestions (40 points out of240 total). Circle your 
choice for the correct answer to the question . 

Question A (5 points) : 
Consider a cubic vo lume with sides of length a oriented 
as shown in the fi gure. An electric fi e ld fill s the space 
both inside and outside the cube and this electric fi eld 
everywhere points in the +x directi on. The magnitude of 
the fi e ld is independent of y and z but varies with x . The 
va lue of the e l~d atx = 0 is 

EI = ; --l, Volts / meter and the value of the electric 
,1" : 0 & a-

o 

fi e ld at x = a is EI _ =; ~ Volts / meter . The total Z 
.l - O e a-

" 

y 

a 

c, e conta ined inside the cube is 7 - L( '" J E -=-5 m Q 
(a) -1 0 Coulombs ~-4coulombs fl d'J Molh. ,1 F 
(c) 0 Co ulombs 4) +4 Coul ombs I t,(f(/'lr F d 11 a 
(e) +7 Coulombs 'f) ot enough in formation given to answer ~t - ,' . : __ 
Question B (5 points): r. 7-3> CI Jv~ \e.eij) fa 
Consider three equal charges, A, B, and C. 
di fferent electric potential, as fo llows: 

Each one sits at the orig in (x = 0) but in a 

Charge A sits at x = 0 in a potential which is constant and identica lly zero 
Charge B sits at x = 0 in a potential whi ch is constant and non zero 
Charge C sits at x = 0 in a linear potential (V proport ional to x ). 

Whi ch statement is true: 

&\?None of the charges will acce lerate 
Cb}'--only B will accelerate 
(c Only C will acce lerate 
(d) All charges will acce lerate, but B will have the largest acce lerati on 
(e) All charges wi ll acce lerate, but C wi ll have the largest acceleration 

f 0-p/d;J.1 doe) '" ! I' 

o (liT C tt U/lY 11;j 
() V'nctll(J/' 

Cd L7(i.:> (~ t a 

I(v(i y (P ceJ qv 

t=~lL 
fo It 

V 
)nt}Ve 
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Question C (S points): 
The circuit contains a battery, a capac itor, a bulb 
and a switch. The switch is initia lly open as 
shown in the diagram, and the capacitor is 
uncharged. 

Which correctly describes what happens to the 
bulb when the switch is closed? 

(a) The bulb is dim and remains dim. 

page 4 

(b) At first the bulb is dim and it gets brighter and brighter until its brightness levels 
off. 

(~The bulb is bright and remains bright. 
(]!,YAt first the bulb is bright and it gets dimmer and dimmer until it goes off. 

(e) None of these is correct. 

Question D (S points): 
Wire I carries a current I flowing into the page, as 
shown in the diagram. Wire 2 has the same current I, 
but flowing out of the page. Which direction are the 
magnetic fi e lds at pos itions P and R? 

P R , , 

J 
p 

2 R 

c 

i . 
III 

-+--{.)---+----1---4~-

(b) 

(e) , 
(e) NonC' of thes(' \rv II i 

'V 

~ l{\'\) 

~ 

~5SP:~ Vp Sd V>1 \;.; I" ~ 

~ 
CiV 
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Question E (5 points): 
An infinite sheet of positive charge in theyz plane (see figure below) is shaken up and 
down in the y direction. This shaking of the sheet generates a plane wave to the left of 
the sheet. Which of the fo llowing is the correct representation of the electromagnetic 
wave generated to the left ofthe sheet of charge as a resu lt of this shaking. 

~ 

(b) 

... 
B 

... 
£ 

LJ ... 
£ 

(e) 

... 
B 

(e) None of these is correct. 

y 

Y 

l 

Y 

G' 

Y 

l 

sheet of charge 

1 

sheet of charge 

1 

sheet of charge 

1 

shee t of charge 

1 

( 
I 
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Question F (5 points): 
C 

I 
1 
1 

. ,~~~ __ I 
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An antenna is oriented as shown and is 
emitt ing electric dipole radiation. The 
observations po ints A, B, and C are all 
located at the same di stance from the center 
of the antenna, and are very far away. Let 
EA be the pos itive ampl itude of the 
radiati on electric fie ld at observation point 
A, and so on. 

:: ~f~~;~~}~~t 
Which of the fo llowing is true? 

(a) EA = Ec= EB 

~
E" > Ec= EB 

(c) E" = Ec> E8 
E" < Ec= EB 

(e) E" = Ec < EB 

Question G (5 points): 

J 

i 
tI _ 

l 

~ 

: (I 

Monochromatic light waves impinge on two long narrow apertures (s lits) 
that are separated by a distance d. Each aperture has width a, with a « d. 
The resul ting pattern on a screen fa r away is shown above. The distance A 
between the zeroes of the enve lope (see fig ure) is determined by 

(a) d 
(b)d'/ a 

<§)a 
(d) a' / d 

(e) .Jad 
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Question H (5 points): 
The circuit contains a battery, an inductor, a bulb 
and a switch . The switch is in itially open as shown 
in the diagram. 

Which correctly describes what happens to the 
bulb when the switch is closed? 

~
-):5 e bulb is dim and remains dim. 

(2) first the bul b is dim and it gets brighter 
and brighter until its brightness levels off at J 
a constant leve l. 

(3) The bulb is bright and remains bright. 

page 7 

s 

(4) At first the bulb is bright and it gets dimmer and dimmer until it goes off. 
(5) None of these is correct. 

L 



! 
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Problem 2 (40 points out of 240 total): 
An electromagnetic wave has a wave length A of 3 meters and a frequency f of 10' Hertz 
(Hertz = cycle per second). The time averaged value of the Poynting flu x vector is given 
by 

(8) - -k cB; 
time avcra£cd - 2;"L

o
' 

(a) In which direction does this wave propagate? Be sure to indicate the direction of 

propagation with a unit vector (i , j , or k ) and an appropriate sign (+ or -) . Briefly 

explain why YOII choose this direction 

(b) The electric field of the wave is along the x-axis. Write a vector equation for the 
electric field of this wave, in terms of 7r, x, y , z, I , c, Bo' f.i" and/or Co (your equation 

should involve only these quantities, and numbers, but you do not have to use all of these 
in your answer). Is the equation you write for the electric field determined uniquely by 
the information you have been given? Explain. 
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(c) What is the corresponding magnetic field vector equation in terms of 
7r, x, y, z, I , c, Bo, fJo' and/or Ii, (your equation should involve only these quantities, and 

numbers, but you do not have to use all of these in your answer)? 

(d) Suppose this wave is perfectly reflected by a conducting plane at z = O. Write a 
vector equation for the electric field of the reflected wave, given the expression for the 
electric field you gave in (b). 

(e) Write a vector equation for the magnetic field ofthis reflected wave, given the 
expression for the magnetic field you gave in (c). 

!. 
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Problem 3: (40 po ints out of240 total) 
Consider two long concentric hollow conducting cylinders. The inner cylinder has radius 
a , and the outer cylinder has rad ius b, and the length of both is h, with h» b , as shown 
in the fi gures. The inner conducting cy linder carries a total charge +Q spread uniformly 

on the outer part of the inner surface (giving an effective change per unit length of 
A = Q / h), and the ouler conducting cylinder carries a charge - Q spread uniformly on 

the inner surface of the outer cylinder. 

~----h 

-0 

b 

(a) Find the direction and magnitude of the electric fi eld E in the reg ion a < r < b, 
ignoring end effects, in terms of r , Q, c" 1[, h, a, and b (your express ion should invo lve 

ollly these quantities, but you do not have to use a ll of these in your answer). State 
which Maxwell equation you use (write the equation, do not just give the name) and 
show explicitly how you find this electric field. 

(b) What is the potential difference i\V = V;, -Vb between the inner and outer cylinder. 

Write your answer in terms of Q, c" 1[, h, a, and b (your expression should invo lve ollly 

these quantiti es, but you do not have to use all of these in your answer) 
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(c) Using your result (b), rewrite your expression for the electric field obtained in (a) in 
terms of r, Ll.V, a, and b (your expression should involve all o/Ihese qUlll/lilies and only 
Ihese qual/lilies) 

Now consider the same two long concentric hollow conducting 
cylinders. Suppose a current 1 is uniformly distributed over the 
surface of the inner conductor and flows Ollt 0/ the page on the 
inner conductor. The same current flows into the page on the 
outer conductor, and is also distributed uniformly over its 
surface. 

(d) Find the direction and magnitude of the magnetic field B in 
the region a < r < b, ignoring end effects, in terms of 
r, 1, Jio ' h, a, and b(your expression should involve only these 

b 

quantities, but you do not have to use all of these in your answer). State which Maxwell 
equation you use (write the equation, do not just give the name) and show explicitly how 
you find this magnetic field. 
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(e) Now we combine the two cases 
above. That is, our conducting cy linders 
carry both current and charge exactly as 
described above. We do this by hooking 
up a battery with vo ltage .0. V as shown in 
the fi gure. What is the Poynting flu x 

vector S for G < I' < b in terms of 
1' , !lV, I , 1f, G, and b (your expression 

should involve all of these qllal/tities al/t! 
ollly these qUlIl/tities)? Calculate the 

magnitude and clearly indicate the direction S on the fi gure. 

page 12 

h 

"'j"' 

(I) By integrating S over the appropriate surface, find the rate at which energy flows in 
the region G < I' < b. What should you expect this value to be in terms of .0. V and the 
other quantities given above? You will get significant credit if you answer thi s last 

question correctly, even i r you do not have the right expression fo r S and/or do not do 
the integral correctly. 
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Problem 4 (40 points out 0[240 total) 
Consider a discharging capacitor made out of two 
identical circular conducting plates of radius G. One 
plate is placed on the xy plane centered at the origin, 
and the second is at a distance d up the z-axis at z = 

d (see Figure). The bottom plate carries charge 
+Q(t) and the top plate carries a charge -Q(I). The 

capacitor is discharging, and Q(t) = Q,e-'" , where 

" is the time constant. 

(a) Derive an expression for the electric field 
between the plates at time I in terms of 
I, Qo' G, T, 7[ , and £ () . Write down the Maxwell 's 

equation you are using and show your steps in 
obtaining this expression. 
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z 

(b) Calculate the (time-deJendent) displacement current I" (r , I) through a loop of radius 

r < G as shown in the figu~e (the normal to this loop is in the positive z-direction). Give 
your answer in terms of r,ll, Q" G, T , 1[ , and 0 , ' Is this displacement current upward or 

downward? 
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(c) Use Ampere-Maxwell's law to calculate the induced magnetic field B(r,!) inside the 

capacitor for r <G, in terms of r, !, Q" 11" G, T , and 7r. Draw the direction of the 

magnetic field at point P on the figure below. 

z 

(d) In what direction is the Poynting flux at r ~ G? State in words the relationship 
between the surface integral of the Poynting flux over the sides of the capacitor and the 
electrostatic energy stored inside the capacitor. 
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Problem 5 (40 points out of240 total): 
A conducting rod with zero resistance 
slides without friction on two parallel 
perfectly conducting rails. The distance 
between the rails is lV. An external agent 
forces the rod to move at constant speed 
V to the right. Resistor R is connected 
across the ends of the rails to form a 
circuit, as shown. A constant magnetic 
field B is directed out of the page. 

R 
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i 
w -7 V 

(a) What is the rate of change of the magnetic flux through the loop formed by the bar, 
the resistor, and the rails? In calculating this flux, ignore any self-magnetic field due to 
the induced current in the loop. 

(b) Starting from a Maxwell equation (indicate which one), what is the current flowing 
through the resistor R? Gives its magnitude and indicate its direction on the figure. 
Why did you choose this direction for the current? 

(c) What is the magnitude and direction of the magnetic force that is exerted on the 
sliding rod? 
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(d) [fthe external agent moving the rod only has to provide enough force to 
counterbalance the magnetic force, show that the rate at which the external agent does 

work (Fag"" . V) is equal to the rate at which energy is being dissipated in the resistor. 
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Problem 6 (40 points out of240 total): 
Consider two nested, spherical, conducing shells. The first conducting shell has inner 
radius a and outer radius b. The second conducting shell has inner radius c and outer 
radius d. The outer surface of the outer conductor is tied to .. ground, which means that it 
can bring in as much positive or negative charge as needed in order to make the potential 
of the outer surface of the outer conductor zero, the same as the potential at r ~ infinity. 

I. The inner conductor is initi ally uncharged. A 
charge +Q is then fixed at the origin (see figure). 

(a) What is the net charge in each of the following 
reg ions? 

Inner surface of inner conductor: __ c7..o=-__ _ 
J 

Interior of the inner conductor: ____ O:::.... ___ J 

Outer surface of the inner conductor: _---.:8)'""' ___ _ 

Inner surface of the outer conductor: --C:-,,~-,),----I---

O \J 
Interior of outer conductor: ___ --'-___ _ 

O \./ 
Outer surface of the outer conductor: _______ _ 
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(b) What is the electric fie ld in the fo llowing regions. Write your answers in terms of 
r, Q, Go , 7[, a, b, C and d (your expression should involve oJ/ly these quantities, but you 

do not have to use all of these in your answer) 
, 

r < a: eva, S~ c '-I I (It()Ot) 

~ E 0 (.J s -- Szo (-UI ~ d C(; 

a < r < b: 

b < r < c: 

(c) What is the potential ~ at the inner surface of the outer conductor? 

t rtllG/ d (!.l<id 2~ro 6 
vPNt 10 W;(~~ c,1"c{1) So LlJ(S) ()IJ. ~ OL9 "f(J...0r ,I 

(d) What is the potential I~ at the outer surfa~e ofthelfn; conductor? ~ 

Vb ~ Vc ~ ~~E.d) cdor~vO 

(d) What is the potential i';,at the inner surface of the inner condu tor (you ml se Vb in 

your answer)? ? I J WoII.I.. S/rt(e 

(' C()Y\JvCtv 
ja~ U.s. q k>v'(Z 
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II. Now the charge +Q is moved from the origin and placed on the inner conductor, and 

allowed to redistribute itself on that conductor. The outside of the outer conductor is still 
maintained at zero potential. 

(e) What now is the net charge in each of the 
fo llowing reg ions? 

Inner surface of inner conductor: __ ...:O~ __ 

Interior of the inner conductor: 0 
Outer surf~ce of the inner conductor: 

o 0 _ 
( 

Inner sur face of the outer conductor· 0 (-) 
l -iVvo v'fl0'~ 

=-

Ci ~(/f ;'\~) 1 

1 i~ctl- , 
5>1(1/ t~(p I~ 

0 ~ hi I /7, (t-~ \ (~ ('> Interior of outer conductor: 

Outer surface of the outer conductor: 0 
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Problem 1: Eight Conceptual Questions (40 points out of240 total). Circle your 
choice for the correct answer to the question. 

Question A (5 points): 
Consider a cubic volume with sides of length a oriented 
as shown in the figure. An electric field fills the space 
both inside and outside the cube and this electric field 
everywhere points in the +x direction. The magnitude of 
the field is independent of y and z but varies with x. The 
value of the electric field at x = 0 is 

EJ _ = i 2.,. Volts I meter and the value of the electric 
x-O E a 

" 

field at x = a is EJ .0 = i --.l., Volts I meter. The total Z 
x c oG 

charge contained inside the cube is 

(a) - I 0 Coulombs 
(c) 0 Coulombs 
(e) +7 Coulombs 

Question B (5 points): 

(b) -4 Coulombs 
(d) +4 Coulombs CORRECT 
(f) Not enough information given to answer 

Consider three equal charges, A, B, and C. Each one sits at the origin (x = 0) but in a 
different electric potential , as follows: 

Charge A sits at x = 0 in a potential which is constant and identically zero 
Charge B sits at x = 0 in a potential which is constant and non zero 
Charge C sits at x = 0 in a linear potential (V proportional to x). 

Which statement is true: 

(a) None of the charges will accelerate 
(b) Only B will accelerate 
(c) Only C will accelerate CORRECT 
(d) All charges will accelerate, but B will have the largest acceleration 
(e) All charges will accelerate, but C will have the largest acceleration 
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Question C (5 points): 
The circuit contains a battery, a capacitor, a bulb 
and a switch. The switch is initially open as 
shown in the diagram, and the capacitor is 
uncharged. 

Which correctly describes what happens to the 
bu lb when the switch is closed? 

(a) The bulb is dim and remains dim. 

page 4 

(b) At fi rst the bulb is dim and it gets brighter and brighter until its brightness levels 
off. 

(c) The bulb is bright and remains bright. 
(d) At first the bulb is bright and it gets dimmer and dimmer until it goes off. 
CORRECT 
(e) None of these is correct. 

Question D (5 points): 
Wire I carries a current 1 flowing into the page, as 
shown in the diagram. Wire 2 has the same current 1, 
but flowing out of the page. Which direction are the 
magnetic fields at positions P and R? 

P R 

(a) , , 
(iI) , 

(e) 

(d) 

(l') N UIH' of I hest' 

(a) CORRECT 

P 

2 

,'/ 
i 
out 

j( 

'< 

R 

c 

I 

i 
in 
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sheet of charge .. 
E 

y 

1 
(b) 

sheet of charge .. 
B 

y 

1 
l 

(c) 
s heet of charge ... 

E 
y 

1 
l 

(e) 11 I efl--- C fho 
______ sheet of charge 

y 

1 

(e) None of these is correct. 
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. 1 I 

' fY(}f'~If( t;'lJ 

I 
IS 

----:J 
~j} r-2cJh f- r:I---

. Slwel-) 
~pfv~ 
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Question F (5 points): 
An antenna is oriented as shown and is 
emitting electric dipole radiation. The 
observations points A, B, and C are all 
located at the same distance from the center 
of the antenna, and are very far away. Let 
EA be the positive amplitude of the 
rad iation electric field at observation point 
A, and so on. 

Which of the following is true? 
(a) EA = Ec= En 
(b) EA > Ec= EB 
(e) EA = Ec> EB CORRECT 
(d) EA < Ec= EB 
(e) EA = Ec< EB 

Question G (5 points): 

i 
(' ~ 

. (/ 

c 

Monochromatic light waves impinge on two long narrow apertures (slits) 
that are separated by a distance d. Each aperture has width a, with a « d. 
The resulting pattern on a screen far away is shown above. The distance A 
between the zeroes of the envelope (see figure) is determined by 

(a) d 
(b) d' / a 

(c) a 
(d) a' /d 

(e) ~ad 

CORRECT 

page 6 
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Question H (5 points): 
The circuit contains a battery, an inductor, a bulb 
and a switch. The switch is initially open as shown 
in the diagram. 

Wh ich correctly descri bes what happens to the 
bulb when the switch is closed? 

(I) The bulb is dim and remains dim. 
(2) At first the bulb is dim and it gets brighter 

and brighter until its brightness levels off at 
a constant level. CORRECT 

(3) The bulb is bright and remains bright. 

page 7 

s 

(4) At first the bulb is bright and it gets dimmer and dimmer until it goes off. 
(5) None of these is correct. CORRECT AS WELL 

L 
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Problem 2 (40 points out of240 total): 
An electromagnetic wave has a wave length A of 3 meters and a frequency f of 10' Hertz 
(Hertz = cyc le per second). The time averaged value of the Poynting flux vector is given 
by 

(8) = - k cB,; . 
time averaged 2110 

(a) In which direction does this wave propagate? Be sure to indicate the direction of 

propagation with a unit vector (i , j , or k ) and an appropriate sign (+ or -) . Briefly 

explaill why you choose this directioll 

In the - k direction. Since the energy flow is in thi s direction, the wave must propagate 
in thi s di rection. 

(b) The electric fi eld of the wave is a long the x-ax is. Write a vector equation for the 
electric fie ld of thi s wave, in terms of 1(, x, y, z, /, c, B" Ji" and/or E, (your equation 

should involve ollly these quantities, and numbers, but you do not have to use all o f these 
in your answer). Is the equation you write for the electric fi eld determined uniquely by 
the information you have been given? Explain . 

- • ?1( 
E(z ,t) = i cBo cos(-=;- z + 21( x I 0' /) Only determined to a phase, i.e . we can add any 

~ 

phase angle to thi s expression. 
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(c) What is the corresponding magnetic field vector equation in terms of 
1T , x, y, z, t, c, B" Ii" and/or 5 , (your equation should involve ollly these quantities, and 

numbers, but you do not have to lise all of these in your answer)? 

- A 21T 8 
B(z,t)=-jB, cos(-z +21T x IO t) 

3 

(d) Suppose this wave is perfectly reflected by a conducting plane at z = O. Write a 
vector equation for the electric field of the reflected wave, given the expression for the 
electric field you gave in (b). 

- A 21T , 
E(z ,t) = -i cB, cos(-z - 21T x lOt) 

3 

(e) Write a vector equation for the magnetic field of this reflected wave, given the 
expression for the magnetic field you gave in (c). 

_ A 21T , 
B(z,t) = -j B, cos(-z - 21T X lOt) 

3 
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Problem 3: (40 points out of240 total) 
Consider two long concentric hollow conducting cylinders. The inner cylinder has radius 
a, and the outer cylinder has radius b , and the length of both is h, with h» b, as shown 
in the figures. The inner conducting cylinder carries a total charge +Q spread uniformly 

on the outer part of the inner surface (giving an effective change per unit length of 
A = Q / h), and the ouler conducting cylinder carries a charge -Q spread uniformly on 

the inner surface of the outer cylinder. 

I--~--- h 

-0 

(a) Find the direction and magnitude of the electric field it in the region a < I' < b, 
ignoring end effects, in terms of 1', Q, c" 1[, h, a, and b (your expression should involve 

Dilly these quantities, but you do not have to use all of these in your answer). State 
which Maxwell equation you use (write the equation, do not just give the name) and 
show explicitly how you find this electric field. 

2m'hE = Q / Co 

(b) What is the potential difference L'.V = v" -Vb between the inner and outer cylinder. 

Write your answer in terms of Q, c" , 1[, h, a, and b (your expression should involve Dilly 

these quantities, but you do not have to use all of these in your answer) 

a _ " 0 0 (b) 
L'.v = v,, -Vb=-fE .dS = - f - dr=---In-

b b 2m-hco 21[hco a 

J (e,.,Q ~ ( 
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(c) Using your result (b), rewrite your expression for the electric field obtained in (a) in 
terms of r, t.V, a, and b (your expression should involve all oflhese quanlilies and ollly 
Ihese qualltilies) 

Now consider the same two long concentric hollow conducting 
cylinders. Suppose a current 1 is uniformly distributed over the 
surface of the inner conductor and flows alit of the page on the 
inner conductor. The same current flows into the page on the 
outer conductor, and is also distributed uniformly over its 
surface. 

(d) Find the direction and magnitude of the magnetic field Ii 111 

the region a < r < b, ignoring end effects, in terms of 
r, 1, 1-'0' h, a, and b (your expression should involve ollly these 

b 

quantities, but you do not have to use all of these in your answer). State which Maxwell 
equation you use (write the equation, do not just give the name) and show explicitly how 
you find this magnetic field. 

4 Ii · ds = 1-', 1,,,,,, 27TrB = I-'J 
closed 
pulh 

B = I-'J counterclockwise 
27Tr 
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(e) Now we combine the two cases 
above. That is, our conducting cylinders 
carry both current and charge exactly as 
described above. We do this by hooking 
up a battery with voltage tlVas shown in 
the figure. What is the Poynting flux 

vector S for a < r < b in terms of 
r, tlV, J, n , a, and b (your expression 
should involve all a/these quantities and 
only these quantities)? Calculate the 

magnitude and clearly indicate the direction S on the figure. 
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to the left, away from the 

battery 

(I) By integrating § over the appropriate surface, find the rate at which energy flows in 
the region a < r < b. What should you expect this value to be in terms of tlVand the 
other quantities given above? You will get significant credit if you answer this last 

question correctly, even if you do not have the right expression for S and/or do not do 
the integral correctly. 

_ .. b b tlV J tlV J b dr 
fS .dA = fS2nrdr = f 2m'dr =--f-= tlV J 

" "2nr2 ln (~J In (~} r 
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Problem 4 (40 points out of 240 total) 
Consider a discharging capacitor made out of two 
identical circular conducting plates of radius G. One 
plate is placed on the xy plane centered at the origin, 
and the second is at a distance d up the z-axis at z = 

d (see Figure). The bottom plate carries charge 
+Q(t) and the top plate carries a charge -Q(t). The 

capacitor is discharging, and Q(t) = Q"e-'" , where 

T is the time constant. 

(a) Derive an expression for the electric field 
between the plates at time I in terms of 
I, Qo' G, T , n, and £ 0 . Write down the Maxwell's 

equation you are using and show your steps in 
obtaining this expression. 

E=z Qo e-' Ir 

& Jro
2 

o 

page 13 

z 

(b) Calculate the (time-dependent) displacement current 1,, (r,/)through a loop of radius 

r < G as shown in the figure (the nbrmal to this loop IS in the positive z-direction). Give 
your answer in terms of r, I, Qo' G , T , n, and £ , . Is this displacement current upward or 

downward? 

j" d ;-/f C?Cj; - O(~ 1&'1 9oill9 
1,,(r, /) = nr' £" dE = - r: Qo Cre~~ where the minus sign indicates the current is 

dl G - T -

downward 

tt,/\ 
P I(~ 
: Pp 

7LV tea)'; 
Jo,. 't r.ee[ 
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(c) Use Ampere-Maxwe ll's law to calculate the induced magnetic fi e ld B(r, l ) inside the 

capacitor for r < a , in terms of r, I , Q", J.i", a, T , and 7<' Draw the directi on of the 

magnetic fi e ld at po int P on the fig ure below. 

2 B I ( ) r' Q" -, ', ;rr :::: flo d r ,1 = -flo - , - e 
a- T 

B = - J.i"r Qo e-'" directi on clockwise as 
27tc/ T 

viewed from above 

z 

(d) In what direction is the Poynting flu x at r = a? Slate in words the relationship 
between the surface integral of the Poynting flu x over the sides of the capac itor and the 
electrostatic energy stored inside the capac itor. 

The Povntin!! flux is outward . Its surface integral is equal to the time rate of change of 
the energy stored inside the capacitor. 
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Problem 5 (40 points out of240 total): 
A conducting rod with zero resistance 
s lides without friction on two parallel 
perfectly conducting rails. The distance 
between the rails is w. An externa l agent 
forces the rod to move at constant speed 
V to the right. Resistor R is connected 
across the ends of the rails to form a 
circuit, as shown. A constant magnetic 
field B is directed out of the page. 

1/~/e 

R 

{S ks;c 

80 
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1 

(a) What is the rate of change of the magnetic flux through the loop formed by the bar, 
the resistor, and the rails? In calculating this flu x, ignore any self-magnetic field due to 
the induced current in the loop. 

d - "'B = VwB 
dt 

(b) Starting from a Maxwell equation (indicate which one), what is the current flowing 
through the resistor R? Gives its magnitude and indicate its direction on the figure. 
Why did you choose thi s direction for the current? 

d 
IR = emf =--"'8 

dt 
J = - VwB direction is clockwise, so that the se lf flux tries as to 

R 
counter the increasing flux as the loop expands 

(c) What is the magnitude and direction of the magnetic force that is exerted on the 
sliding rod? 

D·· h I ft F B Vw' B' IrectlOn to tee , = 111' = --:-'--
R 
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(d) If the external agent moving the rod only has to provide enough force to 
counterbalance the magnetic force , show that the rate at wh ich the external agent does 

work (Fag,,,, . V) is equa l to the rate at which energy is being dissipated in the resistor. 

FV = V' W' S 2 [ 2 R 
R 
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Problem 6 (40 points out of 240 total): 
Consider two nested, spherical , conducing shells. The first conducting shell has inner 
radius a and outer radius b. The second conducting shell has inner radius c and outer 
radius d. The outer surface of the outer conductor is tied to ground, which means that it 
can bring in as much positive or negative charge as needed in order to make the potential 
of the outer surface of the outer conductor zero, the same as the potential at r = infinity. 

I. The inner conductor is initially uncharged. A 
charge +Q is then fixed at the origin (see figure). 

(a) What is the net charge in each of the following 
regions? 

Inner surface of inner conductor: -Q _ __ _ 

Interior of the inner conductor: ° ----

Outer surface of the inner conductor: +Q ____ _ 

Inner surface of the outer conductor: -Q _____ _ 

Interior of outer conductor: 0 ____ _ 

Outer surface of the outer conductor: 0 _ ___ _ 
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(b) What is the electric field in the following regions. Write your answers in terms of 
r, Q, eo, Jr, a, b, c and d (your expression should involve only these quantities, but you 

do not have to use all of these in your answer) 

r < a: 

a < }" < b: 

b < }" < c: 

(c) What is the potential Veat the inner surface of the outer conductor? 

zero 

(d) What is the potential Vb at the outer surface of the inner conductor? 

h _ • b Od}" 0 h 0 [I I] 
V - V = V =-JE .ar =-J =-=- =-=----

b C b ee 41(£ 01"2 41TEo" c 4 7TEo b C 

(d) What is the potential Va at the inner surface orthe inner conductor (you may use Vb in 

your answer)? 

The same as above, -=- ---o [I I] 
4Jrea b c 
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II. Now the charge +Q is moved from the origin and placed on the inner conductor, and 

allowed to redistribute itself on that conductor. The outside of the outer conductor is still 
maintained at zero potential. 

(el What now is the net charge in each of the 
following regions? 

Inner surface of inner conductor: ° - - -

Interior of the inner conductor: ° ---

Outer surface of the inner conductor: 

- - +Q_---

Inner surface of the outer conductor: _ _ -Q _______ _ 

Interior of outer conductor: 0 ____ _ 

Outer surface of the outer conductor: 0 ____ _ 
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