

Spring 2010: Course Reader

Class Summaries
Presentation Notes
Problem Solving Sessions
Experiments

Website: http://web.mit.edu/8.02t/www/

Topics: Introduction to TEAL; Fields; Review of Gravity; Electric Field
Related Reading:
Web Pages: Overview Section for test dates, cut lines, and grading guidelines Course Notes: Sections 1.1-1.6; 1.8; Chapter 2

Topic Introduction

The focus of this course is the study of electricity and magnetism. Basically, this is the study of how charges interact with each other. We study these interactions using the concept of "fields" which are both created by and felt by charges. Today we introduce fields in general as mathematical objects, and consider gravity as our first "field." We then discuss how electric charges create electric fields and how those electric fields can in turn exert forces on other charges. The electric field is completely analogous to the gravitational field, where mass is replaced by electric charge, with the small exceptions that (1) charges can be either positive or negative while mass is always positive, and (2) while masses always attract, charges of the same sign repel (opposites attract).

Scalar Fields

A scalar field is a function that gives us a single value of some variable for every point in space - for example, temperature as a function of position. We write a scalar field as a scalar function of position coordinates - e.g. $T(x, y, z), T(r, \theta, \varphi)$, or, more generically, $T(\overrightarrow{\mathbf{r}})$. We can visualize a scalar field in several different ways:

(A)

(B)

(C)

In these figures, the two dimensional function $\phi(x, y)=\frac{1}{\sqrt{x^{2}+(y+d)^{2}}}-\frac{1 / 3}{\sqrt{x^{2}+(y-d)^{2}}}$ has been represented in a (A) contour map (where each contour corresponds to locations yielding the same function value), a (B) color-coded map (where the function value is indicated by the color) and a (C) relief map (where the function value is represented by "height"). We will typically only attempt to represent functions of one or two spatial dimensions (these are 2D) - functions of three spatial dimensions are very difficult to represent.

Vector Fields

A vector is a quantity which has both a magnitude and a direction in space (such as velocity or force). A vector field is a function that assigns a vector value to every point in space - for
example, wind speed as a function of position. We write a vector field as a vector function of position coordinates - e.g. $\overrightarrow{\mathbf{F}}(x, y, z)$ - and can also visualize it in several ways:

Here we show the force of gravity vector field in a 2D plane passing through the Earth, represented using a (A) vector diagram (where the field magnitude is indicated by the length of the vectors) and a (B) "grass seed" or "iron filing" texture. Although the texture representation does not indicate the absolute field direction (it could either be inward or outward) and doesn't show magnitude, it does an excellent job of showing directional details. We also will represent vector fields using (C) "field lines." A field line is a curve in space that is everywhere tangent to the vector field.

Gravitational Field

As a first example of a physical vector field, we recall the gravitational force between two masses. This force can be broken into two parts: the generation of a "gravitational field" \mathbf{g} by the first mass, and the force that that field exerts on the second mass $\left(\overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}}\right)$. This way of thinking about forces - that objects create fields and that other objects then feel the effects of those fields - is a generic one that we will use throughout the course.

Electric Fields

Every charge creates around it an electric field, proportional to the size of the charge and decreasing as the inverse square of the distance from the charge. If another charge enters this electric field, it will feel a force $\left(\overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}\right)$.

Important Equations

Force of gravitational attraction between two masses:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{g}=-G \frac{M m}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{g}}=\frac{\overrightarrow{\mathbf{F}}_{g}}{m}=-G \frac{M}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}} \\
& \overrightarrow{\mathbf{E}}=k_{e} \frac{Q}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}
\end{aligned}
$$

Force on mass m sitting in gravitational field g :
Strength of electric field created by a charge Q :
Force on charge q sitting in electric field \boldsymbol{E} :

Welcome To
 Physics 8.02T

http://web.mit.edu/8.02t/www

For now, please sit anywhere, 9 to a table

Class 1: Outline

Hour 1:
Why Physics?
Course Overview
Vector and Scalar Fields
Hour 2:
Field Lines

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Study Physics?

- Understand/Appreciate Nature \qquad
- Understand Technology \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Study Physics?

\qquad

- Understand/Appreciate Nature \qquad
- Understand Technology
- Learn to Solve Difficult Problems
- It's Required \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Your Responsibilities

Before Class:
Read Course Notes and Summary (See current webpage for daily reading assignment)
In Class: (You must be present for credit)
Problem Solving, Desktop Experiments, Concept Tests
After Class:
Read Text, Review Visualizations
Mastering Physics (Due Sunday night at 10 pm
Homework (Due Tuesdays 9 pm),
Review Homework Solutions
Exams
3 Exams (45%) + Final (25%)
See "Overview/Grades" on http:/hweb.mit.edu/8.02t

Honesty Issues and Regrade Policy

Problem Sets:
The problems sets are to help you learn. You may work together BUT submit your own, uncopied work
In Class Assignments:
Must sign your own name to submitted work Signing another's name is COD offense
Concept Questions:
Use only your own PRS device
Using another's PRS is COD offense
Regrade Policy:
You may submit any graded work for a regrade up to one week after the grades for that assignment have been posted

Otherwise same
\qquad
\qquad
Pets this your

\qquad
\qquad
\qquad
\qquad pis is

\section*{To Encourage Collaboration, Grades Are NOT Curved in 8.02:
 | A $>=95$ | $<95 \&>=90$ | $<90 \&>=85$ |
| :---: | :---: | :---: |
| B $<85 \&>=80$ | $<80 \&>=76$ | $<76 \&>=72$ |
| C $<72 \&>=69$ | $<69 \&>=66$ | $<66 \&>=63$ |
| D | | $<63 \&>=59$ |
| F | | <59 |}

See "Info: Grades" on hitp://web.mit.edu/8.02t

Grade Correction/Regrade Policy:

Grade changes must be requested within two weeks of the assignment due date (including 'no shows')
 not
align with this Week 01, Day 1

Web Page
 http://web.mit.edu/8.02t/

First Problem Set Due Tuesday February 109 PM in correct section box outside 32-082

Interactive On-Line Homework (Mastering Physics)

On-Line homework with hints and tutorials
Assignment due Sunday at 10 pm
Test review problems with hints
First Assignment due: Sun Feb 7 at 10 pm
\qquad

Registering for Mastering

 PhysicsGo to http://www.masteringphysics.com
Select MP for Young/Freedman if you already purchased that book.
If you buy MP online, select MP stand alone
Register with the access code.
WRITE DOWN YOUR NAME AND PASSWORD
Log on to Masteringphysics.com with your new name and password.
The MIT zip code is 02139
The class ID is MPMIT802SPRING2010

Course Reader

You MUST buy "8.02 Course Reader"
Copy Tech 11-004
And bring it with you to every class!

- Class Summaries
- Experiment Information

Textbook

Textbook:
"Introduction to E \& M"
Liao, Dourmashkin, and Belcher At the Coop and Online Version on website.

Common Questions \& Answers

- Dysfunctional Group? - Tell Grad TA
- Must Miss Class? - Tell Grad TA
- Must Miss HW? - Tell Grad TA
-Must Miss Exam? - Tell admin. ASAP
Exam dates $\&$ times are online
Do NOT schedule early vacation departures, etc. without consulting these times!

Any Questions?
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

..but we use concepts from 18.02	
Gradients	$\overrightarrow{\mathbf{E}}=-\nabla V$
Path Integrals	$\Delta V \equiv-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$
Surface Integrals	$\iiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{\mathrm{in}}}{\varepsilon_{0}}$
Volume Integrals	$Q=\iiint \rho d V$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

PRS: Math Background

Are you familiar with these concepts from vector calculus? \qquad
0% 1. I've never seen them before, and I am \qquad not so comfortable with math
0% 2. I've never seen them before, but I pick up new math concepts quickly
0% 3. I've seen them before, but definitely need some review
4. I am comfortable with vector calculus

PRS: Physics Experience

Have you taken a class in Electricity \&

 Magnetism before? $\qquad$$0 \%$ 1. No, never \qquad
0% 2. Yes, here (8.02)
$0 \% \quad$ 3. Yes, here (8.02 TEAL) \qquad
0\% 4. Yes, other college
0% 5. Yes, high school (regular)
0% 6. Yes, high school (AP) \qquad

Don't Worry!

- For many this is new \& I will introduce concepts before use (yell at me if not!)
- Concepts are VERY important -

Math introduction/review:
Th Feb 猃, 8:00-9:30 pm 32-082

Presentation slides are posted
(top of Study Guide page)

So what physics do we learn in 8.02 anyway????

What's the Physics?

8.01: Intro. to basic physics concepts: kinematics, force, momentum, energy, torque, angular momentum,...

How does matter interact?

Four Fundamental Forces:

Long range: Gravity (8.01 ... Gen. Relativity) Electromagnetic (8.02)

Both are inverse square forces. So all the results from gravitational forces can be easily adapted to electric forces

Short Range: Strong and Weak
\qquad

8.02: Electricity and Magnetism

\qquad
Also new way of thinking...
How do objects interact at a distance?
Fields) We will learn about Electric \& Magnetic Fields: how they are created \& what they effect Big Picture (Mathematical) Summary: Maxwell's Equations

$$
\begin{aligned}
& \iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{t n}}{\varepsilon_{0}} \quad \int_{c} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=-\frac{d}{d t} \iint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}} \\
& \iint_{S} \stackrel{\rightharpoonup}{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0 \quad \iint_{c} \overline{\mathbf{B}} \cdot d \stackrel{\rightharpoonup}{\mathbf{s}}=\mu_{0} I_{e n x}+\mu_{0} \varepsilon_{0} \frac{d}{d t} \iint_{S} \stackrel{\rightharpoonup}{\mathbf{E}} \cdot d \overline{\mathbf{A}} \\
& \text { Lorentz Force: } \quad \overrightarrow{\mathbf{F}}=q(\stackrel{\rightharpoonup}{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
\end{aligned}
$$

\qquad $125+30$

e.g. Temperature: Every location has associated value (number with units)

Scalar Fields - Contours

- Colors represent surface temperature \qquad
- Contour lines show constant temperatures

Fields are 3D

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

lots of into to display
\qquad
\qquad
\qquad
\qquad

fluid flow

\qquad
\qquad
\qquad
\qquad
\qquad

Vector Field Examples

Circulating Flows

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Visualizing Vector Fields: Three Methods
 Vector Field Diagram
 Arrows (different colors or length) in direction of field on uniform grid.
 Field Lines
 Lines tangent to field at every point along line Grass Seeds
 Textures with streaks parallel to field direction
 All methods illustrated in
 Vector Field Diagram Java Applet

Vector Fields - Field Lines

- Direction of field line at any point is tangent to field at that point
- Field lines never cross each other
\qquad

PRS Question:

Vector Field

In General: Don't pick up unit until ready to answer Then Ill know when class is ready

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. $\overrightarrow{\mathbf{F}}(x, y)=\sin (x) \hat{\mathbf{i}}+\hat{\mathbf{j}}$
2. $\overrightarrow{\mathbf{F}}(x, y)=\hat{\mathbf{i}}+\sin (x) \hat{\mathbf{j}}$
3. $\overrightarrow{\mathbf{F}}(x, y)=\cos (x) \hat{\mathbf{i}}+\hat{\mathbf{j}}$
4. $\overrightarrow{\mathbf{F}}(x, y)=\hat{\mathbf{i}}+\cos (x) \mathbf{j}$

$$
y \text {-alteranting }
$$

\qquad
tangent to field
\qquad

\qquad
\qquad

bottom stronger \rightarrow Fighting back

* remember tangent Week 01, Day 1

Another Vector Field: Gravitational Field

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M-creating field
m - Feels
T Simplistic
\qquad
\qquad
\qquad
\qquad
mistake

\qquad
\qquad
\qquad
\qquad

Don't simplify
Class 01

move a distance along? direction

Electric Charge (~Mass)

Two types of electric charge: positive and negative Unit of charge is the coulomb [C]
Charge of electron (negative) or proton (positive) is

$$
\pm e, \quad e=1.602 \times 10^{-19} \mathrm{C}
$$

Charge is quantized

1 Coulomb is a lot of charge ie 10 C is usually wong
\qquad
\qquad
\qquad

Electric Force (~Gravity)

The electric force between charges q_{1} and q_{2} is
(a) repulsive if charges have same signs
(b) attractive if charges have opposite signs

Like charges repel and opposites attract !!
yes - we hor this

Coulomb's Law

Coulomb's Law: Force on q_{2} due to interaction between q_{1} and q_{2}

$$
\overrightarrow{\mathbf{F}}_{12}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

Coulomb's Law: Example

$$
\begin{array}{lll}
& \overrightarrow{\mathbf{F}}_{32}=? \\
& \overrightarrow{\mathrm{a}}_{3}=3=1 \mathrm{~m} & \overrightarrow{\mathbf{r}}_{32}=\left(\frac{1}{2} \hat{\mathbf{i}}-\frac{\sqrt{3}}{2} \hat{\mathbf{j}}\right) \mathrm{m} \\
\mathrm{q}_{1}=6 \mathrm{C} & \mathrm{q}_{2}=3 \mathrm{c} & r=1 \mathrm{~m}
\end{array}
$$

\qquad
\qquad

$$
\overline{\mathrm{F}}_{32}=k_{e} q_{3} q_{2} \frac{\dot{\mathrm{r}}}{r^{3}}=\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)(3 \mathrm{C})(3 \mathrm{C})^{\frac{1}{2}(\hat{\mathrm{i}}-\sqrt{3} \hat{\mathrm{j}}) \mathrm{m}} \frac{(1 \mathrm{~m})^{3}}{}
$$

\qquad

$$
=\frac{81 \times 10^{9}}{2}(\hat{i}-\sqrt{3} \hat{j}) \mathrm{N}
$$

\qquad
\qquad

The Superposition Principle

Many Charges Present:
Net force on any charge is vector sum of forces from other individual charges

Example:

$\overrightarrow{\mathbf{F}}_{3}=\overrightarrow{\mathbf{F}}_{13}+\overrightarrow{\mathbf{F}}_{23}$
In general:
$\overrightarrow{\mathbf{F}}_{j}=\sum_{i=1}^{N} \overrightarrow{\mathbf{F}}_{i j}$

Electric Field ($\sim \mathrm{g}$)
The electric field at a point P due to a charge q is the force acting on a test charge q_{0} at that point P, divided by the charge q_{0} :

$$
\overrightarrow{\mathbf{E}}_{q}(P) \equiv \frac{\overrightarrow{\mathbf{F}}_{q q_{0}}}{q_{0}}
$$

For a point charge $q: \quad \overrightarrow{\mathbf{E}}_{q}(P)=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}}$
Units: N/C, also Volts/meter
${ }^{T}$ main unit T have not dore volts yet

Superposition Principle
The electric field due to a collection of N point charges is the vector sum of the individual electric fields due to each charge

$$
\overrightarrow{\mathbf{E}}_{\text {total }}=\overrightarrow{\mathbf{E}}_{1}+\overrightarrow{\mathbf{E}}_{2}+\ldots \ldots=\sum_{i=1}^{N} \overrightarrow{\mathbf{E}}_{i}
$$

q creates charge in every direction other particle feel the charge
\qquad
\qquad

$\overrightarrow{E_{i}}=\underline{q} \vec{E}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary Thus Far	
SOURCE:	Mass M_{s}
CREATE:	Charge $q_{s}(\pm)$
FEEL:	$\overrightarrow{\mathbf{g}}=-G \frac{M_{s}}{r^{2}} \hat{\mathbf{r}}$
$\overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}}$	$\overrightarrow{\mathbf{F}}_{e} \frac{q_{s}}{r^{2}} \hat{\mathbf{r}}$
	This is easiest way to picture field

think about the fores you would feal -as a person
\qquad
\qquad
\qquad
\qquad
\qquad

* electrict field points in direction a (t) charge Class 01 world want to move/ace
-ask yourself-whut would \oplus do

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PRS: Electric Field $: 20$
Two opposite charges are placed on a line as shown below. The charge on the right is three times larger than the charge on the left. Other than at infinity, where is the electric field zero?

0% 1. Between the two charges
$0 \% \quad$ 2. To the right of the charge on the right
$0 \% \quad 3$. To the left of the charge on the left
0% 4. The electric field is nowhere zero
0% 5. Not enough info - need to know which is positive
6. I don't know
hard
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
at the pt the
fields from both are = on the extreame left the fled from
so that dominates
corviociturathy) - depends en sine

- is there equation for

push left bin
by ball aced
to right

bettor stronger One source, one sink (trows from one to other)
know bottom is $4 x$ as strong

$$
\begin{gathered}
F=\frac{k_{r R} q_{1} q_{2}}{r^{2}} \hat{r} \\
-k_{E} \frac{q_{s}}{8 r^{3}}(r r \uparrow)+\frac{k_{e} q}{R^{3}} r \uparrow=0 \\
\frac{\eta q_{s}}{8}=q \\
q=\frac{q_{s}}{4} \quad \sqrt{\frac{k_{E} q_{1}}{4 r^{2}}=\frac{-k q_{2}}{r^{2}} \hat{r}} \begin{array}{l}
q_{1}=4 q_{2}
\end{array}
\end{gathered}
$$

know r diff is 2

$$
\begin{aligned}
& r^{2}=4 \\
& 2^{2}=4 \in 4 \text { times stranger }
\end{aligned}
$$

Topics: Coordinate Systems; Gradients; Line and Surface Integrals
Readings: Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.12 Math Review: Spring 2006 Math Review Presentation

Hale Bradt's Spring 2001 8.02 Mathematics Supplement

$$
\begin{aligned}
& \text { and will } \\
& \text { I think }
\end{aligned}
$$

Topic Introduction

Student into form

In this first problem solving session, you will learn how to solve for the electric field of a uniformly charged rod. This will involve setting up a vector integral. We will also introduce the concepts of understanding and calculating the electric field generated by a continuous distribution of charge.

We can find the electric field of a continuous distribution of charge using the superposition principle. Let's consider the system shown in Figure 1. Consider the infinitesimal element with charge Δq_{i}, contained in some small volume element ΔV_{i}.

Figure 1 Electric field due to infinitesimal element with charge Δq_{i}
We shall assume the charge distribution is continuous. In the limit where ΔV_{i} shrinks to 0 , the charge per unit volume, $\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ (lowercase Greek letter rho) is called the volume charge density, and is defined as

$$
\begin{equation*}
\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\lim _{\Delta V_{i} \rightarrow 0} \frac{\Delta q_{i}}{\Delta V_{i}}=\frac{d q}{d V} \tag{T0.1}
\end{equation*}
$$

The charge density may be uniform in space or may depend on the position $\overrightarrow{\mathbf{r}}^{\prime}$ with respect to some choice of origin. The amount of charge, $d q$, in an infinitesimal volume element $d V$, located at the position $\overrightarrow{\mathbf{r}}^{\prime}$, is

$$
\begin{equation*}
d q=\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right) d V \tag{T0.2}
\end{equation*}
$$

Summary of Problem Solving Session 18.02

The electric field due to each infinitesimal charged element at a point P is given by Coulomb's Law:

$$
\begin{equation*}
d \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}} \hat{\mathbf{r}} \tag{T0.3}
\end{equation*}
$$

In this expression r is the distance from the infinitesimal charged element to the point P where we are determining the electric field. The unit vector $\hat{\mathbf{r}}$ points from the infinitesimal charged element to the point P (see Figure 2).

Figure 2 Electric field at the point P due to infinitesimal element of charge $d q$
The unit vector is given by

$$
\begin{equation*}
\hat{\mathbf{r}}=\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}=\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}}{r} \tag{T0.4}
\end{equation*}
$$

where $\overrightarrow{\mathbf{r}}$ is the position vector for the field point P with respect to the choice of origin, and $\overrightarrow{\mathbf{r}}^{\prime}$ is the position vector for the infinitesimal element with charge $d q$, and $r=\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|$ is the distance from the infinitesimal charged element to the point P.

Summary of Problem Solving Session 18.02

Figure 3 Vector geometry for the source and field point
We can use the superposition principle: the total electric field is the vector sum of all these infinitesimal contributions. This sum is just the integral

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{d q}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) d V}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|^{3}} \tag{T0.5}
\end{equation*}
$$

This integral is an example of a vector integral, which actually consists of three separate integrals, one for each direction in space that will give the component of the electric field in that direction. Each separate component integral is an integral over the volume where the charge is located.

Charge Density: We will regularly encounter in electrostatics three types of charge densities associated with 1-, 2-, or 3-dimensional charged objects that are defined as follows

$$
\begin{aligned}
& \text { volume charge density } \rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\frac{d q}{d V} \\
& \text { surface charge density } \sigma\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\frac{d q}{d A} \\
& \text { linear charge density } \lambda\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\frac{d q}{d L}
\end{aligned}
$$

where $d V, d A, d L$ are the infinitesimal volume, area, and line element respectively. These charge densities may be uniform or vary with position on the charged object.

Charge Density

When describing the amount of charge in a continuous charge distribution we often speak of the charge density. This function tells how much charge occupies a small region of space at any point in space. Depending on how the charge is distributed, we will either consider the

Summary of Problem Solving Session 18.02

volume charge density $\rho=d q / d V$, the surface charge density $\sigma=d q / d A$, or the linear charge density $\lambda=d q / d \ell$, where V, A and ℓ stand for volume, area and length respectively.

Important Equations

Electric field from a discrete charge distribution: $\quad \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left|r_{i}\right|^{2}} \hat{\mathbf{r}}_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left|r_{i}\right|^{3}} \overrightarrow{\mathbf{r}}_{i}$
Electric field from continuous charge distribution: $\quad \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{d q}{r^{2}} \hat{\mathbf{r}}$

Charge Densities:

$$
d q= \begin{cases}\rho d V & \text { for a volume distribution } \\ \sigma \mathrm{dA} & \text { for a surface (area) distribution } \\ \lambda d \ell & \text { for a linear distribution }\end{cases}
$$

Important Nomenclature:

A hat (e.g. $\hat{\mathbf{A}}$) over a vector means that that vector is a unit vector $(|\hat{\mathbf{A}}|=1)$
The unit vector $\hat{\mathbf{r}}$ points from the charge creating to the observer measuring the field.

Contineous Charge

- you add multiple charges (super position)
- if you have a blob of charge
- divide ta blow into ports
- each piece you know wat it is
-add all The little pieces
- make them blobs smaller + smaller until point - integrate

$$
\begin{aligned}
& Q=\sum q_{i} \rightarrow \iint_{V} d q \\
& \text { in 30, triple integral } \\
& \text { never really do one } \\
& \text { multiply: } \\
& \text { Charge density "lenght } \\
& \vec{E}=\iiint d \vec{E}
\end{aligned}
$$

Today line of charge

$$
\begin{aligned}
d Q & =J d L \\
U & =\frac{Q}{L}
\end{aligned}
$$

add/integrate to get total electric charge

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Solving 1: Continuous Sources and Vector Calculus

Introduction: In this first problem solving session, you will learn how to solve for the electric field of a uniformly charged rod. This will involve setting up a vector integral.

Readings: Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.12

When we charge up an object, through a physical transfer of charge or induction; we may typically place between a nano-coulomb and a micro-coulomb of charge, $10^{-9} \mathrm{C}<Q<10^{-6} \mathrm{C}$, on the object. Since the charge of the electron is $e=1.602 \times 10^{-19} \mathrm{C}$, this means that we are placing between 10^{10} and 10^{13} electrons on the object. The electric field due to a small number of charged particles can readily be computed using the superposition principle. But what happens in our case when we have a very large charge distributed over some region in space? If we are trying to determine the electric field due to this charge distribution at a distance that is large compared to the distance between the charged objects for example electrons, then we can assume that the electrons form a continuous distribution of charge.

Let's consider the system shown in Figure 1. Consider the infinitesimal element with charge Δq_{i}, contained in some small volume element ΔV_{i}.

Figure 1 Electric field due to infinitesimal element with charge Δq_{i}
We shall assume the charge distribution is continuous. In the limit where ΔV_{i} shrinks to 0 , the charge per unit volume, $\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ (lowercase Greek letter rho) is called the volume charge density, and is defined as

$$
\begin{equation*}
\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\lim _{\Delta V_{i} \rightarrow 0} \frac{\Delta q_{i}}{\Delta V_{i}}=\frac{d q}{d V} \tag{T0.1}
\end{equation*}
$$

The charge density may be uniform in space or may depend on the position $\overrightarrow{\mathbf{r}}^{\prime}$ with respect to some choice of origin. The amount of charge, $d q$, in an infinitesimal volume element $d V$, located at the position $\overrightarrow{\mathbf{r}}^{\prime}$, is

$$
\begin{equation*}
d q=\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right) d V \tag{T0.2}
\end{equation*}
$$

The electric field due to each infinitesimal charged element at a point P is given by Coulomb's Law:

$$
\begin{equation*}
d \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}} \hat{\mathbf{r}} \tag{T0.3}
\end{equation*}
$$

In this expression r is the distance from the infinitesimal charged element to the point P where we are determining the electric field. The unit vector $\hat{\mathbf{r}}$ points from the infinitesimal charged element to the point P (see Figure 2).

Figure 2 Electric field at the point P due to infinitesimal element of charge $d q$
The unit vector is given by

$$
\begin{equation*}
\hat{\mathbf{r}}=\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}=\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}}{r} \tag{T0.4}
\end{equation*}
$$

where $\overrightarrow{\mathbf{r}}$ is the position vector for the field point P with respect to the choice of origin, and $\overrightarrow{\mathbf{r}}^{\prime}$ is the position vector for the infinitesimal element with charge $d q$, and $r=\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|$ is the distance from the infinitesimal charged element to the point P.

Figure 3 Vector geometry for the source and field point
We can use the superposition principle: the total electric field is the vector sum of all these infinitesimal contributions. This sum is just the integral/adl "Superposition"

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{d q}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho\left(\overrightarrow{\mathbf{r}}^{\prime}\right)\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) d V}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|^{3}} \tag{T0.5}
\end{equation*}
$$

This integral is an example of a vector integral, which actually consists of three separate integrals, one for each direction in space that will give the component of the electric field in that direction. Each separate component integral is an integral over the volume where the charge is located.

Charge Density: We will regularly encounter in electrostatics three types of charge densities associated with 1-, 2-, or 3-dimensional charged objects that are defined as follows

$$
\begin{array}{ll}
3 D \quad \text { volume charge density } & \rho\left(\vec{r}^{\prime}\right)=\frac{d q}{d V} \\
2 D & \text { surface charge density } \\
& \sigma\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\frac{d q}{d A} \\
1 D & \text { linear charge density }
\end{array} \lambda\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\frac{d q}{d L} .
$$

where $d V, d A, d L$ are the infinitesimal volume, area, and line element respectively. These charge densities may be uniform or vary with position on the charged object.

PROBLEM 1: (answer on the tear-sheet at the end)
A hollow cylinder, of length L and radius a, is uniformly charged with total charge Q. There are no end caps on the cylinder.
(a) What is the surface charge density σ ?

$$
\text { Find } S A=2 \pi a L \quad \sigma=\frac{Q}{2 \pi a L}
$$

$$
\sigma=\frac{Q}{A}
$$

c hays can
(b) What is the linear charge density λ ?

$$
\lambda=\frac{Q}{L}
$$

(c) What is relationship between σ and λ ?
X rotated around in a circle
PROBLEM 2: (answer on the tear-sheet at the end)
A solid cylinder, of length L and radius a, is uniformly charged with total charge Q.
(a) What is the volume charge density ρ ?

$$
\text { Volume cylindor }=\pi a^{2} L=\frac{Q}{\pi a^{2} L}
$$

(b) What is the linear charge density λ ?

$$
\theta \text { or still surface bor } l=\frac{Q}{L}
$$

(c) What is relationship between ρ and λ ?

Not rotated arad circle
Made up of linear bors Lithe straws in a can

PROBLEM 3: Electric Field of Uniformly Charged Rod

In this problem you will learn how to set up an integral expression for the electric field

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q_{V}}{r^{2}} \mathbf{r}
$$

of a rod of length L that has an amount of charge Q uniformly distributed. (You may assume the rod is a 1 -dimensional object.)

Source Coordinates and Field Point Coordinates:

(a) Choose a 2-dimensional coordinate system and draw it in the space below for the wire. Clearly indicate your choice of origin, axis, and unit vectors.

(b) Choose an infinitesimal charge element $d q$. Clearly show where you located $d q$ on the wire. Find an expression relating $d q, Q, L$ and your choice of length for $d q$.

(c) Write down a vector expression for the source position vector $\overrightarrow{\mathbf{r}}^{\prime}$ in terms of your source coordinates. These source coordinates will be your integration variables.

$$
\begin{aligned}
& \text { Distance along lenght } \\
& \overrightarrow{1}=\sqrt{1} ?
\end{aligned}
$$

(d) Consider a field point P that lies off both the axis of the wire and the perpendicular bisector of the wire. Using your same choice of origin, axis, coordinates, and unit vectors, write down an expression for the position vector $\overrightarrow{\mathbf{r}}(P)$ for the field point P.

field point

(e) Write down a vector expression for the vector from the source to the field point, X $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}$. This is a problem in vector subtraction. Then find the magnitude of this vector,

$$
\text { Only Calcoatp } \zeta_{r=\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}^{\vec{r}} \stackrel{\rightharpoonup}{r} \vec{r}^{\prime}
$$

$$
\text { - adding } x^{\prime}
$$

in the usual way by taking the square root of the square of the components of the

$$
\begin{aligned}
& \text { adding } x \\
& \text { getting total }
\end{aligned}
$$ vector $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}$.

(f) Now find an expression for the unit vector, $\hat{\mathbf{r}}$, located at the field point that points from the source to the field point, in terms of both source and field point coordinates. The unit vector is given by
(g) Using your results, find a vector expression for the infinitesimal electric field $d \overrightarrow{\mathbf{E}}$ (in terms of your unit vectors for the field point P) for the contribution of $d q$ to the electric field using Coulomb's Law:

$$
d \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}} \hat{\mathbf{r}}
$$

(h) Using your results from part (g), set up an expression for the vector integrals for the total electric field at P using

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {wire }} \frac{d q}{r^{2}} \hat{\mathbf{r}} .
$$

Your expression should contain two separate integrals for the two directions that appear in the decomposition of $\hat{\mathbf{r}}$. You are integrating over the source $d q$, which means each separate integral is over the length of the rod. For each direction, set up an expression for the integral with the appropriate limits according to your choice of coordinates.
(i) If P lies on the perpendicular bisector of the wire, explain why any of you integrals should vanish. Can you show this explicitly by doing the integral?
(j) Integrate you're the integrals you found in part (i) to find an expression for the vector field $\overrightarrow{\mathbf{E}}$ as a function of your field point coordinates. (You may find this integral non-trivial in which case try to do it at home.)

Topics: Electric Charge; Electric Fields; Dipoles; Continuous Charge Distributions Related Reading: Course Notes Section 1.6; Chapter 2

Topic Introduction

Today we review the concept of electric charge, and describe both how charges create electric fields and how those electric fields can in turn exert forces on other charges. Again, the electric field is completely analogous to the gravitational field, where mass is replaced by electric charge, with the small exceptions that (1) charges can be either positive or negative while mass is always positive, and (2) while masses always attract, charges of the same sign repel (opposites attract). We will also introduce the concepts of understanding and calculating the electric field generated by a continuous distribution of charge.

Electric Charge

All objects consist of negatively charged electrons and positively charged protons, and hence, depending on the balance of the two, can themselves be either positively or negatively charged. Although charge cannot be created or destroyed, it can be transferred between objects in contact, which is particularly apparent when friction is applied between certain objects (hence shocks when you shuffle across the carpet in winter and static cling in the dryer).

Electric Fields

Just as masses interact through a gravitational field, charges interact through an electric field. Every charge creates around it an electric field, proportional to the size of the charge and decreasing as the inverse square of the distance from the charge $\left(\overrightarrow{\mathbf{E}}=k_{e} \frac{Q}{r^{2}} \hat{\mathbf{r}}\right)$. If another charge enters this electric field, it will feel a force $\left(\overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}\right)$. If the electric field becomes strong enough it can actually rip the electrons off of atoms in the air, allowing charge to flow through the air and making a spark, or, on a larger scale, lightening.

Charge Distributions

Electric fields "superimpose," or add, just as gravitational fields do. Thus the field generated by a collection of charges is just the sum of the electric fields generated by each of the individual charges. If the charges are discrete, then the sum is just vector addition. If the charge distribution is continuous then the total electric field can be calculated by integrating the electric fields $d \overrightarrow{\mathbf{E}}$ generated by each small chunk of charge $d q$ in the distribution.

Charge Density

When describing the amount of charge in a continuous charge distribution we often speak of the charge density. This function tells how much charge occupies a small region of space at any point in space. Depending on how the charge is distributed, we will either consider the volume charge density $\rho=d q / d V$, the surface charge density $\sigma=d q / d A$, or the linear charge density $\lambda=d q / d \ell$, where V, A and ℓ stand for volume, area and length respectively.

Electric Dipoles

The electric dipole is a very common charge distribution consisting of a positive and negative charge of equal magnitude q, placed some small distance d apart. We describe the dipole by its dipole moment \boldsymbol{p}, which has magnitude $p=q d$ and points from
 the negative to the positive charge. Like individual charges, dipoles both create electric fields and respond to them. The field created by a dipole is shown at left (its moment is shown as the purple vector). When placed in an external field, a dipole will attempt to rotate in order to align with the field, and, if the field is non-uniform in strength, will feel a force as well.

Important Equations

Electric force between two charges:

$$
\left|\overrightarrow{\mathbf{F}}_{E}\right|=k_{e} \frac{q Q}{r^{2}},
$$

Repulsive (attractive) if charges have the same (opposite) signs Strength of electric field created by a charge Q :

$$
\overrightarrow{\mathbf{E}}=k_{e} \frac{Q}{r^{2}} \hat{\mathbf{r}}=k_{e} \frac{Q}{r^{3}} \overrightarrow{\mathbf{r}},
$$

$\hat{\mathbf{r}}$ points from charge to observer who is measuring the field
Force on charge q sitting in electric field \boldsymbol{E} :

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}} \\
& |\overrightarrow{\mathbf{p}}|=q d
\end{aligned}
$$

Electric dipole moment:
Points from negative charge $-q$ to positive charge $+q$.
Torque on a dipole in an external field:

$$
\vec{\tau}=\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{E}}
$$

Electric field from a discrete charge distribution:

$$
\overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left|r_{i}\right|^{2}} \hat{\mathbf{r}}_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left|r_{i}\right|^{3}} \overrightarrow{\mathbf{r}}_{i}
$$

Electric field from continuous charge distribution: $\quad \overrightarrow{\mathbf{E}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{d q}{r^{2}} \hat{\mathbf{r}}$

Charge Densities:

$$
d q=\left\{\begin{array}{l}
\rho d V \\
\sigma \mathrm{dA} \\
\lambda d \ell
\end{array}\right.
$$

for a volume distribution for a surface (area) distribution for a linear distribution

Important Nomenclature:

A hat (e.g. $\hat{\mathbf{A}}$) over a vector means that that vector is a unit vector $(|\hat{\mathbf{A}}|=1)$
The unit vector $\hat{\mathbf{r}}$ points from the charge creating to the observer measuring the field.

Class 02: Outline

Answer questions
Hour 1:
Review: Electric Fields
Charge
Dipoles
Hour 2:
Continuous Charge Distributions

Gravitational \& Electric Fields

SOURCE: Mass $M_{s} \quad$ Charge $q_{s}(\pm)$
CREATE: $\overrightarrow{\mathbf{g}}=-G \frac{M_{s}}{r^{2}} \hat{\mathbf{r}} \quad \overrightarrow{\mathbf{E}}=k_{e} \frac{q_{s}}{r^{2}} \hat{\mathbf{r}}$
FEEL: $\quad \overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}} \quad \overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}$

This is easiest way to picture field
Male yourself o © 4 , how would I mare

Electric Field Lines

1. Direction of field at any point is tangent 0 field line at that point

2. Field lines point away from positive charges and terminate on negative charges \qquad
3. Field lines never cross each other

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The force between the two charges is: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In-Class Problem

Consider two point charges of equal magnitude but opposite signs, separated by a distance d. Point P lies along the perpendicular bisector of the line joining the charges, a distance s above that line. What is the E field at P?

dipole

Two PRS Questions: E Field of Finite \# of Point Charges

$$
\text { When } d \rightarrow 0=2 q \text { charge }
$$

\oplus

Field is \downarrow so θ
distance R away
${ }_{1}$ Six equal positive charges q sit at the vertices of a regular hexagon with sides of length R. We remove the bottom charge. The electric field at the center of the hexagon (point P) is:

1. $\overrightarrow{\mathbf{E}}=\frac{2 k q}{R^{2}} \hat{\mathbf{j}}$	2. $\overrightarrow{\mathbf{E}}=-\frac{2 k q}{R^{2}} \hat{\mathbf{j}}$
3. $\overline{\mathbf{E}}=\frac{k q}{R^{2}} \hat{\mathbf{j}}$	4. $\overrightarrow{\mathbf{E}}=-\frac{k q}{R^{2}} \hat{\mathbf{j}}$
5. $\overrightarrow{\mathbf{E}}=0$	6. I Don't Know

Candle in \hat{x} direction
\qquad

How Do You Get Charged?

- Friction
- Transfer (touching)
- Induction

Charges split

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

PRS Question: Dipole Fall-Off

PRS: Dipole Field

As you move to large distances r away from
 a dipole, the electric field will falloff as:
0% 1. $1 / r^{2}$, just like a point charge
0% 2. More rapidly than $1 / r^{2}$
3. More slowly than $1 / r^{2}$
4. I Don't Know

\qquad

Demonstration: Dipole in Field

\qquad

Dipole in Uniform Field

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{i}} \\
\overrightarrow{\mathbf{p}}=2 q a(\cos \theta \hat{\mathbf{i}}+\sin \theta \hat{\mathbf{j}}) \\
\text { Torques nee eagle }
\end{aligned}
$$

Total Net Force: $\overrightarrow{\mathbf{F}}_{n e t}=\overrightarrow{\mathbf{F}}_{+}+\overrightarrow{\mathbf{F}}_{-}=q \overrightarrow{\mathbf{E}}+(-q) \overrightarrow{\mathbf{E}}=0$
Torque on Dipole: $\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{E}}$
$\tau=r F_{+} \sin (\theta)=(2 a)(q E) \sin (\theta)=p E \sin (\theta)$
$\overrightarrow{\mathbf{p}}$ tends to align with the electric field

* want to rotate

Feels to rove to rotate clockwise
teal force $=0$
\qquad
\qquad
to align wi external electric field

- Field lines transmit tension
- Connection between dipole field and constant field "pulls" dipole into alignment

PRS: Dipole in Non-Uniform Field

Due to the electric field this dipole will feel:
0% 1. force but no torque
0% 2. no force but a torque
0% (3.) both a force and a torque
0% 4. neither a force nor a torque
force - does not carcle out

Continuous Charge Distributions

Break distribution into parts:
$Q=\sum_{i} \Delta q_{i} \rightarrow \iiint_{V} d q$
E field at P due to Δq
$\Delta \overrightarrow{\mathbf{E}}=k_{e} \frac{\Delta q}{r^{2}} \hat{\mathbf{r}} \rightarrow d \overrightarrow{\mathbf{E}}=k_{e} \frac{d q}{r^{2}} \hat{\mathbf{r}}$
Superposition:
$\stackrel{\rightharpoonup}{\mathbf{E}}=\sum \Delta \overrightarrow{\mathbf{E}} \rightarrow \int d \overrightarrow{\mathbf{E}}$

Continuous Sources: Charge Density

Examples of Continuous Sources: Line of charge
Length $=L$

$$
\begin{aligned}
d Q & =\lambda d L \\
\lambda & =\frac{Q}{L}
\end{aligned}
$$

Link to applet
\qquad
\qquad
\qquad

Examples of Continuous Sources:
Ring of Charge \qquad $d Q=\lambda d L \quad \lambda=\frac{Q}{2 \pi R}$

 Link to applet

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples of Continuous Sources: Ring of Charge

\qquad
$d Q=\lambda d L \quad \lambda=\frac{Q}{2 \pi R}$

Link to \qquad applet
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Ring of Charge

P on axis of ring of charge, x from center Radius a, charge density λ.

Find E at P

Ring of Charge

1) Think about it $E_{\perp}=0$ Symmetry!

Mental Picture...
2) Define Variables

$$
\begin{gathered}
d q=\lambda d l=\lambda(a d \varphi) \\
r=\sqrt{a^{2}+x^{2}}
\end{gathered}
$$

Ring of Charge

4) Integrate

$$
\begin{aligned}
E_{x} & =\int d E_{x}=\int k_{e} d q \frac{x}{r^{3}} \\
& =k_{e} \frac{x}{r^{3}} \int d q
\end{aligned}
$$

Very special case: everything except $d q$ is constant

$$
\begin{aligned}
\int d q & =\int_{0}^{2 \pi} \lambda a d \varphi=\lambda a \int_{0}^{2 \pi} d \varphi=\lambda \cdot a 2 \pi \\
& =Q
\end{aligned}
$$

\qquad
\qquad charged line of length L, a distance s away. The charge on the line is Q. What is E at P ?

E Field from Line of Charge

$$
\overrightarrow{\mathbf{E}}=k_{e} \frac{Q}{s\left(s^{2}+L^{2} / 4\right)^{1 / 2}} \hat{\mathbf{j}}
$$

Limits:) to test

$$
\begin{aligned}
& \lim _{s \rightarrow L} \overrightarrow{\mathbf{E}} \rightarrow k_{e} \frac{Q}{s^{2}} \hat{\mathbf{j}} \\
& \lim _{s<L} \overrightarrow{\mathbf{E}} \rightarrow 2 k_{e} \frac{Q}{L s} \hat{\mathbf{j}}=2 k_{\varepsilon} \frac{\lambda}{s} \hat{\mathbf{j}}
\end{aligned} \text { Point charinite charged line }
$$

af le is infante
Constant on a radius

In-Class: Uniformly Charged Disk

P on axis of disk of charge, x from center
Radius R, charge density σ.
Find E at P

Class 02

\qquad

Scaling: E for Plane is Constant

\qquad

1) Dipole: E falls off like $1 / r^{3}$
2) Point charge: E falls off like $1 / r^{2}$
3) Line of charge:E falls off like $1 / r$
4) Plane of charge: E constant
\qquad
\qquad
\qquad
\qquad
white

$$
\begin{aligned}
& \text { wall - how for are you from it } \\
& \text { - don't know it's infinite }
\end{aligned}
$$

$$
\begin{aligned}
& P=\frac{d q}{d v} \text { Volume } Q=\frac{\int}{d} p(\vec{r}) d v \\
& \sigma=\frac{d a}{d A} \text { surface } Q=\int_{S} \delta \sigma(\vec{r}) d A \\
& \lambda=\frac{d a}{d l} \text { line } a=\int_{i n e} \mu(\vec{r}) d l \\
& \tau=\vec{P} \times \vec{E} \\
& \text { duple moment vector } \\
& - \text { from } \theta \Rightarrow \oplus \\
& -p=2 a q
\end{aligned}
$$

Cord systems
nice Summary
notes
Whats what
In as lording for

- Cartesian $(x y z)$
- Cylindrical $(p, 0,2)$
- spherical (r, θ, ϕ)

$$
\begin{aligned}
& \frac{\text { Line }}{\text { Ring }} \\
& \text { Disk } \\
& \text { (} \\
& \text { Express } d q \\
& \text { terms charge } \\
& d q=\lambda d x^{\prime} \\
& d q=\lambda d l \\
& d q=\sigma d A \\
& d E=k e \frac{\lambda d x^{\prime}}{r^{12}} \quad d E=k_{e} \frac{\lambda d \ell}{r^{2}} \quad d E=k_{e} \frac{\sigma d A}{r^{2}} \\
& \text { Write raven } \\
& d E \\
& \text { Rewrite } \\
& d x^{\prime} \\
& d l=R d \rho^{\prime} \\
& d A=2 \pi r^{\prime} d r^{\prime} \\
& \text { rand iffereentol } \\
& \text { Wm right words } \cos \theta=\frac{y}{r}, \quad \cos \theta=\frac{2}{r} \quad \cos \theta=\frac{2}{r} \\
& r^{\prime}=\sqrt{x^{12}+y^{2}} \quad r=\sqrt{R^{2}+z^{2}} \quad r=\sqrt{r^{12}+2^{2}} \\
& \text { Apply } \\
& d E_{y}=d E \cos \theta \quad d E_{2}=d E \cos \theta \quad d E_{2}=d E \cos \theta \\
& \text { symmetry } \\
& \text { to find non- } \\
& \text { Vanicing dE } \\
& =k_{e} \frac{k_{y} d x^{\prime}}{\left(x^{12}+y^{2}\right)^{3 / 2}}=k_{e} \frac{d R_{2} d \phi^{\prime}}{\left(R^{2}+2^{2}\right)^{3 / 2}}=k_{2} \frac{2 \pi \sigma 2 r^{\prime} d r}{\left(r^{12}+2^{2}\right)^{3 / 2}} \\
& \text { Integrate } \\
& \begin{array}{l}
E_{y}=k_{p} \lambda y \int_{-\ell / 2}^{\ell / 2} \quad E_{2}=k_{e} \frac{A d_{2}}{\left(R^{2}+2^{2}\right)^{3 / 2}} \int d \phi^{\prime} \quad E_{2}-2 \pi \sigma k_{p} 2 \int_{0}^{R} \frac{r^{\prime} d r^{\prime}}{\left(R^{12}+2^{2}\right)^{9 / 2}} \\
\quad d x
\end{array} \\
& \begin{aligned}
\frac{d x}{\left(\lambda^{2}+y^{2}\right)^{2 / 2}} & =\frac{k_{e}(2 \pi R \lambda)^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \\
=\frac{2 k_{e} \ell}{y} \frac{l / 2}{\sqrt{(\ell / 2)^{2}+y^{2}}} & =k_{\rho} Q_{2}
\end{aligned} \quad=2 \pi \sigma k_{\rho}\left(\frac{2}{12 \mid}-\frac{2}{\sqrt{2^{2}+R^{2}}}\right) \\
& =\frac{2 k_{e} l}{y} \frac{l / 2}{\sqrt{(l / 2)^{2}+y^{2}}}=k_{\rho} \frac{Q_{2}}{\left(R^{2}+2^{2}\right)^{3 / 2}}
\end{aligned}
$$

Topics: Gauss's Law
Related Reading: Course Notes: Sections 4.1-4.2, 4.6

Topic Introduction

In this class we look at a new way of calculating electric fields - Gauss's law. Not only is Gauss's law (the first of four Maxwell's Equations) an exceptional tool for calculating the field from symmetric sources, it also gives insight into why E-fields have the r dependence that they do.

The idea behind Gauss's law is that, pictorially, electric fields flow out of and into charges. If you surround some region of space with a closed surface (think bag), then observing how much field "flows" into or out of that surface tells you how much charge is enclosed by the bag. For example, if you surround a positive charge with a surface then you will see a net flow outwards, whereas if you surround a negative charge with a surface you will see a net flow inwards.

Electric Flux

The picture of fields "flowing" from charges is formalized in the definition of the electric flux. For any flat surface of area A, the flux of an electric field $\overrightarrow{\mathbf{E}}$ through the surface is defined as $\Phi_{E}=\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{A}}$, where the direction of $\overrightarrow{\mathbf{A}}$ is normal to the surface. This captures the idea that the "flow" we are interested in is through the surface - if $\overrightarrow{\mathbf{E}}$ is parallel to the surface then the flux $\Phi_{E}=0$.
way tocale

We can generalize this to non-flat surfaces by breaking up the surface into small patches which are flat and then integrating the flux over these patches. Thus, in general:

$$
\Phi_{E}=\iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Gauss's Law

Gauss's law states that the electric flux through any closed surface is proportional to the total charge enclosed by the surface:

$$
\Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\mathrm{cnc}}}{\varepsilon_{0}}
$$

A closed surface is a surface which completely encloses a volume, and the integral over a closed surface S is denoted by $\left[\iint_{S}=母\right.$ squatre/rec does not matter

Symmetry and Gaussian Surfaces

Although Gauss's law is always true, as a tool for calculation of the electric field, it is only useful for highly symmetric systems. The reason that this is true is that in order to solve for the electric field $\overrightarrow{\mathbf{E}}$ we need to be able to "get it out of the integral." That is, we need to work with systems where the flux integral can be converted into a simple multiplication. Examples of systems that possess such symmetry and the corresponding closed Gaussian surfaces we will use to surround them are summarized below:

Symmetry	System	Gaussian Surface
Cylindrical	Infinite line	Coaxial Cylinder
Planar	Infinite plane	Gaussian "Pillbox"
Spherical	Sphere, Spherical shell	Concentric Sphere

Solving Problems using Gauss's law
Gauss's law provides a powerful tool for calculating the electric field of charge distributions that have one of the three symmetries listed above. The following steps are useful when applying Gauss's law:
(1)Identify the symmetry associated with the charge distribution, and the associated shape of "Gaussian surfaces" to be used.
(2)Divide space into different regions associated with the charge distribution, and determine the exact Gaussian surface to be used for each region. The electric field must be constant or known (i.e. zero) across the Gaussian surface.
(3)For each region, calculate q_{enc}, the charge enclosed by the Gaussian surface.
(4)For each region, calculate the electric flux Φ_{E} through the Gaussian surface.
(5)Equate Φ_{E} with $q_{\text {enc }} / \varepsilon_{0}$, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S :

$$
\begin{aligned}
& \Phi_{E}=\iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}}
\end{aligned}
$$

Important Concepts

Gauss's Law applies to closed surfaces-that is, a surface that has an inside and an outside (e.g. a basketball). We can compute the electric flux through any surface, open or closed, but to apply Gauss's Law we must be using a closed surface, so that we can tell how much charge is inside the surface.

Gauss's Law is our first Maxwell's equations, and concerns closed surfaces. Another of Maxwell's equations, the magnetic Gauss's Law, $\Phi_{B}=\oiint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$, also applies to a closed surface. Our third and fourth Maxwell's equations will concern open surfaces, as we will see.

Class 04: Outline

Hours 1 \& 2:
Working in Groups Gauss' Law

Groups

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduce Yourselves

Please discuss: \qquad
-What is your experience in E\&M?

- What were the best group practices that you
\qquad observed in $8.01 ?$
-What do you expect/want from class?
- Did you have group issues in 8.01 ? If so, how to avoid them?

If you did not participate in TEAL style groups, please ask your group members to answer any questions you may have.

The total "flux" of field lines penetrating any of these closed surfaces is the same and depends only on the amount of charge inside

Group Problem: Discovery Applet

Play with the applet and answer the worksheet questions

old the total flux is affected

by the inside only | the Gudssian surface is a too |
| :---: |
| to probe space |

\qquad
\qquad
*Flux only due to charge inside -everything outside goes in and out $\Sigma=0$

Gauss's Law - The Idea

Electric field on surface de to both charge inside + out side

inside
in and out $\Sigma=0$

shove does not matter

三defintion

$$
\begin{array}{l|}
\hline \text { Gauss's Law - The Equation } \\
f \left\lvert\, \|^{x} \longrightarrow \Phi_{E} \equiv \underset{\substack{\text { closed } \\
\text { surface S }}}{ } \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}\right.
\end{array}
$$

Electric flux Φ_{E} (the surface integral of E over closed surface S) is proportional to charge inside the volume enclosed by S

Scalar equality
H= \# dimensions $=$?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
open surface

Electric Flux Φ_{E}
Case I: E is constant vector field perpendicular to planar surface S of area A

$$
\begin{gathered}
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
\Phi_{E}=+E A
\end{gathered}
$$

Our Goal: Always reduce problem to this
constant-acrows same lenght perpendicular to plane

| how much |
| :---: | :--- |
| charge |
| perpendicular area |

(how much of / vector

Class 04
electric field = arrow in every pt in space

How to make A into a vector?
Choose a $\stackrel{\rightharpoonup}{N}$ perpendicular to area

$56=$ closed surface

PRS: Flux
The electric flux through the planar surface below (positive unit normal to left) is:

* 1. positive.

4. 2 negative.

* 3. zero.
6.4. I don't know

The ovass Law since open

Note: Integral must be over closed surface

\qquad

\qquad
What is dredion when lave © ta

- is a diapole

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Area Element dA: Closed Surface
For closed surface, dA is normal to surface and points outward (from inside to outside)

Electric Flux Φ_{E}
Case III: E not constant, surface curved

$$
\begin{aligned}
& d \Phi_{E}=\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi_{E}=\iint d \Phi_{E}
\end{aligned}
$$

\qquad

$\frac{\text { rit } E \text { points in in }}{\text { Flux is neg }}$ (because θ
\qquad
(ब) © \vec{E} fill $\neq 0$

$$
\phi \text { flux }=0
$$

- In this class $\$ 5$ always of or EA -never hard math
\qquad
Abstout low
- Sometimes right/leff
\qquad
SS $E \cdot \hat{n} d a=\frac{q_{i n}}{\xi}$

$$
E=\frac{a_{i n}}{\varepsilon_{i} A}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Electric Flux：Sphere

Point charge Q at center of sphere，radius r
E field at surface：

$$
\overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Electric flux through sphere：
$\Phi_{E}=\left[\iint_{\mathrm{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\left[\iint_{\mathrm{S}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}} \cdot d A \hat{\mathbf{r}}\right.\right.$

$$
=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \iiint_{\mathrm{S}} d A=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} 4 \pi r^{2}=\frac{Q}{\varepsilon_{0}} \quad d \overrightarrow{\mathbf{A}}=d A \hat{\mathbf{r}}
$$

$$
\overrightarrow{\text { Eoutuard }} \begin{aligned}
& \text { normal out }
\end{aligned} \cos =1=1
$$

Arbitrary Gaussian Surfaces

$$
\begin{aligned}
& \text { flux charge enclosed } \\
& \Phi_{E}=\oint_{\substack{\text { closed } \\
\text { surfaces }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q}{\varepsilon_{0}} \\
& \hline
\end{aligned}
$$

True for all surfaces such as S_{1}, S_{2} or S_{3} Why？As A gets bigger E gets smaller
field varies $\frac{1}{r^{2}}$ area has c^{2} $\frac{n^{2}}{c_{2}}=$ constant
Tbecause of this－Gauss＇s law holds
$\frac{1}{r_{2}}$ is a cool thing of math
$4 \pi r^{2}=A$
get integral of Area $=$ Area

Why does it not depend on shape胜－as area Tr Afield $\downarrow \frac{1}{r^{2}}$ 404－18

Cylinder, sphere are examples
trying to find \vec{E} field

- Surface probes space
- want El perpendicular constant
\qquad

Symmetry \& Gaussian Surfaces
Desired E: perpendicular to surface and constant on surface. So Gauss's Law useful to calculate E field from highly symmetric sources

Source Symmetry	Gaussian Surface
Spherical	Concentric Sphere
Cylindrical	Coaxial Cylinder
Planar	Gaussian "Pillbox"

E is radially out/tavards
If in the middle of sphere -gand Guassían

Class 04

$$
\Phi_{E}=\oint_{\substack{\text { closed } \\ \text { surfaces }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}
$$

Cylinder = guassian surface

Gauss: Spherical Symmetry
Region 1: $r>a$
Draw Gaussian Sphere in Region $1(r>a)$

Note: r is arbitrary but is the radius for which you will calculate the E field!

Group Problem: Outside Sphere
Region 2: $r>a$
Use Gauss's Law in Region $2(r>a)$

Again: Remember that r is arbitrary but is the radius for which you will calculate the E field!

Region 2: $r<a$
Total charge enclosed:
$q_{m}=\left(\frac{\frac{4}{3} \pi \pi^{3}}{\frac{4}{3} \pi a^{3}}\right) Q=\left(\frac{r^{3}}{a^{3}}\right) Q \quad$ OR $\quad q_{m}=\rho V$

$$
\begin{aligned}
& \text { Gauss's law: } \\
& \Phi_{E}=E\left(4 \pi r^{2}\right)=\frac{q_{\text {in }}}{\varepsilon_{0}}=\left(\frac{r^{3}}{a^{3}}\right) \frac{Q}{\varepsilon_{0}} \\
& E=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{a^{3}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} \frac{r}{a^{3}}} \hat{\mathbf{r}}
\end{aligned}
$$

piecewise
function
people who get this right draw the gaus'an surface
\qquad
*

\qquad
\qquad

Class 04

PRS: Spherical Shell
We just saw that in a solid sphere of charge the electric field grows linearly with distance. Inside the charged spherical shell at right $(r<a)$ what does the electric field do?
0% (1) Constant and Zero
0% 2. Constant but Non-Zero
$0 \% \quad 3$. Still grows linearly
0% 4. Some other functional form (use Gauss' Law)
0%
5. Can't determine with Gauss Law

Class 04
its like having a charge outside the surface

\qquad
\qquad
\qquad
\qquad
\qquad

Gauss: Planar Symmetry

Symmetry is Planar

$$
\overrightarrow{\mathbf{E}}= \pm E \hat{\mathbf{x}}
$$

Use Gaussian Pillbox
Note: A is arbitrary (its size and shape) and should divide out

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Thane problem

Gauss: Planar Symmetry

Total charge enclosed: $q_{i n}=\sigma \mathrm{A}$
NOTE: No flux through side of cylinder, only endcaps

$$
\begin{aligned}
& \Phi_{E}=\iiint_{\mathrm{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E\left[\iint_{\mathrm{S}} d A=E A_{\text {Endcaps }}\right. \\
& =E(2 A)=\frac{q_{\text {tn }}}{\varepsilon_{0}}=\frac{\sigma A}{\varepsilon_{0}} \\
& E=\frac{\sigma}{2 \varepsilon_{0}} \Rightarrow \overline{\mathbf{E}}=\frac{\sigma}{2 \varepsilon_{0}}\left\{\begin{array}{cc}
\hat{\mathbf{x}} & \text { to right } \\
-\hat{\mathbf{x}} & \text { to left }
\end{array}\right\}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

E for Plane is Constant????

1) Dipole:

E falls off like $1 / r^{3}$
2) Point charge: E falls off like $1 / r^{2}$
3) Line of charge: E falls off like $1 / r$
4) Plane of charge: E constant ϵ

E is a constant, infinite field

 but would hare ∞ energy, So planes can not be ∞ will approx ∞ to make it causer to calulule
constant, $=\quad$ not Jpldornalthemeness

PRS: Slab of Charge
Consider positive, semi-infinite (in $x \& y$) flat slab $\$ 50$ z-axis is perp. to the sheet, with center at $z=0$. At the plane's center $(z=0), E$

$$
\hat{2 d} \rho \circ \hat{F}_{\mathrm{z}=0}^{\mathrm{z}}
$$

1. points in the positive z-direction. $F D$
2. points in the negative z-direction.
0% 3. points in some other (x, y) direction.
0% (4.) is zero.
0\% 5. I don't know
\qquad
\qquad

\qquad

> Know the areas of shapes -sometimes stuff cartes

Gauss: Cylindrical Symmetry

\qquad

Symmetry is Cylindrical

$$
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{r}}
$$

Use Gaussian Cylinder

\qquad
\qquad
\qquad
\qquad
Note: r is arbitrary but is the radius for which you will calculate the E field! ℓ is arbitrary and should divide out

Gauss: Cylindrical Symmetry

\qquad
Total charge enclosed: $q_{i n}=\lambda \ell$

$$
\begin{aligned}
\Phi_{E} & =\left[\iint_{\mathrm{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E\left[\iint_{\mathrm{S}} d A=E A\right.\right. \\
& =E(2 \pi r \ell)=\frac{q_{i n}}{\varepsilon_{0}}=\frac{\lambda \ell}{\varepsilon_{0}} \\
E & =\frac{\lambda}{2 \pi \varepsilon_{0} r} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}}
\end{aligned}
$$

Gaussim

IC-Sol-W05D2-2

Gauss: Spherical Symmetry

Region 2: $r>a$
Total charge enclosed $q_{\text {in }}=+Q$

$$
\begin{aligned}
\Phi_{E} & =\oiint_{\mathrm{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E \oiint_{\mathrm{S}} d A=E A \\
& =E\left(4 \pi r^{2}\right) \\
\Phi_{E} & =4 \pi r^{2} E=\frac{q_{i n}}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}} \\
E & =\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
\end{aligned}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics: 8.02

In Class W05D2_3 Solutions: Field from a Slab of Charge

Question:

A semi-infinite slab of charge with charge density ρ extends from $x=-d$ to $x=+d$. Find the electric field everywhere.

Solution:

1. Draw Picture

In the interest of saving space I only show the pictures with Gaussian surfaces drawn (see below)

2. Think

Considering symmetry, we note that the electric field at the center of the slab must be zero. To see this imagine putting a test charge right at the center of the slab. It will feel no net force (it would be pushed to the right by the charge to the left exactly as much as it would be pushed to the left by the charge to the right), so the electric field there must be zero.

The symmetry is planar so we will use Gaussian pillboxes (cylinders of cross-section A and height x) and will place one end of the pillbox at $x=0$ to take advantage of the fact that $E=0$ there.

There are two distinct regions of space, inside and outside of the slab. By symmetry the magnitude of the field will be the same on the left as on the right of the slab, but will point in the opposite direction. We will only calculate explicitly for $x>0$.

2. Calculate for Each Region

Region 1: Outside the slab $(x>d)$

The charge within this pillbox is $Q_{e n c}=\rho V_{e n c}=\rho A d$. The flux (integral of the electric field over this pillbox) is zero on the sides (because \mathbf{E} is perpendicular to the area normal there) and zero on the left end (because \mathbf{E} is zero there). Thus:

$$
\oiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\iint_{\text {sides }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}+\iint_{\text {leftendcap }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}+\iint_{\text {right endcap }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0+0+E A
$$

Applying Gauss's Law:

$$
\oiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E A=\frac{Q_{\text {enc }}}{\varepsilon_{0}}=\frac{\rho A d}{\varepsilon_{0}} \Rightarrow E=\frac{\rho d}{\varepsilon_{0}} \quad \text { is }
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Physics: 8.02
Region 2: Inside the slab $(x \leq d)$

Summarizing (and using symmetry to get \mathbf{E} for $x<0$):

$$
\overrightarrow{\mathbf{E}}= \begin{cases}\frac{\rho d}{\varepsilon_{o}} \hat{\mathbf{i}} & \text { for } x \geq d \\ \frac{\rho x}{\varepsilon_{o}} \hat{\mathbf{i}} & \text { for }-d<x<d \\ -\frac{\rho d}{\varepsilon_{o}} \hat{\mathbf{i}} & \text { for } x \leq d\end{cases}
$$

Note that we explicitly insert the negative sign for x outside the slab on the left, but inside the slab on the left the negative sign of x itself takes care of the direction. Ignoring these signs is a common source of problems - always check a few concrete cases to make sure that the field as written points in the direction you think it should.

You should also check that the x -dependence makes sense. Outside of the slab there is no x dependence. We have seen that this is the case for planes of charge (how can you tell how far away you are from a giant white wall?). Inside the slab the field decreases linearly with x as you approach the origin. This also makes sense - as you come closer to the center you become more and more balanced in the amount of charge on your left and right, and hence the field should decrease.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 1
Due: Tuesday, February 9 at 9 pm .

Spring 2010

Hand in your problem set in your section slot in the boxes outside the door of 32082. Make sure you clearly write your name and section on your problem set.

You might
want to go
to office hours
Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes. to clear Some Concepts,
Buy 8.02 Course Reader at Copy Tech 11-004 and bring it with you to every class! Great job

Week One Introduction to Teal, Introduction Gravitational and Electric Fields
Class 1 TW Feb 2/3, Introduction to Teal, Gravitational and Electric Fields

Reading:
Class 2 R/M Feb 4/8
Reading:
Class 3 F Feb 5
Reading:

Course Notes: Sections 1.1 -1.6; 1.8; Chapter 2
Electric Fields and Continuous Charge Distributions
Course Notes Section 1.6; Chapter 2
PS01: Math Review, Fields, Continuous Charge Distributions
Course Notes: Chapter 2 Coulomb's Law Section 2.9-2.12

Optional Introduction/Review for Vector Calculus:
Spring 2006 Math Review Presentation,
Hale Bradt's Spring 2001 8.02 Mathematics Supplement

Week Two: Gauss's Law and Electric Potential

Class 4 T/W Feb 9/10
Reading:
Class 5 R/T Feb 11/16 Electric Potential
Reading:
Class 6 F Feb 12
Reading:

Gauss' Law
Course Notes: Sections 4.1-4.2, 4.6

Course Notes: Sections 3.1-3.5
PS02: Gauss's Law
Course Notes: Sections 4.1-4.2, 4.7-4.8

Week Three: Electric Potential

President's Day - M 2/15 / M Classes on T 2/16

Problem 1: Vectors ($\mathbf{1 0}$ points) Consider the two vectors shown in the figure below. The magnitude of $|\overrightarrow{\mathbf{A}}|=2.88$ and the vector $\overrightarrow{\mathbf{A}}$ makes an angle 33.7° with the positive x-axis. The magnitude of $|\overrightarrow{\mathbf{B}}|=3.44$ and the vector $\overrightarrow{\mathbf{B}}$ makes an angle 35.5° with the positive x-axis pointing down to the right as shown in the figure below. Find the x and y components of
a) $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$;
b) $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$;
c) $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$;
d) a unit vector pointing in the direction of $\overrightarrow{\mathbf{A}}$;
e) a unit vector pointing in the direction of $\overrightarrow{\mathbf{B}}$.

Problem 2 Vectors (10 points) Consider two points located at $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$, separated by distance $r_{12}=\left|\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right|$. Find a vector $\overrightarrow{\mathbf{A}}$ from the origin to the point on the line between $\overrightarrow{\mathbf{r}}_{1}$ and \vec{r}_{2} at a distance x from the point at \vec{r}_{1}, where x is some number. Express your answer in terms of $\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}, r_{12}$, and x. Show your work.

Problem 3 Concept Questions (10 points)

(a) (5 points) Two objects with charges $-q$ and $+3 q$ are placed on a line as shown in the figure below.

Besides an infinite distance away from the charges, where else can the electric field possibly be zero?

1. Between the two charges.
2. To the right of the charge on the right.
3. To the left of the charge on the left.
4. The electric field is only zero an infinite distance away from the charges.

Explain your reasoning.

(b) (5 points). Two objects with charges $-4 Q$ and $-Q$ lie on the y -axis. The object with the charge $-4 Q$ is above the object with charge $-Q$. Below are four possible "grass seed" representations of the electric field of the two charges. Which of these representations is most nearly right for the two charges in this problem?

Explain your reasoning.

Problem 4: Ratio of Electric and Gravitational Forces (10 points)

What is the ratio of the magnitudes of the electric force and the gravitational force between two protons if the protons are separated by a distance r ? In SI units the magnitude of the charge of the proton is $e=1.6 \times 10^{-19} \mathrm{C}$ and the mass of the proton is $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$.

Problem 5: Coulomb's Law (10 points)

Two volley balls, each of mass $m=0.2 \mathrm{~kg}$, tethered by nylon strings and equally charged with an electrostatic generator, hang as shown in the figure such that the centers of the balls are a distance $r=0.5 \mathrm{~m}$ apart. The point equidistance between the two centers of the balls is a distance $d=2.5 \mathrm{~m}$ below the suspension point. What is the charge on each ball? Include your free-body force diagram in your solution.

Problem 6 Electric field for a Distribution of Point Charges (10 points)

A right isosceles triangle of side a has objects with charges $q,+2 q$ and $-q$ arranged on its vertices, as shown in the figure below.

What is the magnitude and direction of the electric field at point P due to the charges in the figure, midway between the line connecting the $+q$ and $-q$ charges?

Problem 7 Electric Field and Force (10 points)

A positively charged wire is bent into a semicircle of radius R, as shown in the figure below.

The total charge on the semicircle is Q. However, the charge per unit length along the semicircle is non-uniform and given by $\lambda=\lambda_{0} \cos \theta$.
a) What is the relationship between λ_{0}, R and Q ?
b) If a particle with a charge q is placed at the origin, what is the total force on the particle? Show all your work including setting up and integrating any necessary integrals.

$$
8.02 \text { P-Set } 1
$$

Michael Plowneier

b) PacodelagraA

$$
\begin{aligned}
& \vec{A} \text { in } x=2.88 \sin 33.7=1.5979 \\
& A \text { in } y=2.88 \cos 33.7=2.396 \\
& \vec{B} \text { in } x=3.44 \sin 35.5=1.9976 \\
& \vec{B} \text { in } y=3.44 \cos 35.5=-2.800
\end{aligned}
$$

$$
\Gamma
$$

$$
\begin{aligned}
\vec{c}= & \left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle \\
& \langle 3.9939,-.8024\rangle
\end{aligned}
$$

(direction angle can be found w/ tan den)
c) Now male one regitive, fail method

$$
\begin{aligned}
& a-b \text {-right } \\
& \langle-17981,4,7976\rangle
\end{aligned}
$$

de) unit vector is direction $\frac{\left\langle a_{1} a_{2}\right\rangle}{\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}}$

$$
\frac{\langle 1.5979,2.346\rangle}{\sqrt{1.59^{2}+2.39^{2}}}\left\langle\frac{1.9976-2.800\rangle}{\sqrt{1.9976^{2}+(-2.8)^{2}}}\right.
$$

2. Want to find the vector value
r_{12} is a scalar value
find angle of $r_{1}-r_{2}=\frac{\stackrel{\rightharpoonup}{r_{1}}-\vec{r}_{2}}{\left|\vec{r}_{1}\right|-\left|\vec{r}_{2}\right|}=$ direction

$$
\stackrel{\rightharpoonup}{r_{1}}+\left(\begin{array}{ll}
\text { diredicin } & \text { value } \\
\stackrel{r}{r} & -\stackrel{r_{2}}{3} \\
\left|\frac{r_{1}}{1}\right|-\left|\stackrel{\rightharpoonup}{r}_{2}\right| & x
\end{array}\right)
$$

$$
l=\vec{A}
$$

Ba, Into this class

$$
-q-3 q
$$

Where is te charge 0?

- asked in class identically

It is (3) left of charge on left Both fields are =
$3 q$ is stronger, but furter away q is closer
Only Ore point
b. $-4 Q$ \#2) Thy are both Θ, so should repel

$$
-Q
$$

the top should be stronger.
4. What is the ratio of magnitudes of electric force and gravitational fore sepperded by d'sture r

$$
\begin{aligned}
& e=1.6 \times 10^{-18} \mathrm{C} \\
& m_{p}=1.67 \cdot 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Electric
create

$$
\begin{aligned}
& k_{e} \frac{q_{1}}{r^{3}} \cdot \vec{r}-6 \frac{m}{r^{3}} \vec{r} \\
& k_{e}=\frac{\text { coulombs Force Constret }}{8.08 \cdot 10^{1} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}}-\frac{9.8 \cdot 1.67 \cdot 10^{-27}}{r^{3}} \\
& -\frac{8.98 \cdot 10^{8} \cdot 1.6 \cdot 10^{-18}}{r^{3}} \\
& 1,43 \cdot 10^{-9}-1 \\
& 1.63 \cdot 10^{-26}
\end{aligned}
$$

T much stronger

$$
\frac{1.43 \cdot 10^{-4}}{1.63 \cdot 10^{-24}}=8.77 \cdot 10^{16} \text { times larger }
$$

$$
F=\frac{k q_{1} q_{2}}{r^{2}} \hat{r}=\frac{k q_{1} q_{2} \vec{r}}{r^{3}}
$$

5.

$$
\text { mass }=.2 \mathrm{~kg}
$$

Suspension pt

charged i/ electrostatic force
charge in each ball $=q$
but how know total F? The force of gravity on 1

$$
F=m \cdot 9,8
$$

$$
F=12: 9.8
$$

$$
\begin{array}{r}
1, q 6=\frac{k q_{1} q_{n}}{15^{2}} \\
149=\frac{k q_{2} q_{2}}{} \\
8.97 \cdot 10^{9} \\
\sqrt{ } \\
q=7,39 \times 10^{-6}
\end{array}
$$

Magnitude + direction at point P

- its the superposition of all charges
- (4) test charge

* cemember from class fodayi denom always the some - pat distance in numerator

$$
\frac{k \cdot 1}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \uparrow-\frac{a^{2}}{\left(\frac{a}{2} \frac{\sqrt{2}}{2}\right)^{2}} \cdot \frac{a}{2} \hat{j}+\frac{k \cdot 2 \cdot 1 a}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \uparrow+\frac{k \cdot 2 \cdot 1 \frac{a}{2}}{\left(\frac{a \sqrt{2}}{2}\right)^{2} J}
$$

$$
\begin{aligned}
- & \frac{k \cdot 1 \cdot-1 \frac{a}{2}}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \uparrow-\frac{k \cdot 1 \cdot-1 \frac{a}{2}}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \\
& \frac{4 k \frac{a}{2} a}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \hat{1}-\frac{2 k \frac{a}{2} q}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} \jmath \\
D= & \frac{4 k \frac{a}{2} q \lambda}{\left(\frac{a \sqrt{2}}{2}\right)^{3} 1}-\frac{2 k \frac{a}{2} q}{\left(\frac{a \sqrt{2}}{2}\right)^{2}} J
\end{aligned}
$$

$\tau \hat{i}$ is that right
wish I had istant feedback
7. Posivity charged wire in a semicircle of R

total charge $=Q$
charge per unit lenght non uniform
a) Relationship Λ_{0}, R, Q,

$$
\begin{aligned}
& \lambda=\lambda_{0} \cos \theta \\
& \lambda=\frac{d Q}{d L} \quad d L=R d \theta \\
& \lambda=R \frac{d Q}{d \theta} \rightarrow-\frac{d Q}{R d \theta}=\lambda_{0} \cos \theta \\
& d Q=\lambda_{0} \cos Q R d \theta
\end{aligned}
$$

$$
\left.\lambda=\lambda_{\pi / 2} \cos \theta\right)
$$

$$
\begin{gathered}
Q=2 \int_{0}^{1 / 2} \lambda_{0} \cos \theta R d \theta \\
=2 \lambda_{0} R
\end{gathered}
$$

So l is normally $\frac{Q}{L}$ but it is not even

$$
\begin{aligned}
& \text { lenght }=\frac{1}{2} 2 \pi R=\pi R \\
& l_{0}=\text { charge at } \cos \theta=1 \text { or } 0,180^{\circ} \\
& Q=\text { total charge }=l \pi R
\end{aligned}
$$

$$
u \text {-charge at a certain point }
$$

b. If a charge q is placed at the origin, what is the wishrere total force on the particle?

The idea is to figure out $\frac{d Q}{d L}=\lambda_{z}$ $\lambda=\lambda_{0} \cos \theta$

$$
\begin{aligned}
& F=\sum \frac{k q f}{k^{2}} \\
& F=\frac{k}{k^{2}} \int_{{ }^{2} \text { constants }} d q
\end{aligned}
$$

$$
\frac{d Q}{d l}=\int_{0}^{\pi / 2} \lambda_{0} \cos \theta R d \theta
$$

$$
=2 \lambda_{0} K
$$

$$
F=\frac{k q}{R^{2}} \int \lambda_{0} \cos \theta d L
$$

wish I hoed instant feel back on this

$$
F=-\frac{k_{q} Q}{k^{2}}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

8.02

Spring 2010

Problem Set 1 Solutions

Problem 1: Vectors (10 points) Consider the two vectors shown in the figure below. The magnitude of $|\overrightarrow{\mathbf{A}}|=2.88$ and the vector $\overrightarrow{\mathbf{A}}$ makes an angle 33.7° with the positive x-axis. The magnitude of $|\overrightarrow{\mathbf{B}}|=3.44$ and the vector $\overrightarrow{\mathbf{B}}$ makes an angle 35.5° with the positive x-axis pointing down to the right as shown in the figure below. Find the x and y components of
a) $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$;
b) $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$;
c) $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$;
d) a unit vector pointing in the direction of $\overrightarrow{\mathbf{A}}$;
e) a unit vector pointing in the direction of $\overrightarrow{\mathbf{B}}$.

Solution: We need to use $\theta_{A}=33.7^{\circ}$ in order to determine the x and y components of the vector $\overrightarrow{\mathbf{A}}$:

$$
\begin{gathered}
A_{x}=|\overrightarrow{\mathbf{A}}| \cos \theta_{A}=(2.88)\left(\cos \left(33.7^{\circ}\right)=2.40,\right. \\
A_{y}=|\overrightarrow{\mathbf{A}}| \sin \theta_{A}=(2.88)\left(\sin \left(33.7^{\circ}\right)=1.60 .\right.
\end{gathered}
$$

Thus

$$
\overrightarrow{\mathbf{A}}=2.40 \hat{\mathbf{i}}+1.60 \hat{\mathbf{j}} .
$$

We need to use $\theta_{B}=-35.5^{\circ}$ in order to determine the x and y components of the vector $\overrightarrow{\mathrm{B}}$:

$$
\begin{aligned}
& B_{x}=|\overrightarrow{\mathbf{B}}| \cos \theta_{B}=(3.44)\left(\cos \left(-35.5^{\circ}\right)=2.80,\right. \\
& B_{y}=|\overrightarrow{\mathbf{B}}| \cos \theta_{B}=(3.44)\left(\sin \left(-35.5^{\circ}\right)=-2.00 .\right.
\end{aligned}
$$

Thus

$$
\overrightarrow{\mathbf{B}}=2.80 \hat{\mathbf{i}}-2.00 \hat{\mathbf{j}} .
$$

b) The vector sum is then

$$
\begin{aligned}
\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} & =(2.40 \hat{\mathbf{i}}+1.60 \hat{\mathbf{j}})+(2.80 \hat{\mathbf{i}}-2.00 \hat{\mathbf{j}}) \\
& =(5.20) \hat{\mathbf{i}}+(-.40) \hat{\mathbf{j}}
\end{aligned}
$$

c) The vector difference is

$$
\begin{aligned}
\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}} & =(2.40 \hat{\mathbf{i}}+1.60 \hat{\mathbf{j}})-(2.80 \hat{\mathbf{i}}-2.00 \hat{\mathbf{j}}) \\
& =(-.40) \hat{\mathbf{i}}+(3.60) \hat{\mathbf{j}}
\end{aligned}
$$

d) The unit vector pointing in the direction of $\overrightarrow{\mathbf{A}}$ is given by

$$
\hat{\mathbf{A}}=\frac{\overrightarrow{\mathbf{A}}}{|\overrightarrow{\mathbf{A}}|}=\frac{\overrightarrow{\mathbf{A}}=2.40 \hat{\mathbf{i}}+1.60 \hat{\mathbf{j}}}{2.88}=0.83 \hat{\mathbf{i}}-0.69 \hat{\mathbf{j}}
$$

e) The unit vector pointing in the direction of $\overrightarrow{\mathbf{B}}$ is given by

$$
\hat{\mathbf{B}}=\frac{\overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{B}}|}=\frac{2.80 \hat{\mathbf{i}}-2.00 \hat{\mathbf{j}}}{3.44}=0.81 \hat{\mathbf{i}}-0.58 \hat{\mathbf{j}}
$$

Problem 2 Vectors ($\mathbf{1 0}$ points) Consider two points located at $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$, separated by distance $r_{12}=\left|\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right|$. Find a vector $\overrightarrow{\mathbf{A}}$ from the origin to the point on the line between $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$ at a distance x from the point at $\overrightarrow{\mathbf{r}}_{1}$, where x is some number. Express your answer in terms of $\overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}, r_{12}$, and x. Show your work.

Solution: Consider the unit vector pointing from $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$ given by

$$
\hat{\mathbf{r}}_{12}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} /\left|\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right|=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} / r_{12} .
$$

The vector $\overrightarrow{\boldsymbol{\alpha}}$ in the figure connects $\overrightarrow{\mathbf{A}}$ to the point at $\overrightarrow{\mathbf{r}}_{1}$, therefore we can write

$$
\overrightarrow{\boldsymbol{\alpha}}=x \hat{\mathbf{r}}_{12}=\frac{x}{r_{12}}\left(\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right) .
$$

The vector

$$
\overrightarrow{\mathrm{r}}_{1}=\overrightarrow{\mathrm{A}}+\overrightarrow{\boldsymbol{\alpha}} .
$$

Therefore

$$
\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\boldsymbol{\alpha}}=\overrightarrow{\mathbf{r}}_{1}-\frac{x}{r_{12}}\left(\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right)=\overrightarrow{\mathbf{r}}_{1}\left(1-\frac{x}{r_{12}}\right)+\frac{x}{r_{12}} \overrightarrow{\mathbf{r}}_{2} .
$$

Problem 3 Concept Questions (10 points)

(a) (5 points) Two objects with charges $-q$ and $+3 q$ are placed on a line as shown in the figure below.

Besides an infinite distance away from the charges, where else can the electric field possibly be zero?

1. Between the two charges.
2. To the right of the charge on the right.
3. To the left of the charge on the left.
4. The electric field is only zero an infinite distance away from the charges.

Explain your reasoning.

Answer 3. The electric field is the vector sum of the electric fields due to each charged object. There are two properties that determine the strength of the electric field, distance from the source (the strength of the field is proportional to $1 / r^{2}$), and the magnitude of the charge (the strength of the field is proportional to q). In the figure below the electric fields of the two objects are shown at several points. At the point A to the left of the charged object on the left, the vectors point in opposite directions. Since the point A is closer to the object with charge $-q$ than the object with charge $+3 q$, these two properties can balance and the vectors can add to zero. Whereas on the right, both properties contribute to making the field due to the object with charge $+3 q$ larger than the field due to the object with charge $-q$, and then cannot possibly sum to zero. In the region between the objects the electric vectors both point to the left so they cannot sum to zero.

(b) (5 points). Two objects with charges $-4 Q$ and $-Q$ lie on the y -axis. The object with the charge $-4 Q$ is above the object with charge $-Q$. Below are four possible "grass seed" representations of the electric field of the two charges. Which of these representations is most nearly right for the two charges in this problem?

Explain your reasoning.

Answer (2) Both sources have negative charge so the field lines very near each source must point towards that source. Therefore there must be a point between the sources where the field is zero. (This eliminates figures (1) and (4).) The zero of the field must be closer to the weaker source in order to cancel the field from the stronger source that is further away. The weaker source is below the stronger source, so the figure (2) is the correct 'grass seed field' representation of the electric field of both sources.

Problem 4: Ratio of Electric and Gravitational Forces (10 points)

What is the ratio of the magnitudes of the electric force and the gravitational force between two protons if the protons are separated by a distance r ? In SI units the magnitude of the charge of the proton is $e=1.6 \times 10^{-19} \mathrm{C}$ and the mass of the proton is $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$.

Solution: The ratio of the forces is given by

$$
\frac{\left|\overrightarrow{\mathbf{F}}_{\text {clec }}\right|}{\left|\overrightarrow{\mathbf{F}}_{\text {grav }}\right|}=\frac{k e^{2} / r^{2}}{G m_{p}^{2} / r^{2}}=\frac{k e^{2}}{G m_{p}^{2}}=\frac{\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)^{2}}=1.2 \times 10^{36} .
$$

This is a very large ratio indicating how much stronger electric forces are than gravitational forces.

Problem 5: Coulomb's Law (10 points)

Two volley balls, each of mass $m=0.2 \mathrm{~kg}$, tethered by nylon strings and equally charged with an electrostatic generator, hang as shown in the figure such that the centers of the balls are a distance $r=0.5 \mathrm{~m}$ apart. The point equidistance between the two centers of the balls is a distance $d=2.5 \mathrm{~m}$ below the suspension point. What is the charge on each ball? Include your free-body force diagram in your solution.

Solution:

Since the tetherballs are in static equilibrium, the sum of the forces must be zero. There are three forces acting on each ball, gravitation, tension from the rope, and the electric force that is proportional to q^{2}, where q is the charge on either tetherball.. We begin by drawing a free body diagram on one ball, then taking a vector decomposition of the forces on that ball, and setting each component equal to zero. Then we can solve for the charge on each tetherball.

The sum of the x -component of the forces is

$$
F_{x}^{T}=\frac{k q^{2}}{r^{2}}-T \sin \theta=0
$$

where r is the distance between the centers of the tetherballs. The sum of the $y-$ component of the forces is

$$
F_{y}^{T}=T \cos \theta-m g=0 .
$$

Solving for the tension we find that

$$
T=\frac{m g}{\cos \theta} .
$$

Substituting that back into the horizontal equation yields

$$
\frac{k q^{2}}{r^{2}}-\frac{m g}{\cos \theta} \sin \theta=0
$$

which we can solve for the charge on the tetherball

$$
q=(\sqrt{m g \tan \theta / k}) r .
$$

Recall from the geometry of the set-up

$$
\tan \theta=(0.25 \mathrm{~m} / 2.5 \mathrm{~m})=0.1 .
$$

Thus the charge is

$$
\begin{gathered}
q=(\sqrt{m g \tan \theta / k}) r=\left(\sqrt{(0.2 \mathrm{~kg})\left(9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)(0.1) /\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}\right)}\right)(0.5 \mathrm{~m}) \\
q=2.3 \times 10^{-6} \mathrm{C} .
\end{gathered}
$$

Problem 6 Electric field for a Distribution of Point Charges (10 points)

A right isosceles triangle of side a has objects with charges $q,+2 q$ and $-q$ arranged on its vertices, as shown in the figure below.

What is the magnitude and direction of the electric field at point P due to the charges in the figure, midway between the line connecting the $+q$ and $-q$ charges?

Solution: We can begin by drawing the three contributions to the electric field.

The total electric field is then

$$
\overrightarrow{\mathbf{E}}(P)=\overrightarrow{\mathbf{E}}_{+q}(P)+\overrightarrow{\mathbf{E}}_{-q}(P)+\overrightarrow{\mathbf{E}}_{2 q}(P) .
$$

We start with the field due to the charge $+q$:

The electric field is given by the expression

$$
\overrightarrow{\mathbf{E}}_{+q}(P)=\frac{k q}{\left(r_{+q, P}\right)^{2}} \hat{\mathbf{r}}_{+q, P}=\frac{k q}{\left(r_{+q, P}\right)^{3}} \overrightarrow{\mathbf{r}}_{+q, P}
$$

Recall that the vector $\overrightarrow{\mathbf{r}}_{+q, p}$ is the vector that starts at the charge $+q$ and ends at the point P. From the figure above, we can write this vector as

$$
\overrightarrow{\mathbf{r}}_{+q, p}=(a / 2) \hat{\mathbf{i}}-(a / 2) \hat{\mathbf{j}} .
$$

The magnitude of this vector is

$$
r_{+q, P}=\left|\overrightarrow{\mathbf{r}}_{+q, P}\right|=\left((a / 2)^{2}+(a / 2)^{2}\right)^{1 / 2}=a / \sqrt{2} .
$$

Thus

$$
\overrightarrow{\mathbf{E}}_{+q}(P)=\frac{k q}{\left(r_{+q, P}\right)^{3}} \overrightarrow{\mathbf{r}}_{+q, P}=\frac{k q((a / 2) \hat{\mathbf{i}}-(a / 2) \hat{\mathbf{j}})}{(a / \sqrt{2})^{3}}=\frac{\sqrt{2} k q(\hat{\mathbf{i}}-\hat{\mathbf{j}})}{a^{2}} .
$$

Note that

$$
\overrightarrow{\mathbf{E}}_{+q}(P)=\overrightarrow{\mathbf{E}}_{-q}(P) .
$$

The electric field due to the charge $2 q$:

The electric field is given by

$$
\overrightarrow{\mathbf{E}}_{2 q}(P)=\frac{k(2 q)}{\left(r_{2 q, P}\right)^{2}} \hat{\mathbf{r}}_{2 q, P}=\frac{2 k q}{\left(r_{2 q, P}\right)^{3}} \overrightarrow{\mathbf{r}}_{2 q, P} .
$$

Recall that the vector $\overrightarrow{\mathbf{r}}_{2 q, P}$ is the vector that starts at the charge $2 q$ and ends at the point P. From the figure above we can write this vector as

$$
\overrightarrow{\mathbf{r}}_{2 q, P}=(a / 2) \hat{\mathbf{i}}+(a / 2) \hat{\mathbf{j}} .
$$

The magnitude of this vector is

$$
r_{2 q, P}=\left|\overrightarrow{\mathbf{r}}_{2 q, p}\right|=\left((a / 2)^{2}+(a / 2)^{2}\right)^{1 / 2}=a / \sqrt{2} .
$$

Thus

$$
\overrightarrow{\mathbf{E}}_{2 q}(P)=\frac{2 k q}{\left(r_{2 q, P}\right)^{3}} \overrightarrow{\mathbf{r}}_{2 q, P}=\frac{2 k q((a / 2) \hat{\mathbf{i}}+(a / 2) \hat{\mathbf{j}})}{(a / \sqrt{2})^{3}}=\frac{2 \sqrt{2} k q(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{a^{2}} .
$$

Thus the vector sum is

$$
\overrightarrow{\mathbf{E}}(P)=\overrightarrow{\mathbf{E}}_{+q}(P)+\overrightarrow{\mathbf{E}}_{-q}(P)+\overrightarrow{\mathbf{E}}_{2 q}(P)=2 \overrightarrow{\mathbf{E}}_{+q}(P)+\overrightarrow{\mathbf{E}}_{2 q}(P) .
$$

Adding together all three contributions, we get

$$
\overrightarrow{\mathbf{E}}(P)=2 \frac{\sqrt{2} k q(\hat{\mathbf{i}}-\hat{\mathbf{j}})}{a^{2}}+\frac{2 \sqrt{2} k q(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{a^{2}}=\frac{4 \sqrt{2} k q \hat{\mathbf{i}}}{a^{2}}
$$

Problem 7 Electric Field and Force (10 points)

A positively charged wire is bent into a semicircle of radius R, as shown in the figure below.

The total charge on the semicircle is Q. However, the charge per unit length along the semicircle is non-uniform and given by $\lambda=\lambda_{0} \cos \theta$.
a) What is the relationship between λ_{0}, R and Q ?
b) If a particle with a charge q is placed at the origin, what is the total force on the particle? Show all your work including setting up and integrating any necessary integrals.

Solution:

(a) In order to find a relation between λ_{0}, R and Q it is necessary to integrate the charge density λ because the charge distribution is non-uniform

$$
Q=\int_{\text {wire }} \lambda d s=\int_{\theta^{\prime}=-\pi / 2}^{\theta^{\prime}=\pi / 2} \lambda_{0} \cos \theta^{\prime} R d \theta^{\prime}=R \lambda_{0} \sin \theta_{\theta^{\prime}=-\pi / 2}^{\theta^{\prime}=\pi / 2}=2 R \lambda_{0} .
$$

(b) The force on the charged particle at the center P of the semicircle is given by

$$
\overrightarrow{\mathbf{F}}(P)=q \overrightarrow{\mathbf{E}}(P) .
$$

The electric field at the center P of the semicircle is given by

$$
\overrightarrow{\mathbf{E}}(P)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {wire }} \frac{\lambda d s}{r^{2}} \hat{\mathbf{r}} .
$$

The unit vector, $\hat{\mathbf{r}}$, located at the field point, is directed from the source to the field point and in Cartesian coordinates is given by

$$
\hat{\mathbf{r}}=-\sin \theta^{\prime} \hat{\mathbf{i}}-\cos \theta^{\prime} \hat{\mathbf{j}} .
$$

Therefore the electric field at the center P of the semicircle is given by

$$
\overrightarrow{\mathbf{E}}(P)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {wrec }} \frac{\lambda d s}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{\theta^{\prime}=-\pi / 2}^{\theta_{=\pi / 2}^{\prime}} \frac{\lambda_{0} \cos \theta^{\prime} R d \theta^{\prime}}{R^{2}}\left(-\sin \theta^{\prime} \hat{\mathbf{i}}-\cos \theta^{\prime} \hat{\mathbf{j}}\right) .
$$

There are two separate integrals for the x and y components. The x-component of the electric field at the center P of the semicircle is given by

$$
E_{x}(P)=-\frac{1}{4 \pi \varepsilon_{0}} \int_{\theta^{\prime}=-\pi / 2}^{\sigma^{\prime}=\pi / 2} \frac{\lambda_{0} \cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{R}=\left.\frac{\lambda_{0} \cos ^{2} \theta^{\theta^{\prime}}}{8 \pi \varepsilon_{0} R}\right|_{\theta^{\prime}=-\pi / 2} ^{\theta^{\prime} / 2}=0 .
$$

We expected this result by the symmetry of the charge distribution about the y-axis.
The y-component of the electric field at the center P of the semicircle is given by

$$
\begin{aligned}
E_{y}(P) & =-\frac{1}{4 \pi \varepsilon_{0}} \int_{\theta^{\prime}=-\pi / 2}^{\theta^{\prime}=\pi / 2} \frac{\lambda_{0} \cos ^{2} \theta^{\prime} d \theta^{\prime}}{R}=-\frac{1}{4 \pi \varepsilon_{0}} \int_{\theta^{\prime}=-\pi / 2}^{\theta^{\prime}=\pi / 2} \frac{\lambda_{0}\left(1+\cos 2 \theta^{\prime}\right) d \theta^{\prime}}{2 R} \\
& =-\left.\frac{\lambda_{0}}{8 \pi \varepsilon_{0} R} \theta^{\prime}\right|_{\theta^{\prime}=-\pi / 2} ^{\theta^{\prime}=\pi / 2}-\left.\frac{\lambda_{0}}{16 \pi \varepsilon_{0} R} \sin 2 \theta\right|_{\theta^{\prime}=-\pi / 2} ^{\theta^{\prime}=\pi / 2} \\
& =-\frac{\lambda_{0}}{8 \varepsilon_{0} R}
\end{aligned} .
$$

Therefore the force on the charged particle at the point P is given by

$$
\overrightarrow{\mathbf{F}}(P)=q \overrightarrow{\mathbf{E}}(P)=-\frac{q \lambda_{0}}{8 \varepsilon_{0} R} \hat{\mathbf{j}} .
$$

8.02 Math Reviear

Surface Integal

- physics POV
-how to vse + what it meens
- everything smooth + contheas in Physics

Eth is a 30 subject
$\frac{\text { Variables in } 1,2,3 \mathrm{D}}{\underline{\text { Vorubble }}}$

$$
\frac{1 D}{2 D} \frac{V_{\text {virivele }}}{x} \frac{v_{0} 1}{d x}
$$

cartesean $+d x d y$

$$
\begin{aligned}
& (x y) \\
& \text { polar }(r, \phi) \text { (A) } \\
& r \theta \text { in notn } \\
& \text { Twort so }
\end{aligned}
$$

$$
\begin{aligned}
& \text { spherical } \\
& (r, \theta, \phi) \\
& (y \operatorname{lin} d r i c a l \\
& (r, \phi ; z)
\end{aligned} r^{2} \sin \theta d r d \theta d \phi
$$

Spherical

$$
\underset{\text { Moth }}{(\theta, \phi)} \leftrightarrow \underset{\text { Mhysics }}{\phi, \theta)}
$$

$$
\phi=\arctan \left(\frac{y}{x}\right)
$$

$$
\begin{aligned}
& \theta=\arctan \left(\frac{1}{x} / \sqrt{\sqrt{x^{2}+y^{2}}}\right) \\
& \theta=\sqrt{x^{2}+y^{2}+z^{2}} \\
& z
\end{aligned}
$$

$$
\left.\begin{array}{l}
d \Omega_{1}=d \phi \\
d \Omega_{2}=\sin d \theta d \phi \\
d \Omega_{3}=\sin ^{2} \psi \sin \theta d \psi d \theta d \phi \\
d \Omega_{4}=\sin ^{3} \eta \sin ^{2} \psi \sin \theta d \eta d \psi d \theta d \phi
\end{array}\right] \text { Theortical } \text { Physics }
$$

30) If changing 2 things at once

$$
\begin{aligned}
& \vec{\nabla} f(x y)=\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\text { thadiant }}{\partial f} \hat{z} \text { find cartisian } \\
& \text { charging } \\
& \text { in } x \\
& \vec{\nabla}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right) \\
& \vec{\nabla} f(1, \theta, \phi)=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\theta} \text { scalar }
\end{aligned}
$$

example

$$
\begin{aligned}
& f(r, \theta, \phi)=\frac{B \cos \theta}{r^{2}} \\
& \stackrel{\rightharpoonup}{\nabla} f=\frac{2 B \cos \theta}{r^{3}}+\frac{B \sin \theta}{r^{3}}+O \phi
\end{aligned}
$$

adiapole field spherical coords
Divergence
rate of change of a vector in the direction of a vector (getting bigger/smaller i)

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\nabla} \cdot \stackrel{\rightharpoonup}{V}(x, y, z)=\frac{\partial V_{x}}{d x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial 2} \quad \text { how much } \\
& S\left(\frac{\partial}{\partial x}, \begin{array}{lll}
\partial & \partial \\
\partial_{y} & \gamma_{2}
\end{array}\right) \cdot\left(V_{x} V_{y}, V_{2}\right) \quad \text { "flux operator" }
\end{aligned}
$$

takes vector
Gradiant - scalar field
know measures dir greastest charge
Divergence -

- gives a scalar

Contor maps $=2 D$ Gradients
Gradient - how much changing in $3 D$

Integrals - add up stuff under it

towers
lose into when integrate

Can happen in Gus Law if charges $=$

$$
\begin{aligned}
\int_{\text {limits }}[S+u t f] d \text { variables }= & \text { total stuff } \\
& \text { contained in the limits }
\end{aligned}
$$ paramitized by the variables

Gauss's Therm (Net Law)

$$
\int_{\text {Vol }}(\vec{\nabla} \cdot \vec{V}) d^{3} x=\int_{\text {Sur }} \vec{V} \cdot \hat{n} d^{2} x
$$

Shorthands

$$
\begin{aligned}
& d^{3} x=d x d y d 2 \\
& =d V=d \tau \\
& d^{3} r=c^{2} d r d \Omega \\
& d^{2} x=d x d y=d A
\end{aligned}
$$

co u if dit Lett $\vec{\nabla} \cdot \vec{V}$ tells how much vector changing in that direction add all up in some volume \vec{V}
$=$ Total change of vector field

Right (Surface is boundry if volume)

$d^{2} x$ is surface area element for sphere $R^{2} d \Omega$
flat $d x d y$
cylinder $R d \varnothing d z$
\hat{n} is the outward pointing normal
Y sphere called
flat plane
cylinder \hat{r} (polar)

$\vec{V} \cdot \hat{n}$ Magnitude of \vec{V} in direction of \hat{n} How much of \vec{V} is getting in/out of surface
$\int \vec{V} \cdot \hat{n}$ is total amount of \vec{V} flowing in/out of the
Gauss's Law
total charge $=\operatorname{ant} \vec{v}$ flowing in/
of \vec{V} inside out
formally

Gauss's Law

Examples
point charge

has spherical symmetry

$$
\text { RMS: } \frac{1}{\varepsilon_{0}} \int l d^{3} x=\frac{Q_{\text {enc }}}{\varepsilon_{0}}=+\frac{Q}{\varepsilon_{0}}
$$

LHS: does not depend on angles $(\theta$ or \varnothing)

$$
\begin{aligned}
& \vec{E}(r)=\hat{r} \mid \vec{E}(r) \\
& \int \vec{E} \cdot d \vec{A} \leftarrow \\
& \int(\hat{r}|\vec{E}(r)|) \cdot\left(\hat{r} r^{2} d-\right. \\
& r^{2}|\vec{E}(r)| \int d \Omega \\
& 4 \pi r^{2}|\vec{E}(r)|
\end{aligned}
$$

$$
\begin{array}{ll}
\hat{r} & \int \hat{E} \cdot \overrightarrow{d A} \longleftarrow \hat{r} r^{2} \sin \theta d \theta d \phi \\
\sigma^{2} d \vec{A} & \int(\hat{r}|\vec{E}(r)|) \cdot\left(\hat{r} r^{2} d \Omega\right)
\end{array}
$$

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{1}{e_{0}} \rho^{\text {, charge deristy }} \\
& \int_{\text {Vol }} \vec{\nabla} \cdot \vec{E} d^{3} x=\int \vec{E} \cdot \vec{A} \\
& 11 \\
& \frac{1}{\varepsilon_{0}} \int_{v_{01}} \rho d^{3} x=\frac{1}{\varepsilon_{0}}\left[\begin{array}{l}
\text { total } \Delta \\
\text { in vol }
\end{array}\right] \\
& =\int \vec{E}_{0} d_{a}=\frac{Q_{e n c}}{\varepsilon_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \pi r^{2}|\vec{E}(r)|=\frac{Q}{\varepsilon_{0}} \\
\Rightarrow & \left\lvert\, \vec{E}(r)=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{\varepsilon_{0}} \hat{a} \quad\right. \text { Coulombs's Lave }
\end{aligned}
$$

Line of Charge

$$
e^{\text {linear density }}
$$

Cylindoral Symmetry

$$
\begin{aligned}
R+1 s: & \frac{1}{\varepsilon_{0}} \int l d^{3} x \\
& \frac{1}{\varepsilon_{0}} \int x d z=\frac{l_{2}}{\varepsilon_{0}}
\end{aligned}
$$

LHSi can't depend on 2)
Same up down Since
Spinning $\varnothing \rightarrow$ same

$$
\vec{E}(r, \phi, 2)=\hat{r}|\vec{E}(r)|
$$

First do end caps

$$
\vec{E} \circ \vec{n})_{\text {end }} d \vec{r} \cdot \overrightarrow{2}=0
$$

Same up + down
cant have 2 dependence
now noting to S

Sides

$$
\Rightarrow \hat{n}=\hat{r}
$$

$$
\begin{aligned}
& d \vec{A}=\vec{r} \cdot r \cdot d \phi \cdot d z \\
& \int(\vec{r}|\vec{E}(r)|) \cdot(\vec{F} r d \phi d z)
\end{aligned}
$$

a dot product should be 1 or 0

$$
\begin{aligned}
& r|\vec{E}(r)| \int_{2} d \phi d z \\
& 2 \pi r 2|\vec{E}(r)|
\end{aligned}
$$

put together

$$
\begin{aligned}
& \frac{\lambda z}{\varepsilon_{0}}=2 \pi r z|\vec{F}(r)| \\
& \vec{E}(r)=\frac{\lambda}{2 \pi \varepsilon_{0}} \cdot \frac{1}{r} \hat{r} \\
& \text { dent forget that in } \hat{r} \text { direction }
\end{aligned}
$$

Topics: Gauss's Law
Related Reading: Course Notes: Sections 4.1-4.2, 4.7-4.8

Topic Introduction

In this class we will practice calculating electric fields using Gauss's law by doing problem solving \#\$. 2 Remember that the idea behind Gauss's law is that, pictorially, electric fields flow out of and into charges. If you surround some region of space with a closed surface (think bag), then observing how much field "flows" into or out of that surface tells you how much charge is enclosed by the bag. For example, if you surround a positive charge with a surface then you will see a net flow outwards, whereas if you surround a negative charge with a surface you will see a net flow inwards.

Gauss's Law

Gauss's law states that the electric flux through any closed surface is proportional to the total charge enclosed by the surface:

$$
\Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}}
$$

A closed surface is a surface which completely encloses a volume, and the integral over a closed surface S is denoted by $\left[\iiint\right.$.

Symmetry and Gaussian Surfaces

Although Gauss's law is always true, as a tool for calculation of the electric field, it is only useful for highly symmetric systems. The reason for this is that in order to solve for the electric field $\overrightarrow{\mathbf{E}}$ we need to be able to "get it out of the integral." That is, we need to work with systems where the flux integral can be converted into a simple multiplication. Examples of systems that possess such symmetry and the corresponding closed Gaussian surfaces we will use to surround them are summarized below:

Symmetry	System	Gaussian Surface
Cylindrical	Infinite line	Coaxial Cylinder
Planar	Infinite plane	Gaussian "Pillbox"
Spherical	Sphere, Spherical shell	Concentric Sphere

Solving Problems using Gauss's law

Gauss's law provides a powerful tool for calculating the electric field of charge distributions that have one of the three symmetries listed above. The following steps are useful when applying Gauss's law:
(1)Identify the symmetry associated with the charge distribution, and the associated shape of "Gaussian surfaces" to be used.
(2)Divide space into different regions associated with the charge distribution, and determine the exact Gaussian surface to be used for each region. The electric field must be constant or known (i.e. zero) across the Gaussian surface.
(3)For each region, calculate $q_{\text {enc }}$, the charge enclosed by the Gaussian surface.
(4)For each region, calculate the electric flux Φ_{E} through the Gaussian surface.
(5)Equate Φ_{E} with $q_{\mathrm{enc}} / \varepsilon_{0}$, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S :

Gauss's law:

$$
\begin{aligned}
& \Phi_{E}=\iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi_{E}=\oiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\mathrm{cnc}}}{\varepsilon_{0}}
\end{aligned}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics
 8.02

Problem Solving 2: Gauss's Law

REFERENCE: Section 4.2, 8.02 Course Notes.
Introduction: When approaching Gauss's Law problems, we described a problem solving strategy summarized below (see also, Section 4.7, 8.02 Course Notes):

Summary: Methodology for Applying Gauss's Law

Step 1: Identify the 'symmetry' properties of the charge distribution.
Step 2: Determine the direction of the electric field
Step 3: Decide how many different regions of space the charge distribution determines
For each region of space...
Step 4: Choose a Gaussian surface through each part of which the electric flux is either constant or zero

Step 5: Calculate the flux through the Gaussian surface (in terms of the unknown E)
Step 6: Calculate the charge enclosed in the choice of the Gaussian surface
Step 7: Equate the two sides of Gauss's Law in order to find an expression for the magnitude of the electric field

Then...
Step 8: Graph the magnitude of the electric field as a function of the parameter specifying the Gaussian surface for all regions of space.

You should now apply this strategy to the following problem.
Q. Supplemental)
end
$E \cdot n$) and $\alpha \vec{r} \cdot \overrightarrow{2}=0$
same up + down cant have 2 dependence nothing to \int idon't redly get

Sides

$$
\begin{aligned}
& d \vec{A}=\vec{r} \cdot r \cdot d \phi \cdot d z \\
& S(\vec{r}|\vec{E}(r)|) \cdot(\hat{r} r d \phi d z)
\end{aligned}
$$

should be 1 or 0

$$
\begin{aligned}
& r|\vec{E}(r)| \int d \phi d z \\
& 2 \pi r z|\vec{E}(r)|
\end{aligned}
$$

for simpler

$$
\begin{aligned}
\operatorname{Sg} \vec{E} d A= & \vec{E} A_{\text {sides }} \\
& \vec{E} 2 \pi r L \\
& \vec{E} 2 \pi r 2
\end{aligned}
$$

A long very thin non-conducting cylindrical shell of radius b and length L surrounds a long solid non-conducting cylinder of radius a and length L with $b>a$. The inner cylinder has a uniform charge $+Q$ distributed throughout its volume. On the outer cylinder we place an equal and opposite to charge, $-Q$. The region $a<r<b$ is empty.

You can find a three dimensional visualization of this charge configuration and its fields at http://web.mit.edu/viz/EM/electrostatics/GaussLawProblems/filledCylinderShell/. Go to this $U R L$, read the "Help" file, and try out the various Gaussian surfaces available in this applet. Then answer the following questions.

Question 1: (Answer on the tear-sheet at the end!) There is an icon in the applet as shown to the right. What does the height of the cylinder in this icon represent?

Question 2 (this is Step 1 of your methodology above): (Answer on the tear-sheet at the end!) What is the 'symmetry' property of the charge distribution here (which of the three below)?

Spherical

Planar
Says in problem
Question 3 (Step 2 of your methodology): (Answer on the tear-sheet at the end!) What is the direction of the electric field (again, which of the three choices below)?

$$
\text { Radial (in/out) } \quad \text { Angular }(\mathrm{CW} / \mathrm{CCW}) \quad \text { Perpendicular to page }
$$

no end caps
Question 4 (Step 3 of the methodology): (Put your answer on the tear-sheet at the end!) How many different regions of space does the charge distribution determine (in other words, how many different formulae for \mathbf{E} are you going to have to calculate?)

I if the assume no entraps
3 - side and the 2 undead
but does charge go out tare

Question 5 (Step 4 of your methodology): (Put your answer on the tear-sheet at the end!) For each region of space, describe your choice of a Gaussian surface. What variable did you choose to parameterize your Gaussian surface (for example, for a sphere you'd use the radius r)? What is the range of that variable?

Ger cylinder
$0<r<b t)$
F, $\phi, 2 t$ does not depend z same up dan
r does not depend on \varnothing spinning
Question 6 (Step 5 of your methodology): (Put your answer on the tear-sheet at the end!) For the region for $r<a$, calculate the flux through your choice of the Gaussian surface (that is, just write down the left hand side of Gauss's Law). Your expression should include the unknown electric field for that region.

Question 7 (Step 6 of your methodology): (Put your answer on the tear-sheet at the end!) For the region for $r<a$, write the charge enclosed in your choice of Gaussian surface (this should be in terms of $Q, r \& a$, NOT E).

Question 8: (Put your answer on the tear-sheet at the end!) Go to the applet that you have used above. In that applet there is a measure of the charge enclosed inside the Gaussian surfaces. Qualitatively, in the applet, does the charge interior to the cylindrical Gaussian surface in the region for $r<a$ change with r in the way your formula given directly above indicates?

$$
\text { Yes -as you change } r \text { (when ria) the flux charges }
$$

Question 9 (Step 7 of your methodology): (Put your answer on the tear-sheet at the end!) For the region for $r<a$, equate the two sides of Gauss's Law that you calculated in questions 6 and 7 , and solve to find an expression for the magnitude of the electric field.

$$
\begin{aligned}
& E 2 \pi r 2=\& \pi r^{2} 2 \\
& 0 \\
& E=\ell \frac{\pi r^{2} z}{\varepsilon_{0} 2 \pi r^{2}}=\left[\begin{array}{l}
=\frac{1}{2 \varepsilon_{0}}
\end{array}\right] \text { cylinder }
\end{aligned}
$$

Question 10 (Step 6 and 7 or your methodology): (Put your answer on the tear-sheet at the end!) Repeat the same procedure in order to calculate the electric field as a function of r for the regions $a<r<b$.

$$
\begin{aligned}
& \text { Same just that Qenc is same for all } r \text { values } a<r<b \\
& E 2 \pi a z=\frac{p \pi a^{2} z}{\varepsilon_{0}} \\
& E=\frac{p a}{2 \varepsilon_{0}} \quad \text { Solving2-3 }
\end{aligned}
$$

Question 11 (Step 8 of your methodology): (Put your answer on the tear-sheet at the end!) Make a graph of the magnitude of the electric field as a function of the parameter specifying the Gaussian surface for all regions of space.
Qen

Sample Exam Questions (Try these yourself, closed notes. You'll need paper)

Problem 1: A very long non-conducting cylinder is constructed of two
 materials. The inner portion, radius a, has a non-uniform volume charge density given by:

$$
\rho(r<a)=\frac{\sigma}{2 \pi r} \text { where } \sigma \text { is a constant (what units?) }
$$

The outer portion, with inner radius a and outer radius b has a uniform charge density.
(a) If the electric field outside the cylinder $(r>b)$ is everywhere zero, what is the uniform charge density $\rho(a<r<b)$ of the outer portion of the cylinder?
(b) What is the electric field everywhere in space?

Problem 2:

Consider the following cylindrically symmetric electric field:
$\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\hat{\mathbf{r}} \begin{cases}0 & r<a \\ \frac{Q}{\varepsilon_{0} a^{2}}\left(1-\frac{a}{r}\right) & a \leq r \leq 2 a \\ \frac{Q}{\varepsilon_{0} a r} & 2 a<r\end{cases}$
What is the charge distribution that creates this field? In other words, what is $\rho(r)$?
8.02 Week $1+2$

Cheat Sheet
fields - lies are tangent to Field

$$
\begin{aligned}
\left.g=\frac{k_{l}}{} \frac{q_{1} a_{2}}{r^{3}}\right\rangle \quad \quad F=q E \quad \begin{array}{r}
i q=\text { chare } \\
\text { in colombsi }
\end{array}
\end{aligned}
$$

Create
Superposition - add
Charge $1.602 \cdot 10^{-12}$

Charge Density

$$
\begin{array}{ll}
l=\frac{d q}{d v} & \text { volume } \\
\sigma=\frac{d q}{d A} & \text { surface } \\
x=\frac{d q}{d L} & \text { linear }
\end{array}
$$

Colomb's $\quad \vec{E}=\frac{1}{4 \pi \xi_{0}} \sum_{i} \frac{d q}{r^{2}} \hat{T}$ discrete

$$
\vec{E}=\frac{1}{4 \pi \xi_{0}} \int_{V}^{1} \frac{d q}{r^{2}} \hat{r} \quad \text { continears }
$$

from te charge to observer pants vector

Dipole moment - measure of seperation of $\Theta \theta$ charges

- measure of polarity
$-d=$ displacement vector $\Theta \longrightarrow \oplus$
Dipole (4) ${ }_{1}{ }_{\alpha}$

$$
\longleftarrow \text { Liepole moment } p=q d
$$

creates fields + responds to them will rotate $\overrightarrow{\text { to }}$ to align w/ field

$$
\gamma=\vec{p} \times \vec{E}
$$

When splitting x denom 's always the sane Put distance in numerator

$$
\stackrel{\rightharpoonup}{E}=\sum \Delta \stackrel{\rightharpoonup}{E}=\int d \stackrel{\rightharpoonup}{E}
$$

Ring of charge

$$
\begin{aligned}
& d Q=\lambda d L \\
& \lambda=\frac{Q}{2 \pi R} \in \text { know the circumference of a circle }
\end{aligned}
$$

When at a point P

j
$E_{j}=0$ because of symatry
£

$$
\left.\begin{array}{l}
d q=\lambda d)=\lambda(a d \varphi) \\
d \vec{E}=\frac{k_{e} d q \hat{r}}{r^{2}}=\frac{h_{e} d q}{r^{3}} \vec{r} \\
d E=k_{e} d q \frac{x}{r^{3}} \\
\int
\end{array} \begin{array}{rl}
E_{x} & =k_{e} \frac{x}{r^{3}} \int d q \\
& =k_{e} Q \frac{x}{r^{3}} \\
& =\frac{k_{e} Q x}{\sqrt{a^{2}+x^{3}}}{ }^{3}
\end{array}\right\}
$$

Dish

- Unitarily charged
(1) $a p$

$$
d Q=v-d A
$$

$$
\begin{aligned}
& d E=\frac{k \sigma d A}{r^{3}} \vec{?} \\
& E=\frac{k \sigma \pi r^{2}}{\sqrt{r^{2}+x^{2}}} \vec{r} \quad \text {-that nos easy, hew }
\end{aligned}
$$

Steps

1. Express $d q$ in terms of charge density
2. Write $d E$
3. Write r w/ proper coords
4. Apply symmatry to find non vanishing E
5. Integrate

$$
\begin{aligned}
& \text { area circe }=\pi r^{2} \\
& \text { cire circle }=2 \pi r^{2} \\
& \text { Vol cyl }=\pi r^{2} h \\
& \text { area cyl sides }=2 \pi r h \\
& \text { area cyl top }=\pi r^{2} \\
& \text { vol sphere }=\frac{4}{3} \pi r^{3} \\
& \text { SA sphere }=4 \pi r^{2}
\end{aligned}
$$

Gauss Law

$$
\phi_{E}=\oiint_{\substack{S \\ \text { rcloser } \\ \text { space }}} \vec{E} \cdot d \vec{A}=\frac{q_{\text {en }}}{\varepsilon_{0}}
$$

line \rightarrow cylinder -
plane \rightarrow pillbox
sphere \rightarrow sphere
Line

$$
\begin{aligned}
E A & =\frac{q_{i n}}{\varepsilon} \\
& =\frac{d l}{\varepsilon_{0}}
\end{aligned} \quad q_{i n}=d l
$$

Seems far eaiser understand wetter

- make sure to known the shape rales + percularities

Line \rightarrow line is ∞ lenght
use a cylineler of defined lenght don't core abound eadcaps

Plane $\rightarrow q=\rho V$
E_{A} constant any pt above plane $E \in 0$ in to middle divide into 2 regions inside above inside $\frac{\rho x}{\varepsilon_{0}}$ outside $\frac{\frac{e d}{\varepsilon_{0}}}{\varepsilon_{0}}$ Tindules total charge Ti?

* Cylinder -endcaps only

$$
\begin{aligned}
& \underline{E}_{\text {entrap }=\frac{q_{\text {inc }}}{\varepsilon_{0}}}^{E 2 A_{\text {end }}=\frac{\sigma A}{\varepsilon_{0}}} \\
& E=\frac{\sigma}{2 \xi}\left(\begin{array}{cc}
\hat{x} & \text { up } \\
-\hat{x} & \text { down }
\end{array}\right.
\end{aligned}
$$

Sphere \rightarrow inside or outside sphere

$$
\begin{aligned}
& \text { in } E=\frac{k Q}{a^{2}} \text { out } E=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{d^{3}} \\
& \text { quin } \frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi a^{3}} Q=\frac{\pi 3}{a 3} Q \text { where sphere e e know it }
\end{aligned}
$$

Topics: Working in Groups, Electric Potential, E from V
Related Reading: Course Notes: Sections 3.1-3.5

Topic Introduction

We first discuss groups and what we expect from you in group work. We then turn to the concept of electric potential. Just as electric fields are analogous to gravitational fields, electric potential is analogous to gravitational potential. We introduce from the point of view of calculating the electric potential given the electric field. Next we consider the opposite process, that is, how to calculate the electric field if we are given the electric potential.

Potential Energy

Before defining potential, we first remind you of the more intuitive idea of potential energy. You are familiar with gravitational potential energy, $U(=m g h$ in a uniform gravitational field g, such as is found near the surface of the Earth), which changes for a mass m only as that mass changes its position. To change the potential energy of an object by ΔU, one must do an equal amount of work $W_{e x t}$, by pushing with a force $F_{\text {ext }}$ large enough to move it:

$$
\Delta U=U_{B}-U_{A}=\int_{A}^{B} \overrightarrow{\mathbf{F}}_{\mathrm{ext}} \cdot d \overrightarrow{\mathbf{s}}=W_{e x t}
$$

How large a force must be applied? It must be equal and opposite to the force the object feels due to the field it is sitting in. For example, if a gravitational field g is pushing down on a mass m and you want to lift it, you must apply a force $m g$ upwards, equal and opposite the gravitational force. Why equal? If you don't push enough then gravity will win and push it down and if you push too much then you will accelerate the object, giving it a velocity and hence kinetic energy, which we don't want to think about right now. This discussion is generic, applying to both gravitational fields and potentials and to electric fields and potentials. In both cases we write:

$$
\Delta U=U_{B}-U_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}
$$

where the force F is the force the field exerts on the object.
Finally, note that we have only defined differences in potential energy. This is because only differences are physically meaningful - what we choose, for example, to call "zero energy" is completely arbitrary.

Potential

Just as we define electric fields, which are created by charges, and which then exert forces on other charges, we can also break potential energy into two parts: (1) charges create an electric potential around them, (2) other charges that exist in this potential will have an associated potential energy. The creation of an electric potential is intimately related to the creation of an electric field: $\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$. As with potential energy, we only define a potential difference. We will occasionally ask you to calculate "the potential," but in these cases we must arbitrarily assign some point in space to have some fixed potential. A common assignment is to call the potential at infinity (far away from any charges) zero. In
order to find the potential anywhere else you must integrate from this place where it is known (e.g. from $A=\infty, V_{A}=0$) to the place where you want to know it.

Once you know the potential, you can ask what happens to a charge q in that potential. It will have a potential energy $U=q \mathrm{~V}$. Furthermore, because objects like to move from high potential energy to low potential energy, as long as the potential is not constant, the object will feel a force, in a direction such that its potential energy is reduced. Mathematically that is the same as saying that $\overrightarrow{\mathbf{F}}=-\nabla U$ (where the gradient operator $\nabla \equiv \frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}$) and hence, since $\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}, \overrightarrow{\mathbf{E}}=-\nabla V$. That is, if you think of the potential as a landscape of hills and valleys (where hills are created by positive charges and valleys by negative charges), the electric field will everywhere point the fastest way downhill.

Configuration Energy

Since moving a charge through a potential difference takes energy (it changes the potential energy of the charge), we can also discuss the total amount of energy that it would take to assemble a collection of charges, assuming that they started a very far distance apart ("at infinity") and then were brought in to their final positions. A straight-forward way to think about, and calculate, this is to bring the charges in one at a time. The first one is "free" - it doesn't see a potential. The second charge is brought in through the potential created by the first. The third sees the potential from the first two, and so forth.

Important Equations

$$
\begin{aligned}
& \text { points to the } \\
& \text { nt Equations }
\end{aligned}
$$

Potential Energy (Joules) Difference:

$$
\begin{aligned}
& \Delta U=U_{B}-U_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}} \\
& \Delta V=V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
\end{aligned}
$$

Electric Potential Difference (Joules/Coulomb = Volt):
Electric Potential (Joules/coulomb) created by point charge:

$$
V_{\text {Point Charge }}(r)=\frac{k Q}{r}
$$

Potential energy U (Joules) of point charge q in electric potential $V: \quad U=q V$
Configuration Energy:

$$
U=\sum_{\text {all pairs }} \frac{q_{i} q_{j}}{4 \pi \varepsilon_{o}\left|\overrightarrow{\mathbf{r}}_{i}-\overrightarrow{\mathbf{r}}_{j}\right|}
$$

only 10 Distegrels in 8.02
\downarrow

Class 05: Outline
Hour 1:
Electric Potential
Hour 2:
Electric Potential

Electric Potential Diftereve

it have potential-con get field
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
source: Mass M_{s} Charge $q_{s}(\pm)$ "Create" ${ }^{2}$ always alterative ${ }_{c}$ both signs, CREATE: $\quad \overrightarrow{\mathbf{g}}=-G \frac{M_{s}}{r^{2}} \hat{\mathbf{r}} \quad \overrightarrow{\mathbf{E}}=k_{e} \frac{q_{s}}{r^{2}} \hat{\mathbf{r}}$

FEEL: $\quad \overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}}$

$$
\stackrel{\rightharpoonup}{\mathbf{F}}_{E}=q \stackrel{\rightharpoonup}{\mathbf{E}}
$$

This is easiest way to picture field - inverse square
\qquad
\qquad
\qquad field an arrow at every point
Class 05

Potential Energy
and Potential
Start with Gravity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gravity: Force and Work \qquad
\qquad
\qquad
\qquad
Work done by gravity moving m from A to B : \qquad
\qquad
\qquad
of motion
-add itwup for whole path

PRS Question:
 Sign of W_{g}

PRS: Sign of W_{g}

Thinking about the sign and meaning of this..
$W_{g}=G M m\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)$
Moving from r_{A} to r_{B} :
0% 1. W_{g} is positive - we do work
0% 2. W_{g} is positive - gravity does work
0% (3. W_{g} is negative - we do work
0% 4. W_{g} is negative - gravity does work
0% 5. I don't know

* always a difference

Potential Energy (Joules)

$$
\Delta U_{g}=U_{B}-U_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{g} \cdot d \overrightarrow{\mathbf{s}}=-W_{g}
$$

(1) $\overrightarrow{\mathbf{F}}_{g}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}} \rightarrow U_{g}=-\frac{G M m}{r}+U_{0} Y$
(2) $\stackrel{\rightharpoonup}{\mathbf{F}}_{g}=-m g \hat{\mathbf{y}} \quad \rightarrow U_{g}=m g y+U_{0}$

- U_{0} : constant depending on reference point
- Only potential difference ΔU has physical significance not 10

$U(y)=m g y+v(y=0)$

change in PE

Gravitational Potential (Joules/kilogram)

Define gravitational potential difference:

$$
\Delta V_{g}=\frac{\Delta U_{g}}{m}=-\int_{A}^{B}\left(\overrightarrow{\mathbf{F}}_{\mathrm{g}} / m\right) \cdot d \overrightarrow{\mathbf{s}}=-\int_{A}^{B} \overrightarrow{\mathbf{g}} \cdot d \overrightarrow{\mathbf{s}}
$$

$$
\text { Just as } \underbrace{\overrightarrow{\mathbf{F}}_{\mathrm{g}}}_{\text {Force }} \rightarrow \underbrace{\overrightarrow{\mathbf{g}}}_{\text {Field }}, \underbrace{\Delta U_{g}}_{\text {Energy }} \rightarrow \underbrace{\Delta V_{g}}_{\text {Potential }}
$$

* Difference in PE b/w r and

PE
$m \in$ little mass
हिपात

Only want $M \in$ big mass $/$ earth

That is, two particle interaction \rightarrow single particle effect

$$
\begin{aligned}
& \text { * integral of field } \\
& \text { longe conceptall }
\end{aligned}
$$

PRS Question:
 Masses in Potentials

If lift the up rU
have to apply \quad work
\qquad

\qquad
\qquad
F
元

PRS: Masses in Potentials
Consider 3 equal masses sitting in different gravitational potentials:
A) Constant, zero potential
B) Constant, non-zero potential
C) Linear potential $(\mathrm{V} \propto \mathrm{x})$ but sitting at $\mathrm{V}=0$

Which statement is true?
0% 1. None of the masses accelerate
$0 \% \quad$ 2. Only B accelerates
(3.) Only C accelerates
4. All masses accelerate, B has largest acceleration
5. All masses accelerate, C has largest acceleration
6. I don't know
*eclectic potential-
about beation/fielel
Move to Electrostatics

Gravity - Electrostatics

$$
\begin{array}{lr}
\text { Mass } M & \text { Charge } q(\pm) \\
\overrightarrow{\mathbf{g}}=-G \frac{M}{r^{2}} \hat{\mathbf{r}} & \overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}} & \overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}
\end{array}
$$

Both forces are conservative, so...

$$
\begin{array}{ll}
\Delta V_{g}=-\int_{A}^{B} \overrightarrow{\mathbf{g}} \cdot d \overrightarrow{\mathbf{s}} & \Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
\Delta U_{g}=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{g} \cdot d \overrightarrow{\mathbf{s}} & \Delta U=-\int_{A}^{B} \overrightarrow{\mathbf{F}}_{E} \cdot d \overrightarrow{\mathbf{s}}
\end{array}
$$

When you this alost cravereter

* value of potential does NOTmattore
only slave matters

Mothy wall mene

* how potential changing in reighbookod not just in I point
\qquad
\qquad
\qquad
\qquad
\qquad
Potential Difference
Potential Energy

$$
\text { iq instead of } m
$$

Class 05

Potential: Summary Thus Far
Charges CREATE Potential Landscapes

$$
V(\overrightarrow{\mathbf{r}})=V_{0}+\Delta V \equiv V_{0^{n}}-\int_{0^{0}}^{\stackrel{\Gamma}{\mathbf{r}}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

Charges FEEL Potential Landscapes

$$
U(\overrightarrow{\mathbf{r}})=q V(\overrightarrow{\mathbf{r}}))
$$

We work with $\Delta U(\Delta V)$ because only changes matter
charges - Fields potentials
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

* difference in landscape

2 PRS Questions:
 Potential \& Potential Energy

PRS: Positive Charge

Place a positive charge in an electric field. It will accelerate from

1. higher to lower electric potential; lower to higher potential energy higher to lower electric potential; higher to lower potential energy
2. lower to higher electric potential; lower to higher potential energy
0% 4. lower to higher electric potential;

PRS: Negative Charge

Place a negative charge in an electric field. It will accelerate from
0% 1. higher to lower electric potential; \qquad lower to higher potential energy
0% 2. higher to lower electric potential; \qquad higher to lower potential energy
$0 \% \quad$ 3. lower to higher electric potential; lower to higher potential energy
4. lower to higher electric potential;
higher to lower potential energy
\qquad
\qquad

* Very Important Calchaion *

Consider a SINGLE point charge Q .

What potential difference

$$
\Delta V=V_{B}-V_{A}
$$

does it create between point B and point A ?

If $V_{A} \equiv 0$ for $r_{A}=\infty$, what is $V(r) ?$
meaning of dot product. how much of 1 vector in direction of other - in this

Potential Created by Pt Charge

$$
\begin{aligned}
\Delta V & =V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
& =-\int_{A}^{B} k Q \frac{\hat{\mathbf{r}}}{r^{2}} \cdot d \overrightarrow{\mathbf{s}}=-k Q \int_{A}^{B} \frac{d r}{r^{2}} \\
& =k Q\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
\end{aligned}
$$

Take $V=0$ at $r=\infty$:

$$
V_{\text {Point Charge }}(r)=\frac{k Q}{r}
$$

$$
\overrightarrow{\mathbf{E}}=k Q \frac{\hat{\mathbf{r}}}{r^{2}}
$$

$$
\mathrm{d} \overline{\mathbf{s}}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}
$$

:20 PRS: Two Point Charges
The work done in moving a positive test charge from infinity to the point P midway between two charges of magnitude $+q$ and $-q$:

* What matters is the change Class 05 - No work done but pocicile would move it

Efield can eloy get so big or lionizes air

 $E=\frac{k g}{r^{2}}$ for point chorge/sphere
Potential in a Uniform Field

$$
\begin{aligned}
\Delta V & =\underbrace{V_{B}}_{\text {to }}-\underbrace{V_{A}}_{\text {from }}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
& =-\int_{A}^{B}-E \hat{\mathbf{j}} \cdot d \mathbf{\mathbf { s }}=E \int_{A}^{B} d y \\
& =-E d
\end{aligned}
$$

$$
\begin{gathered}
A-1 \\
B O_{0}^{d} \\
E+1
\end{gathered}
$$

$$
\begin{array}{|ll}
\text { Just like gravity, moving in field } & \overrightarrow{\mathbf{E}}=-E \hat{\mathbf{j}} \\
\text { direction reduces potential } & \mathbf{d} \overrightarrow{\mathbf{s}}=d y \hat{\mathbf{j}}
\end{array}
$$

not Id for point chars

Potential Landscape

\qquad
\qquad
\qquad
\qquad

Negative Charge
\qquad

Group Problem: Superposition

 Consider the 3 point charges at left.
 What total electric potential do they create at point P (assuming $\mathrm{V}_{\infty}=0$)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Deriving E from \mathbf{V}
$\Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$
$\mathrm{~A}=(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{B}=(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}, \mathrm{z})$
$\Delta \overrightarrow{\mathbf{s}}=\Delta x \hat{\mathbf{i}}$
$\Delta V=-\int_{(x, y, z)}^{(x+\Delta x, y, z)} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \cong-\overrightarrow{\mathbf{E}} \cdot \Delta \overrightarrow{\mathbf{s}}=-\overrightarrow{\mathbf{E}} \cdot(\Delta x \hat{\mathbf{i}})=-E_{x} \Delta x$
$E_{x} \cong-\frac{\Delta V}{\Delta x} \rightarrow-\frac{\partial V}{\partial x}$
\qquad

$$
\begin{aligned}
& \Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
& \mathrm{~A}=(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{B}=(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& \Delta \overrightarrow{\mathbf{s}}=\Delta x \hat{\mathbf{i}} \\
& \Delta V=-\int_{(x, y, z)}^{(x+\Delta x, z)} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \cong-\overrightarrow{\mathbf{E}} \cdot \Delta \overrightarrow{\mathbf{s}}=-\overrightarrow{\mathbf{E}} \cdot(\Delta x \hat{\mathbf{i}})=-E_{x} \Delta x \\
& E_{x} \cong-\frac{\Delta V}{\Delta x} \rightarrow-\frac{\partial V}{\partial x}
\end{aligned}
$$

direction that it displaces (partial derivitine)
Qpoints down potential

$$
\operatorname{langscapl}
$$

Deriving \mathbf{E} from \mathbf{V}	
If we do all coordinates:	30
$\stackrel{\rightharpoonup}{\mathbf{E}}=-\left(\frac{\partial V}{\partial x} \hat{\mathbf{i}}+\frac{\partial V}{\partial y} \hat{\mathbf{j}}+\frac{\partial V}{\partial z} \hat{\mathbf{k}}\right)$	Same for each
$=-(\underbrace{\left(\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}\right) V}_{\text {Gradient (del) operator: }}$	$\overrightarrow{\mathbf{E}}=-\nabla V$
$\nabla=\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}$	

Field perpendicular to equipotenaly

$$
\stackrel{\rightharpoonup}{\mathbf{E}}=-\left(\frac{\partial V}{\partial x} \hat{\mathbf{i}}+\frac{\partial V}{\partial y} \hat{\mathbf{j}}+\frac{\partial V}{\partial z} \hat{\mathbf{k}}\right) \text { Same for each }
$$

Deriving E from V

If we do all coordinates:
\qquad
\qquad
Gradient (del) operator:

$$
\nabla=\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}
$$

\qquad
call gradients for E field

PRS Question:
 E from V

\qquad
\qquad
\qquad
\qquad

PRS: E from V

20
Consider the point charges you looked at earlier:

$$
V(P)=-k Q / a
$$

You calculated $V(P)$. From that can you derive $E(P)$?
0% 1. Yes, its $k Q / a^{2}$ (up)
0% 2. Yes, its $k Q / a^{2}$ (down)
0\% (3. Yes in theory, but I don't know how to take a gradient
0% 4. No, you can't get $E(P)$ from $V(P)$
0% 5. I don't know
Pus .38]

Group Problem: E from V

A potential $\mathrm{V}(x, y, z)$ is plotted above. It does not depend on x or y.
What is the electric field everywhere?
Are there charges anywhere? What sign?

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 2

Due: Tuesday, February 16 at 9 pm .
Hand in your problem set in your section slot in the boxes outside the door of 32-082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes.
Reading Assignments:
Week Two: Gauss's Law and Electric Potential
Class 4 T/W Feb 9/10 Gauss' Law
Reading: Course Notes: Sections 4.1-4.2, 4.6
Class 5 R/T Feb 11/16 Electric Potential
Reading:
Course Notes: Sections 3.1-3.5, 3.7-3.8
Class 6 F Feb 12
PS02: Gauss's Law
Reading:
Course Notes: Sections 4.1-4.2, 4.7-4.8
Week Three: Electric Potential
President's Day - M 2/15 / M Classes on T 2/16

Class 5 W03D1 T Feb 16
Reading:
Class 7 W03D02 W/R Feb 17/18
Reading:
Experiment:
Class 8 W03D3 F Feb 19
Reading:

Electric Potential
Course Notes Sections 3.1-3.5, 3.7-3.8
Electric Potential; Equipotential Lines and Electric Fields Expt.1: Electric Potential; Configuration Energy;
Course Notes: Sections 3.1-3.5
Expt. 1: Electric Potential
PS03: Electric Potential
Course Notes: Sections 3.1-3.5, 3.7-3.8

Problem 1 (10 points): Concept Questions. Explain your reasoning.

Concept Question 1: A pyramid has a square base of side a, and four faces which are equilateral triangles. A charge Q is placed on the center of the base of the pyramid. What is the net flux of electric field emerging from one of the triangular faces of the pyramid?

1. 0
2. $\frac{Q}{8 \varepsilon_{0}}$
3. $\frac{Q a^{2}}{2 \varepsilon_{0}}$
4. $\frac{Q}{2 \varepsilon_{0}}$
5. Undetermined: we must know whether Q is infinitesimally above or below the plane?

Concept Question 2: A charge distribution generates a radial electric field

$$
\overrightarrow{\mathbf{E}}=\frac{a}{r^{2}} e^{-r / b} \hat{\mathbf{r}}
$$

where a and b are constants. The total charge giving rise to this electric field is

1. $4 \pi \varepsilon_{0} a$
2. 0
3. $4 \pi \varepsilon_{0} b$

Problem 2 (10 points): Non-uniformly charged sphere A sphere of radius R has a charge density $\rho=\rho_{0}(r / R)$ where ρ_{0} is a constant and r is the distance from the center of the sphere.
a) What is the total charge inside the sphere?
b) Find the electric field everywhere (both inside and outside the sphere).

Problem 3 (10 points): N-P Junction

When two slabs of N-type and P-type semiconductors are put in contact, the relative affinities of the materials cause electrons to migrate out of the N-type material across the junction to the P-type material. This leaves behind a volume in the N-type material that is positively charged and creates a negatively charged volume in the P-type material.

Let us model this as two infinite slabs of charge, both of thickness a with the junction lying on the plane $z=0$. The N-type material lies in the range $0<z<a$ and has uniform charge density $+\rho_{0}$. The adjacent P-type material lies in the range $-a<z<0$ and has uniform charge density $-\rho_{0}$. Thus:

$$
\rho(x, y, z)=\rho(z)=\left\{\begin{array}{lc}
+\rho_{0} & 0<z<a \\
-\rho_{0} & -a<z<0 \\
0 & |z|>a
\end{array}\right.
$$

Find the electric field everywhere.

Problem 4 (10 points): Co-axial Cylinders

A very long conducting cylinder (length L and radius a) carrying a total charge $+q$ is surrounded by a thin conducting cylindrical shell (length L and radius b) with total charge $-q$, as shown in the figure.

(a) Using Gauss's Law, find an expression for the direction and magnitude of the electric field $\overrightarrow{\mathbf{E}}$ for the region $r<a$.
(b) Similarly, find an expression for the direction and magnitude of the electric field $\overrightarrow{\mathbf{E}}$ for the region $a<r<b$.

A sphere of radius $2 R$ is made of a non-conducting material that has a uniform volume charge density ρ. (Assume that the material does not affect the electric field.) A spherical cavity of radius R is then carved out from the sphere, as shown in the figure below. Find the electric field within the cavity.

Problem 6 (10 points): Stupid Hobbies...
Some people like to do incredibly dangerous things. Like Austin Richards (also known as Dr. Megavolt or Criss Angel, who performed a similar stunt on the "Tesla Coil" episode of his show mindfreak. Here are some pictures.

Pictures care of http://www.mindfreakconnection.com/
You'll note that while Dr. Megavolt takes strikes directly from the Tesla Coil (a device capable of making insanely high voltages), Criss Angel decides to get shocked from a small ball attached to the coil instead - convenient for the purposes of answering this question. At about what voltage was the Tesla coil for the strikes pictured above and about how much excess charge was on his hand (in the right picture) the instant before the strike was initiated? (HINT: Dry air breaks down at an electric field strength of about $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$)

Problem 7 (10 points): Expt. 1: Equipotential Lines and Electric Fields Pre-Lab Questions

Read Experiment 1. The link is

http://web.mit.edu/8.02t/www/materials/Experiments/exp01.pdf.
Then answer the following pre-lab questions.

1. Equipotentials Curves - Reading Topographic Maps

Below is a topographic map of a 0.4 mi square region of San Francisco. The contours shown are separated by heights of 25 feet (so from 375 feet to 175 feet above sea level for the region shown)

its steepest (what is its slope in $\mathrm{ft} / \mathrm{mi}$)?

From left to right, the NS streets shown are Buchanan, Laguna, Octavia, Gough and Franklin. From top to bottom, the EW streets shown are Broadway, Pacific, Jackson, Washington, Clay (which stops on either side of the park) and Sacramento.
(a) In the part of town shown in the above map, which street(s) have the steepest runs? Which have the most level sections? How do you know?
(b) How steep is the steepest street at
(c) Which would take more work (in the physics sense): walking 3 blocks south from Laguna and Jackson or 1 block west from Clay and Franklin?

2. Equipotentials, Electric Fields and Charge

One group did this lab and measured the equipotentials for a slightly different potential landscape then the ones you have been given (although still on a 1 cm grid).

Note that they went a little overboard and marked equipotential curves (the magenta circles) at $\mathrm{V}=0.25 \mathrm{~V}, 0.5 \mathrm{~V}$ and then from $\mathrm{V}=1 \mathrm{~V}$ to $\mathrm{V}=10 \mathrm{~V}$ in 1 V increments.

They followed the convention that red was their positive electrode $(V=+10 \mathrm{~V})$ and blue was ground $(V=0 \mathrm{~V})$.
(a) Copy the above figure and sketch eight electric field lines on it (equally spaced around the inner conductor).
(b) What, approximately, is the magnitude of the electric field at $r=1 \mathrm{~cm}, 2 \mathrm{~cm}$, and 3 cm , where r is measured from the center of the inner conductor? You should express the field in V/cm. (HINT: The field is the local slope (derivative) of the potential. Also, if you choose to use a ruler realize that the above reproduction of this group's results is not the same size as the original, where the grid size was 1 cm).
(c) What is the relationship between the density of the equipotential lines, the density of the electric field lines, and the strength of the electric field?
(d) Plot the field strength vs. $1 / r^{2}$ for the three points from part (a). If the field were created by a single point charge what shape should this sketch be? Is it?
(e) Approximately how much charge was on the inner conductor when the group made their measurements?

3. Finding the Electric Field from the Electric Potential

The graph shows the variation of an electric potential V with distance x. The potential does not vary in the y or z directions. Be sure to include units as appropriate.

(a) What is E_{x} in the region $x>-1 \mathrm{~m}$? (Be careful to indicate the sign of E_{x}.)
(b) What is E_{x} in the region $x<-1 \mathrm{~m}$? (Be careful to indicate the sign of E_{x}.)
(c) A negatively charged dust particle with mass $m_{q}=1 \times 10^{-13} \mathrm{~kg}$ and charge $q=-1 \times 10^{-12} \mathrm{C}$ is released from rest at $x=+2 \mathrm{~m}$. Will it move to the left or to the right?

Pret
You had a lot of good questions. lm glad
(72) Moire identifying what's confusing. be sore to ask $/ 114$ a TA, go to office hours, or mail 8.02-helpQmit,edv

1. Pyrmid u/ charge q. Net flux out of I side

$$
\phi=E A=\frac{q \ln c}{E}
$$

Want $\frac{1}{4}$ of this sincere its $1 / 4$ to area
-right: -no square base -right. - no square base

$$
\frac{1}{8} \frac{Q}{\varepsilon_{0}}=E A
$$

我

Ib. Charge distributes radial electric field

$$
\vec{E}=\frac{a}{r^{2}} e^{-1 / b} \hat{r} \quad a / b=\text { constants }
$$

Total chorge'i Q ?
it sub in
for colones
law -does not
mate sense except for O

Non uniformly charged sphere
2. (a) $P=\rho_{0} \frac{\hat{R}}{}_{\text {constant }}^{\text {radius }}$
k. total charge inside sphere

$$
\begin{aligned}
& l=\int \frac{Q}{V} \\
& Q=\int \rho_{V} \\
& Q=-\rho_{0} \frac{r}{R} \frac{4}{3} \pi r^{3} \\
& Q=\int \frac{4 \pi r^{4} p_{0}}{3 R}=\frac{4 \pi r^{3}}{3} p_{0}\left(\frac{r}{\pi^{R}}\right. \\
& \text { electric field }
\end{aligned}
$$

1 don 1 know triple integrals - lode at cons when cones out
b. Electric Field

$$
E A=\frac{\theta_{\ln x}}{c_{0}}
$$

inside

$$
\begin{aligned}
E & =4 \pi r^{2}=\int \frac{4}{3} \frac{\pi r^{4}}{R \xi_{0}} \rho_{0} \\
E & =\frac{4 \pi r^{8} P_{0}}{3 \cdot 4 \pi R_{0}} \int \frac{r}{R} \\
& =\frac{R_{0}}{3 \varepsilon_{0}} \int \frac{r}{R}>
\end{aligned}
$$

does not reduce W) distence-right?
outside
dove $E \cdot 4 \pi R^{2}=\frac{4 \pi r^{3} \rho_{0}}{3 \varepsilon_{0}} \neq$

$$
\begin{aligned}
& \text { do som thing } \\
& \text { that }=R_{1}
\end{aligned} \quad E=\frac{4 \pi R^{3} \rho_{0}}{3 \varepsilon_{0} \frac{4 \varepsilon_{0}}{} \pi_{0}}=\frac{p_{0} R}{3 \varepsilon_{0}}
$$

3. N-P Junction

2 slabs N-type and p-type semiconductors in contact electrons fo from N to P
so W is \oplus charged, $P \Theta$ charged
do as 2 slabs of infinite charge

$$
\begin{aligned}
& \frac{0}{\frac{N \oplus p_{0}-a}{p \theta-p_{0}}-a}-a \\
& p=\left\{\begin{array}{cc}
+p_{0} & 0<z<a \\
-p_{0} & -a<z<0 \\
0 & |z|>a
\end{array}\right. \\
& E=\text { constant } \\
& \phi=E \text { Aendops }=q \operatorname{inc} \\
& E 2 A=\frac{\rho_{0}^{-}-\frac{E_{0}}{\varepsilon_{0}}}{\varepsilon_{0}} \\
& E=\frac{p_{0}}{2 c_{6}} \\
& \text { Basicic for plane -pillbox }
\end{aligned}
$$

I think I have to do te same For each region - 4 regions

missing
$-a<z<0$

$$
E=\frac{\rho_{0}}{-2 \pi r \varepsilon_{0}}
$$

$$
E=\frac{-\rho_{0}}{2 \varepsilon_{0}}
$$

$$
\begin{aligned}
& \text { To }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pill bes } \\
& \text { ends only } \\
& \text { another } \\
& \text { try } \\
& \text { of trio } \\
& \text { problem } \\
& E A+E_{1} A=\frac{\rho A_{2}}{E_{0}} \\
& \frac{\rho_{0}{ }^{2}}{\varepsilon_{0}}-\frac{\rho_{0} a}{\varepsilon_{0}}=\frac{\rho_{0}(2-a)}{\varepsilon_{0}} \\
& E=-\frac{p_{0}}{\varepsilon_{0}}(a-z) \hat{z}
\end{aligned}
$$

and ten

$$
\hat{-1+} \quad \frac{p_{0}(a-2)-\hat{z}}{\varepsilon_{0}}
$$

4. Co-axial Cylinders
sane as

$$
\begin{aligned}
& \text { a) Find } \vec{E} \text { for } \\
& \phi=E A=\frac{q^{i} \text { inc }}{\substack{n \\
\text { Sourer } \\
\text { oren }}}
\end{aligned}
$$

1. Identify symetry
2. Determine direction

- ralidelly out nard

3. I area of spare
4. Cylinder
5.

after math review - don'treed

$$
\begin{aligned}
& d \vec{A}=r^{\prime} \cdot r \cdot d \phi \cdot d z \\
& \int(\vec{r} \cdot E)(\hat{r} r d \phi d z)
\end{aligned}
$$

Or simply EAsices

$$
\begin{aligned}
& \text { E2Nr2 } \\
& E 2 \pi r 2=\rho \vee / \varepsilon_{0} \\
& \frac{\rho \pi r^{2} 2}{6_{0}} \text { dis.0 since free condition } \text { Only on sides } \\
& E=\frac{\rho \pi r^{2} z}{\epsilon_{0} 2 \pi \times 2}=\frac{p r}{\epsilon_{0}^{2}}=0 \\
& \text { only on sides } \\
& \text { non connecting } \\
& \text { material }
\end{aligned}
$$

b. Mia should be very similar - but does ret depend on r

From problem solving i Qenc is same for all r values - so I guess rewrite \quad tr $\rightarrow a$

$$
\begin{gathered}
E 2 \pi a z=\frac{p_{0} \pi a^{2} z}{\varepsilon_{0}} \\
E=\frac{p_{0} a}{2 \varepsilon_{0}}
\end{gathered}
$$

5. Non conducting Solid sphere w/ a Cavity

General

$$
\begin{aligned}
& \text { General } E A=\frac{q_{\text {inc }}}{\varepsilon_{0}} \\
& E 4 \pi r^{2}=\frac{\rho \frac{4}{3} \pi r^{3}}{\varepsilon_{0}} \\
& E=\frac{\rho^{4} \pi r^{3}}{3 \varepsilon_{0}^{4} 4 r^{2}}=\frac{\rho r}{3 \varepsilon_{0}}
\end{aligned}
$$

$$
\text { Small }=\frac{\rho(R)}{3 e_{0}} \quad \text { sphere } w / 0 \text { cavity }
$$

Small sphere has charge density -p

$$
\frac{\vec{F}}{2}=\frac{-\rho}{3 q}(\vec{r}-\vec{R}) \quad r<2 R
$$

Total \vec{E}^{\prime} in cavity

$$
E_{1}+E_{2}=\frac{p \vec{r}}{3 \varepsilon_{0}}-\frac{\rho \vec{r}}{3 \varepsilon_{0}}+\frac{\rho \vec{R}}{3 \varepsilon_{0}}=\frac{\rho \vec{R}}{3 \varepsilon_{0}}
$$

Hint answer should be remarkable Cont yet it
agreed
6. Stupid Hobbies of Crus Angel

What voltage thaw much extra charge on hand? Dry air breaks down at an Electric Field strenght of $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$
Hint: Height $\sim 2 m$ (between $1-3 m$) assume charge on ballon of some radius ($1-3 \mathrm{~cm}$)
So $2 m=V_{\Delta}=6 \cdot 10^{6} \mathrm{~V}$

$$
V_{A}=-\int_{A}^{B} F \cdot d s
$$

$$
6 \cdot 10^{6}=-\int_{0}^{6} \vec{E} \cdot d \vec{s} \text { all radially athard of }
$$

$$
\begin{aligned}
V=\frac{k Q}{r} \rightarrow & 6 \cdot 10^{\beta}=\frac{k Q}{102} \\
& 120,000=k Q
\end{aligned}
$$

Also asks about how much charge

- can find using flux

$$
\begin{aligned}
& E A=\frac{\rho V}{\varepsilon_{0}} \\
& E 4 \pi r^{2}=\frac{\rho \frac{4}{2} \pi r^{3}}{\varepsilon_{0}} \\
& E=\frac{\rho 4 \pi r^{3}}{3 \varepsilon_{0} 4 \pi r^{2}}=\frac{\rho r}{3 \varepsilon_{0}}
\end{aligned}
$$

Experiment I Pce-Lab

1. Tope Map of Son Fronsisen

- lines separated by 25 ft

Steepest I lines closest together, perpendicular to l lines
Cough
Washington
Jackson. 1
Flattest (lines furtest aporia, parallel lines)
Pacific
Buchannan near te Parka
Prodduay
b. How steep is steepest street

Cough from Washington to Broadway

$$
\begin{aligned}
& \text { ~, } 27 \text { miles } \\
& 125 \mathrm{ft} \\
& \frac{125}{.27}=462.8 \mathrm{ft} / \text { mile }
\end{aligned}
$$

c. Which greatest Phyócal work

Laguna + Jackson 3 south
would end you up at same elevation
which physics calls no world
(lay t Franklin west net elevation change, so done work
2.

Field lines go perpendicdor to these equipotent lines
Ge in the direction downhill to a lower potential

$$
\Delta V=V_{B}-V_{A}=\int_{A}^{B} E d \stackrel{\rightharpoonup}{s}
$$

b. Magnitude of field at $r=1,2,3 \mathrm{~cm}$

What does

$$
\begin{aligned}
& 1 \quad 5 \mathrm{~V} / 1 \mathrm{~cm}=5 \mathrm{~V} / \mathrm{cm} \\
& 2 \\
& 3=9.5 \mathrm{~V} / 2 \mathrm{~cm}=4.25 \mathrm{~V} / \mathrm{cm} \\
& 3=3 \mathrm{~V} / 3 \mathrm{~cm}
\end{aligned}
$$

this really mean?
the H^{\prime} of lines
cm cuber.
Hint: The fired is the local slope (derivite) of the potential.
(c)

$$
\begin{aligned}
\text { Relationship } & \text { - density equipotent lines } \\
& - \text { density field lines } \\
& - \text { strenght field }
\end{aligned}
$$

Denser lines $=\frac{\text { Steeper }}{\text { Larger }}$ potential change'
Density, electric field lies - 1 donn t thing mean axythtry indicates strenght of field

What if it was a point charge'

- would be be sam?,
- He curves wail be closer
e) How much charge was on inner conductor?

$$
\begin{gathered}
V=-\int_{A}^{B} E d s \quad \text { Driviving } E \text { from } V \\
F=-\nabla V \text { e but cant do gradient }
\end{gathered}
$$

or is it $Q=\rho V$

$$
Q=p \pi r^{2}
$$

or do Guass's Law and set =

$$
E A=\frac{\rho V}{\varepsilon_{0}}
$$

3. Finding te electric fill from electric potential HintiPotential is linear, so E should be constant in each region
a. Ex when $x>-9 m$

$$
E=-V
$$

$$
\begin{aligned}
& \Delta V=V_{B}-V_{A}=-\int_{A}^{B} E \cdot d s \\
&-10-10=-\int_{A} E \cdot 3--1 \\
& 20=\int_{10}^{10} E \cdot 4 \\
& E=-5 \in \text { or is it the slope } \\
& \text { which is what I calculated } \\
& \text { sane as }
\end{aligned}
$$

b. Ex when $x<-1 m$

$$
\frac{-10-10}{-3--1}=\frac{-20}{-2}=10 \text { units. }
$$

C. A negitivly charged Lust port'cde

$$
m_{q}=1 \cdot 10^{-13} \mathrm{~kg} \quad q=-1 \cdot 10^{-12} \mathrm{C}
$$

will it move left or right?
It will always (θ) and θ hove to a lower potential energy, If it is θ, it will move to a more © electric potential: In this case to left

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

8.02

Spring 2010

Problem Set 2 Solutions

Problem 1 (10 points): Concept Questions. Explain your reasoning.

Concept Question 1: A pyramid has a square base of side a, and four faces which are equilateral triangles. A charge Q is placed on the center of the base of the pyramid. What is the net flux of electric field emerging from one of the triangular faces of the pyramid?

1. 0
2. $\frac{Q}{8 \varepsilon_{0}}$
3. $\frac{Q a^{2}}{2 \varepsilon_{0}}$
4. $\frac{Q}{2 \varepsilon_{0}}$
5. Undetermined: we must know whether Q is infinitesimally above or below the plane?

Answer 2: Explain your reasoning: Construct an eight faced closed surface consisting of two pyramids with the charge at the center. The total flux by Gauss's law is just Q / ε_{0}. Since each face is identical, the flux through each face is one eight the total flux or $Q / 8 \varepsilon_{0}$.

Concept Question 2: A charge distribution generates a radial electric field

$$
\overrightarrow{\mathbf{E}}=\frac{a}{r^{2}} e^{-r / b} \hat{\mathbf{r}}
$$

where a and b are constants. The total charge giving rise to this electric field is

1. $4 \pi \varepsilon_{0} a$
2. 0
3. $4 \pi \varepsilon_{0} b$

Answer 2: Explain your reasoning: In order to fine the total charge I choose a Gaussian surface that extends over all space. Because the electric field is radially symmetric, I choose my Gaussian surface to be a sphere of radius r and I will take the limit as $r \rightarrow \infty$. The flux is given by

$$
\lim _{r \rightarrow \infty}\left[\iiint_{r} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{a}}=\lim _{r \rightarrow \infty}\left[\iint_{r} \frac{a}{r^{2}} e^{-r / b} \hat{\mathbf{r}} \cdot d a \hat{\mathbf{r}}=\lim _{r \rightarrow \infty}\left[\iint_{r} \frac{a}{r^{2}} e^{-r / b} d a=\lim _{r \rightarrow \infty} \frac{a}{r^{2}} e^{-r / b} 4 \pi r^{2}=4 \pi a \lim _{r \rightarrow \infty} e^{-r / b}=0\right.\right.\right.
$$

When I take the limit as $r \rightarrow \infty$, the exponential term goes to zero, and so the flux goes to zero. Therefore the charge enclosed is zero.

Problem 2 (10 points): Non-uniformly charged sphere A sphere of radius R has a charge density $\rho=\rho_{0}(r / R)$ where ρ_{0} is a constant and r is the distance from the center of the sphere.
a) What is the total charge inside the sphere?

Solution:

The total charge inside the sphere is the integral

$$
Q=\int_{r^{\prime}=0}^{r=R} \rho 4 \pi r^{2} d r=\int_{r^{\prime}=0}^{r=R} \rho_{0}(r / R) 4 \pi r^{2} d r=\frac{\rho_{0} 4 \pi}{R} \int_{r=0}^{r=R} r^{3} d r=\frac{\rho_{0} 4 \pi}{R} \frac{R^{4}}{4}=\rho_{0} \pi R^{3}
$$

b) Find the electric field everywhere (both inside and outside the sphere).

Solution:

There are two regions of space: region I: $r<R$, and region II: $r>R$ so we apply Gauss' Law to each region to find the electric field.

For region I: $r<R$, we choose a sphere of radius r as our Gaussian surface. Then, the electric flux through this closed surface is

$$
\left[\iint \overrightarrow{\mathbf{E}}_{\mathbf{1}} \cdot d \overrightarrow{\mathbf{A}}=E_{l} \cdot 4 \pi r^{2} .\right.
$$

Since the charge distribution is non-uniform, we will need to integrate the charge density to find the charge enclosed in our Gaussian surface. In the integral below we use the integration variable r^{\prime} in order to distinguish it from the radius r of the Gaussian sphere.

$$
\frac{Q_{c n c}}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}} \int_{r^{\prime}=0}^{r^{\prime}=r} \rho 4 \pi r^{\prime 2} d r^{\prime}=\frac{1}{\varepsilon_{0}} \int_{r^{\prime}=0}^{r^{\prime r}} \rho_{0}\left(r^{\prime} / R\right) 4 \pi r^{\prime 2} d r^{\prime}=\frac{\rho_{0} 4 \pi}{R \varepsilon_{0}} \int_{r^{\prime}=0}^{r^{\prime}=r} r^{\prime 3} d r^{\prime}=\frac{\rho_{0} 4 \pi r^{4}}{4 R \varepsilon_{0}}=\frac{\rho_{0} \pi r^{4}}{R \varepsilon_{0}} .
$$

Notice that the integration is primed and the radius of the Gaussian sphere appears as a limit of the integral.

Recall that Gauss's Law equates electric flux to charge enclosed:

$$
\iiint \overrightarrow{\mathbf{E}}_{\mathbf{1}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{c n c}}{\varepsilon_{0}} .
$$

So we substitute the two calculations above into Gauss's Law to arrive at:

$$
E_{l} \cdot 4 \pi r^{2}=\frac{\rho_{0} \pi r^{4}}{R \varepsilon_{0}}
$$

We can solve this equation for the electric field

$$
\overrightarrow{\mathbf{E}}_{\mathbf{1}}=E_{/} \hat{\mathbf{r}}=\frac{\rho_{0} r^{2}}{4 R \varepsilon_{0}} \hat{\mathbf{r}}, 0<r<R .
$$

The electric field points radially outward and has magnitude $\left|\overrightarrow{\mathbf{E}}_{\mathbf{1}}\right|=\frac{\rho_{0} r^{2}}{4 \varepsilon_{0}}, 0<r<R$.
For region II: $r>R$: we choose the same spherical Gaussian surface of radius $r>R$, and the electric flux has the same form

$$
\left\lceil\iint \overrightarrow{\mathbf{E}}_{\mathrm{II}} \cdot d \overrightarrow{\mathbf{A}}=E_{l l} \cdot 4 \pi r^{2} .\right.
$$

All the charge is now enclosed, $Q_{c n c}=Q=\rho_{0} \pi R^{3}$, so the right hand side of Gauss's Law becomes

$$
\frac{Q_{c n c}}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}}=\frac{\rho_{0} \pi R^{3}}{\varepsilon_{0}} .
$$

Then Gauss's Law becomes

$$
E_{I I} \cdot 4 \pi r^{2}=\frac{\rho_{0} \pi R^{3}}{\varepsilon_{0}} .
$$

We can solve this equation for the electric field

$$
\overrightarrow{\mathbf{E}}_{\mathbf{I I}}=E_{l l} \hat{\mathbf{r}}=\frac{\rho_{0} R^{3}}{4 \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, r>R .
$$

In this region of space, the electric field points radially outward and has magnitude $\left|\overrightarrow{\mathbf{E}}_{\mathrm{II}}\right|=\frac{\rho_{0} R^{3}}{4 \varepsilon_{0} r^{2}}, r>R$, so it falls off as $1 / r^{2}$ as we expect since outside the charge distribution, the sphere acts as if it all the charge were concentrated at the origin.

Problem 3 (10 points): N-P Junction

When two slabs of N-type and P-type semiconductors are put in contact, the relative affinities of the materials cause electrons to migrate out of the N -type material across the junction to the P-type material. This leaves behind a volume in the N-type material that is positively charged and creates a negatively charged volume in the P-type material.

Let us model this as two infinite slabs of charge, both of thickness a with the junction lying on the plane $z=0$. The N -type material lies in the range $0<z<a$ and has uniform charge density $+\rho_{0}$. The adjacent P-type material lies in the range $-a<z<0$ and has uniform charge density $-\rho_{0}$. Thus:

$$
\rho(x, y, z)=\rho(z)=\left\{\begin{array}{lc}
+\rho_{0} & 0<z<a \\
-\rho_{0} & -a<z<0 \\
0 & |z|>a
\end{array}\right.
$$

Find the electric field everywhere.

Solution:

In this problem, the electric field is a superposition of two slabs of opposite charge density.

Outside both slabs, the field of a positive slab $\overrightarrow{\mathbf{E}}_{P}$ (due to the P-type semi-conductor) is constant and points away and the field of a negative slab $\overrightarrow{\mathbf{E}}_{N}$ (due to the N-type semiconductor)is also constant and points towards the slab, so when we add both contributions we find that the electric field is zero outside the slabs. The fields $\overrightarrow{\mathbf{E}}_{P}$ are shown on the figure below. The superposition of these fields $\overrightarrow{\mathbf{E}}_{T}$ is shown on the top line in the figure.

The electric field can be described by

$$
\overrightarrow{\mathbf{E}}_{T}(z)=\left\{ .\right.
$$

We shall now calculate the electric field in each region using Gauss's Law:
For region $-a<z<0$: The Gaussian surface is shown on the left hand side of the figure below. Notice that the field is zero outside. Gauss's Law states that

$$
\iiint_{\substack{\text { clased } \\ \text { surface }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{a}}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} .
$$

So for our choice of Gaussian surface, on the cap inside the slab the unit normal for the area vector points in the positive z-direction, thus $\hat{\mathbf{n}}=+\hat{\mathbf{k}}$. So the dot product becomes $\overrightarrow{\mathbf{E}}_{2} \cdot \hat{\mathbf{n}} d a=E_{2, z} \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} d a=E_{2, z} d a$. Therefore the flux is

$$
\underset{\substack{c l o s e d \\ \text { surface }}}{ } \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{a}}=E_{2, z} A_{\text {cap }}
$$

The charge enclosed is

$$
\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{-\rho_{0} A_{\text {cap }}(a+z)}{\varepsilon_{0}}
$$

where the length of the Gaussian cylinder is $a+z$ since $z<0$.
Substituting these two results into Gauss's Law yields

$$
E_{2, z} A_{c a p}=\frac{-\rho_{0} A_{c a p}(a+z)}{\varepsilon_{0}}
$$

Hence the electric field in the N -type is given by

$$
E_{2, x}=\frac{-\rho_{0}(a+z)}{\varepsilon_{0}} .
$$

The negative sign means that the electric field point in the -z direction so the electric field vector is

$$
\overrightarrow{\mathbf{E}}_{2}=\frac{-\rho_{0}(a+z)}{\varepsilon_{0}} \hat{\mathbf{k}} .
$$

Note when $z=-a$ then $\overrightarrow{\mathbf{E}}_{2}=\overrightarrow{\mathbf{0}}$ and when $z=0, \overrightarrow{\mathbf{E}}_{2}=\frac{-\rho_{0} a}{\varepsilon_{0}} \hat{\mathbf{k}}$.
We make a similar calculation for the electric field in the P-type noting that the charge density has changed sign and the expression for the length of the Gaussian cylinder is $a-z$ since $z>0$. Also the unit normal now points in the -z -direction. So the dot product becomes

$$
\overrightarrow{\mathbf{E}}_{1} \cdot \hat{\mathbf{n}} d a=E_{1, z}(-\hat{\mathbf{k}}) \cdot \hat{\mathbf{k}} d a=-E_{1, z} d a
$$

Thus Gauss's Law becomes

$$
-E_{1, z} A_{c a p}=\frac{+\rho_{0} A_{c a p}(a-z)}{\varepsilon_{0}} .
$$

So the electric field is

$$
E_{1, z}=-\frac{\rho_{0}(a-z)}{\varepsilon_{0}} .
$$

The vector description is then

$$
\overrightarrow{\mathbf{E}}_{1}=\frac{-\rho_{0}(a-a)}{\varepsilon_{0}} \hat{\mathbf{k}}
$$

Note when $z=a$ then $\overrightarrow{\mathbf{E}}_{1}=\overrightarrow{\mathbf{0}}$ and when $z=0, \overrightarrow{\mathbf{E}}_{1}=\frac{-\rho_{0} a}{\varepsilon_{0}} \hat{\mathbf{k}}$.
So the resulting field is

$$
\overrightarrow{\mathbf{E}}_{T}(z)=\left\{\begin{array}{ll}
\overrightarrow{\mathbf{0}} \quad z<-a & \\
\overrightarrow{\mathbf{E}}_{2}=\frac{-\rho_{0}(a+z)}{\varepsilon_{0}} \hat{\mathbf{k}} & -a<z<0 \\
\overrightarrow{\mathbf{E}}_{1}=\frac{-\rho_{0}(a-z)}{\varepsilon_{0}} \hat{\mathbf{k}} & 0<z<a \\
\overrightarrow{\mathbf{0}} \quad|z|>a &
\end{array} .\right.
$$

The graph of the electric field is shown below

Problem 4 (10 points): Co-axial Cylinders

A very long conducting cylinder (length L and radius a) carrying a total charge $+q$ is surrounded by a thin conducting cylindrical shell (length L and radius b) with total charge $-q$, as shown in the figure.

(a) Using Gauss's Law, find an expression for the direction and magnitude of the electric field $\overrightarrow{\mathbf{E}}$ for the region $r<a$.

Solution: The electric field is zero inside the inner conducting cylinder.
(b) Similarly, find an expression for the direction and magnitude of the electric field $\overrightarrow{\mathbf{E}}$ for the region $a<r<b$.

Solution: We use a Gaussian cylinder of length l and radius $a<r<b$. Then, the flux is

$$
\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E 2 \pi r l .
$$

The charge enclosed is given by

$$
Q_{c n c}=\lambda l=(q / L) l .
$$

So Gauss' Law becomes

$$
\left\lceil\int \overrightarrow{\mathbf{E}}_{l} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{e n c}}{\varepsilon_{0}} \Rightarrow E 2 \pi r l=\frac{q l}{L \varepsilon_{0}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{q}{L 2 \pi \varepsilon_{0}} \frac{1}{r} \hat{\mathbf{r}} ; a<r<b\right.
$$

Problem 5 (10 points): Solid Sphere with a Cavity

A sphere of radius $2 R$ is made of a non-conducting material that has a uniform volume charge density ρ. (Assume that the material does not affect the electric field.) A spherical cavity of radius R is then carved out from the sphere, as shown in the figure below. Find the electric field within the cavity.

Solution: At first glance this charge distribution does not seem to have any of the symmetries that enable us to use Gauss's law. However we can consider this charge distribution as the sum of two uniform spherical distributions of charge. The first is a sphere of radius $2 R$ centered at the origin with a uniform volume charge density ρ. The second is a sphere of radius R centered at the point along the y-axis a distance R from the origin (the center of the spherical cavity) with a uniform volume charge density $-\rho$.

When we add together these two distributions of charge we obtain the uniform charged sphere with a spherical cavity of radius R as described in the problem. We can then add together the electric fields from these two distributions at any point in the cavity to obtain the electric field of the original distribution at that point inside the cavity (superposition principle). Each of these two distributions are spherically symmetric and therefore we can use Gauss's Law to find the electric field associated with each of them.. We do need to be careful when we add together the electric fields. As you will see that process is somewhat subtle and a good vector diagram will help considerably.

So let's begin by choosing a point P inside the cavity. We will now apply Gauss's Law to our first distribution, the sphere of radius $2 R$ centered at the origin with a uniform
volume charge density ρ. The point P is a distance $r<2 R$ from the origin. We choose a sphere of radius r as our Gaussian surface with $r<2 R$.

Then, the electric flux through this closed surface is

$$
\iint \overrightarrow{\mathbf{E}}_{\rho} \cdot d \overrightarrow{\mathbf{A}}=E_{\rho} \cdot 4 \pi r^{2},
$$

where E_{ρ} denotes the outward normal component of the electric field at the point P associated to the spherical distribution with uniform volume charge density ρ. Because the charge distribution is uniform, the charge enclosed in the Gaussisan surface is

$$
\frac{Q_{c n c}}{\varepsilon_{0}}=\frac{\rho\left(4 \pi r^{3} / 3\right)}{\varepsilon_{0}} .
$$

Recall that Gauss' Law equates electric flux to charge enclosed:

$$
\iint \overrightarrow{\mathbf{E}}_{\rho} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{c n c}}{\varepsilon_{0}} .
$$

So we substitute the two calculations above into Gauss' law to arrive at:

$$
E_{\rho} \cdot 4 \pi r^{2}=\frac{\rho\left(4 \pi r^{3} / 3\right)}{\varepsilon_{0}} .
$$

We can solve this equation for the electric field

$$
\overrightarrow{\mathbf{E}}_{\rho}(P)=E_{\rho} \hat{\mathbf{r}}=\frac{\rho r}{3 \varepsilon_{0}} \hat{\mathbf{r}} .
$$

where $\hat{\mathbf{r}}$ is a unit vector at the point P pointing radially away from the origin.

We now apply Gauss's Law to our second distribution, a sphere of radius R centered at the point along the y -axis a distance R from the origin with a uniform volume charge density $-\rho$. The point P is a distance $r^{\prime}<R$ from the center of the cavity.

We choose a sphere of radius r^{\prime} as our Gaussian surface with $r^{\prime}<R$. Then, the electric flux through this closed surface is

$$
\left\lceil\iint \overrightarrow{\mathbf{E}}_{-\rho} \cdot d \overrightarrow{\mathbf{A}}=E_{-\rho} \cdot 4 \pi r^{\prime 2},\right.
$$

where $E_{-\rho}$ denotes the outward normal component of the electric field at the point P associated to the spherical distribution with uniform volume charge density $-\rho$. Because the charge distribution is uniform, the charge enclosed in the Gaussisan surface is

$$
\frac{Q_{c n c}}{\varepsilon_{0}}=-\frac{\rho\left(4 \pi r^{\prime 3} / 3\right)}{\varepsilon_{0}} .
$$

Therefore applying Gauss's Law yields

$$
E_{-\rho} \cdot 4 \pi r^{2}=-\frac{\rho\left(4 \pi r^{\prime 3} / 3\right)}{\varepsilon_{0}} .
$$

We can solve this equation for the electric field

$$
\overrightarrow{\mathbf{E}}_{-\rho}(P)=E_{-\rho} \hat{\mathbf{r}}^{\prime}=-\frac{\rho r^{\prime}}{3 \varepsilon_{0}} \hat{\mathbf{r}}^{\prime}
$$

where $\hat{\mathbf{r}}^{\prime}$ is a unit vector at the point P pointing radially away from the center of the cavity.

The electric field associated with our original distribution is then

$$
\overrightarrow{\mathbf{E}}(P)=\overrightarrow{\mathbf{E}}_{\rho}(P)+\overrightarrow{\mathbf{E}}_{-\rho}(P)=E_{\rho} \hat{\mathbf{r}}+E_{-\rho} \hat{\mathbf{r}}^{\prime}=\frac{\rho r}{3 \varepsilon_{0}} \hat{\mathbf{r}}-\frac{\rho r^{\prime}}{3 \varepsilon_{0}} \hat{\mathbf{r}}^{\prime}=\frac{\rho}{3 \varepsilon_{0}}\left(r \hat{\mathbf{r}}-r^{\prime} \hat{\mathbf{r}}^{\prime}\right)=\frac{\rho}{3 \varepsilon_{0}}\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right)
$$

where $\overrightarrow{\mathbf{r}}$ is a vector from the origin to the point P and $\overrightarrow{\mathbf{r}}^{\prime}$ is a vector from the center of the cavity to the point P. From our diagram we see that $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}$.

Therefore the electric field at the point P is given by

$$
\overrightarrow{\mathbf{E}}(P)=\frac{\rho}{3 \varepsilon_{0}} \overrightarrow{\mathbf{a}} .
$$

This is a remarkable result. The electric field inside the cavity is uniform. The direction of the electric field points from the center of entire sphere to the center of the cavity. This direction is uniquely specified and is an example of 'broken symmetry'.

Problem 6 (10 points): Stupid Hobbies...

Some people like to do incredibly dangerous things. Like Austin Richards (also known as Dr. Megavolt or Criss Angel, who performed a similar stunt on the "Tesla Coil" episode of his show Mindfreak. Here are some pictures.

Pictures care of http://www.mindfreakconnection.com/
You'll note that while Dr. Megavolt takes strikes directly from the Tesla Coil (a device capable of making insanely high voltages), Criss Angel decides to get shocked from a small ball attached to the coil instead - convenient for the purposes of answering this question. what voltage was the Tesla coil for the strikes pictured above and about how much excess charge was on his hand (in the right picture) the instant before the strike was initiated? (HINT: Dry air breaks down at an electric field strength of about $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$)

Solution:

Judging from the picture, Criss is about a meter away from the ball when it arcs. Could be two meters, but it is easier to work with one meter, so I'll use that. If we make a simple minded assumption that $\mathrm{V}=\mathrm{Ed}$ then the potential difference is given by:

$$
3 \times 10^{6} \mathrm{~V} / \mathrm{m} \times 1 \mathrm{~m} \quad 3 \times 10^{6} \mathrm{~V}
$$

(hence Dr. Megavolt!). You may complain that clearly this is more like a ball of charge then a parallel plate capacitor so we should have used a point charge potential, kQ/r. But notice that even in this case $\mathrm{V} \sim \mathrm{Er}$, so the above is approximately correct. There is also a question of where the field equals the breakdown field. Fortunately, this is a back of the envelope question so the details don't matter so much.

We can determine a minimum charge by requiring the field to be at breakdown strength just outside his hand (or the ball). Let's make them spheres of radius 5 cm . Then:

$$
E=k Q / r^{2} \Rightarrow Q=r^{2} E / k \square(5 \mathrm{~cm})^{2} 3 \times 10^{6} \mathrm{Vm}^{-1}\left(9 \times 10^{9} \mathrm{~V} \mathrm{~m} \mathrm{C}^{-1}\right)^{-1} \cong 8 \times 10^{-7} \mathrm{C} \cong 5 \times 10^{12} e
$$

I say that this is a minimum because the field is clearly breaking down a much further distance away (a meter) which would require a charge $400\left(=20^{2}\right)$ times larger. The real charge has to be somewhere between these two extremes, so I'll estimate

$$
Q \cong 10^{-4} \mathrm{C} \cong 5 \times 10^{14} \mathrm{e}
$$

Problem 7 (10 points): Expt. 1: Equipotential Lines and Electric Fields Pre-Lab Questions

Read Experiment 1. The link is

http://web.mit.edu/8.02t/www/materials/Experiments/exp01.pdf.

Then answer the following pre-lab questions.

1. Equipotentials Curves - Reading Topographic Maps

Below is a topographic map of a 0.4 mi square region of San Francisco. The contours shown are separated by heights of 25 feet (so from 375 feet to 175 feet above sea level for the region shown)

From left to right, the NS streets shown are Buchanan, Laguna, Octavia, Gough and Franklin. From top to bottom, the EW streets shown are Broadway, Pacific, Jackson, Washington, Clay (which stops on either side of the park) and Sacramento.
(a) In the part of town shown in the above map, which street(s) have the steepest runs? Which have the most level sections? How do you know?

Solution:

You can tell how steep something is by looking at how quickly it passes through constant height contours (\sim equipotentials). The steepest section is along Octavia between Pacific and Washington. The most level street is Jackson between Buchanan and Octavia, which runs parallel to the 275 foot contour and hence is very flat.
(b) How steep is the steepest street at its steepest (what is its slope in $\mathrm{ft} / \mathrm{mi}$)?

Solution:

Looking at Octavia, it passes through 5 contours (125 feet) in two blocks (about 0.12 miles) so it has a slope of $\sim 1000 \mathrm{ft} / \mathrm{mi}$.
(c) Which would take more work (in the physics sense): walking 3 blocks south from Laguna and Jackson or 1 block west from Clay and Franklin?

Solution:

Work is change in potential energy (and hence height). The change in height walking 3 blocks S on Laguna is almost nothing (you go up but come back down again). West on Clay from Franklin you rise 50 feet in the block, so that is more work.

2. Equipotentials, Electric Fields and Charge

One group did this lab and measured the equipotentials for a slightly different potential landscape then the ones you have been given (although still on a 1 cm grid).

Note that they went a little overboard and marked equipotential curves (the magenta circles) at $\mathrm{V}=0.25 \mathrm{~V}, 0.5 \mathrm{~V}$ and then from $\mathrm{V}=1 \mathrm{~V}$ to $\mathrm{V}=10 \mathrm{~V}$ in 1 V increments.

They followed the convention that red was their positive electrode $(V=+10 \mathrm{~V})$ and blue was ground $(V=0 \mathrm{~V})$.
(a) Copy the above figure and sketch eight electric field lines on it (equally spaced around the inner conductor).

Solution: See black arrows
(b) What, approximately, is the magnitude of the electric field at $r=1 \mathrm{~cm}, 2 \mathrm{~cm}$, and 3 cm , where r is measured from the center of the inner conductor? You should express the field in V / cm. (HINT: The field is the local slope (derivative) of the potential. Also, if you choose to use a ruler realize that the above reproduction of this group's results is not the same size as the original, where the grid size was 1 cm).

Solution:

At $\mathrm{r}=1 \mathrm{~cm}, \mathrm{~V} \sim 4 \mathrm{~V}$ and we move 1 V in about $1 / 5 \mathrm{~cm}$. At $\mathrm{r}=2 \mathrm{~cm}, \mathrm{~V} \sim 1.5 \mathrm{~V}$ and we move about $1 / 2 \mathrm{~V}$ in $1 / 2 \mathrm{~cm}$. At $\mathrm{r}=3 \mathrm{~cm}, \mathrm{~V} \sim 0.7 \mathrm{~V}$ and we move about 0.2 V in $1 / 2 \mathrm{~cm}$.

$$
\begin{aligned}
& \mathrm{E} \sim 5 \mathrm{~V} / \mathrm{cm} \\
& \mathrm{E} \sim 1 \mathrm{~V} / \mathrm{cm} \\
& \mathrm{E} \sim 0.4 \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

(c) What is the relationship between the density of the equipotential lines, the density of the electric field lines, and the strength of the electric field?

Solution:

The denser the equipotential lines and hence electric field lines, the stronger the field.
(d) Plot the field strength vs. $1 / r^{2}$ for the three points from part (a). If the field were created by a single point charge what shape should this sketch be? Is it?

Solution:

It should be (and is!) a straight line

(e) Approximately how much charge was on the inner conductor when the group made their measurements?

Solution:

$E=k_{e} \frac{q}{r^{2}}$, so slope is $k_{e} q=5 \mathrm{~V} \mathrm{~cm} . q \approx 5 \times 10^{-12} \mathrm{C}$

3. Finding the Electric Field from the Electric Potential

The graph shows the variation of an electric potential V with distance x. The potential does not vary in the y or z directions. Be sure to include units as appropriate.

(a) What is E_{x} in the region $x>-1 \mathrm{~m}$? (Be careful to indicate the sign of E_{x}.)

Solution: In the region $x>-1 \mathrm{~m}, V(x)=5 \mathrm{~V}-\left(5 \mathrm{~V} \cdot \mathrm{~m}^{-1}\right) x$. So

$$
E_{x}=-\frac{d}{d x} V(x)=5 \mathrm{~V} \cdot \mathrm{~m}^{-1}
$$

(b) What is E_{x} in the region $x<-1 \mathrm{~m}$? (Be careful to indicate the sign of E_{x}.)

Solution: In the region $x<-1 \mathrm{~m}, V(x)=20 \mathrm{~V}+\left(10 \mathrm{~V} \cdot \mathrm{~m}^{-1}\right) x$. So

$$
E_{x}=-\frac{d}{d x} V(x)=-10 \mathrm{~V} \cdot \mathrm{~m}^{-1} .
$$

(c) A negatively charged dust particle with mass $m_{q}=1 \times 10^{-13} \mathrm{~kg}$ and charge $q=-1 \times 10^{-12} \mathrm{C}$ is released from rest at $x=+2 \mathrm{~m}$. Will it move to the left or to the right?

Solution: For $x>-1 \mathrm{~m}$, the electric field is pointing in the positive x-direction, so a negatively charged particle will experience a force pointing in the negative x-direction, hence it will move to the left.
$(5,0)$
$f(x)$ Dable Intogrel Intro

$$
\begin{aligned}
& f(x, y)=x^{2}+2 y-x+y^{2} \\
& \hat{S}_{2} \\
& f(x, y)=x^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{R} \frac{f(x, y)}{} \frac{d x d y}{d A} \text { divble } \\
& \text { integral }
\end{aligned}
$$

dran out projectiong.

Topics: Electric Potential, Equipotentials
 Related Reading: Course Notes: Sections 3.1-3.5
 Experiments: (1) Equipotential Lines and Electric Fields

Topic Introduction

Today we continue our discussion of electric potentials and equipotentials, becoming more familiar with them and their relationship with charge and electric fields through our first experiment.

Equipotentials

Recall from our last class that when discussing potential and potential energy we only defined differences. This is because only differences are physically meaningful - what we choose, for example, to call "zero energy" is completely arbitrary. Today we will focus on the measurement of equipotential surfaces, that is, locations where the potential is the same, and will practice estimating electric field lines and charge distributions once those equipotential surfaces are known.

Experiment 1: Equipotential Lines and Electric Fields
 Preparation: Read pre-lab and answer pre-lab questions
 (Hand in pre-lab questions at the beginning of class)

Thus far in class we have talked about fields, both gravitational and electric, and how we can use them to understand how objects can interact at a distance. A charge, for example, creates an electric field around it, which can then exert a force on a second charge which enters that field. In this lab we will study another way of thinking about this interaction through electric potentials.

In particular, for several given charge configurations you will map out equipotential contours, that is, contours along which the potential is a constant. From these equipotentials you can determine both the direction and magnitude of the electric field.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

8.02

Experiment 1: Equipotential Lines and Electric Fields

OBJECTIVES

1. To develop an understanding of electric potential and electric fields
2. To better understand the relationship between equipotentials and electric fields
3. To become familiar with the effect of conductors on equipotentials and E fields

PRE-LAB READING

INTRODUCTION

Thus far in class we have talked about fields, both gravitational and electric, and how we can use them to understand how objects can interact at a distance. A charge, for example, creates an electric field around it, which can then exert a force on a second charge which enters that field. In this lab we will study another way of thinking about this interaction through electric potentials.

The Details: Electric Potential (Voltage)

Before discussing electric potential, it is useful to recall the more intuitive concept of potential energy, in particular gravitational potential energy. This energy is associated with a mass's position in a gravitational field (its height). The potential energy difference between being at two points is defined as the amount of work that must be done to move between them. This then sets the relationship between potential energy and force (and hence field):

$$
\begin{equation*}
\Delta U=U_{B}-U_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}} \quad \Rightarrow \quad(\text { in 1D }) \quad F=-\frac{d U}{d z} \tag{1}
\end{equation*}
$$

We earlier defined fields by breaking a two particle interaction, force, into two single particle interactions, the creation of a field and the "feeling" of that field. In the same way, we can define a potential which is created by a particle (gravitational potential is created by mass, electric potential by charge) and which then gives to other particles a potential energy. So, we define electric potential, V, and given the potential can calculate the field:

$$
\begin{equation*}
\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \quad \Rightarrow \quad(\text { in 1D }) \quad E=-\frac{d V}{d z} \tag{2}
\end{equation*}
$$

Noting the similarity between (1) and (2) and recalling that $\boldsymbol{F}=\mathrm{q} \boldsymbol{E}$, the potential energy of a charge in this electric potential must be simply given by $U=q V$.

When thinking about potential it is convenient to think of it as "height" (for gravitational potential in a uniform field, this is nearly precise, since $\overline{U=m} g h$ and thus the gravitational potential $V=g h$). Electric potential is measured in Volts, and the word "voltage" is often used interchangeably with "potential." You are probably familiar with this terminology from batteries, which maintain fixed potential differences between their two ends (e.g. 9 V in 9 volt batteries, 1.5 V in AAA-D batteries).

Equipotentials and Electric Fields

When trying to picture a potential landscape, a map of equipotential curves - curves along which the potential is equal - can be very helpful. For gravitational potentials these maps are called topographic maps. An example is shown in Fig. 1b.

Figure 1: Equipotentials. A potential landscape (pictured in 3D in (a)) can be represented by a series of equipotential lines (b), creating a topographic map of the landscape. The potential ("height") is constant along each of the curves.

Now consider the relationship between equipotentials and fields. At any point in the potential landscape, the field points in the direction that a mass would feel a force if placed there (or that a positive charge would feel a force for electric potentials and fields). So, place a ball at the top of the hill (near the center of the left set of circles in the topographic map of Fig. 1b). Which way does it roll? Downhill! But what direction is that? Perpendicular to the equipotential lines? Why? Equipotential lines are lines of constant height, so moving along them at all does not achieve the objective of going downhill. So the force (and hence field) must point across them, pushing the object downhill. But why exactly perpendicular? Work done on an object changes its potential, so it can take no work to move along an equipotential line. Work is given by the dot product of force and displacement. For this to be zero, the force must be perpendicular to the displacement, that is, force (and hence fields) must be perpendicular to equipotentials.

Note: Potential vs. Potential Difference

Note that in equation (2) we only defined ΔV, the potential difference between two points, and not the potential V. This is because potential is like height - the location we choose to call "zero" is completely arbitrary. In this lab we will choose one location to call zero (the "ground"), and measure potentials relative to the potential at that location.

APPARATUS

1. Conducting Paper Landscapes

To get a better feeling for what equipotential curves look like and how they are related to electric field lines, we will measure sets of equipotential curves for several different potential landscapes. These landscapes are created on special paper (on which you can measure electric potentials) by fixing a potential difference between two conducting shapes on the paper. For reasons that we will discuss later, these conducting shapes are themselves equipotential surfaces, and their shape and relative position determines the electric field and potential everywhere in the landscape. One purpose of this lab is to develop an intuition for how this works. There are four landscapes to choose from (Fig. 2), and you will measure equipotential on two of them (one from Fig. Aa, b and one from Fig. lc, d).

Figure 2 Conducting Paper Landscapes. Each of the four landscapes - the "standard" (a) dipole and (b) parallel plates, and the "non-standard" (c) bent plate and (d) filled plates - consists of two conductors which will be connected to the positive (red) and ground (blue) terminals of a battery. In (d) there is an additional conductor which is free to float to whatever potential is required. The pads are painted on conducting paper with a 1 cm grid.

2. Science Workshop 750 Interface

In this lab we will again use the Science Workshop 750 interface both to create the potential landscapes (using the "OUPUT" connections that act like a battery which we will set to 5 V) and to measure the potential at various locations in that landscape using a voltage sensor.

3. Voltage Sensor

In order to measure the potential as a function of position we will once again use the voltage sensor, plugged into Channel A on the 750. When recording the "potential," you will really be measuring the potential difference between the two leads, (red minus black) and hence you should have the black lead connected to the output ground (what value of potential does this then assign to the output ground?)

GENERALIZED PROCEDURE

For each of the two landscapes that you choose, you will find at least four equipotential contours by searching for points in the landscape at the same potential using the voltage sensor. After recording these curves, you will draw several electric field lines, making use of the fact that they are everywhere perpendicular to equipotential contours.

IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As"). Start LabView by double clicking
2. Connect cables to the output of the 750 (red to the sin wave marked output, black to ground). One member of the group will hold these wires to the two conductors while another maps out the equipotentials.
3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface
4. Connect the black lead of the voltage sensor to the black output (the ground). You will use the red lead to measure the potential around your landscapes.

MEASUREMENTS

Part 1: "Standard" Configuration

1. Choose one of the two "standard" conducting paper landscapes (the dipole or parallel plate configuration)
2. Use the voltage connectors to make contacts to the two conducting pads
3. Press the green "Go" button above the graph to energize the battery and begin recording the potential of the red lead (relative to the black lead = ground).
4. Measure the potential of both conducting pads to confirm that they are properly connected (one should be at +5 V , the other at 0 V), and that they are indeed equipotential objects (we will explain why next week).
5. Now, try to find some location on the paper that is at about +1 V (don't worry about being too precise). Mark this point on the plot on the next page.

Do NOT write on the conducting paper

6. Find another 1 V point, about 1 cm away. Continue until you have closed the curve or left the page. Sketch and label this equipotential curve.
7. Repeat this process to find equipotentials at $2 \mathrm{~V}, 3 \mathrm{~V}$, and 4 V . Work pretty fast; it's more important to think about what these lines mean than it is to draw them perfectly. Think about what you are doing - are there symmetries that you can exploit to make this task easier?

$$
\begin{aligned}
& \text { field }=\frac{\text { Nevtans }}{C_{0 \text { olomb }}} \quad F=q E \quad \frac{K Q Q}{R^{2}} \quad \text { Field }=-\frac{d V}{d x}=\frac{-5}{3} \frac{N}{C}
\end{aligned}
$$

Question 1:

Sketch in a set of electric field lines (\sim ten) on your plot of equipotential on the previous page. Where do the field lines begin and end? If they are equally spaced at their beginning, are they equally spaced at the end? Along the way? Why?

Question 2:

What, approximately, is the potential midway between the two conductors? REMINDER (just this once): Whenever you are asked for a numerical value DO NOT FORGET UNITS!

$$
2.5 \text { Volts }
$$

Question 3:

What, approximately, is the strength of the electric field midway between the two conductors? You may find it easier to answer this question if you just measure the potential at a few points near the center.

$$
\text { fisald }=\frac{N}{C}=\frac{d v}{d t}=\frac{-5}{3} \frac{v_{01 t s}}{c m}
$$

Part 2: "Non-Standard" Configuration

1. Choose one of the two "non-standard" conducting paper landscapes (the bent plate or filled plates configuration)
2. Use the voltage connectors to make contacts to the two conducting pads (for the filled plates, the center pad does not have a connection to it)
3. Press the green "Go" button above the graph to energize the battery and begin recording the potential of the red lead (relative to the black lead = ground).
4. Confirm that everything is properly connected by measuring the potential on the two connected pads, then record a set of equipotential curves following the same procedure of part 1.

Question 4:
Sketch in a set of electric field lines on your plot of equipotentials on the previous page. Where is the electric field the strongest? What, approximately, is its magnitude?

Further Questions (for experimentation, thought, future exam questions...)

- What changes if you switch which conducting pad is at +5 V and which is ground?
- What if you forget to connect the ground lead?
- If you rest your hand on the paper while making measurements, does it affect the readings? Why or why not?
- If you wanted to push a charge along one of the field lines from one conductor to the other, how does the choice of field line affect the amount of work required?
- The potential is everywhere the same on an equipotential line. Is the electric field everywhere the same on an electric field line?

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics
 8.02

Experiment 1 Solutions: Equipotential Lines and Electric Fields

IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As"). Start LabView by double clicking
2. Connect cables to the output of the 750 (red to the sin wave marked output, black to ground). One member of the group will hold these wires to the two conductors while another maps out the equipotentials.
3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface
4. Connect the black lead of the voltage sensor to the black output (the ground). You will use the red lead to measure the potential around your landscapes.

MEASUREMENTS

Part 1: "Standard" Configuration

1. Choose one of the two "standard" conducting paper landscapes (the dipole or parallel plate configuration)
2. Use the voltage connectors to make contacts to the two conducting pads
3. Press the green "Go" button above the graph to energize the battery and begin recording the potential of the red lead (relative to the black lead = ground).
4. Measure the potential of both conducting pads to confirm that they are properly connected (one should be at +10 V , the other at 0 V), and that they are indeed equipotential objects (we will explain why next week).
5. Now, try to find some location on the paper that is at about +2 V (don't worry about being too precise). Mark this point on the plot on the next page.

Do NOT write on the conducting paper

6. Find another 2 V point, about 1 cm away. Continue until you have closed the curve or left the page. Sketch and label this equipotential curve.
7. Repeat this process to find equipotentials at $4 \mathrm{~V}, 6 \mathrm{~V}$, and 8 V . Work pretty fast; it's more important to think about what these lines mean than it is to draw them perfectly.

Question 1:

Sketch in a set of electric field lines (\sim ten) on your plot of equipotentials on the previous page. Where do the field lines begin and end? If they are equally spaced at their beginning, are they equally spaced at the end? Along the way? Why?

Yes, they are equally spaced at the end if they are at the beginning, by symmetry. The spacing changes along the way, spreading out significantly away from the sources.

Question 2:

What, approximately, is the potential midway between the two conductors?
By symmetry it must be half way between the two potentials, or 2.5 V

Question 3:

What, approximately, is the strength of the electric field midway between the two conductors? You may find it easier to answer this question if you just measure the potential at a few points near the center.

For both the dipole and the parallel plates the distance between the conductors is about 3 cm and the potential difference is 5 V so the E field strength is about $1.6 \mathrm{~V} / \mathrm{cm}$. Of course, to be more accurate, measurements of the potential should be made closer to the center.

Part 2: "Non-Standard" Configuration

1. Choose one of the two "non-standard" conducting paper landscapes (the bent plate or filled plates configuration)
2. Use the voltage connectors to make contacts to the two conducting pads (for the filled plates, the center pad does not have a connection to it)
3. Press the green "Go" button above the graph to energize the battery and begin recording the potential of the red lead (relative to the black lead = ground).
4. Confirm that everything is properly connected by measuring the potential on the two connected pads, the record a set of equipotential curves following the same procedure of part 1 .

Question 4:

Sketch in a set of electric field lines on your plot of equipotentials on the previous page. Where is the electric field the strongest? What, approximately, is its magnitude?
The electric field is the strongest near sharp points (where the conductors are the closest together).

Question 5:

Where is the electric field the most uniform? How can you tell?
The field is the most uniform outside of the plates, where the potential is nearly constant and the field is hence about zero.

Further Questions (for experimentation, thought, future exam questions...)

- What changes if you switch which conducting pad is at +10 V and which is ground?
- What if you forget to connect the ground lead?
- If you rest your hand on the paper while making measurements, does it affect the readings? Why or why not?
- If a charge were to move along one of your field lines from one conductor to the other, how does the choice of field line affect the amount of work required to move?
- The potential is everywhere the same on an equipotential line. Is the electric field everywhere the same on an electric field line?
threaten electric potivitial diff

Class 07: Outline
Hour 1:
Electric Potential
Hour 2:
Lab 1: Equipotential

Last Time:
Potential and E Field

mountain range
E Field and Potential: Creating

A point charge q creates a field and potential around it: $\overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} ; V=k_{e} \frac{q}{r} \quad \begin{aligned} & \text { Use superposition for } \\ & \text { systems of charges }\end{aligned}$ They are related: or integrate

$$
\overrightarrow{\mathbf{E}}=-\nabla V ; \Delta V \equiv V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

gradient x arrow uphill Class 07 but \oplus charges move \downarrow so θ

Plectron fills How much UE airs's
\qquad
\qquad
\qquad
\qquad
has volts in it $\Delta V[$ Vol it $]$

$$
\begin{aligned}
& \text { Exam } \mid \text { Thur } 7: 30-9: 30 \mathrm{pm} \\
& \text {-do a sample exam } \\
& \text { - but no capacitance }
\end{aligned}
$$

Topics 1. Fields + Visualizations
2. Electric Field + potential

- Discrete
- Continues
-S yynnetril (ours' Lav)

1. Calk electric Field, integrate to find electric potential

- sphere, \forall niform + non Unitas $\frac{\text { Conduction }}{}+\frac{n_{0} \text { conducting }}{\text { Isuicface }}$
\qquad
\qquad
gradicant - fastest way ?
field - fustrost way $1 \downarrow$

E Field and Potential: Effects

If you put a charged particle, (charge q), in a field:

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}
$$

To move a charged particle, (charge q), in a field and the particle does not change its kinetic energy then:

$$
W_{e x t}=\Delta U=q \Delta V
$$

\qquad

PRS: E from V

The graph above shows a potential V as a function of x. The magnitude of the electric field for $x>0$ is

0% 1. larger than that for $x<0$
0% 2. smaller than that for $x<0$
0% 3. equal to that for $x<0$
0% 4. I don't know

| 20 | PRS: E from V |
| :--- | :--- | :--- |
| The above shows potential $V(x)$. Which is true? | |
| 0% | 1. $E_{x>0}$ is >0 and $E_{x<0}$ is >0 |
| 0% | 2. $E_{x>0}$ is >0 and $E_{x<0}$ is <0 |
| 0% | 3. $E_{x>0}$ is <0 and $E_{x<0}$ is <0 |
| 0% | 4. $E_{x>0}$ is <0 and $E_{x<0}$ is >0 |
| 0% | 5. 1 don't know |

So $\frac{\text { is it negative gradient }}{\text { So it wall be } 2 \text { ? }}$

$E=-\nabla V$

\qquad
\qquad

Potential for Nested Shells

From Gauss's Law
$\overrightarrow{\mathbf{E}}=\left\{\begin{array}{c}\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, \\ 0, \text { elsewhere }\end{array}\right.$

Use $V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$
Region 1: $r>b$

No field \rightarrow
No change in V !

Potential for Nested Shells

Region 2: $a<r<b$
$V(r)-\underbrace{V(r=b)}_{=0}=-\int_{b} d r \frac{Q}{4 \pi \varepsilon_{0} r^{2}}$

Electric field is just a point charge.
Electric potential is DIFFERENT - surroundings matter

Potential for Nested Shells

Region 3: $r<a$
$V(r)-V(r=a)=-\int_{a} d r 0=0$ $\underbrace{V(r-a)}_{=k Q\left(\frac{1}{a} \frac{1}{b}\right)}$
$V(r)=V(a)=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)$

Again, potential is CONSTANT since $E=0$. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

All points on equipotential curve are at same potential. Each curve represented by $V(x, y)=$ constant

Direction of Electric Field E

Lawi measuring equal potential
low potential
\qquad
\qquad
\qquad
\qquad

Properties of Equipotentials

- E field lines point from high to low potential
- E field lines perpendicular to equipotentials
- Have no component along equipotential \qquad
- No work to move along equipotential
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

20 PRS: Kelvin Water Dropper

A drop of water falls through the right can. If the can has positive charge on it, the separated water
\qquad drop will have \qquad
0% 1. no net charge
0% 2. a positive charge \qquad
3. a negative charge

Can
4. I don't know \qquad
\qquad Water Drop \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Experiment 1: Equipotentials
Download LabView file (save to desktop)
and run it
Log in to server and add each student to
your group (enter your MIT ID)
Each group will do two of the four figures
(your choice). We will break about half
way through for some PRS

PRS: Lab Midpoint: Field Lines

The circle is at +5 V relative to the plate. Which of the below is the most accurate electric field line map?

\qquad
\qquad

Experiment 1: Equipotential

Continue with the experiment...

If you finish early make sure that you talk about the extra questions posed at the end of the lab. Labs will be asked about on the exams (see, for example, the final exam from Fall 2005)

PRS Questions: Lab Summary

* Oo not confuse electric potential + field on these problems
\qquad
\qquad

PRS: Lab Summary: Potentials

Holding the red plate at +5 V relative to the ground of the blue plate, what is true about the electric potential
 at the following locations:

1. $V(A)>V(B)>V(C)>V(D)$
2. $V(A)>V(B) \sim V(C)>V(D)$
3. $V(A) \sim V(B)>V(C) \sim V(D)$
4. $\quad V(D)>V(C) \sim V(B)>V(A)$
5. $V(B)>V(C)>V(D) \sim V(A)$
6. $V(A)>V(D) \sim V(C)>V(B)$

PRS: Lab Summary: E Field

Holding the red plate at +5 V relative to the ground of the blue plate, what is true about the electric field at the following locations:

\qquad
\qquad
\qquad

1. $E(A)>E(B)>E(C)>E(D)$
2. $E(A)>E(B) \sim E(C)>E(D)$
3. $E(A) \sim E(B)>E(C) \sim E(D)$
4. $E(D)>E(C) \sim E(B)>E(A)$
5. $E(B)>E(C)>E(D) \sim E(A)$
6. $E(A)>E(D)-E(C)>E(B)$

PRS: Lab Summary: Charge

Holding the red plate at +5 V relative to the ground of the blue plate, what is true about the amount of charge near the following points:

```
0% 1. }|Q(A)|~|Q(C)|>|Q(B)|~ |Q(D)
0% 2. }|Q(A)|>|Q(B)|~|Q(C)|> |Q(D)
0% 3. }|Q(A)|~|Q(B)|>|Q(C)|~ |Q(D)
0% 4. }|Q(D)|~|Q(C)|> |Q(B)|~ ~Q(A)
0% 5. }|Q(B)|-|Q(D)|> |Q(A)|~ ~Q(C)
0% 6. }|Q(A)|>|Q(D)| |Q(C)|> |Q(B)
```

\qquad

\qquad
\qquad
\qquad
\qquad
Conan vidicon exam

Configuration Energy

How much energy to put two charges as pictured?

1) First charge is free
2) Second charge sees first:

$$
U_{12}=W_{2}=q_{2} V_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}
$$

From ∞
In the potential created by \#1 \uparrow difference is the potential energy you reed
\qquad

Configuration Energy

\qquad
How much energy to put three charges as pictured?

1) Know how to do first two
2) Bring in third:
$W_{3}=q_{3}\left(V_{1}+V_{2}\right)=\frac{q_{3}}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{13}}+\frac{q_{2}}{r_{23}}\right)$

\qquad
\qquad
\qquad
Total configuration energy:
$U=W_{2}+W_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)=U_{12}+U_{13}+U_{23}$ \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Solution posted

Topics: Electric Potential, E from V
Related Reading: Course Notes: Sections 3.1-3.5, 3.7-3.8

Topic Introduction

Today you will practice calculating potentials from charges and known field configurations in a problem solving. You will also play with the java applet "The Electric Potential Game" which should help solidify your understanding of the relationship between charge, field \& potential.

Potential

Recall that the creation of an electric potential is intimately related to the creation of an electric field: $\Delta V=V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$. As with potential energy, we only define a potential difference. We will occasionally ask you to calculate "the potential," but in these cases we must arbitrarily assign some point in space to have some fixed potential. A common assignment is to call the potential at infinity (far away from any charges) zero. In order to find the potential anywhere else you must integrate from this place where it is known (e.g. from $A=\infty, V_{A}=0$) to the place where you want to know it.

Once you know the potential, you can ask what happens to a charge q in that potential. It will have a potential energy $U=q V$. Furthermore, because objects like to move from high potential energy to low potential energy, as long as the potential is not constant, the object will feel a force, in a direction such that its potential energy is reduced. Mathematically that is the same as saying that $\overrightarrow{\mathbf{F}}=-\nabla U$ (where the gradient operator $\nabla \equiv \frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}$) and hence, since $\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}, \overrightarrow{\mathbf{E}}=-\nabla V$. That is, if you think of the potential as a landscape of hills and valleys (where hills are created by positive charges and valleys by negative charges), the electric field will everywhere point the fastest way downhill.

Important Equations

Potential Energy (Joules) Difference:

$$
\begin{aligned}
& \Delta U=U_{B}-U_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}} \\
& \Delta V=V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
& V_{\text {Point Charge }}(r)=\frac{k Q}{r}
\end{aligned}
$$

Electric Potential Difference (Joules/Coulomb = Volt):
Electric Potential (Volts) created by point charge:

Potential energy U (Joules) of point charge q in electric potential V :

$$
U=q V
$$

Bhang

On final - tell abate 4 maxwell equations
Guys's law
-conning field lines tells about enclosed charge

- charge makes diverging field
-fields start at 4 charges + go outwards
Mistakes
uniform vs non uniform
G MV
C must integrate (practice)
(fraction of sphere $=$ fraction of charge)
Efield must be constant or 0

E field O due to symmaty
surface

- must be at pt where want to calculate
- \vec{E} is a vector (put vector sign)
- Guass law gives E magnitude
- write it as a vector (M) direction)
- Don't forget units

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Problem Solving 3: Electric Potentials

REFERENCE: Chapter 3, 8.02 Course Notes.

Consider two point-like charged objects with charges $q_{1}=-Q$, and $q_{2}=+Q$

Question 1: If the charges start out very far apart, how much energy it necessary to bring these charges together until they are a distance $2 a$ apart? Give a physical reason for the sign of your answer. Does your answer depend on whether or not you choose infinity as a zero reference potential?

Choose a coordinate system such that the positively charged object is located at the origin and the negatively charged object is located a distance $2 a$ along the positive y -axis (i.e. above it). Consider a point P that lies in the $x-y$ plane with coordinates (x, y).
Question 2: What is the potential difference between the point P and infinity, $V(P)-V(\infty)$?

partial deris-hold everything else constant

Question 3: Use the fact that the electric field at the point P is given by

$$
\overrightarrow{\mathbf{E}}=-\vec{\nabla} V=-\frac{\partial V}{\partial x} \hat{\mathbf{i}}-\frac{\partial V}{\partial y} \hat{\mathbf{j}}
$$

in respect to a certain variable to find the x and y -components of the electric field at the point P from the potential you just calculated.

$$
\begin{aligned}
\vec{E}= & -\nabla\left(\frac{-k q}{\sqrt{x^{2}+y^{2}}}-\frac{k q}{\sqrt{x^{2}+(y-2 a)^{2}}}\right) \\
\frac{\partial v}{\partial x}= & \left.-\frac{k q}{2}\left(x^{2}+y^{2}\right)^{-3 / 2}(2 x)+\frac{k q}{2}\left(x^{2}+(y-2 a)^{2}\right)^{3 / 2}(2 x) \pi\right) \\
= & -k q x\left(\left(x^{2}+y^{2}\right)^{-3 / 2}-\left(x^{2}+(y-2 a)^{2}\right)^{-3 / 2} \uparrow\right) \\
\frac{k V}{\partial y}= & \frac{-k Q}{2}\left(x^{2}+y^{2}\right)^{-3 / 2}(2 y)-\left(\frac{k Q}{2}\left(x^{2}+(y-2 a)^{2}\right)^{-3 / 2} 2(y-2 a)\right) \\
& \vec{E} \approx-\left(x^{2}+y^{2}\right)^{-3 / 2} y+\left(x^{2}+(y-2 a)^{2}\right)^{-3 / 2}(y-2 a) \hat{\rho}-\frac{d v}{d x} \uparrow-\frac{2 v}{2 y} \rho
\end{aligned}
$$

Question 4: Suppose the point P is located at $P=(2 a, a)$. Using only symmetry considerations (i.e. without calculation), predict the direction of the electric field, and draw the direction on the sketch below.
from \oplus to Θ \tan fir l
 wand

Question 5: Use the results of your calculations from part (b) and (c) to find an exact expression for the electric potential difference and the electric field at $P=(2 a, a)$.

Question 6: Now move from $P=(2 a, a)$ to $S=(2 a, 2 a)$. Without calculation answer the following: is the electric potential difference $V(S)-V(P)$ positive, zero, or negative? Why?

θ moving in direction of the field

Question 7: Which arrow most closely represents the direction of the electric field at $S=(2 a, 2 a)$?

Part Two: Electric potential game.

We next want you to look at an applet that shows you the electric potential due to two point charges, and how that is related to the electric field, using the examples from Part One above. We then want you to play a game where you explore bit by bit the electric potential due to two "invisible" point charges and guess the sign of the two invisible charges. You "win" the game by using the least number of moves to figure out what the signs of the charges are.

Question 8: Open up the landscape applet. When you open the application you will see the charge configuration you were given in Question 1 above. We also show the potentials due to these two charges. You can explore the electric field by moving your avatar around the $x y$ plane in the scene using the keypad on the right. The vertical distance of the avatar above the $x y$ plane is the electric potential at the avatar's location. We also show the electric field at the avatar's location below the avatar in the $x y$ plane.

Using the application, confirm your answers to Questions (4), (6) and (7) above.
Question 9: Using the same application as above, create a potential landscape using two positively charged objects, using the controls on the right to change the sign of the charges. Find a point on the landscape where the electric field points away from both charged objects. Briefly describe your strategy.

Explore the region around your selected point and observe how the electric field changes direction. Move the charges around, and change their signs, to get an idea of what the potential landscape looks like for arbitrary placement of the charges and how the electric field varies as you move your avatar around the $x y$ plane.

You will need the intuition developed here to do well in the game below!!

Question 10: Open up the electric potential game. You will have two charges which will be invisible, and located at random positions. You will only see that part of the electric potential that your avatar has explored. Move your avatar around the plane until you have enough information to guess the signs of the charges. Play the game and see which group at the table gets the lowest cumulative score for three tries.

Electric Potential (Voltage)

$$
\begin{aligned}
& E= \nabla V \\
& \text { } \\
& \Delta \text { derive each section in divibually } \\
& \Delta V=V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d_{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Point Charge } \\
& \vec{E}=k_{e} \frac{q}{r^{3}} \quad E A=\frac{Q_{i \cdot c}}{\varepsilon_{0}} \\
& V=k_{e} \underbrace{}_{r} \\
& F=q E \\
& W=\Delta V=q \Delta V \\
& U=q V
\end{aligned}
$$

Point charge potential
lIst charge is 0

- just move it in

Ind charge -calculate.

- if moving (1) charge into (t) field must do \oplus wo rs

UST Moving up hill (both move to loner U) $U=q \mathrm{~V}$

Can calculate via \int or Super position

- moving charge \# 2 in

$$
\begin{aligned}
& \Delta V=V_{B}-V_{A}=-\int_{r_{A}}^{R_{B}} \stackrel{\rightharpoonup}{E} d s \\
& -\int_{r_{A}}^{B_{B}} \frac{K Q}{r^{3}} \cdot d s \\
& -K Q \int_{r_{A}}^{C B} \frac{d r}{r^{2}} \\
& K Q\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right) \text { ecember whet it is to integrate! }
\end{aligned}
$$

$\frac{k Q}{r}$
Or can super position

$$
\begin{aligned}
& \Delta V=V_{B}-Y_{A} O \text { since } \infty \\
& \frac{-\frac{k Q}{d} \text { point particle }}{}+\Delta \Delta \\
& O=-\frac{k q}{d} \cdot Q \\
& \Delta V=\text { charge } \\
& \text { lithe wort }=\text { distance o mass }
\end{aligned}
$$

* Potential is Scalar *

Also
(t) charge

$$
\begin{array}{lc}
\text { high } \rightarrow \text { low } & \text { potential } \\
\text { high } \rightarrow \text { low } & \cup
\end{array}
$$

θ charge
|ow t high potential

$$
h i g h \rightarrow l o n \quad U
$$

Uniform
L) jV

Non Uniform
5 must integrate

Conducive sphere
4) all tee charge lies on the surface

Colombes's law - thy ty to go as for andy as field inside must be O, outside perperdidur(possible)
Non conductive sphere
4) charge Distributed throughout spleep

Read up mere on what symmetries mean
-can only use Guts's law wen symmetry
E field must constant or 0 -at one end where measuring

for example - here 0 doe to symmetry

Electric Potential $v(0) \quad v(\infty)$

Potential Peggy

- changing position, configuration
-exerts a force on doter charges
- same repulsive
- diff attractive

$$
V=\frac{h Q_{q}}{r}
$$

The 0 point is arbitrary like origin lord system -every point measured $/ / /$ respect to that 0

- ∞ best for single pint/localized collodion
- O best for co line charge
- otherwise local values would go to ∞
- grand best for real lite circuts

$$
V=\frac{k Q}{r}=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

Electric field + force $\rightarrow 0$ at

