TEST ONE Thursday Evening February 25 7:30-9:30 pm . The Friday class immediately following is canceled because of the evening exam.

What We Expect From You On The Exam

(1) Ability to calculate the electric field of both discrete and continuous charge distributions. We may give you a problem on setting up the integral for a continuous charge distribution, although we do not necessarily expect you to do the integral, unless it is particularly straight forward. You should be able to set up problems like: calculating the field of a small number of point charges, the field of the perpendicular bisector of a finite line of charge; the field on the axis of a ring of charge; and so on.
(2) To be able to recognize and draw the electric field line patterns for a small number of discrete charges, for example, from two point charges (of same or opposite charge)
(3) To be able to apply the principle of superposition to electrostatic problems.
(4) An understanding of how to calculate the electric potential of a discrete set of charges, that is the use of the equation $V(\mathbf{r})=\sum_{i=1}^{N} \frac{q_{i}}{4 \pi \varepsilon_{o}\left|\mathbf{r}-\mathbf{r}_{i}\right|}$ for the potential of N charges q_{i} located at positions \mathbf{r}_{i}. Also you must know how to calculate the configuration energy necessary to assemble this set of charges.
(5) The ability to calculate the electric potential given the electric field and the electric field given the electric potential, e.g. being able to apply the equations

$$
\Delta V_{a t o b}=V_{b}-V_{a}=-\int_{a}^{b} \mathbf{E} \cdot \mathrm{dl} \text { and } \mathbf{E}=-\vec{\nabla} V .
$$

(6) An understanding of how to use Gauss's Law. In particular, we may give you a problem that involves either finding the electric field of a uniformly or non-uniformly filled cylinder, slab or sphere of charge, as well as the potential associated with that electric field. You must be able to explain the steps involved in this process clearly, and in particular to argue how to evaluate $\left[\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}\right.$ on every part of the closed surface to which you apply Gauss's Law, even those parts that are zero.
(7) To be able to answer qualitative conceptual questions that require no calculation. There will be concept questions similar to those done in class.

To study for this exam (which you should DEFINITELY DO!) we suggest that you review your problem sets, in-class problems, Friday problem solving sessions, PRS in-class questions, and relevant parts of the study guide and class notes and work through multiple past exams

) (MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 3

Due: Tuesday, February 23 at 9 pm .
Hand in your problem set in your section slot in the boxes outside the door of 32-082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes.
Reading Assignments:
Week Three: Electric Potential
President's Day - M 2/15 / M Classes on T 2/16
$\begin{array}{ll}\text { Class 6 W03D1 T Feb } 16 & \text { Electric Potential } \\ \text { Reading: } & \text { Course Notes Sections 3.1-3.5, 3.7-3.8 }\end{array}$
Class 7 W03D02 W/R Feb 17/18 Electric Potential; Equipotential Lines and Electric Fields Expt.1: Electric Potential; Configuration Energy;
Reading: Course Notes: Sections 3.1-3.5
Experiment: Expat. Flecmepotenial
Class 8 W03D3 F Feb 19 PS03: Electric Potential
Reading: \quad Course Notes: Sections 3.1-3.5, 3.7-3.8

Week Four Conductors and Capacitors

Class 9 W04D1 M/T Feb 22/3 Energy Stored in Capacitors; Reading:

Class 10 W04D2 W/R Feb 24/25

Exam 1 Thursday Feb 25
W04D3 F Feb 26

$$
V(p)-V(a)
$$

Course Notes: Sections 4.3-4.4; 5.1-5.4, 5.9
Exam One Review
7:30 pm -9:30 pm
No class day after exam

Problem 1: Concept Questions. Explain your reasoning.

Suppose an electrostatic potential has a maximum at point P and a minimum at point M .
(a) Are either (or both) of these points equilibrium points for a negative charge? If so are they stable?
(b)Are either (or both) of these points equilibrium points for a positive charge? If so are they stable?

Problem 2: Charges on a Square

Three identical charges $+Q$ are placed on the corners of a square of side a, as shown in the figure.

(a) What is the electric field at the fourth corner (the one missing a charge) due to the first three charges?
(b) What is the electric potential at that corner?
(c) How much work does it take to bring another charge, $+Q$, from infinity and place it at that corner?
(d) How much energy did it take to assemble the pictured configuration of three charges?

Problem 3: Line of Charge

Consider a very long rod, radius R and charged to a uniform linear charge density λ.
a) Calculate the electric field everywhere outside of this rod (ie. find $\overrightarrow{\mathbf{E}}(\mathbf{r})$).
(b) Calculate the electric potential everywhere outside, where the potential is defined to be zero at a radius $R_{0}>R$ (i.e. $V\left(R_{0}\right) \equiv 0$)

Problem 4: Estimation: High Voltage Power Lines

Estimate the largest voltage at which it's reasonable to hold high voltage power lines. Then check out this vices, (http://web.mit.edu/8.02t/www/materials/ProblemSets/PS03_Video.mpeg) care of a Boulder City, Nevada power company. Air ionizes when electric fields are on the order of $3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~m}^{-1}$.

Problem 5: Charged Sphere Consider a uniformly charged sphere of radius R and charge Q. Find the electric potential difference between any point lying on a sphere of radius r and the point at the origin, ie. $V(r)-V(0)$. Choose the zero reference point for the potential at $r=0$, i.e. $V(0)=0$. How does your expression for $V(r)$ change if you chose the zero reference point for the potential at $r=\infty$, ie. $V(\infty)=0$.

Problem 6: Charged Washer A thin washer of outer radius b and inner radius a has a uniform negative surface charge density $-\sigma$ on the washer (note that $\sigma>0$).

a) If we set $V(\infty)=0$, what is the electric potential difference between a point at the center of the washer and infinity, $V(P)-V(\infty)$?
b) An electron of mass m and charge $q=-e$ is released with an initial speed v_{0} from the center of the hole (at the origin) in the upward direction (along the perpendicular axis to the washer) experiencing no forces except repulsion by the charges on the washer. What speed does it ultimately obtain when it is very far away from the washer (i.e. at infinity)?

Problem 7: Charged Slab \& Sheets

An infinite slab of charge carrying a charge per unit volume ρ has a charged sheet carrying charge per unit area σ_{1} to its left and a charged sheet carrying charge per unit area σ_{2} to its right (see top part of sketch). The lower plot in the sketch shows the electric potential $V(x)$ in volts due to this slab of charge and the two charged sheets as a function of horizontal distance x
 from the center of the slab. The slab is 4 meters wide in the x-direction, and its boundaries are located at $x=-2 \mathrm{~m}$ and $x=+2 \mathrm{~m}$, as indicated. The slab is infinite in the y direction and in the z direction (out of the page). The charge sheets are located at $x=-6 \mathrm{~m}$ and $x=+6 \mathrm{~m}$, as indicated.

(a) The potential $V(x)$ is a linear function of x in the region $-6 \mathrm{~m}<x<-2 \mathrm{~m}$. What is the electric field in this region?
(b) The potential $V(x)$ is a linear function of x in the region $2 \mathrm{~m}<x<6 \mathrm{~m}$. What is the electric field in this region?
(c) In the region $-2 \mathrm{~m}<x<2 \mathrm{~m}$, the potential $V(x)$ is a quadratic function of x given by the equation $V(x)=\frac{5}{16} x^{2}-\frac{24}{5} \mathrm{~V}$. What is the electric field in this region?
$\begin{array}{cl}5 \\ \text { LyO } & 2 / 20 / 10\end{array}$
(d) Use Gauss's Law and your answers above to find an expression for the charge density ρ of the slab. Indicate the Gaussian surface you use on a figure.
(e) Use Gauss's Law and your answers above to find the two surface charge densities of the left and right charged sheets. Indicate the Gaussian surface you use on a figure.

```
From:
Sent:
Juven Wang [juven@MIT.EDU]
Sunday, February 21, 2010 8:42 PM
To:
Juven Chunfan Wang
Subject:
[8.02] Fwd: [L08] Hints for 8.02t Pset 3
```

Hi 8.02 problem－solvers，

An updated version of hints．

＝ニニニニニニニ

Hints for Pset 3
ニニニニニニニニ
prob 1）
check the first，second derivative of potential（or potential energy）and its sign．
equilibrium（here for static equilibrium）means that particle（charge）experiences zero net force－can stay where it was without moving．

Stable equilibrium is equilibrium with an extra condition that under small（positional）perturbation，the particle will still come back to（or be around）the equilibrium point instead of moving away．
（note：equilibrium includes stable，neutral and unstable equilibrium．）
prob 3－a）
method 1：by Gauss＇s law（easy），cylindrical gaussian surface method 2：Coulomb＇s law（tricky），integrate all charge density on an infinite long wire to get E field．or you can integrate charge density on a finite length wire（interesting and worthwhile to try），then taking the length to be infinite．
prob 3－b）potential in logarithmic log form．（the reason for not taking zero potential at infinity is because $\log (r)$ diverges as r goes to infinity，which is a bad reference．）
prob 4）the E field causes by the cable is in $1 / \mathrm{r}$ form outside the cable（note：though unnecessary to apply here， E field is in a linear form of r inside the cable）．

The potential of the cable should be regard as potential respect to the ground，where we normally set zero potential there．Apply prob 3－b）．potential difference V is in $\operatorname{logarithmic} \log (r)$ ，and assume the distance from the ground to the cable is $5 \sim 10 \mathrm{~m}$ ．

The E field caused by cable has its maximum at the radius R ，say， $1 \sim 10 \mathrm{~cm}$ ．
We like to match this maximum E field at radius R to the air－ionizing magnitude．By this relation，you can relate maximum E to a maximum V saturate the ionizing bound．Find the maximum potential V respect to the ground．
prob 5）get the E field inside the sphere（by Gauss＇s law），which is proportional to r ．relating E field to potential difference $V(r)-V(0)$ by doing a line integration from 0 to r ．
potential difference $V($ (infty $)-\mathrm{V}(\mathrm{r})$ by doing a line integration from \infty to r. you need to do it by two regions since E behaves differently inside and outside the sphere.
prob 6-a)
method 1: summing over potential, contributed from each charge density on the washer.
method 2: from potential V definition, do an integration of E field from infinity to the center of washer along the symmetric axis. you have to find E field from the washer first.
method 1 and method 2 are equivalent by the fact: E field can be obtained by superposition principle.

prob 6-b)

including the electric potential energy as internal energy of the system, apply mechanical energy conservation(electric potential energy+kinetic energy).
or you can use work-energy thm if you consider electrostatic force as an external force.
prob 7) by Gauss's law and by E_x=-dV/dx figure out total net charge of two sheets and one plane is zero. argue that the slab has negative charge. two sheets have the same positive charge.
good luck!
Juven

$$
\begin{aligned}
& \text { Michael Plasmeior } \\
& \text { sC } \\
& 8.02 \text { Set } 3 \\
& \begin{array}{ccc}
\text { Pf } & 14125 \\
\text { Pf } & 15 / 25 & 2 / 20 / 10 \\
\text { other } & 45 / 50 &
\end{array} \\
& \text { Equationivn }=0 \text { net tore } \\
& \text { rif giver a small } \\
& \text { push will cone bach }
\end{aligned}
$$

P is like the mountain peak θ charges will head here - (as moving to lower U)
M is the valley
(1$)$ charges will roll down hill here
lint talks about Ind deriv why?
2. Charges on a square

d. What is field at 4th corder

$$
\begin{aligned}
& E=-\nabla V \\
& V=\text { superposition of the } 3 \\
& O_{+}
\end{aligned}
$$

$$
\rightarrow
$$

$E=$ he $\frac{a}{13}$ for point charges
Superposition them

- What is 1 ?
- Distance from test chargeí
- vectori from charge to observer

$\vec{E}_{2}=$ denominator is always the same pat the distance in numerator

$$
\frac{k_{e} q a}{\sqrt{a^{2}+a^{2}}} \uparrow--\frac{k_{e} q a}{\sqrt{a^{2}+a^{2}}} \jmath
$$

E at $U=E_{1}+E_{2}+E_{3}$
3. Lire of Charge
from notes class 2

$$
\stackrel{\rightharpoonup}{F}=2 k_{l} \frac{\gamma}{s} \hat{\jmath}
$$

But don't you have to use Grass' Law? and is above for o rod $w /$ no radius

"dint male guassian surface ∞ interested in side

$$
\begin{aligned}
& E A=\frac{q \operatorname{inc}}{\varepsilon_{0}} \\
& A=2 \pi r L \quad q=\lambda L \\
& U=\pi r^{2} L \\
& E(2 \pi r L)=\frac{d L}{\varepsilon_{0}} \\
& E(r)=\frac{U Z}{\varepsilon_{0} 2 \pi r \bar{K}}=\frac{d}{\varepsilon_{0} 2 \pi r} \hat{r}
\end{aligned}
$$

note cis in there
bo field is a function of r
(wild also colomb's law - integrate all charge density x on a long wire to get E field

3b Calculate to electric potential everywhere outside

$$
\begin{aligned}
& V\left(R_{0}\right)=0 \\
& V=V_{B}-V_{0}=\int_{0}^{\beta} \vec{E} d s
\end{aligned}
$$

don't use
Since $\log (r)$
diverges at
$\left.\frac{l}{\left(x \pi \frac{r^{2}}{x}\right.}\right|_{0} ^{e} R>R_{0}$ so did in tegal wrong

$$
V=\frac{x}{602 \pi} \log (R) \quad-\frac{\lambda}{\varepsilon_{0} 2 \pi} \cdot \log (0)
$$

So what is it when $R=0$
loos at
more examples
$V=\frac{\lambda}{\varepsilon_{0} 2 \pi} \log (R) \quad$ or superposition of particles

$$
\begin{aligned}
V= & k_{e} \sum \frac{a_{1}}{r_{1}} \\
V= & -\int_{A}^{B} k Q \frac{\hat{r}}{r^{2}} d s \\
& \left.-k Q \int_{A}^{B} \frac{d r}{r^{2}}\right) \frac{p t}{\frac{t}{\operatorname{hrgge}}}
\end{aligned}
$$

Hudson i
Simitar fo \#3
4. Estimate High Voltage Power Lines

Air ionizes at $\mathrm{E}^{\circ}=3 \cdot 106 \mathrm{~V} \cdot \mathrm{~m}^{-1}$

Kind

I field in cable is $\frac{1}{r}$ form outside, cable Tprneeded to apply here as E is in ear (r) inside cable
Potential diff $w /$ respect to ground

$$
\begin{aligned}
& V \ln \log _{y}(r)^{\prime} \\
& \text { cable gond } \approx 5-10 m
\end{aligned}
$$

E field cased by cable haas max hat $1-10 \mathrm{~cm}$ want to match E field at $R \mathrm{w}$ air ionizing magnitule. Relate max F to max V saturate bonds. Find max V respect w/ ground.

I don't get at all.

$$
\vec{E}=-\nabla V=k_{e} \frac{q}{r^{3}} \quad E A=\frac{Q_{i n}}{6_{r}}
$$

V in log form
iso similar as last problem - ∞ long wire

$$
\begin{aligned}
& E=\frac{\lambda}{\epsilon_{0} 2 \pi} d r= \\
& V=\frac{1}{\varepsilon_{0} 2 \pi} \log (R)
\end{aligned}
$$

$$
\begin{aligned}
& E=\frac{\lambda}{\varepsilon_{0} 2 \pi R}=3 \cdot 10^{6} \\
& 1.88 \cdot 10^{8}=\frac{\lambda}{\varepsilon_{0} R}
\end{aligned}
$$

Telectric constant $8.8 \cdot 10^{-12}$

$$
\begin{aligned}
& 1.65 \cdot 10^{-4}=\frac{d}{R} \\
& 1.65 \cdot 10^{-4} R=\lambda
\end{aligned}
$$

Distribution of charge
density

$$
\begin{aligned}
& V_{\text {max }} V_{R_{\text {adits }}-V_{\text {Grow }}} \\
& V=\frac{\lambda}{\xi_{0} 2 \pi} \log (R) \\
& V=\frac{1.65 \cdot 10^{-4} R}{\varepsilon_{0} 2 \pi} \log (R) \\
& V=2.64 \cdot 10^{12} \\
& T^{-5} R \log R
\end{aligned}
$$

Get E field inside sphere - proportions to C
5. Charged sphere

tor point charges

$$
\begin{aligned}
& V=V_{B}-V_{A}=-\int_{0} \stackrel{\rightharpoonup}{E} d s \\
& E A=\frac{P V}{\varepsilon_{0}} \\
& E 4 \pi r^{2}=\frac{\rho \frac{4}{3} \pi r^{3}}{6_{0}} \\
& E=\frac{\rho M \pi r^{8}}{3 \varepsilon_{0} 4 \pi r^{x}}=\underline{\frac{\rho_{r}}{3 \varepsilon_{0}}} \text { proportional to } \because \theta \\
& V=-\int_{0}^{r} \frac{\rho r}{3 \varepsilon_{0}} d s \quad V(R) \cdot V(0) \theta \\
& r=\frac{-1}{2} \frac{p r^{2}}{3 \varepsilon_{0}}-0 \text { what is } P \text { ? (in terms of } \begin{array}{c}
\text { knowles } Q+R) \\
\text { values }
\end{array}
\end{aligned}
$$

T, what

How does it change for $V(\infty)$?
on lt lo or") $[$ It does not -you just pich an arbitrary point to be O which you measure from $V(a)-V(r) \quad 2$ regions E diff inside tat
wait why 2 regions

- just s to surface of sphere

Need to flan Guess outside

$$
\begin{aligned}
& E A=P H \\
& E 4 \pi r^{2}=\frac{\varepsilon_{0}}{\rho^{\frac{4}{3}} \pi r^{3}} \\
& E=\frac{\rho r}{36_{0}} \text { abut } r \text { slays constant everywhere } \\
& \int \frac{p c}{3 \varepsilon_{0}} d s \\
& \left.\frac{p r}{3 b_{0}} r \right\rvert\, \\
& \frac{\rho r^{2}}{3 \varepsilon_{0}}-\frac{\rho r}{3 \varepsilon_{0}} \infty \\
& V=\frac{\rho r^{2}}{360} \\
& \frac{\text { but } \infty}{\frac{\text { sem sol }}{1+125}} \\
& \infty=0 \\
& \left.\frac{Q}{4+\pi \varepsilon_{0} r}\right|_{r=b} ^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { charge } \\
& \text { Don't think need this } \\
& \text { in this problem }
\end{aligned}
$$

Methat I summing over potential, contributed tram each charge derails " 2 ifrom potential V definition Sos center . Find E in masterly
$E=$ superposition
6. Charged Washer

a. If we set $V(\infty)=0$ what is potential differere?

$$
V(p)-V(\infty)
$$

T this is O because we set it
is so just measure electric potential from this
2) Is this where easy to move in lot charge, others $\frac{-k Q}{d}$

$$
V(P)=\int_{0}^{p} \vec{E} d s \quad-\text { find } E
$$

b Electron mass m charge $q=-e$ released at v_{0} in upward direction only repelled by washer.

$$
\begin{aligned}
& W_{0} q \Delta V=x \cdot m \\
\Delta V=- & \int_{0}^{x} \vec{E} d s \quad a=\frac{q E}{m} \\
E A= & \sigma A \quad t \text { what kind of surface? }
\end{aligned}
$$

Dumaskin
S_{1}

if you

$$
\int_{a}^{b}
$$

$\frac{d q}{d r}$) sum therings

$$
\begin{aligned}
& \int_{a}^{b} \frac{k d a}{r} \\
& \int_{a}^{b-\frac{k \sigma}{r} 2 \pi \rho^{\prime} d r} \\
& = \\
& \frac{1}{4 \pi} \varepsilon_{0} \sigma 2 \pi(b-a)
\end{aligned}
$$

$$
-1 \quad \frac{--0}{2 \varepsilon_{0}}(b-a)
$$

Include electric $\cap E$ as internal energy of system -apply mech l conservation Electric $u+k E$
or wotk-energy therm if electro static is outside force

$$
\begin{gathered}
E\left(\pi b^{2}-\pi a^{2}\right)=\frac{\sigma\left(\pi b^{2}-\pi a^{2}\right)}{\varepsilon_{0}} \\
E=\frac{\sigma\left(\pi b^{2}-\pi a^{2}\right)}{\varepsilon_{0}\left(\pi b^{2}-\pi a^{2}\right)}=\frac{\sigma}{\varepsilon_{0}}
\end{gathered}
$$

$$
\uparrow
$$

T. is that right or use ring of charge from class 2 ring of charge is easier - can superimpose

$$
E=k_{e} Q \frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}} \uparrow \frac{\text { potential of }}{\text { rings }}
$$

$$
V=\int_{0}^{x} \frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}} d s
$$

$$
V=\frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}}-0
$$

$$
r=\frac{x m}{q}
$$

$$
\begin{array}{r}
\frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}}=\frac{x_{m}}{-e} \\
a=\frac{q E}{m} a=\frac{q\left(\frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}}\right)}{m}
\end{array}
$$

fin tod
7. Charged Slab + sheets

a. $V(x)$ is linear $-6 m<x<-2$.

E Field?

$$
\begin{aligned}
F= & -\nabla V \\
& - \text { inflate in } y \text { and } 2 \text { directions } \\
E= & -\frac{d V}{d x} \\
& =\frac{\square-5 V}{-6--2 m}=-\frac{15}{-4}=+5 / 4 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

b. $\quad 2<x<6$

$$
E=-\frac{d V}{d x}=-\frac{-5-0 V}{2-6 m}=\frac{-5}{-4}=-5 / 4 \mathrm{~V} / \mathrm{m}
$$

C.

$$
\begin{aligned}
&-2<x<2 m \\
& V(x)=\frac{5}{16} x^{2}-\frac{24}{5} V \\
& E=\frac{d V}{d x}=\frac{5}{16} \cdot 2 x-0 \\
& \frac{10}{16} x=\frac{5}{8} \times V
\end{aligned}
$$

d. Use Guess' Low to find p of slab

Need outside + inside

Fingide

Ot side

$E A=\frac{\rho d A}{\varepsilon_{0}}$
$E=\frac{\rho d}{c_{0}}$

C induing ${\underset{\sigma}{0}}_{1}^{\sigma}$
ishould have just dove outside all that matters

1. Guass's Lav for set

Square pill box

$$
\begin{aligned}
& 2 E A=\sigma \frac{\sigma A}{\varepsilon_{0}} \\
& E=\frac{\sigma}{2 \varepsilon_{0}}
\end{aligned}
$$

So $\frac{\sigma}{26_{0}}-\frac{p d}{6_{0}}-\frac{p d}{6_{0}}+\frac{\sigma}{26_{0}}=0 ?$

MegaVolt ans
from key
In from ball

$$
\begin{aligned}
& V=E d \\
& V=3 \cdot 10 \mathrm{k} / \mathrm{m} \circ 1 \mathrm{~m} \\
& V=3.6 \cdot 10 \mathrm{~V}
\end{aligned}
$$

More like a pall of charge S. se $\frac{K Q}{r}$
and $V \approx E d$ still
so above ans about r ight
Minimum charge at brakdom strengh

$$
\begin{aligned}
E= & \frac{k Q}{r^{2}} \quad \text { Sphere }=5 \mathrm{~cm} \\
Q & =\frac{r^{2} E}{k} \\
& \frac{(5 \mathrm{~cm})^{2} \cdot 3 \cdot 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}}{9 \cdot 10^{9} \frac{\mathrm{Vm}}{\mathrm{C}}} \\
& \approx 8 \cdot 10^{-7} \mathrm{C} \\
& \approx 5 \times 10^{12} \mathrm{e}
\end{aligned}
$$

field breaking down furter away so charge 20^{2} loge

$$
Q \approx 10^{-4} C \approx 5 \cdot 10^{14} \mathrm{e}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Problem Set 3 Solutions

Problem 1: Concept Questions. Explain your reasoning.

Suppose an electrostatic potential has a maximum at point P and a minimum at point M .
(a) Are either (or both) of these points equilibrium points for a negative charge? If so are they stable?

Solution: The electric field is the gradient of the potential, which is zero at both potential minima and maxima. So a negative charge is in equilibrium (feels no net force) at both P \& M . However, only the maximum (P) is stable. If displaced slightly from P , a negative charge will roll back "up" hill, back to P. If displaced from M a negative charge will roll away from the potential minimum.
(b) Are either (or both) of these points equilibrium points for a positive charge? If so are they stable?

Solution: Similarly, both P \& M are equilibria for positive charges, but only M is a stable equilibrium because positive charges seek low potential (this is probably the case that seems more logical since it is like balls on mountains).

Problem 2: Charges on a Square

Three identical charges $+Q$ are placed on the corners of a square of side a, as Q shown in the figure.
(a) What is the electric field at the fourth corner (the one missing a charge) due to the first three charges?

Solution: We'll just use superposition:

$$
\overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{a \hat{\mathbf{i}}}{a^{3}}+\frac{a \hat{\mathbf{i}}+a \hat{\mathbf{j}}}{(\sqrt{2} a)^{3}}+\frac{a \hat{\mathbf{j}}}{a^{3}}\right)=\frac{Q}{4 \pi \varepsilon_{0}}\left(1+2^{-3 / 2}\right)(\hat{\mathbf{i}}+\hat{\mathbf{j}})
$$

(b) What is the electric potential at that corner?

Solution: A common mistake in doing this kind of problem is to try to integrate the \mathbf{E} field we just found to obtain the potential. Of course, we can't do that we only found the \mathbf{E} field at a single point, not as a function of position. Instead, just sum the point charge potentials from the 3 points:

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i \neq j} \frac{q_{i}}{r_{i j}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{a}+\frac{Q}{\sqrt{2} a}+\frac{Q}{a}\right)=\frac{Q}{4 \pi \varepsilon_{0} a}\left(2+\frac{1}{\sqrt{2}}\right)
$$

(c) How much work does it take to bring another charge, $+Q$, from infinity and place it at that corner?

Solution: The work required to bring a charge $+Q$ from infinity (where the potential is 0) to the corner is:

$$
W=Q \Delta V=\frac{Q^{2}}{4 \pi \varepsilon_{0} a}\left(2+\frac{1}{\sqrt{2}}\right)
$$

(d) How much energy did it take to assemble the pictured configuration of three charges?

Solution: The work done to assemble three charges as pictured is the same as the potential energy of the three charges already in such an arrangement. Now, there are two pairs of charges situated at a distance of a, and one pair of charges situated at a distance of $\sqrt{2} a$, thus we have

$$
W=2\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{a}\right)+\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{\sqrt{2} a}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{a}\left(2+\frac{1}{\sqrt{2}}\right)
$$

Alternatively we could have started with empty space, brought in the first charge for free, the second charge in the potential of the first and so forth. We'll get the same answer.

Problem 3: Line of Charge

Consider a very long rod, radius R and charged to a uniform linear charge density λ.
a) Calculate the electric field everywhere outside of this rod (i.e. find $\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})$).

Solution: This is easily calculated using Gauss's Law and a cylindrical Gaussian surface of radius r and length l. By symmetry, the electric field is completely radial (this is a "very long" rod), so all of the flux goes out the sides of the cylinder:

$$
\iiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=2 \pi r l E=\frac{Q_{c n c}}{\varepsilon_{0}}=\frac{\lambda l}{\varepsilon_{0}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\lambda}{2 \pi r \varepsilon_{0}} \hat{\mathbf{r}}
$$

b) Calculate the electric potential everywhere outside, where the potential is defined to be zero at a radius $R_{0}>R$ (i.e. $V\left(R_{0}\right) \equiv 0$)

Solution: To get the potential we simply integrate the electric field from R to wherever we want to know it (in this case r):

$$
V(r)=V(r)-\underbrace{V\left(R_{0}\right)}_{0}=-\int_{R_{0}}^{r} \overrightarrow{\mathbf{E}}\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \cdot d \overrightarrow{\mathbf{r}}^{\prime}=-\int_{R_{0}}^{r} \frac{\lambda}{2 \pi r^{\prime} \varepsilon_{0}} d r^{\prime}=-\left.\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(r^{\prime}\right)\right|_{R_{0}} ^{r}=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{R_{0}}{r}\right)
$$

Problem 4: Estimation: High Voltage Power Lines

Estimate the largest voltage at which it's reasonable to hold high voltage power lines. Then check out this video, care of a Boulder City, Nevada power company. Air ionizes when electric fields are on the order of $3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~m}^{-1}$.

Solution: In order to answer this question we have to think about what happens if we go to very high voltages. What breaks down? The problem with high voltages is that they lead to high fields. And high fields mean breakdown.

You derived the voltage and field in problem 3 :

$$
E(r)=\lambda / 2 \pi \varepsilon_{0} r ; V(r)=\left(\lambda / 2 \pi \varepsilon_{0}\right) \ln \left(R_{0} / r\right) \Rightarrow \quad V(r)=E(r) r \ln \left(R_{0} / r\right)
$$

The strongest field, and hence breakdown, appears at $r=R \sim 1 \mathrm{~cm}$, the radius of a power line (that makes the diameter just under 1 inch - it might be 3 or 4 times that big but probably not ten times). The voltage is defined relative to some ground, either another cable (probably $R_{0} \sim 1 \mathrm{~m}$ away) or at the most the real ground ($R_{0} \sim 10 \mathrm{~m}$ away). So,

$$
V_{\max }=E_{\max } R \ln \left(R_{0} / R\right)=\left(3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~m}^{-1}\right)(1 \mathrm{~cm}) \ln (10 \mathrm{~m} / 1 \mathrm{~cm}) \cong 2 \times 10^{5} \mathrm{~V}
$$

As it turns out, a typical power-line voltage is about 250 kV , about as large as we estimate here. Some high voltage lines can even go up to 600 kV though (or double that for AC voltages). They must use larger diameter cables.

By the way, you can tell that breakdown is a real concern. In humid weather (during rainstorms for example) you will sometimes hear crackling coming from the power lines. This is corona discharge, a high voltage, low current breakdown, similar to the crackling you hear from the Van de Graff generator in class. The movie is of an arc discharge, a very high current phenomenon that can be very dangerous.

Problem 5: Charged Sphere Consider a uniformly charged sphere of radius R and charge Q. Find the electric potential difference between any point lying on a sphere of radius r and the point at the origin, i.e. $V(r)-V(0)$. Choose the zero reference point for the potential at $r=0$, i.e. $V(0)=0$. How does your expression for $V(r)$ change if you chose the zero reference point for the potential at $r=\infty$, i.e. $V(\infty)=0$.

Solution: In order to solve this problem we must first calculate the electric field as a function of r for the regions $0<r<R$ and $r>R$. Then we integrate the electric field to find the electric potential difference between any point lying on a sphere of radius r and the point at the origin. Because we are computing the integral along a path we must be careful to use the correct functional form for the electric field in each region that our path crosses.

There are two distinct regions of space defined by the charged sphere: region $\mathrm{I}: r<R$, and region II: $r>R$. So we shall apply Gauss's Law in each region to find the electric field in that region.

For region I: $r<R$, we choose a sphere of radius r as our Gaussian surface. Then, the electric flux through this closed surface is

$$
\iiint \overrightarrow{\mathbf{E}}_{1} \cdot d \overrightarrow{\mathbf{A}}=E_{I} \cdot 4 \pi r^{2} .
$$

The sphere has a uniform charge density $\rho=Q /(4 / 3) \pi R^{3}$. Because the charge distribution is uniform, the charge enclosed in our Gaussian surface is given by

$$
\frac{Q_{c n c}}{\varepsilon_{0}}=\frac{\rho(4 / 3) \pi r^{3}}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}} \frac{r^{3}}{R^{3}} .
$$

Now we apply Gauss's Law:

$$
\iiint \overrightarrow{\mathbf{E}}_{1} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{c n c}}{\varepsilon_{0}}
$$

to arrive at:

$$
E_{I} \cdot 4 \pi r^{2}=\frac{Q}{\varepsilon_{0}} \frac{r^{3}}{R^{3}} .
$$

which we can solve for the electric field inside the sphere

$$
\overrightarrow{\mathbf{E}}_{1}=E_{l} \hat{\mathbf{r}}=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \hat{\mathbf{r}}, 0<r<R
$$

For region II: $r>R$: we choose the same spherical Gaussian surface of radius $r>R$, and the electric flux has the same form

$$
\left[\iint \overrightarrow{\mathbf{E}}_{\mathrm{II}} \cdot d \overrightarrow{\mathbf{A}}=E_{I I} \cdot 4 \pi r^{2} .\right.
$$

All the charge is now enclosed, $Q_{\text {cnc }}=Q$, then Gauss's Law becomes

$$
E_{I I} \cdot 4 \pi r^{2}=\frac{Q}{\varepsilon_{0}}
$$

We can solve this equation for the electric field

$$
\overrightarrow{\mathbf{E}}_{\mathrm{II}}=E_{l / \mathbf{r}} \hat{\mathbf{r}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, r>R .
$$

In this region of space, the electric field falls off as $1 / r^{2}$ as we expect since outside the charge distribution, the sphere acts as if all the charge were concentrated at the origin.

Our complete expression for the electric field as a function of r is then

$$
\overrightarrow{\mathbf{E}}(r)=\left\{\begin{array}{l}
\overrightarrow{\mathbf{E}}_{\mathbf{1}}=E_{l} \hat{\mathbf{r}}=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \hat{\mathbf{r}}, 0<r<R \\
\overrightarrow{\mathbf{E}}_{\mathrm{II}}=E_{l /} \hat{\mathbf{r}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, r>R
\end{array}\right.
$$

We can now find the electric potential difference between any point lying on a sphere of radius r and the origin, i.e. $V(r)-V(0)$.

We begin by considering values of r such that $0<r<R$. We shall calculate the potential difference by calculating the line integral

$$
V(r)-V(0)=-\int_{r^{\prime}=0}^{r^{\prime}=r} \overrightarrow{\mathbf{E}}_{1} \cdot d \overline{\mathbf{r}}^{\prime} ; 0<r<R
$$

We use as integration variable r^{\prime} and integrate from $r^{\prime}=0$ to $r^{\prime}=r$:

$$
V(r)-V(0)=-\int_{r^{\prime}=0}^{r^{\prime}=r} \frac{Q r^{\prime}}{4 \pi \varepsilon_{0} R^{3}} \hat{\mathbf{r}} \cdot d r^{\prime} \hat{\mathbf{r}}=-\int_{r^{\prime}=0}^{r^{\prime}=r} \frac{Q r^{\prime}}{4 \pi \varepsilon_{0} R^{3}} d r^{\prime}=-\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}} ; 0<r<R
$$

For $r>R$: we are taking a path form the origin through regions I and regions II and so we need to use both functional forms for the electric field in the appropriate regions. The potential difference between any point lying on a sphere of radius $r>R$ and the origin is given by the line integral expression

$$
V(r)-V(0)=-\int_{r^{\prime}=0}^{r^{\prime}=R} \overrightarrow{\mathbf{E}}_{\mathbf{I}} \cdot d \mathbf{r}^{\prime}-\int_{r^{\prime}=R}^{r^{\prime}=r} \overrightarrow{\mathbf{E}}_{\mathrm{I}} \cdot d \overrightarrow{\mathbf{r}}^{\prime} ; r>R .
$$

Using our results for the electric field we get that

$$
V(r)-V(0)=-\int_{r^{\prime}=0}^{r^{\prime}=R} \frac{Q r^{\prime}}{4 \pi \varepsilon_{0} R^{3}} \hat{\mathbf{r}} \cdot d r^{\prime} \hat{\mathbf{r}}-\int_{r^{\prime}=R}^{r^{\prime}=r} \frac{Q}{4 \pi \varepsilon_{0} r^{\prime 2}} \hat{\mathbf{r}} \cdot d r^{\prime} \hat{\mathbf{r}} ; r>R
$$

This becomes

$$
V(r)-V(0)=-\int_{r^{\prime}=0}^{r^{\prime}=R} \frac{Q r^{\prime}}{4 \pi \varepsilon_{0} R^{3}} d r^{\prime}-\int_{r^{\prime}=R}^{r^{\prime}=r} \frac{Q}{4 \pi \varepsilon_{0} r^{\prime 2}} d r^{\prime} ; r>R
$$

Integrating yields

$$
V(r)-V(0)=-\left.\frac{Q r^{\prime 2}}{8 \pi \varepsilon_{0} R^{3}}\right|_{r^{\prime}=0} ^{r^{\prime}=R}+\left.\frac{Q}{4 \pi \varepsilon_{0} r^{\prime}}\right|_{r^{\prime}=R} ^{r^{\prime}=r} ; r>R
$$

Substituting in the endpoints yields

$$
V(r)-V(0)=V(r)-V(0)=-\frac{Q}{8 \pi \varepsilon_{0} R}+\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R}\right) ; r>R
$$

A little algebra then yields

$$
V(r)-V(0)=\frac{Q}{4 \pi \varepsilon_{0} r}-\frac{3 Q}{8 \pi \varepsilon_{0} R} ; r>R
$$

Thus the electric potential difference between any point lying on a sphere of radius r and the origin (where $V(0)=0$) is given by

$$
V(r)-V(0)=\left\{\begin{array}{l}
-\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}} ; 0<r<R \\
\frac{Q}{4 \pi \varepsilon_{0} r}-\frac{3 Q}{8 \pi \varepsilon_{0} R} ; r>R
\end{array}\right.
$$

When we set $V(0)=0$, we have an expression for the electric potential function

$$
V(r)=\left\{\begin{array}{l}
-\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}} ; 0<r<R \\
\frac{Q}{4 \pi \varepsilon_{0} r}-\frac{3 Q}{8 \pi \varepsilon_{0} R} ; r>R
\end{array}\right.
$$

We plot $V(r)$ vs. r in the figure below. Note that the graph of the electric potential function is continuous at $r=R$.

When we set $r=\infty$, the potential difference between the sphere at infinity and the origin is

$$
V(\infty)-V(0)=-\frac{3 Q}{8 \pi \varepsilon_{0} R} .
$$

If we had chosen the zero reference point for the electric potential at $r=\infty$, with $V(\infty)=0$. The with that choice, we have that $V(0)=\frac{3 Q}{8 \pi \varepsilon_{0} R}$. Therefore using our results above the new form for the potential function is

$$
V(r)=\left\{\begin{array}{l}
V(0)-\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}} ; 0<r<R \\
V(0)+\frac{Q}{4 \pi \varepsilon_{0} r}-\frac{3 Q}{8 \pi \varepsilon_{0} R} ; r>R
\end{array}\right.
$$

This amounts to just adding the constant $\frac{3 Q}{8 \pi \varepsilon_{0} R}$ to the above results for the potential function $V(r)$ giving

$$
V(r)=\left\{\begin{array}{l}
\frac{3 Q}{8 \pi \varepsilon_{0} R}-\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}} ; 0<r<R \\
\frac{Q}{4 \pi \varepsilon_{0} r} ; r>R
\end{array} .\right.
$$

In the above expression we can easily check that $V(\infty)=0$. Equivalently we shift our previous graph up by $3 Q / 8 \pi \varepsilon_{0} R$ as shown in the graph below.

Problem 6: Charged Washer A thin washer of outer radius b and inner radius a has a uniform negative surface charge density $-\sigma$ on the washer (note that $\sigma>0$).

a) If we set $V(\infty)=0$, what is the electric potential difference between a point at the center of the washer and infinity, $V(P)-V(\infty)$?

Solution: The potential difference $V(P)-V(\infty)$ between infinity and the point P at the center of the washer is given by

$$
V(P)-V(\infty)=\int_{\text {source }} \frac{k(-\sigma) d a^{\prime}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}
$$

Choose as an integration element a ring of radius r^{\prime} and width $d r^{\prime}$ with charge $d q^{\prime}=(-\sigma) d a^{\prime}$ where $d a^{\prime}=2 \pi r^{\prime} d r^{\prime}$.

Because the field point P is at the origin $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{0}}$ and the vector from the origin to the any point on the ring is $\overrightarrow{\mathbf{r}}^{\prime}=r^{\prime} \hat{\mathbf{r}}$, therefore in the above expression the distance from the integration element, the ring, to the field point P is

$$
\frac{1}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}=\frac{1}{r^{\prime}}
$$

So the integral becomes

$$
V(P)-V(\infty)=\int_{\text {sourrce }} \frac{k(-\sigma) d a^{\prime}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}=\int_{r^{\prime}=a}^{r^{\prime}=b} \frac{k(-\sigma) 2 \pi r^{\prime} d r^{\prime}}{r^{\prime}}=-k \sigma 2 \pi(b-a)
$$

b) An electron of mass m and charge $q=-e$ is released with an initial speed v_{0} from the center of the hole (at the origin) in the upward direction (along the perpendicular axis to the washer) experiencing no forces except repulsion by the charges on the washer. What speed does it ultimately obtain when it is very far away from the washer (i.e. at infinity)?

Solution: By conservation of energy (note that $V(\infty)-V(P)=k \sigma 2 \pi(b-a)>0$)

$$
0=\Delta K+\Delta U=\Delta K+q(V(\infty)-V(P))=\Delta K-e k \sigma 2 \pi(b-a):
$$

If we denote the initial speed of the electron by v_{0} and the speed of the electron when it is very far away by v_{f} then $\Delta K=(1 / 2) m v_{f}^{2}-(1 / 2) m v_{0}^{2}$. Hence

$$
(1 / 2) m v_{f}^{2}-(1 / 2) m v_{0}^{2}=e k \sigma 2 \pi(b-a)>0 .
$$

We can now solve for the final speed of the electron when it is very far away from the washer

$$
v_{f}=\sqrt{v_{0}^{2}+e k \sigma 4 \pi(b-a) / m} .
$$

Problem 7: Charged Slab \& Sheets

An infinite slab of charge carrying a charge per unit volume ρ has a charged sheet carrying charge per unit area σ_{1} to its left and a charged sheet carrying charge per unit area σ_{2} to its right (see top part of sketch). The lower plot in the sketch shows the electric potential $V(x)$ in volts due to this slab of charge and the two charged sheets as a function of horizontal distance x from the center of the slab. The slab is 4 meters wide in the x-direction, and its boundaries are located at $x=-2 \mathrm{~m}$ and $x=+2 \mathrm{~m}$, as indicated. The slab is infinite in the y direction and in the z direction (out of the page). The charge sheets are located at $x=-6 \mathrm{~m}$ and $x=+6 \mathrm{~m}$, as indicated.

(a) The potential $V(x)$ is a linear function of x in the region $-6 \mathrm{~m}<x<-2 \mathrm{~m}$. What is the electric field in this region?

Solution:

$$
\overrightarrow{\mathbf{E}}=-\frac{\partial V}{\partial x} \hat{\mathbf{i}}=-\frac{\Delta V}{\Delta x} \hat{\mathbf{i}}-\frac{-5 \mathrm{~V}}{4 m}=1.25 \frac{\mathrm{~V}}{m} \hat{\mathbf{i}}
$$

(b) The potential $V(x)$ is a linear function of x in the region $2 \mathrm{~m}<x<6 \mathrm{~m}$. What is the electric field in this region?

Solution:

$$
\overrightarrow{\mathbf{E}}=-\frac{\partial V}{\partial x} \hat{\mathbf{i}}=-\frac{\Delta V}{\Delta x} \hat{\mathbf{i}}=-\frac{5 \mathrm{~V}}{4 m}=-1.25 \frac{\mathrm{~V}}{m} \hat{\mathbf{i}}
$$

(c) In the region $-2 \mathrm{~m}<x<2 \mathrm{~m}$, the potential $V(x)$ is a quadratic function of x given by the equation $V(x)=\frac{5}{16} x^{2} \frac{\mathrm{~V}}{m^{2}}-\frac{25}{4} \mathrm{~V}$. What is the electric field in this region?
Solution: In the region inside the slab, the electric field is

$$
\overrightarrow{\mathbf{E}}=-\frac{\partial V}{\partial x} \hat{\mathbf{i}}=\left[-\frac{5}{8} \frac{\mathrm{~V}}{m^{2}}\right] x \hat{\mathbf{i}}
$$

(d) Use Gauss's Law and your answers above to find an expression for the charge density ρ of the slab. Indicate the Gaussian surface you use on a figure.

Solution:

$$
\begin{aligned}
& {\left[\iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E A=\left[-\frac{5}{8} \frac{\mathrm{~V}}{m^{2}}\right] x A=\frac{q_{i n}}{\varepsilon_{0}}=\frac{\rho x A}{\varepsilon_{0}}\right.} \\
& \Rightarrow \rho=\left[-\frac{5}{8} \frac{\mathrm{~V}}{m^{2}}\right] \varepsilon_{0}
\end{aligned}
$$

(e) Use Gauss's Law and your answers above to find the two surface charge densities of the left and right charged sheets. Indicate the Gaussian surface you use on a figure.

Solution: The electric field vanishes in the regions $x>6 \mathrm{~m}$ and $x<-6 \mathrm{~m}$ (the electric potential is zero and remains zero so the gradient is zero).

Using Gauss's law with the Gaussian pillboxes indicated in the figure, we have

$$
\begin{aligned}
& \iint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E A=\left[\frac{5}{4} \frac{\mathrm{~V}}{m}\right] A=\frac{q_{i n}}{\varepsilon_{0}}=\frac{\sigma_{1} A}{\varepsilon_{0}} \\
& \Rightarrow \sigma_{1}=\left[\frac{5}{4} \frac{\mathrm{~V}}{m}\right] \varepsilon_{0}
\end{aligned}
$$

In a similar manner, $\sigma_{2}=\frac{5}{4} \frac{\mathrm{~V}}{m} \varepsilon_{0}$.
A common mistake is to think that the sign must flip because the electric field sign flips. Note that because the area vector of the Gaussian pillbox also flips direction this is NOT true. It is very important to draw pictures and show the vector directions. If the vectors ($\overrightarrow{\mathbf{E}}$ and $d \overrightarrow{\mathbf{A}})$ are in the same direction then the dot product (and the enclosed charge) is positive.

Physics Reverie Exam
Colomb's Law

- electrostatic interaction b/w charged particles

$$
F=k_{e} \frac{q_{1} q_{2}}{r^{2}}
$$

vector r_{21} from $2 \rightarrow 1$
Why is this seeming pasty to me Reviewed on welter
Lite math

- I think I know it, bot cant do it or con into trouble in subtilises
What should I revier
- do pratice problems

This semester its not just I class per days - lots of work on weekend

- Small work weekdays

After fixing p-set seems really hard

Rings of charge

Aha kg pt i targe at 0
$d q d r$) sum rings
each ring

$$
i_{0}=\text { jistane }
$$

away from enter -so

$$
\int_{a}^{b} \frac{k d q}{r} \downarrow q=\sigma A
$$

$$
\int_{a}^{b} \frac{k \sigma 2 \pi r d r}{r}
$$

$$
=\frac{1}{4 \pi q_{0}} \sigma-2 \pi(b-a)
$$

$$
\begin{aligned}
& =\frac{5}{2 k}(b-a) \\
& \begin{aligned}
&(b-a) \\
& 0=-\int_{\infty}^{p} \frac{k q_{s}}{r c} d r \\
& \phi(p)-\phi(\infty)=\frac{\operatorname{Rdq}_{s}}{r_{s p}} \text { add charges }
\end{aligned} \\
& =\int_{r \text { long }} \frac{k d q_{s}}{\left(r^{2}+z^{2}\right)^{1 / 2}} \text { a circle } \\
& =\frac{k}{\left(r^{2}+z^{2}\right)^{1 / 2}} \int_{\text {rang }} d q_{s}=\frac{k q_{\text {ring }}}{\left(r^{2}+z^{2}\right)^{1 / 2}}
\end{aligned}
$$

then add rings v_{p}
a becomes variable

- each a different distance from center
*

Dumaskin Revier
Session

1. Discrete charges 三 Sources

- electric field

Classic qu

- potential difference

$$
\stackrel{\rightharpoonup}{V}(F)-\vec{V}(p)
$$

Treference pt

- hon much energy does it take to assemble source

If place additional charge near these sources

What is force on q at pt p

$$
F_{q}=0 E_{s}(p)
$$

Move q from p to s

$$
\Delta U=U(S)-U(P)=Q \Delta V_{S}
$$

Tpotential
If release Q from rest, at P, what is its speed at s

$$
\lambda k+\Delta_{V} U=0
$$

(2)

\& From \oplus to Θ
-Superposition + vector addition

$$
\vec{E}_{p}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}
$$

- Can dram vectors knowing t -
- or use $\hat{r} q$ formula approch

$$
\begin{aligned}
& E_{3}=-\uparrow \rightarrow \frac{k q}{d^{2}}=\frac{k q}{(2 b)^{2}} \uparrow \\
& E_{1}+E_{2} \\
& \left|E_{1}\right|=\frac{k q}{d^{2}}=\frac{k q}{\sqrt{a^{2}+b^{2}}}=\frac{k q}{a^{2}+b^{2}} \\
& \cos \theta=-\left(2\left|\vec{E}_{1}\right| \cos \theta-\jmath\right) \\
& =\frac{a}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

$$
\vec{E}(\rho)=\frac{2 k q}{\left(a^{2}+b^{2}\right)} \frac{a}{a^{2}+b^{2}}(-\jmath)-\frac{k q}{4 b^{2}} \tau
$$

* now about adding vectors
* de nom always sure
* could decompose into \uparrow \uparrow
* So I was wrong w / writing d in numerator - or it only worked here

Scalar Potential

single charge

$$
v(p)-v(\infty)=\frac{k q s}{r_{s p}}
$$

T integral of electric field

$$
V(P)-V(\infty)=-\int_{\infty}^{P} \stackrel{\rightharpoonup}{E} \cdot d s=-\int \frac{k q_{s}}{r^{2}}
$$

on straight lis
only
dir of path by dir of points

$$
=\left.\frac{k a_{s}}{r}\right|_{\infty} ^{r_{s p}}
$$

(5) $V(s)-V(p)=\frac{k q}{b}\left(\frac{1}{3}-\frac{1}{2}\right)=\frac{k q}{6 b}$

$$
\begin{aligned}
& \Delta U=Q \Delta V_{s}=-\frac{Q k q}{6 b} \\
& \Delta k+\Delta U=0 \\
& \Delta k=-\Delta U=\frac{Q k q}{6 b} \\
& \frac{1}{2} m V_{f}^{2}-0=\frac{Q k q}{6 b} \\
& V_{f}=\sqrt{\frac{2 Q k q}{6 m b}}
\end{aligned}
$$

How much energy to assemble these charges
First is free
Ind

$$
\begin{aligned}
\Delta U_{2} & =-q(V(p)-v(\infty) \\
& =-q \frac{k q}{2 a}
\end{aligned}
$$

(4)

0

$$
j^{\infty}
$$

T choose $=0$

Can do superposition t add them

$$
\begin{aligned}
& V(\infty)=0 \\
& V(p)=V_{1}(p)+V_{2}(p)+V_{3}(p) \quad \text { Scalar, no vectors } \\
&\left(a^{2}+b^{2}\right)^{1 / 2}-\frac{k q}{\left(a^{2}+b^{2}\right)^{1 / 2}}+\frac{k q}{2 b} \in \frac{k q}{r} n_{0}+\frac{k q}{r^{2}} \\
&=\frac{k q}{2 b} \\
& \text { If } V(\infty) \neq 0
\end{aligned}
$$

then have to add it for each charge

$$
v(\infty)+\underset{r}{k q}
$$

If move $P \rightarrow S$
Remember $P_{1} P_{2}$ candle

$|$| | | | |
| :---: | :---: | :---: | :---: |
| 0 | b | e^{2} | 9 |
| 5 | b | a | |

$$
V(s)=\frac{k q}{3 b} \text { byitself }
$$

(6) Bring 3rd in

- Dow Must sum energy w/ 1 and energy w/ 2

$$
\begin{aligned}
\Delta U & =\Delta U_{12}+\Delta U_{13}+\Delta U_{23} \\
& =(-q) \frac{k q}{2 a}+q \frac{k q}{\sqrt{a^{2}+b^{2}}}+(q) \frac{k)(-q)}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{-k q^{2}}{2 a}
\end{aligned}
$$

" Θ sign means does it on own energy stared in config
How to use Gus' Law
$\frac{3 \text { types of problems }}{\text { spheres }}$
cylinders
planes

- or combos, or concentres

Slabs, planes
need to know how to choose right surface

- dram pic
- where is charge inclosed

Straighten out p, λ, σ
is it just $\sigma \mathrm{V}$ or do I need to integrate

$$
\text { To constat } \quad \text { To boring }
$$

ido example of this
(7) No conductors on exam

TE field is O
but would not have to know
Grass' Law, potential difference, PE difference.

1. Must be enough symmatry
2. Find E every where

$$
\rho=\frac{\text { charge }}{\text { Volume }}
$$

So $5 \rightarrow \frac{c}{m^{4}}$ do te wits!
Anon soliditorm p
(4)

$$
\begin{array}{rl}
\rho=h r & r<a \\
& =0 \\
& \text { elsewhere } \\
0<r<a & \\
a<r<b & \text { piece wise function } \\
r>b & \\
& \\
& \text { ding unstadd }
\end{array}
$$

$$
\vec{E}=\left\{\begin{array}{cc}
E_{\text {I }} & 0<r<a \\
E_{\text {I }} & a<r<b \\
E_{\text {II }} & r>b
\end{array} \quad\right. \text { piece wise function }
$$

$0<r<a$
$<\cdots=$ gratian

how much is pointing out - inst surface area
here
(5)

$$
\begin{aligned}
& \rightarrow \int_{0}^{r} \rho d V=\int_{0}^{r} h r^{\prime} 4 \pi r^{\prime 2} d \rho \\
& \text { you piqued I D integral } \\
& q_{\text {inc }}=\int_{0}^{r} h r^{\prime} 4 T r^{\prime 2} d r \\
& =h 4 \pi \int_{d}^{r} r^{13} d r^{1} \\
& =\frac{h 4 \pi r^{4}}{4} \\
& =h r^{4}
\end{aligned}
$$

(9)

(10) If need $V(R)$ every where in space -choose where to have it 0

- this is re difficult pert
can do ∞ or 0
- does not matter
- will choose $V(\Omega)=0$

$$
V(r)-\underbrace{V(a)}_{0}= \begin{cases}\quad & r>b \\ a<r<b \\ - & r<a \quad \text { eherdest }\end{cases}
$$

$r>b$

looks just lite formula for pl charge

$$
=\frac{\operatorname{ain} c}{4 \pi c_{0}} \frac{1}{r}
$$

(11) $a<c<b$

going through regions 3 and 2

$$
\begin{aligned}
v(r)-v(\infty) & =-\int_{\infty}^{b} \vec{E}_{3} d s-\int_{b}^{r} \vec{E}_{2} \cdot \stackrel{\rightharpoonup}{s} \\
& =-\int_{\infty}^{b} \frac{Q \operatorname{Qinc}}{4 \pi \varepsilon_{0}} \frac{\pi}{r^{2}} d r-\int_{b}^{r} \frac{h a^{4}}{4 \varepsilon_{0}} \frac{1}{r^{2}} d r \\
& =\frac{Q \operatorname{lnc}}{4 \pi q_{0}} \frac{1}{b}+\frac{h a^{4}}{4 \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{b}\right)
\end{aligned}
$$

$Q_{i n}=h \pi a^{4}+Q \quad e$ is a shortcut so don't have to rewrite
$r<a$

$$
V(r)-v(\infty)=-\int_{a}^{b} \vec{E}_{3} \cdot d s-\int_{b}^{a} \vec{E}_{2} \cdot d s-\int_{a}^{r} \vec{E}_{1} \cdot d s
$$

the guassian surface is the variable
get E field for each port (vectors)
The potential difference tranguesses a path

- need E field for each region
(12)

$$
V(0)=V(\infty)+\Delta V_{\substack{\text { yous calculated }}}^{V_{\text {Pos }}}
$$

just where you start from

Be able to do this for planes + cylinders

$$
\prod_{\text {bit tricker }}
$$

Dot doing find I from V
Class 10: Outline
Hour 1 \& 2:
Review
Concept Review / Overview
PRS Questions - possible on
exam
Sample Exam
Exam Thursday: $7: 30-9: 30$ pm
See announcements page for
section room assignments
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad See announcements page for section room assignments

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Class 13: Outline

\qquad
Hour 1:
Concept Review / Overview \qquad
PRS Questions - possible on exam
Hour 2:
Sample Exam
Exam Thursday: 7:30-9:30 pm
\qquad
\qquad
\qquad
\qquad

Exam 1 Topics

- Fields (visualizations)
- Electric Field \& Potential
- Discrete Point Charges
- Continuous Charge Distributions
- Symmetric Distributions - Gauss's Law
- Conductors and Insulators
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General Exam Suggestions

Have time to thins

- You should be able to complete every problem
- If you are confused, ask
- If it seems too hard, think some more
- Look for hints in other problems
- If you are doing math, you're doing too much
- Read directions completely (before \& after) \qquad
- Write down what you know before starting
- Draw pictures, define (label) variables
- Make sure that unknowns drop out of solution
- Don't forget units!

Arearhorll smAlt

What You Should Study

- Review Friday Problem Solving (\& Solutions)
- Review In Class Problems (\& Solutions) \qquad
- Review PRS Questions (\& Solutions)
- Review Problem Sets (\& Solutions)
- Review PowerPoint Presentations
- Review Relevant Parts of Study Guide (\& Included Examples)
- Do Sample Exams (online under Exam Prep)
\qquad

different

Fields opposite

From $(4) \rightarrow \theta$

Know how to read
Field Lines Know how to draw

- Field line density tells you field strength
- Lines have tension (want to be straight)
- Lines are repulsive (want to be far from other lines)
- Lines begin and end on sources (charges) or ∞

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

at σ regin has (t, t) sin would have 0
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

PRS: Grass Seeds

Here there is an initial downward flow.

T need to know

The point is a source
0% 2. The point is a sink
o\% 3. I don't know

\qquad
\qquad
\qquad
field lies appear to add in the middle of then

lines in middle $=$ opposite

PRS: Electric Field
Two opposite charges are placed on a line as shown below. The charge on the right is three times larger than the charge on the left. Other than at infinity, where is the electric field zero?

PRS: Field Lines
Electric field lines show:

1. Directions of forces that exist in space at all times.
2. Directions in which charges on those lines will accelerate.
3. Paths that charges will follow.
4. More than one of the above.
5. I don't know.

Remember: Don't pick up until you are ready to answer
b

Mas Racer dem same. at "dir" in numerator

PRS: 5 Equal Charges
\square
${ }_{1}$ Six equal positive charges q sit at the vertices of a regular hexagon with sides of length R. We remove the bottom charge. The electric field at the center of the hexagon (point P) is:

1. $\stackrel{\rightharpoonup}{\mathbf{E}}=\frac{2 k q}{R^{2}} \hat{\mathbf{j}}$
2. $\overrightarrow{\mathbf{E}}=-\frac{2 k q}{R^{2}} \hat{\mathbf{j}}$
3. $\overrightarrow{\mathbf{E}}=\frac{k q}{R^{2}} \hat{\mathbf{j}}$
4. $\overrightarrow{\mathbf{E}}=-\frac{k q}{R^{2}} \hat{\mathbf{j}}$
5. $\overrightarrow{\mathbf{E}}=0$
6. I Don't Know

Class 09
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad \checkmark got right

$$
\text { also lite adding } \Theta \text { charge at bottom }
$$

dipole moment
(review this
PRS: Dipole Field

As you move to large distances r away from a dipole, the electric field will falloff as:
0\%
0\%

1. $1 / r^{2}$, just like a point charge
2. More rapidly than $1 / r^{2}$
3. More slowly than $1 / r^{2}$
4. I Don't Know

$$
\vec{p}=\text { charge } \times \text { displacement }
$$

exist a lat in nature

E Field and Potential: Creating

A point charge q creates a field and potential around it:

$$
\stackrel{\rightharpoonup}{\mathbf{E}}=k_{e} \frac{q}{r^{3}} \overrightarrow{\mathbf{r}} ; V=k_{e} \frac{q}{r}
$$ systems of charges

They are related:

$$
\overrightarrow{\mathbf{E}}=-\nabla V ; \Delta V \equiv V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

\qquad
\qquad
\qquad
or super position
\qquad
\qquad
\qquad
\qquad

Class 09

$$
\begin{aligned}
& \text { field - force/unit charge } \\
& E=\frac{k g}{r^{3}} \quad V=k_{e} \frac{q}{r} \operatorname{cit} v(\infty) ; 0
\end{aligned}
$$

E Field and Potential: Creating

Discrete set of point charges:
$\overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{3}} \overrightarrow{\mathbf{r}} ; V=k_{e} \frac{q}{r}$
Add up from each point charge

Continuous charge distribution:
$d \overrightarrow{\mathbf{E}}=k_{e} \frac{d q}{r^{3}} \overrightarrow{\mathbf{r}} ; d V=k_{e} \frac{d q}{r}$ Break charged object into small pleces, $d q$, and integrate
by integrating
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Continuous Sources: Charge Density

Charge Densities:

$$
\begin{array}{cccc}
\lambda=\frac{Q}{L} & \sigma=\frac{Q}{A} & \rho=\frac{Q}{V} \\
d Q & =\lambda d L & d Q & =\sigma d A
\end{array} d Q=\rho d V
$$

Don't forget your geometry:
$\square d L=R d \theta$

$d A=2 \pi r d r$
$d V_{c y l}=2 \pi r l d r$

$$
d V_{\text {sphere }}=4 \pi r^{2} d r
$$

E Field and Potential: Creating

Discrete set of point charges:

$\overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} ; V=k_{e} \frac{q}{r}$
Add up from each point charge

Continuous charge distribution:
$d \overrightarrow{\mathbf{E}}=k_{e} \frac{d q}{r^{2}} \hat{\mathbf{r}} ; d V=k_{e} \frac{d q}{r}$
Break charged object into small pieces, $d q$, and integrate
Symmetric charged object:
$\iiint_{\mathbf{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}} ; \Delta V \equiv-\int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$
Use Gauss' law to get
E everywhere, then integrate to get V

Gauss's Law: $\quad \iint_{\mathrm{S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{0}}$

Spherical Symmetry

Cylindrical Symmetry
Come from experiment
\qquad
\qquad
\qquad
pillbox = cylinder - but use top
\qquad
Whats the Symmetry to
male it easy to use

E Field and Potential: Effects

If you put a charged particle, q, in a field:

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}
$$

To move a charged particle, q, in a field:

$$
\frac{W=\Delta U=q \Delta V}{\text { r change in potential }^{\text {chan }}}
$$

PRS Questions:
Electric Fields and Potential \qquad
$0 \quad$ PRS: Sign of W_{g}
Thinking about the sign and meaning of this...

$$
W_{g}=G M m\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
$$

Moving from r_{A} to r_{B} :
0% 1. W_{g} is positive - we do work

0% 2. W_{g} is positive - gravity does work
0% (3.) W_{g} is negative - we do work
0% 4. W_{g} is negative - gravity does work
0% 5. I don't know

$$
W_{g}=\text { work of gravity field }=- \text { were } \text { wo }^{2}
$$

PRS: Masses in Potentials
Consider 3 equal masses sitting in different gravitational potentials:
A) Constant, zero potential
B) Constant, non-zero potential
C) Linear potential $(V \propto x)$ but sitting at $V=0$

Which statement is true?
0% 1. None of the masses accelerate
0% 2. Only B accelerates
0% (3) Only C accelerates
$0 \% \quad$ 4. All masses accelerate, B has largest acceleration
$0 \% \quad$ 5. All masses accelerate, C has largest acceleration
0%
6. I don't know
\qquad
here wp again

PRS: Positive Charge
Place a positive charge in an electric field. It will accelerate from
0%

1. higher to lower electric potential; lower to higher potential energy
2.) higher to lower electric potential; higher to lower potential energy
2. lower to higher electric potential; lower to higher potential energy
3. lower to higher electric potential; higher to lower potential energy

\qquad
\qquad
\qquad
Potatial is like height
\qquad
knew that, it tribes me
\qquad

\qquad
\qquad
\qquad
\qquad

PRS: Negative Charge
Place a negative charge in an electric field. It will accelerate from
0\% higher to lower electric potential; lower to higher potential energy 0\%
2. higher to lower electric potential; higher to lower potential energy
0\%
3. lower to higher electric potential; lower to higher potential energy
4. lower to higher electric potential; higher to lower potential energy
\qquad
\qquad
\qquad
\qquad
\qquad
read carefully

* Scalar
integral paths don't matier
can add he points -see P The 2 candle out, so 0
\qquad
Cepcads otherwise where 0 is

You calculated $V(P)$. From that can you derive $E(P)$?
0% 1. Yes, its $\mathrm{kQ} / \mathrm{a}^{2}$ (up)
0% 2. Yes, its $\mathrm{KQ} / \mathrm{a}^{2}$ (down)
o\% 3. Yes in theory, but I don't know how to take a gradient
0% No, you cant get $E(P)$ from $V(P)$
0% 5. I don't know

Class 09
You don't know whats around
field

- Just blt know E at 1 pt, heel spaital dependence

Conductors in Equilibrium

Conductors are equipotential objects:

1) $E=0$ inside
2) E perpendicular to surface
3) Net charge inside is 0
4) Excess charge on surface

$$
E=\sigma / \varepsilon_{0}
$$

5) Shielding - inside doesn't "talk" to outside

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$P=\frac{k Q^{2}}{r}+\frac{k Q^{2}}{r}$ came of (t) work you do
(f) you are taring it to do that you are doing \oplus work

Day 10
How to approch problems
Use Guasses Law -but not inclosed.

- do as much goes tangett through surface
$\phi=0$ 'r not enclosed
-but its flux -still some
Ore of the 4 sides of a cube

$$
\frac{-a}{6 \varepsilon_{0}} \quad \Theta_{\frac{1}{6} \text { charge }}
$$

L1 Diapoles are jot charges
-subject to Colombes's law

$$
\begin{equation*}
{ }_{\Theta}{ }_{\Theta} \tag{Hen}
\end{equation*}
$$

an the left will!
left + clockwise
4. Equipotential lines tops map
opposite ts male,
Same sign

* don't surer up \rightarrow same size $=$ opposite charges

4.

3 charges equidistant

I did not read all of the answers to see - missed
5.

$$
E=\frac{k q q}{r^{2}}=\frac{k-q 3 a}{\left(3 a^{2}+4 a^{2}\right)^{2}}+\frac{k-13 a}{\left(3 a^{2}+4 a^{2}\right)} \uparrow+k q
$$

ti always charge to point
6.

What happers when $2 \rightarrow 0$ survives

$$
\vec{E}=\frac{k a}{r^{2}} \quad \frac{l}{l^{3}}=\frac{1}{l^{2}}
$$

(3.) $\left.\right|^{-2 d}$
pill box
take advantage of symmetry

$$
v(-d)=0
$$

straight tormord -read it later

* think about what you reed to solve problem
(1)

Problem 4 Pset 3 Pomer Liges

(4) Egrand 0

$$
\begin{aligned}
& E=\frac{\lambda}{2 \pi l_{0} r} \quad \text { (com doing cylindr } \\
& \begin{array}{l}
V=-\frac{\mu}{2 \pi \varepsilon_{0}} \ln (r)+c \quad L_{0}=-\frac{l}{2 \pi \varepsilon_{0}} \ln P_{0}+c \\
V=-\frac{l}{2} \ln \quad(\Omega)
\end{array} \\
& V=\frac{-l}{2 \pi \varepsilon_{0}} \ln \left(\frac{R}{r_{0}}\right) \circlearrowleft \begin{array}{c}
=-\frac{l}{2 \pi \varepsilon_{2}} \ln R_{0}+C \\
\text { has to sum to } O
\end{array} \\
& +\mathrm{Fl}_{\mathrm{F}} \\
& C=\frac{\mu}{2 \pi \varepsilon_{0}} \ln \left(R_{0}\right) \\
& v=\frac{l}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{0}}{R}\right) \\
& \text { Rerembor } \\
& \ln \overline{C-\ln \left(R_{0}\right)} \\
& =\ln \frac{1}{R_{0}}
\end{aligned}
$$

(2) Estimate radius of line

$$
E=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

estimate radius

$$
\frac{\psi=}{2 \pi \varepsilon_{a} a}=10^{6} \mathrm{~V} / \mathrm{m}
$$

$$
\begin{aligned}
V= & \frac{d}{2 \pi \varepsilon_{0}} \ln \frac{R_{0}}{a} \\
& T=r E \\
V= & r E \ln \frac{R_{0}}{r}
\end{aligned}
$$

potetulal suction of
E
od at grand

$$
V=\operatorname{lcm}\left(10^{6} \mathrm{~V} / \mathrm{m}\right) \ln \left(\frac{10 \mathrm{~m}}{1 \mathrm{~cm}}\right)
$$

You learn more from doing I problem slowly than lots of problems fast
(3)

E field from (t) to θ
Voltage ${ }^{\oplus}$ charge i goes to lower potential
Ochorge goes to higher potential
calcing E field al p
equipotential 1 field lines
againts E field potent al T ${ }^{T}$ Emus be Θ

Potential = work to do to move (4) charge potential x have to do work

Contig energy \neq calc field at P
\# 5 from class tody

$$
E=\frac{k q\left(r-r^{\prime}\right)}{\left|r-r^{\prime}\right|^{3}} \quad \begin{array}{r}
r^{\prime}=\text { where hate measuring } \rho
\end{array}
$$

apply 3 tines
(4.)
 from charge y measuring
$\vec{r}=-4 a \hat{\jmath}$ measuring Using origin to measure from
$\vec{r}^{\prime}=-3 a T \in$ charge

$$
\begin{aligned}
\vec{r}-\vec{r}^{\prime} & =-4 a \hat{\jmath}-3 a \uparrow \\
& =-4 a \jmath+3 a \uparrow
\end{aligned}
$$

$$
|\vec{r}-\vec{r}|=\sqrt{16 a^{2}+9 a^{2}}
$$

$$
\frac{1}{r^{3}}=\frac{\hat{r}}{r^{2}}=\frac{\vec{r}}{r^{3}}
$$

Since $\frac{r}{r^{3}}=\frac{1}{r^{2}}$ to got units to

$$
\frac{k(-1)(-4 a \hat{\jmath}+3 a \uparrow)}{(5 a)^{3}}
$$ work out

now do tries for offer 2 vectors
(5) Cavity Problem Poet 2
$\left(\begin{array}{l}0 \\ B_{0} \\ 2 r\end{array}\right.$
Super position fully charged t empty,

$$
\begin{aligned}
\vec{E} \text { field }= & \vec{E}_{\text {large }}+\vec{E}_{\text {small }} \\
E= & \frac{\rho}{3 \varepsilon_{0}} \stackrel{\rightharpoonup}{c}_{\text {center }}+\frac{-\rho_{0} \stackrel{r}{c}_{\text {center }}}{3 \xi_{\delta}} \\
& \frac{\rho r_{\text {center }}}{3 \xi_{0}}+
\end{aligned}
$$

$$
\text { Vector } \rightarrow \vec{r}_{\text {center 2 }}=\vec{r}_{\text {center, }}+\underset{T_{\text {te }}}{ } \overrightarrow{r a d i c s}
$$

have $=+$ opposite charge
So not live comparing volumes

E from V/Gradiart
CDumastin did not do, so I will

$$
E=-\nabla V V_{\text {idefferentate each part }}
$$

$$
x>0
$$

magnitude of E smaller (since not as steep)

$$
a s x<0
$$

* Don't get tricked by concept ar where the ans is IDK bl I have to look around
* And it is te = gradient * units $E=\frac{v}{m}$

Ottar Review
collecting E from charges $\frac{1}{r^{3}}$

$$
\begin{aligned}
& F=\frac{k g Q}{r^{2}} \\
& E=\frac{k Q}{r^{2}} \quad \hat{r} \text { from charge to observer }=\frac{k Q r}{r^{3}}
\end{aligned}
$$

(7)

$$
\begin{aligned}
& F=q E \\
& p=q d \\
& R=\vec{p} \times \vec{E} \\
& F=k \sum \frac{q}{2}
\end{aligned}
$$

Config E - maving ptim

$$
\begin{aligned}
& - \text { worh } \\
& =\frac{k g}{r}+\text { summing } \\
w & =q V
\end{aligned}
$$

Not finding E at a pt

$$
\begin{aligned}
& A \cup=Q^{E} \\
& \text { E Ealls off } \\
& \text { Diapole } \frac{1}{c^{3}} \\
& \text { Pt } \frac{1}{r^{2}} \\
& \text { Lire } \frac{1}{r} \\
& \quad \text { Plane } \quad 1 \text {-constanf }
\end{aligned}
$$

Please Remove this Tear Sheet from Your Exam

$\overrightarrow{\mathbf{E}}=\frac{q}{4 \pi \varepsilon_{o} r^{2}} \hat{\mathbf{r}}=\frac{q}{4 \pi \varepsilon_{o} r^{3}} \overrightarrow{\mathbf{r}}$
$\hat{\mathbf{r}}=\frac{\overrightarrow{\mathbf{r}}}{r}$ points from source q to observer
$\overrightarrow{\mathbf{E}}_{\text {many point charges }}=\sum_{i=1}^{N} \frac{q_{i}}{4 \pi \varepsilon_{o}\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}\right|^{3}}\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}\right)$
$\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {source }} \frac{d q}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|^{\prime}} \hat{\mathbf{r}}$
$\overrightarrow{\mathbf{F}}_{q}=q \overrightarrow{\mathbf{E}}_{\text {source }}$
$\oiint_{\substack{\text { closed } \\ \text { surface }}} \overrightarrow{\mathbf{E}} \cdot \mathbf{d} \overrightarrow{\mathbf{A}}=\frac{Q_{\text {enc }}}{\varepsilon_{o}}$
$\mathbf{d} \overrightarrow{\mathrm{A}}$ points from inside to outside
$\underset{\substack{\text { closed } \\ \text { path }}}{\oint} \overrightarrow{\mathbf{E}} \cdot \mathbf{d} \overrightarrow{\mathbf{s}}=0$
$\Delta V_{\text {moving from a to } b}=V_{b}-V_{a}=-\int_{a}^{b} \overrightarrow{\mathbf{E}} \cdot \mathbf{d} \mathbf{\vec { \mathbf { s } }}$
$\Delta U=q \Delta V$
$V_{\text {point charge }}=\frac{q}{4 \pi \varepsilon_{o} r} ; V(\infty)=0$
$V_{\text {many point charges }}=\sum_{i=1}^{N} \frac{q_{i}}{4 \pi \varepsilon_{o}\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}\right|} ; V(\infty)=0$
$V(\overrightarrow{\mathbf{r}})=\frac{1}{4 \pi \varepsilon_{0}} \int_{\text {source }} \frac{d q}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} ; V(\infty)=0$
$U=\sum_{\text {all pairs }} \frac{q_{i} q_{j}}{4 \pi \varepsilon_{o}\left|\overrightarrow{\mathbf{r}}_{i}-\overrightarrow{\mathbf{r}}_{j}\right|} ; U(\infty)=0$
$U=\frac{1}{2} \varepsilon_{o} \iiint_{\text {all space }} E^{2} d V_{\text {vol }}$
$E_{r}=-\frac{\partial V}{\partial r}$ for spherical symmetry,

$$
\overrightarrow{\mathbf{E}}=-\vec{\nabla} V
$$

$$
E_{x}=-\frac{\partial V}{\partial x} E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

$$
C=\frac{|Q|}{|\Delta V|} \quad U=\frac{1}{2} C \Delta V^{2}=\frac{Q^{2}}{2 C}
$$

Circumferences, Areas, Volumes:

1) The area of a circle of radius r is πr^{2}
Its circumference is $2 \pi r$
2) The surface area of a sphere of radius r is $4 \pi r^{2}$. Its volume is (4/3) πr^{3}
3) The area of the sides of a cylinder of radius r and height h is $2 \pi r h$. Its volume is $\pi r^{2} h$

Integrals that may be useful

$$
\begin{aligned}
& \int_{a}^{b} d r=b-a \\
& \int_{a}^{b} \frac{d r}{r}=\ln (b / a) \\
& \int_{a}^{b} \frac{1}{r^{2}} d r=\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

Some potentially useful numbers

$$
k_{e}=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \mathrm{~m}^{2}}{\mathrm{C}^{2}}
$$

8.02 Exam One Spring 2010

FAMILY (last) NAME

GIVEN (first) NAME

Student ID Number
Your Section:
Х L01 MW 9 am _LO2 MW 11 am L03 MW 1 pm _L04 MW 3 pm L05 TR 9 am __L06 TR 11 am L07 TR 1 pm _ L08 TR 3 pm Your Table and Group (e.g. 10A): $\quad \mid l($

	Score	Grader
Problem 1 (25 points)	25	$P H F$
Problem 2 (25 points)	17	8
Problem 3 (25 points)	14	ses
Problem 4 (25 points)	15	$E F$
TOTAL	71	

Problem 1 (25 points)

In this problem you are asked to answer 5 questions, each worth 5 points. You do not have to show your work; in most cases you may simply circle the chosen answer.

Question 1 (5 points)

1. Above we show the grass seeds representation of the field of four point charges, located at the positions indicated by the numbers. Which statement is true about the signs of these charges:
a) All four charges have the same sign.
b) Charges 1 and 2 have the same sign, and that sign is opposite the sign of 3 and 4 .
c) Charges 1 and 3 have the same sign, and that sign is opposite the sign of 2 and 4 .
d) Charges 1 and 4 have the same sign, and that sign is opposite the sign of 2 and 3 .
e) None of the above.

Question 2 (5 points)

The grass seeds figure below shows the electric field of three charges with charges +1 , +1 , and -1 , The Gaussian surface in the figure is a sphere containing two of the charges.

The total electric flux through the spherical Gaussian surface is
a) Positive
b) Negative

c) Zero
d) Impossible to determine without more information

Question 3 (5 points)

Two point-like charged objects with charges $+Q$ and $-Q$ are placed on the bottom corners of a square of side a, as shown in the figure.

You move an electron with charge $-e$ from the upper right corner marked A to the upper left corner marked B. Which of the following statements is true?
a) You do a negative amount of work on the electron equal to the amount of energy necessary to assemble the system of three charged objects with the electron at point B. 2 diff things
b. You do a positive amount of work on the electron equal to the amount of energy necessary to assemble the system of three charged objects with the electron at point B.
d) You do a positive amount of work on the electron and the potential energy of the system of three charged objects increases.
(d) You do a negative amount of work on the electron and the potential energy of the system of three charged objects decreases. Always

e) You do a negative amount of work on the electron and the potential energy of the system of three charged objects increases.
f You do a positive amount of work on the electron and the potential energy of the system of three charged objects decreases.

$$
\begin{aligned}
& W=\Delta U \\
& \text { - two you - wad } \\
& \text { System } \forall \text { energy }
\end{aligned}
$$

Question 4 (5 points)

A graph of the electric potential $V(z)$ vs. z is shown in the figure below.

Which of the following statements about the z-component of the electric field E_{z} is true?
a) $E_{z}<0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}<0$ for $0<z<3 \mathrm{~m}$.
(b) $E_{z}<0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}>0$ for $0<z<3 \mathrm{~m}$.
c) $E_{z}>0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}<0$ for $0<z<3 \mathrm{~m}$.
d) $E_{z} \stackrel{+}{>} 0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}>0$ for $0<z<3 \mathrm{~m}$.
e) None of the above because E_{z} cannot be determined from information in the \uparrow graph for the regions $-3 \mathrm{~m}<z<0$ and $0<z<3 \mathrm{~m}$.

- ho you can by looking oran

$$
B E=-\nabla
$$

Question 5 (5 points)
Careful measurements reveal an electric field

$$
\overrightarrow{\mathbf{E}}(r)=\left\{\begin{array}{lr}
\frac{a}{r^{2}}\left(1-\frac{r^{3}}{R^{3}}\right) \hat{\mathbf{r}} ; & r \leq R \\
\overrightarrow{0} ; & r \geq R
\end{array}\right.
$$

where a and R are constants. Which of the following best describes the charge distribution giving rise to this electric field?
a) A negative point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly positive charged spherical shell of radius R with surface charge density $\sigma=-q / 4 \pi R^{2}$.
b) A positive point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly negative charged spherical shell of radius R with surface charge density $\sigma=-q / 4 \pi R^{2}$.
(c) A positive point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly negative charged sphere of radius R with charge density $\rho=-q /\left(4 \pi R^{3} / 3\right)$.
d) A negative point charge at the origin with charge $-q=-4 \pi \varepsilon_{0} a$ and a uniformly positive charged sphere of radius R with charge density $\rho=q /\left(4 \pi R^{3} / 3\right)$.

Lats credit - but does not really work

Problem 2 (25 points)
NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!) .

Four charged point-like objects, two of charge $+q$ and two of charge $-q$, are arranged on the vertices of a square with sides of length $2 a$, as shown in the sketch.
a) What is the electric field at point O, which is at the center of the square? Indicate the direction and the magnitude.
 vest \downarrow

 e direction? Since it is 45°
top 2 candle horiz vert \downarrow
\qquad
bottom 2 ho ir curt

$$
=\frac{2 k_{q}}{2 \sqrt{2} a^{2}} T-\frac{\lambda h^{2}}{\lambda \sqrt{2} a^{2}} \pi
$$

\qquad $4 \cdot-q$ x axis

$$
\begin{aligned}
& \text { (a) } \frac{a}{\sqrt{a(x)}} \\
& \left.\uparrow-\frac{a}{\sqrt{\alpha^{2}+0} 0} \uparrow\right)
\end{aligned}
$$

$-k q\left(\frac{a}{\sqrt{a^{2}+a^{2}}} i+\frac{a}{\sqrt{a^{2}+a^{2}}} \mu\right)+k q$
$\sqrt{2 a \sqrt{2} a \sqrt{2} k} \uparrow+\frac{2 k q g}{\sqrt{2 a \sqrt{2} a \sqrt{2} x} \eta}$
b) What is the electric potential V at point O, the center of the square, taking the potential at infinity to be zero?

$$
\begin{aligned}
& V(P)-V(\infty)=V(P)-0=V(P)=-\int E \cdot d s \\
& -\int \frac{k q}{\sqrt{2} a^{2}} \uparrow-\frac{k q}{\sqrt{2} a^{2}} \hat{\jmath} \cdot d s \\
& -\frac{k q}{\sqrt{2}}\left(\int \frac{1}{a^{2}} \uparrow-\int \frac{1}{a^{2}} \hat{\jmath}\right) \\
& -\frac{k q}{\sqrt{2}}\left(-\frac{1}{a} \uparrow \ldots \frac{1}{a} \uparrow\right) \\
& V(P)=\frac{k q}{\sqrt{2} a} \uparrow-\frac{k q}{\sqrt{2} a} J \quad \text { <no direction! (scalar) } \\
& \text { So I almost had it } \\
& \text { dor } \\
& \text { 的 } v a v e^{2}=0 \\
& \frac{k a}{\sqrt{2} a}+\frac{k a}{\sqrt{2} a}+\frac{k-q}{\sqrt{2} a}+\frac{k-q}{\sqrt{2} a}=0 \\
& \text { no write it out full } \\
& \text { (isle on practice test) } \\
& \text { and use that }
\end{aligned}
$$

c) Sketch on the figure below one path leading from infinity to the origin at O where the integral $\int_{\infty}^{0} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$ is trivial to do by inspection. Does your answer here agree with your result in b$)$?
 equipotential curses

Voltage at top near $(\mathcal{1)}=$ total voltage bottom near $\theta=0$

$$
\begin{aligned}
& \text { Voltage at At } D \text { is } \frac{1}{2} \text { total voltage } \\
& =\int_{\infty}^{0} \frac{k_{a}}{\sqrt{2 a}} \uparrow-\frac{k_{a}}{\sqrt{2 a}} \pi
\end{aligned}
$$

Show have bettor studded - He e pratice test the place ones

I did was
-this is tile Peseta are
NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!)

Three infinite sheets of charge are located at $x=-d, x=0$, and $x=d$, as shown in the sketch. The sheet at $x=0$ has a charge per unit area of 2σ, and the other two sheets have charge per unit area of $-\sigma$.

cerminer
a) What is the electric field in each of the four regions I-IV labeled in the sketch?

Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot the x component of the electric field, E_{x}, on the graph on the bottom of the next page.
Clearly indicate on the vertical axis the values of E_{x} for the different regions.

\because So I on'y made a sign mistave. Thats not -3

$$
\frac{\text { Alse nat } 20}{2 E A=\frac{2 g A}{\varepsilon_{0}} \quad \begin{array}{l}
\text { ashevld have theoght } \\
\text { not iose about wrote } \\
\text { as sidebor }
\end{array}}
$$

b) Find the electric potential in each of the four regions I-IV labeled above, with the choice that the potential is zero at $x=+\infty$ i.e. $V(+\infty)=0$. Show your calculations. Plot the electric potential as a function of x on the graph on the bottom of the next page. Indicate units on the vertical axis.

$$
\begin{aligned}
& V(P)=V(P)-V(\varphi)=V(P)-0=-S E \cdot d s \\
& \text { 1) } \Rightarrow=-\int_{-\infty}^{d} 0 d s \quad y \rightarrow-\int_{d}^{\infty} O d s \\
& =-\int\left|\begin{array}{r}
-d \\
-\infty
\end{array}=-\Gamma\right|_{d}^{\infty} \\
& \begin{array}{ccc}
50=0 & -d-\infty & -\infty-d \\
\text { ane manterar } & d o & -d o
\end{array}
\end{aligned}
$$

think conceptually from experiment

largest voltage charge

note page is
c) How much work must you do to bring a point like object with charge $+Q$ in from infinity to the origin $x=0$?

$$
\begin{aligned}
& W=Q=-\Delta V=q V=q(V(P)-0) \\
& W=+Q V(x=0)
\end{aligned}
$$

The sheet has charge (1) -so hew can you
or bring $t Q$ intr it -it will repel fere is no way you can get it to touch?

$$
\left[\begin{array}{ll}
w=q \frac{\sigma}{\varepsilon_{0}} d & \text { my mistaken from before } \\
w=\frac{q \psi \sigma d}{\varepsilon_{0}} & 3 / 5
\end{array}\right.
$$

T should be worth

$$
\frac{Q \sigma}{\varepsilon_{0}} d
$$ mar

Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!). You may find the following integrals helpful in this answering this question.

$$
\int_{r_{a}}^{r_{b}} \frac{d r}{r^{2}}=-\left(\frac{1}{r_{b}}-\frac{1}{r_{a}}\right), \int_{r_{a}}^{r_{b}} \frac{d r}{r}=\ln \left(r_{b} / r_{a}\right), \int_{r_{a}}^{r_{b}} d r=r_{b}-r_{a}, \int_{r_{a}}^{r_{b}} r d r=\frac{1}{2}\left(r_{b}^{2}-r_{a}^{2}\right)
$$

Consider a charged infinite cylinder of radius R.

The charge density is non-uniform and given by

$$
\rho(r)=b r ; r<R,
$$

where r is the distance from the central axis and b is a constant.
a) Find an expression for the direction and magnitude of the electric field everywhere i.e. inside and outside the cylinder. Clearly present your reasoning, relevant figures, and any accompanying calculations.
Gudssiun surface $=$ larger cylinders + Smaller
inside

-it is leafing crave on both sides and ends

$$
E A=\frac{\rho V}{\varepsilon_{0}}
$$

long
no menes.

$$
\begin{aligned}
&\left.\frac{1}{6_{0}} b \pi h \frac{r^{3}}{3}\right|_{0} ^{r^{\prime}} \\
& E\left.=\frac{2 b \pi h r^{3}}{6_{0} 8(2 \pi r}+2 \pi r h\right) \\
&=\frac{b \pi h r^{32}}{6_{0} 8 \pi r^{x}+608 \pi x h} \\
&=\frac{b h r^{2}}{6_{0} 8(1+h)}
\end{aligned}
$$

outside

$$
\frac{b r^{2}}{3 \varepsilon_{0}} \hat{r} \quad r \alpha
$$

$$
E A=\frac{\rho V}{\epsilon_{0}}
$$

$$
E\left(\frac{2 \pi}{(-2)}+2 \pi r h\right)=\frac{\int_{0}^{R}(2 \pi r \cdot h d r}{\sigma_{0}} \quad \frac{b R^{2}}{3 \varepsilon_{0}} \frac{1}{r} r>A
$$

$\int_{0}^{R} b r \cdot \operatorname{tr} h d r$

$$
\text { th: }\left.\frac{b r^{2}}{2}\right|_{0} ^{R}=\frac{b R^{2} \pi h}{2}
$$

$$
E=\frac{b R^{2} \pi h}{6_{0} 2 \cdot\left(2 \pi R^{2}+2 \pi R h\right)}=\frac{b R^{\pi} \pi h}{6_{0} 2 \pi R 2 R+2 h h^{2}-2}
$$

 - its sometimes true sometimes hot be displineter

Energy approch
did not load too lory at sine it vas last qu
b) A point-like object with charge $+q$ and mass m is released from rest at the point a distance $2 R$ from the central axis of the cylinder. Find the speed of the object when it reaches a distance $3 R$ from the central axis of the cylinder

$$
\begin{aligned}
& 0=U+k \\
& U=q \Delta V \\
& k=\frac{1}{2} m v^{2}
\end{aligned}
$$

$$
\Delta_{p \cdot 0 \cdot d i l(t)}=-\int_{20}^{2 n} E \cdot d s
$$

$$
q \Delta V=\frac{1}{2} m v^{2}
$$

$\Delta V=-\left(\frac{b Q h}{4(R+h)} d r\right.$

$$
v_{e l}=\frac{2 q \Delta v}{m}
$$

$$
\Delta V=-\frac{b h}{e_{0} 8(1+h)} \frac{\ln (3 R / 2 R)}{8\left(9 R^{2}-4 R^{2}\right)}
$$

$$
=-(U(3 R)-U(2 R)
$$

$$
=-q(V(3 R)-V(2 R))
$$

$$
\text { velocity }=\sqrt{\frac{2 q \Delta N}{m}} e^{\text {plug in }}
$$

$$
k(2 R)-0
$$

$$
k(3 R)=\frac{1}{2} m v_{t}^{2}
$$

$$
\text { velocity }=\sqrt{\frac{\frac{2 q \Delta N}{m}}{\frac{2 q\left(\frac{-b h \ln (3 R / 2 R)\left(9 \frac{\left.R^{2}-4 R^{2}\right)}{\epsilon_{0} 8(1 i h)}\right.}{m}\right.}{\sqrt{m}}} \sqrt{\sqrt{f}}=\sqrt{\frac{2 q b R^{3}}{3 m \epsilon_{0}} \ln (3 / 2)}}
$$

Oh they just write V
still no endcups
think I major screwed up sure side and ends ?

- but hare been messy problems before

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

8.02 Exam One Solutions Spring 2010

Problem 1 (25 points)

Question 1 (5 points)

1. Above we show the grass seeds representation of the field of four point charges, located at the positions indicated by the numbers. Which statement is true about the signs of these charges:
a) All four charges have the same sign.
b) Charges 1 and 2 have the same sign, and that sign is opposite the sign of 3 and 4 .
c) Charges 1 and 3 have the same sign, and that sign is opposite the sign of 2 and 4 .
d) Charges 1 and 4 have the same sign, and that sign is opposite the sign of 2 and 3 .
e) None of the above.

Solution b. Field lines continuously connect charges 1 and 3, and 2 and 4 respectively, indicating that the charge of those pairs are opposite in sign. The field is a zero between charges 1 and 2 indicating that they repel and hence are of the same sign. A smilar argument holds for charges 3 and 4 .

Question 2 (5 points)

The grass seeds figure below shows the electric field of three charges with charges +1 , +1 , and -1 , The Gaussian surface in the figure is a sphere containing two of the charges.

The total electric flux through the spherical Gaussian surface is
a) Positive
b) Negative
c) Zero
d) Impossible to determine without more information

Solution c. Because the field lines connect the two charges within the Gaussian surface they must have opposite sign. Therefore the charge enclosed in the Gaussian surface is zero. Hence the electric flux through the surface of the Gaussian surface is also zero.

Question 3 (5 points)

Two point-like charged objects with charges $+Q$ and $-Q$ are placed on the bottom corners of a square of side a, as shown in the figure.

You move an electron with charge $-e$ from the upper right corner marked A to the upper left corner marked B. Which of the following statements is true?
a) You do a negative amount of work on the electron equal to the amount of energy necessary to assemble the system of three charged objects with the electron at point B.
b) You do a positive amount of work on the electron equal to the amount of energy necessary to assemble the system of three charged objects with the electron at point B.
c) You do a positive amount of work on the electron and the potential energy of the system of three charged objects increases.
d) You do a negative amount of work on the electron and the potential energy of the system of three charged objects decreases.
e) You do a negative amount of work on the electron and the potential energy of the system of three charged objects increases.
f) You do a positive amount of work on the electron and the potential energy of the system of three charged objects decreases.

Solution d. Because point B is closer to the positive charge than the point A , the electric potential difference $V(B)-V(A)>0$. When you move an electron with charge $-e$ from the upper right corner marked A to the upper left corner marked B, the potential energy difference is $U(B)-U(A)=-e(V(B)-V(A))<0$. This means that you do a negative amount of work and the potential energy of the system decreases.

Question 4 (5 points)

A graph of the electric potential $V(z)$ vs. z is shown in the figure below.

Which of the following statements about the z-component of the electric field E_{z} is true?
a) $E_{z}<0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}<0$ for $0<z<3 \mathrm{~m}$.
b) $E_{z}<0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}>0$ for $0<z<3 \mathrm{~m}$.
c) $E_{z}>0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}<0$ for $0<z<3 \mathrm{~m}$.
d) $E_{z}>0$ for $-3 \mathrm{~m}<z<0$ and $E_{z}>0$ for $0<z<3 \mathrm{~m}$.
e) None of the above because E_{z} cannot be determined from information in the graph for the regions $-3 \mathrm{~m}<z<0$ and $0<z<3 \mathrm{~m}$.

Solution b. For values of $-3 \mathrm{~m}<z<0$, the derivative $d V(z) / d z>0$, and $E_{z}=-d V(z) / d z<0$. For values of $0<z<3 \mathrm{~m}$, the derivative $d V(z) / d z<0$, and $E_{z}=-d V(z) / d z>0$.

Question 5 (5 points)

Careful measurements reveal an electric field

$$
\overrightarrow{\mathbf{E}}(r)= \begin{cases}\frac{a}{r^{2}}\left(1-\frac{r^{3}}{R^{3}}\right) \hat{\mathbf{r}} ; & r \leq R \\ \overrightarrow{0} ; & r \geq R\end{cases}
$$

where a and R are constants. Which of the following best describes the charge distribution giving rise to this electric field?
a) A negative point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly positive charged spherical shell of radius R with surface charge density $\sigma=-q / 4 \pi R^{2}$.
b) A positive point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly negative charged spherical shell of radius R with surface charge density $\sigma=-q / 4 \pi R^{2}$.
c) A positive point charge at the origin with charge $q=4 \pi \varepsilon_{0} a$ and a uniformly negative charged sphere of radius R with charge density $\rho=-q /\left(4 \pi R^{3} / 3\right)$.
d) A negative point charge at the origin with charge $-q=-4 \pi \varepsilon_{0} a$ and a uniformly positive charged sphere of radius R with charge density $\rho=q /\left(4 \pi R^{3} / 3\right)$.
e) Impossible to determine from the given information.

Solution c. As you shall see below the answer should be c. because the problem does not specify the sign of the constant a. However both description c. and d. do seem plausible so we shall accept answers c., d., and e.

Assume $a>0$. Then the electric field can be thought of as the superposition of two fields, $\overrightarrow{\mathbf{E}}_{+}(r)=\frac{a}{r^{2}} \hat{\mathbf{r}}$ and $\overrightarrow{\mathbf{E}}_{-}(r)=-\frac{a r}{R^{3}} \hat{\mathbf{r}}_{\mathbf{~}} . \overrightarrow{\mathbf{E}}_{+}(r)$ is the electric field of a positive point charge at the origin with $q=4 \pi \varepsilon_{0} a \cdot \overrightarrow{\mathbf{E}}_{-}(r)$ is the electric field of a uniformly negative charged sphere of radius R. Because the electric field for radius $r>R$ is zero, the sum of the two charges distributions must be zero. Therefore the charge density must satisfy $\rho=-q /\left(4 \pi R^{3} / 3\right)=-4 \pi \varepsilon_{0} a /\left(4 \pi R^{3} / 3\right)=-3 \varepsilon_{0} a / R^{3}$.

Now assume $a<0$. Suppose the electric field can now be thought of as the superposition of two fields, $\overrightarrow{\mathbf{E}}_{-}(r)=\frac{a}{r^{2}} \hat{\mathbf{r}}$ and $\overrightarrow{\mathbf{E}}_{+}(r)=-\frac{a r}{R^{3}} \hat{\mathbf{r}} . \overrightarrow{\mathbf{E}}_{-}(r)$ is the electric field of a negative point charge at the origin with $-q=4 \pi \varepsilon_{0} a>0$, hence $q<0 . \overrightarrow{\mathbf{E}}_{+}(r)$ is the electric field of a uniformly positively charged sphere of radius R. Because the electric field for radius $r>R$ is zero, the sum of the two charges distributions must be zero. Therefore the charge density must satisfy $\rho=q /\left(4 \pi R^{3} / 3\right)<0$. Therefore when $a<0$ the only possible answer d . cannot be correct.

$$
V(O)-V(\infty)=V(O)=k \frac{q}{\left(2 a^{2}\right)^{1 / 2}}+k \frac{q}{\left(2 a^{2}\right)^{1 / 2}}+k \frac{(-q)}{\left(2 a^{2}\right)^{1 / 2}}+k \frac{(-q)}{\left(2 a^{2}\right)^{1 / 2}}=0
$$

c) Sketch on the figure below one path leading from infinity to the origin at O where the integral $\int_{\infty}^{o} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$ is trivial to do by inspection. Does your answer here agree with your result in b)?

Solution: The electric field at any point along the x -axis is points in the -y -direction. Therefore for a path from infinity to the origin at O along the x -axis, the dot product $\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0$ and hence the integral $\int_{\infty}^{0} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0$. Because by definition $\int_{\infty}^{o} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=-(V(O)-V(\infty))=0$, and the integral is path independent, our answer for the above path along the x -axis sagrees with our result in part b .

Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!) .

Four charged point-like objects, two of charge $+q$ and two of charge $-q$, are arranged on the vertices of a square with sides of length $2 a$, as shown in the sketch.
a) What is the electric field at point O, which is at the center of the square?
Indicate the direction and the magnitude.

$+\rightarrow-2$

Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!)

Three infinite sheets of charge are located at $x=-d, x=0$, and $x=d$, as shown in the sketch. The sheet at $x=0$ has a charge per unit area of 2σ, and the other two sheets have charge per unit area of $-\sigma$.

a) What is the electric field in each of the four regions I-IV labeled in the sketch? Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot the x component of the electric field, E_{x}, on the graph on the bottom of the next page.
Clearly indicate on the vertical axis the values of E_{x} for the different regions.
Solution: We begin by choosing a Gaussian cylinder with end caps in regions I and IV as shown in the figure below. The total charge enclosed is zero and hence the electric flux on the endcaps must be zero. Thus the electric field must be zero in regions I and IV.

This turns out to be correct but the conclusion depends on an additional argument based on symmetry. If the electric field is non-zero on the endcaps it must point either in the $+x$-direction in both regions I and IV or in the - x-direction in both regions I and IV. Neither is possible due to the symmetry of the charge distribution. For example, if the electric field pointed in the $+x$-direction in both regions I and IV. Then if we looked at
the charge distribution from the other side of the plane of the paper, the field should point in the -x -direction. However the charge distribution is identical when looking from the other side of the paper. Therefore the field must point in the +x -direction according to our original assertion. Therefore by symmetry the only possibility is for the fields in regions I and IV to point toward $x=0$ or away from $x=0$. In the first case the flux would be nonzero on our Gaussian surface but it must be zero because the charge enclosed is zero. Hence the electric field in regions I and IV is zero. (A similar argument holds if we assume that the field points in the -x-direction in both regions I and IV.)

For regions II and III, we choose a Gaussian cylinder with end caps in regions II and III as shown in the figure below.

The electric flux on the endcaps is $\iiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=2 E A$. The charge enclosed divided by ε_{0} is $Q_{\text {enc }} / \varepsilon_{0}=2 \sigma A / \varepsilon_{0}$. Therefore by Gauss's Law, $2 E A=2 \sigma A / \varepsilon_{0}$ which implies that the magnitude of the electric field is $E=\sigma / \varepsilon_{0}$. Thus the electric field is given by

$$
\overrightarrow{\mathbf{E}}=\left\{\begin{array}{cr}
\overrightarrow{\mathbf{0}} ; & x<-d \\
-\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{i}} ; & -d<x<0 \\
\frac{\sigma}{\varepsilon_{0}} \hat{\mathbf{i}} ; & 0<x<+d \\
\overrightarrow{\mathbf{0}} ; & d<x
\end{array}\right.
$$

The graph of the x component of the electric field, E_{x} vs x is shown on the graph below.

b) Find the electric potential in each of the four regions I-IV labeled above, with the choice that the potential is zero at $x=+\infty$ i.e. $V(+\infty)=0$. Show your calculations. Plot the electric potential as a function of x on the graph on the bottom of the next page. Indicate units on the vertical axis.

Solution: The electric potential difference between infinity and a point P located at x, is given by

$$
V(x)-V(\infty)=-\int_{\infty}^{P} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} .
$$

We shall evaluate this integral for points in each region. We start with P anywhere in region IV, $d<x$. Because the electric field in region IV is zero, the integral is zero,

$$
V(x)-V(\infty)=-\int_{\infty}^{x} \overrightarrow{\mathbf{E}}_{I V} \cdot d \overrightarrow{\mathbf{s}}=0
$$

If P is anywhere in region III, $0<x<+d$ then

$$
\begin{aligned}
V(x)-V(\infty) & =-\int_{\infty}^{d} \overrightarrow{\mathbf{E}}_{I V} \cdot d \mathbf{\mathbf { s }}-\int_{d}^{x} \overrightarrow{\mathbf{E}}_{I I I} \cdot d \overrightarrow{\mathbf{s}} \\
& =0-\int_{d}^{x} E_{x} d x=-\int_{d}^{x} \frac{\sigma}{\varepsilon_{0}} d x=-\frac{\sigma}{\varepsilon_{0}}(x-d)=\frac{\sigma}{\varepsilon_{0}} d-\frac{\sigma}{\varepsilon_{0}} x .
\end{aligned}
$$

If P is anywhere in region II, $-d<x<0$ then

$$
\begin{aligned}
V(x)-V(\infty) & =-\int_{\infty}^{d} \overrightarrow{\mathbf{E}}_{I V} \cdot d \overrightarrow{\mathbf{s}}-\int_{d}^{0} \overrightarrow{\mathbf{E}}_{I I I} \cdot d \overrightarrow{\mathbf{s}}-\int_{0}^{x} \overrightarrow{\mathbf{E}}_{I I} \cdot d \overrightarrow{\mathbf{s}} \\
& =0-\int_{d}^{0} \frac{\sigma}{\varepsilon_{0}} d x-\int_{0}^{x}-\frac{\sigma}{\varepsilon_{0}} d x=\frac{\sigma}{\varepsilon_{0}} d+\frac{\sigma}{\varepsilon_{0}} x
\end{aligned}
$$

If P is anywhere in region $\mathrm{I}, x<-d$ then

$$
\begin{aligned}
V(x)-V(\infty) & =-\int_{\infty}^{d} \overrightarrow{\mathbf{E}}_{I V} \cdot d \overrightarrow{\mathbf{s}}-\int_{d}^{0} \overrightarrow{\mathbf{E}}_{I I} \cdot d \overrightarrow{\mathbf{s}}-\int_{0}^{-d} \overrightarrow{\mathbf{E}}_{I I} \cdot d \overrightarrow{\mathbf{s}}-\int_{-d}^{x} \overrightarrow{\mathbf{E}}_{I} \cdot d \overrightarrow{\mathbf{s}} \\
& =0-\int_{d}^{0} \frac{\sigma}{\varepsilon_{0}} d x-\int_{0}^{-d}-\frac{\sigma}{\varepsilon_{0}} d x-0=\frac{\sigma}{\varepsilon_{0}} d-\frac{\sigma}{\varepsilon_{0}} d=0
\end{aligned} .
$$

Because the electric field is continuous we can write our result as

$$
V(x)-V(\infty)=\left\{\begin{array}{lr}
0 ; & x \leq-d \\
\frac{\sigma}{\varepsilon_{0}} d+\frac{\sigma}{\varepsilon_{0}} x ; & -d \leq x \leq 0 \\
\frac{\sigma}{\varepsilon_{0}} d-\frac{\sigma}{\varepsilon_{0}} x ; & 0 \leq x \leq+d \\
0 ; & d \leq x
\end{array} .\right.
$$

Note this can be written as

$$
V(x)-V(\infty)=\left\{\begin{array}{cr}
0 ; & x \leq-d \\
\frac{\sigma}{\varepsilon_{0}} d-\frac{\sigma}{\varepsilon_{0}}|x| ; & -d \leq x \leq d \\
0 ; & d \leq x
\end{array}\right.
$$

This result looks good because the area under the graph of the x component of the electric field, E_{x} vs x for the region $-d<x<d$ is zero. The plot of the electric potential as a function of x on the graph is shown below with units of [V] on the vertical axis.

c) How much work must you do to bring a point-like object with charge $+Q$ in from infinity to the origin $x=0$?

Solution. The work you must do is equal to the change in potential energy (assuming the point-like object begins and ends at rest). Therefore

$$
W=U(0)-U(\infty))=+Q(V(0)-V(\infty))=+\frac{Q \sigma}{\varepsilon_{0}} d
$$

Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!). You may find the following integrals helpful in this answering this question.

$$
\int_{r_{a}}^{r_{b}} r^{n} d r=\frac{1}{n+1}\left(r_{b}^{n+1}-r_{a}^{n+1}\right) ; n \neq 1, \quad \int_{r_{a}}^{r_{b}} \frac{d r}{r}=\ln \left(r_{b} / r_{a}\right) .
$$

Consider a charged infinite cylinder of radius R.

The charge density is non-uniform and given by

$$
\rho(r)=b r ; r<R,
$$

where r is the distance from the central axis and b is a constant.
a) Find an expression for the direction and magnitude of the electric field everywhere ie. inside and outside the cylinder. Clearly present your reasoning, relevant figures, and any accompanying calculations.

Solution. Because the charge distribution defines two distinct regions of space, region I defined by $r<R$ and region II defined by $r>R$, we must apply Gauss's Law twice to find the electric field everywhere.

In region I, where $r<R$, we choose a Gaussian cylinder of radius r and length l.

Because the electric field points away from the central axis, the electric flux on our Gaussian surface is

$$
\iint \overrightarrow{\mathbf{E}}_{I} \cdot d \overrightarrow{\mathbf{A}}=E_{I} 2 \pi r l .
$$

Because the charge density is non-uniform, we must integrate the charge density. We choose as our integration volume a cylindrical shell of radius r^{\prime}, length l and thickness $d r^{\prime}$. The integration volume is then $d V^{\prime}=2 \pi r^{\prime} l d r^{\prime}$.

Therefore the charge divided by ε_{0} enclosed within our Gaussian surface is

$$
Q_{e n c} / \varepsilon_{0}=\frac{1}{\varepsilon_{0}} \int_{0}^{r} \rho 2 \pi r^{\prime} l d r^{\prime}=\frac{1}{\varepsilon_{0}} \int_{0}^{r} b r^{\prime} 2 \pi r^{\prime} l d r^{\prime}=\frac{2 \pi l b}{\varepsilon_{0}} \int_{0}^{r} r^{\prime 2} d r^{\prime}=\frac{2 \pi l b r^{3}}{3 \varepsilon_{0}}
$$

Therefore Gauss's Law becomes

$$
E_{I} 2 \pi r l=2 \pi l b r^{3} / 3 .
$$

We can now solve for the direction and magnitude of the electric field when $r<R$,

$$
\overrightarrow{\mathbf{E}}_{I}=\frac{b r^{2}}{3 \varepsilon_{0}} \hat{\mathbf{r}} .
$$

In region II where $r>R$, we choose a Gaussian cylinder of radius r and length l.

Because the electric field points away from the central axis, the electric flux on our Gaussian surface is

$$
\iint \overrightarrow{\mathrm{E}}_{I I} \cdot d \overrightarrow{\mathbf{A}}=E_{I I} 2 \pi r l .
$$

We again must integrate the charge density but this time taking our endpoints as $r=0$ and $r=R$. Therefore the charge divided by ε_{0} enclosed within our Gaussian surface is

$$
Q_{e n c} / \varepsilon_{0}=\frac{1}{\varepsilon_{0}} \int_{0}^{r} \rho 2 \pi r^{\prime} l d r^{\prime}=\frac{1}{\varepsilon_{0}} \int_{0}^{R} b r^{\prime} 2 \pi r^{\prime} l d r^{\prime}=\frac{2 \pi l b}{\varepsilon_{0}} \int_{0}^{R} r^{\prime 2} d r^{\prime}=\frac{2 \pi l b R^{3}}{3 \varepsilon_{0}} .
$$

Therefore Gauss's Law becomes

$$
E_{I I} 2 \pi r l=2 \pi l b R^{3} / 3 .
$$

We can now solve for the direction and magnitude of the electric field when $r>R$,

$$
\overrightarrow{\mathbf{E}}_{I I}=\frac{b R^{3}}{3 \varepsilon_{0}} \frac{1}{r} \hat{\mathbf{r}} .
$$

Collected our results we have that

$$
\overrightarrow{\mathbf{E}}= \begin{cases}\frac{b r^{2}}{3 \varepsilon_{0}} \hat{\mathbf{r}} ; & r<R \\ \frac{b R^{3}}{3 \varepsilon_{0}} \frac{1}{r} \hat{\mathbf{r}} ; & r>R\end{cases}
$$

b) A point-like object with charge $+q$ and mass m is released from rest at the point a distance $2 R$ from the central axis of the cylinder. Find the speed of the object when it reaches a distance $3 R$ from the central axis of the cylinder.

Solution: The change in kinetic energy when the object moves from a distance $2 R$ from the central axis of the cylinder to a distance $3 R$ is given by

$$
K(3 R)-K(2 R)=-(U(3 R)-U(2 R))=-q(V(3 R)-V(2 R)) .
$$

Because the particle was released at rest, $K(2 R)=0$, and $K(3 R)=(1 / 2) m v_{f}^{2}$, the final speed of the object is

$$
v_{f}=\sqrt{-\frac{2 q}{m}(V(3 R)-V(2 R))} .
$$

The electric potential difference between two points in region II is given by

$$
\begin{aligned}
& V(3 R)-V(2 R)=-\int_{2 R}^{3 R} \overrightarrow{\mathbf{E}}_{I I} \cdot d \overrightarrow{\mathbf{s}}=-\int_{2 R}^{3 R} \frac{b R^{3}}{3 \varepsilon_{0}} \frac{1}{r} \hat{\mathbf{r}} \cdot d \overrightarrow{\mathbf{s}} \\
& \quad=-\int_{2 R}^{3 R} \frac{b R^{3}}{3 \varepsilon_{0}} \frac{1}{r} d r=-\frac{b R^{3}}{3 \varepsilon_{0}} \ln \frac{3 R}{2 R}=-\frac{b R^{3}}{3 \varepsilon_{0}} \ln (3 / 2)
\end{aligned}
$$

Therefore the speed of the object when it reaches a distance $3 R$ from the central axis of the cylinder is

$$
v_{f}=\sqrt{\frac{2 q b R^{3}}{3 m \varepsilon_{0}} \ln (3 / 2)}
$$

