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Summary of Class 1 8.02

Topics:  Introduction to TEAL; Fields; Review of Gravity; Electric Field

Related Reading:
Web Pages: Overview Section for test dates, cut lines, and grading guidelines
Course Notes: Sections 1.1 — 1.6; 1.8; Chapter 2

Topic Introduction

The focus of this course is the study of electricity and magnetism. Basically, this is the study
of how charges interact with each other. We study these interactions using the concept of
“fields” which are both created by and felt by charges. Today we introduce fields in general
as mathematical objects, and consider gravity as our first “field.” We then discuss how
electric charges create electric fields and how those electric fields can in turn exert forces on
other charges. The electric field is completely analogous to the gravitational field, where
mass is replaced by electric charge, with the small exceptions that (1) charges can be either
positive or negative while mass is always positive, and (2) while masses always attract,
charges of the same sign repel (opposites attract).

Scalar Fields

A scalar field is a function that gives us a single value of some variable for every point in
space — for example, temperature as a function of position. We write a scalar field as a scalar

function of position coordinates — e.g. 7'(x,,z), T(r,0,9) , or, more generically, T'(F). We
can visualize a scalar field in several different ways:

1 1/3

sz +(y+d)2 \/x2 +(y—a’)2
been represented in a (A) contour map (where each contour corresponds to locations yielding
the same function value), a (B) color-coded map (where the function value is indicated by the
color) and a (C) relief map (where the function value is represented by “height”). We will
typically only attempt to represent functions of one or two spatial dimensions (these are 2D)
— functions of three spatial dimensions are very difficult to represent.

Vector Fields

A vector is a quantity which has both a magnitude and a direction in space (such as velocity
or force). A vector field is a function that assigns a vector value to every point in space — for

In these figures, the two dimensional function ¢(x, y) =

has
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Summary of Class 1 8.02

example, wind speed as a function of position. We write a vector field as a vector function of

position coordinates — e.g. F(x,,z)
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—and can also visualize it in several ways:
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Here we show the force of gravity vector field in a 2D plane passing through the Earth,
represented using a (A) vector diagram (where the field magnitude is indicated by the length
of the vectors) and a (B) “grass seed” or “iron filing” texture. Although the texture
representation does not indicate the absolute field direction (it could either be inward or
outward) and doesn’t show magnitude, it does an excellent job of showing directional details.
We also will represent vector fields using (C) “field lines.” A field line is a curve in space
that is everywhere tangent to the vector field.

Gravitational Field
As a first example of a physical vector field, we recall the gravitational force between two
masses. This force can be broken into two parts: the generation of a “gravitational field” g

by the first mass, and the force that that field exerts on the second mass (Fg =mg ). This way

of thinking about forces — that objects create fields and that other objects then feel the effects
of those fields — is a generic one that we will use throughout the course.

Electric Fields
Every charge creates around it an electric field, proportional to the size of the charge and
decreasing as the inverse square of the distance from the charge. If another charge enters this

electric field, it will feel a force (F, =gE).

Important Equations

Force of gravitational attraction between two masses: Fg == ﬂ:rf? r
Strength of gravitational field created by a mass M: §= —n;g- = —G%{—f'
Force on mass m sitting in gravitational field g: Fg =mg

Strength of electric field created by a charge Q: E=k %f'

Force on charge g sitting in electric field E: E, = gE

Summary for Class 1 p. 2/2
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Why Study Physics?

» Understand/appreciate nature

Lightning
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Soap Films

Sunsets

T

Why Study Physics?

* Understand/Appreciate Nature
* Understand Technology
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Week 01, Day 1

Why Study Physics?

« Understand/Appreciate’Nature>
* Understand Technology =~
« Learn to Solve Difficult Problems
= It's Required

g
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Your Responsibilities

Before Class:
Read Course Notes and Summary (See current webpage
for daily reading assignment)

In Class: (You must be present for credit)

_ Problem Solving, Desktop Experiments, Concept Tests

Aftar Class: : o

. Read Text, Review Vlsuallzatlons :
Mastering Physics {Due Sunday night at 10 pm
{Due Tuesdays 9 pm)
Homework Salutznns :

Revi

3 Exams (45%) + Final (25%)

ee “Overview/Grades® on htipi/web.mitedu/8.02t

Honesty Issues and Regrade
Policy

Problem Sets:
The problems sets are to help you learn. You may

 work together BUT submlt your own, uncopted work
In Class Assignmen . e .
Must sign your own name to submitted work

Signing another's name is COD offense
Concept Questions: .
Use only your own PRS device . .
Using another’s PRSis COD offense -
_Regrade Policy: -
U may submit an graded work for a i‘egrade

¢ after th grades that asmgnmen

Grades Are |
+
A >=95  <958&>=90 <90 & >=85
B <858&>=80 <80&>=76 <76 &>=72
<69 & >=66 <66 &>=63

<T28&>=69
. <63&>=59
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Web Page
http://web.mit.edu/8.02t/

TFn's Problem Set Due Tuesday
February 10 9 PMin correct

Interactive On-Line Homework
(Mastering Physics)

On-Line homework with hints and tutorials

Assngnment due Sunday at 10 pm _

Test review problems w;th hmts

Registering for Mastering
Physics
Go to http://www.masteringphysics.com

 Select MP for Young/Freedman if you
‘already purchased that book.

If you buy MP online, select MP stand alone
- Register W|th the access code - :

|Week 01, Day 1
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Week 01, Day 1

Course Reader

You MUST buy “8.02 Course
Reader”

Copy Tech 11-004
%And bring it W|th _you_ to every

- iass Summanes -
ertment Informat:on

Textbook i aover did Fr M heed
Textbook: L ceal
“Introduction to E & M” [l Ty
 Liao, Dourmashkin, and Belcher ("” Grglltr _yexibook

At:'the Coop and Onlme Vers:on on
- web51te '

Common Questions & Answers

+ Dysfunctional Group? - Tell Grad TA
. Must Miss Class? » Tell Grad TA
. +Must Miss HW? . -Teli Grad TA
ist . Ten admm ASAP

: .Exam dates & times are. onlme

- Do NOT schedule early vacation departures etc.
~ without oonsuttmg these hmesl e . _

Class 01 T



Physics is not Math...

Week 01, Day 1

...but we use concepts from 18.02

Gradients E=-VV

Path Integrals AV L” B d5

Surface Integrals  [f[E-dA= Q.
5

Eﬂ
~ Volume Integrals 0= [[[par

PRS Questions:
Physics & Math Background
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PRS: Math Background
Are you familiar with these concepts from
vector calculus?
e 1. l'venever seen them before, and | am
not so comfortable with math
@ 2 lvenever seen them before, but | pick
up new math concepts quickly
. 3. I've seen them before, but definitely
0% e =
need some review
o~ 4. |am comfortable with vector calculus

Week 01, Day 1

0%
0%
0%
0%
0%
0%

Nl e

PRS: Physics Experience

Have you taken a class in Electricity &
Magnetism before?

No, never

Yes, here (8.02)
 Yes, here (8.02 TEAL)
Yes, other college

Yes, high school (regular)
- Yes, high school (AP)

conce

Don’t Worry!

» For many this is new & | will introduce

pts bm‘}e,uge\(yeti at me if not!)

» Concepis a é—\@jﬁgortant -

Math introduction/review:
'Th-_F'eﬁbf , 8:00- 'me__;';__:3:2-082_ .
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So what physics do we learn in
8.02 anyway??7??

ol 28

What’s the Physics?

8.01: Intro. to basic physics concepts: kinematics,
force, momentum, energy, torque, angular
momentum,...

How does matter interact?

Four Fundamental Forces:

Long range: Gravity (8.01 ... Gen. Relativity)
Electromagnetic (8.02)

Both are inverse square forces. So all the resuits from
ravitational forces can be easily adapted to electric
orces : e

Short Range: Strong and-We':a}i(

Fiolds

8.02: Electricity and Magnetism

Also new way of thinking...

How do objects interact at a distance?
@‘ We will learn about Electric & Magnetic
1

higlds:_how they are created & what they effect
Big Picture (Mathematical) Summary: ell's
Equations L
S 0 S e -
E-dA==2 E-ds=——||B-dA
e -2 QReal
il L 73 Erd i
B-dA=0 TB-ds=u 1 — ||E-dA
ea=r eerui el
Lorentz Force: F=g(E+¥vxB)
e A
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Week 01, Day 1

Today: Fields
In General, then
Gravitational & Electric

- Review Vectors Analysis in
~ Study Guide Online

Scalar Fields 19(/(7/';.: Tfi! ha: g ccalar
[a #)
p

ture: Every location ha
lue (number with units)

stant temperatur
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Week 01, Day 1

Fields are 3D

*T=T(x,y,2)

~»Hard to visualize
- Work in 2D

Alftata fen)

8% 588 38 2

o
~100-80 60 40 20 0 20 & T
120 =80 =40 O 40 B0 1% P
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Vector Fields
Vector (magnitude, direction) at every

V;ﬂ t‘ pee c,

e of afe 10 u’ééf.ra_/
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Vector Field Examples

Flows With Sources

Vector Field Examples
Flows With Sinks

Vector Field Examples

Circulating Flows

Class 01
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Visualizing Vector Fields:
Three Methods

_ Vector Field Diagram

Arrows (different colors or Iength) in direction
of field on uniform grid.

Field Lines
Lines tangent to field at every pomt along line
~ Grass Seeds o

Vector Fields — Field Lines
- Direction of field line at any point is

- tangent to fi eld at that point
'- Field lines ss\each other

Obscived 34/000 Fi>w
s

Vector Fleid

n General: Dont ptck up unit untlf ready to answer
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PRS: Vector Field

Y The field line at

left corresponds
to the vector field:

!L

X

Week 01, Day 1
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Class 01

- PRS Questions:

~ “Grass Seed” Visualizations
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Week 01, Day 1

PRS: Grass Seeds

747~ The vector field at left is
-, created by:

. Two sources (equal strength)
. Two sources (top stronger)

. Source & Sink (top stronger)
. Source & Sink (bottom stronger)

. ldon't know

% o1
%
{19 é Two {bottom str )
- % 4. Source & Sink (equal strength) ‘|
(T
% 6
o 7

r
;
Cold be ) sourm + | sinl \8 )
) dortbm—dedbe Ty 0
’lwpd]cl o from o ¥ o

bottom stronger > ( igntng back
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PRS: Clrculatlon G

s These two
cwcplatlons

’}eqkf‘\i
both_ gushiny to g
[ "/ =
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Vector Field IEJ

i/ The grass seeds
j field plot at left is

i arepresentation

| of the vector field:

i
d

Example Of Vector Field:
Gravitation
Graititationg[ Force: . | ap

-' "f o
_ Gravitational Field:

Class 01
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Week 01, Day 1

Example Of Vector Field: )
Gravitation m ((wll AR /: L
] L.vle
Gravitational Field: m = ‘éf 5
A - ' R
g:-G__—‘_}f—f' F,=mg /& S’MPJ& \C
CreatedbyM | Feltbym
% I': unityector from Mtom
T /h
A Unlk Voctor —most mgf, M istalke
) |
< we it bike 'hq}i/
The Superposition Principle
Net fortﬁélfieid is vector sum of forces/fields
Example:
| FE’E” ces. &
G— . (H
a ,«""' in genera!- r—//_—§
- ?
| \ Sy s
e - 20y " i
In Class Problem “! g leae un s o
¥ Find the gravitational (2= 6_’11__ J"..J X 6 G o 3
field g at point P 3 —t r
J e e ' J E | (Fal "
g Bonus: Where would = v
you put another mass K
a P mto : h_e field-- S = -
L - 0 "
Simpl. v
Class 01 / 6 ~ -'~Gm Cm 18
Mofe o dicfdage ol 7 d.re ';‘=M




From Gravitational to
Electrlc Flelds

Electric Charge (~Mass)
Two types of electri: positive and negative
Unit of charge is the coulomb [C] '
Charge of electron (negative) or proton (positive) is

ie,.; e=1. 602 x1 0“19 C

Electric Force (~Gravity)
The electric force between charges q, and g, is

(a) reputswe if charges have same signs
(b) attractwe if charges have opposﬂe sxgns

has

Yes = we b Tl

Class 01

Week 01, Day 1

| Codbnb [s a totof chage

te (0 C i ww/ly W/0ny

19



Ll
‘ \/[*ﬂjﬂp A
W g

Week 01, Day 1

Coulomb's Law

Coulomb’s Law: Force | __ |
on g, due to interaction F12 =k ql_ng— a./ m&fcltd QF m
betweeng, and g _ € ' / : !
. — Ng_mitys Sln Lol
- . . . e T Ll ¢
)\ ,_/,; k= —=8.9875x10° Nm'/C E\ Yt signq e I Th q
T '*' \ - 2 V
K- Consfant”

VCC{'W From g\?ﬂe/otf'/ﬂﬂ t"'
Yo what b Bhliag if

The Superposition Principle

Many Charges Present:
Net force on any charge is vector sum of forces
from other individual charges

Class 01 20



Week 01, Day 1

Electric Field (~g)

The electric field at a point P due to a charge

I 7
g is the force acting on a test charge g, at a_ eatiLCiS Clkﬂ-@ ¢ in Oy C[[ (b Firn
that point P, divided by the charge ¢, : v !

l .. F ofler ,omﬁcfe LCE’QL [ Cﬁl&gﬁv
o . g

o -—
FEf q B
1%

T"m.m unll 3 hat ek i Volls yet

Superposition Principle

The electric field due to a collection of N point
charges is the vector sum of the individual electric
ﬁefds due to each charge

Summary Thus Far 'h“'l“{k m,&'JML Tl ‘[[49@25 i
SOURCE: ~ Mass M, Charge ¢ (+) park] ﬁ’d} —aS a P\Qf S
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Week 01, Day 1

PRS Question:
Electric Field

hard

PRS: Electric Field

Two opposite charges are placed on a line as shown
below. The charge on the right is three times larger
than the charge on the left. Other than at infinity,
where is the electric field zero?
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Summary of Problem Solving Session 1 8.02 ( ( 0.5¢ H},

~ Topics:  Coordinate Systems; Gradients; Line and Surface Integrals L [h S
Readings: Course Notes: Chapter 2 Coulomb’s Law Section 2.9-2.12 a ﬂ'] (/“I Il k ” p
Math Review: Spring 2006 Math Review Presentation A - ~_...._§fij
Hale Bradt’s Spring 2001 8.02 Mathematics Supplement T Cun @ /u/
/'[ 0\ ] A { '
; \ . ° PAIVILA NN | (f\to e
St QL \ Topic Introduction —
A ! barae. o \‘ In this first problem solving session, you will learn how to solve for the electric field of a
f ?_M_C'_L,_- \uniformly charged rod. This will involve setting up a vector integral. We will also introduce
bod ; tthe concepts of understanding and calculating the electric field generated by a continuous
- |distribution of charge.
06 g

L. ] We can find the electric field of a continuous distribution of charge using the
‘;‘/\’.m_?‘“ -/ | superposition principle. Let’s consider the system shown in Figure 1. Consider the
e (;} ‘ infinitesimal element with charge Ag,, contained in some small volume element AV.

Ufpn \‘\‘

"l d

On oot o 5 L
\ s : r .
bt Loy sdm | -

i -

o p[(j C ‘{“mn ¢ Lo [f¢ } | ¥ ”;". -
_Charge =0 |
_ Lrd ‘rP
4= (fn

AE /

Figure 1 Electric field due to infinitesimal element with charge Ag,
We shall assume the charge distribution is continuous. In the limit where AV, shrinks

to 0, the charge per unit volume, p(r') (lowercase Greek letter #ko) is called the volume
charge density, and is defined as

(T0.1)

The charge density may be uniform in space or may depend on the position ¥’ with respect
to some choice of origin. The amount of charge, dg, in an infinitesimal volume element 4V,
located at the position ¥, is

dg = p(F)dV (T0.2)

Summary of Problem Solving Session 1 p. 1/4



Summary of Problem Solving Session 1 8.02

The electric field due to each infinitesimal charged element at a point P is given by
Coulomb’s Law:

M ¢ (T0.3)

In this expression r is the distance from the infinitesimal charged element to the point P
where we are determining the electric field. The unit vector r points from the infinitesimal
charged element to the point P (see Figure 2).

Figure 2 Electric field at the point P due to infinitesimal element of charge dg

The unit vector is given by

F-F  F-F

f= (T0.4)

[F-F

where T is the position vector for the field point P with respect to the choice of origin, and
¥’ is the position vector for the infinitesimal element with charge dg, and r = |i" —i"’\ is the

distance from the infinitesimal charged element to the point P.

Summary of Problem Solving Session 1 p. 2/4



Summary of Problem Solving Session 1 8.02

Figure 3 Vector geometry for the source and field point

We can use the superposition principle: the total electric field is the vector sum of all these
infinitesimal contributions. This sum is just the integral

1 ¢dg . 1 () (r —-r3 )dv (T0.5)
e, r° dre, ; |F_F’

This integral is an example of a vector integral, which actually consists of three separate
integrals, one for each direction in space that will give the component of the electric field in

that direction. Each separate component integral is an integral over the volume where the
charge is located.

Charge Density: We will regularly encounter in electrostatics three types of charge densities
associated with 1-, 2-, or 3-dimensional charged objects that are defined as follows

volume charge density p(r') = ag

dv

. . dq

surface charge density o(r') = y7i
. . . dq
linear charge density A(¥') = o

where dV , dA, dL are the infinitesimal volume, area, and line element respectively. These

charge densities may be uniform or vary with position on the charged object.
Charge Density

When describing the amount of charge in a continuous charge distribution we often speak of
the charge density. This function tells how much charge occupies a small region of space at
any point in space. Depending on how the charge is distributed, we will either consider the

Summary of Problem Solving Session 1 p- 3/4



Summary of Problem Solving Session 1 8.02

volume charge density p =dg/dV , the surface charge density o = dg/dA, or the linear “
charge density A =dq/d{, where V, 4 and / stand for volume, area and length respectively.

Important Equations

.'ﬂ

- Z‘I_

471'80 '}:|

B}

Electric field from a discrete charge distribution: Z
ey i

L dg,
e, ;1 2

q
’?

Electric field from continuous charge distribution: E =

pdV  for a volume distribution
Charge Densities: dgq=<0dA for asurface (area) distribution
Ad¢  for a linear distribution

Important Nomenclature:

A hat (e.g. f&) over a vector means that that vector is a unit vector ( |A| =1)

The unit vector T points from the charge creating fo the observer measuring the field.

Summary of Problem Solving Session 1 p. 4/4
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Problem Solving 1: Continuous Sources and Vector Calculus

Introduction: In this first problem solving session, you will learn how to solve for the
electric field of a uniformly charged rod. This will involve setting up a vector integral.

Readings: Course Notes: Chapter 2 Coulomb’s Law Section 2.9-2.12

When we charge up an object, through a physical transfer of charge or induction;
we may typically place between a nano-coulomb and a micro-coulomb of charge,

10°C <0 <107°C, on the object. Since the charge of the electron is e=1.602x107"7C,

this means that we are placing between 10" and 10" electrons on the object. The
electric field due to a small number of charged particles can readily be computed using
the superposition principle. But what happens in our case when we have a very large
charge distributed over some region in space? If we are trying to determine the electric
field due to this charge distribution at a distance that is large compared to the distance
between the charged objects for example electrons, then we can assume that the electrons
form a continuous distribution of charge.

Let’s consider the system shown in Figure 1. Consider the infinitesimal element
with charge Ag,, contained in some small volume element AV,.

Figure 1 Electric field due to infinitesimal element with charge Ag,

We shall assume the charge distribution is continuous. In the limit where AV

shrinks to 0, the charge per unit volume, po(¥') (lowercase Greek letter rho) is called the
volume charge density, and is defined as




| ] Ag | dg

\\ AT i Ty L)
\ ']

The charge density may be uniform in spacé or may depend on the position F’ with
respect to some choice of origin. The amount of charge, dg, in an infinitesimal volume

element dV, located at the position T’, is

— |

e

dg = p(F)dV (T0.2)

The electric field due to each infinitesimal charged element at a point P is given
by Coulomb’s Law: ; !,.
1 dq :

dE = !
4re, r

(T0.3)

In this expression r is the distance from the infinitesimal charged element to the point
P where we are determining the electric field. The unit vector ¥ points from the
infinitesimal charged element to the point P (see Figure 2).

dre ool (g

Figure 2 Electric field at the point P due to infinitesimal element of charge dg

The unit vector is given by

f= = (T0.4)
| il 7

where T is the position vector for the field point P with respect to the choice of origin,
and ' is the position vector for the infinitesimal element with charge dg, and

r= |F — i"'l is the distance from the infinitesimal charged element to the point P.

s1-2



Figure 3 Vector geometry for the source and field point

We can use the superposition principle: the total electric field is the vector sum of all
these infinitesimal contributions. This sum is just the integral / o ’/'Z’,f}_’r’?/f'c;, 20,
B [P s RENET RN (T0.5)

drg, 7 re 4re, |F i

This integral is an example of a vector integral, which actually consists of three separate
integrals, one for each direction in space that will give the component of the electric field
in that direction. Each separate component integral is an integral over the volume where
the charge is located. L

Charge Density: We will regularly encounter in electrostatics three types of charge
densities associated with 1-, 2-, or 3-dimensional charged objects that are defined as
follows

71 volume charge density p(F')= 3—5

2} surface charge density o(¥') = Z_i
‘ linear charge density A(r") = aq
l [,' g ty ==

where dV, dA, dL are the infinitesimal volume, area, and line element respectively.
These charge densities may be uniform or vary with position on the charged object.

PROBLEM 1: (answer on the tear-sheet at the end)

A hollow cylinder, of length L and radius a, is uniformly charged with total charge
Q. There are no end caps on the cylinder.

sl-3



(a) What is the surface charge density o ? B z
Fid sA = Tal ¢

o Lo e,

7/ ﬁ({[, Car d()

(b) What is the linear charge density A7

A= &

(c) What is relationship between o and A7

’lomhé Aoud  (a a .Fr(.if
PROBLEM 2: (answer on the tear-sheet at the end)
A solid cylinder, of length L and radius a, is uniformly charged with total charge Q.

(a) What is the volume charge density p?
\/olurw. (s [: & ] \7
¢ - ﬁdo /s 77\ 0 \ [ G = _Q____:_
™7

(b) What is the linear charge density A7
g y
@ “ a Sl
O( 'CJ; (lﬂl ’:‘/({f;{z L;, ;:"pr‘ ‘,( *

(c) What is relationship between p and A?

N(; g At {] 0o d ¢ of( {G

l-.«‘.

i
>

: f l g O 4 ST
f *“::3, wj; 1"{: A linedy f,—(/lfﬁ
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PROBLEM 3: Electric Field of Uniformly Charged Rod

In this problem you will learn how to set up an integral expression for the electric field

of arod of length L that has an amount of charge O uniformly distributed. (You may
assume the rod is a 1-dimensional object.)

A

Source Coordinates and Field Point Coordinates:

(a) Choose a 2-dimensional coordinate system and draw it in the space below for the
wire. Clearly indicate your choice of origin, axis, and unit vectors.

A\

il

= ik
L
(b) Choose an infinitesimal charge element dg . Clearly show where you located dg
on the wire. Find an expresswn relating dg, O, L and your ch01ce of length

L%

V’r’r

for dg.

:j I OF 7, H-n,\ (’

(c) Write down a vector expression for the source position vector ¥ in terms of
your source coordinates. These source coordinates will be your integration
variables.

D('D'U i



(d) Consider a field point P that lies off both the axis of the wire and the
perpendicular bisector of the wire. Using your same choice of origin, axis,
coordinates, and unit vectors, write down an expression for the position vector
r(P) for the field point P.

field point

S ./ { " b
aasl charge element A f (v ,,‘]

f\ ( »\‘ J
:3.

fo s} s}
' v J ' od

(e) Write down a vector expression for the vector from the source to the field point, y
r—r . This is a problem in vector subtraction. Then find the magnitude of thlS

vector, ; > — J < 4 o
' fL Wi [\ - / ) |
“Oldaa x!
=|r— H ~,| (1 )
. gett
in the usual Way by taking the square root of the square of the components of the
vector r—T1 . U (¢ [qate

(f) Now find an expression for the unit vector, r, located at the field point that
points from the source to the field point, in terms of both source and field point
coordinates. The unit vector is given by

(:‘)f:\( v Lllé L
T (T0.6)

r—r

| L‘f) N | J



(g) Using your results, find a vector expression for the infinitesimal electric field dE
(in terms of your unit vectors for the field point P) for the contribution of dg to
the electric field using Coulomb’s Law:

&

dE =

1 "
=¥
dre, 1

(h) Using your results from part (g), set up an expression for the vector integrals for
the total electric field at P using

Your expression should contain two separate integrals for the two directions that appear
in the decomposition of r. You are integrating over the source dg, which means each

separate integral is over the length of the rod. For each direction, set up an expression for
the integral with the appropriate limits according to your choice of coordinates.

(i) If P lies on the perpendicular bisector of the wire, explain why any of you
integrals should vanish. Can you show this explicitly by doing the integral?

s1-7



(j) Integrate you’re the integrals you found in part (i) to find an expression for the

vector field E as a function of your field point coordinates. (You may find this
integral non-trivial in which case try to do it at home.)

s1-8



Summary of Class 2 8.02

Topics:  Electric Charge; Electric Fields; Dipoles; Continuous Charge Distributions
Related Reading: Course Notes Section 1.6; Chapter 2

Topic Introduction

Today we review the concept of electric charge, and describe both how charges create
electric fields and how those electric fields can in turn exert forces on other charges. Again,
the electric field is completely analogous to the gravitational field, where mass is replaced by
electric charge, with the small exceptions that (1) charges can be either positive or negative
while mass is always positive, and (2) while masses always attract, charges of the same sign
repel (opposites attract). We will also introduce the concepts of understanding and
calculating the electric field generated by a continuous distribution of charge.

Electric Charge

All objects consist of negatively charged electrons and positively charged protons, and hence,
depending on the balance of the two, can n themselves be either positively or negatively
charged. Although charge cannot be created or destroyed, it can be transferred between
objects in contact, which is particularly apparent when friction is appiled between certain
objects (hence shocks when you shuffle across the carpet in winter and static cling in the
dryer).

Electric Fields
Just as masses interact through a gravitational field, charges interact through an electric field.
Every charge creates around it an electric field, proportional tional to the size of the charge and

decreasing as the inverse square of the distance from the charge (E k, Q J If another

charge enters this electric field, it will feel a force L) If the electric field becomes

strong enough it can actually rip the electrons off of atoms in the air, allowing charge to flow
through the air and making a spark, or, on a larger s scale, | llghterung

EPlng
Charge Distributions e
Electric fields “superimpose,” or 4dd/just as gravitational fields do. Thus the field generated
by a collection of charges is just the sum of the electric fields generated by each of the
individual charges. If the charges are discrete, then the sum is just vector addition. If the

charge distribution is continuous then the total electric field can be calculated by integrating
the electric fieldsdE generated by each small chunk of charge dg in the distribution.

A N o
'uf"l\_ !'(J CIpe / Lo VAU

()

Summary of Class 2 p. 12
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Summary of Class 2 8.02

Charge Density
When describing the amount of charge in a continuous charge distribution we often speak of
the charge density. This function tells how much charge occupies a small region of space at
any pomt in space. Depending on how the charge is distributed, we will either consider the
volume charge density| p = dg/ dav | /the surface charge densny\@@ or the linear
charge dens1tyl A= a’qT}E'Ejvhere V, A and ¢ stand for volume, area and Iength respectively.
Electric Dipoles .8 SGand c/ apal i
The electric dipole is a very common charge distribution consistin£ of a positive and negative
charge of equal magnitude ¢, placed some small distance d apart. We describe the dipole by
its dipole moment p, which has magnitude p = gd and points from
the negative fo thepositive charge. Like individual charges,
dipoles both create electric fields and respond to them. The field
created by a dipole is shown at left (its moment is shown as the
» purple vector). When placed in an external field, a dipole will

attempt to rotate in order to align with the field, and, if the field is
non-uniform in strength, will feel a force as well.

o X

Important Equations fom @ &

R
e T G

Electric force between two charges: |FE| =k, -@,
-

Repulsive (attractive) if charges have the same (opposite) signs

Strength of electric field created by a charge O: E= k, 2,. = Q r

f—’ 3

"
I points from charge to observer who is measuring the field
Force on charge g sitting in electric field E: F,=qE
Electric dipole moment: Ib|=qd
Points from negative charge —g to positive charge +q.
Torque on a dipole in an external field: 7=pxE
Electric field from a discrete charge distribution:  E = : 4 L f, = L i’a F
47:80 = M dme, 5 l;;|
Electric field from continuous charge distribution: E = . qu r
TTE,
TR Ly
E P / ' ’_} pdV  for a volume distribution
Charge Densities: ol dq=4o0dA for a surface (area) distribution
I\ Adf  for a linear distribution

.1, Important Nomenclature:

A hat (e.g. A) over a vector means that that vector is a unit vector ( lf&‘ =1

The unit vector T points from the charge creating fo the observer measuring the field.

e

Summary of Class 2 p. 2/2
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Electric Field Lines

1. Direction of field at any point 14 taééent ?o field
line at that point

2. Field lines point away from positive charges
~ and terminate on nega!we charges

g Faeld Ilnes never cross each other

PRS Que_stlons .
- Electrl'” Field

PRS orce ﬂ

The force between
 the two charges is:

Class 02
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 PRS:Field Lines  [5]
Electric field lines show:

1. Directions of forces that exist in space at all

times.
Darectlons in which charges on those l_t_n_es wult ;

accelerate.

e i S
3 Paths that charges will fol!ow
4 More {han one of the above.

l‘n-CIass Prol?!gm

nn‘} aa A ~

Liecton vkl acc

b { ; N

gt ﬂpw !}Ms Dlav,:_ﬁr,%-ﬁ [Offﬂ

/le die ot vl acteleate

e, ———

Ng) L4 T




),

PRS: Equal Charges

Electric field at P is: iq

5 Y PRS: 5 Equal Charges
3§

ax 15

Six equal positive charges g sit at the vertices of a

‘regular hexagon with sides of length R. We remove

_the bottom charge. The electric field at the center of

the hexagon (point P)is: - L

Class 02
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Hovﬁ Do You Get Charged?

~ = Friction _
 Transfer (touching)
~ *Induction

Demonstrations:
Instruments for

~ Electric Dipoles

A Special Charge Distribution

C AO(/HL

50 i}

v

&N

:
17 = S 2
W A in

v
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~ Electric Dipole

Two equal but opposi'tel charges +q and —q,
separated by a distance 2a

—————

| DipoleMoment |
ip- chargeXdispiacement
1 - 2 o

Class 02
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Electr:c Field Created by Dipole

Thou shalt use
components!

PRS Question:
Dipole Fall-Off

PRS: Dipole Field

As you move to large distances r away from
a d:pole, the electric field will fall-off as:
% 1. 1/r, just like a point charge
) More rapidly than 1/2
. More‘--slowly than 1/:2
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Point Dipole Approximation

Finite Dipole ~ Youcan show.'-'.". wig, loa\L ~{

8, | '
P —sin ¢ cos & o cantle 24 :' (b 7V
47&'80'.’_ o Sad VA Cih 10« e

Uiy~ ‘: A

|
§

1 (ﬁ{: )f_\ "‘\,"1-]"(“" 4 |'" ) ‘Js’i
1\,hd '.b-.“; .

' Dipoles feel Fields
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Demonstration:
Dipole in Field

Torque on Dipole

Total Field (dipole + background)
shows torque: -

Animation

Class 02
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~ PRS Question:
Dipole in Non-Uniform Field

PRS: Dipole in Non-Uniform Field

// E  Adipole sits in a non-uniform
= 7+ electric field E

Due to the electric field this dipole will

o% 1. force but _n_b_torque

~ Continuous Charge
o Distrbutions

Class 02

Loc(e - dgﬁ‘-, ,-;m?

1
(e

i’ § A S
AU AyS {9 G YK
L1
| Ja ¥
AN 14 {4
N TRV '¥ 18V
v




Continuous Charge Distributions
.. Break distribution into parts:

'?M 0 Z Ag, - IU ag

Ef‘eld athue toAq

r AE=k 2% gE-r. 4
r

dq.

Continuous Sources: Charge Density

Examples of Continuous Sources:
- Llne of charge _
L 50

Class 02
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Examples of Continuous Sources:
Line of charge
Length=L dQ = /‘{dL

L /1=Q

Examples of Continuous Sources:
Ring of Charge

= 4O
40l _ 2zR

Examples of Continuous Sources:
Ring of Charge

do-adrl g2

2nR

Class 02
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Example: Ring of Charge

o

P on axis of ring of charge
, charge density

Ring of Charge

1) Think about it
- E, =0 Symmetry!

- Mental Picture...

Ring of Charge

- 3) Write Equation

Class 02
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e

( Rin‘g}of Charge
\ \\J{
4) Integrate d‘i dg=Aadp

"f.“".r.‘ =a* +x*

Ring of Charge

a5 N
&

5) Clean Up
E =k0%
=

dE

6) Check Limit 2 =0

Class 02
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Hint: Line of Charge

'E Field from Line of Charge

% Q 3
E=k
. sy :

I'n'-CIass':"Uniformly Charged DISlS

7

=



Disk: Two Important Limits

Wl g 2 - Y
{ l : Ed’:’:l:: .250 I:I (x2 . R2 )112 :tl

Scaling: E for Plane is Constant
| 1) Dipole: E falls off like 118
u': (\

W ’Ifu‘r"il wd // - Lmv foc o o ﬁ‘”ﬁﬂ? I
- (IU" Ti 21/ ng ne { ’I/ lf: / ! l‘

™~
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Summary of Class 04 8.02 {\

Topics: Gauss’s Law f pr
Related Reading: Course Notes: Sections 4.1-4.2, 4.6 v

Topic Introduction ‘l_{ derntt O

In this class we look at a new way of calculating electric fields — Gauss's law. Not only is bh ] (aTeok
Gauss's law (the first of four Maxwell’s Equations) an exceptional tool for calculating the . L

field from symmetric sources, it also gives insight into why E-fields have the » [
dependence that they do. Chorgt neel
The idea behind Gauss’s law is that, pictorially, electric fields flow out of and into i
charges. If you surround some region of space with a closed surface (think bag), then[ 04/ toctp
observing how much field “flows” into or out of that surface tells you how much charge - i

is enclosed by the bag. For example, if you surround a positive charge with a surface F - Z‘ Mg
then you will see a net flow outwards, whereas if you surround a negative charge with a

Wi

surface you will see a net flow inwards. ﬂ)-.” 5 o 0Olses
Electric Flux Way b ale
The picture of fields “flowing” from charges is formalized in the definition of the electric | £
flux. For any flat surface of area 4, the flux of an electric field E through the surface is =~

-y C N mars

defined as ®, =E-A , where the direction of A is normal to the surface. This captures

the idea that the “flow” we are interested in is through the surface — if E is parallel to the * Abstioc!
surface then the flux @, =0.

We can generalize this to non-flat surfaces by breaking up the surface into small patches
which are flat and then integrating the flux over these patches. Thus, in general:

o, = [[E-d Do of
s " '

Gauss’s Law I

Gauss’s law states that the electric flux through any closed surface is proportional to the
total charge enclosed by the surface:

®, = JjE-di - o
S 0

{ O

A closed surface is a surface which completely encloses a volume, and the integral over a

closed surface S is denoted by m' - \_’) Lavdle i 7o not  matier
s

=)

JZ ahat LR
Symmetry and Gaussian Surfaces
Although Gauss’s law is always true, as a tool for calculation of the electric field, it is
only useful for highly symmetric systems. The reason that this is true is that in order to
solve for the electric field E we need to be able to “get it out of the integral.” That is, we
need to work with systems where the flux integral can be converted into a simple

multiplication. Examples of systems that possess such symmetry and the corresponding
closed Gaussian surfaces we will use to surround them are summarized below:

Summary for Class 04 p. 172



Summary of Class 04 8.02

Symmetry System Gaussian Surface

Cylindrical Infinite line Coaxial Cylinder
Planar Infinite plane Gaussian “Pillbox”

Spherical Sphere, Spherical shell Concentric Sphere

Solving Problems using Gauss’s law

Gauss’s law provides a powerful tool for calculating the electric field of charge
distributions that have one of the three symmetries listed above. The following steps are
useful when applying Gauss’s law:

(1)Identify the symmetry associated with the charge distribution, and the associated
shape of “Gaussian surfaces” to be used.

(2)Divide space into different regions associated with the charge distribution, and
determine the exact Gaussian surface to be used for each region. The electric field
must be constant or known (i.e. zero) across the Gaussian surface.

(3)For each region, calculate g, , the charge enclosed by the Gaussian surface.

(4)For each region, calculate the electric flux @, through the Gaussian surface.
(5)Equate @, with ¢, _/&,, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S: ®, = jﬁ‘, -dA
§

Gauss’s law: D, = q‘}f,ﬁ_d" _ Hene
S )

Important Concepts

Gauss’s Law applies to closed surfaces—that is, a surface that has an inside and an
outside (e.g. a basketball). We can compute the electric flux through any surface, open or
closed, but to apply Gauss’s Law we must be using a closed surface, so that we can tell
how much charge is inside the surface.

Gauss’s Law is our first Maxwell’s equations, and concerns closed surfaces. Another of
Maxwell’s equations, the magnetic Gauss’s Law, @, =(ﬁ>B-dK =0, also applies to a
N

closed surface. OQur third and fourth Maxwell’s equations will concern open surfaces, as
we will see.

Summary for Class 04 p.2/2



Class 04: Outline

Hours 1 & 2:
Working in Groups
Gauss’' Law

o " - i : P

Groups

Introduce Yourselves
Please discuss:

= What is your experience in E&M?

+ What were the best group practices that you
observed in 8.017

s What do you expect/iwant from class?

Did you have group tssues in B 01‘? If so, how to
void them | - _ _ :

you dld not partlcnpate ;n TEAL style groups
lease ask your group members to answer an
uestions you may have

Class 04




Group Problem:
Discovery Applet

Play with the applet and
answer the worksheet .
questlons '

Gauss’s Law

The first Maxwell Equati'on! .

~ Avery useful co wﬁutahona! tachmque to ﬁnd 'th
electric field £ when the source 1

L
oLy
‘;’,L_I_

K o

_puorytiny _evtside

Gauss’s Law — The Idea
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Gauss’s Law — The Equation g E ' CJ'“ e
. Twill ig'v'p.:.,ﬁa
g“\,j)"‘f* — ?QE i E- dA = in = C\v\a@Q :wde
:icz’;'zge S 6'0 Con |nérif 5Jrrfq_gg_ Yo’/
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o~ Now the Details
N
Electric Flux @, Constart —acraws semp Z&,q/tf
Case I: E is constant vector field :
perpendlcutar to planar surface Sofarea A p(’/;pﬁﬁd(u/lﬂf #D }D lW
Area=A
j E-dA A
~_myeh
thage » ared
Peraia g ol
_— ('.": v Megh C f [ v
" 'l#lf.'” {-i Of l}
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&5 =Clostd

§Jrtup

Electric Flux @,

Case ll: E is constant vector field directed
at angle € to planar surface SofareaA

PRS: Flux 4?5?

The electric flux through the planar surface
below (positive unit normal to left) is:

don'tknow

The Qubss Law 6uce opn

Gauss’s Law
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Open and Closed Surfaces

i Vdoves NOT c.ontam a volume
tD S.contam avolume

LAY

Area Element .dA: Closed Surface

For closed surface, dA is normal to surface
and points outward

( from inside to outside)

Electric Flux @,

Caselll: E ngt constant, surface curved
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PRS: Flux thru Sphere [15]

The total flux through the below spherical
surface is

0% posmve (net ou" Ve
0% . negatwe (net mwa

(B zero. ﬂOi‘ laéil@

0% 4ldontknow . .

Ut =4
Electric Flux: Sphere

Point charge Q at center of sphere, radius r

'FI'EH V’qrr;gg ‘l;‘q, Acea 'mag i
~1
— £ Constuat

Cbe case of fhls — Gawsss lav holds

E field at surface: g

?1"2— 6 o Cool h.'lﬂ of  math

P 37

Ea)lwd )(OS -

norma out geiL Enfegml o{ /)f/'ec( —:/4}/&(
1
Arbitrary Gaussian Surfaces Q e L _{J‘O:\

'\—\ h?/t’]

\'Jl\\f dggg ¢f~ Vel d@@ﬂd on 45')’011(7
B o dcea Etield |~
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Choosmg Gaussian Surface

cj:jE dA——

closed
surface S

Cﬂ(‘nder/ sp}gm are examp)es

True for ALL surfaces

~ Useful (to calculate E)
for SOME surfaces i

P
Symmetry & Gaussian Surfaces
Desired E: perpendicular to surface and constant
on surface. So Gauss's Law useful to calculate E
field from highly symmetric sources
.. Z s :
‘ | Source Symmetry | Gaussian Surface
Sphertcai Ooncentnc Sphere
- Cyiirtt'.i"*":"‘E o Ccaxsal Cyilndef : ::: -
_ Applying Gauss’s Law
m“? M‘d 1. Based on the source, identify regions in
{—, ¢d It =¥ which to calculate E field.
JI ok Vel 2. Choose Gaussian surfaces S Symmetry
m H}P h'ij 3. Calculate 3;1) ﬁE JA
4. Calculate gy, charge enclosed by surface S
5 Appty Gauss S Law to calculate E -
N

trig fo Elnd E fel
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- Examples:

Spherical Symmetry

. Cylmdrlcal Symmetry
~ Planar Symmetry

e f’)q_ug_ or 5l -
O 1 e
_] I E .
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Gauss: Spherical Symmetry

+Q uniformly distributed throughout non-conducting
solid sphere of radius a. Find E everywhere _
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PRS: Spherical E’ﬁ(ﬂ!

We just saw that in a solid sphere
of charge the electric field grows
linearly with distance. Inside the
charged spherical shell at right
(r<a} what does the electric field
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Gauss: Planar Symmetry

Symmetry is Planar

. Note . (i
size and shape) and
~ should divide out
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Gauss: Planar Symmetry

Total charge enclosed: g;, =04
NOTE: No flux through side of cylinder, only endcaps
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.| z-axis is perp. _‘;qth_e sheet, with centerat z = p_.:
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Group Problem: Charge Slab

Infinite slab with uniform charge density p
Thickness is 2d (from x=-d to x=d). _
Find E for x > 0 (how many regions is that?)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W05D2 3 Solutions: Field from a Slab of Charge

Question:
A semi-infinite slab of charge with charge density p extends from x = -d to x = +d. Find the
electric field everywhere.

Solution:
1. Draw Picture
In the interest of saving space I only show the pictures with Gaussian surfaces drawn (see below)

2. Think

Considering symmetry, we note that the electric field at the center of the slab must be zero. To
see this imagine putting a test charge right at the center of the slab. It will feel no net force (it

would be pushed to the right by the charge to the left exactly as much as it would be pushed to

the left by the charge to the right), so the electric field there must be zero.

The symmetry is planar so we will use Gaussian pillboxes (cylinders of cross-section 4 and
height x) and will place one end of the pillbox at x=0 to take advantage of the fact that E=0 there.

There are two distinct regions of space, inside and outside of the slab. By symmetry the

magnitude of the field will be the same on the left as on the right of the slab, but will point in the
opposite direction. We will only calculate explicitly for x > 0.

2. Calculate for Each Region
Region 1: Outside the slab (x > d)

The charge within this pillbox is Q,,. = pV,,. = pAd .

The flux (integral of the electric field over this pillbox) is zero
on the sides (because E is perpendicular to the area normal
there) and zero on the left end (because E is zero there). Thus:

{JE-dA= [[E-dA+ [[ E-dA+ [[ E-dA=0+0+E4

sides leftendcap right endcap

Applying Gauss’s Law:

(ﬁﬁ-dﬁzEA=gﬂf—=ﬂ:>E=ﬂ ( (
&y &y &y

In Class Problem Solution Class 13 (W05D2) p.1of2



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Region 2: Inside the slab (x <d)

..d O d The charge within this pillbox is O

enc

= oV, = pAx.
As in region 1, the flux is given by:

cﬁp“:-dﬁ = UE-dA+ jj E-dA + H E-dA=0+0+E4
sides leftendcap right endcap
Applying Gauss’s Law:
N K. x A/ |
(ﬁE.dAzE,q:%:p_/bchzﬁ
& & & A } ‘

: /
s ‘\T/'J’I\.r} {E .'\f J

Summarizing (and using symmetry to get E for x < 0):
pd

il forx=>d
EO

E={2Y for-d<x<d
SD
—ﬁaii forx<d
&

Note that we explicitly insert the negative sign for x outside the slab on the left, but inside the
slab on the left the negative sign of x itself takes care of the direction. Ignoring these signs is a
common source of problems — always check a few concrete cases to make sure that the field as
written points in the direction you think it should.

You should also check that the x-dependence makes sense. Outside of the slab there is no x-
dependence. We have seen that this is the case for planes of charge (how can you tell how far
away you are from a giant white wall?). Inside the slab the field decreases linearly with x as you
approach the origin. This also makes sense — as you come closer to the center you become more
and more balanced in the amount of charge on your left and right, and hence the field should
decrease.

In Class Problem Solution Class 13 (W05D2) p-2o0f2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 . Spring 2010
Problem Set 1 ;
Due: Tuesday, February 9 at 9 pm.

y(j\.} i ES\W*
(want to 9o
Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes. 1o L\@“% s

(AOV\Q?\D )
Buy 8.02 Course Reader at Copy Tech 11-004 and bring it with you to every class!  (qrealT ©°

lr\r\gu 3\"‘, Y()\_'\ i

get+ I,

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Reading Assignments:

Week One Introduction to Teal, Introduction Gravitational and Electric Fields

Class 1 TW Feb 2/3, Introduction to Teal, Gravitational and Electric Fields

Reading: Course Notes: Sections 1.1 — 1.6; 1.8; Chapter 2

Class 2 R/M Feb 4/8 Electric Fields and Continuous Charge Distributions

Reading: Course Notes Section 1.6; Chapter 2

Class 3 F Feb 5 PSOl: Math Review, Fields, Continuous Charge
Distributions

Reading: Course Notes: Chapter 2 Coulomb’s Law Section 2.9-2.12

Optional Introduction/Review for Vector Calculus:
Spring 2006 Math Review Presentation,
Hale Bradt’s Spring 2001 8.02 Mathematics Supplement

Week Two: Gauss’s Law and Electric Potential

Class 4 T/W Feb 9/10 Gauss’ Law

Reading: Course Notes: Sections 4.1-4.2, 4.6
Class S R/T Feb 11/16 Electric Potential

Reading: Course Notes: Sections 3.1-3.5

Class 6 F Feb 12 PS02: Gauss’s Law

Reading: Course Notes: Sections 4.1-4.2, 4.7-4.8

Week Three: Electric Potential

President’s Day — M 2/15 /M Classes on T 2/16
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Problem 1: Vectors (10 points) Consider the two vectors shown in the figure below.
The magnitude of |A| =2.88 and the vector A makes an angle 33.7° with the positive

x -axis. The magnitude of |l—3| =3.44 and the vector B makes an angle 35.5° with the

positive x -axis pointing down to the right as shown in the figure below. Find the x and
y components of

a) A and B;

b) §+§;

c) A-B;

d) a unit vector pointing in the direction of A ;
e) aunit vector pointing in the direction of B.

|
y
j_\/'
'/yf\| =288
/’//
) 3BT
)\355 i
\ \\\|1‘3] =3.44
B

Problem 2 Vectors (10 points) Consider two points located at 1, and T,, separated by
distance 7, =, —¥,|. Find a vector A from the origin to the point on the line between T,
and T, at a distance x from the point at r,, where x is some number. Express your

answer in terms of 1, T,, 5, , and x. Show your work.

PS01-2



Problem 3 Concept Questions (10 points)

(a) (5 points) Two objects with charges
—q and +3¢ are placed on a line as |

) Between the two charges.
shown in the figure below.

2. To the right of the charge on the
right.
=4 3q
P Py 3. To the left of the charge on the left.
N 4 4. The electric field is only zero an
infinite distance away from the
charges.

Besides an infinite distance away from
the charges, where else can the electric
field possibly be zero?

Explain your reasoning.

(b) (5 points). Two objects with charges —40 and —Q lie on the y-axis. The object with
the charge —4Q is above the object with charge —Q. Below are four possible “grass

seed” representations of the electric field of the two charges. Which of these
representations is most nearly right for the two charges in this problem?

Explain your reasoning.

PS01-3



Problem 4: Ratio of Electric and Gravitational Forces (10 points)

What is the ratio of the magnitudes of the electric force and the gravitational force
between two protons if the protons are separated by a distance »? In SI units the

magnitude of the charge of the proton is e=1.6x10"" C and the mass of the proton is
m, = 1.67x107 kg.

Problem 5: Coulomb’s Law (10 points)

Two volley balls, each of mass
m=0.2kg, tethered by nylon strings
and equally charged with an electrostatic
generator, hang as shown in the figure
such that the centers of the balls are a
distance r=0.5m apart. The point
equidistance between the two centers of
the balls is a distance d =2.5m below
the suspension point. What is the charge
on each ball? Include your free-body
force diagram in your solution.

e il
Oasm

Problem 6 Electric field for a Distribution of Point Charges (10 points)

A right isosceles triangle of side a has objects with charges ¢, +2¢ and —¢ arranged on its
vertices, as shown in the figure below.

a

2q

What is the magnitude and direction of the electric field at point P due to the charges in
the figure, midway between the line connecting the +¢ and —¢ charges?

PS01-4



PN

Problem 7 Electric Field and Force (10 points)

A positively charged wire is bent into a semicircle of radius R, as shown in the figure
below.

The total charge on the semicircle is O. However, the charge per unit length along the
semicircle is non-uniform and given by 4= 4,cos@.

a) What is the relationship between 4,, R and O?

b) If a particle with a charge ¢ is placed at the origin, what is the total force on the
particle? Show all your work including setting up and integrating any necessary
integrals.

PS01-5
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 1 Solutions

Problem 1: Vectors (10 points) Consider the two vectors shown in the figure below.
The magnitude of ’f&lz 2.88 and the vector A makes an angle 33.7° with the positive
x -axis. The magnitude of |l—3|=3.44 and the vector B makes an angle 35.5° with the

positive x -axis pointing down to the right as shown in the figure below. Find the x and
v components of

a) A and B:
b) A+B;
c) A—ﬁ;

d) a unit vector pointing in the direction of A;
e) a unit vector pointing in the direction of B.

' |B|=3.44

B

Solution: We need to use &, =33.7" in order to determine the x and y components of

the vector A :

4, = |AJcos, = (2.88)(cos(33.7) = 2.40,
A4, = ]A\sin 0, = (2.88)(sin(33.7°) =1.60.

Thus

PSO1-1



A=240i+1.60] .

We need to use &, =-35.5" in order to determine the x and y components of the vector
B:

B = [E[eos 0, = (3.44)(cos(~35.5") = 2.80,

¥

B, =[B|cos 6, = (3.44)(sin(-35.5") =-2.00.
Thus

B=2.80 i-2.00].
b) The vector sum is then

A+B=(2.40i+1.60j)+(2.80 i—2.00j)
=(5.20) i +(—.40) j
c¢) The vector difference is
A-B=(2.40i+1.60j)-(2.80 i—2.00j)
= (~.40) i +(3.60) j
d) The unit vector pointing in the direction of A is given by

A A=240i+1.60]
W 2.88

A= =0.83 i-0.69 ]

¢) The unit vector pointing in the direction of B is given by

e 2 280 12000002 siapd
8| 3.44
Problem 2 Vectors (10 points) Consider two points located at T, and r,, separated by
distance 7, =, —%,|. Find a vector A from the origin to the point on the line between F
and r, at a distance x from the point at r,, where x is some number. Express your

answer in terms of I, T, , 7,, and x. Show your work.

PSO1-2



E
Solution: Consider the unit vector pointing from r, and r, given by
f,=F -5/ -5|=%-%/n,.

The vector @ in the figure connects A to the point at F,, therefore we can write

The vector

Therefore

PS0O1-3



Problem 3 Concept Questions (10 points)

(a) (5 points) Two objects with charges
—q and +3q are placed on a line as |

; Between the two charges.
shown in the figure below.

]

To the right of the charge on the
right.

—q 3q
3. To the lefi of the charge on the left.

4. The electric field is only zero an
infinite distance away from the

Besides an infinite distance away fi
5 K S charges.

the charges, where else can the electric
field possibly be zero?

Explain your reasoning.
Answer 3. The electric field is the vector sum of the electric fields due to each charged
object. There are two properties that determine the strength of the electric field, distance

from the source (the strength of the field is proportional to 1/77), and the magnitude of
the charge (the strength of the field is proportional to ¢ ). In the figure below the electric

fields of the two objects are shown at several points. At the point A to the left of the
charged object on the left, the vectors point in opposite directions. Since the point A is
closer to the object with charge —¢ than the object with charge +3¢, these two properties

can balance and the vectors can add to zero. Whereas on the right, both properties
contribute to making the field due to the object with charge +3¢ larger than the field due

to the object with charge —¢, and then cannot possibly sum to zero. In the region
between the objects the electric vectors both point to the left so they cannot sum to zero.

;-D i =3
E, £ Esq
4 -3 St . g
87 O O e—c E-S?,
A =T 3 -]
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(b) (5 points). Two objects with charges —40Q and —Q lie on the y-axis. The object with
the charge —40Q is above the object with charge —Q. Below are four possible “grass

seed” representations of the electric field of the two charges. Which of these
representations is most nearly right for the two charges in this problem?

Explain your reasoning.

Answer (2) Both sources have negative charge so the field lines very near each source
must point towards that source. Therefore there must be a point between the sources
where the field is zero. (This eliminates figures (1) and (4).) The zero of the field must
be closer to the weaker source in order to cancel the field from the stronger source that is
further away. The weaker source is below the stronger source, so the figure (2) is the
correct ‘grass seed field” representation of the electric field of both sources.

PS01-5



Problem 4: Ratio of Electric and Gravitational Forces (10 points)

What is the ratio of the magnitudes of the electric force and the gravitational force
between two protons if the protons are separated by a distance »? In SI units the

magnitude of the charge of the proton is ¢ =1.6x10™"" C and the mass of the proton is
m, =1.67x107% kg.

Solution: The ratio of the forces is given by

ke ke (9.0x10°N-m?-C?)(1.6x107° C)?
G, /12 Gm,  (6.67x107""N-m* -kg?)(1.67x107 kg)*

|F('.'L'(‘

=1.2x10%.

F

grav

This is a very large ratio indicating how much stronger electric forces are than
gravitational forces.

Problem 5: Coulomb’s Law (10 points)

Two volley balls, each of mass
m=0.2kg, tethered by nylon strings
and equally charged with an electrostatic
generator, hang as shown in the figure
such that the centers of the balls are a
distance r=0.5m apart. The point
equidistance between the two centers of
the balls is a distance d=2.5m below
the suspension point. What is the charge
on each ball? Include your free-body
force diagram in your solution.

le 4l
0.5m

Solution:

Since the tetherballs are in static equilibrium, the sum of the forces must be zero. There
are three forces acting on each ball, gravitation, tension from the rope, and the electric
force that is proportional to g*, where ¢ is the charge on either tetherball.. We begin by
drawing a free body diagram on one ball, then taking a vector decomposition of the
forces on that ball, and setting each component equal to zero. Then we can solve for the
charge on each tetherball.

PS01-6



ﬁlec

4
(
The sum of the x-component of the forces is
Fr =X _rgna=o

v 2
r

where r is the distance between the centers of the tetherballs. The sum of the y-
component of the forces is

r‘l =Tcos@—-mg=0.

Solving for the tension we find that

r-_"mg

cosf

Substituting that back into the horizontal equation yields

kq* .
i,—ﬂanQ:O
r°  cosd

which we can solve for the charge on the tetherball

q :(,/mgtangz’k)r.

Recall from the geometry of the set-up
tan & = (0.25 m/2.5 m) = 0.1.

Thus the charge is

g= (,/mg tan Qlk)r = (J(o.z kg)(9.8 m-s2)(0.1)/(9.0x10° N -m? -C‘z))(O.S m)
g= 2.3x10°C.

PS01-7



Problem 6 Electric field for a Distribution of Point Charges (10 points)

A right isosceles triangle of side @ has objects with charges ¢, +2¢ and —¢ arranged on its
vertices, as shown in the figure below.

P
o
2
22
K
L
’

K = X
2 a —q

What is the magnitude and direction of the electric field at point P due to the charges in
the figure, midway between the line connecting the +¢ and —q charges?

Solution: We can begin by drawing the three contributions to the electric field.
—_—

E
=7 -P:l?

\5._ €iq
E

7

¥

The total electric field is then

E(P)=E, (P)+E_ (P)+E, (P).

+q

We start with the field due to the charge +¢:

PSO1-8



iP
a./z 5 /ch} )
. = (o) === G
&/, \) A
’;f'?

~ kg . kg

ah 3rr ,I': 3r+ ol
()f'_(l.},) ! ('Fni'q..") !

Recall that the vector ¥, is the vector that starts at the charge +¢ and ends at the point

+q.P

P. From the figure above, we can write this vector as

=(al2)i-(al2)j.

+q P
The magnitude of this vector is

r+q.f’

Foor|=((@/2) +(al2))? =al\2.

Thus
. kg - _kq(al2)i-(a/2))) _2kql-])
<-v-qv(])) = r+qf 2 ’
£ (a/J2y al
Note that
(P)=E_(P).

-H,' -4

The electric field due to the charge 2¢:

1

PS01-9



The electric field is given by

k(Zq)P _ 2kq

2 "2q.P T 3 2P
(rlq.f') ; ("‘2:]..")J !

E, (P)=

Recall that the vector ¥, , is the vector that starts at the charge 2¢ and ends at the point
P. From the figure above we can write this vector as
N, =(al2)i+(a/2)j.
The magnitude of this vector is
Bgp =[Fogs| =@l 20 +(a/2))? =al\2 .
Thus

» 2kg . 2kq(a/2)i+(a/2)]) 232kq(+])
EQ(;(P) = 3 rZz,l.J" = 3 = 2 >
(ry,.0) (al \/5) a

Thus the vector sum is

E(P)=E, (P)+E_(P)+E, (P)=2E, (P)+E, (P).

-q +q

Adding together all three contributions, we get

E(P)=2

V2kg(i-) | 2V2kq(i+)) _ 42kqi
a 2 - 2

a a

PSO1-10
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Problem 7 Electric Field and Force (10 points)

A positively charged wire is bent into a semicircle of radius R, as shown in the figure
below.

The total charge on the semicircle is Q. However, the charge per unit length along the
semicircle is non-uniform and given by A = A, cosé .

a) What is the relationship between 4;, R and Q7

b) If a particle with a charge ¢ is placed at the origin, what is the total force on the
particle? Show all your work including setting up and integrating any necessary
integrals.

Solution:

(a) In order to find a relation between A,, R and O it is necessary to integrate the
charge density A4 because the charge distribution is non-uniform

'=n(2

0= [2ds=["" Acos'RdO = R2sin0]

wire

2R, .

O=z/2

(b) The force on the charged particle at the center 7 of the semicircle is given by
F(P)=qgE(P).
The electric field at the center P of the semicircle is given by

E(P) = 1 —r’l‘fs” .
de 2

0 wire

The unit vector, r, located at the field point, is directed from the source to the field point
and in Cartesian coordinates is given by

PSOI1-11



F=—sin@ i—cos@ j.
Therefore the electric field at the center P of the semicircle is given by

—~ |
E(P)=
(P) e

O wire

-
"
1

jﬂds _ ] Lv‘aﬂz Ay COSO'RAO"

- . - (—=sin@ i—cos@'j).
i 4rg, H=ri2 R

There are two separate integrals for the x and y components. The x -component of the
electric field at the center P of the semicircle is given by

'=x/2

E(P)=- ] I’ A c0s0'sin@ do' 2, cos’ 0
» i 471'80 )'=mz/2 R SHSDR |

@==x/2
We expected this result by the symmetry of the charge distribution about the y-axis.

The y-component of the electric field at the center P of the semicircle is given by

I =i 2 COSE g'dg' ] '=x/2 I + COS 291' d@f
B (P)=-— J: fl“ - ’/10( )
4}2‘6‘(] =—l2 R 47[50 '=—xl2 2R

SN i W

- SHEOR &'=—xi2 |671’£‘0R §'==zl2
%
8,R
Therefore the force on the charged particle at the point P is given by

F(P) = gE(P) =—8—";"§i.

PS01-12
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Summary of Class 6 8.02 /¥ P

Topics: Gauss’s Law
Related Reading: Course Notes: Sections 4.1-4.2, 4.7-4.8

Topic Introduction

In this class we will practice calculating electric fields using Gauss's law by doing
problem solving #8.7 Remember that the idea behind Gauss’s law is that, pictorially,
electric fields flow out of and into charges. If you surround some region of space with a
closed surface (think bag), then observing how much field “flows” into or out of that
surface tells you how much charge is enclosed by the bag. For example, if you surround
a positive charge with a surface then you will see a net flow outwards, whereas if you
surround a negative charge with a surface you will see a net flow inwards.

Gauss’s Law

Gauss’s law states that the electric flux through any closed surface is proportional to the
total charge enclosed by the surface:

¢E=<3E]Sﬁ-dﬁ=%
s 0

A closed surface is a surface which completely encloses a volume, and the integral over a
closed surface S is denoted by [M :

Symmetry and Gaussian Surfaces

Although Gauss’s law is always true, as a tool for calculation of the electric field, it is
only useful for highly symmetric systems. The reason for this is that in order to solve for
the electric field E we need to be able to “get it out of the integral.” That is, we need to
work with systems where the flux integral can be converted into a simple multiplication.

Examples of systems that possess such symmetry and the corresponding closed Gaussian
surfaces we will use to surround them are summarized below:

Symmetry System Gaussian Surface
Cylindrical Infinite line Coaxial Cylinder

Planar Infinite plane Gaussian “Pillbox”
Spherical Sphere, Spherical shell Concentric Sphere

Summary for Class 6 p. 1/2



Summary of Class 6 8.02

Solving Problems using Gauss’s law

Gauss’s law provides a powerful tool for calculating the electric field of charge
distributions that have one of the three symmetries listed above. The following steps are
useful when applying Gauss’s law:

(1)Identify the symmetry associated with the charge distribution, and the associated
shape of “Gaussian surfaces” to be used.

(2)Divide space into different regions associated with the charge distribution, and
determine the exact Gaussian surface to be used for each region. The electric field
must be constant or known (i.e. zero) across the Gaussian surface.

(3)For each region, calculate g, , the charge enclosed by the Gaussian surface.

(4)For each region, calculate the electric flux @, through the Gaussian surface.
(5)Equate @, with g__/¢&,, and solve for the electric field in each region.

Important Equations

Electric flux through a surface S: O, = HE -dA
S
? - A qcnc
Gauss’s law: D, =(ﬁE.d = -
S 0

Summary for Class 6 p. 2/2



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Problem Solving 2: Gauss’s Law

REFERENCE: Section 4.2, 8.02 Course Notes.

Introduction: When approaching Gauss’s Law problems, we described a problem solving
strategy summarized below (see also, Section 4.7, 8.02 Course Notes):

] E-dA="2e

closed 80
surfaceS

Summary: Methodology for Applying Gauss’s Law
Step 1: Identify the ‘symmetry’ properties of the charge distribution.
Step 2: Determine the direction of the electric field
Step 3: Decide how many different regions of space the charge distribution determines
For each region of space...

Step 4: Choose a Gaussian surface through each part of which the electric flux is either
constant or zero

Step 5: Calculate the flux through the Gaussian surface (in terms of the unknown E)
Step 6: Calculate the charge enclosed in the choice of the Gaussian surface

Step 7: Equate the two sides of Gauss’s Law in order to find an expression for the
magnitude of the electric field

Then...

Step 8: Graph the magnitude of the electric field as a function of the parameter specifying
the Gaussian surface for all regions of space.

You should now apply this strategy to the following problem.

Solving2-1
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Question: Concentric Cylinders

) B

A long very thin non-conducting cylindrical shell of radius # and length L surrounds a long solid
non-conducting m L with b> a. The inner cylinder has a uniform
charge +Q distributed throughout its volume. On the outer cylinder we place an equal and
opposite to charge, —Q. The region a < » < b is empty. , , :
Z(—ff'v!({ f‘-!)/ s

You can find a three dimensional visualization of this charge configuration and its fields at
http://web.mit.edu/viz/EM/electrostatics/GaussLawProblems/filledCylinderShell/. Go to this
URL, read the “Help” file, and try out the various Gaussian surfaces available in this applet.
Then answer the following questions.

Question 1: (Answer on the tear-sheet at the end!) There is an icon
in the applet as shown to the right. What does the height of the
cylinder in this icon represent?

{lox

Question 2 (this is Step 1 of your methodology above): (Answer on the tear-sheet at the end!)
What is the ‘symmetry’ property of the charge distribution here (which of the three below)?

Spherical ¢ lindricalh Planar

[:f— A (_}ﬂ e .’;f ‘{'/ A
Question 3 (Step 2 of your methodology): (Answer on the }ear—sheet at the end!) What is the
direction of the electric field (again, which of the three choices below)?

'adi;lw(Tnﬂ/at’) Angular (CW/CCW) Perpendicular to page

No ¢ r‘t.l a ¢S
Question 4 (Step 3 of the methodology): (Put your answer on the tear-sheet at the end!) How
many different regions of space does the charge distribution determine (in other words, how
many different formulae for E are you going to have to calculate?)

—%/«lliL—L’ e OSovn \ﬁrk—eﬂﬂ ﬁqgg“.

oL £ ;
H —_ \ /7 [~ ) y H
”V\% 2 Cide Qg Th ! Padc.s

1
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Question 5 (Step 4 of your methodology): (Put your answer on the tear-sheet at the end!) For ——
each region of space, describe your choice of a Gaussian surface. What variable did you choose
to parameterize your Gaussian surface (for example for a sphere you’d use the radius »)? What

is the range of that variable? [ s
F o it Oy oeks v
(\ i;:‘.j‘u‘ { l"- Z’. el r (Vo WV ‘é 0/ e " ‘
0 ¢ bt " does rab dopeal g4 D Sfining
Question 6 (Step 5 of your methodology): (Put your answer on the tear-sheet at the end!) For -
the region for » <a, calculate the flux through your choice of the Gaussian surface (that is, just
write down the left hand side of ‘Gauss’s Law). Your expressxon should include the unknown

lectric field for that Er A=
electric fie ?r at region. E ,\) 1) f (,)J N fo, O 0

Sarvg Vf § ({‘fo

f ‘ - u

B 5>’ te
Question 7 (Step 6 of your methodology): (Put your answer on the tear-sheet at the end!) For by e ot %
the region for » < a, write the charge enclosed in your choice of Gaussian surface (this should be **** "
in terms of O, r & a, NOT E). hde of

—2 ol page “
Question 8: (Put your answer on the tear-sheet at the end!) Go to the applet that you have used
above. In that applet there is a measure of the charge enclosed inside the Gaussian surfaces.
Qualitatively, in the applet, does the charge interior to the cylindrical Gaussian surface in the
region for » <a change with » in the way your formula given directly above indicates? —_—

v L A
:/" - U ‘/"1 / (['a’,’/‘;':‘(’ 4 ( llll ‘lu JI ﬂ {“ ¢ ""'3'"*‘J

Question 9 (Step 7 of your methodology): (Put your answer on the tear-sheet at the end!) For
the region for » < a, equate the two sides of Gauss’s Law that you calculated in questions 6 and
7, and solve to ﬁnd an expression for the magnitude of the electric field.

£ Lfhrg = fifleh

[=(Tc’2 - 1 Tl Bl
U |

Question 10 (Step 6 and 7 or your methodology): (Put your answer on the tear-sheet at the
end!) Repeat the same procedure in order to calculate the electric field as a function of » for the
regions a<r<b.

/_(1 g | L] ) . I
A b | U‘ 5’;"‘. i f':i:,-ili: & Q(‘{ (s \v ’J_f"lf‘_' ({f{ 7 l‘.f‘ {_ /a | :.';' a ( [‘ é L
(> 0
& ~ .
Er (Mg 2 = 3{";@_&2
¢ o
E : f—i Solving2-3



Question 11 (Step 8 of your methodology): (Put your answer on the tear-sheet at the end!)
Make a graph of the magnitude of the electric field as a function of the parameter specifying the
Gaussian surface for all regions of space.

O\QI‘L

foi ) 5 p Lo o}
(7 A :_/{‘.. d f{/ U 2 \/UU E‘,:’ {-’;f vl "./!"- Y 7

WW /] b

r Sample Exam Questions (Try these yourself, closed notes. You’ll need paper)

Problem 1: A very long non-conducting cylinder is constructed of two
materials. The inner portion, radius a, has a non-uniform volume
charge density given by:

o . :
p(r <a)=—— where o is a constant (what units?)
2rr

The outer portion, with inner radius @ and outer radius b has a uniform
charge density.

(a) If the electric field outside the cylinder (r > b) is everywhere zero, what is the uniform charge
density p (a < r < b) of the outer portion of the cylinder?

(b) What is the electric field everywhere in space?

Problem 2:
Consider the following cylindrically symmetric electric field:

0 r<a

E(f)=r; 0 [1—3) a<r<2a

2
&yd ¥

0

| E,ar

2a<vr

What is the charge distribution that creates this field? In other words, what is p(#)?

’},.
Solving4-4



702 hot b ¥
Claf Glacd '2//»[

£ ld — It ce ﬁf@td o Cield

* = "!I\g Qs 7= E-gEt e 9= chay
* i v i Gl
1 n ol l
Cleatt— =1
5,/?4\"4)05('”0/\ - add,
c[jw_rgi rt 607_’ {O =
P = 'Q_lg‘ \loluw{ GB
dV
0 = d,i, Surface 70
d
dl
I '—5 1
Colombs L.\ T dg A duscic ke
___‘__[Ew 4me L.
— / yar
.= / Y-
E - 4T, VS d’*;@; (r\ Conlingo-s

fem T Choage j_o_ ghstrpr _ga]/rfa vector

———

\'

———_——‘_—*—_\;



Dopele pomgat  ~moacvre of  seperafen & OO
Chaeats

~pogsic  of  polaci-y

=g = dtjMfﬂM u@afﬂr B0

Dlagolt &) 6 )
] {J_ [}

Vil _onta) p=gd
e

Crtote,  Fiplds r €S poads fo  fum

will_cefate & ahgn ) fitld
%b‘xl‘?

' W~ ol Hw\ X v denm '4'? q'wm,s 'he. Sm»gﬁ
T AT '
. ape

€l
JRN

L)

o
\\ a5

q "7 /P — ll( q/l [ .3 5 {l
“Caaflra | — %%a 1)z;"““=""+’sz T 7‘7%&(“"“"‘»5{ J

ung dee R dicedion

corre!




E = > AF= (3
v

@iﬂ‘ipf\%'
dQ = d

A= @

7R« g fi Ciecsufeery ol o C«:fdf

Wha ot o puat F

I

“- i:("”-—-)azfxz

PR

=)
> ch—o becacse L1 '57mﬂff“ly

>

~ g jdi - A [adg]

AT kdg o - by >
/ & T

21

dF =y, dg X

="
S
(P

'E__Xt J
:,Ag al}?‘l

. ik

T |




E-lbomr® 2 <ol v bu,) dow

’lr PRE 2.0 ".:“/ﬁf‘ ﬁ” LA

(tft

'P{U!‘t l /Cdullaal

Shpj

1 Fxprtss ola tn derms of Chorge  dess: E,

2 Weide dE

4 V('ILE £ \N/ .D{opff COgrds

(’{ ﬂﬂ‘y gmmuh-, 1(0 \Cr-qjl_ oa vt!nt‘j}\;ng
'glfﬂf“f"di’@

ﬂfﬁa C(I(" *f"f'*

Cqu C.fcif = ZTPP

Vo)l eyl = heh

Apa_cyd Gidey = 71k

area ol top = W™
Vol sphe = 53

Sk kam, =, L et




baves  Lav

———

— L
Gr =FE A= fou
< .
Telose
gfalt
line 9 C)‘fl"ﬂdﬂr =
plone Mbok
cphece 2 s phere
ine
Ef - 1w
E 00 Gin AL
L = AL
Gliltoma ¢
OrCyibdpf E___ i)vl
) = o2k
Fam j&\ -
T g0
VE- \.k "“) -
= {720

Cotws foc eoistr —uadorstand Wete,

—mgls Surt o haon L3 Slnup@ rd &

¥ feredlacitio




L:M% [ME iy P /an)’n‘

V) Cy(mdpr of def:aecl /ehdq‘f
don't  coce  aglowd Cdd(aﬂc

Plone -

E ?n\ﬁt ny Pt akeve pPlocy
Z cola

4’!
b _midile

J\jd tafo 2 ('tg:gng flﬂflfdﬁ fﬂéﬂ‘/e

mﬂdg /RS oside pd
A —
tn ég
g (‘A ftt(

0n
™y

K C:/nntlﬂf‘ ”Endmfg anl?

4:ﬂn _ 'CMA(
v-cﬂdtﬂp @o

Ezpff’m{ = %A-—
E =__Q: ,7’\\ L/P
ZQ \"‘;(1 ddun

gP]WP =) mmdp ar c)ﬁ;s'tde 3{0Mf€

E ll" A\ _out

w P2l G ok F.Q r
0’ Y, 03
Wi
/‘/; Y ,g\ W[{/g s m ﬁm:
1 “vm 3 H’

\ b A Y e e any f

2043 "-3QJ

- _‘__\\//



Summary of Class 5 8.02

Topics: Working in Groups, Electric Potential, E from V
Related Reading: Course Notes: Sections 3.1-3.5

Topic Introduction

We first discuss groups and what we expect from you in group work. We then turn to the
concept of electric potential. Just as electric fields are analogous to gravitational fields,
electric potential is analogous to gravitational potential. We introduce from the point of view
of calculating the electric potential given the electric field. Next we consider the opposite
process, that is, how to calculate the electric field if we are given the electric potential.

Potential Energy

Before defining potential, we first remind you of the more intuitive idea of potential energy.
You are familiar with gravitational potential energy, U (= mgh in a uniform gravitational
field g, such as is found near the surface of the Earth), which changes for a mass m only as
that mass changes its position. To change the potential energy of an object by AU, one must
do an equal amount of work W,,, by pushing with a force F,, large enough to move it:

AU=U,-U,= [ B -ds=W,,

How large a force must be apphed‘? It must be equal and opposite to the force the object
feels due to the field it is sitting in. For example, if a gravitational field g is pushing down on
a mass m and you want to lift it, you must apply a force mg upwards, equal and opposite the
gravitational force. Why equal? If you don’t push enough then gravity will win and push it

hence kinetic energy, which we don’t want to think about right now.

This discussion is generic, applying to both gravitational fields and potentials and to electric
fields and potentials. In both cases we write:

B_. —
AU =U,-U, =~ F.ds

where the force F is the force the field exerts on the object.
Finally, note that we have only defined differences in potential energy. This is because only

differences are physically meaningful — what we choose, for example, to call “zero energy” is
completely arbitrary.

Potential

Just as we define electric fields, which are created by charges, and which then exert forces on
other charges, we can also break potential energy into two parts: (1) charges create an
electric potential around them, (2) other charges that exist in this potent1a1 will have an
associated potential energy. The creation of an electric potential is intimately related to the

creation of an electric field: AV =V, -V, =— Jjﬁ -ds . As with potential energy, we only

define a potential difference. We will occasionally ask you to calculate “the potential,” but
in these cases we must arbitrarily assign some point in space to have some fixed potential. A
common assignment is to call the potential at infinity (far away from any charges) zero. In

Summary for Class 5 p. 172
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down and if you push too much then you will accelerate the object, giving it a velocity and | {
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Summary of Class 5 8.02

order to find the potential anywhere else you must integrate from this place where it is known
(e.g. from A=, V,=0) to the place where you want to know it.

Once you know the potential, you-can ask what happens to a charge g in that potential. It
will have a potential energy\U = ql); Furthermore, because objects like to move from high
potential energy to low potenfial-efiergy, as long as the potential is not constant, the object
will feel a force, in a direction such that its potential energy is reduced. Mathematically that

is the same as saying that F=-VU (where the gradient operator V = §i+ aﬁj +if< ) and
X y z

hence, since F=gE, E=—VV . Thatis, if you think of the potential as a landscape of hills

and valleys (where hills are created by positive charges and valleys by negative charges), the
electric field will everywhere point the fastest way downhill.

e ld a3 Y wHUn Crogf 15 foast
Configuration Energy {F L frears o il Jd Ltas
Since moving a charge through a potential difference takes energy (it changes the potential
energy of the charge), we can also discuss the total amount of energy that it would take to
assemble a collection of charges, assuming that they started a very far distance apart (“at
infinity”) and then were brought in to their final positions. A straight-forward way to think
about, and calculate, this is to bring the charges in one at a time. The first one is “free” — it
doesn’t see a potential. The second charge is brought in through the potential created by the
first. The third sees the potential from the first two, and so forth.

L?‘f} ’H{; ?O ‘h,’ 6, ( n‘ a rlu, Y |
Important Equations /o« | (¢ f com”

Potential Energy (Joules) Difference: AU=U,-U, HBF‘ -ds

Electric Potential Difference (Joules/Coulomb = Volt): AV =V, -V, =\i-j: E-ds
kQ

Electric Potential (Joules/coulomb) created by point charge: Vpoint Charge () =——
r

Potential energy U (Joules) of point charge g in electric potential V: U=qV
949

Configuration Energy: U= == I
T =¥,

all pairs 471-8,,

Summary for Class 5 p. 2/2
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Potential Energy

and Potential

 Start with Gravity

Gravity: Force and Work

Gravitational force on m due to M:

Mm .

F =-G r

g 2

Work done by gravity moving m from A to B:

s s
5= b K,-d S| INTEGRAL
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Work Done by Earth’s Gravity il

Work done by gravity moving m from A to B: G 3
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PRS Question:
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PRS: Sign of W,
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Potential Energy (Joules)

B
AU, =U,-U,=-[F,-ds=-W,| €

T

= GMm . GMm A

(1) FS=—T‘F =y Ug="“ +U0 \/‘; fj
(2) f‘g_=-mg§ . 20 =mgy+U,

* Uy constant depending on reference point
+ Only potential difference AU has

physical Signiﬁcance s
4 .

'\/'\'rj"' nay v
,.IC'.’_" (" IJ.V:—

Gravitational Potential
(Joules/kilogram)

Define gravitational potential difference:

4 g A
i é'q,lu

Justas F, — g, AU, » A7,
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Force Field Enpergy ~ Potential

That is, two particle interaction > smg]e particle effect
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PRS: Masses in Potentials

Consider 3 equal masses sitting in different
gravitational potentials:

A) Constant, zero potential o [ el " | I o]

B) Constant, non-zero potential WWa  vpd Thetw GV /")c'),w 4] 7/
~ C)  Linear potential (V o x) but sitting at V = o R r W i
- ! . | /
 Which statement is true? ( Nia\ '\ 0 11117

. None of the masses accelerate

% how pofgydtal chamcg in qarjﬁl)oaflaag
hor JLU)L i ?omf’

Gravity - Electrostatics

Mass M . _ Charge q (:t)
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AU=U /U =qAV
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Potential: Summary Thus Far
Charges CREATE Potentia!'_Landscapés
V(E) =V, +AV =V — [E.ds
. -

Potential Landscape

Positive Ch:

~ Potential: Summary Thus Far
Charges CREATE Potential Landscapes
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- 2 PRS Questions:
Potential & Potential Energy

PRS: Positive Charge

Place a.p harge in an electrtc field. It
will accelerate from

1. higher to lower electric potential,
lower to higher potential energy
higher to lower electric pbtential; '
_ higher to lower potential energy

lower to higher electric potentzal
;_Iower to hlgher potentta! energy i

o

e

PRS Negatlve Charge

Place aknegatwe charge in an electric ﬁetd._ It
will accelérate from ;
1. higher to lower electric potential;
~lower to higher potential energy =~
2. h:gher to lower efectnc potentral S

o
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Potential Landscape
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Potential Created by Pt Charge
AV =V,~V, =~ B-ds
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PRS Question:
EomN

PRS: E from V. J20] E: “VV

Consider the po'int charges you looked at earlier:

O 0 oot Ypor how Pokeatiaf

7~

C ¢

\/Ul'n I\/{f 0‘ T l F C :,‘,. /
[

\;’,’:«_[ \E;» g {r,{mm

}\l}w sz "5 CL\(}/I-;‘fii

~ Group Problem: E fromV

10

]

.F;'éfenlial (;t/)

Class 05 13



Demonstration:
Making & Measuring
' Potential

e
05540

Class 05

14



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 2

Due: Tuesday, February 16 at 9 pm.

Hand in your problem set in your section slot in the boxes outside the door of 32-082. Make
sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.
Reading Assignments:

Week Two: Gauss’s Law and Electric Potential

Class 4 T/W Feb 9/10 Gauss’ Law

Reading: Course Notes: Sections 4.1-4.2, 4.6
Class 5 R/T Feb 11/16 Electric Potential

Reading: Course Notes: Sections 3.1-3.5, 3.7-3.8
Class 6 F Feb 12 PS02: Gauss’s Law

Reading: Course Notes: Sections 4.1-4.2, 4.7-4.8

Week Three: Electric Potential
President’s Day — M 2/15 /M Classes on T 2/16

Class 5 WO3D1 T Feb 16 Electric Potential
Reading: Course Notes Sections 3.1-3.5, 3.7-3.8

Class 7 W03D02 W/R Feb 17/18  Electric Potential; Equipotential Lines and Electric Fields
Expt.1: Electric Potential; Configuration Energy;

Reading: Course Notes: Sections 3.1-3.5
Experiment: Expt. 1: Electric Potential
Class 8 W03D3 F Feb 19 PS03: Electric Potential

Reading: Course Notes: Sections 3.1-3.5, 3.7-3.8



Problem 1 (10 points): Concept Questions. Explain your reasoning.

Concept Question 1: A pyramid has a
square base of side a, and four faces which
are equilateral triangles. A charge Q 1is
placed on the center of the base of the
pyramid. What is the net flux of electric
field emerging from one of the triangular
faces of the pyramid?

I 0
2. £
8¢,
3. Oa’
2¢,
2 2
2g,

5. Undetermined: we must know whether Q is infinitesimally above or below the plane?

Concept Question 2: A charge distribution generates a radial electric field

= 4] —rlhA
E=—¢""r
r

where a and b are constants. The total charge giving rise to this electric field is

1. 4rea
2. 0
3. 4neb

Problem 2 (10 points): Non-uniformly charged sphere A sphere of radius R has a
charge density p= p,(r/R) where g, is a constant and » is the distance from the center
of the sphere.

a) What is the total charge inside the sphere?

b) Find the electric field everywhere (both inside and outside the sphere).



Problem 3 (10 points): N-P Junction

When two slabs of N-type and P-type semiconductors are put in contact, the relative
affinities of the materials cause electrons to migrate out of the N-type material across the
junction to the P-type material. This leaves behind a volume in the N-type material that is
positively charged and creates a negatively charged volume in the P-type material.

Let us model this as two infinite slabs of charge. both of thickness a with the junction
lying on the plane z = 0. The N-type material lies in the range 0 < z< aand has uniform

charge density +p,. The adjacent P-type material lies in the range —a <z<0 and has
uniform charge density —p, . Thus:

+0, O<z<a
ox,0z)=p(2)=1—p, —a<z<(
0 |z|>a

Find the electric field everywhere.

Problem 4 (10 points): Co-axial Cylinders

A very long conducting cylinder (length L and radius a) carrying a total charge +¢ is
surrounded by a thin conducting cylindrical shell (length L and radius b) with total charge
—q, as shown in the figure.

(a) Using Gauss’s Law, find an expression for the direction and magnitude of the electric
field E for the region r < a.

(b) Similarly, find an expression for the direction and magnitude of the electric field E
for the region a<r<b. :



Problem 5 (10 points): Non-Conducting Solid Sphere with a Cavity

A sphere of radius 2R is made of a non-conducting material that has a uniform volume
charge density p. (Assume that the material does not affect the electric field.) A
spherical cavity of radius R is then carved out from the sphere, as shown in the figure

below. Find the electric field within the cavity.
.l‘

2R

Problem 6 (10 points): Stupid Hobbies...

Some people like to do incredibly dangerous things. Like Austin Richards (also known
as Dr. Megavolt or Criss Angel, who performed a similar stunt on the “Tesla Coil”
episode of his show mindfreak. Here are some pictures.

Pictures care of http://www.mindfreakconnection.com/

You’ll note that while Dr. Megavolt takes strikes directly from the Tesla Coil (a device
capable of making insanely high voltages), Criss Angel decides to get shocked from a
small ball attached to the coil instead — convenient for the purposes of answering this
question. At about what voltage was the Tesla coil for the strikes pictured above and
about how much excess charge was on his hand (in the right picture) the instant before
the strike was initiated? (HINT: Dry air breaks down at an electric field strength of about
3 x 10° V/m)



Problem 7 (10 points): Expt. 1: Equipotential Lines and Electric Fields Pre-Lab
Questions

Read Experiment 1. The link is

http://Aweb.mit.edu/8.02t/www/materials/Experiments/exp01.pdf.

Then answer the following pre-lab questions.

1. Equipotentials Curves — Reading Topographic Maps

Below is a topographic map of a 0.4 mi square region of San Francisco. The contours
shown are separated by heights of 25 feet (so from 375 feet to 175 feet above sea level
for the region shown)

From left to right, the NS streets shown
are Buchanan, Laguna, Octavia, Gough
and Franklin. From top to bottom, the
EW streets shown are Broadway,
Pacific, Jackson, Washington, Clay
(which stops on either side of the park)
and Sacramento.

(a) In the part of town shown in the
above map, which street(s) have the
steepest runs? Which have the most
level sections? How do you know?

(b) How steep is the steepest street at

its steepest (what is its slope in ft/mi)?

(c) Which would take more work (in the physics sense): walking 3 blocks south from
Laguna and Jackson or 1 block west from Clay and Franklin?

PSO01-5



2. Equipotentials, Electric Fields and Charge

One group did this lab and measured the
equipotentials for a slightly different

e e i o potential landscape then the ones you

i e s W have been given (although still on a 1 cm
T ™~ NN grid).

Note that they went a little overboard and
marked equipotential curves (the magenta
~1—#— circles) at V.=0.25V, 0.5V and then

e | fromV=1VtoV=10VinlV

4 increments.

! TS v s They followed the convention that red
was their positive electrode (V= +10 V)
| l and blue was ground (V=0 V).

(a) Copy the above figure and sketch eight electric field lines on it (equally spaced
around the inner conductor).

(b) What, approximately. is the magnitude of the electric field at »=1 cm, 2 cm, and 3
cm, where » is measured from the center of the inner conductor? You should express the
field in V/em. (HINT: The field is the local slope (derivative) of the potential. Also, if
you choose to use a ruler realize that the above reproduction of this group’s results is not
the same size as the original, where the grid size was 1 ¢cm).

(c) What is the relationship between the density of the equipotential lines, the density of
the electric field lines, and the strength of the electric field?

(d) Plot the field strength vs. 1/# for the three points from part (a). If the field were
created by a single point charge what shape should this sketch be? Is it?

(e) Approximately how much charge was on the inner conductor when the group made
their measurements?

PSO01-6



3. Finding the Electric Field from the Electric Potential

The graph shows the variation of an electric potential ¥ with distance x. The potential
does not vary in the y or z directions. Be sure to include units as appropriate.

4 Electric Potential V

+X-axis

— -
-

(a) Whatis £ _in the region x>—1m? (Be careful to indicate the sign of £ .)
(b) Whatis E_ in the region x <—1m? (Be careful to indicate the sign of £ .)

(¢) A negatively charged dust particle with mass m, =1x10" kg and charge

g =—1x10"" C isreleased from rest at x =+2 m. Will it move to the left or to the right?

PS01-7
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 2 Solutions

Problem 1 (10 points): Concept Questions. Explain your reasoning.

Concept Question 1: A pyramid has a square base of side a, and four faces which are equilateral
triangles. A charge Q is placed on the center of the base of the pyramid. What is the net flux of
electric field emerging from one of the triangular faces of the pyramid?

= B
), £
8¢,
3. 2
28,
4 —
2g,

5. Undetermined: we must know whether Q is infinitesimally above or below the plane?

Answer 2: Explain your reasoning:
Construct an eight faced closed surface
consisting of two pyramids with the charge
at the center. The total flux by Gauss’s law
is just Q/g,. Since each face is identical,
the flux through each face is one eight the
total flux or Q/8g,.

Concept Question 2: A charge distribution generates a radial electric field

o (I -rlbA
EZ—.,'(.’ "y
' 4

where a and b are constants. The total charge giving rise to this electric field is

1. 4ng,a

2. 0
3. 4neb



Answer 2: Explain your reasoning: In order to fine the total charge I choose a Gaussian surface
that extends over all space. Because the electric field is radially symmetric, I choose my
Gaussian surface to be a sphere of radius » and | will take the limit as » — o . The flux is given

by

r—yo0 r—m r—m r—yw g r—ym

. a . a _,ipa ~ . a . a . 2 . =y
hm[ME-a’ﬁz hm[ﬂ—,e "¢ - dat = lim Eﬂj—,c "da =lim—e """ dxr* = dralime”’" =0
- r’
r r r

When [ take the limit as » — o, the exponential term goes to zero, and so the flux goes to zero.
Therefore the charge enclosed is zero.

Problem 2 (10 points): Non-uniformly charged sphere A sphere of radius R has a charge
density p = p,(r/R) where p, is a constant and 7 is the distance from the center of the sphere.

a) What is the total charge inside the sphere?
Solution:

The total charge inside the sphere is the integral

r=R r=R r=R 4
) = I pdrridr = I 2. (r/ R)dmr’dr = p"Tém J- rdr= 5 A= PR’

r'=0 r'=0 r=0
b) Find the electric field everywhere (both inside and outside the sphere).

Solution:

There are two regions of space: region I: » < R, and region Il: »> R so we apply Gauss’ Law to
each region to find the electric field.

For region I: r< R, we choose a sphere of
radius » as our Gaussian surface. Then, the
electric flux through this closed surface is

< e

[[[E,-dA=E, -47r*.

Since the charge distribution is non-uniform, we will need to integrate the charge density to find
the charge enclosed in our Gaussian surface. In the integral below we use the integration variable
" in order to distinguish it from the radius r of the Gaussian sphere.



i

r

e _

&

;o 177 , = XY 2 g podnrt  prrt
dzr'*dr' = — riRAxrdr=2" | r"dr' =22 =20 ;
P j AolriR) Re I 4Re, Re,

0 EU r'=0 0 =0

E »

Notice that the integration is primed and the radius of the Gaussian sphere appears as a limit of
the integral.

Recall that Gauss’s Law equates electric flux to charge enclosed:
(Jf B, A = Lo
gﬂ

So we substitute the two calculations above into Gauss’s Law to arrive at:

4
2 zr
E, -4ar = = il :

Rg,

We can solve this equation for the electric field

" . Dal”
E, =Ef="0
4Re,

r,0<r<R.

The electric field points radially outward and has magnitude |f£l| = Z o : Dar<R.

EO
For region II: »> R: we choose the same F> R
spherical Gaussian surface of radius r> R,
and the electric flux has the same form e = N
= , r \
UJ-E,, -dA=E,-4xr-. -
( l

Ve

All the charge is now enclosed, O, =Q = p,7R’, so the right hand side of Gauss’s Law

_—unc

becomes

Qr.'m' — Q — pO;rRJ

0 EO 80

Then Gauss’s Law becomes



_ pR’ .

E,-d4mr° =
I:c"()
We can solve this equation for the electric field
= ) R
E, =E;r= e —F, r>R.
dg,r’

In this region of space, the electric field points radially outward and has magnitude

- R
-

distribution, the sphere acts as if it all the charge were concentrated at the origin.

, r>R, so it falls off as 1/7° as we expect since outside the charge




T

Problem 3 (10 points): N-P Junction

When two slabs of N-type and P-type semiconductors are put in contact, the relative
affinities of the materials cause electrons to migrate out of the N-type material across the
junction to the P-type material. This leaves behind a volume in the N-type material that is
positively charged and creates a negatively charged volume in the P-type material.

Let us model this as two infinite slabs of charge, both of thickness a with the junction
lying on the plane z = 0. The N-type material lies in the range 0 < z< aand has uniform

charge density +p,. The adjacent P-type material lies in the range —a <z<0 and has
uniform charge density —p, . Thus:

+0, O<z<a
Pl y.z)= plz)=9—p, —a<z<(

0 |z|>a
Find the electric field everywhere.
Solution:
In this problem, the electric field is a
superposition of two slabs of opposite
charge density.

P +Pu

I
Q

2 ==4a S=0

Outside both slabs, the field of a positive slab E,, (due to the P-type semi-conductor ) is
constant and points away and the field of a negative slab E,, (due to the N-type semi-
conductor )is also constant and points towards the slab, so when we add both
contributions we find that the electric field is zero outside the slabs. The fields E, are
shown on the figure below. The superposition of these fields E, is shown on the top line
in the figure.



el el bl ool ol
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g, -~ Frony G TEEY .
E = 0 outside ~Py P | E = 0 outside
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= =0 Z=@

(8]

The electric field can be described by

0 z<—a
- Ez —-a<z<0
E (z)=1_
E, O<z<a
0 |x|>d

We shall now calculate the electric field in each region using Gauss’s Law:

For region —a < z<0: The Gaussian surface is shown on the left hand side of the figure
below. Notice that the field is zero outside. Gauss’s Law states that

closed EO
surface

So for our choice of Gaussian surface, on the cap inside the slab the unit normal for the

area vector points in the positive z-direction, thus fi=+k . So the dot product becomes
E, fda=E, . k-kda=E, . da . Therefore the flux is

(] E-da=E,.4

cap
closed
surface

The charge enclosed is



.

o)

Zenclosed

_—pd,(a+2)

£
=0 30

where the length of the Gaussian cylinder is a+z since z<0.
Substituting these two results into Gauss’s Law yields

-p,A_(a+:z
e Amp - M

E()

Hence the electric field in the N-type is given by

1:: :_pu(ff+2)-

2.x
E(]

The negative sign means that the electric field point in the —z direction so the electric
field vector is

g, =2Plava)

&
Note when z=—a then E: =0 and when z=0, ﬁlz = %,

We make a similar calculation for the electric field in the P-type noting that the charge
density has changed sign and the expression for the length of the Gaussian cylinder is
a—z since z> 0. Also the unit normal now points in the —z-direction. So the dot product

becomes
E, -fda = E . (- k) kda = —E, . da

Thus Gauss’s Law becomes
— +p0‘Acup (a . Z)

_El,:Awp = £ G
So the electric field is
El i - pO (a i Z) .
EO
The vector description is then
E = P (a - a) ﬁ



Note when z=a then E, =0 and when z=0, E, TP

gﬂ
So the resulting field is
0 z<—a
Elz_p0(0+z)ﬁ —a<z<0
_ £,
E,(z)=+ )
E = puld 4)12 O<z<a
80
0 |z[>a
The graph of the electric field is shown below
Ey -
== -a z =4
o o




Problem 4 (10 points): Co-axial Cylinders
A very long conducting cylinder (length L and radius a) carrying a total charge +q is

surrounded by a thin conducting cylindrical shell (length L and radius b) with total charge
—q, as shown in the figure.

a

+q
Vb

(a) Using Gauss’s Law, find an expression for the direction and magnitude of the electric
field E for the region r < a.

Solution: The electric field is zero inside the inner conducting cylinder.

(b) Similarly, find an expression for the direction and magnitude of the electric field E
for the region a<r<bh.

Solution: We use a Gaussian cylinder of length / and radius @ <r <b. Then, the flux is

[[E-dA = E27r1.
The charge enclosed is given by

0. =A=(q/L).

—nc

So Gauss’ Law becomes

mjﬁidfi:g"l&«:}[ﬁzﬁrl:i 3@: q lf‘;a<r<b

&, Le, L27g, r




Problem 5 (10 points): Solid Sphere with a Cavity

A sphere of radius 2R is made of a non-conducting material that has a uniform volume
charge density p. (Assume that the material does not affect the electric field.) A

spherical cavity of radius R is then carved out from the sphere, as shown in the figure
below. Find the electric field within the cavity.

3

Solution: At first glance this charge distribution does not seem to have any of the
symmetries that enable us to use Gauss’s law. However we can consider this charge
distribution as the sum of two uniform spherical distributions of charge. The first is a
sphere of radius 2R centered at the origin with a uniform volume charge density p. The
second is a sphere of radius R centered at the point along the y-axis a distance R from
the origin (the center of the spherical cavity) with a uniform volume charge density —p .

When we add together these two distributions of charge we obtain the uniform charged
sphere with a spherical cavity of radius R as described in the problem. We can then add
together the electric fields from these two distributions at any point in the cavity to obtain
the electric field of the original distribution at that point inside the cavity (superposition
principle). Each of these two distributions are spherically symmetric and therefore we can
use Gauss’s Law to find the electric field associated with each of them.. We do need to be
careful when we add together the electric fields. As you will see that process is somewhat
subtle and a good vector diagram will help considerably.

So let’s begin by choosing a point P inside the cavity. We will now apply Gauss’s Law
to our first distribution, the sphere of radius 2R centered at the origin with a uniform



volume charge density p. The point P is a distance » < 2R from the origin. We choose a
sphere of radius » as our Gaussian surface with r < 2R.

Gc.uss tlan
borguz

Then, the electric flux through this closed surface is
[Hﬁlﬂ -dA = E -4mr?,

where £ denotes the outward normal component of the electric field at the point P

associated to the spherical distribution with uniform volume charge density p. Because
the charge distribution is uniform, the charge enclosed in the Gaussisan surface is

Qe p(drr 13)

=¢ne

EU 50

Recall that Gauss™ Law equates electric flux to charge enclosed:
- - 0
JE, - dA = ==
E[)
So we substitute the two calculations above into Gauss’ law to arrive at:

Ep.4m.::M_

&

We can solve this equation for the electric field

where F is a unit vector at the point P pointing radially away from the origin.



We now apply Gauss’s Law to our second distribution, a sphere of radius R centered at
the point along the y-axis a distance R from the origin with a uniform volume charge
density—p . The point P is a distance »' < R from the center of the cavity.

G‘(USS‘IG{\
Su r(qu

We choose a sphere of radius »' as our Gaussian surface with »' < R. Then, the electric
flux through this closed surface is

ijﬁ-ﬁ’ -dA = 2. Aar?,

where E_ | denotes the outward normal component of the electric field at the point P

associated to the spherical distribution with uniform volume charge density—p . Because
the charge distribution is uniform, the charge enclosed in the Gaussisan surface is

O __pAxr’13)

£,

0 £,

o
Therefore applying Gauss’s Law yields

B p(4rr? 13)

2
E_,-Anr" =
lE‘(}i

We can solve this equation for the electric field

= i PF
E (P)=F r'=——r'".
PP)=E =1

where ' is a unit vector at the point P pointing radially away from the center of the
cavity.
A
r
A F /
p -
&
-~ ‘B'

®

—4 P I




The electric field associated with our original distribution is then

E(P)=E, (P)+E_(P)=E i+ E i =2 ¢ L p =L (i i) = 3i(F ~¥)

3¢, 3g, 3¢

0 0 80

where T is a vector from the origin to the point P and r' is a vector from the center of
the cavity to the point P . From our diagram we see that a =7 —7".

=4 ,J\\
'_.-.rf P
L o A
‘a. et r

Therefore the electric field at the point 7 is given by
E(P)=-"L-3.
3g,

This is a remarkable result. The electric field inside the cavity is uniform. The direction
of the electric field points from the center of entire sphere to the center of the cavity. This
direction is uniquely specified and is an example of ‘broken symmetry’.



Problem 6 (10 points): Stupid Hobbies...

Some people like to do incredibly dangerous things. Like Austin Richards (also known
as Dr. Megavolt or Criss Angel, who performed a similar stunt on the “Tesla Coil”
episode of his show Mindfreak. Here are some pictures.

Pictures care of http://www.mindfreakconnection.com/

You’ll note that while Dr. Megavolt takes strikes directly from the Tesla Coil (a device
capable of making insanely high voltages), Criss Angel decides to get shocked from a
small ball attached to the coil instead — convenient for the purposes of answering this
question. At about
what voltage was the Tesla coil for the strikes pictured above and about how much
excess charge was on his hand (in the right picture) the instant before the strike was
initiated? (HINT: Dry air breaks down at an electric field strength of about 3 x 10° V/m)

Solution:

Judging from the picture, Criss is about a meter away from the ball when it arcs. Could
be two meters, but it is easier to work with one meter, so I’ll use that. If we make a
simple minded assumption that V = Ed then the potential difference is given by:

3x10°V/mx1m 3x10° V

(hence Dr. Megavolt!). You may complain that clearly this is more like a ball of charge
then a parallel plate capacitor so we should have used a point charge potential, kQ/r. But
notice that even in this case V ~ Er, so the above is approximately correct. There is also
a question of where the field equals the breakdown field. Fortunately, this is a back of
the envelope question so the details don’t matter so much.

We can determine a minimum charge by requiring the field to be at breakdown strength
Just outside his hand (or the ball). Let’s make them spheres of radius 5 cm. Then:

E=kQ/r* = Q=rEfk0(5em) 3x10° Vm™ (9x10°Vm C')" 28x107 C=



I say that this is a minimum because the field is clearly breaking down a much further
distance away (a meter) which would require a charge 400 (=20°) times larger. The real
charge has to be somewhere between these two extremes, so I'll estimate

10=10" C=5x10"e




Problem 7 (10 points): Expt. 1: Equipotential Lines and Electric Fields Pre-Lab
Questions

Read Experiment 1. The link is

http://web.mit.edu/8.02t/www/materials/Experiments/exp01.pdf.

Then answer the following pre-lab questions.

1. Equipotentials Curves — Reading Topographic Maps

Below is a topographic map of a 0.4 mi square region of San Francisco. The contours
shown are separated by heights of 25 feet (so from 375 feet to 175 feet above sea level
for the region shown)

From left to right, the NS streets shown
are Buchanan, Laguna, Octavia, Gough
and Franklin. From top to bottom, the
EW streets shown are Broadway,
Pacific, Jackson, Washington, Clay
(which stops on either side of the park)
and Sacramento.

(a) In the part of town shown in the
above map, which street(s) have the
steepest runs? Which have the most
level sections? How do you know?

Solution:

: ‘ | You can tell how steep something is by
Iookmo at how qu1ckly it passes through constant height contours (~ equipotentials). The
steepest section is along Octavia between Pacific and Washington. The most level street
is Jackson between Buchanan and Octavia, which runs parallel to the 275 foot contour
and hence is very flat.

(b) How steep is the steepest street at its steepest (what is its slope in ft/mi)?
Solution:

Looking at Octavia, it passes through 5 contours (125 feet) in two blocks (about 0.12
miles) so it has a slope of ~1000 ft/mi.

(c) Which would take more work (in the physics sense): walking 3 blocks south from
Laguna and Jackson or | block west from Clay and Franklin?

Solution:



Work is change in potential energy (and hence height). The change in height walking 3
blocks S on Laguna is almost nothing (you go up but come back down again). West on
Clay from Franklin you rise 50 feet in the block, so that is more work.



2. Equipotentials, Electric Fields and Charge

One group did this lab and measured the
equipotentials for a slightly different
potential landscape then the ones you
have been given (although stillona 1 cm
grid).

Note that they went a little overboard and
marked equipotential curves (the magenta
circles) at V=10.25V, 0.5V and then
fromV=1VtoV=10VinlV
increments.

They followed the convention that red
was their positive electrode (V' =+10 V)
and blue was ground (V=0 V).

(a) Copy the above figure and sketch eight electric field lines on it (equally spaced
around the inner conductor).

Solution: See black arrows

(b) What, approximately, is the magnitude of the electric field at =1 ¢cm, 2 cm, and
3 cm, where r is measured from the center of the inner conductor? You should
express the field in V/em. (HINT: The field is the local slope (derivative) of the
potential. Also, if you choose to use a ruler realize that the above reproduction of
this group’s results is not the same size as the original, where the grid size was 1

cm).
Solution:
Atr=1cm, V~4YV and we move 1 V in about 1/5 cm. E ~5V/cm
Atr=2cm, V~ 1.5 V and we move about 1/2 Vin 1/2 cm. E~1V/icm
Atr=3cm, V~0.7 V and we move about 0.2 V in 1/2 cm. E~0.4V/cm

(c) What is the relationship between the density of the equipotential lines, the density
of the electric field lines, and the strength of the electric field?

Solution:

The denser the equipotential lines and hence electric field lines, the stronger the field.



(d) Plot the field strength vs. 1/ for the three points from part (a). If the field were
created by a single point charge what shape should this sketch be? Is it?

Solution:

It should be (and is!) a straight line
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(e) Approximately how much charge was on the inner conductor when the group made
their measurements?

Solution:

2

E=kl,—q-, so slope is k,g=5Vem. g=5x10"*C
r



3. Finding the Electric Field from the Electric Potential

The graph shows the variation of an electric potential ¥ with distance x. The potential
does not vary in the y or z directions. Be sure to include units as appropriate.

4 Electric Potential V

i +X-axis

P o
T iR—

(a) Whatis E_ in the region x>—1m ? (Be careful to indicate the sign of £, .)

Solution: In the region x>—-1m, V(x)=5V-(3V-m")x. So

LT R S
dx

X

(b) Whatis £, in the region x <—1m? (Be careful to indicate the sign of E_.)

Solution: In the region x<—=Im, F(x)=20V+(10V-m™") x. So

Exz—iV(x):—IOV-m" :
dx
(¢) A negatively charged dust particle with mass mq:lxl()"3 kg and charge

g =-1x10"" C is released from rest at x=+2m. Will it move to the left or to the right?

Solution: For x>—1m, the electric field is pointing in the positive x-direction, so a

negatively charged particle will experience a force pointing in the negative x-direction,
hence it will move to the left. '
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Summary of Class 7 8.02

Topics:  Electric Potential, Equipotentials
Related Reading: Course Notes: Sections 3.1-3.5
Experiments: (1) Equipotential Lines and Electric Fields

Topic Introduction
Today we continue our discussion of electric potentials and equipotentials, becoming more
familiar with them and their relationship with charge and electric fields through our first

experiment.

Equipotentials

Recall from our last class that when discussing potential and potential energy we only
defined differences. This is because only differences are physically meaningful — what we
choose, for example, to call “zero energy” is completely arbitrary. Today we will focus on
the measurement of equipotential surfaces, that is, locations where the potential is the same,
and will practice estimating electric field lines and charge distributions once those
equipotential surfaces are known.

Experiment 1: Equipotential Lines and Electric Fields
Preparation: Read pre-lab and answer pre-lab questions
(Hand in pre-lab questions at the beginning of class)

Thus far in class we have talked about fields, both gravitational and electric, and how we can
use them to understand how objects can interact at a distance. A charge, for example, creates
an electric field around it, which can then exert a force on a second charge which enters that
field. In this lab we will study another way of thinking about this interaction through electric
potentials.

In particular, for several given charge configurations you will map out equipotential

contours, that is, contours along which the potential is a constant. From these equipotentials
you can determine both the direction and magnitude of the electric field.

Summary of Class 7 p. /1




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 1: Equipotential Lines and Electric Fields

OBJECTIVES

1. To develop an understanding of electric potential and electric fields
2. To better understand the relationship between equipotentials and electric fields
3. To become familiar with the effect of conductors on equipotentials and E fields

PRE-LAB READING
INTRODUCTION

Thus far in class we have talked about fields, both gravitational and electric, and how we
can use them to understand how objects can interact at a distance. A charge, for example,
creates an electric field around it, which can then exert a force on a second charge which
enters that field. In this lab we will study aniother way of thinking about this ififeraction
through electric potentials.

The Details: Electric Potential (Voltage)

Before discussing electric potential, it is useful to recall the more intuitive concept of
potential energy, in particular gravitational potential energy. This energy is associated
with a mass’s position in a gravitational field (its height). The potential energy difference
between being at two points is defined as the amount of work that must be done to move
between them. This then sets the relationship between potential energy and force (and
hence field):

_dU

8— - -
AU:UB—U,,=—LF-ds = (inlD) F= =

(1)

We earlier defined fields by breaking a two particle interaction, force, into two single
particle interactions, the creation of a field and the “feeling” of that field. In the same
way, we can define a potential which is created by a particle (gravitational potential is
created by mass, electric potential by charge) and which then gives to other particles a
potential energy. So, we define electric potential, ¥, and given the potential can calculate
the field:

_av

B . :
AV=V,-V,=-[E-d§ = (inID) E= =

)

Noting the similarity between (1) and (2) and recalling that F = qE, the potential energy
of a charge in this electric potential must be simply given by U = gV.

E06-1



When thinking about potential it is convenient to think of it as “height” (for gravitational
potential in a uniform field, this is nearly precise, since U = mgh and thus the
gravitational potential V' = gh). Electric potential is measured in Volts, and the word
“voltage” is often used inferchangeably with “potential.” You are probably familiar with
this terminology from batteries, which maintain fixed potential differences between their
two ends (e.g. 9 V in 9 volt batteries, 1.5 V in AAA-D batteries).

Equipotentials and Electric Fields

When trying to picture a potential landscape, a map of equipotential curves — curves
along which the potential is equal — can be very helpful. For gravitational potentials
these maps are called topographic maps. An example is shown in Fig. 1b.

M ©|C

Figure 1: Equipotentials. A potential landscape (pictured in 3D in (a)) can be
represented by a series of equipotential lines (b), creating a topographic map of the
landscape. The potential (“height”) is constant along each of the curves.

Now consider the relationship between equipotentials and fields. At any point in the
potential landscape, the field points in the direction that a mass would feel a force if
placed there (or that a positive charge would feel a force for electric potentials and
fields). So, place a ball at the top of the hill (near the center of the left set of circles in the
topographic map of Fig. 1b). Which way does it roll? Downhill! But what direction is
that? “Perpendicular to the equipotential lines: Why? Equlpotentlal lines are lines of
constant height, so moving along them at all does not achieve the objective of going
downhill. So the force (and hence field) must point across them, pushing the object
downhill. But why exactly perpendicular? Work done on an object changes its potential,
so it can take no work to move along an equipotential line. Work is given by the dot
product of force and displacement. For this to be zero, the force must be perpendicular to
the displacement, that is, force (and hence fields) must be perpendicular to equipotentials.

Note: Potential vs. Potential Difference

Note that in equation (2) we only defined AV, the potential djfference between two points,
and not the potential V. This is because potential is like height — the location we choose

(the “ground”), "and measure potentla]s relative to the potential at that location.

E06-2



APPARATUS
1. Conducting Paper Landscapes

To get a better feeling for what equipotential curves look like and how they are related to
electric field lines, we will measure sets of equipotential curves for several different
potential landscapes. These landscapes are created on special paper (on which you can
measure electric potentials) by fixing a potential difference between two conducting
shapes on the paper. For reasons that we will discuss later, these conducting shapes are
themselves equipotential surfaces, and their shape and relative position determines the
electric field and potential everywhere in the landscape. One purpose of this lab is to
develop an intuition for how this works. There are four landscapes to choose from (Fig.
2), and you will measure equipotentials on two of them (one from Fig. 1a, b and one from
Fig. 1c, d).

Figure 2 Conducting Paper Landscapes. Each of the four landscapes — the “standard”
(a) dipole and (b) parallel plates, and the “non-standard” (c) bent plate and (d) filled
plates — consists of two conductors which will be connected to the positive (red) and
ground (blue) terminals of a battery. In (d) there is an additional conductor which is free
to float to whatever potential is required. The pads are painted on conducting paper with

a1 cm grid. il ¢ " Al RL s
c);)“t;_ a (J'I -

2. Science Workshop 750 Interface

In this lab we will again use the Science Workshop 750 interface both to create the
potential landscapes (using the “OUPUT” connections that act like a battery which we

will set to 5 V) and to measure the potential at various locations in that landscape using a
voltage sensor. T

E06-3



3. Voltage Sensor

In order to measure the potential as a function of position we will once again use the
voltage sensor, plugged into Channel A on the 750. When recording the “potential,” you
will really be measuring the potential difference between the two leads, (red minus black)
and hence you should have the black lead connected to the output ground (what value of
potential does this then assign to the output ground?)

GENERALIZED PROCEDURE

For each of the two landscapes that you choose, you will find at least four equipotential
contours by searching for points in the landscape at the same potential using the voltage
sensor. After recording these curves, you will draw several electric field lines, making
use of the fact that they are everywhere perpendicular to equipotential contours.

END OF PRE-LAB READING

E06-4



IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right
click on the link and choose “Save Target As™). Start LabView by double clicking

2. Connect cables to the output of the 750 (red to the sin wave marked output, black to
ground). One member of the group will hold these wires to the two conductors while
another maps out the equipotentials.

3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface

4. Connect the black lead of the voltage sensor to the black output (the ground). You
will use the red lead to measure the potential around your landscapes.

MEASUREMENTS

Part 1: “Standard” Configuration

L

Choose one of the two “standard” conducting paper landscapes (the dipole or
parallel plate configuration)

Use the voltage connectors to make contacts to the two conducting pads

. Press the green “Go” button above the graph to energize the battery and begin

recording the potential of the red lead (relative to the black lead = ground).

Measure the potential of both conducting pads to confirm that they are properly
connected (one should be at +5 V, the other at 0 V), and that they are indeed
equipotential objects (we will explain why next week).

Now, try to find some location on the paper that is at about +1 V (don’t worry
about being too precise). Mark this point on the plot on the next page.

Do NOT write on the conducting paper

Find another 1 V point, about 1 cm away. Continue until you have closed the
curve or left the page. Sketch and label this equipotential curve.

Repeat this process to find equipotentials at 2 V, 3 V, and 4 V. Work pretty fast;
it’s more important to think about what these lines mean than it is to draw them
perfectly. Think about what you are doing — are there symmetries that you can
exploit to make this task easier?

E06-5
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Question 1:

Sketch in a set of electric field lines (~ ten) on your plot of equipotentials on the previous
page. Where do the field lines begin and end? If they are equally spaced at their
beginning, are they equally spaced at the end? Along the way? Why?

Question 2:

What, approximately, is the potential midway between the two conductors? REMINDER
(just this once): Whenever you are asked for a numerical value DO NOT FORGET
UNITS!

/Z,()/ [/on

Question 3:

What, approximately, is the strength of the electric field midway between the two
conductors? You may find it easier to answer this question if you just measure the
potential at a few points near the center.

full = &£, & o 0w

I

I o

Part 2: “Non-Standard” Configuration

1. Choose one of the two “non-standard” conducting paper landscapes (the bent
plate or filled plates configuration)

2. Use the voltage connectors to make contacts to the two conducting pads (for the
filled plates, the center pad does not have a connection to it)

3. Press the green “Go” button above the graph to energize the battery and begin
recording the potential of the red lead (relative to the black lead = ground).

4. Confirm that everything is properly connected by measuring the potential on the
two connected pads, then record a set of equipotential curves following the same
procedure of part 1.
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Question 4:

Sketch in a set of electric field lines on your plot of equipotentials on the previous page.
Where is the electric field the strongest? What, approximately, is its magnitude?

4

' ! - A
Fl’f\ l(l ‘\[u,[ 5!‘{(:/}”/ I!Hr{_,v 20 ¢ [ .7,‘.. [

loia 9 ]( 0y G Cl 0585 ri

Further Questions (for experimentation, thought, future exam questions...)

What changes if you switch which conducting pad is at +5 V and which is ground?
What if you forget to connect the ground lead?
If you rest your hand on the paper while making measurements, does it affect the
readings? Why or why not?

e If'you wanted to push a charge along one of the field lines from one conductor to the
other, how does the choice of field line affect the amount of work required?

o The potential is everywhere the same on an equipotential line. Is the electric field
everywhere the same on an electric field line?

v

Nest Ln ﬂ_{g‘/ ( C{f.'” i ,/ C)‘f (nag "'/"-','j /“I
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1 {2} (A ¢ (¢ 0 01,‘:

lovs

or o (J..} Ty 1,}

E06-9



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 1 Solutions: Equipotential Lines and Electric Fields

IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right
click on the link and choose “Save Target As™). Start LabView by double clicking

2. Connect cables to the output of the 750 (red to the sin wave marked output, black to
ground). One member of the group will hold these wires to the two conductors while
another maps out the equipotentials.

3. Connect the Voltage Sensor to Analog Channel A on the 750 Interface

4. Connect the black lead of the voltage sensor to the black output (the ground). You
will use the red lead to measure the potential around your landscapes.

MEASUREMENTS

Part 1: “Standard” Configuration

1.

(3]

Choose one of the two “standard” conducting paper landscapes (the dipole or
parallel plate configuration)

Use the voltage connectors to make contacts to the two conducting pads

. Press the green “Go” button above the graph to energize the battery and begin

recording the potential of the red lead (relative to the black lead = ground).

Measure the potential of both conducting pads to confirm that they are properly
connected (one should be at +10 V, the other at 0 V), and that they are indeed
equipotential objects (we will explain why next week).

Now, try to find some location on the paper that is at about +2 V (don’t worry
about being too precise). Mark this point on the plot on the next page.

Do NOT write on the conducting paper

Find another 2 V point, about 1 cm away. Continue until you have closed the
curve or left the page. Sketch and label this equipotential curve.

Repeat this process to find equipotentials at 4 V, 6V, and 8 V. Work pretty fast;
it’s more important to think about what these lines mean than it is to draw them
perfectly.

EO1 Solutions-1
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Question 1:

Sketch in a set of electric field lines (~ ten) on your plot of equipotentials on the previous

page.

Where do the field lines begin and end? If they are equally spaced at their

beginning, are they equally spaced at the end? Along the way? Why?

Yes, they are equally spaced at the end if they are at the beginning, by symmetry. The
spacing changes along the way, spreading out significantly away from the sources.

Question 2:

What, approximately, is the potential midway between the two conductors?

By symmetry it must be half way between the two potentials, or 2.5 V

Question 3:

What, approximately, is the strength of the electric field midway between the two
conductors? You may find it easier to answer this question if you just measure the
potential at a few points near the center.

For both the dipole and the parallel plates the distance between the conductors is about 3
cm and the potential difference is 5 V so the E field strength is about 1.6 V/cm. Of
course, to be more accurate, measurements of the potential should be made closer to the

center.

Part 2: “Non-Standard” Configuration

15

[¥5)

Choose one of the two “non-standard” conducting paper landscapes (the bent
plate or filled plates configuration)

Use the voltage connectors to make contacts to the two conducting pads (for the
filled plates, the center pad does not have a connection to it)

Press the green “Go™ button above the graph to energize the battery and begin
recording the potential of the red lead (relative to the black lead = ground).

Confirm that everything is properly connected by measuring the potential on the
two connected pads, the record a set of equipotential curves following the same
procedure of part 1.

EO1 Solutions-3
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Question 4:

Sketch in a set of electric field lines on your plot of equipotentials on the previous page.
Where is the electric field the strongest? What, approximately, is its magnitude?

The electric field is the strongest near sharp points (where the conductors are the closest
together).

Question 5:
Where is the electric field the most uniform? How can you tell?

The field is the most uniform outside of the plates, where the potential is nearly constant
and the field is hence about zero. '

Further Questions (for experimentation, thought, future exam questions...)

e What changes if you switch which conducting pad is at +10 V and which is ground?

e What if you forget to connect the ground lead?

e Ifyou rest your hand on the paper while making measurements, does it affect the
readings? Why or why not?

e Ifa charge were to move along one of your field lines from one conductor to the
other, how does the choice of field line affect the amount of work required to move?

e The potential is everywhere the same on an equipotential line. Is the electric field
everywhere the same on an electric field line?

EO1 Solutions-5
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E Field and Potential: Effects

If you put a charged particle, (charge g), in é field:

— —

E—gF

- Two PRS Questions:
. ..Pot_e'_r__lti_al & FQfEi-e_’d_ .

- PRS: E from V
{a\aw‘;’»u\ .

By

ZmAm | im 2m
S oo 5. B

The graph above shows a potential V as a fuhction
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PRS: E fromV
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Topographic Maps
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Properties of Equipotentials

« E field lines point from high to low potential
« E field lines perpendicular to equipotentials

» No work to move along equipotential

Raacs L3

Demonstration: Kelvin

PRS_: Kelvin Water Dropper

A drop of water falls through the right can. If the
can has positive charge on it, the separated water
drop will have .

o% 1. nonetcharge

0% 2. apositive charge

0% 3. anegative charge ean
aais s 'tk S
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Equipotential
Visualization

Experiment 1: Equipotentials

Download LabView file (save to desktop)
and run tt

_your group (enter your MET iD) . 5..;; -_ _.
Each group will do two of._the four ﬁgures

. :Mldpoznt_._q_heck
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PRS: Lab Midpoint: Equipotential &

The circle is at +5 V relative to the plate. Which of the below is
_the most accurate equipotential map?

Cloer =phubial = shoeper

PRS: Lab Midpoint: Field Lines Bo

The circle is at +5 V relative to the plate. Which of the below is
the most accurate electric _flilgmline map?

' Experiment 1: Equipotentials

Continue with the experiment...

exam from FaII 20(}5)

on the exams. (see 'forzexample the fi nal'. f_
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PRS Questions:
Lab Summ
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PRS: Lab Summary: Potentials

Holding the red plate at +5 V relative to the ground of
the blue plate, what is true about the electric potential

at the following locations: N .

D
0% 1. V(A)>V(B)>V(C)>V(D)
0% (2. V(A)> V(B)~ V(C) > V(D)
0% . V(A)~ V(B)> V(C) ~ V(D)
0% 4. V(D)>V(C)~V(B)>V(A)
% 5. V(B)>V(C)>V(D)~V(A)
0% 6. V(A)>V(D)~V(C)>V(B) ot

PRS: Lab Summary: E Field

Holding the red plate at +5 V relative to the ground of
the blue plate, what is true about the electric field at the
following locations:

C B

0 D/

0% 1. E(A)> E(B)> E(C)>E(D)

0% 2. E(A)>E(B)~E(C)>E(D)

0% 3. E(A)~E(B)>E(C)~E(D)

0% 4. E(D)>E(C)~E(B)>E@)

0% 5. .

0% 6. EMA)>ED)~EC)>E®) i
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PRS: Lab Summary: Charge

Holding the red plate at +5 V relative to the ground of
the blue plate, what is true about the amount of charge
near the following points:

i

1. |Q(A) ~ Q)] > [a@)| ~ )]
2. [Q(A) > Q@) ~ [Q(C)] > [aD)|
8, o~ [a@) >_10{C)E QD)

'*‘5}! Q)]
Q)| > [aB)|
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~ Configuration Energy

ch much energy to put two charges as pictured?

1) First charge is free - rg o
2) Second charge sees first: =
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Configuration Energy

How much energy to put three charges as pictured?

1) Know how to do first two ‘,
2) Bring in third: - T
i -’ m
gl 9 g .
W =gl elol =l o = LY. 5
=q,(Vi+13) 4,,.&.0_(?'.3::_:::,.23} oy A

Total configuration energy: - _:

U=W,+W,=— ri“—”—ﬂ‘?’%q‘%)=U12+U.3+Uza
4”50k s hs T

Tt

Group Problem: Build It

y 1) How much energy
P did it take to assemble
the charges at left?
// a '\\ .
/ 8 8 g X 2} How much energy
-Q -Q +Q would it take to add a

4t charge +3Q at P?
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Summary of Class 8 8.02

Topics:  Electric Potential, E from V
Related Reading: Course Notes: Sections 3.1-3.5, 3.7-3.8

Topic Introduction

Today you will practice calculating potentials from charges and known field configurations
in a problem solving. You will also play with the java applet “The Electric Potential Game”
which should help solidify your understanding of the relationship between charge, field &
potential.

Potential
Recall that the creation of an electric potential is intimately related to the creation of an

electric field: AV =V, -V,=- Jf E-d§. As with potential energy, we only define a

potential difference. We will occasionally ask you to calculate “the potential,” but in these
cases we must arbitrarily assign some point in space to have some fixed potential. A
common assignment is to call the potential at infinity (far away from any charges) zero. In
order to find the potential anywhere else you must integrate from this place where it is known
(e.g. from A=, V,4=0) to the place where you want to know it.

Once you know the potential, you can ask what happens to a charge ¢ in that potential. It

will have a potential energy U = ¢V. Furthermore, because objects like to move from high

potential energy to low potential energy, as long as the potential is not constant, the object

will feel a force, in a direction such that its potential energy is reduced. Mathematically that

is the same as saying that F =-V U (where the gradient operator V = —a—; + L 3 # 5 k) and
Ox Oy~ Oz

hence, since F = qE , E=—VV . Thatis, if you think of the potential as a landscape of hills

and valleys (where hills are created by positive charges and valleys by negative charges), the
electric field will everywhere point the fastest way downhill.

Important Equations

B -
Potential Energy (Joules) Difference: AU=U,-U,=-[ F-ds
Electric Potential Difference (Joules/Coulomb = Volt): AV =V, -V, =— Lﬂ E-ds
Electric Potential (Volts) created by point charge: V oot Charge () = kQ 2
r L7
Potential energy U (Joules) of point charge g in electric potential V: U=gV o
ok dont o - from @ (g
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Problem Solving 3: Electric Potentials

REFERENCE: Chapter 3, 8.02 Course Notes.

Consider two point-like charged objects with charges ¢, =—0, and g, =+0

e
———

Question 1: If the charges start out very far apart, how much energy it necessary to bring these
charges together until they are a distance 2a apart? Give a physical reason for the sign of your
answer. Does your answer depend on whether or not you choose infinity as a zero reference
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Choose a coordinate system such that the positively chérged object is located at ‘the origin and
the negatively charged object is located a distance 2a along the positive y-axis (i.e. above it).
Consider a point P that lies in the x-y plane with coordinates (x, y).

Question 2: What is the potential difference between the point P and infinity, V' (P)—V(«)?
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Solving 3-1
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to find the x and y-components of the electric ﬁeld at the pomt P from the potential you just

caIculated
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Question 4: Suppose the point P is located at P =(2a,a). Using only symmetry considerations
(i.e. without calculation), predict the direction of the electric field, and draw the direction on the

sketch below. (
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Solving 6-2



Question 5: Use the results of your calculations from part (b) and (c) to find an exact expression
for the electric potential difference and the electric field at P =(2a,qa).

Question 6: Now move from P=(2a,a) to §=(2a,2a). Without calculation answer the
following: is the electric potential difference V' (S)—V (P) positive, zero, or negative? Why?

Solving 3-3



Question 7: Which arrow most closely represents the direction of the electric field at
=20 2a)7

Part Two: Electric potential game.

We next want you to look at an applet that shows you the electric potential due to two point
charges, and how that is related to the electric field, using the examples from Part One above.
We then want you to play a game where you explore bit by bit the electric potential due to two
“invisible™ point charges and guess the sign of the two invisible charges. You “win” the game
by using the least number of moves to figure out what the signs of the charges are.

Question 8: Open up the landscape applet. When you open the application you will see the
charge configuration you were given in Question 1 above. We also show the potentials due to
these two charges. You can explore the electric field by moving your avatar around the xy plane
in the scene using the keypad on the right. The vertical distance of the avatar above the xy plane
is the electric potential at the avatar’s location. We also show the electric field at the avatar’s
location below the avatar in the xy plane.

Using the application, confirm your answers to Questions (4), (6) and (7) above.

Question 9: Using the same application as above, create a potential landscape using two
positively charged objects, using the controls on the right to change the sign of the charges. Find
a point on the landscape where the electric field points away from both charged objects. Briefly
describe your strategy.

Explore the region around your selected point and observe how the electric field changes
direction. Move the charges around, and change their signs, to get an idea of what the potential
landscape looks like for arbitrary placement of the charges and how the electric field varies as
you move your avatar around the xy plane.

You will need the intuition developed here to do well in the game below!!

Question 10: Open up the electric potential game. You will have two charges which will be
invisible, and located at random positions. You will only see that part of the electric potential
that your avatar has explored. Move your avatar around the plane until you have enough
information to guess the signs of the charges. Play the game and see which group at the table
gets the lowest cumulative score for three tries.

Solving 6-4
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