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Summary of Class 1 8.02 

Topics: Introduction to TEAL; Fields; Review of Gravity; Electric Field 
Related Reading: 

Web Pages: Overview Section for test dates, cut lines, and grading guidelines 
Course Notes: Sections 1.1 - 1.6; 1.8; Chapter 2 

Topic Introduction 
The focus ofthis course is the study of electricity and magnetism. Basically, this is the study 
of how charges interact with each other. We study these interactions using the concept of 
"fields" which are both created by and felt by charges. Today we introduce fields in general 
as mathematical objects, and consider gravity as our first "field." We then discuss how 
electric charges create electric fields and how those electric fields can in tum exert forces on 
other charges. The electric field is completely analogous to the gravitational field, where 
mass is replaced by electric charge, with the small exceptions that (I) charges can be either 
positive or negative while mass is always positive, and (2) while masses always attract, 
charges of the same sign repel (opposites attract). 

Scalar Fields 
A scalar field is a function that gives us a single value of some variable for every point in 
space - for example, temperature as a function of position. We write a scalar field as a scalar 
function of position coordinates - e.g. T(x,y,z), T(r,B,rp) , or, more generically, T(r). We 

can visualize a scalar field in several different ways: 

)' 

J' 

(A) (B) (C) 

113 
-r===7' has 

~x' +(y+d)' ~x' +(Y-d)' 
In these figures, the two dimensional function ¢(x,y) 

been represented in a (A) contour map (where each contour corresponds to locations yielding 
the same function value), a (B) color-coded map (where the function value is indicated by the 
color) and a (C) relief map (where the function value is represented by "height"). We will 
typically only attempt to represent functions of one or two spatial dimensions (these are 2D) 
- functions of three spatial dimensions are very difficult to represent. 
Vector Fields 
A vector is a quantity which has both a magnitude and a direction in space (such as velocity 
or force). A vector field is a function that assigns a vector value to every point in space - for 
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Summary of Class 1 8.02 

example, wind speed as a function of position. We write a vector field as a vector function of 

position coordinates - e.g. F (x, y , z) - and can also visualize it in several ways: , ~,~. ~.~.~~~~~ 
'\ J ..,. 

.... l / 

-~*--/ t', / t , 
t 

(A) (B) (C) 

Here we show the force of gravity vector field in a 2D plane passing through the Earth, 
represented using a (A) vector diagram (where the field magnitude is indicated by the length 
of the vectors) and a (B) "grass seed" or "iron filing" texture . Although the texture 
representation does not indicate the absolute field direction (it could either be inward or 
outward) and doesn ' t show magnitude, it does an excellent job of showing directional details. 
We also will represent vector fields using (C) "field lines." A field line is a curve in space 
that is everywhere tangent to the vector field. 

Gravitational Field 
As a first example of a physical vector field, we recall the gravitational force between two 
masses. This force can be broken into two parts: the generation of a "gravitational field" g 

by the first mass, and the force that that field exerts on the second mass (Fg = mg). This way 

ofthinking about forces - that objects create fields and that other objects then feel the effects 
ofthose fields - is a generic one that we will use throughout the course. 

Electric Fields 
Every charge creates around it an electric field, proportional to the size ofthe charge and 
decreasing as the inverse square of the distance from the charge. If another charge enters this 

electric field, it will feel a force (FE = qE). 

Important Equations 

Force of gravitational attraction between two masses: F- - G Mm • -- --r 
g r' 

Strength of gravitational field created by a mass M: 
Fg M. g=-=-G-, r 
m r 

Force on mass m sitting in gravitational field g: F =mg g 

Strength of electric field created by a charge Q: E=k Qf , , 
r 

Force on charge q sitting in electric field E: FE =qE 
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Why Study Physics? 

• Understand/appreciate nature 
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Week 01 , Day 1 

Why Study Physics? 

• Understand/Appreciate Nature 

• Understand Technology 

.... 
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Week 01 , Day 1 

Why Study Physics? 

• Understand/Apprecrat~ 
• Understand Technology 
• Learn to Solve Difficult ~roblerns 

• It's Required 

I'Ill-U 

Administrative Details 
It's not that different from 8.01 

all On web 
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Your Responsibilities 
Before Class: 

Read Course Notes and Summary (See current webpage 
for daily reading assignment) 

In Class: (You must be present for credit) 
Problem Sollling, Desktop Experiments, Concept Tests 

After Class: 
Read Text, Review Visualizations 
~t:~oq Physics (Due Sunday night at 10 pm 

m rk (Due Tuesdays 9 pm), 
Review Homework Solutions 

Exams 
3 Exams (45%) + Flnal (25%) 

See ·OverviewfGrades~ on http://web.mit.edufB.02t 

Honesty Issues and Regrade 

Problem Sets: 
Policy 

The problems sets are to help you learn. You may 
work together BUT submit your own, uncopied work 

In-Class Assignments:' 
Must sign your own name to submitted work 
Signing another's name is COD offense 

Concept Questions: 
Use only your own PRS device 
Using anothe~s PRS is COO offense 

Regrade Policy: 
You may submit any graded work for a regrade up to 

one week after the grades for that assignment have 
been posted 

To Encoura e Collaboration, 
Grades Are OT Curve 8.02: 

+ 
A >=95 <95 & >=90 <90 & >=85 

B <85 & >=80 <80 &>=76 <76 & >=72 

C <72 & >=69 <69 &>=66 <66 & >=63 

0 <63 & >=59 

F <59 

See "Info: Grades~ on http://web.mlt.eduJ8.02t 

Grade Correction/Regrade Polley: 
Grade changes must be requested within two weeks 
of the assignment due date (including 'no shows') ",." 
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Web Page 
http://web.mit.edu/8.02t1 

First Problem Set Due Tuesday 
February 10 9 PM in correct 
section box outside 32-082 

Interactive On-Line Homework 
(Mastering Physics) 

On-Line homework with hints and tutorials 

Assignment due Sunday at 10 pm 

Test review problems with hints 

First Assignment due: Sun Feb 7 at 10 pm 

Registering for Mastering 
Physics 

Go to http://www.masteringphysics.com 
Select MP for Young/Freedman if you 

already purchased that book. 
If you buy MP online, select MP stand alone 
Register with the access code. 
WRITE DOWN YOUR NAME AND 

PASSWORD 
Log on to Masteringphysics.com with your 

new name and password. 
The MIT zip code is 02139 
The class ID is MPMIT802SPRING2010 
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Course Reader 

You MUST buy "8.02 Course 
Reader" 

Copy Tech 11-004 

And bring it with you to every 
class! 

• Class Summaries 
• Experiment Information 

Textbook 

Textbook: 
"Introduction to E & M" 

Liao, Dourmashkin, and Belcher 

At the Coop and Online Version on 
website. 

"' " 

", .• 

Common Questions & Answers 

• Dysfunctional Group? • Teli Grad TA 
• Must Miss Class? • Teli Grad TA 
• Must Miss HW? • Teli Grad TA 

• Must Miss Exam? • Teli admin. ASAP 

Exam dates & times are online 
Do NOT schedule early vacation departures. etc. 
without consulting these times! 

Any Questions? 

Class 01 
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Physics is not Math ... 

... but we use concepts from 18.02 

Gradients 

Path Integrals 

Surface Integrals 

Volume Integrals 

aV E-[E.d. 

tlfE.dA = Q" 
s Eo 

Q= fJIpdV 

PRS Questions: 
Physics & Math Background 
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PRS: Math Background 
Are you familiar with these concepts from 
vector calculus? 

0% 1. I've never seen them before, and I am 
not so comfortable with math 

0% 2. I've never seen them before, but I pick 
up new math concepts quickly 

0% 
3. I've seen them before, but definitely 

need some review 

0% 
4 . I am comfortable with vector calculus 

PRS: Physics Experience 
Have you taken a class in Electricity & 
Magnetism before? 

0% 1. No, never 
0% 2. Yes, here (8.02) 
OOk 3. Yes, here (8.02 TEAL) 
• Ok 4 . Yes, other college 
0% 5. Yes, high school (regular) 
0% 6. Yes, high school (AP) 

Don't Worry! 

o For many this is new & I will introduce 
concepts bef~e...(yell at me if not!) 

o Concepts ~pprtant-

Math introduc~on/review: 
Th Feb X 8:00-9:30 pm 32-082 
Presentation slides are posted 

(top of Study Guide page) 
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So what physics do we learn in 
8.02 anyway???? 

What's the Physics? 
8.01: Intra. to basic physics concepts: kinematics, 

force, momentum, energy, torque, angular 
momentum, ... 

How does matter interact? 
Four Fundamental Forces: 
Long range: Gravity (8.01 ... Gen. Relativity) 

Electromagnetic (8.02) 

"".~ 

Both are Inverse square forces. So all the results from 
gravitational forces can be easily adapted to electric 
forces • 

Short Range: Strong and Weak 

8.02: Electricity and Magnetism 
Also new way of thinking ... 

w do objects interact at a dislance? 
Field We wilileam about Electric & Magnetic 

~I--_·_.ds · w they are created & what they effect 
Big Picture (Matherna lea urnrna. e I s 

Equations 

clfE .dA =Q· 
s G, 

,, - - d 1J- -" E .ds =-- B ·dA 
c dt s 

rjfii.dA=O , n- d fJ- -lJlB.di =Ai __ +J.Joco- E ·dA 
C dIs 

Lorentz Force: jl = q(E+ vxB) 
~ .• 
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Today: Fields 
In General, then 

Gravitational & Electric 

Review Vectors Analysis in 

Study Guide Online 

.1'l1'll 

Scalar Fields 

e.g. Temperature: Every location has 
associated value (number with units) 

Scalar Fields - Contours 

• Colors represent surface temperature 

• Contour lines show constant temperatures 

Class 01 
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Fields are 3D ,. ,," ...........•.......•....••..•.. , ........ :"" .... , 
"0 ' 

• T = T(x,y,z) 

• Hard to visualize 
-7 Work in 2D 

• 
-,oa"""'-m....,~ D :0 ooQ SO · C 

. lr.I ..... _ 0 ' 0 ~ 110 ,,. 

Vector Fields 
Vector (magnitude, direction) at every 

point in space 

Example: Velocity vector field· Jet stream 

Vector Field Examples 

Begin with Fluid Flow 

Class 01 

I'(il"l~ 

Week 01, Day 1 

12 



Week 01, Day 1 

Vector Field Examples 

Flows With Sources 

Vector Field Examples 

Flows With Sinks 

i 

~ JI3 deed 

Vector Field Examples 

Circulating Flows 

Class 01 13 



Visualizing Vector Fields: 
Three Methods 

Vector Field Diagram 
ArrowsJdifferent colors or length) in direction 

of fiel on uniform grid. 
Field Lines 

lines tangent to field at every point along line 
Grass Seeds 

Textures with streaks parallel to field direction 

All methods illustrated in 
Vector Field Diagram Java Applet 

Vector Fields - Field Lines 
• Direction of field line at any point is 

tangent to field at that point 

PRS Question: 
Vector Field 

In General: Don't pick up unit until ready to answer 
Then I'll know when class is ready 

Class 01 
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PRS: Vector Field 
y 

x 

The field line at 
left corresponds 
to the vector field : 

0% 0% Il% 0% 0% L A __ 9·_\ 

, ... .. ~./ 

,,;:- "" ..0:1 

Vector Fields - "Grass Seeds" 

Source/Sink Circulating 

Althougn e don't know absolute direction. 
we can d termine relative direction 

PRS Questions: 
"Grass Seed" Visualizations 

Class 01 
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Week 01, Day 1 

PRS: Grass Seeds 

"rn7l"771"". The vector field at left is 
created by: ~. 

0% 1. Twosourees (equalatrenglh) I ~ ) 
~ ~ Two.ou", .. "o •• "',.,,) (oJ, .!. ~~ ! ~D<.(\ ra- I- 10511\1. , 
VII Two sources (bottom stronger) f<. _ _ _ 
O'l • Sou"",&.,,",.ouo' J I l. I ~ 1 
: !: ~~~~:~:::~l~~~"~~~;:~~.,,),UQiJli 1 ttttD::O ~ !ftc . J; If.'f ltV~ 

O'l 7. 'don" "'ow 1 W'_J l..:..d---:.fI....:;lo.;..;.ov--1.C{r..:..oW\.:..:......-"o:.;.:O'\t,,,-----'L»-=!:='!J --lik.l!.---

0% 

0% 

PRS: Grass Seeds 8 
Here there is an 
initial downward 
flow. 

The point is a source 
2. The point is a sink 
3. I don't know 

\e((VI~ ~ d,mt~f\ 
r---+------~~~L, 

]~I 
These two 
circulations 
are in: 

0% 1. The same direction (e.g. both clockwise) 
0% (Z) Opposite directions (e.g. one cw, one cr:w) 
0% Y. I don't know 

Class 01 
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V .. ,,,tnr Field 1§l1 

- " O'k 1. F(x,y) = + y j 

The grass seeds 
field plot at left is 
a representation 
of the vector field: 

0'" (9F(x,y)=y'i +x'] 
0% 3. F(x,y) = sin(x)l+cos(y)] 
0% 4. F(x, y) = cos(x)i+sin(y)] 
0% 5. I don't know 

Another Vector Field: 
Gravitational Field 

Example Of Vector Field: 
Gravitation 

Gravitational Force: 
F - G Mm • -- --r 

"j 
g r' 

I 
Gravitational Field: " I ,., 

" I / 
F GMmlr

1 r=_G.N: r 
__ ~_J 

g=J..= /t" m m r -
/ "-,.. I .. 

I 

M: Mass of Earth 
NI" 1 

Class 01 
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Example Of Vector Field: 
Gravitation 

Gravitational Field: I 

I " I " - G M • Fg ;mg " I / g;- -r 1{ r' --- ,--, 
Created by M Feltb~m / t , , 

.. I " I r: ul21yedor from Mto m -r: vector from M to m 
M: Mass of Earth c--- r A 

'" - . G
M
-[ r=-

r g=- -;:;-r USE THIS 
.,~ 

// r. , 

I' Vil/r Vee r/Jr -I'flOvt M 
So Vf'/tt tit"{ n,0 

The Superposition Principle 

Net forcelfield is vector sum of forceslfields 

Example: 

y 

I 
("f1 

" 
, , 

, 

,io' 

y 

- -
F,( I gl3 1Jf\ 

( - - -
a p F =F +F .:~ .. .... 3 13 23 

, 

,""./20 

In general: 
N 

Fj,=L:Flj 
/. 1 ., 

--'-'-
! . , 

In Class Problem 

Find the gravitational 
field g at point P 

Po\:J .1) 

011}---""'---,,;&/ 
/" Bonus: Where would 

/ you put another mass 

'/.{i" l ;m to make the field g 
,/ become 0 at P? 

.,/ 

~':::' :::::::::::::::::::::::::::;;,'jXII Use g = -G 7 r I 
{/ 

NOTE: SotuHons will be posted within two days of class 
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, 
l' 1(1 

(; '\eJ 

From Gravitational to 
Electric Fields 

Electric Charge (-Mass) 

Two types of electri~: positive and negative 
Unit of charge is the coulomb [C] 

Charge of electron (negative) or proton (positive) is 

±e, e = 1.602 x 1 0- '9 C 
Charge is quantized 

Q=±Ne 
Charge is conserved 

UVl '/ h o~l....-----------'·="'· e 

Electric Force (-Gravity) 

The electric force between charges q, and q2 is 

(a) repulsive if charges have same signs 

(b) attractive if charges have opposite signs -
/l~' ~. 

Y ./'· q, •••• /f" 
-+ro.. /K r ~!I 

l:, (u) ql (b} 

Like charges repel and opposites attract !! 

Class 01 
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Coulomb's Law 
Coulomb's Law: Force 
on q2 due to interaction 
between qf and q2 

. , r ~ k =_1_ = 8.9875x 10' N m'/C' 
/r+('" FI2 .. 47l"Eo 

r )±i , y./' 'I, ~: unit vector from q, to q, 

/f.
(.f:'r ' r: vector from q1 to qz 

'I, ,r _ qq 
F." r= - => F =k -'-';: r 12 t: r3 

PCI .,. 

Uflib cve 

Coulomb's Law: Example 

'7 
Fn = ? km 1'32 =(ti- ~j) m r" 

ql - 6 C q2 = 3 C r=lm 

- f 9 1 2 t(i-J3j)m 
F" =k,q,q,,=(9x I0 N m (C )(3C)(3C) ( )' 

r 1m 

81x10' (' 5;) N =-- ,- J 
2 

"'1'1' 

The Superposition Principle 

Many Charges Present: 
Net force on any charge is vector sum of forces 
from other individual charges 

&.m~·r F3 =FI3 + F23 

•••• -- q ) In general: 
a /~ N " 2(1 

./ . Fj=L;Flj .... 
q,{+.{ , H 

~ .• 

Week 01, Day 1 
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Week 01, Day 1 

Electric Field (--g) 
The electric field at a point P due to a charge 
q is the force acting on a test charge qo at 
that point P, divided by the charge qo : 

_ F 
E (P) == --f!.2... 

q qo 

For a point charge q: [ Eq(P) = k'1 r I 
Units: N/C, also Volts/meter ~, .. 

l' 1110.11\ UAI~ 1 Mot Mr c/ottv'olh ye.t 

Superposition Principle . 

The electric field due to a collection of N pOint 
charges is the vector sum of the individual electric 
fields due to each charge 

N 

Erora' =E I +E2 + ..... = IE; 
;=1 

Summary Thus Far 

SOURCE: Mass M, Charge q, (±) 

CREATE: g=_GM'r E=k'1..r ] r2 e 2 

if =mg FE=:t g", / FEEL: 

This is easiest way to picture field 

Class 01 
1<- eie"Vlvt 

Vo v/J Va.,.t h 
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v 
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PRS Question: 
Electric Field 

PRS: Electric Field 
Two opposite charges are placed on a line as shown 
below, The charge on the nght is three times larger 
than the charge on the left, Other Ihan at infinily, 
where is the electric field zero? 

0% 1, 
0% 2, 
0% 3, 
0% 4, 
0% 5, 

0'1. 6. 

. .1-
'lL 'lIt 

Between the two charges 
To the righl of the charge on the right 
To the left of the charge on the left 
The electric field Is nowhere zero 
Not enough info - need to know which is positive 
I don't know 

Week 01, Day 1 
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Summary of Problem Solving Session 1 8.02 

Topics: Coordinate Systems; Gradients; Line and Surface Integrals 
Readings: Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.12 
Math Review: Spring 2006 Math Review Presentation 

Hale Bradt's Spring 2001 8.02 Mathematics Supplement 

Sf-,b-' Topic Introduction ___ 

U\ "i (tv; II It 1'1P..jIlO I, 

1 n lill '7'SV" Qf/I 

:~ (,,1"'>] 
In this first problem solving session, you will learn how to solve for the electric field of a 
uniformly charged rod. This will involve setting up a vector integral. We will also introduce 
he concepts of understanding and calculating the electric field generated by a continuous 

distribution of charge. 

We can find the electric field of a continuous distribution of charge using the 
superposition principle. Let's consider the system shown in Figure I. Consider the 
infinitesimal element with charge b.q" contained in some small volume element b. V, . 

Oh ( 0\ Q", 

-bJ Lwt t; <{ f"\. fJ j 
ere ltro,,, !,p I1e I . 

( has8<'- ~o 

, 
/' ' 

, , 

1 := elM 
Figure 1 Electric field due to infinitesimal element with charge b.q, 

We shall assume the charge distribution is continuous. In the limit where b.V, shrinks 

to 0, the charge per unit volume, per') (lowercase Greek letter rho) is called the volume 
charge density, and is defined as 

(- ') I' b.q, dq p r = Im-=-
bV, ->O b.V dV , 

(TO. I) 

The charge density may be uniform in space or may depend on the position r' with respect 
to some choice of origin. The amount of charge, dq , in an infinitesimal volume element dV , 

located at the position r' , is 

dq = p(r')dV (TO.2) 

Summary of Problem Solving Session 1 p. 114 



Summary of Problem Solving Session 1 8.02 

The electric field due to each infinitesimal charged element at a point P is given by 
Coulomb's Law: 

(TO.3) 

In this expression r is the distance from the infinitesimal charged element to the point P 
where we are determining the electric field. The unit vector r points from the infinitesimal 
charged element to the point P (see Figure 2). 

, 
, , 

~P 

dE 

Figure 2 Electric field at the point P due to infinitesimal element of charge dq 

The unit vector is given by 

- - , - - , , r-r r-r 
r=--=--

11'-1"1 r 
(TO A) 

where I' is the position vector for the field point P with respect to the choice of origin, and 
1" is the position vector for the infinitesimal element with charge dq , and r = If - 1"1 is the 

distance from the infinitesimal charged element to the point P. 

Summary of Problem Solving Session 1 p.2/4 



Summary of Problem Solving Session 1 8.02 

o 

Figure 3 Vector geometry for the source and field point 

We can use the superposition principle: the total electric field is the vector sum of all these 
infinitesimal contributions. This sum is just the integral 

if, = _1_ fdq f = _1_ f p(r')(r - r')dV 
47rlio v r' 47rlio v II' - 1"1

3 
(TO.5) 

This integral is an example of a vector integral, which actually consists of three separate 
integrals, one for each direction in space that will give the component of the electric field in 
that direction. Each separate component integral is an integral over the volume where the 
charge is located. 

Charge Density: We will regularly encounter in electrostatics three types of charge densities 
associated with 1-,2-, or 3-dimensional charged objects that are defmed as follows 

volume charge density per') = dq 
dV 

surface charge density 0'(1") = dq 
dA 

linear charge density ..1.(1") = dq 
dL 

where dV, dA, dL are the infinitesimal volume, area, and line element respectively. These 
charge densities may be uniform or vary with position on the charged object. 
Charge Density 
When describing the amount of charge in a continuous charge distribution we often speak of 
the charge density. This function tells how much charge occupies a small region of space at 
any point in space. Depending on how the charge is distributed, we will either consider the 

Summary of Problem Solving Session 1 p.3/4 



Summary of Problem Solving Session 1 8.02 

volume charge density p = dq / dV , the surface charge density 0" = dq / dA , or the linear 

charge density A = dq / d£, where V, A and f stand for volume, area and length respectively. 

Important Equations 

Electric field from a discrete charge distribution: 

Electric field from continuous charge distribution: 

E- _ I "q; . _ I "q;­
- --L.,-r - --L.,-r 

4;rco ; h12
; 4;rco ; hl3 

; 

E= _l_ fd? f 
4;rco v r -

Charge Densities: 

!
PdV for a volume distribution 

dq = O"dA for a surface (area) distribution 

Adf for a linear distribution 

Important Nomenclature: 
A hat (e.g. A) over a vector means that that vector is a unit vector ( IAI = I ) 

The unit vector f points from the charge creating to the observer measuring the field. 

Summary of Problem Solving Session 1 p.4/4 
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------- --------

IO~~1 I ;~ 9F Chq r0{ 
d Q ~ JldL 

- ~- :: {L 

L L 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Problem Solving 1: Continuous Sources and Vector Calculus 

Introduction: In this first problem solving session, you will learn how to solve for the 
electric field of a uniformly charged rod. This will involve setting up a vector integral. 

Readings: Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.12 

When we charge up an object, through a physical transfer of char~ or induction; 
we may typically place between a nano-coulomb and a micro-cOufomb of charge, 
10-9 C < Q < 10-6 C , on the object. Since the charge of the electron is e = 1.602 x I 0-19 C , 

this means that we are placing between 1010 and 1013 electrons on the object. The 
electric field due to a small number of charged particles can readily be computed using 
the superposition principle. But what happens in our case when we have a very large 
charge distributed over some region in space? If we are trying to determine the electric 
field due to this charge distribution at a distance that is large compared to the distance 
between the charged objects for example electrons, then we can assume that the electrons 
form a continuous distribution of charge. 

Let' s consider the system shown in Figure 1. Consider the infinitesimal element 
with charge !'!.q" contained in some small volume element !'!. V; . 

C kOooge.l 

f) --l --"...:. I 
5 ~r-r 

r ' , , 

{) (or"l ol~ S = /s I ~ l/-~\l 

Figure 1 Electric field due to infinitesimal element with charge !'!.q, 

We shall assume the charge distribution is continuous. In the limit where !'!.V; 

shrinks to 0, the charge per unit volume, p(f') (lowercase Greek letter rho) is called the 
volume charge density, and is defined as 

s 1-1 



(TO.!) 

The charge density may be uniform in space or may depend on the position 1" with 
respect to some choice of origin. The amount of charge, dq, in an infinitesimal volume 
element dV, located at the position 1" , is 

~ 

dq = p(r')dV (TO.2) 

The electric field due to each infinitesimal charged element at a point P is given 
by Coulomb's Law: k 

,j e 

dE = _1_ dq r (TO.3) 
4Jr&o 1" ' 

In this expression I" is the distance from the infinitesimal charged element to the point 
P where we are determining the electric field. The unit vector r points from the 
infinitesimal charged element to the point P (see Figure 2). 

,. , , , 

, 
f c 

'-, 

Figure 2 Electric field at the point P due to infinitesimal element of charge dq 

The unit vector is given by 

- -f - -, 
A r-r r-r 
r=--=--

11'-1"1 I" 
(TO.4) 

where I' is the position vector for the field point P with respect to the choice of origin, 
and 1" is the position vector for the infinitesimal element with charge dq, and 

I" = II' - 1"1 is the distance from the infinitesimal charged element to the point P. 

sl-2 
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Figure 3 Vector geometry for the source and field point 

We can use the superposition principle: the total electric field is the vector sum of all 
these infinitesimal contributions. This sum is just the integral /I§J/. 'Sf??rp$',ffo/J \, 

E = _1_ fdq f = _1_ f p(I")(1' - 1")dV 
4n6"o v r ' 4m:o v II' - 1" 1

3 (TO.S) 

This integral is an example of a vector integral, which actually consists of three separate 
integrals, one for each direction in space that will give the component of the electric field 
in that direction. Each separate component integral is an integral over the volume where 
the charge is located. -

Charge Density: We will regularly encounter in electrostatics three types of charge 
densities associated with 1-, 2-, or 3-dimensional charged objects that are defined as 
follows 

volume charge density 

suiface charge density 

(_') dq pr =-
dV 

0"(1") = dq 
dA 

linear charge density ,1,(1") = dq 
dL 

where dV, dA , dL are the infinitesimal volume, area, and line element respectively. 
These charge densities may be uniform or vary with position on the charged object. 

PROBLEM 1: (answer on the tear-sheet at the end) 

A hollow cylinder, of length L and radius a, is uniformly charged with total charge 
Q. There are no end caps on the cylinder. 

51-3 



(a) What is the surface charge density (J? o:JL 
f :lJcL 5'A :: 21{' tJ, L G- A-

0':: --.. {~ 5C1: P (n !1ohS '2 fi'q L 
(CIt) do 

(b) What is the linear charge density 2? 

~: iL-
L 

(c) What is relationship between (J and 2? 

~ ,otahd (i1(OLYIJ. 
\ 

, 
(tl CI: C (rde 

PROBLEM 2: (answer on the tear-sheet at the end) 

A solid cylinder, of length L and radius a , is uniformly charged with total charge Q. 

(a) What is the volume charge density p ? 

VolllfYt 

(b) What is the linear charge density 2? ,. )' 
f Q. S I( { G Or 5-/ dl Q --L 

(c) What is relationship between p and 2 ? 

Not ndtt1{ J. 0,1 Ild ( ;rcr 
t1a t v o{ J; I'l ear ')(/to 

l ~ l/..t ~rrtt'- • 11 Cl (a'1 
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PROBLEM 3: Electric Field of Uniformly Charged Rod 

In this problem you will learn how to set up an integral expression for the electric field 

E- (-) I Sdq , r =-- -=-r 
47rBo v r ' 

of a rod of length L that has an amount of charge Q uniformly distributed. (You may 
assume the rod is a I-dimensional object.) 

... L .. 
Q 

Source Coordinates and Field Point Coordinates: 

(a) Choose a 2-dimensional coordinate system and draw it in the space below for the 
wire. Clearly indicate your choice of origin, axis, and unit vectors. 

'] '0 

L 
(b) Choose an infinitesimal charge element dq. Clearly show where you located dq 

on the wire. Find an expression relating dq, Q, L and your choice of length 

for dq. Q ~ (L JAi ' X - ie QOP)' d~ 

CT~fBI ~o ria/It f lues d~ --=- r). J .a 

!,Jho!t h\] I' kflO~ (11:
5 

- !f J L 
( c) Write down a vector expression for the source position vector i" in terms of 

your source coordinates. These source coordinates will be your integration 
variables. 

D ;J ~Q'l<t C{ 101 lel'~ ~t 

-"'\ 

df I' ( ;: 

d l 5 +0(~ 15 fro'l. to 
d.l Jt 51-5 

I I 

1 

F(~ ~ 



(d) Consider a field point P that lies off both the axis of the wire and the 
perpendicular bisector of the wire. Using your same choice of origin, axis, 
coordinates, and unit vectors, write down an expression for the position vector 
rep) for the field point P. 

field point 

) fe. (5 e. Cl i>tJr 

;f Card ~.> a. ) 

he Cell ~ / (Q )"<\7)) 
--' 

?(~J 
- :J 

(e) Write down a vector expression for the vector from the source to the field point, i deL­
r - r' . This is a problem in vector subtraction. Then find the magnitude of this 
vector, I'i I [ -'> - ~ J - d.xi 

V Il y a: ltv"'/-- f 5 = r -r \ _ , ~-
r = If - 1"1 add(i~ )( I 

.9 f'thll to fct/ 
in the usual way by taking the square root of the square of the. components fth . 
vector f-r' . I Isrq.1(( rrwf d 

Ovc p( (ha.rue.­
/"'\ -USe.. 8:1 

/ \-le'wrJ lJ~) 
Js:: ~de' 

(f) Now find an expression for the unit vector, f, located at the field point that 
points from the source to the field point, in terms of both source and field point 
coordinates. The unit vector is given by 

Ol\ll c~(~la~L f' 
~ 
~ 

(TO.6) 

, - JlLll 
f((rl{, - ~ 51-6 
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(g) Using your results, find a vector expression for the infinitesimal electric field dE 
(in terms of your unit vectors for the field point P) for the contribution of dq to 
the electric field using Coulomb's Law: 

dE=_I_dq r 
41Z"Bo r' 

(h) Using your results fTOm part (g), set up an expression for the vector integrals for 
the total electric field atP usmg 

E= _ l _ f d; r. 
4;rcO wire r 

Your expression should contain two separate integrals for the two directions that appear 
in the decomposition of r. You are integrating over the source dq , which means each 
separate integral is over the length of the rod. For each direction, set up an expression for 
the integral with the appropriate limits according to your choice of coordinates. 

(i) If P lies on the perpendicular bisector of the wire, explain why any of you 
integrals should vanish. Can you show this explicitly by doing the integral? 

sl-7 



U) Integrate you're the integrals you found in part (i) to find an expression for the 
vector field E as a function of your field point coordinates. (You may find this 
integral non-trivial in which case try to do it at home.) 

51-8 
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Summary of Class 2 8.02 

Topics: Electric Charge; Electric Fields; Dipoles; Continuous Charge Distributions 
Related Reading: Course Notes Section 1.6; Chapter 2 

Topic Introduction 
Today we review the concept of e~harge, and describe both how charges create 
electric fields and how those electric fields can in turn exert forces on other charges. Again, 
the electric field is completely analogous to the gravitational field, where mass is replaced by 
electric charge, with the small exceptions that (I) charges can be either positive or negative 
while mass is always positive, and (2) while masses always attract, charges of the same sign 
~~I (opposites attract). We will also introduce the concepts of understanding and 
calculating the electric field generated by a continuous distribution of charge. 

Electric Charge 
All objects consist of~ charged electr a~iyely ch.!!!.:""ge_d_ p,-r_o_tons, and hence, 
depending on the balance of the two, can themselves be either positively or negatively 
charged. Although charge cannot be created or destroyed, it can be transferred between 
objects in contact, which is particularly apparent when friction is applied between certain 
objects (hence shocks when you shuffle across the carpet in winter and static cling in the 
dryer). 

Electric Fields 
Just as masses interact through a gravitational field, charges interact through an electric field. 
Every charge creates around it an electric field, proportional to the size ofthrc arge and 

d~asing as the inverse square of the distance from the charge ( E = ke ~ f). If another 

charge enters this electric field, it will feel a force (F:: = q:ijJ. If the electric field becomes 

strong enough it can actually rip the electrons off of atoms in the air, allowing charge to flow 
through the air and making a spark, or, on a larger scale~lliDg. 

'1"' 5pfll:,.,~ ';" 
Charge Distributions 
Electric fields "superimpose," or ~just as gravitational fields do. Thus the field generated 
by a collection of charges is just the sum of the electric fields generated by each of the 
individual charges. If the charges are discrete, then the sum is just vector addition. If the 
charge distribution is continuous then the total electric field can be calculated bY integrating 

the electric fields dE generated by each small chunk of charge dq in the distribution. 

, 
clO('( I - \.,.h ! 

rtf , .l'i ( 
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Summary of Class 2 8.02 

Charge Density 
When describing the amount of charge in a continuous charge distribution we often speak of 
the charge density. This function tells how much charge occupies a small region of space at 
any pomt III space. Depending on how the charge is distribute , we will either consider the 
volume charge density p = dq / dV the surface charge density = dq / dA or the linear 

charge densi A = q 

Electric Dipoles 2 Ofe De"'e, d ?l.pof ~ 
The electric dipole is a very common charge distribution consisting of a positive and negative 
charge of equal magnitude q, placed some small distance d apart. We describe the dipole by 

!' 
its dipole moment p, which has magnitude p = qd and points from 
the negative to the-positive charge. Like individual charges, 
dipoles both create electric fields and respond to them. The field 
created by a dipole is s own at eff11ts momen is shown as the 

++-+-+--l-1-'l-'H - .' purple vector) . When placed in an externiil'1ield, a dipole will 
attempt to rotate in order to align with the field, and, ifthe field is 
non-uniform in strength, will feel a force as well. 

Important Equations (rot» (j t @ 
1

- 1 qQ Electric force between two charges: FE = k, - , ' 
r 

Repulsive (attractive) if charges have the same (opposite) signs 

Strength of electric field created by a charge Q: E = k, ~ f = k, ~ i' , 
r r 

f points from charge to observer who is measuring the field 

Force on charge q sitting in electric field E: FE = qE 

Electric dipole moment: liil = qd 

Points from negative charge -q to positive charge +q. 
Torque on a dipole in an external field: f = ii x E 

Electric field from a discrete charge distribution: E = _1_ L ~ f = _1-L ~ i' 
47l'Bo i hi' I 47l'Bo i 1,,1' I 

Electric field from continuous ,?harge distribution: E=_I_fdq f 
47l'Bo v r ' 

f : ~ O~ ~ 
dV ~A 

J\~ # 
" jtC, 
" Charge Densities: 

!
PdV for a volume distribution 

dq = erdA for a surface (area) distribution 

Ad f! for a linear distribution 

- d; J I~fld 'prt'i!f-Importa~t Nomencla ure: . 
'1/(1" A hat (e.g. A) over a vector means that that vector is a unit vector ( IAI = 1 ) 

( 
. The unit vector f points from the charge creating to the observer measuring the field . --

Summary of Class 2 p.2/2 



Class 02: Outline 

Answer questions 
Hour 1: 

Review: Electric Fields 
Charge 
Dipoles 

Hour 2: 
Continuous Charge Distributions 

Last Time: Fields 
Gravitational & Electric 

Gravitational & Electric Fields 

SOURCE: Mass M, Charge q, (±) 

CREATE: 

FEEL: 

- G
M

" g=- - , r 
r -

F =mg FE= qE '" / This is easiest way to picture field 

I-Io/ d ~t- floJh I' hOw 

b~ '- 0at~ ;" ret- ~ 0.0(J~Jf 

tlvw 0, 

Ov1 ,f 
e ~ \frJ l 

De QetrL f 

( f 

/Yd II ( P /(p/ 

'-LIC( I'. 
, J 

[ ,,"c. 

QI,.f ' 

-. 
, t~ liJ 

1 
-) 



Electric Field lines 

1. Oilection of field at any point i~o field 
line at that point "\ '~ 

2. Field lines point away from positive charges 
and terminate on negative charges 

3. Field lines never cross each other 

PRS Questions: 
Electric Field 

.... 

The force between 
the two charges is: 

0% 1. Attractive 

0% ® Repulsive 
0% 3. Can't tell without more information 
0% 

Class 02 

(j(P 

+It Strfft€ 
--~----------------------
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1'10 lv ':4\. , 
'MI r'l;p1 
\~ nj\11 1f 
(-vedo,r 

PRS: Field Lines ~ 
Electric field lines show: 

1. Directions of forces that exist in space at all 

G
limes. 

2. Directions in which charges on those lines will 
accelerate. -------3. Paths that charges will follow. 

4. More than one of the above. 

5. I don't know. 

'" .". . ...... . 
Remember. Don't pick up until you are ready to answer ""."1 

In-Class Problem 
p 

Is 
I 

,~~ __ J.bv.f.~ t 
- q W q 

r 
Consider two. point charge of equal magnitude but 
opposite signs, separated y a distance d. Point P 
lies along the perpendicul bisector of the line 
joining the charges, a dis nee 5 above that line. 
What is the E field at P? 

Two PRS Questions: 
E Field of Finite # of 

Point Charges 

.... 

no± (Ut (}..((-

flo W' 1>.f,1 Clh,;ech {ono.! 
vir ; t ",ill ctC[elef~+e - ....... 

tes /-L ~U(' (' 
.; 

J? j'~lYes b 

-



PRS: Equal Charges 

- 1Jcqs . 
. E= • In j 

[
, d' 

s"+'4 

S. I Don't Know 

Electric field at Pis: 

2. E=-[ 1k;~r' i 
s'+-

4 

PRS: 5 Equal Charges 

Jim 
1SiX equal positive char~es q sit at the vertices of a 
regular hexagon with s,des of length R. We remove 
the bottom charge. The electric field at the center of 
the hexagon (point P) is: 

2 E;- 2kq , 
. - - R' J 

- kq, 
4. =- R' J 

6. I Don't Know 
~, ~.~.~. ~. 

P~btl h> 
iJ r \',h;((, 

p.,+ e cd 
C 11tv-0f Cim 

Charging 

Class 02 
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How Do You Get Charged? 

• Friction 
• Transfer (touching) 

• Induction 

G} <-I ~ __ N_e_ut_ra_1 __ ~-,I 

Demonstrations: 
Instruments for 

Charging 

Electric Dipoles 

A Special Charge Distribution 

Class 02 
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5 
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Electric Dipole 
Two equal but opposite charges +q and -q, 

separated by a distance 2a ..., 

l~ I p 2a 

• 
ji points from negative to positive charge 

Why Dipoles? 
... ~ • 

ill, 
• 

Nature Likes To Make Dipoles! 

o ~ft ~\} 
C ~ s 

~ 6 .• , 

' . 

Dipoles make Fields 

Ie ·" 

Class 02 
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Electric Field Created by Dipole 
Thou shalt use 
components! 

r r &0 t.y, 
- =- =-I+- J 
,; ? ? ? 

PRS Question: 
Dipole Fall-Off 

PRS: Dipole Field 

As you move to large distances r away from 
a dipole, the electric field will fall-off as: 

0% 1. 1/"" just like a point charge 

0% 2. More rapidly than 1/", 
0% More slowly than 1/" 
.... 4. I Don't Know 

Class 02 

VI U 

fa l"lI/a /-e 

ar Jp yO( !ike, ;t- - UJi s-f ~I I (,OFl-! 
( c 

(' 

P,n Cu tt tetr;-
I 
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Take the limit r» a , 
-.~-- r <;)e-h ("~ /Iy .b 1<.) 

You can show ... ~I.t( \ I()Q~ {~ ( v1 (,v li\ ''I - /oJ! L 
E ~ 3p 3 sin BcosB 

x 41Z"col" 
1 ie) CCV\( Ie ectd () -ho'" tI vi 

Shockwave for Dipole 

Dipole Visualization 

J.\&O 
Dipoles feel Fields 

Class 02 8 



Demonstration: 
Dipole in Field 

Dipole in Uniform Field 

~/-~~:q : F. ! ==2~:COs Bl + sin Bj) 
L==~;;;;cc,~==- ~ rorq.je~ Aed I _ _ _ _ _ CV'H 
Tolal Nel Force: F~, =F. +F. = qE+(- q)E = 0 

Torque on Dipole: Ii = rx F = px.EI 
" = rP+ sinCO) = (2a )(qE)sin(O) = pE sin(O) 

p tends to align with the electric field 

Torque on Dipole 

Total Field (dipole + background) 
shows torque: 

Animation 

• Field lines transmit tension 
• Connection between dipole field and 

constant field "pulls· dipole into alignment 

Class 02 

1- f:el I:~:; +r oj."!; filet +-12" s; o"l9lf 

~ (c\ b e~lls 
d'iI)pole €i, () of (.f ki 1;11{ 

;j d 
k pvll 

v'{lr ~;W I j £ X f 
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PRS Question: 
Dipole in Non-Uniform Field 

~ .• 

PRS: Dipole in Non-Uniform Field 

;/. E A dipole sits in a non-uniform 
r -/' electric field E 

Due to the electric field this dipole will 
feel: 

Do/. 1. force but no torque 

Do/. 

0% 

0% 

2. no force but a torque 

(§J both a force and a torque 

Y. neilher a force nor a torque 

Continuous Charge 
Distributions 

Class 02 
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Continuous Charge Distributions 
Break distribution into parts: 

Q = L /).q; --> ffI dq 
; v 

E field at P due to !J.q 

- tJ.q - dq 
tJ.E = k,-, r -->dE=k,-, r 

r r 
r " 

" " Superposition: 

Continuous Sources: Charge Density 

R 

L 

Length: L 

L 

dQ=pdV 

p=Q 
V 

'I 
dQ = a dA 

a =Q 
A 

dQ ddL 
A=Q 

L fIII n 

Examples of Continuous Sources: 
Line of charge 

Lcngth= L 

L 

Class 02 

Link to 
applet 
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Examples of Continuous Sources: 
Line of charge 

Length = L 

L 

dQ = AdL 

.<.=Q 
L 

Link to 
applet 

Examples of Continuous Sources: 
Ring of Charge 

dQ =.<. dL .<.=.-iL 
21lR 

Link to 
applet 

Examples of Continuous Sources: 
Ring of Charge 

dQ =.<. dL .<. = .-iL 
21lR 

Class 02 

Link to 
applet 
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Example: Ring of Charge 

/!.fI 
! 1/ a 

----{ 11---i1't--:c-_--1P 
x 

P on axis of ring of charge, x from center 
Radius a, charge density '-. 

Find E at P 

Ring of Charge 
d" 

1) Think about it .jf';~l" 
E~ = 0 Symmetry! .. :' " ..... ~ - -. ". . !;.: -'" ." o j , P dE 
Mental PIcture... I ~ • · .. i '< '\:,. " 

. dE... dE 

2) Define Variables 

dq=AdI =A(adrp) 

r=.Ja2 +X2 

Ring of Charge 
d'i dq J..adm 

3) Write Equation .. '~~·l-' = yo ,. _ 'Ij ~:·.r=Ja2+x2 
- r r i.- U - . 

dE=k,dq -:;:=k, dq , -' i-: .. . i ·· ... 
r r r i-; f ' 0 ,', f>. .IE, 

, I~ 
dE, dE 1..----

Class 02 13 



Very special case: everything except dq is constant 

fdq= r J.,adrp = J.,a r drp = J.,·a2tr 

=Q 

Ring of Charge 
5) Clean Up 

x 
Ex=k,Q, 

r 

E =kQ x 
x ' ( 2 ,)312 a +x 

- x ' 
E=k,Q 312 i 

(a' +x' ) 

--' __ -"'1,. P dE, 

' ~ 
_.;;... ___ d£.~ dE. 

6) Check Limit a ~ 0 

x 
Ex ~k,Q 3/2 

(X2) 

In-Class: Line of Charge 

f __ ~"E. ..... J.L j 

,~)\~-
-f +1 

Point P lies on perpendicular bisector of unfformly 
charged line of length L, a distance s away. The 
charge on the line is Q. What is Eat P? 

Class 02 

E == 

{:, l-<Q 
(r, 1.., >t' t.) fiJI z 
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Hint: Line of Charge 

f ~ 1 iL 
0/'\1 ...... ! .... .... p. ......... .. 

" i \··~.r=.Jsz. +x'~ 
s i ........ 

I >... dq = J.dx' 
i o( '-.ft ' 

····L·r--~· ~- -~p:I::;;;..··· ... 
-2" x' +t 

Typically give the integration variable (x ) a "primed" 
variable name. ALSO: Difficult integral (trig. sub.) 

E Field from Line of Charge 

E=k Q ~ 
e S(S2 + L2 / 4Y'2 J 

Point charge 

- Q - 4 ' lim E-> 2ko - j =2k, - j Infinite charged line 
g<L Ls s 

/,\ 

In-Class: Uniformly Charged8 

(x > 0 ) 

P on axis aT disk of charge, x from center 
Radius R, charge density a. 

Find Eat P 

Class 02 
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hesteJ 

(--- d)d t4IS 

fr.- (~AJ ) I,,(/'/If 

d :jOf'Cf 

~;()f()le 

I 
(5 

s;~; lot 

• 

dlt 



Disk: Two Important Limits 

['Ile~~i E -~[I x J' di:Jk- 2 ( ' ,)112 1 
&0 x +R 

lim 
;r;.»R 

- - 1 Q, 
Edlsi:~-,- I 

47Z'8" x 
Point charge 

Infin.!!e £!!arged plane 

Scaling: E for Plane is Constant 

1) Dipole: E falls off like 1/rJ 
2) Point charge: E falls off like 11r2 

3) Line of charge: E falls off like 1/r 
4) Plane of charge: E constant 

j 

{ Ie Id :, $d"'t-

tb t'" I ~ -r I 0, a e 

Class 02 
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Summary of Class 04 8.02 

Topics: Gauss ' s Law 
Related Reading: Course Notes: Sections 4.1-4.2, 4.6 

Topic Introduction 

Real qt..tl J:t, ~M--ers 1'0 
----- I f!lf ('yo. p~ (:; r;,J~ 

PJ LJ C(Cft1 W'1 flt~J 
In this class we look at a new way of calculating electric fields - .Q!tuss's law. Not only is w~ 7 ; I1tetC5kJ 
Gauss's law (the first of four Maxwell's Equations) an exceptional tool for calculating the _ I( ,. 
field from symmetric sources, it also gives insight into why E-fields have the r- ; PI) 
dependence that they do. (lory f\tQr 

The idea behind Gauss's law is that, pictorially, electric fields flow out of and into : f - will 
charges. If you surround some region of space with a closed surface (think bag), thenr1?~} ~..-(e 
observing how much field "flows" into or out of that surface tells you how much charge ~ C 
is enclosed by the bag. For example, if you surround a positive charge with a surface ~;;;y I- ':- i11q 
then you will see a net flow outwards, whereas if you surround a negative charge with a 
surface you will see a net flow inwards. ThIs :5 
Electric Flux hi" ] 

The picture of fields "flowing" from charges is formalized in the ~efinition of the electric E 
flux. For any flat surface of area A, the flux of an electric field E through the surface is 

, 
o COJ,5P/ 

h Co.i( 
f;td 

- - - -Y"l VC I'" P(<' 
defined as <1> £ = E· A where the direction of A is normal to the surface. This captures 

the idea that the "flow" we are interested in is through the surface - if E is parallel to the &:hS'~;t'- ~ 

surface then the flux <1> £ =0 . -c.,,1l - (1[1 

We can generalize this to n'on-flat surfaces by breaking up the surface into small patches 5~~ ~(~ i( 
which are flat and then integrating the flux over these patches. Thus, in general: . ) tl.t .-

<1> £ = HE.dA 
s 

Or-.e of ~ 
Gauss's Law 
Gauss's law states that the electric flux through any closed surface is proportional to the 
total charge enclosed by the surface: 

<1> £ =qpE.dA= q,", 
s liD 

A closed surface is a surface which completely encloses a volume, and the integral over a 

closed surface S is denoted by qf. .c ~ (,o,wre/ (Q{ Joe,. /lo t I'Vl ftU 

Symmetry and Gaussian Surfaces 
Although Gauss's law is always true, as a tool for calculation of the electric field, it is 
only useful for highly symmetric systems. The reason that this is true is that in order to 
solve for the electric field E we need to be able to "get it out of the integral." That is, we 
need to work with systems where the flux integral can be converted into a simple 
multiplication. Examples of systems that possess such symmetry and the corresponding 
closed Gaussian swfaces we will use to surround them are summarized below: 

Summary for Class 04 p.1I2 
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Summary of Class 04 8.02 

Symmetry System Gaussian Surface 

Cylindrical Infinite line Coaxial Cylinder 

Planar Infinite plane Gaussian "Pillbox" 

Spherical Sphere, Spherical shell Concentric Sphere 

Solving Problems using Gauss's law 
Gauss 's law provides a powerful tool for calculating the electric field of charge 
distributions that have one of the three symmetries listed above. The following steps are 
useful when applying Gauss ' s law: 

(1) Identify the symmetry associated with the charge distribution, and the associated 
shape of "Gaussian surfaces" to be used. 

(2) Divide space into different regions associated with the charge distribution, and 
determine the exact Gaussian surface to be used for each region. The electric field 
must be constant or known (i.e. zero) across the Gaussian surface. 

(3)For each region, calculate q"" the charge enclosed by the Gaussian surface. 

(4) For each region, calculate the electric flux<1> E through the Gaussian surface. 

(5) Equate <1> E with q", 1 Go, and solve for the electric field in each region. 

Important Equations 

Electric flux through a surface S: 
s 

Gauss's law: 

Important Concepts 

Gauss's Law applies to closed surfaces-that is, a surface that has an inside and an 
outside (e.g. a basketball). We can compute the electric flux through any surface, open or 
closed, but to apply Gauss's Law we must be using a closed surface, so that we can tell 
how much charge is inside the surface. 

Gauss ' s Law is our first Maxwell's equations, and concerns closed surfaces. Another of 

Maxwell's equations, the magnetic Gauss's Law, <1>8 =q.f>"ii.dA=o, also applies to a 
s 

closed surface. Our third and fourth Maxwell's equations will concern open surfaces, as 
we will see. 

Summary for Class 04 p.2/2 



Class 04: Outline 

Hours 1 & 2: 

Working in Groups 

Gauss'Law 

Groups 

Introduce Yourselves 

Please discuss: 

What is your experience in E&M? 
What were the best group practices that you 
observed in 8.01 ? 
What do you expecVwant from class? 

.... . 

Did you have group issues in 8.017 If so, how to 
avoid them? 

If you did not participate in TEAL style groups. 
please ask your group members to answer any 
questions you may have. 

Class 04 1 



~~.:;:. .. 

Group Problem: 
Discovery Applet 

Play with the applet and 
answer the worksheet 

questions 

Gauss's Law 

The first Maxwell Equationl 

A very useful com~utational technique to find the 
electric field E w en the source has 'enough 
symmelry', 

-p}JPfr Ill q ('v 51 

Gauss's Law - The Idea 
• 

~I~ 
OQ~ 

/~ I . .' J 

'3b € 

The total 'flux" of field lines penetrating any of 
these closed surfaces is the same and 
depends only on the amount of charge inside 

.... ~ .. 
J 
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Gauss's Law - The Equation 

; E.dA= qin ~ ~- rM 
closed EO 
surface S . 

Electric flux <liE (the surface integral of E over 

closed surface S) is proportional to charge 

inside the volume enclosed by S 

Now the Details 

Electric Flux <l>E 

Case I: E is constant vector field 
perpendicular to planar surface S of area A 

<PE = +EA 

~ . ' 

", .. 

Our Goal: Always reduce 
problem to this 

Class 04 
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Electric Flux Il>E 

Case II: E is constant vector field directed 
at angle B to planar surface S of area A 

Il> E = HE.dA 
dA = dAn 

PRS: Flux 15' 
The electric flux through the planar surface 
below (positive unit normal to left) is: 

@\ ~ 
iii 1. positive. 

~ negative. 
iii 3. zero. 

iii 4. I don't know ~ ... 

§j =-cloGed,--______ ----, 
~JrWe Gauss's Law 

<DE = #E.dA= qin 

closed liO 
surfaceS 

Note: Integral must be over closed surface 

Class 04 
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Open and Closed Surfaces 

A rectangle is an open surface - it does NOT contain a volume 

A sphere is a closed surface - it DOES contain a volume 
..... 11 

Area Element dA: Closed Surface 

For closed surface, dA is normal to surface 
and points outward 

(from inside to outside) 

<I>E> 0 if E pOints out 

<I>E < 0 if E points in 

,. .• 

Electric Flux <l>/E 
Case III : E not constant, surface curved 

-d<l>E=E·dA 

<I> E = Hd<l> B 

Class 04 
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PRS: Flux thru Sphere []J]J 
The total flux through the below spherical 
surface is 

0% 1. positive (net outward flux). 
0% 2. negative (net inward flux). 

0% @ zero. (\01- i<t61l.e 
0% 4. I don't know ", .• 

Electric Flux: Sphere 
Point charge Q at center of sphere, radius r 

Arbitrary Gaussian Surfaces 

~1Ji {lvl' c \..019(.. ~l~e ~ 

<if - Q (fl = E·dA=----- - o,~---· E 
8 0 ./1 ' closed 

surfaceS 

;I" A' 
True for all surfaces such as S" S2 or S3 
Why? As A gets bigger E gets smaller 

O'{o<. ,. 
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f'1 iA 7 tt-etC 
f-, Cq I~ -t 
h[JIHpk li"t [S 

Choosing Gaussian Surf~ce 
\ I I S

' Jr - Q ~\ I />' <D E = J.lE.dA = -
'- 17 dosed 8 0 

.-- Q Qh--i surfaceS , ~·.r~ True for ALL surfaces 
/ - -\ • Useful (to calculate E) 

L ..... i , for SOME surfaces 

Desired E: Perpendicular to surface and constant on ... L 
surface. JL 

0=1 x is EA or .FA. 

other E: Parallel to surface. /"_ -h J 
Flux is zero c;.- Gt"fi MT 

Symmetry & Gaussian Surfaces 
Desired E: peraendicular to surface and constant 
on surface. So Gauss's Law useful to calculate E 
field from highly symmetric sources 

Source Symmetry Gaussian Surface 

Spherical Concentric Sphere 

Cylindrical Coaxial Cylinder 

Planar Gaussian ' Pillbox" 

Applying Gauss's Law 
1. Based on the source, identify regions in 

which to calculate E field. 
2. Choose Gaussian surfaces S: Symmetry 
3. Calculate <1> , =#E .dA 

4. Calculate q'n' charge enclosed by surface S 
5. Apply Gauss's Law to calculate E: 

<l> E = #E . dA = qin 
closed &0 ~ 

surfaceS ........ ll 

Class 04 
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Examples: 
Spherical Symmetry 

Cylindrical Symmetry 
Planar Symmetry 

Gauss: Spherical Symmetry 
+0 uniformly distributed throughout non-conducting 
solid sphere of radius a. Find E everywhere 

Gauss: Spherical Symmetry 

Symmetry is Spherical 

E=Ef 
Use Gaussian Spheres 

Class 04 

ZEit ~ 



c ho 11 1/." 'f-IJ 0.l. 
chvrqr d ~I:lfu )h 

~ ________________ ~,o~ 
\ __ E __ y ~~_(1 ___ 7~[~~~_J_J __ __ Gauss: Spherical Symmetry 

Region 1: r> a 

Draw Gaussian Sphere in Region 1 (r> a) 
~~ -- -

, ' 
"fV,;, ---', 

, ' , ' 

! ~ a \ , , , , , , , , 
, 
, - " ',-----------\ 

Gaussian" 
sphere I 

Note: r is arbitrary 
but is the radius for 
which you will 
calculate the E field! 

} 

Group Problem: Outside Sphere 
Region f: r> a , 

Use Gauss's Law in Region (r> a) 

, , , 
, 

, , Again: Remember that 
r is arbitrary but is the 
radius for which you 
will calculate the E 
fieldl 

Gauss: Spherical Symmetry 
Region 2: r < a 
Total charge enclosed: 

q.=(j:}=(:: )Q OR q.=pv 

Class 04 
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· ~-= PRS: Spherical ~ ~ 

We just saw that in a solid sphere G 
of charge the electric field grows 
linearly with distance. Inside the a Q 
charged spherical shell at right 
(r<a) what does the electric field 
do? 

0% 6) Constant and Zero 
0% 2. Constant but Non-Zero 
0% 3. Still grows lineany 
0% 4. Some other functional form (use Gauss' Law) 
0% 5. Can1t determine with Gauss Law 

Demonstration 
Field Inside Spherical Shell 

(Grass Seeds): 

-------

Gauss: Planar Symmetry 
Infinite slab with uniform charge density cr 
Find E outside the plane 

\ . Class 04 

~.XIV'{ r (0 bl Qv\1 

~ .• 

o o 

hy-

LEtt 
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5fit('(caily 
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Gauss: Planar Symmetry 

Symmetry is Planar 

E=+Ei 
Use Gaussian Pillbox 

Note: A is arbitrary (its 
size and shape) and 
should divide out 

E 

Gauss: Planar Symmetry 
Total charge enclosed : q," = lTA 

NOTE: No flux through side of cylinder, only endcaps 

<I> F. = dif E· dA = Edif dA = EA,_,. 
s s 

= E(2A) = g," = lTA 
80 80 

() (k 
E + E 

E - ~I=> E- IT Ii to rightjU 
-2sor -~l-i to left 11 

- .-

- .. -
E for Plane is Constant???? 

1) Dipole: E falls off like 1/r3 

2) Point charge: E falls off like 1/r2 
3) Line of charge: E falls off like 1/r 
4) Plane of charge: E constant =-

M>!) 

Class 04 
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PRS: Slab of c,lJirge 
Consider positive, semi-infinite (in x & y) flat sla~ 0 

fi ~l<. z-axis is perp. to the sheet, with center at z = O. 

1 At the plane's center (z = 0), E ~ '(1 

[2d P " tzz =o ; t-, 

0% 1. points in the positive z-direction . ~ j) 
0% 2. points in the negative z-direction . 

0% ~ points in some other (x,Y) direction. 
0% 4 . is zero. 
0% . I don't know . 

Group Problem: Charge Slab 
Infinite slab with unifonm charge density p 

Thickness is 2d (from x=-d to x=d). 
Find E for x > 0 (how many regions is that?) 

voVw. ~tJl 

EhC lo.Y'> C\"'or~e 

Gauss: Cylindrical Symmetry 
Infinitely long rod with unifonm charge density l. 
Find E outside the rod. 71 

~ 
,,:11 £ +/ 

+1 
+1 --+ 
J ,,' 
~ 

Class 04 
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bA,h Dr 
9\1~I6lU' 
5 Vrtc.(P 

Gauss: Cylindrical Symmetry 

Symmetry is Cylindrical 

Use Gaussian Cylinder 

Note: , is arbitrary but is 
the radius for which you 
will calculate the E fieldl 

t Is arbitrary and should 
dMde out 

Gauss: Cylindrical Symmetry 
Total charge enclosed: q .. = Ai 

Class 04 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics: 8.02 

In Class WOSD2_3 Solutions: Field from a Slab of Charge 

Ouestion: 
A semi-infinite slab of charge with charge density p extends from x = -d to x = +d. Find the 
electric field everywhere. 

Solution: 
1. Draw Picture 
In the interest of saving space I only show the pictures with Gaussian surfaces drawn (see below) 

2. Think 
Considering symmetry, we note that the electric field at the center of the slab must be zero. To 
see this imagine putting a test charge right at the center of the slab. It will feel no net force (it 
would be pushed to the right by the charge to the left exactly as much as it would be pushed to 
the left by the charge to the right), so the electric field there must be zero. 

The symmetry is planar so we will use Gaussian pillboxes (cylinders of cross-section A and 
height x) and will place one end of the pillbox atx=O to take advantage of the fact thatE=O there. 

There are two distinct regions of space, inside and outside of the slab. By symmetry the 
magnitude of the field will be the same on the left as on the right of the slab , but will point in the 
opposite direction. We wi ll only calculate explicitly for x> O. 

2. Calculate for Each Region 
Region I: Outside the slab (x > d) 

-d o d 

In Class Problem Solution 

The charge within this pillbox is Q,,,, = pVo " = pAd. 

The flux (integral of the electric field over thi s pillbox) is zero 
on the sides (because E is perpendicular to the area normal 
there) and zero on the left end (because E is zero there). Thus: 

c.f:.ft .dA = Ift. dA+ If t·dA+ If E·dA =O+O+EA 
sides Icftcndc.1p right endeap 

Applying Gauss's Law: 

Class J 3 (WOSD2) p. I of2 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics: 8.02 

Region 2: Inside the slab (x :> d) 

-d o d The charge within this pillbox is Q~" = pv",r = pAx. 

As in region 1, the flux is given by: 

sides ldlendcap right endc3p 

Applying Gauss's Law: 

cffE.dA = EA = Q"" = pAx => E = px 
Go Go Go 

Summarizing (and using symmetry to get E for x < 0): 

pd i for X2 d 
Go 

E = pX i for -d < x< d 
Go 

- pd i forx:S:d 
s o 

1 
VOJ(Jf) 

fov 

'IN g~ IV) 

Note that we explicitly insert the negative sign for x outside the slab on the left, but inside the 
slab on the left the negati ve sign of x itself takes care of the direction. Ignoring these signs is a 
common source of problems - always check a few concrete cases to make sure that the field as 
written points in the direction you think it should. 

You should also check that the x-dependence makes sense. Outside of the slab there is no x­
dependence. We have seen that this is the case for planes of charge (how can you tell how far 
away you are from a g iant white wall ?). Inside the slab the field decreases linearly with x as you 
approach the origin. This also makes sense - as you come closer to the center you become more 
and more balanced in the amount of charge on your left and right, and hence the field should 
decrease. 

In Class Prob lem Solution Class 13 (WOS D2) p. 2 0[2 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Department of Physics 

8.02 
Problem Set 1 

Due: Tuesday, February 9 at 9 pm. 

Spring 2010 

yCN ~ ~S~+­
Hand in your problem set in your section slot in the boxes outside the door of 32-

, ,""+ +0 '" 0 082. Make sure you clearly write your name and section on your problem set. V" v 
it> 0 ~ 1r'Ou($ 

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes. f!> deor ~ 
COl"ceft">, 

Buy 8.02 Course Reader at Copy Tech 11-004 and bring it with you to every class! 

Reading Assignments: 

Week One Introduction to Teal, Introduction Gravitational and Electric Fields 

Class I TW Feb 2/3, 
Reading: 

Class 2 RIM Feb 4/8 
Reading: 

Class 3 F Feb 5 

Reading: 

Introduction to Teal, Gravitational and Electric Fields 
Course Notes: Sections 1.1 - 1.6; 1.8; Chapter 2 

Electric Fields and Continuous Charge Distributions 
Course Notes Section 1.6; Chapter 2 

PSO I: Math Review, Fields, Continuous Charge 
Distributions 
Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.1 2 

Optionallntroduction/Review for Vector Calculus: 
Spring 2006 Math Rev iew Presentat ion. 
Hale Bradt' s Spring 2001 8.02 Mathematics Supplement 

Week Two: Gauss's Law and Electric Potential 

Class 4 T/W Feb 9/ 10 
Reading: 

Class 5 RlT Feb 11 / 16 
Reading: 

Class 6 F Feb 12 
Reading: 

Gauss' Law 
Course Notes: Sections 4.1-4.2, 4.6 

Electric Potential 
Course Notes: Sections 3.1-3.5 

PS02: Gauss's Law 
Course Notes: Sections 4.1-4.2, 4.7-4.8 

Week Three: Electric Potential 

President's Day - M 2/ 15 I M Classes on T 2116 

PSO I-I 

C:t re'i \ uot; 
~t', Yov' lI 
'1& ,+, 



Problem 1: Vectors (10 points) Consider the two vectors shown in the figure below. 

The magnitude of IAI = 2.88 and the vector A makes an angle 33.7" with the positive 

x -axis. The magnitude of IBI = 3.44 and the vector B makes an angle 35.5" with the 

positive x -ax is pointing down to the ri ght as shown in the fi gure below. Find the x and 
y components of 

- -
a) A and B ; 

b) A + B ; 

c) A - B ; 

d) a unit vector pointing in the direction of A ; 

e) a unit vector pointing in the direction of B . 

y 

A 

IAI = 2.88 

) 33.7" 

) 35.5" x 

~1= 3.44 
B • 

Problem 2 Vectors (10 points) Consider two points located at 1', and 1'" separated by 

distance 'i, = II', - 1',1· Find a vector A from the ori gin to the point on the line between 1', 
and 1', at a distance x from the point at 1'" where x is some number. Express your 

answer in terms of 1'" 1'" 'i" and x . Show your work. 

PSOl -2 



Problem 3 Concept Questions (10 points) 

(a) (5 points) Two objects w ith charges 
- q and +3q are placed on a line as 

shown in the fi gure below. 

- q 3q 
;,,",\ - -------

Besides an infinite di stance away from 
the charges, where e lse can the e lectric 
fi e ld possibly be zero? 

Explain your reasoning. 

I . Between the two charges. 

2. To the right o f the charge on the 
ri ght. 

3. To the le ft of the charge on the left. 

4 . The e lectric fi eld is only zero an 
infinite di stance away from th e 
charges. 

(b) (5 points). Two objects w ith charges - 4Q and -Q li e on the y-ax is. The object w ith 

the charge -4Q is above the object with charge -Q. Below are fo ur possible "grass 

seed" representati ons o f the e lectric fi e ld of the two charges . Whi ch o f these 
representati ons is most nearl y right fo r the two charges in thi s problem? 

(3) (4) 

Explain your reasoning. 
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Problem 4: Ratio of Electric and Gravita tional Forces (10 points) 

What is the ratio of the magnitudes o f the e lectric force and the gravitationa l fo rce 
between two protons if th e protons are separated by a distance r? In Sl units the 

magnitude of th e charge of the proton is e = 1.6x 10-19 C and the mass o f th e proton is 

m p = 1.67 x I 0-27 kg. 

Problem 5: Coulomb's Law (10 points) 

Two vo ll ey ba lls, each of mass 
In = 0.2 kg , tethered by ny lon strings 

and equa ll y charged w ith an e lectrostatic 
generator, hang as shown in the figure 
such that the centers of the ba ll s are a 
di stance r = 0.5 m apart. The po int 

equidi stance between the two centers of 
the ba ll s is a di stance d = 2.5 m be low 

the suspension po int. What is the charge 
on eac h ba ll? Inc lude your free-body 
force diagram in your solution. 

Problem 6 Electric field for a Distribution of Point Charg.cs (10 points) 

A right isosce les triangle of side a has objects with charges q, +2q and --q arranged on its 
vertices, as shown in the fi gure below. 

y 

I 
" (+ 

a 

, 
, , 

p 

+ ('-'-----~c)... -- x 
2'1 a_q 

What is the magnitude and direction o f the e lectric field at point P due to the charges in 
the figure, midway between the line connecting the +q and - q charges? 
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Problem 7 Electric Field and Force (10 points) 

A pos iti ve ly cha rged wire is bent into a semic ircle of rad ius R , as shown in the fi gure 
be low. 

v 

() II 

The tota l charge on the semic ircle is Q. However, the charge per lInit length a long the 

semicircle is non-uni fo rm and g iven by ,{ = -lo case . 

a) What is th e re lati onshi p between -lo, Rand Q? 

b) If a particle with a charge q is pl aced at the ori gin, what is the tota l fo rce on the 
particle? Show a ll your work in cl ud ing sett ing up and integratin g any necessary 
integrals. 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Problem Set I Solutions 

Spring 2010 

Problem 1: Vectors (10 points) Consider the two vectors shown in the figure be low. 

The magnitude of IAI = 2.88 and the vector A makes an angle 33.7" with the pos itive 

x -axis. The magnitude of IBI = 3.44 and the vector B makes an ang le 35.5" with the 

positi ve x -ax is point ing down to the right as shown in the fi gure below. Find the x and 
y components of 

a) A and B ; 

b) A + B ; 

c) A -B ; 

d) a unit vector pointing in the direction of A; 
e) a unit vector pointing in the directi on of n. 

y 

) 35.5" x 

Inl = 3.44 

Solution: We need to use BA = 33.7" in order to determine the x and y components of 

the vector A : 

Thus 

A, = IAl cosB" =(2.88)(cos(33.7")=2.40 , 

Ay = IAls in B" = (2.88)(sin(33.7") = 1.60. 
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- , , 
A = 2.40 i + 1.60 j 

We need to use ell = -35.5" in order to dete nlline the x and y components of the vector 

B: 

Thus 

B, = 1i3l cose" = (3.44)(cos(- 35.5") = 2.80, 

By = 1i3lcose'J = (3.44)(sin( -35.5") = - 2.00. 

B = 2.80 1 - 200 ] . 
b) The vector sum is then 

- - " .. " " 
A + B = (2.40 i + 1.60 j) + (2.80 i - 2.00 j) 

, , 
= (5.20) i + (-.40) j 

c) The vector difference is 

A - B = (2.40 1 + 1.60 h - (2.80 1 - 2.00 ]) 
, , 

= (-.40) i + (3.60) j 

d) The unit vector pointing in the direction of A is given by 

- - ... ... 
A = ~ = A = 2.40 i + 1.60 j 

IAI 2.88 

, , 
0.83 i -0.69 j 

e) The unit vector pointing in the direct ion of B is given by 

B = I~I = 2.80 1-2.00] 0811 -0.58] 
B 3.44 

Problem 2 Vectors (10 points) Consider two po ints located at i', and i'" separated by 

distance ~ , = Ii', - i',I. Find a vector A from the origin to the point on the line between i', 
and i', at a distance x from the point at i'" where x is some number. Express your 

answer in terms of rl , r2 } 'i.2' and x. Show your work. 
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Solution: Cons ider the unit vector pointing from 1', and 1', g iven by 

The vector ii in the figure connects A to the point at 1'" therefore we can write 

_ • x (_ _ ) 
(L = .\Tn = - r1 - r2 . 

'i2 
The vector 

r, = A + ii . 

Therefore 
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Problem 3 Concept Questions (10 points) 

(a) (5 points) Two objects with charges 
-q and +3q are placed on a line as 

shown in the figure be low. 

- q 3q 
{ 

Besides an infinite distance away from 
the charges, where else can the e lectric 
fi e ld poss ibly be zero? 

Expla in yo ur reasoning. 

I. Between th e two charges. 

2. To the right of the charge on the 
right. 

3. To the left o f the charge on the left. 

4. The electric fi e ld is only zero an 
infinite di stance away from the 
charges. 

Answer 3. The e lectr ic fi eld is the vector sum of the e lectric fields due to each charged 
object. There are two properties that determ ine th e strength of the e lectric field , distance 

from the source (the stren gth of the fi e ld is proportional to 1/,.'), and the magnitude of 
the charge (the strength of the fi e ld is proportional to q). In the figure be low the e lectric 

fi e lds of the two objects are shown at severa l points . At the po int A to the left of the 
charged object on the left, the vectors point in opposite directions. Since the point A is 
closer to the object with charge - q than the object with charge + 3q, these two properties 

can balance and the vectors can add to zero. Whereas on the ri ght, both properties 
contribute to maki ng the fie ld due to the object with charge + 3q larger than the field due 

to the object with charge -q , and then cannot possibly sum to zero. In the reg ion 

between the objects the e lectric vectors both point to the left so they cannot sum to zero. 

~ 
~ 

;;'';f E_
t <! ti3f 

0 Ii ~ 6--7 ~ 0 
) 

<.-< -, { 
A -t e ~ -? +3 ? -6 
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(b) (5 points). Two objects with charges - 4Q and -Q li e on the y-axis. The object with 

the charge - 4Q is above the object with charge -Q . Below are four possible "grass 

seed" representations of the electric fi e ld of the two charges . Which of these 
representations is most nearl y ri ght for the two charges in thi s problem? 

(3) (4) 

Explain your reasoning. 

Answer (2) Both sources have negative charge so the fi e ld lines very near each source 
must point towards that source. Therefore there must be a point between the sources 
where the fi e ld is zero. (This eliminates fi gures (I ) and (4).) T he zero of the fi e ld must 
be closer to the weaker source in order to cance l the fi e ld from the stronger source that is 
further away. The weaker source is below the stronger source, so the fi gure (2) is the 
correct ' grass seed fi e ld ' representati on of the electric fi e ld of both sources. 
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Problem 4: Ratio of Electric and Gravitational Forces (10 points) 

What is the ratio of the magnitudes of the electric force and the grav itational force 
between two protons if the protons are separated by a distance r? In SI units the 
magnitude of the charge of the proton is e = 1.6 x 10- 19 C and the mass of the proton is 

nip = 1.67 x I0-" kg. 

Solution: The ratio of the fo rces is g iven by 

ke' / r' 

Gm 2 / r 2 
p 

= 
ke' 

GII1~ 
= 

(9 .0 x I 0' N· m' · C ' )(1.6 x 10-
19 

C)' = 1.2 x 10" . 
(6.67 x 10- 11 N· m' . kg·' )(1.67 x I 0-27 kg )' 

Thi s is a very large rati o indicating how much stronger electric fo rces are than 
gravitational fo rces . 

Problem 5: Coulomb's Law (10 points) 

Two vo lley ball s, each of mass 
nI = 0.2 kg , tethered by nylon strin gs 

and equally charged with an electrostat ic 
generator, hang as shown in the figure 
such that the centers of the ba lls are a 
distance r = 0.5 m apart. The po int 

equidistance between the two centers of 
the balls is a d istance d = 2.5 m below 

the suspens ion po int. What is the charge 
on each ball ? Include your free -body 
force diagram in your solution. 

Solution: 

/ 

I" ...., 1 
0.5111 

Since the tetherball s are in static eq uilibrium, the sum of the forces must be zero. There 
are three forces acting on each ball, gravitation, tension from the rope, and the e lectric 
force that is proportional to q', where q is the charge on either tetherball.. We beg in by 

drawi ng a free body diagram on one ba ll , then tak ing a vector decomposition of the 
forces on that ball, and setting each component equal to zero. Then we can so lve fo r the 
charge on each tetherba ll. 
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/I J 

t~ ' E! , 
\ 

~ IH 

The slim of th e x-component of the forces is 

T kq' 
F =--T sinB = O x 2 

r 

where r is the di stance between th e centers of the tetherball s. The sum of the y­
component of the forces is 

T F = TcosB- lIIg = O. ! . 

So lvin g for the tension we find that 

T = -'!.!!L. 
cosB 

Substituting that back into the hori zontal equation yields 

kq' II1g . B 0 ----sin = 
r 2 cos f) 

wh ich we can solve for the charge on the tetherball 

q = ( J IIIg tan B I k ) r . 

Recall from the geometry of the set-up 

tan B = (0.25 m/2.5 m) = 0.1 . 

Thus the charge is 

q = (JlI1g tan B I k )r = (J(0.2 kg)(9.8 m· s·' )(0.1) /(9 .0 x 1 0' N . m' . C ' ) )(0.5 m) 

q = 2.3 x l 0-6 c. 
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Problem 6 Electric field for a Distribution of Point Charges (10 points) 

A right isosce les triang le of s id e a has objects with charges q, + 2q and -q arranged on its 
vertices, as shown in the fi gure below. 

" + 

p 
a 

, 

+'------ - --- x 
2q a 

What is the magnitude and direction of the e lectric fi eld at poi nt P due to the charges in 
the figure , midway between the line co nnecting the +q and -q charges? 

Solution: We can begin by draw in g the three contributions to the e lectric fi e ld . 
~ 

C 
17 "~'t 

1 

The tota l e lectric fi e ld is then 

We start with the fi e ld due to the charge +q: 
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The e lectr ic fi e ld is g iven by the express ion 

- ) kq" kq_ 
E+" (P = ( . )' r. ,/.,. = ( . )3 r." .I' · 

' + f/. I' ' +f/./' 

Recall that the vector 1'. ,/./' is the vector that starts at the charge +q and ends at the po int 

P. From the fig ure above, we can write this vector as 

r. I' = (a I 2) i -(al2) ] . 
'I· 

The magnitude of th is vector is 

I~'/.I ' = lr. '/.,. I= ((a I 2)'+ (a I 2)' )'" = a l J2 . 

Thus 

E (P ) _ kq kq((aI2 )i - (al2) j) J2kq(i-] ) 
+fJ - ( /~q).)3 r+II.I'= (a / .J2)] = 0 2 

Note that 

E.,/ (P ) = E_'/ (P ) . 

The electr ic field due to the charge 2q : 

'" 
A , 

/' r;}C ' p f j " r t!7 -q l. 

/~ ' 1-

?~ a.. 
~ 

1. 
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The e lectric fi e ld is given by 

- k(2q) , 2kq _ 
E"I(P) = (. ) ' r ,</ .I' = ( . ) 3 '2</.1" 

' 21/ ,1' ' 211.1' 

Reca ll that the vector 1" '1.1' is the vector that starts at the charge 2q and ends at th e po int 

P. From the fi gure abo ve we can write this vector as 

, , 

1',</,1' = (a/2) i + (a / 2) j. 

The magnitude of this vector is 

Thus 

, , 
- 2kq _ 2kq((a / 2) i + (al2) j) 
E,/P) = (I,</.S 1',</.1> = (a / fi) 3 

Thus the vector sum is 

Addin g together all three contributions, we get 

E(P) = 2 fikqq - }) + 2fikq,(i + }) = 4fi,kqi 
a- a- a -
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Problem 7 Electric Field and Force (10 points) 

A positively charged wire is bent into a semicirc le of rad ius R , as shown in the figure 
be low, 

x 

The total charge on the semicircle is Q , Howeve r, th e charge per unit length along the 

semicircle is non-uni form and given by A. = An cos e , 

a) What is the re lat ionship between An, Rand Q? 

b) If a partic le w ith a charge q is placed at the orig in, what is the tota l force on the 
partic le? Show a ll your work including setting up and in tegrating any necessary 
integrals. 

Solution: 

(a) In order to find a relation between An, Rand Q it is necessary to integrate the 

charge density A. because the charge distribution is non-uniform 

0 = f Ads = ( ","" An cos e'Rde' = RAn sin B'lo:","" = 2RAn ' 
- ! ,.",- :t / 2 o "" -:r 12 

(b) The force on the charged particle at the center P of the semicircle is g iven by 

F(P) = qE(P), 

The e lectric fi e ld at th e center P of the semicirc le is given by 

E(P)=_I - f~ ' 
4.7Z'Eo wire' r 2 

The unit vector, r , located at the fi eld po int, is directed from the source to the field point 
and in Cartes ian coordinates is given by 
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r = -sin e' ; -cose' j. 
Therefore the e lectric fi e ld at the cen ter P of the semicirc le is g iven by 

E- (P) I J AdL I [,," "" Aucose'Rde' ( . e': e' ') =-- --,- 1' =--1. , -S ill - I -COS J -
4Jr£o 11'"... ,. - 4JT£'o '=-::1 2 R-

There are two separate integra ls for the x and y components. The x -component of the 

e lectri c fi eld at the center P of the semicirc le is g iven by 

I [,,""" Au cos e' sin e' de' 
E(P) = --.lr 

.r 47rt:o =- ;: / 2 R 

, 0'&;: / 2 

).., COS- e' = O. 
87f£ R o 0'=- -:'( / 2 

We expected this result by the symmetry o f the charge di stributi on about the y-axis. 

The y-component or the e lectric fi eld at the center P of the semicirc le is given by 

I , •. ' " Au cos' e'de' 
E (P) =--

y 47ft: =- tr / 2 R o 

--I_f."'" )..,( I+ cos2e')de' 
47f£0 '.-,,, 2R 

_ Au e'lo" "" Au . 2elo'."" - - - - - Sill 
87f£ R 0"-, ,, 167f£ R 0'·-,,, 

o 0 

= -~ 
8£oR 

Therefore the fo rce on the charged particle at the po int P is g iven by 

F(P) = qE(P) =- qAu j . 
8£oR 
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Summary of Class 6 8.02 ( 6(' cyl~f/d(( 

Topics: Gauss 's Law 
Related Reading: Course Notes: Sections 4.1-4.2, 4.7-4.8 

Topic Introduction 

In this class we will practice calculating electric fields using Gauss's law by doing 
problem solving #; .1 Remember that the idea behind Gauss's law is that, pictorially, 
electric fields flow out of and into charges. If you surround some region of space with a 
closed surface (think bag), then observing how much field "flows" into or out of that 
surface tells you how much charge is enclosed by the bag. For example, if you surround 
a positive charge with a surface then you will see a net flow outwards, whereas if you 
surround a negative charge with a surface you will see a net flow inwards. 

Gauss's Law 
Gauss ' s law states that the electric flux through any closed surface is proportional to the 
total charge enclosed by the surface: 

~£ = cf.fE. dA = q,", 
s Eo 

A closed surface is a surface which completely encloses a volume, and the integral over a 

closed surface S is denoted by of . 
Symmetry and Gaussian Surfaces 
Although Gauss ' s law is always true, as a tool for calculation of the electric field, it is 
only useful for highly symmetric systems. The reason for this is that in order to solve for 

the electric field E we need to be able to "get it out of the integral." That is, we need to 
work with systems where the flux integral can be converted into a simple multiplication. 
Examples of systems that possess such symmetry and the corresponding closed Gaussian 
surfaces we will use to surround them are summarized below: 

Symmetry System Gaussian Surface 

Cylindrical Infmite line Coaxial Cylinder 

Planar Infinite plane Gaussian "Pillbox" 

Spherical Sphere, Spherical shell Concentric Sphere 

Summary for Class 6 p.1I2 



Summary of Class 6 8.02 

Solving Problems using Gauss's law 
Gauss 's law provides a powerful tool for calculating the electric field of charge 
distributions that have one of the three symmetries listed above. The following steps are 
useful when applying Gauss's law: 

(1) IdentifY the symmetry associated with the charge distribution, and the associated 
shape of "Gaussian surfaces" to be used. 

(2)Divide space into different regions associated with the charge distribution, and 
determine the exact Gaussian surface to be used for each region. The electric field 
must be constant or known (i.e. zero) across the Gaussian surface. 

(3)For each region, calculate q,"" the charge enclosed by the Gaussian surface. 

(4) For each region, calculate the electric fluxC!> £ through the Gaussian surface. 

(5)Equate C!> £ with qon, / &0' and solve for the electric field in each region. 

Important Equations 

Electric flux through a surface S: 

Gauss ' s law: 

Summary for Class 6 p. 212 
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8.02 

Problem Solving 2: Gauss's Law 

REFERENCE: Section 4.2, 8.02 Course Notes. 

Introduction: When approaching Gauss's Law problems, we described a problem solving 
strategy summarized below (see also, Section 4.7,8.02 Course Notes): 

closed 
surfaceS 

Summary: Methodology for Applying Gauss's Law 

Step 1: IdentifY the 'symmetry ' properties of the charge distribution. 

Step 2: Determine the direction of the electric field 

Step 3: Decide how many different regions of space the charge distribution determines 

For each region of space . . . 

Step 4: Choose a Gaussian surface through each part of which the electric flux is either 
constant or zero 

Step 5: Calculate the flux through the Gaussian surface (in terms of the unknown E) 

Step 6: Calculate the charge enclosed in the choice of the Gaussian surface 

Step 7: Equate the two sides of Gauss's Law in order to find an expression for the 
magnitude of the electric field 

Then ... 

Step 8: Graph the magnitude of the electric field as a function of the parameter specifying 
the Gaussian surface for all regions of space. 

You should now apply this strategy to the following problem. 

Solving2-1 
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Question: Concentric Cylinders 

A long very thin non-conducting c lindrical shell of radius b and length L surrounds a long solid 
non-conducting cylin er 0 radius a and length L with b> a. The inner cylinder has a unifonn 
charge +Q distributed throughout its volume. On the outer cylinder we place an equal and 
opposite to charge, - Q. The region a < r < b is empty. 

You can find a three dimensional visualization of this charge configuration and its fields at 
http://web.mit.edulviziEM/electrostatics/GaussLawProblems/filledCylinderShell/. Go to this 
URL, read the "Help" file, and try out the various Gaussian surfaces available in this applet. 
Then answer the following questions. 

Question 1: (Answer on the tear-sheet at the end!) There is an icon 
in the applet as shown to the right. What does the height of the 
cy linder in this icon represent? 

{!U1 

Question 2 (this is Step 1 of your methodology above): (Answer on the tear-sheet at the end!) 
What is the 'symmetry' property of the charge distribution here (which of the three below)? 

Spherical Planar 

~ 0\, tJ : , (Jr(}~.t rI\ 
Question 3 (Step 2 of your methodology): (Answer on the lear-sheet at the end!) What is the 
direction of the electric field (again, which of the three choices below)? 

Angular (CW/CCW) Perpendicular to page 

(10 {!flJeo ilS 
Question 4 (Step 3 of the methodology): (Pllt YOllr answer on the tear-sheet at the end!) How 
many different regions of space does the charge distribution determine (in other words, how 
many different fonnulae for E are you going to have to calculate?) 

r 

1'\0 \'- Q9 
\ r{ 0e OJSv~ /(0 e1 tdc&i:ps-

~ 3- s~de (Afld t4. 1- eft clCaI 
, b J \ ~ej c k(),(~ 99 oJ[- rv-<-

d 9 (\ l/ ih"l\k 50 rz.-. 
Solving$, -2 



Question 5 (Step 4 of your methodology): (Pllt YOllr answer on the tear-sheet at the end!) For 
each region of space, describe your choice of a Gaussian surface. What variable did you choose 
to parameterize your Gaussian surface (for example, for a sphere you 'd use the radius r)? What 
is the range of that variable? (J' ) (" If, 1 

/' I . I I / 'fJ / 2 t::c We[, M ( ~ (pet>J ~ S' ~"t '1 \- d"'1 r ~O {J( r~ r r y I l'l ~ e l" f' t o L. ( L b t) ~ De~ 1101 depel/L O{\ p ,{f£~~~ 
Question 6 (Step 5 of your methodology): (Pllt YOllr answer on the tear-sheet at the end!) For 
the region for r < a , calculate the flux through your choice of the Gaussian surface (that is, just 
write down the left hand side of Gauss ' s Law). Your expression should include the unknown 

electric fielgtor that region. G(r tI. J- "-" I f~(r) 1 E'~J 0( t ' i-a 
~

1'I\ -"t 1" /2 - ( (~ 
- --j 

.. R ,-z bee 
Question 7 (Step 6 of your methodology): (Pllt YOllr answer on the tear-sheet at the end!) For .k ~ 
the region for r < a , write the charge enclosed in your choice of Gaussian surface (this should be (k .,.of :l 
in terms of Q, r & a, NOT E). bt(~ f 

i 

Question 8: (Pllt YOllr answer on the tear-sheet at the end!) Go to the applet that you have used 
above. In that applet there is a measure of the charge enclosed inside the Gaussian surfaces. 
Qualitatively, in the applet, does the charge interior to the cylindrical Gaussian surface in the 
region for r < a change with r in the way your formula given directly above indicates? 

Question 9 (Step 7 of your methodology): (Pllt YOllr answer on the tear-sheet atthe end!) For 
the region for r < a , equate the two sides of Gauss's Law that you calculated in questions 6 and 
7, and solve to find an expression for the magnitude ofthe electric field. 

t20('2 ~ ~L 
f =: ~ 'Tl' r '2'2. : /( , R (' - I {y l;odU 

~ 1f1\ ~'2- L i'l; j 

Question 10 (Step 6 and 7 or your methodology): (Pllt YOllr answer on the tear-sheet at the 
end!) Repeat the same procedure in order to calculate the electric field as a function of r for the 
regions a < r < b . 

{o r ql( r 

Solving2-3 
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Question 11 (Step 8 of your methodology): (Pllt YO llr answer on the tear-sheet at the end!) 
Make a graph of the magnitude of the electric fie ld as a function of the parameter specify ing the 
Gaussian surface for all regions of space. 

I 
I 
\ 

I<::-..._.----t-
0- 1 

Sample Exam Questions (Try these yourself, closed notes. You'll need paper) 

Problem 1: A very long non-conducting cylinder is constructed of two 
materials . The inner portion, radius a, has a non-uniform volume 
charge density given by: 

p (r < a) = ~ where (J is a constant (what units?) 
2Trr 

The outer portion, with inner radius a and outer radius b has a uniform 
charge density. 

(a) If the electric field outside the cylinder (r > b) is everywhere zero, what is the uniform charge 
density p (a < r < b) of the outer portion of the cylinder? 

(b) What is the electric field everywhere in space? 

Problem 2: 
Consider the following cylindrically symmetric electric field: 

0 r < a 

t(r) = f ~(l_a) a ::; r ::; 2a 
e a' r 0 

Q 
2a< r 

coQr 

What is the charge distribution that creates this field? In other words, what is ;:J:..r)? 

'J..­
Solving'<f-4 
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Summary of Class 5 8.02 

Topics: Working in Groups, Electric Potential, E from V 
Related Reading: Course Notes: Sections 3.1-3.5 

Topic Introduction 

We first discuss groups and what we expect from you in group work. We then turn to the 
concept of electric potential. Just as electric fields are analogous to gravitational fields, 
electric potential is analogous to gravitational potential. We introduce from the point of view 
of calculating the electric potential given the electric field. Next we consider the opposite 
process, that is, how to calculate the elecJnc..ii.e1d if we are given the electric potential. 

--~-- ----_._---
Potential Energy 
Before defining potential, we first remind you of the more intuitive idea of potential energy. 
You are familiar with gravitational potential energy, U (= mgh in a uniform gravitational 
field g , such as is found near the surface of the Earth), which changes for a mass m only as 
that mass changes its position. To change the potential energy of an object by LlU, one must 
do an equal amount of work Wexh by pushing with a force Fext large enough to move it: 

tJ.U=UB-UA = I:F,,,.dS=W~, 
How large a force must be applied? It must be equal and opposite to the force the object 
feels due to the field it is sitting in. For example, if a gravitationaf field g is pushing down on 
a massm- ana you want to lift it, you must apply a force mg upwards, equal and opposite the " A U 
gravitational force. Why equal? If you don't push enough then gravity will win and push it 0 • 

down and if you push too much then you will accelerate the object, giving it a velocity and 'I f S.fr~J,Y 
hence kinetic energy, which we don ' t want to think about right now. _ ( 
This discussion is generic, applying to both gravitational fields and potentials and to electric r rr 
fields and potentials. In both cases we write: 

IB -
tJ.U=UO-UA =- A F .ds 

where the force F is the force the field exerts on the object. 
Finally, note that we have only defined diffirences in potential energy. This is because only 
differences are physically meaningful- what we choose, for example, to call "~ero energy" is 
completely arbitrary. 

Potential 
Just as we define electric fields, which are created by charges, and which then exert forces on 
other charges, we can also break potential energy into two parts: (I) charges create an 
electric p_otentiaLamund them, (2) other charges that exist in this potential will have an 
associated.potential energy. The creation of anelectric 'potential is intimately related to the 

10 -
creation of an electric field: tJ. V = VB - VA = - A E· d S. As with potential energy, we only 

define a potential difference. We will occasionally ask you to calculate "the potential," but 
in these cases we must arbitrarily assign some point in space to have some fi~-,lpotentlal. A 
common assignment is to call the potential at infinity (far away from any charges) zero. In 

Summary for Class 5 p.1I2 



Summary of Class 5 8.02 

order to find the potential anywhere else you must integrate from this place where it is known 
(e.g. from A=oo, VA=O) to the place where you want to know it. 

Once you know the potential, ygu..can ask what happens to a charge q in that potential. It 
will have a potential energy\ U ~ -q i1 Furthermore, because objects like to move from high 
potential ener to low ote~rgy, as long as the potential is not constant, the object 
will feel a force, in a direction such that its otential energy is reduced. Mathematically that 

is the same as saying that F = - Y' U (where the gradient operator Y' == ~ i + ~ j + ~ k ) and ax oy oz 
hence, since F = q it, it = - Y' V. That is, if you think of the potential as a landscape of hills 
and valleys (where hills are created by positive charges and valleys by negative charges), the 
electric field will everywhere point the fastest way' dwnhill. I 

('it IJ (JP' I -l-n wUfl ~Ita~~ I~ llC{A-
Configuration Energy T I I (11 ' 

Since moving a charge through a potential difference takes energy (it changes the potential 
energy of the charge), we can also discuss the total amount of energy that it would take to 
assembka collection of charges, assuming that they started a very far distance apart ("at 
infinity") and then were brought in toJheir final positions. A straight-forward way to think 
about, and calculate, this is to bring the charges in one at a time. The first one is "free" - it 
doesn't see a potential. The second charge is brought in through the potential created by the 
first. The third sees the potential from the first two, and so forth. 

fQ;Aj +0 fle. 8 (ha rge, 
Important Equations k"vI I. (de fo [Ohf": 

Potential Energy (Joules) Difference: 

Electric Potential Difference (Joules/Coulomb = Volt): 

Electric Potential (Joules/coulomb) created by point charge: 

Potential energy U (Joules) of point charge q in electric potential V: 

Configuration Energy: 

Summary for Class 5 
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Class 05: Outline 

Hour 1: 
Electric Potential 

Hour 2: 

Electric Potential 

• • 

Summary: 
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Gravitational & Electric Fields 

l' ~.61 
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Summary: Gravity - Electricity 
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yGlI~~ CI~k rC bott, &: ~~ 

- G M, ' E- k q , ' 
g = - 7 r = • r; r '" Il\vtae ~1Am 

--~-----------

CREATE: 

FEEL: F =mg Fe=qE '" / This is easiest way to picture field 

.. , 
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Potential Energy 
and Potential 

Start with Gravity 

Gravity: Force and Work 

Gravitational force on m due to M: 

F- - G Mm • -- -r 
g r2 

Work done by gravity moving m from A to B: 

\ CB 
- _ \ PATH Wg = JA Fg . d S INTEGRAL 

",. , 

Dra (tt c1'ul-DAu of Y'\O[:D,t) 

- <I.J, d, ;ffillf fp r ~ whDle ~r~ 

Work Done by Earth's Gravity 
Work done by gravity moving m from A to B: 

W = IF ·ds J4l" rr~ ,. r ~ dr - - : - - - -
8 p -

= K- G:~m r}( drf+rd9ITj , F, 

= 1-G~m d,. =_~ GMm J" 
' A _____. 1: r ' .. 

, =GMm(J.. - J.. ) 
rB r,( L _ ) 

'( 
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PRS Question: 
Sign ofWg 

PRS: Sign of Wg 
Thinking about the sign and 
meaning of this . .. 

Wg =GMm(~-~) 
rB rA 

Moving from rA to rB: 

0% 1. W 9 is positive - we do work 

0', ~ W, is positive - gravity does work 
0% 3. Wg is negative - we do work 

0% . W, is negative - gravity does work 
.,. 5. i don't know _ 

Work Near Earth's Surface 
GM . 

G roughly constant: g"'-- y=-gy r' E 

Work done by gravity moving m from A to B: 

y 
W, = JF, -ds = r (-mgy l·a. 

Vo -" :{V- = -e mgdy = - mg(YB - y, ) 

I Wg depends only on endpoints 
,,10-/' • - not on path taken -

mg 
Conservative Force 

0 
- x .. . 
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Potential Energy (Joules) 

I<lUg=US-UA=-I:F, .ds=-w,1 e:-

(1) Fg =- G~m f ~ Ug =_ G~m +Uoi :~ 
(2) F, = - mgy ~ U, =mgy+ Uo 

Ua: constant depending on reference point 

• Only potential difference <lU has 
physical significance 

Gravitational Potential 
(Joules/kilogram) 

Define gravitational potential difference: 

M· l f 

Do V = DoUg =-IB(F Im). ds =- rBg.ds 
g In A g JA 

, t'tIV 

Just as Fg ~ g , Do Ug ~ DoVg 
......... ~ ~ ~ 

Forc e FIe ld Energy Potenti al 

That Is, two particle interaction ~ single particle effect 

¥ {II ff.9n\i1 of n~ \L 
lor~e (o"'{cpioq/ 

PRS Question: 
Masses in Potentials 
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PRS: Masses in Potentials 
Consider 3 equal masses sitting in different 
gravitational potentials: 
A) Constant, zero potential 
8) Constant, non-zero potential 
C) Linear potential (V oc x) but sitting at V = 0 

Which statement is true? 
0% 1. None of the masses accelerate 

0% ··3. Only C accelerates 
0% ~ Only B accelerates 

0% ,All masses accelerate, 8 has largest acceleration 
0% 5. All masses accelerate, C has largest acceleration 

0% 6. I don't know -

Move to Electrostatics 

Gravity - Electrostatics 

MassM 

- GM A g=- -r 
r' 

Fg =mg 

Charge q (±) 

- q A 

E =k"r 
r 

FE=qE 
Both forces are conservative, so ... 

tlV =-IBg.ds 
• A 

Class 05 
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Potential & Potential Energy 

I 
B I \ Units: 

A V == - fE. d S Joules/Coulomb 
A • = Volts L-__ ~ __ ~ __ 

Change in potential energy in moving the 
charged object (charge q) from A to B: 

AU=UB-UA=qAV Joules 

\ ./ 

"'o!ential & Exte / al Work 
change'lq potential ene y in moving the 
charged object (charg q) from A to B: 

11 (;" V . V A =ql1V Joules 
The external wolk 's 

w , = ~w 
If the kin~~~nergy of th charged object 
does not cJ"nge, IlK = 0 

then the"external work equals tt, change 

l'1li_ 1' 

in pOie fial energy _ _ 
W,,,, - /:;U - ql1 V " ... n 

I ~ t ~~ Y\Dl- (~Y" ~ ....,{'-! h'l\ 
I" Nt( 

'f.1'0'll "\l'e
se
\How Big is a Volt? 

1
· AA, C, D Batteries 1.5 V 

• Car Battery 12 V 
• US Outlet 120 V (AC) 
• Residential Power Line 
• Our Van de Graaf 
• Big Tesla Coil 

Class 05 

(Vlove dlO(g-l f rOrtI A -J 8 
~ f ~ L tr '{L pot-e/\ 1 ~({ I ~) U 

GMrtl.l/i w[ V"tll ~ave rIO 

Qx.~(J/"(11 forte) {jl.u- /lU-=O · 
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Potential: Summary Thus Far 

Charges CREA TE Potential Landscapes 
f 

V(f)=Vo +~V=v.:O"- ft.ds 
"0" 

Potential Landscape 

Positive Charge 

Negative Charge 

Potential: Summary Thus Far 

Charges CREA TE Potential Landscapes 
f 

V(f)=Vo+~V=v.:O" - ft.ds 

Charges FEEL Potential Landscapes 

U(f}=qV(f) )-:::J 
We work with c.U (6 V) because 

only changes matter r;" 

Class 05 7 



2 PRS Questions: 
Potential & Potential Energy 

PRS: Positive Charge 

Place ~harge in an electric field. It 
will accelerate from 

0% 1. higher to lower electric potential; 

(3) 
lower to higher potential energy 

J 0% higher to lower electric potential; 
higher to lower potential energy 

0% 
3. lower to higher electric potential; 

lower to higher potential energy 
4. lower to higher electric potential; 

0% higher to lower potential energy + ... ·u 

PRS: Negative Charge 

Place a~i:harge in an electric field. It 
will acc~irate from 

0% 

ov. 

0% 

0% 

1. higher to lower electric potential; 
lower to higher potential energy 

2. higher to lower electric potential; 
higher to lower potential energy 

3. lower to higher electric potential; 
lower to higher potential energy ~ 6 lower to higher electric potential; 
higher to lower potential energy .. 

Class 05 
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Potential Landscape 

Positive Charge 
n······ '···Fc.".' .. cc=\"c~.' ... 

Negative Charge 

Creating Potentials: 
Calculating from E, 

Two Examples 

~ .. 

@ :k-~l ""w/J ~Q Jo",~ &- hok 
Lt 61\ r'lPv'I\~f1 

~ @ d"cirX or f~ r v-..relt- (,vOl> '/- ~ 17 

C1."Yw'lu'e 
\.. ~ 

h.(M.- bGtt-le(~.s vVOI'~ - e ledrQl'1b G eo 
f~N\. /.lvei' +v hiBier GJ wmk(,( 

(vl'rUl t- <> 0 feOG \ It- (@ (, hatiJ (0) 

~ V~r't lr'1~<PrtQA+ Ca. icJ/a1\o'\ ~ 
Gp Prob: 'Pt Charge Potential 

w
"~' 

, " 
j ... • • . .. ". 

:' ,: .. , ';- " . ..., 
. (l ; 

'. ,.' ..... , . ,,-

Consider a SINGLE point 
charge Q. 

What potential difference 

i\.V = VB -VA 
does it create between 
point, B and point A? 

If VA '" 0 for rA = 00, what is V (1')? 

Class 05 



) 

Potential Created by Pt Charge r-AY.Y -v. - E·'" <\ .. ' 
· -·t~L;'·-kQfd; <17 A r 2 A r . j .•. 

C I) " , =kQ --- '. 
~ ~ . p . 

Take V= 0 at r= ~: - r 
kQ 

E=kQ-

" v: (r)-- ds = drr + rdIJ9 Point Charge -
r M·. 

T S~rH l M ()IO 

f' p ..t (rrp'"1 '1-' 

PRS Question: 
Point Charge Potential 

-'* w~~l Ml\'t+e (5 :.s. ~ chG{(1Y c 
vv' pr~ ~v{.. 

I 

P (/(iMc ~vkL f'\DII{-,itc{) .eC 

Class 05 AI 
- ,VO 

bJ-

n£(,l (\I'\~ of doT- rroJvd - , 
1\0',.1 fl\ VC l l u I vec f<)r (fl 

Cr'feG /\<)(\ d ohu - II] ih; 
ro b~r'1. /'0"" tltv'c- h 91 ;1-

;5,'f) (Ll Jld) J;reci io'l 

ft~ t- ( hWJ t- oJ (fo 

cts n'\ov'L fp J l~fW'-ct- r 

ulc.tlal-e... 0-or.,e. oJ O"I'~ i" 
t$?/- (,~{ 

~ lH f /j \J 
- G C~t~I~' fAd 

"' q /\V 

.~fi>t-! P~J'lo {] ', tJ. ,U ~ - ~ ~ 0 
, I JlrCf(!,"(t Chit'" /1£ ,111° 0- 0 

00 
=-0 



f f;~l~ (QI' o)hy 

f ;:- ~ for 
~ r~ 

Potential in a Uniform Field 

I!.V=~- 0=-CE'dS 
11> f ro"l 

=-C-Ej'dS=EC,ry 

=-Ed 

Just like gravity, moving in field 
direction reduces potential 

4 ," , . ""-1 

HcJ 
Ei ll il 

E=-Ej 
ds =dyj 

Potential Landscape 

Positive Charge 

Negative Charge 

Group Problem: Superposition 

ply )01;-
Consider the 3 point 
charges at left, 

/.r>:0~ 
a a x 

-Q I-Q +Q 

Class 05 

What total electric 
potential do they 
create at point P 
(assuming V~ = 0) 

'-'!. JI 

do" 't (0, (VSt vv( 
SCo.lor qVq,d;~1_ 

or Wr 



B 

No I- Vct/ /{ 

Fv+ ),ovv 

Deriving E from V 

Deriving E from V 
, -t-.v=- fE.ds 

A (9Z) • .:s-Q ,{x".u.y .:) 

1/ A ; (x,y,z), B; (x+t.x,y,z) ;1/' t-.s = t-.xl 
!> • 

(.>:+lu,),,:) 

t.v=- f· E·d, ;;-E·AS =- E.(t.xl)= -E,Ax 
(.r.)'.z) 

I - lI. V a v I E, = Rate of change In V 
E, = - lI.x ~ - ox. with y and z held consum~ ." 

, J \(('c i lQ'" 'hI{ r :t d 
~ polt1}-,s Jow" fpt ~lJl i dJ 

Deriving E from V 
If we do all coordinates: 30 
- (av, av, avo) E=- - l + - J + - k 

~~ ~r e C4t ~ ax ay az 

(a - a- a- ) !E=-VV! =- -I+-j+-k V ax By GZ , , 
T 

Gradient (del) operator: 

a, a~ a-
V '=-I+ - J+ - k ax oy oz 

""'_ )Ii 

Class 05 
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PRS Question: 
E from V 

PRS: E from V 
Consider the point charges you looked at earlier: 

p i 

-.d1~, V(P)=-kQ/a 
_Q I Q +Q 

You calculated V(P). From Ihat can you derive E(P)? 

0% 1. Yes, ils kQ/a2 (up) 
O'k 2. Yes, ils kO/a2 (down) 
O%W Yes in theory, but I don't know how to take a gradien 
0%(9 No, you can't gel E(P) from V(P) 
0".4 5. 1 don't know ow-,. 

Group Problem: E from V 

i':~L 
·5 0 5 

Z Position (mm) 

A potential V(x,y,z) is plotted above. It does 
not depend on x or y. 
What is the electric field everywhere? 

Are there charges anywhere? What sign? 

Class 05 

t~ -VV 

I 1 

/{, dlUf g fl' ~ 
,e 

1 p odl/ 

I I~ Ip&\cltj O/'oJIl J vvl b/tll dfo/J;, 
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Demonstration: 
Making & Measuring 

Potential 
(Lab Preview) 

Class 05 14 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

8.02 Spring 2010 
Problem Set 2 

Due: Tuesday, February 16 at 9 pm. 

Hand in your problem set in your section slot in the boxes ontside the door of 32-082. Make 
sure you clearly write your name and section on your problem set. 

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes. 

Reading Assignments: 

Week Two: Gauss's Law and Electric Potential 

Class 4 T /W Feb 9/10 
Reading: 

Class 5 RIT Feb 11 / 16 
Reading: 

Class 6 F Feb 12 
Reading: 

Gauss ' Law 
Course Notes: Sections 4.1-4.2, 4.6 

Electri c Potential 
Course Notes: Sections 3.1-3.5, 3.7-3.8 

PS02: Gauss ' s Law 
Course Notes: Sections 4.1-4.2, 4.7-4.8 

Week Three: Electric Potential 

President 's Day - M 2115 I M Classes on T 2/16 

Class 5 W03DI T Feb 16 
Reading: 

Class 7 W03D02 W/R Feb 17118 

Reading: 
Experiment: 

Class 8 W03D3 F Feb 19 
Reading: 

Electric Potential 
Course Notes Sections 3. 1-3.5, 3.7-3.8 

Electric Potential; Equipotential Lines and Electric Fields 
Expt.l: Electric Potential; Configurat ion Energy; 
Course Notes: Sections 3.1-3.5 
Expl. I: Electri c Potential 

PS03: Electric Potential 
Course Notes: Sect ions 3.1-3.5, 3.7-3.8 



Problem 1 (10 points): Concept Questions. Explain your reasoning. 

Concept Question 1: A pyramid has a 
square base of s ide a, and four faces which 
are equilateral triang les. A charge Q is 
placed on the center of the base of the 
pyramid. What is the net nu x of e lectric 
fi eld emerg ing from one of the triangular 
faces 0 f the pyram icl? 

I. 0 
Q 

2. 

3. 

4. 

8.00 

Qa 2 

2.00 

Q 

2.00 

S. Undetermined: we must know whether Q is infinites ima lly above or be low the plane? 

Concept Question 2: A charge distribution ge nerates a radial electric fi e ld 

E- a -r Ib " =-e r 
r2 

where a and b are constants. The tota l charge giving ri se to this electric field is 

I. 4JreoG 

2. 0 
3. 4Jreob 

Problem 2 (10 points): Non-uniformly charged sphere A sphere o f radius R has a 
charge density p = po(r I R) where Po is a constant and r is the di stance from the center 

of the sphere. 

a) What is the total charge ins ide the sphere? 

b) Find the electric field everywhere (both inside and outs ide the sphere). 



Problem 3 (10 points): N-P Junction 

When two slabs of N-type and P-type semiconductors are put in contact, the relative 
affinit ies of the material s cause e lectrons to migrate out of the N-type material across the 
junction to the P-type materia l. This leaves behind a vo lume in the N-type material that is 
positi ve ly charged and creates a negative ly charged volume in the P-type material. 

Let us mode l thi s as two infinite s labs of charge, both of thickness a with the junction 
lying on the plane z = 0 . The N-type material li es in the range 0 < z< a and has uniform 

charge density +Po ' The adjacent P-type material li es in the range -a < z < 0 and has 

uniform charge density - Po' Thus: 

I+Po 

p(x,y,z) = p(z) = 1 ~Po 
o <z < a 

- a < z< 0 

Find the electric field everywhere. 

Problem 4 (10 points): Co-axial Cylinders 

A very long conducting cy linder (length L and radius a) carry ing a total charge +q is 
surrounded by a thin conducting cylindrica l she ll (length L and radius b) w ith total charge 
- q, as shown in the figure. 

L 

t
/ I -q , 

( , 

j a \ 
,I 

l~q,' 

(a) Using Gauss's Law, find an express ion for the direction and magnitude of the electric 

field it for the reg ion r < a. 

(b) Similarly, find an expression for the direction and magnitude of the electric fi e ld E 
for the region a < r < b . 



Problem 5 (10 points): No n-Conducting Solid Sphere with a Cavity 

A sphere of rad ius 2R is made of a non-conducting material that has a un iform vo lume 
charge density p . (Assume that the materia l does not affect the electr ic field.) A 

spherica l cavity of rad ius R is then carved out from the sphere, as shown in tile figure 
below. Find the e lectri c field within the cav ity. 

! . 

R 

----+-----x 
211 

Problem 6 (10 points): Stupid Hobbies ... 

Some peop le like to do incred ibly dangerous things. Like Austi n Richards (also known 
as Dr. Megavolt or Criss Angel, who performed a similar stunt on the "Tesla Coi l" 
ep isode of hi s show mindfreak. Here are some pictures. 

You ' ll note that while Dr. Megavo lt takes strikes directly from the Tesla Co il (a device 
capable of mak ing insanely high voltages), Criss Angel decides to get shocked from a 
small ball attached to the coil instead - convenient for the purposes of answering this 
question. At about what voltage was the Tes la coi l for the strikes pictured above and 
about how much excess charge was on his hand (in the ri ght picture) the instant before 
the strike was initiated? (H INT: Dry air breaks·down at an e lectric field strength of about 
3xl06 Y/m) 



Problem 7 (10 points): Expt. 1: Equipotential Lines and Electric Fields Pre-Lab 
Questions 

Read Experiment 1. The link is 

It It I' ://web.JIl it.cd u/8.02 tlwww/matcrialslExperiments/exp01.pdf. 

Then answer the following pre-lab questions. 

1. Eqnipotentials Curves - Reading Topographic Maps 

Below is a topographic map ofa 0.4 mi square reg ion of San Francisco. The contours 
shown are separated by heights of25 feet (so from 375 feet to 175 feet above sea leve l 
for the reg ion shown) 

its steepest (what is its slope in ftlmi)? 

From left to right, the NS streets shown 
are Buchanan, Laguna, Octav ia, Gough 
and Franklin . From top to bottom, the 
EW streets shown are Broadway, 
Paci fi c, Jackson, Washington, C lay 
(whi ch stops on either s ide of the park) 
and Sacramento. 

(a) In the part o f town shown in the 
above map, whi ch street(s) have the 
steepest runs? Which have the most 
leve l sections? How do you know? 

(b) How steep is the steepest street at 

(c) Which would take more work (in the physics sense): wa lking 3 blocks south from 
Laguna and Jackson or I block west fro m Clay and Franklin? 

PSO 1-5 



2. Equipotcntials, Electric Fields and Charge 

One group did thi s lab and measured the 
equipotentials for a s li ghtly different 
potential landscape then the ones you 
have been given (a lthough st ill on a I cm 
grid). 

Note that they went a littl e overboard and 
marked eq uipotential curves (the magenta 
c ircles) at V = 0.25 V, 0.5V and then 
from V = I V to V = 10 V in I V 
increments. 

They followed the conventi on th at red 
was their positive e lectrode (V = + I 0 V) 
and blue was grou nd (V = 0 V). 

(a) Copy the above fi gure and sketch e ight e lectric field lines on it (equa lly spaced 
arou nd the inner conductor). 

(b) What, approx imate ly, is the magnitude of the electri c field at r = I cm, 2 cm, and 3 
cm, where r is measured from the center of the inner cond uctor? You should express the 
field in V/cm. (HINT: The field is the local s lope (deri vative) of the potential. Also, if 
you choose to use a ruler realize that the above reproduction of this group's results is not 
the same s ize as the origi nal, where the grid size was I cm). 

(c) What is the relationship between the density of the equipotential lines, the density of 
the electric field lines, and the stTength of the e lectric field? 

(d) Plot the field strength vs. 1// for the three points from part (a). If the fi e ld were 
created by a si ng le point charge what shape should this sketch be? Is it? 

(e) Approximately how much charge was on the inner conductor when the group made 
their measurements? 

PSO 1-6 



3. Finding the Electric Field from thc Electric Potcntial 

The graph shows the variati on of an electric potentia l V with d istance x . T he potentia l 
does not vary in the y or z direct ions. Be sure to include units as approp riate. 

Electric Potentia l V 

···· 1 OV ... ; . . . ~ 
, 

..... M"..; 

[ 
.. _+--

................ + ........ / .. 1 
+x-a.xis 

3~ 
. M_! . ... .. . .. 

-1m 
. .. ... --~.-.--.•• ----- .• ! • 

, I 

; 

. -5V -.\ rn . . 

·· ·---i- -· ._-.... . _ ... -···1 - l OY "· .; .. 

(a) What is Ex in the region x > - I In ? (Be careful to ind icate the s ign of E, .) 

(b) What is E, in the region x < - I In? (Be careful to indicate the s ign of E, .) 

(c) A negatively charged dust part icl e with mass III. = I x I 0- 13 kg and charge 

q = -I x 10- 12 C is released from rest at ., = +2 m. Will it move to the left or to the right? 

PSO 1-7 
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MASSACH USETTS INSTITUTE OF TECHNOLOG Y 
Department of Physics 

8.02 Spring 2010 
Problem Set 2 Solutions 

Problem 1 (10 points): Concept Questions. Explain your reasoning. 

Concept Question 1: A pyramid has a square base of side a, and fo ur faces which are eq uilateral 
tri angles. A charge Q is placed on the center of the base of the pyramid. What is the net flu x of 
electric fie ld emerg ing fro m one of the triangular faces of the pyramid? 

I. 0 
Q 2. 

3. 

4. 

800 

Qa' 

2°0 
Q 

2°0 
5. Undetermined: we must know whether Q is in fi nitesimally above or below the plane? 

Answer 2: Explain your reasoning: 
Construct an eight faced closed sur face 
consisting of two pyramids wi th the charge 
at the center. The total flu x by Gauss's law 
is just Q / °0 , Since each face is identical, 

the flu x through each face is one eight th e 
total flu x or Q / 8°0 , 

Concept Qnestion 2: A charge d istri bution generates a rad ial e lectric fi e ld 

E- a -r Ib" =-e r 
,.2 

where a and b are constants. T he tota l charge g iving rise to th is electric fie ld is 

I. 47r0oa 

2. 0 
3. 47r0ob 



Answer 2: Explain your reasoning: In order to fine the tota l charge I choose a Gaussian surface 
that extends over a ll space . Because the e lectric fi eld is radially symmetric, I choose my 
Gaussian surface to be a sphere of radius r and I will take the limit as r - > 00 . The flu x is given 
by 

When I take the limit as r --7 00 , the exponential term goes to zero, and so the flu x goes to zero. 
Therefore the charge enclosed is zero. 

Problem 2 (10 points): Non-uniformly charged sphere A sphere o f radius R has a charge 
density p = p, (r l R) wherep, is a constant and r is the di stance from the center o f the sphere. 

a) What is the tota l charge inside the sphere? 

Solution : 

The tota l charge inside the sphere is the integral 

r=!l r=!l 4 , ,,, H 4 R" 
Q = f p 47rr ' dr = J p, (r I R)47rr ' dr = P'R 7r f r ' dr = P'R 7r 4 = p, 7rR' 

, '=0 , =0 , ,,,0 

b) Find the e lectric fi eld everywhere (both in side and outside the sphere). 

Solution: 

There are two reg ions of space: reg ion I: r < R, and region ll: r > R so we apply Gauss' Law to 
each region to find the e lectri c fi e ld. 

For reg ion 1: r < R , we choose a sphere of 
radius r as our Gauss ian surface. Then, the 
electric flu x through thi s c losed surface is 

of E, . ciii.. = E[ . 47rr' . 

Since the charge distribution is non-uniform, we will need to integrate the charge density to find 
the charge enclosed in our Gauss ian surface. In the integra l be low we use the integrati on variable 
r' in order to di stin gui sh it from the radius r of the Gauss ian sphere. 



Noti ce that the integrati on is primed and the radi us o f the Gauss ian sphere appears as a limit of 
the integra l. 

Reca ll that Gauss's Law equates e lectric flux to charge enclosed: 

So we substitute the two calcul at ions above into Gauss ' s Law to arrive at: 

" E 4 ' Po7[1' 
'I· n l" =-- . 

REo 

We can so lve thi s equation for th e e lectric field 

_ P }" 2 

E = E .. =_o- I- O< r < R . 
I I 4 R Eo ' 

The e lectric field po ints radia lly o utward and has magnitude IE,I = P4o
r
' , 0 < I' < R . 

Eo 

For region II: I' > R: we choose the same 
spherical Gauss ian surface of radius r > R , 
and the e lectric flu x has the same form 

aJ E ll · ciA = EI/ ·47[1" . 

All the charge is now enclosed, Q,,,,. = Q = Po7[R', so the right hand s ide of Gauss's Law 

becomes 

Then Gauss' s Law becomes 



· 4 ~1. 2 = PolC R' 
E" " 

We can so lve this equation for the e lectri c fi e ld 

E- E' PoR' , 
1 11 = ' " r =--., r r> R. 

4cO'" 

In thi s reg ion of space, the e lectric fi e ld points radi ally outward and has magnitude 

- R R' IE"I = ~, r > R, so it fa ll s off as 1/ ,.2 as we expect s ince outs ide the charge 
4co,. 

distributi on, the sphere acts as if it a ll the charge were concentrated at the on glll . 



Problem 3 (JO points): N-P Junction 

When two slabs of N-type and P-type semiconductors are put in contact, the relative 
affinities of the materi a ls cause e lectrons to migrate out of the N-type material across the 
junction to the P-type mater ia l. This leaves behind a vo lume in the N-type material that is 
positively charged and creates a negatively charged vo lume in the P-type materi a l. 

Let us mode l this as two infinite s labs of charge, both of thickness a with th e junction 
ly ing on the plane z = O. The N-type materia l li es in the range 0 < z < aand has uniform 

charge density + Po' The adjacent P-type mate rial 

uniform charge density -Po' Thus: 

l+PO 

p(x,y ,z) = p(z) = ~Po 

Find the electric field everywhere. 

Solution: 

In thi s problem, the e lectri c field is a 
superposition of two slabs of opposite 
charge density. 

I ies in the range -a < z < 0 and has 

o < z <a 

-a<z < O 

Z = - {f : =0 : = a 

Outside both slabs, the field of a positive slab E" (due to the P-type semi-conductor ) is 

constant and points away and the field of a negative slab EN (due to the N-type semi­

conductor lis also constant and points towards the slab, so when we add both 
contributions we find that the e lectric fi eld is zero outside the slabs. The fi e lds E" are 

shown on the figure below. The superposition of these fields E,. is shown on the top line 

in the figure. 



E, E = 0 

E, 

E, E , 
E=O 

--

E = 0 outs ide - Pv E = 0 outside 

-f---

z = -(/ = =0 

The e lectric field can be described by 

o 
E, 

E, (z) = 
E, 

o 

z < -a 

-a<z< O 

O< z<a 

We shall now ca lculate the e lectric field in each reg ion using Gauss's Law: 

For region -a < z < 0: The Gauss ian surface is shown on the left hand s ide of the figure 

below. Notice that the field is ze ro outs ide. Gauss's Law states that 

elf it· dii = Q,,,c/,,,,,, . 
d(m:" eo 
.wrfilc<! 

So for our choice of Gaussian surface, on the cap ins ide the s lab the unit norma l for the 

area vector points in the pos itive z-direction, thus ii = +k . So the dot product becomes 

it, . iida = £,., k· kda = £,., da . T herefore the flu x is 

The charge enclosed is 

elf it · dii = £,A"p 
dm,-" 
surjrlC/: 



where th e length of the Gaussian cy linder is a + z since z < 0 . 

Substituting these two res ul ts into Gauss' s Law yie lds 

Hence the e lectric fie ld in the N-type is given by 

E, = -po(a + z) . 
- .. ( Eo 

The negati ve sign means th at the e lectric fie ld point in the - z d irecti on so the e lectric 
fi e ld vector is 

Note when z = - a then E, = ij 

- -p (a +z) -E, = 0 k . 
- Co 

- - p a -and when z =O , E , = __ o_ k. 
- Co 

We make a similar calculation fo r th e electri c fi e ld in the P-type noting that the charge 
density has changed sign and th e expression fo r the length o f the Gauss ian cy linder is 
a - z since z> 0. Also the uni t normal now po ints in the -z-direction. So the dot product 

becomes 

E ·ncla = E (- k). kcla=-E cia I I. : 1. : 

Thus Gauss's Law becomes 

So the e lectric fi eld is 

E = _ po(a - z ) 
L: . 

Co 

The vector description is then 
- - p (a-a) • 
E - 0 k 

"'1 - . 

Co 



- - - -poa ' 
Note when z= a then E, = 0 and when z= 0 , E, = -- k . 

Co 

So the resulting fi e ld is 

o 2 <-a 

E2 = -po(a+z)i{ -a< 2< 0 

ET(z) = 
Co 

E - -po(a-2) i{ ,- 0 < z < a 
Co 

o 

The graph o f the e lectric field is shown below 

-(/ z= a 



Problem 4 (10 points) : Co-axial Cylinders 

A very long conducting cylinder (length L and radius a) carrying a total charge +q is 
surrounded by a thin conducting cy lindrical she ll (length L and rad ius ,b) wi th tota l charge 
- q, as shown in the figure, 

L 

! 
... 

(a) Us ing Gauss ' s Law, find an express ion for the d irect ion and magnitude of the electri c 

field it for the region r < a, 

Solution: The e lectric field is zero ins ide the inner conducting cy linder. 

(b) Similarly, find an expression for the direction and magnitude of the electric field E 
for the region a < I' < b . 

Solution: We use a Gauss ian cy linde r of length I and radius a < r < b , Then, the nux is 

The charge enclosed is given by 

So Gauss' Law becomes 

fIE dA = E27l'rl , 

Q,,,,. =.?cl = (q / L)/, 

- q I 
E=--- r'a<l' < b 

L27l'E:o r ' 



Problem 5 (10 points) : Solid Sphere with a Cavity 

A sphere of radius 2R is made of a non-conducting materia l that has a uniform vo lume 
charge density p. (Assum e that the material does not affect the e lectric field.) A 

spherical cav ity of rad ius R is then ca rved out from the sphere, as shown in the fi gure 
below. Find the e lectric field within the cav ity . 

... 

-----+-----x 
211 

Solntion: At first g lance thi s charge di stribution does not seem to have any of the 
symmetri es that enab le us to use Gauss's law. However we can consider thi s charge 
distribution as the sum of two uni fo rm spherical di stributions of charge . The first is a 
sphere of radius 2R centered at the ori gin with a uniform vo lume charge density p. The 

second is a sphere of radiu s R centered at the point along the y-axis a distance R from 
the orig in (the cente r of the spheri ca l cav ity) with a uni fo rm vo lume charge density -p. 

:~ __ f- --
I 

+ 

When we add together these two distributions of charge we obtain the uniform charged 
sphere with a spherical cavity of radius R as described in the problem. We can then add 
together the e lectric fi e lds fro m these two distributions at any point in the cavity to obta in 
the electric fi eld of the original di stribution at that point ins ide the cav ity (superposition 
principle). Each of these two di stributi ons are spherica lly symmetric and therefore we can 
use Gauss's Law to find the e lectric fi e ld assoc iated with each of them .. We do need to be 
careful when we add together the e lectric fields. As you will see that process is somewhat 
subtle and a good vector diagram will help considerab ly. 

So let' s begin by choos ing a poi nt P inside the cavity . We will now app ly Gauss's Law 
to our first distribution, the sphere of radius 2R centered at the origin with a uniform 



vo lume charge density p . T he po int P is a distance r < 2 R from the orig in. We choose a 

sphere of rad ius r as our Gaussian surface with r < 2R. 

Then, the e lectric flu x th rough this c losed sur face is 

where Ep denotes the o utward normal component of the e lectric fi e ld at the point P 

assoc iated to the spherica l distri buti on with uni form vo lume charge density p. Because 

the charge di stributi on is uni fo rm, the charge enclosed in the Gaussisan sur face is 

Q,.", = p(471.,.313) 

Go Go 

Reca ll that Gauss' Law equates e lectric flu x to charge enclosed: 

So we substi tute th e two calculati ons above into Gauss' law to arrive at: 

E . 47T1·2 = p(47Tr
3 

/ 3) 
p . 

Co 

We can so lve thi s equation for the e lectric fi e ld 

it (P) = E r = pr r 
P p 3£ 

o 

where r is a unit vector at the po int P po inting radially away from the origin. 



We now app ly Gauss's Law to our second distri but ion, a sphere o f radius R centered at 
the po int a long the y-axis a distance R from the origin with a uni form vol ume charge 
density-p. The point P is a di stance r' < R from the center of the cavity. 

G(US~'o." 
~ lJ r [Ila --4.... 

We choose a sphere of radius r' as our Gauss ian surface with r' < R . Then, the e lectr ic 
flu x through thi s closed sur face is 

mflt . iA = E . 47fr" LjJJ -p - p , 

where E_p denotes the outward normal component of the electr ic fi e ld at the po int P 

assoc iated to the spherica l d istr ibut ion with uniform vo lume charge dens ity-p. Because 

the charge dist ri bution is uniform, the charge enclosed in the Gaussisan surface is 

Q"". = p(4m." / 3) 

&0 £0 

Therefore app lying Gauss 's Law yie lds 

E ·4m·' = -p 

p(47fr"/3) 

We can so lve this equation for the electric fi e ld 

E- (P) E -, p r ' -, =. r =-- r 
-p -p 3 

lio 

where r' is a unit vector at the point P pointing radia lly away from the center of the 
cavity. 

t 



The electric field associated with our ori gi nal distribution is then 

- - - "", p r " pr' " , p ( " ," ') p (_ _') E(P) =E (P) +E_ (P) = E r + E_ r =-r --r =- rr-rr =- r - r 
p p P P 3& 3& 3& 3& o 0 0 0 

where J' is a vector from the origi n to the point P and J" is a vector from the center of 
the cavity to the po int P . From our d iagram we see that a = J' - J" . 

Therefore the e lectric fi e ld al the point P is given by 

- p -E(P) =-a . 
3&0 

This is a remarkable result. The electric field inside the cav ity is uniform. The d irection 
of the electric field points from the center of enti re sphere to the center or the cavity. Th is 
direction is uniquely spec ifi ed and is an example of ' broken symmetry ' . 



Problem 6 (10 points): Stupid Hobbies ... 

Some people like to do incred ibly dangerous things. Like Austi n Richards (al so known 
as Dr. Megavolt or Cri ss Angel, who performed a s imilar stunt on the "Tes la Coi l" 
episode of hi s show Mindfreak. Here are some pictures. 

You' ll note that while Dr. Megavolt takes strikes directly from the Tesla Co il (a device 
capab le o f making insanely high vo ltages), Criss Ange l decides to get shocked from a 
sma ll ball attached to the co il instead - convenient for the purposes of answering this 
question. At about 
what vo ltage was the Tesla co il for the strikes pictured above and about how much 

excess charge was on his hand (in the right picture) the instant before the strike was 
initiated? (H INT: Dry a ir breaks down at an electric field strength of about 3 x 106 V 1m) 

Solution: 

Judging from the picture, Criss is about a meter away from the ball when it arcs. Could 
be two meters, but it is eas ier to work with one meter, so I' ll use that. If we make a 
s imple minded assumpti on that V = Ed then the potential difference is g iven by: 

3 x 106 V 1m x I m 13 x l06 vi 
(hence Dr. Megavolt!). You may complain that c learly this is more like a ball of charge 
then a parallel plate capacitor so we should have used a point charge potential, kQ/r. But 
notice that even in thi s case V - Er, so the above is approx imately correct. There is a lso 
a question of where the field equals the breakdown fi eld. Fortunately, this is a back of 
the envelope question so the details don' t matter so much. 

We can determine a minimum charge by requiring the field to be at breakdown strength 
just outs ide his hand (or the ball). Let ' s make them spheres of rad ius 5 cm. Then: 

E = kQ/r' => Q = r' E/k O (5 cm)' 3 x 106 V m·' (9 x 10' V m ely' =0 8x 10-' C =0 15 x 1012 el 



I say that this is a minimum because the fie ld is clearly breaking down a much further 
di stance away (a meter) which 1V0uid require a charge 400 (=202) times larger. The rea l 
charge has to be somewhere between these two extremes, so I' ll estimate 



Problem 7 (10 points): Expt. I: Equipotential Lines and Electric Fields Pre-Lab 
Qnestions 

Read Experiment 1. T he link is 

htt p: //we b.1Il i t. ed u 18.02 t/www/lll ateria ls/Expcriments/expOl . pdf. 

Then answer the following pre-lab questions. 

1. Equipotentia ls Curves - Reading Topographic Ma ps 

Below is a topographic map ofa 0.4 mi square reg ion of San Francisco. The contours 
shown are separated by heights of25 feet (so from 375 feet to 175 feet above sea leve l 
for the region shown) 

From left to right, the NS streets shown 
are Buchanan, Laguna, Octav ia, Gough 
and Franklin. From top to bottom, the 
EW streets shown are Broadway, 
Pac ifi c, Jackson, Washi ngton, C lay 
(which stops on either side of the park) 
and Sacramento. 

(a) In the part of town shown in the 
above map, wh ich street(s) have the 
steepest runs? Which have the most 
leve l sections? How do you know? 

Solution: 
You can tell how steep something is by 

looking at how quickly it passes through constant height contours (- eq uipotentials). The 
steepest section is a long Octav ia between Pacific and Washington. The most leve l street 
is Jackson between Buchanan and Octav ia, whi ch runs parallel to the 275 foot contour 
and hence is very fl at. 

(b) How steep is the steepest street at its steepest (what is its slope in ftlmi)? 

Solution: 
Looking at Octav ia, it passes th rough 5 contours ( 125 feet) in two blocks (about 0. 12 
miles) so it has a slope of - 1000 ftlmi. 

(c) Which would take more work (in the phys ics sense): wa lking 3 blocks south fro m 
Laguna and Jackson or I block west from Clay and Franklin? 

Solution: 



Work is change in potent ial energy (and hence height). The change in height walking 3 
blocks S on Laguna is almost nothing (you go up but come back down again) . West on 
Clay from Franklin you rise 50 fee t in the block, so that is more work. 



2. Equipotentials, Electric Fields and C harge 

One g roup d id this lab and measured the 
eq uipotenti a ls for a sli ghtly diFferent 
potential landscape then the ones you 
have been g iven (although still on a I cm 
grid). 

Note that they went a little overboard and 
marked eq uipotenti al curves (the magenta 
ci rcles) at V = 0.25 V, 0.5V and then 
from V = I V to V = lOY in I V 
increments. 

T hey fo ll owed the convention that red 
was their positive e lectrode (V = + lOY) 
and blue was g round (V = 0 V). 

(a) Copy the above figure and sketch e ight e lectric fie ld lines on it (equally spaced 
aroune! the inner cond uctor). 

Solution: See black arrows 

(b) What, approximate ly, is the magnitude of the e lectric field at r = I cm, 2 cm, and 
3 cm, w here r is measured fro m the center of the inne r conductor? You should 
express the field in V/cm. (HINT: The fi e ld is the local slope (derivative) of the 
potential. A lso, if you choose to use a ruler rea lize that the above reproducti on of 
thi s group 's results is not the same s ize as the orig ina l, w here the grid size was I 
cm). 

Solution: 

At r = I cm, V - 4 V and we move I V in about 1/5 cm. 
At r = 2 cm, V - 1.5 V and we move about 1/2 V in 112 cm. 
At r = 3 cm, V - 0.7 V and we move about 0.2 V in 1/2 cm. 

E - 5 Vlcm 
E - I Vlcm 
E - 0.4 Vlcm 

(c) What is the relationship between the density of the equipotential lines, the density 
of the electric field lines, and the strength of the e lectri c field? 

Solution: 

The denser the eq uipotentia l lines and hence electric field lines, the stronger the field. 



(d) Plot the field strength vs. 1// for the three points from part (a). If the field were 
created by a sing le point charge what shape should this sketch be? Is it? 

Solu tion: 

It should be (and is!) a stra ight line 

/ 

5 ,e 
/ 

/ - , / 

E / 

3 
/ 

/ 
/ -, / 

"0 / 
Q} / 

u:: / 
/ 

.g , / Linear Fit: 
u / Slope - 5 V em <1> / 

W .-
/ 

e' 
/ 

a 
0.0 a.' 0.< o.s 0.8 1.0 

11r' (em" ) 

(e) Approximately how much charge was on the inner conductor when the group made 
their measurements? 

Solu tion : 

E = k,!!" so slope is k,q = 5 V cm. q '" 5 x IO-"C 
r -



3. Finding the Electric Field from the Electric Potential 

The graph shows the variation of an electric potential V w ith di stance x. The potential 
does not vary in the y or z directions. Be sure to inc lude units as appropriate. 

Electric Po tent ial V 

· IOV 

.... , ..... ............ , ........ / . ...... , ......... ...... ",i.... .. - SV .......• , ..... .... .•......•• , ........ .. •..... _ .. , ........ . 
+ x - a.xis 

; 
.: 3..rn.. .... ..... ,. . -5Y" 

·····,,··"i·,·· -IOY····· ·j 

(a) What is E, in the reg ion x > - I in ? (Be careful to indicate the s ign of E,.) 

Solution: In the reg ion x > - I m , V(x)= 5Y-(5Y·m·')x.So 

E = -~V(x)= 5Y.m " ., d, 

(b) What is E, in the region x < - I m ? (Be careful to indicate the sign of E, .) 

Solution: In the region x < -I m , Vex) = 20 Y+(IO Y m" ) x. So 

d 
Ex= --V(x)=- IOY m " . 

dt 

(c) A negatively charged dust particle with mass lI1q = I x I 0- 13 kg and charge 

q = - I x 10-12 C is released from rest at x = +2 m. Will it move to the left or to the ri ght? 

Solution: For x>- I m , the e lectric fi eld is pointing in the pos itive x-direction, so a 

negative ly charged particle 'will experience a force pointing in the negative x-direct ion, 
hence it will move to the left. 
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Summary of Class 7 8.02 

Topics : Electric Potential, Equipotentials 
Related Reading: Course Notes: Sections 3.1-3.5 
Experiments: (1) Equipotential Lines and Electric Fields 

Topic Introduction 
Today we continue our discussion of electric potentials and equipotentials, becoming more 
familiar with them and their relationship with charge and electric fields through our first 
experiment. 

Equipotentials 
Recall from our last class that when discussing potential and potential energy we only 
defined differences. This is because only differences are physically meaningful - what we 
choose, for example, to call "zero energy" is completely arbitrary. Today we will focus on 
the measurement of equipotential surfaces, that is, locations where the potential is the same, 
and will practice estimating electric field lines and charge distributions once those 
equipotential surfaces are known. 

Experiment 1: Equipotential Lines and Electric Fields 
Preparation : Read pre-lab and answer pre-lab questions 

(Hand in pre-lab questions at the beginning of class) 

Thus far in class we have talked about fields, both gravitational and electric, and how we can 
use them to understand how objects can interact at a distance. A charge, for example, creates 
an electric field around it, which can then exert a force on a second charge which enters that 
field. In this lab we will study another way of thinking about this interaction through electric 
potentials. 

In particular, for several given charge configurations you will map out equipotential 
contours, that is, contours along which the potential is a constant. From these equipotentials 
you can determine both the direction and magnitude of the electric field. 

Summary of Class 7 p. I I I 
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Experiment 1: Equipotential Lines and Electric Fields 

OBJECTIVES 

I. To develop an understanding of electric potential and electric fields 
2. To better understand the relationship between equipotentials and electric fields 
3. To become familiar with the effect of conductors on equipotentials and E fields 

PRE-LAB READING 
INTRODUCTION 

Thus far in class we have talked about fields , botb gravitational and electric, and how we 
can use them to understand how objects can interact at a distance. A charge, for example, 
creates an electric field around it, which can then exert a force on a second charge which 
enters that field. In this lab we will study another way of thirikmg about thIS interaction 
through electric potentials. 

The Details: Electric Potential (V oJtage) 

Before discussing electric potential, it is useful to recall the more intuitive concept of 
potential energy, in particular gravitational potential energy. This energy is associated 
with a mass ' s position in a gravitational field (its height). The potential energy difference 
between being at two points is defined as the amount of work that must be done to move 
between them. This then sets the relationship between potential energy and force (and 
hence field) : 

fB -
/'"U=UB-UA =- A F .ds (in lD) F= _ dU 

dz 
(I) 

We earlier defined fields by breaking a two particle interaction, force , into two single 
particle interactions, the creation of a field and the "feeling" of that field. In the same 
way, we can define a potential which is created by a particle (gravitational potential is 
created by mass, electric potential by charge) and which then gives to other particles a 
potential energy. So, we define electric potential, V, and given the potential can calculate 
the field: 

(inlD) E= _ dV . 
dz 

(2) 

Noting the similarity between (I) and (2) and recalling that F = qE, the potential energy 
of a charge in this electric potential must be simply given by U = q v. 

E06-1 



When thinking about potential it is convenient to think of it as "height" (for gravitational 
potential in a uniform field , this is nearly precise, since 0 - mgh and thus the 
gravitational potential V = gh). Electric potential is measured in Volts, and the word 
"voltage" is often used tnterchangeably with "potential." You are probably familiar with 
this terminology from batteries, which maintain fixed potential differences between their 
two ends (e.g. 9 V in 9 volt batteries, 1.5 V in AAA-D batteries). 

Equipotentials and Electric Fields 

When trying to picture a potential landscape, a map of equipotential curves - curves 
along which the potential is equal - can be very helpful. For gravitational potentials 
these maps are called topographic maps. An example is shown in Fig. lb. 

(b) 

@ 
Figure 1: Equipotentials. A potential landscape (pictured in 3D in (a» can be 
represented by a series of equipotential lines (b), creating a topographic map of the 
landscape. The potential ("height") is constant along each of the curves. 

Now consider the relationship between equipotentials and fields. At any point in the 
potential landscape, the field points in the direction that a mass would feel a force if 
placed there (or that a 'positive char e would fee a »J;ce oL.J::le.ct(ic....p_Q!entials and 
fields) . So, place a ball at the top of the hill (near the center of the left set of circles in the 
topogrll£Pc map of Fig b). ic~ay does it roll? D~whillL But what direction is 
that? <l!cqJendicul@' to th~ .e_m t~mi"l \fji'es? Why? Equipotential lines are lines of 
constant height, so moving along them at all does not achieve the objective of going 
downhill. So the force (and hence · field) must point across them, pushing the object 
downhill. But why exactly perpendicular? Work done on an object changes its potential, 
so it can take no work to move along an equipotential line. Work is given by the dot 
product of force and displacement. For this to be zero, the force must be perpendicular to 
the displacement, that is, force (and hence fields) must be perpendicular to equipotentials. 

Note: Potential vs. Potential Difference 

Note that in equation (2) we only defined LtV, the potential gjfference between two points, 
and not the potential V. This is because potential is like height - the location we choose 
to call "zero" is completely arbitrary. In this lab we will choose one location to call zero 
(the "ground"), and measure potentials relative to the potential at that location. 
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APPARATUS 

1. Conducting Paper Landscapes 

To get a better feeling for what equipotential curves look like and how they are related to 
electric field lines, we will measure sets of equipotential curves for several different 
potential landscapes. These landscapes are created on special paper (on which you can 
measure electric potentials) by fixing a potential difference between two conducting 
shapes on the paper. For reasons that we will discuss later, these conducting shapes are 
themselves equipotential surfaces, and their shape and relative position determines the 
electric field and potential everywhere in the landscape. One purpose of this lab is to 
develop an intuition for how this works. There are four landscapes to choose from (Fig. 
2), and you will measure equipotentials on two of them (one from Fig. I a, b and one from 
Fig. Ic, d). 

Figure 2 Conducting Paper Landscapes. Each of the four landscapes - the "standard" 
(a) d~le and (b) parallt;Lplates, and the "non-standard" (c) bent plate and (d) filled 
plates - consists of two conductors which will be connected to the positive (red) and 
ground (blue) terminals of a battery. In (d) there is an additional conductor which is free 
to float to whatever potential is required. The pads are painted on conducting paper with 

a 1 cmgrid. SpQt (('tI pareI' 

2. Science Workshop 750 Interface 

In this lab we will again use the Science Workshop 750 interface both to create the 
potential landscapes (using the "OUPUT" connections that act like a battery which we 
will set to 5 V) and to measure the potential at various locations in that landscape using a 
voltage sensor. 
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3. Voltage Sensor 

In order to measure the potential as a function of position we will once again use the 
voltage sensor, plugged into Channel A on the 750. When recording the "potential," you 
will really be measuring the ~otential differenc~ between the two leads, (red minus black) 
and hence you should have the black lead connected to the output ground (what value of 
potential does this then assign to the output ground?) 

GENERALIZED PROCEDURE 

For each of the two landscapes that you choose, you will find at least four equipotential 
contours by searching for points in the landscape at the same potential using the voltage 
sensor. After recording these curves, you will draw several electric field lines, making 
use of the fact that they are everywhere perpendicular to equipotential contours. 

END OF PRE-LAB READING 
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IN-LAB ACTIVITIES 

EXPERIMENTAL SETUP 

1. Download the LabView file from the web and save the file to your desktop (right 
click on the link and choose "Save Target As"). Start Lab View by double clicking 

2. Connect cables to the output of the 750 (red to the sin wave marked output, black to 
ground). One member of the group will hold these wires to the two conductors while 
another maps out the equipotentials. 

3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface 

4. Connect the black lead of the voltage sensor to the black output (the ground). You 
will use the red lead to measure the potential around your landscapes. 

MEASUREMENTS 

Part 1: "Standard" Configuration 

I. Choose one of the two "standard" conducting paper landscapes (the dipole or 
parallel plate configuration) 

2. Use the voltage connectors to make contacts to the two conducting pads 

3 . . Press the green "Go" button above the graph to energize the battery and begin 
recording the potential of the red lead (relative to the black lead = ground). 

4. Measure the potential of both conducting pads to confinn that they are properly 
connected (one should be at +5 V, the other at 0 V), and that they are indeed 
equipotential objects (we will explain why next week). 

5. Now, try to find some location on the paper that is at about + I V (don't worry 
about being too precise). Mark this point on the plot on the next page. 

Do NOT write on the conducting paper 

6. Find another 1 V point, about 1 cm away. Continue until you have closed the 
curve or left the page. Sketch and label this equipotential curve. 

7. Repeat this process to find equipotentials at 2 V, 3 V, and 4 V. Work pretty fast; 
it's more important to think about what these lines mean than it is to draw them 
perfectly. Think about what you are doing - are there symmetries that you can 
exploit to make this task easier? 
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Question 1: 

Sketch in a set of electric field lines (- ten) on your plot of equipotentials on the previous 
page. Where do the field lines begin and end? If they are equally spaced at their 
beginning, are they equally spaced at the end? Along the way? Why? 

Question 2: 

What, approximately, is the potential midway between the two conductors? REMINDER 
Gust this once): Whenever you are asked for a numerical value DO NOT FORGET 
UNITS! 

7... ,) [lolls 

Question 3: 

What, approximately, is the strength of the electric field midway between the two 
conductors? You may find it easier to answer this question if you just measure the 
potential at a few points near the center. 

Part 2: "Non-Standard" Configuration 

I. Choose one of the two "non-standard" conducting paper landscapes (the bent 
plate or filled plates configuration) 

2. Use the voltage connectors to make contacts to the two conducting pads (for the 
filled plates, the center pad does not have a connection to it) 

3. Press the green "Go" button above the graph to energize the battery and begin 
recording the potential of the red lead (relative to the black lead = ground). 

4. Confirm that everything is properly connected by measuring the potential on the 
two connected pads, then record a set of equipotential curves following the same 
procedure of part I. 

E06-7 
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Question 4: 

Sketch in a set of electric field lines on your plot of equipotentials on the previous page. 
Where is the electric field the strongest? What, approximately, is its magnitude? 

F;{I~ 
\ 5t(()fl8er ~ e:( IrP~ 1\ (It 1-( (~ 

Tofe !( re s ore cI os-as f-

(JI~ -T ( ' 
.r-- :: -J -
! 3c, eM, 

Further Questions (for experimentation, thought, future exam questions . .. ) 

• What changes if you switch which conducting pad is at +5 V and which is ground? 
• What if you forget to connect the ground lead? 
• If you rest your hand on the paper while making measurements, does it affect the 

readings? Why or why not? 
• If you wanted to push a charge along one of the field lines from one conductor to the 

other, how does the choice of field line affect the amount of work required? 
• The potential is everywhere the same on an equipotential line. Is the electric field 

everywhere the same on an electric field line? 
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Experiment 1 Solutions: Equipotential Lines and Electric Fields 

IN-LAB ACTIVITIES 

EXPERIMENTAL SETUP 

I. Download the LabView fil e from the web and save the file to your desktop (right 
click on the link and choose "Save Target As"). Start LabView by double clicking 

2. Connect cables to the output of the 750 (red to the sin wave marked output, black to 
ground). One member of the group will hold these wires to the two conductors while 
another maps out the equipotentials. 

3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface 

4. Connect the black lead of the voltage sensor to the black output (the ground). You 
will use the red lead to measure the potential around your landscapes. 

MEASUREMENTS 

Part 1: "Standard" Configuration 

I. Choose one of the two "standard" conducting paper landscapes (the dipole or 
parallel plate configuration) 

2. Use the voltage connectors to make contacts to the two conducting pads 

3. Press the green "Go" button above the graph to energize the battery and begin 
record ing the potential of the red lead (relative to the black lead = ground). 

4. Measure the potential of both conducting pads to confirm that they are properly 
connected (one should be at + I 0 V, the other at 0 V), and that they are indeed 
equipotential objects (we will exp lain why next week) . 

5. Now, try to find some location on the paper that is at about +2 V (don't worry 
about being too precise). Mark this point on the plot on the next page. 

Do NOT write on the conducting paper 

6. Find another 2 V point, about I cm away. Continue until you have closed the 
curve or left the page. Sketch and label this equipotential curve. 

7. Repeat this process to find equipotentials at 4 V, 6V, and 8 V. Work pretty fast; 
it's more important to thin k about what these lines mean than it is to draw them 
perfectly. 

EO I Solutions- I 
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Question 1: 

Sketch in a set of electric field lines (- ten) on your plot ofequipotentials on the previous 
page. Where do the field lines begin and end? If they are equally spaced at their 
beginning, are they equally spaced at the end? Along the way? Why? 

Yes, they are equally spaced at the end if they are at the beginning, by symmetry. The 
spacing changes along the way, spreading out significantly away from the sources. 

Question 2: 

What, approximately, is the potential midway between the two conductors? 

By symmetry it must be halfway between the two potentials, or 2.5 V 

Question 3: 

What, approximately, is the strength of the electric fi e ld midway between the two 
conductors? You may find it eas ier to answer this question if you just measure the 
potential at a few points near the center. 

For both the dipole and the parallel plates the distance between the conductors is about 3 
cm and the potential difference is 5 V so the E field strength is about 1.6 V Icm. Of 
course, to be more accurate, measurements of the potential should be made closer to the 
center. 

Part 2: "Non-Standard" Configuration 

I. Choose one of the two "non-standard" conducting paper landscapes (the bent 
plate or filled plates configuration) 

2. Use the voltage connectors to make contacts to the two conducting pads (for the 
filled plates, the center pad does nol have a connecti on to it) 

3. Press the green "Go" button above the graph to energize the battery and begin 
recording the potential of the red lead (relative to the black lead = ground). 

4. Confirm that everything is properly connected by measuring the potential on the 
two connected pads, the record a set of equipotential curves following the same 
procedure of part I. 

EO I Solutions-3 
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Question 4: 

Sketch in a set of e lectric field lines on your plot of equipotentials on the previous page. 
Where is the electric field the strongest? What, approximately, is its magnitude? 

The electric field is the strongest near sharp points (where the conductors are the closest 
together). 

Question 5: 

Where is the electric field the most uniform? How can you tell? 

The field is the most unifonn outside of the plates, where the potentia l is nearly constant 
and the fi eld is hence about zero . 

Further Questions (for experimentation, thought, future exam questions ... ) 

• What changes if you switch which conducting pad is at + I 0 V and which is ground? 
• What if you forget to connect the ground lead? 
• If you rest your hand on the paper while making measurements, does it affect the 

readings? Why or why not? 
• Ifa charge were to move along one of your field lines from one conductor to the 

other, how does the choice offield line affect the amount of work required to move? 
• The potentia l is everywhere the same on an eq uipotenti al line. Is the electric fie ld 

everywhere the same on an electri c fi eld line? 

EO I Solutions-5 



Class 07: Outline 

Hour 1: 

Electric Potential 

Hour 2: 
Lab 1: Equipotentials 

Last Time: 
Potential and E Field 

11/>. : 

E Field and Potential : Creating 

A point charge q creates a field and potential around It: 

E = k !Lr· V = k ':1. Use superposition for 
e r2 ' e r systems of charges 

Ik 1"ttlvJ1e 
They are related: ,."\ 

E = -\7 V; /), V '" VB - VA = - rBE.ds JA ""/_ 1 

~ r~~I<l.1l"\ 1 (j. rr.'" Vj>hll' 
Class 07 bv~ @ (,~Q.~c6 ""v( J So e 

( 0/""" ~ 

L f~ 1J.s r 
?, fkc-tr) ( 

- msc,n!r 
- COil t\'1e0 

-s 't~t1 ef-'-'lL (o.J;.55 r L.a,.f 

I, Cak el ~k k f){ Id, i"" ~a;(,k­

+-0 01lcL c /a,h"LL fvbf~<l1 

, a ra. t(M ~ - fa,.l\-<'.S~ 
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E Field and Potential: Effects 

If you put a charged particle, (charge q), in a field: 

- -F=qE 
To move a charged particle, (charge q), in a field 
and the particle does not change its kinetic energy 
then: 

W =t1.U = qt1.V 
ex( 

Two PRS Questions: 
Potential & E Field 

PRS: E from V 

1m 2m 
·5V . "" 

..... 1. r 10V -...... ~ 

~ .. 

The graph above shows a potential V as a function 
of x. The magnitude of the electric field for x > 0 is 

.% 1. larger than that for x < 0 

. % ( 2 smaller than that for x < 0 

.% equal to that for x < 0 

.. k 4. I don't know 

Class 07 
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PRS: E from V 

1m 2m 
..... '5V 

·10V ; 

The above shows potential V(x). Which is true? 

1. Ex>o is> Oand Ex <ois> O 
~ Epa is > 0 and Ex<o is < 0 

~ Ex>ois<OandElC<o is <Q 
~ Ex> o is <OandEx<o is >O 

. I don't kn w 

Potential from E 

Potential for Nested Shells 

From Gauss's Law 

{ 

Q. b _ --2r, a<r< 
E= 4KEc' 

0, e lsewhere 

B 

Use V -V =-JE,as B •• 
A 

Region 1: r> b No field c) 

"". , 

V(r)-~ =-[ Odr =0 No change .in VI 
", .. 

Class 07 
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Potential for Nested Shells 
Region 2: a < r < b 

=_1 Q(l_l) 
41'Z"co r b 

Electric field is just a point charge. 

Electric potential is DIFFERENT - surroundings matter 
"", .~ 

Potential for Nested Shells 
Region 3: r < a 

Q (I I) V( r )=V (a)= - ---
4n8o a b 

Again, potential is CONSTANT since E = o. 

Equipotentials 

Class 07 4 



Topographic Maps 

-

jA~ 
~

': ' ",j"" O'r' ----:;::::==:::::-- .1' 
. . . -~J' 

.' 
x ~ 

(A 1\ 

g,rr--t-,p{x.y) 

x 

fOII· ·1J 

Equipotential Curves t f: (, Id I ~"t.!> eve r rppl! a :(JW 
)' 

v~_ ~.c, 

(l®~." 

l' foJe> IN"'-)! cllJlj.?J) TVP v1 r~ ~ 
Fo r- ill C hO(Q ( 

v 

0 
x 

AU pOints on equipotential curve are at same potential. 
Each curve represented by V(x,y) = conslanl 

1\110 " 

Direction of Electric Field E . 

~ : i .. - .. , . 

I:' ia ' ' , . , . , 

; : : ; ; ~ : ~ [ 
di' 

Constanl E field Point Charge Electric dipole 
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Properties of Equipotentials 

• E field lines point from high to low potential 

E field lines perpendicular to equipotentials 

• Have no component along equipotential 

• No work to move along equipotential 

Demonstration: Kelvin 
Water Drop 

11120 1 PRS: Kelvin Water Dropper 

A drop of water falls through the right can. If the 
ean has positive charge on it, the separated water 
drop will have 

0% 1. no net charge 

0% 2. a positive charge 
3. a negative charge Can 

0% ... 
O'~ 4. I don't know 

/' 
.. Water Drop 

Class 07 
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Equipotential 
Visualization 

Experiment 1: Equipotentials 

Download LabView file (save to desktop) 
and run it 

Log in to server and add each student to 
your group (enter your MIT ID) 

Each group will do two of the four figures 
(your choice). We will break about half 
way through for some PRS 

~ .• 

PRS Questions: 
Midpoint Check 

Class 07 7 



PRS: Lab Midpoint: Equipotential l -M' I 
The circle is at +5 V relative to the plate. Which of the below is 
the most accurate equipotential map? 

4 

6 .. 

PRS: Lab Midpoint: Field Lines ~o 
The circle is at +5 V relative to the plate. Which of the below is th: ¥ urate ~ctriC ~n. map? 

tIll 5 @ 
6 

• 

Experiment 1: Equipotentials 

Continue with the experiment. .. 

If you finish early make sure that you talk 
about the extra questions posed at the 
end of the lab. Labs will be asked about 
on the exams (see, for example, the final 
exam from Fall 2005) 

Class 07 
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PRS Questions: 
Lab Summary 

PRS: Lab Summary: Potentials 
Holding the red plate at +5 V relative to the ground of 

the blue plate, what is true abo~t~th~e~e:I.e:c:tC:i9~g;9t~ential 
at the following locations: ", 

A r-
c ~ ~ 

• D 
0'. 1. V(A) > V(B) > V(C) > V(O) 
0% 2. V(A) > V(B) - V(C) > V(O) 0'. V(A) - V(B) > V(C) - V(O) 0'. 4. V(O) > V(C) - V(B) > V(A) 
0'. 5. V(B) > V(C) > V(O) - V(A) 

0% 6. V(A) > V(O) - V(C) > V(B) m o. 

PRS: Lab Summary: E Field 
Holding the red plate at +5 V relative to the ground of 

the blue plate, what is true ab.o .. utlllth~e:e:le:ct:ric:fi~le~ld at the 
following locations: ., 

~ 
Q. 

O 
C BS' 

S'D 
0% 1. E(A) > E(B) > E(C) > E(O) 
0% 
0% 
0% 
0% 

0% 

2. E(A) > E(B) - E(C) > E(O) 
3. E(A) - E(B) > E(C) - E(O) 
4. E(O) > E(C) - E(B) > E(A) 

5. E(B) > E(C) > E(O) - E(A) 

6. E(A) > E(O) - E(C) > E(B) 

Class 07 

f laJe 
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PRS: Lab Summary: Charge 
Holding the red plate at +5 V relative to the ground of 
the blue plate, what is true about the amount of charge . 

near the following points: 1/' . G I) .. tJ J 11'i!lhJ 
..... ! v'7 

0% 1. 10(A)I-10(c)1 > 10(6)1-10(0)1 V 
0% 2. 10(A)1 > 10(6)1 - 10(C)1 > 10(0)1 
0% ~\\ 10(A)1 - 10(6)1 > 10(C)1 - 10(0)V 
O·k .f.' 10(0)1-10(C)I> 10(6)1 -IO(A)I 
0% 5. 10(6)1-10(0)1 > 10(A)1 - 10(c)1 
0% 6. 10(A)1 > 10(0)1-10(C)1 > 10(6)1 

Configuration Energy 

Configuration Energy 
How much energy to put two charges as pictured? 

1) First charge is free 

2) Second charge sees first: 

t 

Class 07 

, ",'rI-( qf ~ (ell :l t"l \j -

;)hQ,,~~r r ~Q, \~ 
d,et'\i.[Jf' (i,eld \11'\0::: ..srn),c f:€iJ-

\ I ' L~h ~Il')r ,j- c h(iy~~ 
A-=- B (::- 0 

11\ n, poh'li\C/' I (/taJd by ttt 
1 JL(fWNIl. 1'6 k po+-e-1t~d{ &'e~! 
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Configuration Energy 
How much energy to put three charges as pictured? 

q, 
1) Know how to do first two .Q 
2) Bring in third: r!:/ ... 

W, = q, (v, + V, )= -.!lL..(!!.L+!lL) :J<~.. '-<:: 
4Jl'so 'h 1'23 1/, ··;I;····. _q 

" Total configuration energy: 

U =w:!. + W, =_1_( q l q l + 91% + q 2q J )=U
12 

+U
13 

+U
23 

41TEo lj 2 'il r·u 

Group Problem: Build It 

y 1) How much energy 
p did it take to assemble 

/. ~ x 
the charges at left? 

2) How much energy 

I 
-Q Q +Q would it take to add a 

4th charge +30 at P? 

"p. r, 

Class 07 11 



Summary of Class 8 8.02 

Topics: Electric Potential, E from V 
Related Reading: Course Notes: Sections 3. J -3 .5, 3.7-3.8 

Topic Introduction 

Today you will practice calculating potentials from charges and known field configurations 
in a problem solving. You will also play with the java applet "The Electric Potential Game" 
which should help solidify your understanding of the relationship between charge, field & 
potential. 

Potential 
Recall that the creation of an electric potential is intimately related to the creation of an 

18 -
electric field: !lV = VB -VA =- A E ·d s. As with potential energy, we only define a 

potential difference. We will occasionally ask you to calculate "the potential," but in these 
cases we must arbitrarily assign some point in space to have some fixed potential. A 
common assignment is to call the potential at infinity (far away from any charges) zero. In 
order to find the potential anywhere else you must integrate from this place where it is known 
(e.g. from A=oo, VA=O) to the place where you want to know it. 

Once you know the potential , you can ask what happens to a charge q in that potential. It 
will have a potential energy U = q V. Furthermore, because objects like to move from high 
potential energy to low potential energy, as long as the potential is not constant, the object 
will feel a force, in a direction such that its potential energy is reduced. Mathematically that 

is the same as saying that F = - \7 U (where the gradient operator \7 ==!..... i +!..... J +!..... k ) and ax ay az 
- --hence, since F = q E , E = - \7 V. That is, if you think of the potential as a landscape of hills 

and valleys (where hills are created by positive charges and valleys by negative charges), the 
electric field will everywhere point the fastest way downhill. 

Important Equations 

Potential Energy (Joules) Difference: 

Electric Potential Difference (Joules/Coulomb = Volt): 

Electric Potential (Volts) created by point charge: v. (r) = kQ 
Poi nl CllllrgC 

Potential energy U (Joules) of point charge q in electric potential V: 

Summary for Class 8 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Physics 

Problem Solving 3: Electric Potentials 

REFERENCE: Chapter 3, 8.02 Course Notes. 

Consider two point-like charged objects with charges q, = -Q , and q, = +Q 

Question 1: If the charges start out very far apart, how much ~.gy it necessary to bring these 
charges together until they are a distance 2a apart? Give a physical reason for the sign of your 
answer. Does your answer depend on whether or not you choose infinity as a zero reference 
potential? " . ' t ' 

/ t;:c;tlsv, 5vr ~rfUc>' (V\ 

- - /' q, = -Q • • 0 IJoI0 '\f-,. ro 

2Vc / 2a 

o h ~(,L \'0 (A r'b q, = +Q 

~1 - k~ ?' £ , 
/Itl.+' 'lyvor~\ = d\r?~t l. l(( • "~IU') 

{ ~ if 11 \ ~ul J ;(l'1"'~y 
Ll V:: Vg .. .lt . 

, U :: ~Q k~ ~( irve"' !- 3rJ J,,' 'v-t w (,,,- /'t 

\ 'Ikd ; , t ~ (t, - lUi; t:\., fo (" iJ 111 r 
Choose a coordinate system such that the positively c 1rged object is located at ~the origin and 
the negatively charged object is located a distance 2a long the positive y-axis (i.e. above it). 
Consider a point P that lies in the x-y plane with coordinates (x,y). 

Question 2: What is the potential difference between th
l
' point P and infinity, V(P) - V(oo)? 

',A 
J 

q, = -Q 

~ ---------
., 7' dll'J. 1101 

p = (x, y) 
I1Y.I?\ 

x 

polwti/cd IS 
{nul v'~(.toIS 
..----

~\<-q", 

J 7.2 I (y -Let/,' 
Solving 3-1 



Question 4: Suppose the point P is located at P = (2a, a) . Using only symmetry considerations 
(i .e. without calculation), predict the direction of the electric fie ld, and draw the direction on the 
sketch below. 

P = (2a, a) 

f (0 f'f\ ® 1-0 e x 

'MI\ r, lid yvOI, I d ~d b" 

ohl1 vp al !1t~ P')'I (~ Solving 6-2 

, dA \" VUjl' '> 



Question 5: Use the results of your calculations from part (b) and (c) to find an exact expression 
for the electric potential difference and the electric field at P = (2a, a). 

Question 6: Now move from P=(2a,a) to S=(2a,2a). Without calculation answer the 
following: is the electric potential difference V(S) - V(P) positive, zero, or negative? Why? 

y 

\ 

q, =-Q 

q, = +Q 

= (2a, 2a) 

(2a, a) 

x 

Solving 3-3 



Question 7: Which arrow most closely represents the direction of the electric field at 
S = (2a ,2a)? 

1 

2 

--~E-__ 3 

4 

5 

Part Two: Electric potential game. 

f()l~td 

throv~h I 

I,vt 

We next want you to look at an applet that shows you the electric potential due to two point 
charges, and how that is related to the electric field, using the examples from Part One above. 
We then want you to playa game where you explore bit by bit the electric potential due to two 
"invisible" point charges and guess the sign of the two invisible charges. You "win" the game 
by using the least number of moves to figure out what the signs of the charges are. 

Question 8: Open up the landscape applet. When you open the application you will see the 
charge configuration you were given in Question 1 above. We also show the potentials due to 
these two charges. You can explore the electric field by moving your avatar around the xy plane 
in the scene using the keypad on the right. The vertical distance of the avatar above the.xy plane 
is the electric potential at the avatar 's location. We also show the electric field at the avatar' s 
location below the avatar in thexy plane. 

Using the application, confirm your answers to Questions (4), (6) and (7) above. 

Question 9: Using the same application as above, create a potential landscape using two 
positively charged objects, using the controls on the right to change the sign of the charges. Find 
a point on the landscape where the electric field points away from both charged objects. Briefly 
describe your strategy. 

Explore the region around your selected point and observe how the electric field changes 
direction. Move the charges around, and change their signs, to get an idea of what the potential 
landscape looks like for arbitrary placement of the charges and how the electric field varies as 
you move your avatar around the .xy plane. 

You will need the intuition developed here to do well in the game below!! 

Question 10: Open up the electric potential game. You will have two charges which will be 
invisible, and located at random positions. You will only see that part of the electric potential 
that your avatar has explored. Move your avatar around the plane until you have enough 
information to guess the signs of the charges. Play the game and see which group at the table 
gets the lowest cumulative score for three tries. 

Solving 6-4 
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