Topics: Conductors \& Capacitors

Related Reading: Course Notes: Sections 4.3-4.4; 5.1-5.4, 5.9

Topic Introduction

Today we introduce the concept of conductors and put the idea of capacitance, which you have already played with in circuits, on firm ground. Conductors are materials in which charge is free to move. That is, they can conduct electrical current (the flow of charge). Metals are conductors. For many materials, such as glass, paper and most plastics this is not the case. These materials are called insulators. For the rest of the class we will try to understand what happens when conductors are put in different configurations, when potentials are applied across them, and so forth.

Conductors

Since charges are free to move in a conductor, the electric field inside of an isolated conductor must be zero. Why? Assume that the field were not zero. The field would apply forces to the charges in the conductor, which would then move. As they move, they begin to set up a field in the opposite direction. An easy way to picture this is to think of a bar of metal in a uniform external electric field (from left to right in the picture below). A net positive charge will then appear on the right of the bar, a net negative charge on the left. This sets up a field opposing the original. As long as a net field exists, the charges will continue to flow until they set up an equal and opposite field, leaving a net zero field inside the conductor.

Capacitance

You already know much about capacitors, for example, that they store electric charge and that they are characterized by the amount of charge they can store for a given potential difference ($C \equiv Q /|\Delta V|$), that is, that a large capacitance capacitor can store a lot of charge with little "effort" - little potential difference between the two plates. Today we begin taking a second look at capacitors, namely learning how to calculate the capacitance of various configurations of conductors. A simple example is pictured at left the parallel plate capacitor, consisting of two plates of area A, a distance d apart. To find its capacitance we first arbitrarily place charges $\pm Q$ on the plates. We calculate the electric field
 between the plates (using Gauss's Law) and integrate to obtain the potential difference between them. Finally we calculate the capacitance: $C=Q /|\Delta V|=\varepsilon_{0} A / d$. Note that the capacitance depends only on geometrical factors, not on the amount of charge stored (which is why we were justified in starting with an arbitrary amount of charge).

Energy
As you already know, in the process of storing charge, a capacitor also stores electric energy. Today we derive the formula you have been using by considering how you "charge" a capacitor. Imagine that you start with an uncharged capacitor. Carry a small amount of positive charge from one plate to the other (leaving a net negative charge on the first plate). Now a potential difference exists between the two plates, and it will take work to move over subsequent charges. Reversing the process, we can release energy by giving the charges a method of flowing back where they came from. So, in charging a capacitor we put energy into the system, which can later be retrieved. Where is the energy stored? In the process of charging the capacitor, we also create an electric field, and it is in this electric field that the energy is stored. We assign to the electric field a "volume energy density" $u_{E,}$ which, when integrated over the volume of space where the electric field exists, tells us exactly how much energy is stored.

Important Equations Capacitance:
Energy Stored in a Capacitor:
Energy Density in Electric Field:

$$
\begin{aligned}
& C \equiv Q /|\Delta V|=\frac{e_{0} H}{C} \\
& U=Q^{2} / 2 C=\frac{1}{2} Q|\Delta V|=\frac{1}{2} C|\Delta V|^{2} \\
& u_{E}=\frac{1}{2} \varepsilon_{o} E^{2}
\end{aligned}
$$

Class 09: Outline
Hour 1
Conductors and Insulators;
Hour 2
Capacitance and Capacitors

Conductors and Insulators
Conductor: Charges are free to move Electrons weakly bound to atoms Example: metals

Insulator: Charges are NOT free to move
Electrons strongly bound to atoms Examples: plastic, paper, wood

$$
\text { * } Q=C \Delta V
$$

the greater the potential difference, the greater the capacity to store Charge
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
can move from their lattice site
-weakly bound
\qquad
Semiconductors in middle
\qquad
\qquad

Class 09
Charges try to get far away from each otter ${ }_{1}$ -migrate to surface in conducting sphere

Conductors in Equilibrium
Conductors are equipotential objects:

1) $E=0$ inside Conducting material
2) E perpendicular to surface
3) Net charge inside is 0

4 Exes charge on Surface
charges move b/c force is on them
\qquad
Until E field inside canceled

- happen very quickly
- had to cate

If not O charges would move more
\qquad
charge \int parades own field to left candles external field
Some external charge density
\qquad
\qquad
\qquad
$\frac{\theta \text { charges down }}{\theta \text { charges up }} \quad J=\int \vec{E} \cdot d s$
a diff b/w 2 pts on surface $=0$
same potential
non d field
inside (farilay ice case) but flux of whole thing
$=0$
\qquad
\qquad
Electrons trying to get as far away as poss, blue
\qquad
\qquad
\qquad
he flux on bottom
Class 09

Conductors in Equilibrium
Conductors are equipotential objects:

1) $E=0$ inside
2) E perpendicular to surface
3) Net charge inside is 0
4) Excess charge on surface

$$
E=\sigma / \varepsilon_{0}
$$

* Charges move everywhere Class 09 Ont!! \vec{E} field $=0 *$
Q distributes itself on the viler surface
- O charge on inner surface

Could bring charge to 1 -now potential difference b/w then - One has (t) other θ
humars can be capacitors

C is (t) constant
So $Q(t)$ as well

(f) at higher potential

Parallel Plate Capacitor

Oppositely charged plates:
Charges move to inner surfaces to get close

Link to Capacitor Applet

Super position argument

Alternate Calculation Method

$$
E=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{A \varepsilon_{0}}
$$

Each sheet seperthy Add together
\qquad
\qquad
\qquad
\qquad

but
E constant
not a point charge

Class 09

* Capatiance depends on area of capacitors 3 main problems - parallel plates
- cylindrical shells
- Shells.
- Since can use Guess' Law
other shapes still capacitors, can 't measure
* know what changes + what does not $\begin{aligned} \text { know the formulas }\end{aligned}$

PRS: Changing Dimensions
 : 30

A parallel-plate capacitor has plates with equal and opposite charges $\pm Q$, separated by a distance d, and is not connected to a battery. The plates are pulled apart to a distance $D>d$. What happens?

0%	1.	V increases, Q increases
0%	2.	V decreases, Q increases
0%	3.	V is the same, Q increases
0%	4.	V increases, Q is the same
0%	5.	V decreases, Q is thesame
0%	6.	V is the same, Q is the same
0%	7.	V increases, Q decreases
0%	8.	V decreases, Q decreases
0%	9.	V is the same, Q decreases

10. 16

$\uparrow 2 x$

20 PRS: Changing Dimensions

A parallel-plate capacitor has plates with equal and opposite charges $\pm Q$, separated by a distance d, and is connected to a battery. The plates are pulled apart to a distance $D>d$. What happens?

1. V increases, Q increases
2. V decreases, Q increases
3. V is the same, Q increases
4. . V increases, Q is the same
5. V decreases, Q is the same
6. V is the same, Q is the same
7. V increases, Q decreases
8. V decreases, Q decreases
9. V is the same, Q decreases

Demonstration: Changing C Dimensions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Group Problem: Spherical Shells

\qquad

These two spherical shells have equal but opposite charge.

Find E everywhere
Find V everywhere (assume $V(\infty)=0$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3.Step $E \rightarrow V \rightarrow C$

Spherical Capacitor

\qquad
Two concentric spherical shells of radii a and b

\qquad
\qquad
\qquad
Gauss's Law $\rightarrow E \neq 0$ only for $a<r<b$, \qquad where it looks like a point charge:

$$
\overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Spherical Capacitor $\Delta V=-\int_{\text {inside }}^{\text {outside }} \stackrel{\mathbf{E}}{ } \cdot d \overrightarrow{\mathbf{S}}=-\int_{a}^{b} \frac{Q \hat{\mathbf{r}}}{4 \pi \varepsilon_{0} r^{2}} \cdot d r \hat{\mathbf{r}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{a}\right)$ Is this positive or negative? Why?

$$
C=\frac{Q}{|\Delta V|}=\frac{4 \pi \varepsilon_{0}}{\left(a^{-1}-b^{-1}\right)}
$$

For an isolated spherical conductor of radius a:

$$
C=4 \pi \varepsilon_{0} a
$$

Capacitance of Earth
For an isolated spherical conductor of radius a:

$$
C=4 \pi \varepsilon_{0} a
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \quad a=6.4 \times 10^{6} \mathrm{~m}
$$

$$
C=7 \times 10^{-4} \mathrm{~F}=0.7 \mathrm{mF}
$$

A Farad is REALLY BIG! We usually use $\mathrm{pF}\left(10^{-12}\right)$ or $\mathrm{nF}\left(10^{-9}\right)$

Energy Stored in Capacitor
Start charging capacitor

- Something must charge them

Class 09

Outside $=$ Constant $=$ Vo
Inside $=$ same ever where inside
Tderivithe of constant $=0$
\qquad
\qquad
\qquad

Human capacitor

- you (t) sphere
$-\infty$ (-) sphere

$\frac{1}{\infty} \quad b \rightarrow \infty$	
$\frac{b}{c}$	$=\frac{4 \pi \varepsilon_{0}}{\frac{1}{a}}$
	$=4 \pi \varepsilon_{0} a$
$\frac{1 \pi \varepsilon_{0}}{4}$	$=9 \cdot 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}}$

$a=1 \mathrm{~m}$
$C=\frac{1}{10} 10 \mathrm{~N} \cdot \mathrm{~m}^{2}$
picofuron $=10^{-12} \mathrm{~F}$
$C=100 \mathrm{pF}$
So ground yourself before touching computer
\qquad
\qquad
\qquad

Energy To Charge Capacitor

+ + + + + +

1. Capacitor starts uncharged.
2. Carry $+d q$ from bottom to top.

Now top has charge $q=+d q$, bottom $-d q$
3. Repeat
4. Finish when top has charge $q=+Q$, bottom $-Q$

At some point top plate has $+q$, bottom has $-q$
Potential difference is $\Delta V=q / C$
Work done lifting another $d q$ is $d W=d q \Delta V$

Work Done Charging Capacitor

\qquad
So work done to move $d q$ is:

$$
d W=d q \Delta V=d q \frac{q}{C}=\frac{1}{C} q d q
$$

Total energy to charge to $q=Q$:

$$
\begin{aligned}
W & =\int d W=\frac{1}{C} \int_{0}^{Q} q d q \\
=\frac{1}{C} \frac{Q^{2}}{2} & \cdots+q^{+++}
\end{aligned}
$$

T total

© that P-set qu evermore has trouble with

Energy Stored in Capacitor

$$
\begin{gathered}
\text { Since } C=\frac{Q}{|\Delta V|} \\
U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q|\Delta V|=\frac{1}{2} C|\Delta V|^{2}
\end{gathered}
$$

Where is the energy stored???
 that matters
stored in Electric Flell

Energy Stored in Capacitor

Energy stored in the E field!
Parallel-plate capacitor: $C=\frac{\varepsilon_{o} A}{d}$ and $V=E d$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{\varepsilon_{o} A}{d}(E d)^{2}=\frac{\varepsilon_{0} E^{2}}{2} \times(A d)=u_{E} \times($ volume $)$
$u_{E}=E$ field energy density $=\frac{\varepsilon_{o} E^{2}}{2}$

envy stored in electric field

$$
\begin{aligned}
& \text { PRS Question: } \\
& \text { Changing C Dimensions } \\
& \text { Energy Stored }
\end{aligned}
$$

\qquad
\qquad

PRS: Changing Dimensions

A parallel-plate capacitor, disconnected from a battery, has plates with equal and opposite charges, separated by a distance d.
Suppose the plates are pulled apart until separated by a distance $D>d$.
How does the final electrostatic energy stored in the capacitor compare to the initial energy?
0% 1. The final stored energy is smaller
0% 2. The final stored energy is larger
0\% 3. Stored energy does not change.

Office Hrs
$\frac{1}{2} C_{0} E^{2}=$ energy density for all shapes
-to get energy $=-E d$
have to integate for other shapes

$$
\int d v^{\prime}
$$

Tcapitance

$$
\text { Se } \frac{1}{2}(\Delta V)^{2}
$$

Cake energy density

See Mon slides What is E density when E field Where is $V^{\frac{1}{2}} e_{0} E^{2}=\frac{1}{2}\left(A V^{2}\right.$

- all space, density

$$
\int \frac{1}{2} \varepsilon_{0} E^{2} \cdot 2 \pi R L d r^{\prime}
$$

Grass law
$\binom{1}{)^{2}}^{2}$

$$
\frac{1}{r^{2}}
$$

end w/ \ln
What is energy stored? $\frac{1}{2} \varepsilon_{0} E^{2}$-same for resistance
$\leftarrow 1 \mid-$
move aport
large volume
E field same
had to have more energy

- have to add some E to move them apart
know how to integrate over each type of area Capitance - learn for non uniform E density - splore t cylinder

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 4

Due: Tuesday, March 2 at 9 pm .
Hand in your problem set in your section slot in the boxes outside the door of 32082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes.
Reading Assignments:
Week Five Conductors as Shields; Current and Ohm's Law
Class 11 W05D1 M/T Mar 1/2 Conductors as Shields; Expt. 2: Faraday Ice Pail; Capacitors and Dielectrics
Reading: \quad Course Notes: Sections 4.3-4.4; 5.5, 5.9, 5.10.2
Experiment: Experiment 2: Faraday Ice Pail
http://web.mit.edu/8.02t/www/materials/Experiments/exp02.pdf
Class 12 W05D2 W/R Mar 3/4 Current, Current Density, and Resistance and Ohm's Law; DC Circuits
Reading: Course Notes: Sections 6.1-6.5; 7.1-7.4

Class 13 W05D3 F Mar 5:
PS04: PHET: Building a Simple DC Circuit
Reading: Course Notes: Sections 6.1-6.5; 7.1-7.4

Add Date Mar 5

Problem 1: Read Experiment 2: Faraday Ice Pail

http://web.mit.edu/8.02t/www/materials/Experiments/exp02.pdf
Consider two nested cylindrical conductors of height h and radii $a \& b$ respectively. A charge $+Q$ is evenly distributed on the outer surface of the pail (the inner cylinder), $-Q$ on the inner surface of the shield (the outer cylinder). You may ignore edge effects.

a) Calculate the electric field between the two cylinders $(a<r<b)$.
b) Calculate the potential difference between the two cylinders:
c) Calculate the capacitance of this system, $C=Q / \Delta V$
d) Numerically evaluate the capacitance for your experimental setup, given: $h \cong 15$ $\mathrm{cm}, a \cong 4.75 \mathrm{~cm}$ and $b \cong 7.25 \mathrm{~cm}$.
e) Find the electric field energy density at any point between the conducting cylinders. How much energy resides in a cylindrical shell between the conductors of radius r (with $a<r<b$), height h, thickness $d r$, and volume $2 \pi r h d r$? Integrate your expression to find the total energy stored in the capacitor and compare your result with that obtained using $U_{E}=(1 / 2) C(\Delta V)^{2}$.

Problem 2: Experiment 2 Faraday Ice Pail Predictions

A. Prediction: Charging by Contact Sketch your prediction for the graph of potential difference vs. time for part 2 of this experiment. Indicate the following events on the time axis:
(a) Insert positive charge producer into pail
(b) Rub charge producer against inner surface of pail
(c) Remove charge producer
B. Prediction: Charging by Induction Sketch your prediction for the graph of potential difference vs. time for part 3 of this experiment. Indicate the following events on the time axis:
(a) Insert positive charge producer into pail
(b) Ground pail to shield
(c) Remove ground contact between pail and shield
(d) Remove charge producer

Problem 3: Electrostatic Shielding

Part of the lab this week involves shielding. We have a visualization to help you better understand this. Open it up:

http://web.mit.edu/viz/EM/visualizations/electrostatics/ChargingByInduction/shielding/sh ielding.htm

and play with it for a while. You can move the charge around the outside of the shield (or even inside) using the parameters "radius pc" and "angle pc." You can change which field you are looking at - the total field, just the field of the external charge ("Free charge") or just the field of the induced charge (on the shield). You can visualize it with grass seeds or display equipotential streaks by clicking "Electric Potential."

Below are three captured images. I've blanked out the center so that you can't see what is going on inside the conductor. For each describe where the charge is (ROUGH angle and distance), tell whether I am looking at field lines (grass seeds) or equipotential streaks ("Electric Potential") and indicate whether I am doing so for the total field, or just the external or induced field. Also briefly explain HOW you know this (not just "I looked around until I was able to repeat the pattern").

Problem 4: Parallel Plate Capacitor

A potential difference V_{0} is applied across the plates of a parallel-plate capacitor resulting in charges $+Q_{0}$ and $-Q_{0}$ on the plates. The source of the potential difference is then disconnected from the plates. You then halve the distance between the plates. What happens to
a) the charge on the plates?
b) the electric field?
c) the energy stored in the electric field?
d) the potential?
e) How much work did you do in halving the distance between the plates?

Problem 5: Human Capacitor

What, approximately, is the capacitance of a typical MIT student? Check out the exhibit in Strobe Alley ($4^{\text {th }}$ floor of building 4) for a hint or just to check your answer.

E from other one,

-inside
$E A=\frac{Q_{\text {in }}}{l_{0}}$
$E(2 \pi r h) \frac{-Q}{\varepsilon_{0}}$

$$
E=\frac{-Q}{6_{0} 2 \pi r h}
$$

$$
E=\frac{Q}{6_{0} 2 \pi r h}-\frac{Q}{\frac{Q 2 \pi r h}{r}}
$$

is this the sane r
or is it distance from something

i. I guess

Ism glad to see you workin so hand and writing arestions on d stiff, thais great. But could you put a bis boy around your final attempt? I's kind of hand to find with so meh
b. Calculate Potential Difference work but 1 doit want to

$$
\begin{array}{ll}
V=V(P)-V(O) & \begin{array}{ll}
V(P)-g & \text { discounnase your involvement with } \\
\text { cork! }
\end{array} \\
V=r<b & \text { Hep up te good }
\end{array}
$$

actually course notes has example just like this one
$L>b-a$ so edge effects neglected
$a(r e d o) \quad$ Guassian surface $\quad l<L \quad a \geq r<b$

$$
\begin{aligned}
& E A=\frac{Q \operatorname{inc}}{\varepsilon_{6}}
\end{aligned}
$$

-So I was kinda right - its just in the middle-simplestans

$$
\begin{aligned}
& \Delta V=V_{b}-V_{a}=-\int_{a}^{p} E, d r
\end{aligned}
$$

C_{1} Capationce $C=\frac{Q}{|\Delta V|}=\frac{\lambda L}{\lambda \ln (\Gamma) / 2 \pi \varepsilon_{0}}=\frac{2 \pi \varepsilon_{0} L}{\ln (\ddot{C})}$
-Capatiance depends only on $L, a, b \quad \ln \left(\frac{b}{a}\right)$
d. Now with numbers

$$
\begin{aligned}
& h=15 \mathrm{~cm} \\
& a=4.75 \mathrm{~cm} \\
& b=7.25 \mathrm{~cm} \\
& \varepsilon_{0}=8.8 \cdot 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2} \\
& \ln (7.25 / \mathrm{c}) \\
& \quad\left(=1.86 \cdot 10^{-11}\right.
\end{aligned}
$$

the voltage differece Au belwoten T_{C} two plates is not a function of of e the distress are fixed at a and $b,-3$
e. Find the electric field energy density

How much Energy with $a<r<b$

Integrate to find te total energy stored in capacitor. Com pore w/

$$
U_{E}=\frac{1}{2}(\Delta V)^{2}
$$

So we want $\lambda=\frac{Q}{L}$
$U=\frac{1}{2} c \Delta v^{2} \quad$ have total E have Votive

$$
\frac{1}{2}\left(\frac{2 \pi c}{\ln +(a)}\right)\left(\frac{-x}{2 \pi(b} \ln (b(a))^{2}\right.
$$

Fin each shell
$\int \frac{1}{2} \varepsilon_{0} E^{2} e$?

- integral of cylindrical shells Z andy

Ok-after Dumastin's Office Hrs
from class notes day of slide 28

$$
W=\frac{1}{c} \int_{0}^{Q} q d q=\frac{1}{c} \frac{Q^{2}}{2}
$$

\square

$$
\text { Since } \begin{aligned}
& C=\frac{Q}{|\Delta V|} \quad V=E d \quad \\
& \begin{array}{rl}
U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q|\Delta V| & \begin{array}{r}
\text { (parallel plate } \\
\text { capicators) }
\end{array} \\
U & C|\Delta V|^{2}
\end{array} \\
& \begin{aligned}
& U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{C_{0} A}{d}(E d)^{2}=\frac{E_{0} E^{2}}{2} \cdot(A d) \\
&=V_{E} \cdot \text { volume }
\end{aligned} \\
& U_{E}=E \text { field density }=\frac{1}{2} G_{0} E^{2}
\end{aligned}
$$

Where does $V \frac{1}{2} \quad \varepsilon_{0} E^{2}=\frac{1}{2} C \Delta V^{2}$ -all space all density

$$
\begin{aligned}
& U_{E}=\int \sqrt{\frac{1}{2} \ell_{G} F^{2}} \cdot \frac{\text { around cylader }}{2 \pi r l d r} \\
& \text { guassilaw } \\
& \left(\frac{1}{r}\right)^{2} \text { a } r=\frac{1}{r} \text { so will have } \ln
\end{aligned}
$$

Now compare $w / \frac{1}{2}\left((b V)^{2}\right.$

$$
\begin{aligned}
& \frac{1}{2} \cdot \frac{2 \pi 6_{0} L}{\ln (r)} \cdot\left(\frac{-\lambda \ln (r)}{2 \pi 6_{0}}\right)^{2} \\
& \frac{1}{4} \cdot \frac{2 \pi \alpha_{1} L}{\pi+} \cdot \frac{-\Lambda^{2} \ln ^{2}(r)}{4 \pi^{2} \varepsilon_{0}^{2}-3}
\end{aligned}
$$

$$
\left(V_{E}=\frac{\left.L \cdot J^{2} \ln (r)\right)}{4 \pi \varepsilon_{0}}\right)
$$

s, but 1 think this is just error propagation.
work!
-thant to Damasking's OHI
Good to see yours getive help when you're confused. you en also email 8.02. help Q gmail.com. any time you have a question.
$2 A$ Prediction: potential diff vs time

(1) Charge creates high potenl|al
$a=$ insert (A) charge
$b=$ cub charge producer on pail
$c=$ remove charge potential
$a_{1} C=$ no change of te entire pail if not connected to ground

$b=$ electrons flow from pail \rightarrow ball trying to even. out
pail left w/ A charge
thus higher ponteaticul

$$
a=\text { insert } \Theta \text { ball }
$$

$$
b=\text { grand }
$$

$c=$ remove ground
$d=$ remove $\Theta)$ ball
a tho effect on whole pail
$b=$ charges escape to ground, leaving θ potential
$c=$ ho change on whole pail
$d=$ the θ charge rearrange, ne change on whole pail

* outer pail connected to ground always *

3. Electric sheilding
a) Know angle is 270° since charge is at botton distance is bottom of pic (10)
Know it is field lines not circle equipotential lines know it is shaving both fields because of the conflicts at edges T: better word
b) know this is 180° and targe close to outer edge (6) know it is equipotential since lines connect all of the orange lines on the for side it is showing only te indued field becurse there are no lives going to the charge (pic ic better)
 induced

C) O and ~ 18 to be at the edge equipotential for same reason as b total charge since charge is surranding charge
4. Parallel Plate Capacitor Moving

Source disconnected
halt distance

- lime PRS Qu from day 9
$V T$ Q stays the same

$$
\begin{aligned}
& C=\frac{Q}{|A V|}-\frac{C_{0} A}{d} \\
& V=\frac{E}{D+\operatorname{sane}} \text { bl } Q \text { same }
\end{aligned}
$$

(4) at higher potential
increases
Q is same b/c charge has ho where to go if connected to batt Q has somewhere to go so voltage stays same
a) Q same because charge has no where to g_{0}
b) Electric field is same b/c Q is the same
c) Energy stored in E field = capitance? φ hales

$$
C=\frac{\operatorname{Co}_{0} A}{d}+\frac{1}{2} \quad C=\frac{1}{(2)}=2 \text { doubles }
$$

d) Potential $V=\frac{E}{d \in \frac{1}{2}} \quad V=\frac{1}{\frac{1}{2}}=2^{x}$ doubles -5
e) How much work did you do '?

$$
d W=d q \wedge V=d q=\frac{q}{C}=\frac{1}{c} q d q
$$

$W=\int d W=\frac{1}{C} \int_{0}^{Q} q d Q$ In a little confused
$-5=\frac{1}{c} \frac{Q^{2}}{2}$

$$
u=\frac{1}{2} c \Delta V^{2}=\frac{1}{2} Q U \text {. }
$$

then $\omega=\Delta U$, if the energy
halves $\rightarrow \omega=-\frac{1}{2} u=-\frac{1}{4}$ Q.U.J

$$
\text { So } \frac{1}{2} \cdot \frac{12}{2}=\left(\frac{1}{4} \text { units? } \rightarrow\right. \text { Joules }
$$

5. Human Capacitor not right. it depends or - ger estimate qu

- Hudson die in class
you are te (t) sphere
∞ is the θ sphere

$$
\begin{aligned}
& \frac{1}{\infty} \quad \begin{array}{l}
b \rightarrow \infty \\
c=\frac{4 \pi c_{0}}{\frac{1}{a}}=4 \pi b_{0} a \\
\frac{1}{4 \pi c_{0}}=9 \cdot 10^{4} \frac{\mathrm{Nm}}{\mathrm{C}} \\
a=1 m \\
c=\frac{1}{10^{10}} \mathrm{~N} \cdot \mathrm{~m}^{2}=100 \mathrm{p} F
\end{array} . \quad \text { picofaron }=10^{-12 \mathrm{~F}}
\end{aligned}
$$

- grand yourself before touching PC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Problem Set 4 Solution

Problem 1: Experiment: Expt. 2: Faraday Ice Pail

Capacitance of our Experimental Set-Up

Part 1 Consider two nested cylindrical conductors of height h and radii $a \& b$ respectively. A charge $+Q$ is evenly distributed on the outer surface of the pail (the inner cylinder), $-Q$ on the inner surface of the shield (the outer cylinder).

(a) Calculate the electric field between the two cylinders $(a<r<b)$.

For this we use Gauss's Law, with a Gaussian cylinder of radius r, height l

$$
\iiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=2 \pi r l E=\frac{Q_{\text {isside }}}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}} \frac{Q}{h} l \Rightarrow E(r)_{a<r<b}=\frac{Q}{2 \pi r \varepsilon_{0} h}
$$

(b) Calculate the potential difference between the two cylinders:

The potential difference between the outer shell and the inner cylinder is

$$
\Delta V=V(a)-V(b)=-\int_{b}^{a} \frac{Q}{2 \pi r^{\prime} \varepsilon_{0} h} d r^{\prime}=-\left.\frac{Q}{2 \pi \varepsilon_{0} h} \ln r^{\prime}\right|_{b} ^{a}=\frac{Q}{2 \pi \varepsilon_{0} h} \ln \left(\frac{b}{a}\right)
$$

(c) Calculate the capacitance of this system, $C=Q / \Delta V$

$$
C=\frac{|Q|}{|\Delta V|}=\frac{|Q|}{\frac{|Q|}{2 \pi \varepsilon_{0} h} \ln \left(\frac{b}{a}\right)}=\frac{2 \pi \varepsilon_{o} h}{\ln \left(\frac{b}{a}\right)}
$$

(d) Numerically evaluate the capacitance for your experimental setup, given:

$$
\begin{aligned}
h \cong 15 \mathrm{~cm}, a & \cong 4.75 \mathrm{~cm} \text { and } b \cong 7.25 \mathrm{~cm} \\
C & =\frac{2 \pi \varepsilon_{o} h}{\ln \left(\frac{b}{a}\right)}=\frac{1}{2 \cdot 9 \times 10^{9} \mathrm{~m} \mathrm{~F}^{-1}} \frac{15 \mathrm{~cm}}{\ln \left(\frac{7.25 \mathrm{~cm}}{4.75 \mathrm{~cm}}\right)} \cong 20 \mathrm{pF}
\end{aligned}
$$

e) Find the electric field energy density at any point between the conducting cylinders. How much energy resides in a cylindrical shell between the conductors of radius r (with $a<r<b$), height h, thickness $d r$, and volume $2 \pi r h d r$? Integrate your expression to find the total energy stored in the capacitor and compare your result with that obtained using $U_{E}=(1 / 2) C(\Delta V)^{2}$.

The total energy stored in the capacitor is

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{1}{2} \varepsilon_{0}\left(\frac{Q}{2 \pi r \varepsilon_{0} h}\right)^{2}
$$

Then

$$
d U=u_{E} d V=\frac{1}{2} \varepsilon_{0}\left(\frac{Q}{2 \pi r \varepsilon_{0} h}\right)^{2} 2 \pi r h d r=\frac{h Q^{2}}{4 \pi \varepsilon_{0}} \frac{d r}{r}
$$

Integrating we find that

$$
U=\int_{a}^{b} d U=\int_{a}^{b} \frac{h Q^{2}}{4 \pi \varepsilon_{0}} \frac{d r}{r}=\frac{h Q^{2}}{4 \pi \varepsilon_{0}} \ln (b / a) .
$$

From part d) $C=2 \pi \varepsilon_{o} h / \ln (b / a)$, therefore

$$
U=\int_{a}^{b} d U=\int_{a}^{b} \frac{h Q^{2}}{4 \pi \varepsilon_{0}} \frac{d r}{r}=\frac{h Q^{2}}{4 \pi \varepsilon_{0}} \ln (b / a)=\frac{Q^{2}}{2 C}=\frac{1}{2} C \Delta V^{2}
$$

which agrees with that obtained above.

Part 2 Experimental Predictions

A. Prediction: Charging by Contact

Sketch your prediction for the graph of potential difference vs. time for part 2 of this experiment. Indicate the following events on the time axis:
(a) Insert positive charge producer into pail
(b) Rub charge producer against inner surface of pail
(c) Remove charge producer

Solution:

I picture the potential dropping a little as you remove the charge producer because it is likely that you still have some charge on the producer when you remove it (the transfer wasn't perfect).

B. Prediction: Charging by Induction

Sketch your prediction for the graph of potential difference vs. time for part 3 of this experiment. Indicate the following events on the time axis:
(a) Insert positive charge producer into pail
(b) Ground pail to shield
(c) Remove ground contact between pail and shield
(d) Remove charge producer

Solution:

Problem 2: Electrostatic Shielding

Part of the lab this week involves shielding. We have a visualization to help you better understand this. Open it up:
http://web.mit.edu/viz/EM/visualizations/electrostatics/ChargingByInduction/shielding/sh ielding.htm
and play with it for a while. You can move the charge around the outside of the shield (or even inside) using the parameters "radius pc" and "angle pc." You can change which field you are looking at - the total field, just the field of the external charge ("Free charge") or just the field of the induced charge (on the shield). You can visualize it with grass seeds or display equipotential streaks by clicking "Electric Potential."

Below are three captured images. I've blanked out the center so that you can't see what is going on inside the conductor. For each describe where the charge is (ROUGH angle and distance), tell whether I am looking at field lines (grass seeds) or equipotential streaks ("Electric Potential") and indicate whether I am doing so for the total field, or just the external or induced field. Also briefly explain HOW you know this (not just "I looked around until I was able to repeat the pattern").

(a) These are electric fields lines (grass seeds) of the entire field. We can tell because they come in perpendicular to the equipotential surface of the conductor, which is only true for the total field (not the individual parts). The charge is clearly below the conductor $\left(\theta=270^{\circ}\right)$ and just off the screen ($\mathrm{R}=11.5$).
(b) Here the lines are neither perpendicular nor parallel to the conductor, so it can't be for the entire field. They loop around, looking like a dipole, so they are associated with the induced charges, not the external charge. Are they field lines or equipotentials though? Without seeing the center this is non-trivial. If the charge were below, the field lines would look very much like this. But since the left and right "lobes" are not symmetric, it must be equipotentials created by a charge on the left $\left(R=6, \theta=180^{\circ}\right)$.
(c) This one is easier. The lines wrap around the conductor, so they are clearly equipotential lines associated with the entire field. The charge is on the right $(\mathrm{R}=11$, $\theta=0^{\circ}$)

Problem 4: Parallel Plate Capacitor

A parallel-plate capacitor is charged to a potential V_{0}, charge Q_{0} and then disconnected from the battery. The separation of the plates is then halved. What happens to
(a) the charge on the plates?

No Change. We aren't attached to a battery, so the charge is fixed.
(b) the electric field?

No Change. The charge is constant so, in the planar geometry, so is the field.
(c) the energy stored in the electric field?

Halves. The volume in which we have field halves, so the energy does too.
(d) the potential?

Halves. $\quad V=E d$, so if d halves, so does V
(e) How much work did you do in halving the distance between the plates?

The work done is the change in energy. Energy, given the charge and potential, is:

$$
U=\frac{1}{2} C V^{2}=\frac{1}{2} Q V
$$

The energy halves, so the change is half the initial energy: $W=\Delta U=-\frac{1}{4} Q_{0} V_{0}$
Notice the sign - you did negative work bringing the plates together because that is the way they naturally want to move; the field did positive work.

Problem 5: Human Capacitor

What, approximately, is the capacitance of a typical MIT student? Check out the exhibit in Strobe Alley ($4^{\text {th }}$ floor of building 4) for a hint or just to check your answer.
There are lots of ways to do this. The note in strobe alley tells us to use a cylinder of dimensions such that when filled with water it would be your mass. Personally I feel more like a sphere, of which we have already calculated the capacitance in class. All I need to know is my radius, a. As a first approximation, probably it's a meter (I'm certainly less than 10 m and more than 10 cm). So my capacitance should be about:

$$
C \approx 4 \pi \varepsilon_{0} a \approx 1 \mathrm{~m} / 9 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m} \approx 100 \mathrm{pF}
$$

Not a bad approximation - according to the measurement I'm really $\sim 170 \mathrm{pF}$. Note that for simplicity I used the value for k_{E} rather than ε_{0}. Always look for ways to recombine constants into things that you know.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

8.02

Experiment 2 Solutions: Faraday Ice Pail

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As" to the desktop. Overwrite any file by this name that is already there). Start LabView by double clicking on this file.
2. Using the multi-pin cable, connect the Charge Sensor to Analog Channel A on the 750 Interface. The cable runs from the left end of the sensor (in Fig. 5) to Channel A.
3. Connect the lead assembly to the BNC port on the Charge Sensor (right end of the sensor in Fig. 5). Line up the connector on the end of the cable with the pin on the BNC port. Push the connector onto the port and twist it clockwise about one-quarter turn until it clicks into place. Set the Charge Sensor gain to $1 x$.
4. Connect the charge sensor input lead (red alligator clip) to the pail (the inner wire mesh cylinder), and the ground lead (black alligator clip) to the shield (the outer wire mesh cylinder).

MEASUREMENTS

Important Notes:

The charge producers are delicate. When rubbing them together do so briskly but gently.
Each experiment should begin with completely discharged cylinders. To discharge them, ground the pail by touching both it and the shield at the same time with a conductor (e.g. the finger of one hand). You also will always want to zero the charge sensor before starting by pressing the "Zero" button.

Finally, note that the amount of charge measured is small and hence there will be fluctuations in the signal as well as small features due to the person holding the charge producers. In answering questions focus on the BIG features (sign of potential, ...) not the noise.

Part 1: Polarity of the Charge Producers

1. Ground the pail and zero the charge sensor
2. Start recording data. (Press the green "Go" button above the graph).
3. Rub the blue and white surfaces of the charge producers together several times.
4. Without touching the pail, lower the white charge producer into the pail.
5. Remove the white charge producer and then lower in the blue charge producer

Question 1 (Don't forget to submit answers in the software!):
What are the polarities of the white and the blue charge producers?
The white producer is positive, the blue producer negative

Part 2: Charging By Contact

Part 2A: Using the White Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the white charge producer into the pail
3. Rub the charge producer against the inner surface of the pail
4. Remove the charge producer

Question 2: Sketch the plot of voltage vs. time and indicate the charge on the inner and outer surfaces of the pail after each of the above steps

Answer:

Charge on inner \& outer surfaces of the inner cylinder (indicate sign, and use a variable like q for non-zero magnitudes)

After Step 1:	$\mathrm{Q}_{\text {inner }}=0$	Qouter $=0$
After Step 2:	$\mathrm{Q}_{\text {inner }}=-\mathrm{q}$	Qouter $=\mathrm{q}$
After Step 3:	$\mathrm{Q}_{\text {inner }}=-0.1 \mathrm{q}$	$\mathrm{Q}_{\text {outer }}=\mathrm{q}$
After Step 4:	$\mathrm{Q}_{\text {inner }}=0$	Qouter $=0.9 \mathrm{q}$

Part 2B: Using the Blue Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the blue charge producer into the inner cylinder
3. Rub the charge producer against the inner surface of the inner cylinder
4. Remove the charge producer

Question 3:

What happens to the charge on the pail when you rub it with the blue charge producer?
You transfer negative charge to the pail, which neutralizes some of the positive charge that had been attracted there by the negative charge.

Part 3: Charging By Induction

Part 3A: Using the White Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the white charge producer into the pail, without touching it
3. Ground the pail by connecting it to the shield with your finger
4. Remove the ground connection (your finger)
5. Remove the charge producer

Question 4:

Sketch the plot of voltage vs. time and indicate the charge on the inner and outer surfaces of the pail after each of the above steps
Answer:

Charge on inner \& outer surfaces of the inner cylinder (indicate sign, and use a variable like q for non-zero magnitudes)
After Step 1:
$\mathrm{Q}_{\text {inner }}=0$
$\mathrm{Q}_{\text {outer }}=0$
After Step 2:
$\mathrm{Q}_{\text {inner }}=-\mathrm{q}$
$\mathrm{Q}_{\text {outer }}=\mathrm{q}$
After Step 3:
$\mathrm{Q}_{\text {inner }}=-\mathrm{q}$
$\mathrm{Q}_{\text {outer }}=0$
After Step 4:
$\mathrm{Q}_{\text {inner }}=-\mathrm{q}$
$\mathrm{Q}_{\text {outer }}=0$
After Step 5:
$\mathrm{Q}_{\text {inner }}=0$
$Q_{\text {outer }}=-q$

3B: Using the Blue Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the white charge producer into the pail, without touching it
3. Ground the pail by connecting it to the shield with your finger
4. Remove the ground connection (your finger)
5. Remove the charge producer

Question 5:

What happens to the charge on the pail when you do the above steps?

- You end up inducing a positive charge on the inner pail (it is pulled over through your finger from the shield when the negative blue producer is in the pail).

Part 4: Testing the shield

1. Ground \& zero; Start recording; Rub the producers
2. Bring the white charge producer to just outside the shield (the outer cylinder) Do Not Touch it!
3. Repeat, bringing the blue charge producer just outside the shield.

Question 6:

What happens to the charge on the pail when the white charge producer is placed just outside the shield? Will an induced charge distribution appear on the pail? Explain your reasoning. Will an induced charge distribution appear on the shield? Are we sensitive to this? What about the blue charge producer?
Because the pail is shielded by the shield, almost no charge will appear on the pail. There will be an induced charge separation on the shield (with negative charges running towards the white charge producer), but because this is all on the outside of the shield we are not at all sensitive to it in our measurement. The same is true of the blue charge producer.

Further Questions (for experiment, thought, future exam questions...)

- What happens if we repeat the above measurements with the ground (black clip) attached to the pail and the red clip attached to the shield? Does anything change aside from the sign of the voltage difference?
- What happens if in part 2 we touch the charge producer to the outside of the pail rather than the inside?
- What happens if we place the charge producer between the pail \& shield rather than inside the pail?
- What happens if we put both the white \& blue charge producers inside the pail together (not touching, just both inside). Is the cancellation exact? Should it be?
- What if in part 2 we touch the white producer and then the blue producer to the pail? What if we touch the white producer, then recharge it and touch again? Doing this repeatedly, is there a difference between touching the inside of the pail and the outside of the pail?

Topics: Electrostatic Shielding
Related Reading: Course Notes: Sections 4.3-4.4; 5.5, 5.9, 5.10.2
Experiments: (2) Faraday Ice Pail

Topic Introduction

Today we return to our discussion of conductors \& capacitors, now focusing on the idea of electrostatic shielding by conductors. This is also the focus of our next lab, the Faraday Ice Pail experiment.

Conductors \& Shielding

Last class we noted that conductors were equipotential surfaces, and that all charge moves to the surface of a conductor so that the electric field remains zero inside. Because of this, a hollow conductor very effectively separates its inside from its outside. For example, when charge is placed inside of a hollow conductor an equal and opposite charge moves to the inside of the conductor to shield it. This leaves an equal amount of charge on the outer surface of the conductor (in order to maintain neutrality). How does it arrange itself? As shown in the picture at left, the charges on the outside don't know anything about what is going on inside the conductor. The fact that the electric field is zero in the conductor cuts off communication between these two regions. The same would happen if you placed a charge outside of a conductive shield - the region inside the shield wouldn't know about it. Such a conducting enclosure is called a Faraday Cage, and is commonly used in science and industry in order to eliminate the electromagnetic noise ever-present in the environment (outside the cage) in order to make sensitive measurements inside the cage.

Experiment 2: Faraday Ice Pail

Preparation: Read pre-lab reading
In this lab we will study electrostatic shielding, learning how charges move on conductors when other charges are brought near them. The idea of the experiment is quite simple. We will have two concentric cylindrical cages, and can measure the potential difference between them. We can bring charges (positive or negative) into any of the three regions created by these two cylindrical cages. And finally, we can connect either cage to "ground" (e.g. the Earth), meaning that it can pull on as much charge as it wants to respond to your moving around charges. The point of the lab is to get a good understanding of what the responses are to you moving around charges, and how the potential difference changes due to these responses.

Dielectrics
A dielectric is a piece of material that, when inserted into an electric field, has a reduced electric field in its interior. Thus, if a dielectric is placed into a capacitor, the electric field in that capacitor is reduced, as is hence the potential difference between the plates, thus increasing the capacitor's capacitance (remember, $C \equiv Q /|\Delta V|$). The effectiveness of a dielectric is summarized in its "dielectric constant" к. The larger the dielectric constant, the more the field is reduced (paper has $\kappa=3.7$, Pyrex $\kappa=5.6$). Why do we use dielectrics? Dielectrics increase capacitance, which is something we frequently want to do, and can also prevent breakdown inside a capacitor, allowing more charge to be pushed onto the plates before the capacitor "breaks down" (before charge jumps from one plate to the other).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

 8.02
Experiment 2: Faraday Ice Pail

OBJECTIVES

1. To explore the charging of objects by friction and by contact.
2. To explore the charging of objects by electrostatic induction.
3. To explore the concept of electrostatic shielding.

PRE-LAB READING

INTRODUCTION

When a charged object is placed near a conductor, electric fields exert forces on the free charge carriers in the conductor which cause them to move. This process occurs rapidly, and ends when there is no longer an electric field inside the conductor $\left(\mathbf{E}_{\text {inside conductor }}=0\right)$. The surface of the conductor ends up with regions where there is an excess of one type of charge over the other. For example, if a positive charge is placed near a metal, electrons will move to the surface nearest the charge, leaving a net positive charge on the opposite surface ${ }^{1}$. This charge distribution is called an induced charge distribution. The process of separating positive from negative charges on a conductor by the presence of a charged object is called electrostatic induction.

Michael Faraday used a metal ice pail as a conducting object to study how charges distributed themselves when a charged object was brought inside the pail. Suppose we lower a positively charged metal ball into the pail without touching it to the pail. When we do this, positive charges move as far away from the ball as possible - to the outer surface of the pail - leaving a net negative charge on the inner surface. If at this point we provide some way for the positive charges to flow away from the pail, for example by touching our hand to it, they will run off through our hand. If we then remove our hand from the pail and then remove the positively charged metal ball from inside the pail, the pail will be left with a net negative charge. This is called charging by induction.

In contrast, if we touch the positively charged ball to the uncharged pail, electrons flow from the pail into the ball, trying to neutralize the positive charge on it. This leaves the pail with a net positive charge. This is called charging by contact.

Finally, when a positively charged ball approaches the ice pail from outside of the pail, charges will redistribute themselves on the outside surface of the pail and will exactly cancel the electric field inside the pail. This is called electrostatic shielding.
Tî̀ read more abat

[^0]

You will investigate all three of these phenomena-charging by induction, charging by contact, and electrostatic shielding-in this experiment.

The Details: Gauss's Law

In the above situations, the excess charge on the conductor resides entirely on the surface, a fact that may be explained by Gauss's Law. Gauss's Law ${ }^{2}$ states that the electric flux through any closed surface is proportional to the charge enclosed inside that surface,

$$
\begin{equation*}
\underset{\substack{\text { closed } \\ \text { surface }}}{ } \int_{\mathrm{E}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}} . \tag{2.1}
\end{equation*}
$$

Consider a mathematical, closed Gaussian surface that is inside the ice pail:

Figure 1 Top View of Gaussian surface for the Faraday Ice Pail (a thick walled cylinder)
Once static equilibrium has been reached, the electric field inside the conducting metal walls of the ice pail is zero. Since the Gaussian surface is in a conducting region where there is zero electric field, the electric flux through the Gaussian surface is zero. Therefore, by Gauss's Law, the net charge inside the Gaussian surface must be zero. For the Faraday ice pail, the positively charged ball is inside the Gaussian surface. Therefore, there must be an additional induced negative charge on the inner surface of the ice pail that exactly cancels the positive charge on the ball. It must reside on the surface because we could make the same argument with any Gaussian surface, including one which is just barely outside the inner surface. Since the pail is uncharged, by charge conservation there must be a positive induced charge on the pail which has the same magnitude as the negative induced charge. This positive charge must reside outside the Gaussian surface, hence on the outer surface of the ice pail.

Note that the electric field in the hollow region inside the ice pail is not zero due to the presence of the charged ball, and that the electric field outside the pail is also not zero, due to the positive charge on its outer surface.

[^1]Now suppose the ice pail is connected to a large conducting object ("ground"):

Figure 2 Grounding the ice pail (left) and after removing the ground \& ball (right)
Now the positive charges that had moved to the surface of the ice pail can get even further away from each other by flowing into the ground. Now that there are no charges on the outer surface of the pail, the electric field outside the pail is zero and the pail is at the same "zero" potential as the ground (and infinity). If the wire to ground is then disconnected, the pail will be left with an overall negative charge. Once the positively charged ball is removed, this negative charge will redistribute itself over the outer surface of the pail.

Finally, when a charged ball approaches the ice pail from outside of the pail, charges will redistribute themselves on the outside surface of the pail while the electric field inside the pail will remain zero, cut-off from any knowledge of what is going on outside by the enforced zero electric field inside the conductor. This effect is called shielding or "screening" and explains popular science demonstrations in which a person sits safely inside a cage while an enormous voltage is applied to the cage. This same effect explains why metal boxes are used to screen out undesirable electric fields from sensitive equipment.

APPARATUS

1. Ice Pail

Our primary apparatus consists of two concentric wire-mesh cylinders. The inner cylinder (the "pail") is electrically isolated by three insulating rods. The outer cylinder (the "shield") will be attached to ground - charge can flow to or from it as necessary. This cylinder will act both as a screen to eliminate the effect of any external charges and other external fields and as a "zero potential" point, relative to which you will measure the potential of the pail.

Figure 3 The Ice Pail

2. Charge Producers

To replace the positively charged metal ball of Faraday's experiment, you will use charge producers (Figure 4). When rubbed together a net positive charge will move to one of them and a net negative charge to the other.

Figure 4 One of two charge producers (the other has a blue charged pad)

3. Charge Sensor

The Charge Sensor does not directly measure charge, but instead measures the voltage difference between its positive (red) and negative (black) leads. Furthermore, it connects the black lead to ground, meaning that as much charge can flow into or out of that lead as is necessary to keep it at "zero potential" (ideally the same voltage as at infinity).

Figure 5 Charge Sensor - measures voltage difference between its red and black leads. Left: Shown attached to the lead assembly. Right: The gain switch (used to amplify small signals) should be set at 1 . The zero button sets the output signal to zero.

The red lead is free to be at any potential, although by pushing the "zero" button on the sensor (Fig. 5, right), it too can be attached to ground (the potential difference between the red and black leads is set to zero).

Even though this is really a potential difference sensor, we none-the-less call it a "Charge Sensor" because the voltages measured arise from the presence of charges on the ice pail.

GENERALIZED PROCEDURE

This lab consists of four main parts. In each you will measure the voltage between the inner and outer cylinder to determine what is happening on the inner cylinder.

Part 1: Determine Polarity of (Sign of Charge on) Charge Producers

Here you will lower the charge producers into the center of the pail (the inner cylinder) and determine which producer is positively charged and which is negatively charged

Part 2: Charging by Contact

You will now rub the charge producer against the inner surface of the pail and see if the charge is transferred to it.

Part 3: Charging by Induction

In this part you will not let the charge producer touch the pail, but will instead briefly ground the pail by connecting it to the shield (the outer cylinder) while the charge producer is inside. Then you will remove the charge producer and observe the induced charge on the pail.

Part 4: Electrostatic Shielding

In this part you will measure the effects of placing a charge producer outside of the grounded shield.

END OF PRE-LAB READING

IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As" to the desktop. Overwrite any file by this name that is already there). Start LabView by double clicking on this file.
2. Using the multi-pin cable, connect the Charge Sensor to Analog Channel A on the 750 Interface. The cable runs from the left end of the sensor (in Fig. 5) to Channel A.
3. Connect the lead assembly to the BNC port on the Charge Sensor (right end of the sensor in Fig. 5). Line up the connector on the end of the cable with the pin on the BNC port. Push the connector onto the port and twist it clockwise about one-quarter turn until it clicks into place. Set the Charge Sensor gain to $1 x$.
4. Connect the charge sensor input lead (red alligator clip) to the pail (the inner wire mesh cylinder), and the ground lead (black alligator clip) to the shield (the outer wire mesh cylinder).

MEASUREMENTS

Important Notes:

The charge producers are delicate. When rubbing them together do so briskly but gently.
Each experiment should begin with completely discharged cylinders. To discharge them, ground the pail by touching both it and the shield at the same time with a conductor (egg. the finger of one hand). You also will always want to zero the charge sensor before starting by pressing the "Zero" button.
Finally, note that the amount of charge measured is small and hence there will be fluctuations in the signal as well as small features due to the person holding the charge producers. In answering questions focus on the BIG features (sign of potential, ...) not the noise.

Part 1: Polarity of the Charge Producers

1. Ground the pail and zero the charge sensor
2. Start recording data. (Press the green "Go" button above the graph).
3. Rub the blue and white surfaces of the charge producers together several times.
4. Without touching the pail, lower the white charge producer into the pail.
5. Remove the white charge producer and then lower in the blue charge producer

Question 1 (Don't forget to submit answers in the software!):

What are the polarities of the white and the blue charge producers?
Note: There may be some variations in this from group to group.

Part 2: Charging By Contact

Part 2A: Using the White Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the white charge producer into the pail
3. Rub the charge producer against the inner surface of the pail
4. Remove the charge producer

Question 2: Sketch the plot of voltage vs. time and indicate the charge on the inner and outer surfaces of the pail after each of the above steps
Answer:
slightly up
$\Delta \mathrm{V}$
Charge on inner \& outer surfaces of the inner cylinder (indicate sign, and use a variable like q for nonzero magnitudes - do NOT simply record numerical values)
After Step 1:
$\mathrm{Q}_{\text {inner }}=$

$\mathrm{Q}_{\text {outer }}=$
After Step 2:
After Step 3:
After Step 4:

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{inner}}=-q \\
& \mathrm{Q}_{\mathrm{inner}}=-q \\
& \mathrm{Q}_{\mathrm{inner}}=-q
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{Q}_{\text {outer }}=+q \tag{0}\\
& \mathrm{Q}_{\text {outer }}=+q \\
& \mathrm{Q}_{\text {outer }}=+q
\end{align*}
$$

Part 2B: Using the Blue Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the blue charge producer into the inner cylinder
3. Rub the charge producer against the inner surface of the inner cylinder
4. Remove the charge producer

Question 3:

What happens to the charge on the pail when you rub it with the blue charge producer?

Part 3: Charging By Induction

Part 3A: Using the White Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the white charge producer into the pail, without touching it
3. Ground the pail by connecting it to the shield with your finger
4. Remove the ground connection (your finger)
5. Remove the charge producer

Question 4:

Sketch the plot of voltage vs. time and indicate the charge on the inner and outer surfaces of the pail after each of the above steps
Answer:

Charge on inner \& outer surfaces of the inner cylinder (indicate sign, and use a variable like q for non-zero magnitudes - do NOT simply record numerical values)
After Step 1:

3B: Using the Blue Charge Producer

1. Ground \& zero; Start recording; Rub the producers
2. Lower the blue charge producer into the pail, without touching it
3. Ground the pail by connecting it to the shield with your finger
4. Remove the ground connection (your finger)
5. Remove the charge producer

Question 5:

What happens to the charge on the pail when you do the above steps?

Part 4: Testing the shield

1. Ground \& zero; Start recording; Rub the producers
2. Bring the white charge producer to just outside the shield (the outer cylinder)

Do Not Touch it!

3. Repeat, bringing the blue charge producer just outside the shield.

Question 6:

What happens to the charge on the pail when the white charge producer is placed just outside the shield? Will an induced charge distribution appear on the pail? Explain your reasoning. Will an induced charge distribution appear on the shield? Are we sensitive to this? What about the blue charge producer?

Further Ouestions (for experiment, thought, future exam questions...)

- What happens if we repeat the above measurements with the ground (black clip) attached to the pail and the red clip attached to the shield? Does anything change aside from the sign of the voltage difference?
- What happens if in part 2 we touch the charge producer to the outside of the pail rather than the inside?
- What happens if we place the charge producer between the pail \& shield rather than inside the pail?
- What happens if we put both the white \& blue charge producers inside the pail together (not touching, just both inside). Is the cancellation exact? Should it be?
- What if in part 2 we touch the white producer and then the blue producer to the pail? What if we touch the white producer, then recharge it and touch again? Doing this repeatedly, is there a difference between touching the inside of the pail and the outside of the pail?

equipotantial

Class 11: Outline
Hour 1:
Last Time: Conductors
Conductors as Shields
Expt. 2: Faraday Ice Pail
Hour 2:
Capacitors \& Dielectrics

Conductors in Equilibrium
Conductors are equipotential objects:

1) $E=0$ inside (Does $V=0$?)
2) E perpendicular to surface
3) Net charge inside is 0
4) Excess charge on surface

$$
E=\sigma / \varepsilon_{0}
$$

\qquad
\qquad

PRS: Point Charge in Conductor

A point charge $+Q$ is placed inside a neutral, hollow, spherical conductor. As the charge is moved around inside, the electric field outside

\qquad
0% 1. is zero and does not change
$0 \% \quad$ 2. is non-zero but does not change
\qquad
0\%
3. is zero when centered but changes
4. is non-zero and changes
$: 00$
5. I don't know

0\% .
\qquad
\qquad
\qquad
\qquad
\qquad

Le Ben Franklin experiment
\qquad
computers work b/c of
$\frac{\text { screening -why computers }}{\text { are in metal }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

puled

a\% (1.) $Q(11)=Q(12)=-Q ; Q(01)=Q(O 2)=+Q$
-
0 2. $Q(11)=Q(12)=+Q ; Q(O 1)=Q(O 2)=-Q$
o\% 3. $Q(11)=-Q ; Q(01)=+Q ; Q(12)=Q(O 2)=0$ \qquad
a\%
4. $Q(11)=-Q ; Q(O 2)=+Q ; Q(O 1)=Q(12)=0$

PRS: Hollow Conductors

A point charge $+Q$ is placed at the center of the conductors. The potential at

[^2]

* Can have iq $-q$ at Same potential

PRS: Hollow Conductors

A point charge $+Q$ is placed at the center of the conductors. The potential at O 2 is:

PRS: Hollow Conductors

A point charge $+Q$ is placed at the center of the conductors. If a wire is used to connect the two conductors, then current (positive charge) will flow
0% 1. from the inner to the outer conductor
0% (2.) from the outer to the inner conductor
o\% 3. not at all
think of Lat rig y as ground

PRS: Hollow Conductors

You connect the "charge sensor's" red lead to the inner conductor and black lead to the outer conductor. What does it actually measure?
 * What is meaning of potential diff $\frac{\text { field points out }}{\substack{\text { following pain from } \infty \text { intend } \\ \hline \text { in ger } \\ \hline}}$ $\frac{\Delta}{E}$ field points to lower potential
so V_{1} at higher potential
if Θ charge mat vi lower potently

\qquad
ground/nevtralline

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics: 8.02

In Class W07D2-1 Solutions: Potential from Concentric Spheres

Question:

Two concentric hollow spherical conductors have inner and outer radii as pictured. A positive charge $+Q$ (not pictured) is placed at the center of the setup. Sketch the electric potential everywhere.

Solution:

We know that the conductors act as equipotential surfaces. In order for that to be the case, negative charges must be induced on the inner surfaces of both conductors ($r=a$ and $r=c$) and by charge conservation positive charges must be induced at their outer surfaces ($r=b$ and $r=d$). Everywhere else the electric field will be as from a point charge $\left(1 / r^{2}\right)$ and hence the potential will decay as $1 / r$. So, since all we need to do is sketch (rather than give exact equations, which you would need to calculate by integrating from a known potential - at $r=\infty$), we have:

where the 'terraces' (the flat regions) are the equipotential surfaces of the two conductors, and everything else is changing as $1 / r$.

Palm Pe touch store

\qquad
\qquad
\qquad
\qquad
\qquad

> find (-capitance
> then find a from that
if put hand ontop - now a
3 conductor system

$$
\begin{aligned}
& \text { our model ideal -real } \\
& \text { lite more complex }
\end{aligned}
$$

PRS: Hollow Conductors

You connected the "charge sensor's" red lead to the inner conductor and black lead to the outer conductor. What does it actually measure?
\% 1. Charge on 11
0% 2. Charge on 01

$\begin{array}{lll}0 \% & \text { 3. } & \text { Charge on I2 } \\ 0 \% & \text { 4. } & \text { Charge on O2 }\end{array}$
0% 5. Charge on O1 - Charge on 12
6. Average charge on inner - ave. on outer
7. Potential difference between inner \& outer
8. I don't know \qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dielectrics

A dielectric is a non-conductor or insulator Examples: rubber, glass, waxed paper

When placed in a charged capacitor, the dielectric reduces the potential difference between the two plates

HOW???

Molecular View of Dielectrics

Polar Dielectrics :

Dielectrics with permanent electric dipole moments Example: Water

Molecular View of Dielectrics

Non-Polar Dielectrics

Dielectrics with induced electric dipole moments Example: CH_{4}

\qquad
\qquad
\qquad
\qquad
no charge until

Potential difference decreases because dielectric polarization decreases Electric Field!

Dielectric Constant \mathbb{K}

Dielectric weakens original field by a factor κ \qquad $\varepsilon=K \varepsilon_{0} \longrightarrow E=\underline{E_{0}}$ \qquad
Dielectric Constant $\rightarrow K$ Dielectric constants

Vacuum	1.0
Paper	3.7
Pyrex Glass	5.6
Water	80

Dielectric in a Capacitor

$\mathbf{Q}_{0}=$ constant after battery is disconnected

\qquad
\qquad
\qquad
Upon inserting a dielectric: $V=\frac{V_{0}}{\kappa}$ \qquad

$$
C=\frac{Q}{V}=\frac{Q_{0}}{V_{0} / \kappa}=\kappa \frac{Q_{0}}{V_{0}}=\kappa C_{0}
$$

Dielectric in a Capacitor

$$
Q=C V=\kappa C_{0} V_{0}
$$

\qquad
\qquad
\qquad

Upon inserting a dielectric: $Q=\kappa Q_{0}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PRS Answer: Dielectric

Answer: 3 . Charge stays the same

Since the capacitor is disconnected from a battery there is no way for the amount of charge on it to change.

PRS: Dielectric

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ in inserted between the plates. The energy stored in the capacitor \qquad

0% 1. Increases
0% 2. Decreases
0% 3. Stays the Same

PRS: Dielectric

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant $\mathrm{\kappa}$ in inserted between the plates.
\qquad The force on the dielectric

\qquad
\qquad
\qquad
0% 1. pulls in the dielectric
0% 2. pushes out the dielectric
$0 \% \quad 3$. is zero

\qquad

Gauss's Law with Dielectrics
 $$
\iiint_{S} \kappa \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {free, in }}}{\varepsilon_{0}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Topics: Current and Simple DC Circuits
Related Reading: Course Notes: Sections 6.1-6.5; 7.1-7.4

Topic Introduction

In today's class we will review current, current density, and resistance and discuss how to analyze simple DC (constant current) circuits using Kirchhoff's Circuit Rules.

Current and Current Density

Electric currents are flows of electric charge. Suppose a collection of/charges is moving perpendicular to a surface of area A, as shown in the figure

The electric current I is defined to be the rate at which charges flow across the area A. If an amount of charge ΔQ passes through a surface in a time interval Δt, then the current I is given by $I=\frac{\Delta Q}{\Delta t}$ (coulombs per second, or amps). The current density $\overrightarrow{\mathbf{J}}$ (amps per square meter) is a concept closely related to current. The magnitude of the current density $\overrightarrow{\mathbf{J}}$ at any point in space is the amount of charge per unit time per unit area flowing pass that point. That is, $|\overrightarrow{\mathbf{J}}|=\frac{\Delta Q}{\Delta t \Delta A}$. The current I is a scalar, but $\overrightarrow{\mathbf{J}}$ is a vector, the direction of which is the direction of the current flow.

Microscopic Picture of Current Density

If charge carriers in a conductor have number density n, charge q, and a drift velocity $\overrightarrow{\mathbf{v}}_{d}$, then the current density $\overrightarrow{\mathbf{J}}$ is the product of n, q, and $\overrightarrow{\mathbf{v}}_{d}$. In Ohmic conductors, the drift velocity $\overrightarrow{\mathbf{v}}_{d}$ of the charge carriers is proportional to the electric field $\overrightarrow{\mathbf{E}}$ in the conductor. This proportionality arises from a balance between the acceleration due the electric field and the deceleration due to collisions between the charge carriers and the "lattice." In steady state these two terms balance each other, leading to a steady drift velocity (a "terminal" velocity) proportional to $\overrightarrow{\mathbf{E}}$. This proportionality leads directly to the "microscopic" Ohm's Law, which states that the current density $\overrightarrow{\mathbf{J}}$ is equal to the electric field $\overrightarrow{\mathbf{E}}$ times the conductivity σ. The conductivity σ of a material is equal to the inverse of its resistivity ρ.' how many

Current and Voltage

$$
J=E \sigma \quad \sigma=\frac{1}{\rho}
$$

Electric currents (symbol I) are flows of electric charge (symbol Q, typically electrons, but because of sign conventions we will almost always consider positive charges). You can think

Ind law -sum of voltages must $=0$ -traels in circle $=0$
chacge ceview $=$ consoind proporty of porticles

- detorming electrestafic interadtion
- influences a produres field
- Source af electremngnetic Eorce
of charges moving as balls rolling on a mountain side. The height of this 'electronic mountain' is the voltage (symbol V), so positive charges move to get down the mountain, from high to low potential. We will define these terms more accurately (and more mathematically) later in the course, but for the next several weeks you should try to gain a good conceptual feeling for how voltage and current is related and how circuit elements (resistors, capacitors and inductors) effect this relationship.

Electromotive Force

A source of electric energy is referred to as an electromotive force, or emf (symbol ε). Batteries are an example of an emf source. They can be thought of as a "charge pump" that moves charges from lower potential to the higher one, opposite the direction they would normally flow. In doing this, the emf creates electric energy (typically from chemical energy), which then flows to other parts of the circuit. The emf ε is defined as the work done to move a unit charge in the direction of higher potential. The SI unit for ε is the volt (V), i.e. Joules/coulomb.

(-

Resistance \& Ohm's Law

The first circuit elements we will work are the battery and resistor (symbol R). If the battery is thought of as a "charge pump" we can continue the water analogy and think of the resistor as a pipe, through which the charge is flowing. A "high resistance" is a small pipe (one it is difficult to get through). A "low resistance" is a large pipe that is easy to get through. We will pretend that wires have zero resistance, that is, that charges can freely move through them. Just like pressure drops in a pipe, voltage drops in a resistor, as given by Ohm's law: $\Delta V=I R$. Another way to think of this is that if you want current to flow through a resistor you need to push on it (supply a potential difference across the resistor).

Series

Series vs. Parallel

Now that we have batteries and resistors we can consider hooking them together to make circuits. When we do that we have two choices for hooking two elements together - they can either be hooked in series (with the 'end' of one hooked to the 'beginning' of the next) or in parallel (with the 'beginning' and 'end' of each element tied together). An example of light bulbs in series and parallel is show at right. For elements in series, any charges (current) that flow through one element must also flow through the second. In parallel the voltage drop across two elements must be the same (they are 'at the same height' at both their 'beginning' and 'end' and hence the drop across both must be the same). Using these ideas we will derive relationships for resistors in parallel and in series.

```
mpmorize
```


Kirchhoff's Circuit Rules

In analyzing circuits, there are two fundamental (Kirchhoff's) rules: (1) The junction rule states that at any point where there is a junction between various current carrying branches, the sum of the currents into the node must equal the sum of the currents out of the node

(otherwise charge would build up at the junction); (2) The loop rule states that the sum of the voltage drops ΔV across all circuit elements that form a closed loop is zero (this is the same as saying the electrostatic field is conservative).

If you travel through a battery from the negative to the positive terminal, the voltage drop ΔV is $+\varepsilon$, because you are moving against the internal electric field of the battery; otherwise ΔV is $-\varepsilon$. If you travel through a resistor in the direction of the assumed flow of current, the voltage drop is $-I R$, because you are moving parallel to the electric field in the resistor; otherwise ΔV is $+I R$.

Important Equations

Relation between $\overrightarrow{\mathbf{J}}$ and I :

$$
\begin{aligned}
& I=\iint \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}} \\
& \overrightarrow{\mathbf{J}}=\sigma \overrightarrow{\mathbf{E}}=\overrightarrow{\mathbf{E}} / \rho
\end{aligned}
$$

Microscopic Ohm's Law:
Macroscopic Ohm's Law:
Resistance of a conductor with resistivity ρ, cross-sectional area A, and length l :
Resistors in series:
Resistors in parallel:

$$
R=\rho l / A
$$

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

$$
\frac{1}{R_{\mathrm{cq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Power:

$$
P=\Delta V I
$$

\int

$$
\begin{aligned}
& \text { Charge is proportions to } \\
& \text { coders } \\
& =\frac{k q_{c}}{r_{c}}=\frac{k q_{d}}{r_{d}} \quad q_{c} \neq q_{d}
\end{aligned}
$$

$$
V_{A}<V_{C}=V_{D}<V_{E}
$$

Class 12: Outline

Hour 1:

Current, Current Density, and Ohm's Law

Hour 2:
DC Circuits and Kirchhoff's Loop Rules

Flow of Charge

New Topics: Current, Current Density, Resistance, Ohm's Law \qquad

Current: Flow Of Charge

Average current I_{av} : Charge $\Delta \mathrm{Q}$ flowing across area A in time Δt
$I_{a v}=\frac{\Delta Q}{\Delta t}$
Watch how much current

Instantaneous current: differential limit of I_{av}

\qquad
$I=\frac{d Q}{d t}$
Units of Current: Coulomb/second $=$ Ampere

How Big is an Ampere?

- Household Electronics $\sim 1 \mathrm{~A}$
- Battery Powered ~100 mA (1-10 A-Hr)
- Household Service 100 A
- Lightning Bolt 10 to 100 kA
- To hurt you
- To throw you
- To kill you

60 (15) mA DC(AC)
$0.5(0.1)(A) D C(A C)$

- Fuse/Circuit Breaker 15-30 A
eniser for for

Direction of The Current

Direction of current is direction of flow of pos. charge

or, opposite direction of flow of negative charge

\qquad
\qquad

\qquad * current it Ψ travels rex. 5

Current Density J

J: current/unit area

$$
\overrightarrow{\mathbf{J}} \equiv \frac{I}{A} \hat{\mathbf{I}}
$$

Î points in direction of current
 S

$$
I=\int_{S} \overrightarrow{\mathbf{J}} \cdot \hat{\mathbf{n}} d A=\int_{S} \overrightarrow{\mathbf{J}} \cdot d \overrightarrow{\mathbf{A}}
$$

PRS: Current Density

: an
A current $I=200 \mathrm{~mA}$ flows in the above wire. What is the magnitude of the current density J ?

$\begin{array}{lll}0 \% & \text { 2. } & \mathrm{J}=20 \mathrm{~mA} / \mathrm{cm} \\ 0 \% & \text { 3. } & \mathrm{J}=10 \mathrm{~mA} / \mathrm{cm} \\ 0 \% & \text { 4. } & \mathrm{J}=1 \mathrm{~mA} / \mathrm{cm}^{2} \\ 0 \% & \text { 5. } & \mathrm{J}=2 \mathrm{~mA} / \mathrm{cm}^{2} \\ 0 \% & 6 . & \mathrm{J}=4 \mathrm{~mA} / \mathrm{cm}^{2}\end{array}$
0\% 7. I don't know

\qquad
\qquad

Why Does Current Flow?

If an electric field is set up in a conductor, charge will move (making a current in direction of E)

Note that when current is flowing, the conductor is not an equipotential surface (and $\mathrm{E}_{\text {inside }} \neq 0$)!

Microscopic Picture

E
Drift speed is velocity forced by applied electric field in the presence of collisions.
It is typically $4 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$, or $0.04 \mathrm{~mm} /$ second!
To go one meter at this speed takes about 10 hours!

\qquad
\qquad
like deed lays -first one pushes lust Ore

Conductivity and Resistivity

Ability of current to flow depends on density of charges \& rate of scattering

σ : conductivity
ρ : resistivity

Linverses of each ope

Microscopic Ohm's Law \qquad
$\overrightarrow{\mathbf{E}}=\rho \overrightarrow{\mathbf{J}} \quad$ or $\quad \overrightarrow{\mathbf{J}}=\sigma \overrightarrow{\mathbf{E}}$
$\rho \equiv \frac{1}{\sigma}$
$1 \rightarrow x=12$
ρ and σ depend only on the microscopic properties of the material, not on its shape

Class 12 -bot conceptually importance

Demonstrations:
 Water
 Temperature Effects on ρ

Instead of thinking of Electric Field, think of potential difference across the conductor

$$
\Delta V=V_{b}-V_{a}
$$

\qquad
\qquad

Ohm's Law

\qquad
What is relationship between ΔV and current?

$$
\Delta V=V_{b}-V_{a}=-\int_{a}^{b} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=E \ell
$$

$$
\left.\begin{array}{l}
J=\frac{E}{\rho}=\frac{\Delta V \mid \ell}{\rho} \\
J=\frac{I}{A}
\end{array}\right\} \Rightarrow \Delta V=I\left(\frac{\rho \ell}{A}\right)=I R
$$

\qquad
\qquad
\qquad
Ohm's low
R has units of Ohms $(\Omega)=$ Volts/Amp

$$
\Delta V=I R \quad R=\frac{0 \cdot 2}{A}
$$

\qquad

Class 12
\qquad
R $=$ resistance

- Internally (hand to foot) 500Ω
Stick your wet fingers in an electrical socket:
$I=V / R \square 120 \mathrm{~V} / 1 \mathrm{k} \Omega \square 0.1 \mathrm{~A} \quad$ You're dead!

Current: Flow Of Charge

Average current I_{av} : Charge $\Delta \mathrm{Q}$ flowing across area A in time Δt
$I_{a v}=\frac{\Delta Q}{\Delta t}$
Instantaneous current: differential limit of I_{av}

$$
I=\frac{d Q}{d t}
$$

Units of Current: Coulomb/second = Ampere

very different in material's

 higher $\Omega=$ less current
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Symbols for Circuit Elements

Battery	$(+)$
Resistor	-4
Capacitor	$-1!$
Switch	$-d a$

\qquad

Ideal Battery

Fixes potential difference between its terminals Sources as much charge as necessary to do so \qquad

Think: Makes a mountain

Sign Conventions - Battery

Moving from the negative to positive terminal of a battery increases your potential

\qquad
\qquad
\qquad
\qquad
battery like a pump

Sign Conventions - Resistor

Moving across a resistor in the direction of current decreases your potential

\qquad
\qquad
\qquad
\qquad
\qquad

Internal Resistance

Real batteries have an internal resistance, r, which is small but non-zero

Terminal voltage: $\Delta V=V_{b}-V_{a}=\mathcal{E}-I r$
(Even if you short the leads you don't get infinite current)

Potential Difference Around a

 Closed PathSum of potential differences across all elements around any closed circuit loop must be zero.

$$
\Delta V=-\oint_{\substack{\text { Closed } \\ \text { Path }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}=0
$$

Class 12
So know right IR

\qquad

Resistors In Series

The same current / must flow through both resistors

$$
\Delta V=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)=I R_{e q}
$$

$$
R_{e q}=R_{1}+R_{2}
$$

Resistors In Parallel

Voltage drop across the resistors must be the same

$$
\begin{gathered}
\Delta V=\Delta V_{1}=\Delta V_{2}=I_{1} R_{1}=I_{2} R_{2}=I R_{\text {eq }} \\
I=I_{1}+I_{2}=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}=\frac{\Delta V}{R_{\text {eq }}} \quad \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
\end{gathered}
$$

add laversly

Net voltage change is $\Delta V=\Delta V_{1}+\Delta V_{2}$
Think: Two Mountains Stacked

for Charging

\qquad
\qquad

0 PRS: Bulbs \& Batteries

An ideal battery is hooked to a light bulb with wires. A second identical light bulb is connected in parallel to the first light bulb. After the second light bulb is connected, the current from the battery compared to when only one bulb was connected.

0%	1.	Is Higher
0%	2.	Is Lower
0%	3.	Is The Same
0%	4.	Don't know

4. Don't know
$I=I_{1}+I_{2}=$ more

current
pow ion od ad t astor twee as much current
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ns \qquad

Capacitators in Porrallel

$$
\left[\begin{array}{l}
11_{1}^{c_{1}} \\
-11_{2} \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
Q & =Q_{1}+Q_{2}=C_{1} \Delta V+C_{2} \Delta V \\
& =\left(C_{1}+C_{2}\right) \Delta V \\
C_{\text {eq }} & =\frac{Q}{D V}=C_{1}+C_{2}
\end{aligned}
$$

* bascrally just pussing togetor to get more surface area $*$

Gapicator
-to store choge

- penalty i must sppply potential to store chorge - a goal capicater stores a lot of choge wo requing a lot of valtage.
Copacititoors in ssuries

Chorge on copictors same
Potorital can be diff ble capictorace different

$$
\begin{aligned}
\Delta V & =\Delta V_{1}+\Delta V_{2} \\
& =\frac{Q}{C_{\text {eq }}}=\frac{Q_{1}}{C_{1}}+\frac{Q_{2}}{C_{2}} \quad Q=Q_{2} \\
\frac{1}{C_{\text {eq }}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}
\end{aligned}
$$

-abilly to stare chage decreases (hove 1 pay "pateritul")

Before r atter battery removed

Initial $Q_{A}>\underbrace{Q_{B}=Q_{C}}_{\text {are }}$
After are not as ged, dart stone enough char
is charge there, so still potential difference -nothing gobbles up charge, so no change
or take batt out now 3 capacitors in series ho nothing charges

- the 3 capicators ore not identical

Set up so not identical
no lie $\left[\begin{array}{l}11 \\ 11-11\end{array}\right]$
potential drop across A and $B+C$ same so ne reason for charge to move
Is the battery still doing anything?

- no, capicators louder, no current flowing -not doing anything, cemoung it does tithing

$$
\begin{aligned}
\text { Pompr } & =\frac{d U}{d t}=\frac{d(q \Delta V)}{d t}=\frac{d q}{d t}(\Delta V) \\
& =I \Delta V \text { for circot derices }
\end{aligned}
$$

battory; evergy being supplied

$$
P=I \Delta V \quad ? \text { missed notes }
$$

rebistor - dissipate pomor

$$
P=I \Delta V=\frac{I^{2}}{R} \quad \cap \text { missed not } \quad \text { es }
$$

capaciter - asorb ewergy

$$
P=I \Delta V=\frac{d Q Q}{d t} \frac{d}{c}=\frac{d}{d t} \frac{Q^{2}}{2 c}=\frac{d V}{d t}
$$

Topics: PHET Simulation: Building Simple DC Circuits
Related Reading: Course Notes: \quad Sections 6.1-6.5; 7.1-7.4

Topic Introduction

In today's class we will use a PHET simulation to build simple DC circuits.

Current and Voltage

Electric currents (symbol I) are flows of electric charge (symbol Q, typically electrons, but because of sign conventions we will almost always consider positive charges). You can think of charges moving as balls rolling on a mountain side. The height of this 'electronic mountain' is the voltage (symbol V), so positive charges move to get down the mountain, from high to low potential. We will define these terms more accurately (and more mathematically) later in the course, but for the next several weeks you should try to gain a good conceptual feeling for how voltage and current is related and how circuit elements (resistors, capacitors and inductors) effect this relationship.

Electromotive Force

A source of electric energy is referred to as an electromotive force, or emf (symbol ε). Batteries are an example of an emf source. They can be thought of as a "charge pump" that moves charges from lower potential to the higher one, opposite the direction they would normally flow. In doing this, the emf creates electric energy (typically from chemical energy), which then flows to other parts of the circuit. The emf ε is defined as the work done to move a unit charge in the direction of higher potential. The SI unit for ε is the volt (V), i.e. Joules/coulomb.

Resistance \& Ohm's Law

The first circuit elements we will work are the battery and resistor (symbol R). If the battery is thought of as a "charge pump" we can continue the water analogy and think of the resistor as a pipe, through which the charge is flowing. A "high resistance" is a small pipe (one it is difficult to get through). A "low resistance" is a large pipe that is easy to get through. We will pretend that wires have zero resistance, that is, that charges can freely move through them. Just like pressure drops in a pipe, voltage drops in a resistor, as given by Ohm's law: $\Delta V=I R$. Another way to think of this is that if you want current to flow through a resistor you need to push on it (supply a potential difference across the resistor).

Series Parallel

Series vs. Parallel

Now that we have batteries and resistors we can consider hooking them together to make circuits. When we do that we have two choices for hooking two elements together - they can either be hooked in series (with the 'end' of one hooked to the 'beginning' of the next) or in parallel (with the 'beginning' and 'end' of each element tied together). An example of light
bulbs in series and parallel is show at right. For elements in series, any charges (current) that flow through one element must also flow through the second. In parallel the voltage drop across two elements must be the same (they are 'at the same height' at both their 'beginning' and 'end' and hence the drop across both must be the same). Using these ideas we will derive relationships for resistors in parallel and in series.

Kirchhoff's Circuit Rules

In analyzing circuits, there are two fundamental (Kirchhoff's) rules: (1) The junction rule states that at any point where there is a junction between various current carrying branches, the sum of the currents into the node must equal the sum of the currents out of the node (otherwise charge would build up at the junction); (2) The loop rule states that the sum of the voltage drops ΔV across all circuit elements that form a closed loop is zero (this is the same as saying the electrostatic field is conservative).

If you travel through a battery from the negative to the positive terminal, the voltage drop ΔV is $+\varepsilon$, because you are moving against the internal electric field of the battery; otherwise ΔV is $-\varepsilon$. If you travel through a resistor in the direction of the assumed flow of current, the voltage drop is $-I R$, because you are moving parallel to the electric field in the resistor; otherwise ΔV is $+I R$.

Important Equations

Macroscopic Ohm's Law:

$$
V=I R
$$

Resistance of a conductor with resistivity ρ, cross-sectional area A, and length l :

$$
R=\rho l / A
$$

Resistors in series:
$R_{\text {eq }}=R_{1}+R_{2}$
Resistors in parallel:

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Power:

$$
P=\Delta V I
$$

 Current through them same $\frac{\text { Voltage difference }}{\text { Q(vollage = pressure) }}$
 presents field stores energy
Summary for Class 13

$$
C=\frac{Q}{V}=\frac{6 A}{d}, \text { parallel } c_{1}+C_{2}
$$

Simulation
Te simulation I wantad!

Volt meter $=$ vellage drop across 2 pt
red © - touch to Θ of $D C$ circit black Θ

The et rd of battery
then battery is +IV

if flip $\Theta \oplus$ lades then $H-$
Remender electrons move from θ to ((7)
but E field from © θ to Θ
A light bulbfilanent is just a resistor, right,

- slopes charge
- like a smiler r and longer pipe - lowers pressure (voltage)
- males it drop

It Just had large tank
small pipe
water comesout at loner pressure
But if trying to force more water into pipe it bill sped up, right?

Frond one wa copicator

elections more
(1) electrons flow, light lights of
(2) charge builds "on capicator electors slow, light dims volt
(3) Ten electrons stop flowing, light is off, ceopiculor fully charged ? Volt diff on capicator
dis charging

(1) light on bright IV diff
(2) Ten light dims, electrons slow down to a step, V diff tally
(3) lights off, or diff
speed of electrons = current (amps)
$\left[\begin{array}{l}11 \\ 1\end{array}\right]$ quichly charges (firé)
[11] quickly decharges

$R_{2}>R_{1} \quad$ (luss 13 Quiz

$A_{1}>A_{2}>A_{3}$
when circuit in parrellel tin ampage not everywlere same

From:	Eric Hudson [8.02.help@gmail.com]
Sent:	Saturday, March 06, 2010 10:28 PM
To:	Michael Plasmeier
Subject:	RE: MP Question M

Hi Michael,
Work is change in potential energy, which as you'll recall is q*delta V (for shortness I'll write qV). You know V. You need to know q. You are told 1 minute, so that must be important. To get charge from a time, you'll also need to know a current. Because $I=q / t$ to $q=I t$.

Hope that helps.

From: Michael Plasmeier [mailto:plaz@theplaz.com]
Sent: Saturday, March 06, 2010 7:01 PM
To: 8.02.help@gmail.com
Subject: MP Question M
Hi ,
Can someone please help me understand how you arrive at Part M of An Introduction to EMF and Circuits. I looked around the web and only got more confused. Thanks -Michael

How much work $W_{\text {does the battery connected to the } 21.0 \text {-ohm resistor perform in one minute? }}$
Express your answer in joules. Use three significant figures.
$W^{W}=360$ J

$$
\text { Work }=U=\text { Power }=P_{t}=I V t=q V
$$

Topics: Simple DC Circuits
Related Reading: Course Notes:
Experiments:
Sections 7.1-7.5, 7.8-7.9
(3) Building Simple Circuits with Resistors

Topic Introduction

In today's class we will study multi-loop circuits, power and energy, measuring devices, capacitors in circuits, review current, and build simple circuits in a lab.

Kirchhoff's Circuit Rules

In analyzing circuits, there are two fundamental (Kirchhoff's) rules: (1) The junction rule states that at any point where there is a junction between various current carrying branches, the sum of the currents into the node must equal the sum of the currents out of the node (otherwise charge would build up at the junction); (2) The loop rule states that the sum of the voltage drops ΔV across all circuit elements that form a closed loop is zero (this is the same as saying the electrostatic field is conservative).

If you travel through a battery from the negative to the positive terminal, the voltage drop ΔV is $+\varepsilon$, because you are moving against the internal electric field of the battery; otherwise ΔV is $-\varepsilon$. If you travel through a resistor in the direction of the assumed flow of current, the voltage drop is $-I R$, because you are moving parallel to the electric field in the resistor; otherwise ΔV is $+I R$.

Steps for Solving Multi-loop DC Circuits

1) Draw a circuit diagram, and label all the quantities;
2) Assign a direction to the current in each branch of the circuit--if the actual direction is opposite to what you have assumed, your result at the end will be a negative number;
3) Apply the junction rule to the junctions;
4) Apply the loop rule to the loops until the number of independent equations obtained is the same as the number of unknowns.

Capacitance

Next we will discuss what happens when multiple capacitors are put together. There are two distinct ways of putting circuit elements (such as capacitors) together: in series and in parallel. Elements in series (such as the capacitors and battery at left) are connected one after another. As shown, the charge on each capacitor must be the same, as long as everything is initially uncharged when the capacitors are connected (whichis atuays the case unless otherwise stated). In parallel, the capacitors have the same potential drop across them (their bottoms and tops are at the same potential). From these setups we will calculate the equivalent capacitance of the system - what one capacitor could
replace the two capacitors and store the same amount of charge when hooked to the same battery. It turns out that in parallel capacitors add ($C_{e q} \equiv C_{1}+C_{2}$) while in series they add inversely $\left(C_{e q}^{-1} \equiv C_{1}^{-1}+C_{2}^{-1}\right)$.

Experiment 3: Resistors and Simple Circuits

Preparation: Read pre-lab

In this lab you learn how to build simple circuits with a battery and resistors, and how to make and measure current through the circuit. This is an introduction to the experimental materials you will use for the next several weeks, but also a chance to understand Ohm's law and to see how resistors add in series and in parallel.

Important Equations

Macroscopic Ohm's Law:
Resistors in series:
Resistors in parallel:
Power:
Capacitors in Series:
Capacitors in Parallel:

$$
P=I V= \pm 2 R
$$

$$
V=I R
$$

$$
R_{\mathrm{eq}}=R_{1}+R_{2}
$$

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

$$
P=\Delta V I
$$

$$
\frac{1}{C_{e q}} \equiv \frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

$$
C_{e q} \equiv C_{1}+C_{2}
$$

Internal Resistance

"open' loop" - no load on circuit /no internal resistance Power $=I V-$ Disipied/spppling /store - Watt $=\frac{d v^{C E} \text { Everest }}{d t}$ Energy our lifetime
Summary for Class 14

$$
\frac{V=P t=I V t=q V}{T_{\operatorname{con}} \text { (ind batt light }}
$$

Class 14: Outline
Hour 1:
DC Circuits and Kirchhoff's Loop Rules

Hour 2: Experiment 3 Building a Circuit with Resistors

Complex circuit
Kirchhoff's Rules

1. Sum of currents entering any junction in a circuit must equal sum of currents leaving that junction.

$$
I_{1}=I_{2}+I_{3}
$$

Conservation of current

Brightness based on parer IV

Battery has fixed voltage across (brent changes (in ideal battery) lineuth:
Lots of voltage - say which
\qquad
\qquad

Class 14

Kirchhoff's Rules

2. Sum of potential differences across all elements around any closed circuit loop must be zero.
$\Delta V=-\underset{\substack{\text { Closed } \\ \text { Path }}}{\oint_{\mathbf{E}} \overrightarrow{\mathbf{E}} \cdot d \mathbf{s}=0}$

Steps of Solving Circuit Problem

1. Straighten out circuit (make squares)

- eaiser to read, wires are free

2. Simplify resistors in series/parallel
3. Assign current loops (arbitrary)
4. Write loop equations (1 per loop)
5. Solve
n currents solving for
n equations

\qquad
\qquad

Electrical Power

Power is change in energy per unit time
So power to move current through circuit elements:

$$
\begin{gathered}
P=\frac{d}{d t} U=\frac{d}{d t}(q \Delta V)=\frac{d q}{d t} \Delta V \\
P=I \Delta V
\end{gathered}
$$

Power - Battery

Moving from the negative to positive terminal of a battery increases your potential. If current flows in that direction the battery supplies power

$P_{\text {supplied }}=I \Delta V=I \varepsilon$

Power - Resistor

Moving across a resistor in the direction of current decreases your potential. Resistors always \qquad dissipate power

$$
P_{\text {disisipated }}=I \Delta V=I^{2} R=\frac{\Delta V^{2}}{R}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

PRS: Power

An ideal battery is hooked to a light bulb with wires. A second identical light bulb is connected in parallel to the first light bulb. After the second light bulb is connected, the power output from the battery (compared to when only one bulb was connected)

\qquad
\qquad
\qquad
\qquad
\qquad

PRS: Power

An ideal battery is hooked to a light bulb with wires. A second identical light bulb is connected in series with the first light bulb. After the second light bulb is connected, the light (power) from the first bulb (compared
 to when only one bulb was connected)

0%	1.	Is four times higher
0%	2.	Is twice as high
0%	3.	Is the same
0%	4.	Is half as much
0%	5.	is $1 / 4$ as much
0%	6.	Don't know

0% 6. Don't know
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad

Measuring Potential Difference

A voltmeter must be hooked in parallel across the element you want to measure the potential difference across

A cross something

\qquad
\qquad
Voltmeters have a very large resistance, so that
\qquad

Measuring Current

An ammeter must be hooked in series with the element you want to measure the current through

Ammeters have a very low resistance, so that they don't affect the circuit too much

Measuring Resistance

An ohmmeter must be hooked in parallel across the element you want to measure the resistance of

Here we are measuring R_{1}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Ohmmeters apply a voltage and measure the current that flows. They typically won't work if the resistor is powered (connected to a battery)

PRS Question:
 Ammeters and Resistors

20 PRS: Measuring Current

If R1 > R2, compare the currents measured by the three ammeters:

```
0% 1. A1 > A2 > A3
a% 2. A2 > A1 > A3
0% 3. A3 > A1 > A2
0% 4. A3 > A2 > A1
0% 5. A3 > A1 = A2
0% 6. None of the above
0% 7. I don't know
```


\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiment 3: Building a Circuit with Resistors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Hook in SERIES: current must go thru to measure
2. "Positive" if runs from Red to Black
3. Note: Not ideal -1Ω resistance. Does it matter?

4. Hook in PARALLEL: reads $V_{\text {Red }}-V_{\text {Black }}$
5. Note: Not ideal - $1 \mathrm{M} \Omega$ resistance. Does it matter?

E3: Two Resistors

1. Set up resistors in (2) parallel and (3) series
2. Compare voltage and current from \qquad battery to voltage across and current through ONE resistor

\qquad
\qquad
\qquad

Did this class 12 end

\qquad
\qquad

Capacitors in Series

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

PRS: Capacitors

Three identical capacitors are connected to a battery. \qquad
The battery is then disconnected. How do the charge on $A, B \& C$ compare before and after the battery is removed?

$$
\text { BEFORE } \quad \text { AFTER }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Power - Capacitor

\qquad
Moving across a capacitor from the positive to negative plate decreases your potential. If current \qquad flows in that direction the capacitor absorbs power (stores charge) \qquad

\qquad
\qquad
$P_{\text {absorbed }}=I \Delta V=\frac{d Q}{d t} \frac{Q}{C}=\frac{d}{d t} \frac{Q^{2}}{2 C}=\frac{d U}{d t}$ \qquad
\qquad

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

8.02

Experiment 3: Ohm's Law \& DC Circuits

OBJECTIVES

1. To explore the measurement of voltage \& current in circuits
2. To see Ohm's law in action for resistors
3. To learn how to translate circuit diagrams to physical circuits on a board

PRE-LAB READING

INTRODUCTION

When a battery is connected to a circuit consisting of wires and other circuit elements like resistors and capacitors, voltages can develop across those elements and currents can flow through them. In this lab we will investigate simple circuits with only resistors in them. We will confirm that there is a linear relationship between current through and potential difference across resistors (Ohm's law: $V=I R$).

The Details: Measuring Voltage and Current

Imagine you wish to measure the voltage drop across and current through a resistor in a circuit. To do so, you would use a voltmeter and an ammeter - similar devices that measure the amount of current flowing in one lead, through the device, and out the other lead. But they have an important difference. An ammeter has a very low resistance, so when placed in series with the resistor, the current measured is not significantly affected (Fig. 1a). A voltmeter, on the other hand, has a very high resistance, so when placed in parallel with the resistor (thus seeing the same voltage drop) it will draw only a very small amount of current (which it can convert to voltage using Ohm's Law $V_{R}=V_{\text {meter }}=$ $I_{\text {meter }} R_{\text {meter }}$), and again will not appreciably change the circuit (Fig. 1b).

Figure 1: Measuring current and voltage in a simple circuit. To measure current through the resistor (a) the ammeter is placed in series with it. To measure the voltage drop across the resistor (b) the voltmeter is placed in parallel with it.

APPARATUS

1. Science Workshop 750 Interface

In this lab we will again use the Science Workshop 750 interface to create a "variable battery" which we can turn on and off, whose voltage we can change and whose current we can measure.

2. AC/DC Electronics Lab Circuit Board

We will also use, for the first of several times, the circuit board pictured in Fig. 2. This is a general purpose board, with (A) battery holders, (B) light bulbs, (C) a push button switch, (D) a variable resistor called a potentiometer, and (E) an inductor. It also has (F) a set of 8 isolated pads with spring connectors that circuit components like resistors can easily be pushed into. Each pad has two spring connectors connected by a wire (as indicated by the white lines). The right-most pads also have banana plug receptacles, which we will use to connect to the output of the 750 .

Figure 2 The AC/DC Electronics Lab Circuit Board, with (A) Battery holders, (B) light bulbs, (C) push button switch, (D) potentiometer, (E) inductor and (F) connector pads

3. Current \& Voltage Sensors

Recall that both current and voltage sensors follow the convention that red is "positive" and black "negative." That is, the current sensor records currents flowing in the red lead and out the black as positive. The voltage sensor measures the potential at the red lead minus that at the black lead.

Figure 3 (a) Current and (b) Voltage Sensors

4. Resistors

Resistors (Fig. 4) have color bands that indicate their value. In this lab we ask you to ignore the bands - even if you know how to read them please do not do so.

Figure 4 Example of a resistor. Aside from their size, most resistors look the same, with 4 or 5 colored bands indicating the resistance.

GENERALIZED PROCEDURE

This lab consists of two main parts. In each you will set up a circuit and measure voltage and current.

Part 1: Measure Voltage Across \& Current Through a Resistor

Here you will measure the voltage drop across and current through a single resistor attached to the output of the 750 .

Part 2: Resistors in Parallel

Now attach a second resistor in parallel to the first and see what happens to the voltage drop across and current through the first.

END OF PRE-LAB READING

IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As" to the desktop. Overwrite any file by this name that is already there). Start LabView by double clicking on this file.
2. Connect the Voltage Sensor to Analog Channel A on the 750 Interface and the Current Sensor to Analog Channel B.
3. Connect cables from the output of the 750 to the banana plug receptacles on the lower right side of the circuit board (red to the sin wave marked output, black to ground).

MEASUREMENTS

Part 1: Measuring the Resistance of a Single Resistor

1. Hook up a circuit to measure the voltage across and current through a single resistor driven by the "battery."
2. Record V and I for 1 second. (Press the green "Go" button above the graph). During this time the battery will switch between putting out 1 Volt and 0 Volts.

Question 1:

When the battery is "on" what is the voltage drop across the resistor and what is the current through it? What is the resistance of the resistor (calculate it from what you just measured, do NOT figure it out from the color code, which can be inaccurate).

$R=\frac{V}{I}=\frac{.984}{10 \cdot 10^{-3}}=97,80 \mathrm{hms}$
Part 2: Testing Ohm's Law

1. Use the same circuit from part 1
2. Choose signal generation parameters (waveform, frequency and amplitude) that you think will help you test Ohm's law

3. Record V and I for 1 second. (Press the green "Go" button above the graph). During this time the battery will output the waveform that you have selected.

resistance is slope - does not changy

Question 2:

Given the possibilities you are presented with, what do you think is the best way to test Ohm's law? What waveform, frequency, amplitude and plot do you use? Is Ohm's law valid for your resistor? How do you extract the resistance of the resistor using your method? What is it?

Part 3: Resistors in Parallel

1. Hook up a circuit to measure the voltage across and current through the first resistor connected in parallel to a second resistor
2. Record V and I for 1 second. (Press the green "Go" button above the graph). During this time the battery will switch between putting out 1 Volt and 0 Volts.

$$
\text { only } v \text { of } l \text { resistor }
$$

Question 3:

When the battery is "on" what is the voltage drop across the first resistor and what is the current through it? Did these values change from Part 1? Why or why not?

$$
\begin{aligned}
& V=493 V(\text { half }) \\
& I=5,8 \mathrm{~mA} \quad\left(\text { half aswell) } t w h r_{1}\right.
\end{aligned}
$$

Question 4:

If it did change: is there something you could measure that wouldn't change?
If it didn't change: is there something you could measure that would change?

Further Questions (for experiment, thought, future exam questions...)

- The ammeter is marked as having a 1 ohm resistance, small, but not tiny. Can you see the effects of the ammeter resistance in the circuits of part 1 and 2? Can you measure the voltage drop across the ammeter? Does this make the measurement of the current through the resistor inaccurate?
- What happens if we instead put the second resistor in series with the first?

Office Hiss
on P. Set 5

conventions: pick circulation ν dir

$$
\begin{aligned}
& \sum V=0 \\
& \Delta V=V_{\text {after }}-V_{\text {before }}
\end{aligned}
$$

direction ohms which's before tatter
2. Chose a (4) direction for current in each branch -if get a - sign that just wears go otter way
3. Resistors

So

$$
=-I R \quad=+I R
$$

If go in same dir current voltage $\underset{\sim}{d}$
$\Delta V \uparrow \frac{I}{\square}$? does not
depot

$$
\varepsilon-I_{r:}-I R_{L}=0
$$

on current

$$
I=\frac{\varepsilon}{r_{i}+R_{L}}
$$

For multiloop circuits
If go around closed path - field is path
 independent - no wo r done -back to 0 kerchief's lav

1. Choose cire dir 22
3 currents flow in this loop

Whatever comes into a junction pt everything must add to O

$$
\begin{aligned}
& I_{1}=I_{3}+I_{2} \\
& \varepsilon_{1}-I_{1} R_{1}-I_{3} R_{3}=0 \quad 3 \mathrm{eq} \\
& -\varepsilon_{2}-I_{2}-R_{2}+I_{3} R_{3}=0 \\
& \pi \\
& \text { going from } \theta \text { to } \theta
\end{aligned}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 5

Due: Tuesday, March 9 at 9 pm .
Hand in your problem set in your section slot in the boxes outside the door of 32082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes.
Week Five Conductors as Shields; Current and Ohm's Law

Class 11 W05D1 M/T Mar 1/2	Conductors as Shields; Expt. 2: Faraday Ice Pail; Capacitors and Dielectrics
Reading:	Course Notes: Sections 4.3-4.4; 5.5, 5.9, 5.10.2
Experiment:	Expt. 2: Faraday Ice Pail
Class 12 W05D2 W/R Mar 3/4	Current, Current Density, and Resistance and Ohm's Law; DC Circuits
Reading:	Course Notes: Sections 6.1-6.5; 7.1-7.4
Class 13 W05D3 F Mar 5: Reading:	PS04: PHET: Building a Simple DC Circuit Course Notes: Sections 6.1-6.5; 7.1-7.4
Add Date Mar 5	
Week Six DC Circuits	
Class 14 W06D1 M/T Mar 8/9	Expt. 3 Building a Circuit with Resistors, DC Circuits \& Kirchhoff's Loop Rules;
Reading:	Course Notes: Sections 7.1-7.5, 7.8-7.9
Experiment:	Expt. 3 Building a Circuit with Resistors
Class 15 W06D2 W/R Mar 10/11	RC Circuits; Expt. 4: RC Circuits
Reading:	Course Notes: Sections 7.5-7.6
Experiment:	Expt. 4: RC Circuits
Class 16 W06D3 F Mar 12	PS05: RC Circuits
Reading:	Course Notes: Sections 7.1 - 7.6, 7.8-7.9

Problem 1: Short Questions

a) Why is it possible for a bird to stand on a high-voltage wire without getting electrocuted?
b) If your car's headlights are on when you start the ignition, why do they dim while the car is starting?
c) Suppose a person falling from a building on the way down grabs a high-voltage wire. If the wire supports him as he hangs from it, will he be electrocuted? If the wire then breaks, should he continue to hold onto the end of the wire as he falls?
d) A series circuit consists of three identical lamps connected to a battery as shown in the figure below. When the switch S is closed, what happens to the brightness of the light bulbs? Explain your answer.

Problem 2: Circuit

The circuit below consists of a battery (with negligible internal resistance), three incandescent light bulbs ($\mathrm{A}, \mathrm{B} \& \mathrm{C}$) each with exactly the same resistance, and three switches ($1,2, \& 3$). In what follows, you may assume that, regardless of how much current flows through a given light bulb, its resistance remains unchanged. Assume that when current flows through a light bulb that it glows. The higher the current, the brighter the light will be.

In each situation ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) as described below, we want to know which light bulbs are glowing (and which are not) and how bright they are (relative to each other). Always briefly discuss your reasoning.
a) Switch \#1 is closed; the others are open.
b) Switches \#1 \& \#2 are closed; \#3 is open.
c) All three switches are closed.
d) Now compare situations a, b \& c . Which bulb is brightest of all, and which is faintest of all (bulbs which are off don't count).

Now replace bulb A by a wire of negligible resistance. We still have three switches and now two light bulbs ($\mathrm{B} \& \mathrm{C}$).
e) Answer the questions b) through d) again for this situation.

Problem 3: Ohm's Law

A straight cylindrical wire lying along the x-axis has a length L and a diameter d. It is made of a material described by Ohm's law with a resistivity ρ. Assume that a potential V is maintained at $x=0$, and that $V=0$ at $x=L$. In terms of L, d, V, ρ, and physical constants, determine expressions for
a) the electric field in the wire.
b) the resistance of the wire.
c) the electric current in the wire.
d) the current density in the wire. Express vectors in vector notation.
e) Show that $\overrightarrow{\mathbf{E}}=\rho \overrightarrow{\mathbf{J}}$.

Problem 4: Resistance of Conductor in Telegraph Cable

.The first telegraphic messages crossed the Atlantic Ocean in 1858, by a cable 3000 km long laid between Newfoundland and Ireland. The conductor in this cable consisted of seven copper wires, each of diameter 0.73 mm , bundled together and surrounded by an insulating sheath. Calculate the resistance of the conductor. Use $3 \times 10^{-8} \Omega \cdot \mathrm{~m}$ for the resistivity of copper, which was of somewhat dubious purity.

Problem 5: Current, Energy and Power A battery of emf \mathcal{E} has internal resistance R_{i}, and let us suppose that it can provide the emf to a total charge Q before it expires. Suppose that it is connected by wires with negligible resistance to an external (load) with resistance R_{l}.
a) What is the current in the circuit?
b) What value of R_{L} maximizes the current extracted from the battery, and how much chemical energy is generated in the battery before it expires?
c) What value of R_{L} maximizes the total power delivered to the load, and how much energy is delivered to the load before it expires? How does this compare to the energy generated in the battery before it expires?
d) What value for the resistance in the load R_{L}, would you need if you want to deliver 90% of the chemical energy generated in the battery to the load? What current should flow? How does the power delivered to the load now compare to the maximum power output you found in part c)?

Problem 6: Battery Life AAA, AA, ..., D batteries have an open circuit voltage (emf) of 1.5 V . The difference between different sizes is in their lifetime (total energy storage). A AAA battery has a life of about 0.5 A -hr while a D battery has a life of about 10 A -hr. Of course these numbers depend on how quickly you discharge them and on the manufacturer, but these numbers are roughly correct. One important difference between batteries is their internal resistance - alkaline (now the standard) D cells are about 0.1Ω. Suppose that you have a multi-speed winch that is 50% efficient (50% of energy used does useful work) run off a D cell, and that you are trying to lift a mass of 60 kg (hmmm, I wonder what mass that would be). The winch acts as load with a variable resistance R_{l} that is speed dependent.
a) Suppose the winch is set to super-slow speed. Then the load (winch motor) resistance is much greater than the battery's internal resistance and you can assume that there is no loss of energy to internal resistance. How high can the winch lift the mass before discharging the battery?
b) To what resistance R_{L} should the winch be set in order to have the battery lift the mass at the fastest rate? What is this fastest rate ($\mathrm{m} / \mathrm{sec}$)? HINT: You want to maximize the power delivery to the winch (power dissipated by R_{L}).

$$
\text { found } V \text { and Power }
$$

c) At this fastest lift rate how high can the winch lift the mass before discharging the battery? have energy power, find time, $V=$ distance
d) Compare the cost of powering a desk light with D cells as opposed to plugging it into the wall. Does it make sense to use rechargeable batteries? Residential electricity costs about $\$ 0.1 / \mathrm{kwh}$.

Problem 7: Faraday Cage

Consider two nested, spherical conducting shells. The first has inner radius a and outer radius b. The second has inner radius c and outer radius d.

In the following four situations, determine the total charge on each of the faces of the conducting spheres (inner and outer for each), as well as the electric field and potential everywhere in space (as a function of distance r from the center of the spherical shells). In all cases the shells begin uncharged, and a charge is then instantly introduced somewhere.
a) Both shells are floating - that is, their net charge will remain fixed. A positive charge +Q is introduced into the center of the inner spherical shell. Take the zero of potential to be at infinity.
b) The inner shell is floating but the outer shell is grounded - that is, it is fixed at $\mathrm{V}=0$ and has whatever charge is necessary on it to maintain this potential. A negative charge -Q is introduced into the center of the inner spherical shell.
c) The inner shell is grounded but the outer shell is floating. A positive charge +Q is introduced into the center of the inner spherical shell.
d) Finally, the outer shell is grounded and the inner shell is floating. This time the positive charge +Q is introduced into the region in between the two shells. In this case the questions "What is $\mathbf{E}(\mathrm{r}) / \mathrm{V}(\mathrm{r})$?" are not well defined in some regions of space. In the regions where these questions can be answered, answer them. In the regions where they can't be answered, explain why, and give as much information about the potential as possible (is it positive or negative, for example).

Problem 8: Capacitance, Work and Energy

Two flat, square metal plates have sides of length L, and thickness $s / 2$, are arranged parallel to each other with a separation of s, where $s \ll L$ so you may ignore fringing fields. A charge Q is moved from the upper plate to the lower plate. Now a force is applied to a third uncharged conducting plate of the same thickness $s / 2$ so that it lies between the other two plates to a depth x, maintaining the same spacing $s / 4$ between its surface and the surfaces of the other two. You may neglect edge effects.

a) Using the fact that the metals are equipotential surfaces, what are the surface charge densities σ_{L} on the lower plate adjacent to the wide gap and σ_{R} on the lower plate adjacent to the narrow gap?
b) What is the electric field in the wide and narrow gaps? Express your answer in terms of L, x, and s.
c) What is the potential difference between the lower plate and the upper plate?
d) What is the capacitance of this system?
e) How much energy is stored in the electric field?

1 8.02 Pset 5 Hint

Hi L08 problem-solvers,
========
Hints for Pset 5
=======
prob 1-a) small distance thus small voltage difference.
comparing the resistance.
prob 1-b)
starter motor needs energy
prob 1-c)
i) comparing resistance, ii) check whether there is a close circuit for current. iii) grounded makes current flow to the ground.
prob 1-d)
resistance is the same, the power $\left(P=I^{2} R\right)$ proportional to the resistance
prob 2) again, compare the current
prob 3) Here we have two exact physical formulas:
(i) $E_{x}=-d V / d x$, (ii) $I=J A$,
two empirical formulas:
(iii) $R=V / I$ (i.e. the definition of resistance, macroscopic view of resistance),
(iv) $\rho=E / J$ (i.e. definition of resistivity, microscopic view of resistivity).

From (iii) and (iv) together give us a relation between R and ρ.

The above 4 eqs constraint 4 degrees of freedom, thus 4 unknowns E, R, I, J can be written as the remained parameters $\mathrm{L}, \mathrm{d}, \mathrm{V}, \rho$.
prob 4) i) resistors in parallel, ii)resistance proportional to cross section area
prob 7) if there is no net charge initially, floating shell remains zero net charge, grounded metal may bot be neutral.
a) no E field inside the conductor interior
b), c) grounded implies $\mathrm{V}=0$
d) Think about the potential landscape. Think inner and outer shells separately, once you understand each case, then combine two cases together. Find: Potential V=0 for ric. potential is highest at the source charge Q. potential $V=$ positive constant for $r ; b$.
prob 8) The below i) ii) iii) give you sets of equation, you can then solve charge density distribution, thus solve a) b) c) d) e) in order.
i) By equipotential of the conductor: so that potential difference for LHS of two plates is the same as the potential difference for RHS of three plates. Note: $\mathrm{E}=0$ inside the conductor.
ii) By symmetry of (-Q on the top and +Q on the bottom). You know the charge distribution on top plate is the same as charge distribution on bottom plate, up to a minus sign.
iii) Sum over charge density equals to total charge, given as $-Q$ and $+Q$ for top and bottom plates.
e) two methods:
i) charging up process, $U_{E}=\int d q V$, integration
ii) E^{2} volume integration, ie. $U_{E}=\int \frac{1}{2} \epsilon_{0} E^{2} d$ (Volume)

If you have free time, challenge yourself with the following.

[Hard] prob 7-d)

It will be a challenging problem to find out the analytic form of potential and electric field between $\mathrm{r}=\mathrm{b}$ and $\mathrm{r}=\mathrm{c}$ for prob 7 d . the exact potential(and thus its negative gradient, the E field), can be obtained from "Method of Image" + "Superposition principle". There will be a series of image charge. since we have two mirrors here(inner shell and outer shell), there are many images of image($\hat{\mathrm{n}})$ charge. One can expect certain geometric series sum of potential can lead to the exact analytic full potential. Normally we will start from assuming inner shell and outer shell are grounded for simplicity, but here specially need to be aware that the inner shell is not grounded, so the inner shell must be neutral, need to artificially provide a the same negative amount of surface charge well-distributed on the surface to cancel the amount of total charge on the outer surface of inner shell(which charge sum is equal to the sum of image charges inside the inner shell).

Good Ref: Chap 3-2, Method of Images Griffiths, Introduction to Electrodynamics. (Indeed to sovel prob 8 analytically is a bit above Griffiths level.)
prob 8-e) You find out the minimum stored energy is at $x=L$, then you know it is stable for inserting the 3rd plate entirely into the middle of two plates. you also know perturbing around a stable equilibrium point would experience a restoring force. You can ask what's the motion and the periodicity $T_{\text {period }}$ for this motion.

You can find out: For small Δx perturbation $(|\Delta x| \ll L), U=\frac{Q^{2} s}{4 \epsilon_{0} L^{2}\left(1-\frac{|\Delta x|}{2 L}\right)} \simeq \frac{Q^{2} s}{4 \epsilon_{0} L^{2}}\left(1+\frac{|\Delta x|}{2 L}\right)$; thus $F_{x}=-d U / d x=-\frac{Q^{2} s}{8 \epsilon_{0} L^{3}}$, thus $a_{x}=F_{x} / m=-\frac{Q^{2} s}{8 m \epsilon_{0} L^{3}}$.

We find it is indeed a constant acceleration! (surprisingly, not Simple Harmonic Motion). Where, $\Delta x=1 / 2 a t^{2}$, so $t=\sqrt{\frac{2 \Delta x}{a}}$
$T_{\text {period }}=4 t=4 \sqrt{\frac{2 \Delta x}{a}}=4 \sqrt{\frac{16 m \epsilon_{0} L^{3}}{Q^{2} s} \Delta x}$. (You can check by plugging in a by yourself.)
Pet 5100-3=97

Michael Plasmeier $11 \mathrm{C}<01$

1. Short Question
a) Why can a bird stand on high voltage
wire without dying?
Because thy are not tacking the ground.
The current take to path of least resictare right
which is the wire, not the bird
b) Why do your car headlights dim when you start to car.

- The car storting draws' new power

Its great \quad Power $=\frac{\Delta W}{\Delta t}=I V$
then you work
so hand and thy
So many different things
but could you Somehow
show your finial answer and
work? box it, hilisht it, - wherever.
it es hand to kep track of
what's going on. $I=I_{1}+I_{2}=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}$
Sometimes 1 think you
Voltage drop across same for both like anoter exit from theater

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

did Something wrens only to
see you figured each item different resistance
it out 3 pages later. current aids
It would help both of os.

- Chis

So Voltage is sane

$$
\begin{aligned}
& P=I V \\
& T_{i} \uparrow \text { same }
\end{aligned}
$$

increases $I_{\text {must }}$ theirfore also increase
= current. Voltage

Light from bulb some new current brought to new branch
a)tenuters tide >100 amps (high current) lots of energy needed to pass this voltayo through battery
potential diff drops + lights dim
looked
due to batt has low internal resistance exsectete \rightarrow if high internal resistance this is mote
noticible at lower current drops

* So it looks like whet I was missing was patt internal resistance

$$
V_{T}=\varepsilon-I r
$$

c) A poison falls and grabs high voltage wire. If it supports him as he hangs, does he dice, If it breaks and he lands, does he die's

No in both cases. He does not die if the wire is connected and he does not touch the grand. Also once the wire breaks he is no longer in danger. The field no longer pushes ta charge, so he is state.
d) A series circuit 3 lamps

Bulbs 1 and 2 increase in brightness 3 goes eff
The current now finds a path of lower resistance by going through the switch instead through bulb 3
These lights are in series

$$
V=I\left(R_{1}+R_{2}\right) \text { lowers when } R_{3} \text { goes to } \gamma
$$ sane increases, thus lights brighter

$$
\begin{aligned}
\text { Brightess } & \text { current voltage }=\text { walt } \\
& \text { =power }
\end{aligned}
$$

2.

Resistance in all 3 bulbs F and unchanging
d) Switch 1 closed otters open

No closed circuity, no flow, no light
b) Switch $1+2$ closed 3 open

We have 2 pulps in series

$$
V=I\left(R_{1}+R_{2}\right)
$$

1 and 2 glowing at same rate
c) All switches

All 3 bulbs are on
Bulb $?$ is twice ta brigtress (current) of 2 and 3 which are $=$
d Which was the brightest across situations? (Built test crivit)

$$
\begin{aligned}
& 3 A=16 \mathrm{amp} \quad \text { greatest } \\
& 3 B C=13 \mathrm{Amp} \quad \text { least }
\end{aligned}
$$

\# = problem
letter $=$ bul 6

$$
\begin{aligned}
& 2 A=, 45 \mathrm{amp} \\
& 2 B=145 \mathrm{amp}
\end{aligned}
$$

e) Now replace A w/ wire
a) Still no complete circut
b) only bulb B is on at i q amps
*height c) Bulb B and (both on at $=$ brightness of, 19 mp voltage d) Thy ore all same brightens (parallel circuit) drop 4
3. Ohms Law: A straight wire has lenght l d p
bot leigh Voltage at $x=0$ and $\sqrt{5}$ at $x=L$ of wire matters
d) Express field on wire L, d, v, p
(anime this

$$
\vec{J}=\sigma \vec{E}
$$

$$
\uparrow_{p=\frac{1}{0}}^{\text {external electric field }}
$$

$\begin{aligned} & \text { charge } \\ & \text { density } \rightarrow\end{aligned} \vec{J}=\frac{E}{\rho} \rightarrow \vec{E}=\vec{J} \rho$
b) Resistance of wire

$$
\sigma=\frac{n e^{2} \tau}{m_{e}} \quad \rho=\frac{m_{e}}{n e^{2} x}
$$

from finding drift velocity

$$
I=\iint \stackrel{\rightharpoonup}{J} \cdot d \stackrel{\rightharpoonup}{A}
$$

T current density A / m^{2}

$$
q=\text { charge of corries }
$$

$$
n=F_{\text {of }} \text { corries }
$$

$$
\text { moving at } V_{d}
$$

Charge $\Delta Q=q(n A \Delta x)$

$$
I_{\text {avg }}=\frac{D Q}{\Delta t}=n q V_{0} A
$$

but does not travel in a straight lire

$$
\vec{J}=n q \vec{v}_{d}
$$

Well electrons feel force $\vec{a}=\frac{\overrightarrow{F_{e}}}{m_{e}}=\frac{-e \vec{E}}{m_{e}}$ velocity before next collision

$$
\overrightarrow{V_{k}}=\vec{V}_{i}+\vec{a} t=V_{i}-\frac{e \stackrel{\rightharpoonup}{E}}{m_{e}}+
$$

So overall average V_{f}

$$
\left\langle V_{f}\right\rangle=\left\langle V_{i}\right\rangle-\frac{e E}{m_{e}}\langle+\rangle=v_{d}
$$

When no field $\left\langle v_{i}\right\rangle=0$
When $y=\langle t\rangle$ emenn time before collisions

$$
V_{d}=\left\langle V_{f}\right\rangle=-\frac{e E_{-}}{m_{e}} \gamma
$$

So current density,

$$
\vec{J}=-n e \overrightarrow{v_{i}}=-n e\left(\frac{e \vec{E}}{m_{e}} y\right)=\frac{n e^{2} r \vec{E}}{m_{e}}
$$

c Current in wire

$$
I_{\text {arg }}=n q v_{d} A \quad \Gamma=\frac{d Q}{d t}
$$

d Current density in wire

$$
\vec{J}=n q \vec{v}_{d}=\sigma \stackrel{\rightharpoonup}{E}
$$

e Show $\vec{E}=\rho \vec{J}$

$$
\begin{array}{ll}
\vec{J}=\frac{n e^{2} \pi}{m_{e}} \vec{E} & \vec{E}=\rho J \\
P=\frac{m_{e}}{n e^{2} j} & \left(\frac{m_{e}}{n e^{2} y}\right)\left(\frac{n e^{2} \tau}{m_{e}}\right) \vec{E} \\
& \vec{E}=\vec{E}
\end{array}
$$

Hints Two formulas
for 3

$$
\begin{aligned}
& E_{x}=-\frac{d V}{d x} \quad I=J A \\
& R=\frac{V}{I}\left(\begin{array}{c}
\text { (resistance } \\
\text { macroscopic) }
\end{array}\right.
\end{aligned} \quad \rho=\frac{E}{J}\binom{\text { (resistirty }}{\text { microscopic }} .
$$

Cunt
$E=-V V: \leftarrow$ Says we shall start with (4) downhill
but that goes w/

$$
I=s \rho \vec{J} \cdot d \vec{A}
$$

1. What do we stout from?
2.

$$
\begin{aligned}
& V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot d s \\
& V_{x=1}-V_{x=0}=\int_{0}^{L} \vec{E}^{\prime} \cdot d s=-E L \\
& V_{\lambda=1}=0 \\
&-V_{x}=0=-V=-E L \\
&|E|=\frac{V}{L} \hat{x}
\end{aligned}
$$

b

$$
R=\frac{\rho L}{A}=\frac{\rho L}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{\rho L}{\pi \frac{d^{2}}{4}}=\frac{4 \rho L}{\pi d^{2}}
$$

c $I=\frac{V}{R}=\frac{4 \pi d^{2}}{4 p L}$
d. $|\vec{J}|=\frac{I}{A}=\frac{V \pi d^{2}}{\frac{4 \rho L}{\left(\frac{\pi d^{2}}{4}\right)}}=\frac{V \operatorname{AR} D^{x}}{4 \rho L} \cdot \frac{Y}{\pi \rho^{x}}=\frac{V}{\rho L} \hat{x}$
$e \frac{\vec{E}}{\frac{E}{J}}=\frac{\frac{v}{L}}{\frac{v}{\rho L}}=\frac{V}{L} \cdot \frac{\rho k}{\nabla}=\rho$
much

$$
E=p \frac{\vec{J}}{}
$$

4. Resistance of Conductor in Telegraph

7 wires diameter .77 mm
Find resistance $\quad \frac{3: 10^{-8} \Omega}{3000 \mathrm{~km}}$

$$
\begin{aligned}
& R=\frac{\rho L}{A} \\
& \frac{3 \cdot 10^{-8} \cdot 3000,000}{\pi \cdot \frac{.0073^{2}}{4}}
\end{aligned}
$$

2150 each wire

$$
\begin{gathered}
\frac{1}{2150}+\frac{1}{2150}+\cdots \\
2150^{-1} \cdot 7 \\
1003255
\end{gathered}
$$

Course Notes
book

$$
A=N \pi r^{2}=N \frac{\pi \lambda^{2}}{4}
$$

so directly \mathbb{Y} times area here

$$
R=\frac{p l}{A}=\frac{3 \cdot 10^{-8} \Omega \cdot m \cdot 30000 d d m}{7 \cdot \pi \frac{\pi\left(0007^{32}\right)}{4} \text { enitercer }}
$$

To basically only mistake is where the 7

$$
=30719 \Omega
$$

$5-$ general
(6-appliation
Lintemal
5. Battery \& $\Gamma \quad R_{L} \in$ load
a) Current in circuit
(1) draw

$$
\begin{aligned}
& \text { Gat terminals } \\
& V_{f}=6-I r \\
& I R=6-I r \\
& I R+I r=\varepsilon \\
& I=\frac{6}{R+r} \\
& I=\frac{6}{R+r} ;
\end{aligned}
$$

b) What value of R_{L} maximises current from battery and how much energy before it expires.

c.) What value of R_{l} maximizes total power to load before it expires?
pome $=\frac{\Delta w}{\Delta t}=$

$$
\emptyset V I
$$

$$
U=\Delta W=
$$

$$
v \Delta V=
$$

$$
I V A=P t
$$

$$
\begin{aligned}
& P_{\text {lightbulb }}^{T_{\text {maximize }}}=I V_{\text {access bulb }}=I^{2} R \\
& P=I_{\text {iof bulb }} \text { in of load } \\
& \text { in depended on } \text { a!(interad revitace) }
\end{aligned}
$$

like problem 6B-tak deriv to Find maximum or find critical pt/max on call

$$
\begin{aligned}
\frac{d P}{d R} & =\left(\frac{\zeta}{(R+r}\right)^{2} R \\
& =A \sigma^{2}(r+R)^{-2} \\
P & \left.=\sigma^{2} \cdot 1(r+N)^{-2}+-2(r+R)^{-3} 0\right) \cdot R \epsilon^{2} \\
P^{\prime} & =\frac{6^{2}}{(r+R)^{2}}-\frac{2 R G^{2}}{(r+R)^{2}}
\end{aligned}
$$

Set $=$ to 0 to find critical pts

$$
\sigma=\frac{6^{2}}{(r+R)^{2}}-\frac{2 R b^{2}}{(r+R)^{2}}
$$

call solo

$$
\begin{aligned}
& O=\zeta^{2}-2 R G^{2} \\
& \frac{\sigma^{2}}{C^{2}}=\frac{2 R \sigma^{2}}{6^{2}} \\
& 1=2 R \\
& R=\frac{1}{2}
\end{aligned}
$$

Are we using a D battery?

$$
\Delta h=15 \quad \frac{I^{2} R_{1}}{m g}
$$

10 amp hours $=Q$

$$
10 \mathrm{amp}=\frac{\text { Kolomp }}{\text { Seconds }} \frac{6.60 \text { seconds }}{\text { hour }}=\frac{36000 \text { colons }}{\text { hoax }}
$$

Amp-hour unit of electric charge Q 1 amp $h_{r}=3600$ colombs
charge trasstered by steady current of lamp for 1 hr

$$
\begin{aligned}
& \Delta h=15\left(\frac{Q}{4}\right)^{2} R t \\
& \Delta g=\frac{5\left(\frac{10 \mathrm{Amphrs}}{t}\right)^{2} R}{\mathrm{mg}}
\end{aligned}
$$

i me h and t not both related
-noel to cole when batt runs out of chary s

$$
Q=\int_{0}^{\operatorname{in} t} I d t
$$

or howmech energy in batt

$$
\begin{aligned}
& E=\frac{1}{2} Q V \\
& P=I \varepsilon \text { Work }= \\
&=q \Delta V \int_{\text {rlisV }}^{t} E d r \\
& 36000 \text { colombs }
\end{aligned}
$$

How much energy is this

$$
U=\frac{6}{R+r} V t=O \cdot V
$$

Also it asks energy of battery vs energy of lode.

- Voltage is te same
- but is more energy used up in battery (due to internal resistance) than pones te load
- but how to represent that in a formula?

Consoruation of every

- taking charges (E) moving inside batt raising $P E \quad \frac{d q}{d t} \cdot \varepsilon=q \varepsilon$ - gets disapited over circuit

$$
\left.\left.P=\frac{d v}{d t}=\frac{d a}{d t}\right\}=I\right\}
$$

"cor figure cut ha long it will run

$$
U=p t=I 6 t
$$

-some I \rightarrow load
2 internal resistance

$$
\begin{aligned}
& I=\frac{\varepsilon}{r_{1}+R L} \\
& \text { P largest when no resistance or got } \\
& \left.\qquad \frac{d v}{d t}=\frac{d q}{d t}\right\}=\text { Power battery }=I \varepsilon
\end{aligned}
$$

Power dissipated by load - can lose to Thermal

- or motor can lift weight

$$
\frac{d U}{d t}=\left|\frac{d q}{d t} \Delta V_{\text {load }}\right|=I\left(V_{\text {load }} \mid=I^{2} R\right.
$$

'how much PE going to someting to

$$
\begin{aligned}
& U=\text { Power } \text { battery time } \\
& \text { batt } \\
& \left.U_{\text {gen }}=(I \varepsilon) t=Q\right\}
\end{aligned}
$$

$$
* \varepsilon=V_{\text {batt }} *
$$

$$
P_{L}=I^{2} R_{L}=\frac{6^{2}}{\left(r^{2}+R_{L}\right)^{2}} A_{L}
$$

take deriv R_{L}
Product rule

$$
r_{1}=R_{L}
$$

'r maxizing power to load "interesting

$$
\text { Power load }=\frac{6^{2}}{4 R_{L}}
$$

Energy

- batt gererated
- Some dissipated internal resistance g
- rest dissipated to load
since $r_{1}=\Lambda_{2}$ halt and half)
Energy disipated
so E to load can find

$$
I^{2} r=I^{2} R
$$

- when not sane next qu 2
d Condition
90\% load

$$
P=I^{2} R
$$

10% internal resistance
$T_{\text {same I }}$ both

$$
\begin{aligned}
& A_{1}=\frac{9 r_{i}}{\text { If resistances }}=\frac{\frac{6}{2}}{}=I_{\max }
\end{aligned}
$$

review

If resistances not $=$

$$
I=\frac{6}{r_{i}+\Lambda_{L}}=\frac{6}{10 R_{i}}
$$

only getting 20% current before
Power to load $I^{2} R_{c}=\frac{6^{2}}{\left(r_{i}+9 r_{i}\right)} 9_{r_{i}}$
fast $=$ lots of energy wasted internally
slow = leas energy wasted internally
day atter reviens
So confused
sun corluased ane more
I don't wate thinth abeut th's

- will see when results pooted
d
rede

$$
\begin{aligned}
& \frac{9}{10}=\frac{R_{1}}{R_{i}+R_{i}} \\
& 9 R_{i}+9 R_{i}=10 R_{2} \\
& R_{i}=9 R_{i} \\
& I=\frac{6}{10 R_{i}} \quad P=I^{2} R=\frac{6^{2}}{100 R_{i}^{2}}\left(9 R_{i}\right)
\end{aligned}
$$

Max powier in C

$$
\begin{aligned}
& \quad \frac{6^{2}}{\left(R_{i}+R_{L}\right)^{2}} R_{L} \text { wher } R_{L}=R_{i} \\
& =\frac{6 \cdot{ }^{2} R}{4 R_{i}^{2}}=\frac{6^{2}}{4 R_{i}} \\
& \frac{P_{\text {now }}}{P_{\text {max }}}=\frac{.09 R^{2}}{\frac{R_{i}}{\frac{R^{2}}{4 R_{i}}}=\frac{.096^{2}}{R_{i}}=\frac{4 R_{i}}{\varepsilon^{2}}=136} \\
& 36 \% \text { of Pmax }
\end{aligned}
$$

G. AAA, AA, D have \& 1.5V
difference is lifetime \rightarrow energy storage
AAA 15 Amp hour
D 18 Amp hours
D internal resistance , 1Ω
Have 50\% effluent winch
Trying to lift 60 kg
Winch is R_{l} (speed dependent)
d) Suppose winch is super slow speed

Winch motor $R_{E}>r$ internal so no lows of energy to intend resistance. How high can it lift?

$$
\begin{aligned}
& \begin{aligned}
& \Delta V= \frac{\varepsilon}{}-I_{r} \\
& \varepsilon-I r-I R=0 \text { complete loop } \\
&=\frac{6}{R+r}
\end{aligned} \\
& \text { Power }=I \varepsilon=I(I R+I r)=I^{2} R+I^{2} r
\end{aligned}
$$

no internal resistance so power $=I^{2} R$

$$
\begin{aligned}
& =\frac{\Delta h}{\Delta t}=\Delta m g h \\
& I V^{\Delta \Delta t}=m g \Delta h
\end{aligned}
$$

$$
\Delta h=\frac{I^{2} R \Delta t}{m g}
$$

Amp - hour
r charge (colomb)
$A_{\mathrm{mp}}=1 \frac{\mathrm{col}}{\mathrm{sec}}$

$$
Q=I A
$$

$$
\begin{gathered}
m g \Delta h=\Delta V=\Delta E=\text { work } \\
36000 C \cdot 1.5 \mathrm{~V}=m g \Delta h \\
A h=\frac{36000 C \cdot 1.5 \mathrm{~V}}{m g}
\end{gathered}
$$

* so basically linen the quantites + haw they relate

Tm is st posing
to firm-
hot leaning and not really getting it -
trues more time

Pratice

$$
\begin{aligned}
\frac{d}{d x} \frac{x}{(a+x)^{2}} & x(a+x)^{-2} \\
& \frac{1}{(a+x)^{2}}+\frac{-2 x}{(a+x)^{3}} \\
& \frac{a+x-2 x}{(a+x)^{3}}= \\
& \frac{a-x}{(a+x)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Power }=\frac{\Delta w}{\Delta t} \quad \Delta w=m g n \\
& P=m g \frac{d h}{d t}=m g v=\frac{c^{2}}{(R+r)^{2}}-\frac{2 R \varepsilon^{2}}{(R+r)^{2}} \\
& V=\frac{\frac{6^{2}}{(R+r)^{2}}-\frac{2 R 6^{2}}{(R+r)^{2}}}{m g}
\end{aligned}
$$

c) At this fastest lift rate -low long before discharging
lean abaft
power!

- -

$$
\begin{gathered}
\text { lost } \\
m \text { flint tim }
\end{gathered}
$$

this sematic

$$
\begin{aligned}
& 36000 C \cdot 1,5 \mathrm{~V}=\mathrm{mg} \mathrm{\Delta h} \\
& \Delta h=\frac{36000 \mathrm{C} \cdot 1,5 \mathrm{~V}}{m g} \\
& V=\frac{d h}{d t} V=\int_{0}^{36000 \mathrm{C} \cdot l .5)} \mathrm{mg} \\
& \text { in B Found } V \text { and Ponor }
\end{aligned}
$$

have energy and power, find time - velocity $=$ distance

$$
\begin{aligned}
& W=\frac{q V=E d}{P} \begin{array}{l}
\text { Power }=\frac{q V}{t}=\frac{E d}{t} \\
m g V=\frac{36000 \cdot 1.5}{t}
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6^{2}}{(R+r)^{2}}-\frac{2 R \xi^{2}}{(R+r)^{2}}=\frac{36000 \cdot 1.5}{t} \\
& t=\frac{36000 \cdot 15}{\frac{6^{2}}{(R+r)^{2}}-\frac{2 R r^{2}}{(R r)^{2}}}
\end{aligned}
$$

Can - velocity to find distance

$$
\begin{aligned}
& d=v t \\
& d=\frac{36000 \cdot 1,5}{\frac{6^{2}}{(R+r)^{2}}-\frac{2 R q^{2}}{(R+r)^{2}} \cdot \frac{6^{2}}{(R+r)^{2}}-\frac{2 R q^{2}}{(R+r)^{2}}}
\end{aligned}
$$

or using a

$$
\begin{aligned}
& d=\frac{36000 \cdot 1,5}{a} \cdot \frac{a}{m g} \\
& d=\frac{36008 \cdot 1,5}{m g}
\end{aligned}
$$

d. Compare the cost of powering desk lights with D batteries instead of I/ kwh

So power of a battery

$$
P=\frac{q V}{t}=\frac{36000(\cdot 1.5 \mathrm{~V}}{1 \mathrm{hr}}=
$$

Kwh is energy

$$
\text { 1 kwh }=3,6 \text { mega joules }
$$

$$
\begin{aligned}
& \text { Power }=\text { watts } \quad \text { Amp hours } \cdot \text { Volts }=\text { Watt hrs } \\
& \text { watt } h r=\text { Porer ot }=\frac{q v}{\Delta t}: t=q v=\text { Work }=\text { Energy }
\end{aligned}
$$

$$
P=q \frac{q V}{\Delta t}
$$

So 10 Amp haves. $1,5 \mathrm{~V}=10,5 \mathrm{Watt}$ hours total is

$$
\frac{10,5}{1000}=10105 \mathrm{kWh} \text { for } \$ 3
$$ deliver

Vs I kWh for il

$$
\begin{aligned}
\frac{10105 \mathrm{kh}}{\$ 3}= & 10035 \text { kwh for } \$ 1 \\
& 100035 \mathrm{kwh} \text { for } \$ 1 /
\end{aligned}
$$

$\frac{1}{100035}=2857$ tires more expertise and that is $w /$ perfect effirency
7. Faraday Cage

Two nested spherical shells
chard be
edsel
a) Both shells are floding -60 net charge fired (ie not grounded i)
$+a$ in middle

Fields are like that visualization
but the E field carcles inside no lies right - just empty space simulation: if a directly in middle no lies
-T directly in middle no indued field
b) Inner shell is floating-auter shell grounded
ΘQ added
a all θ
b all θ
c all ©
d nothing all of te Θ charge disappear
E field will be same

c) Inner grounded outer Floating (f) in middle
a all θ
b nothing - all of the (t) disappear
c all θ
A all (t) (assuming grounded since lost problem
same/similar E field
d. Outer sell grander inner shell floating
(t) Q added between cage

$E=\frac{\sigma}{\varepsilon_{0}}+$ to surface
What is $\frac{E(r)}{V(r)}$? what is this asking

8. Capacitance, Work, Energy

ta charge moved from tap plate to lower plate

$$
\begin{aligned}
& \text { what exactly } \\
& \text { dots fortran ? }
\end{aligned}
$$

Now Force is applied to

a) Use the fact that metals are equip potential what is σ_{L} and σ_{n}

$$
E A=\frac{\sigma A}{\varepsilon}
$$

parallel $E=\frac{\sigma}{\varepsilon_{0}}$ so $\sigma=E \varepsilon_{0}$
? So what is going on tore'. I wish I Knew...

Ideas

$$
\binom{\text { ours flipped }}{t-}
$$

\uparrow
same potentid
T difference, except 2 capidtars on right
but does not want us to do this way
Whats happening?

$$
C=\frac{Q}{\Delta V}{ }^{C \text { both sides }}=\frac{Q}{|S \cdot E \cdot d s|=d^{\prime} \text { does not }} \text { mather }
$$

$$
\text { to } 0
$$

Potential diff where non-O E field

Suppose σ_{L} and σ_{R}

$$
\begin{aligned}
& E_{L} \downarrow \frac{\downarrow E_{R}}{\nu E_{R}} E=0 \\
& E=0 \\
& Q=\sigma_{L} A_{L}+\sigma R A_{R}
\end{aligned}
$$

Relationship E_{L} and E_{R}
And σ w/ grass's law
potentials $=$ (path independent)
(an you follow ideas through in symbols
Solve for σ_{L} and σ an
E_{L} and E_{R}
and V
and C
Lan check $\frac{1}{2} \varepsilon_{0} E_{0}{ }^{2}$
solve for E_{k}
should $\frac{a^{2}}{2 c}$
cali do normal capitance parallel + in series

Bon Yeah do normal Guassian Surface
own

$$
\begin{aligned}
& E A=\frac{\sigma A}{\varepsilon_{0}} \\
& E A \varepsilon_{0}=\sigma A \\
& \begin{array}{l}
E \xi_{0}=\sigma \quad \sigma=\frac{q \text { echerge }}{A} \text { oren } \\
E_{i}=\frac{\sigma_{L}}{\varepsilon_{0}} J
\end{array} \\
& C=\frac{Q}{D V \text { some potential drop }}=\frac{Q}{|S E \cdot d s|} \\
& E_{L}=2 E_{R} \\
& Q=\sigma_{l} A_{l}+\sigma A R \\
& \frac{\sigma_{L}}{\sigma_{0}}=2 \frac{\sigma_{a}}{\sigma_{0}} \quad \Delta V_{L}=\Delta V_{R} \\
& C=\frac{Q}{V}
\end{aligned}
$$

or can do parral and series
Soles $\Delta V=A V_{1}+\Delta V_{2}$

$$
\begin{aligned}
V_{L} & =\hat{2} V_{R}(\text { each section }) \\
& =\frac{Q}{C_{e q}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}
\end{aligned}
$$

$$
\begin{gathered}
E_{L} P=2 E_{R} \frac{8}{4} \\
E_{L}=\frac{1}{2}^{E_{R}} \\
\sigma_{L}=\frac{\sigma R}{2} \\
\begin{aligned}
Q= & \sigma_{L}(L-x) L+2 \sigma_{L} \times L \\
Q & =\sigma_{L} L 2-\sigma_{L} L x+2 \sigma_{L} \times L \\
= & \sigma_{L} L+\sigma_{L} L^{2} \\
\sigma_{L} & =\frac{Q}{L^{2}+\times L} \quad<\sigma_{R}=\frac{2 Q}{L^{2}+x L}
\end{aligned}
\end{gathered}
$$

have to
defter on area t solve for!
b

$$
\begin{aligned}
E_{l} & =\frac{\sigma_{l}}{\varepsilon_{0}} \hat{\jmath} & E_{A}=\frac{2 \sigma l}{\varepsilon_{0}} \jmath \\
& =\frac{Q}{\varepsilon_{0}\left(l^{2}+\times l\right) \jmath^{j}} & =\frac{2 Q}{\varepsilon_{0}\left(L^{2}+x l\right)} \jmath
\end{aligned}
$$

E $\Delta V=$ Sam $=E_{L} S=\frac{Q_{s}}{\varepsilon_{0}\left(L^{2}+x L\right)}$
$d C=\frac{Q}{A V}=\frac{Q \varepsilon_{0}\left(L^{2}+\times L\right)}{Q_{s}}=\frac{G_{0}\left(L^{2}+\times L\right)}{5}$
e $\operatorname{lnergy}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2} s}{C_{0}\left(L^{2}+x L\right)}$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 5 Solutions

Problem 1: Short Questions
(a) Why is it possible for a bird to stand on a high-voltage wire without getting electrocuted?

The reason is because the potential on the entire wire is nearly uniform, and the potential difference between the bird's feet is approximately zero. Thus, the amount of current flowing through the bird is negligible, since the resistance through the bird's body between its feet is much greater than the resistance through the wire between the same two points.
(b) If your car's headlights are on when you start the ignition, why do they dim while the car is starting?

The starter motor draws a significant amount of current from the battery while it is starting the car. This, coupled with the internal resistance of the battery, decreases the output voltage of the battery below its the nominal 12 V . This decrease in voltage decreases the current through (and brightness of) the headlights.
(c) Suppose a person falling from a building on the way down grabs a high-voltage wire. If the wire supports him as he hangs from it, will he be electrocuted? If the wire then breaks, should he continue to hold onto the end of the wire as he falls?

As long as he only grabs one wire and does not touch anything that is grounded, he will be safe. If the wire breaks, let go! If he continues to hold on to the wire, there will be a large-and rather lethal-potential difference between the wire and his feet when he hits the ground.
(d) A series circuit consists of three identical lamps connected to a battery as shown in the figure below. When the switch S is closed, what happens to the brightness of the light bulbs? Explain your answer.

Closing the switch makes the switch and the wires connected to it a zero-resistance branch. All of the current through A and B will go through the switch and lamp C goes out, with zero voltage across it. With less total resistance, the current in the battery becomes larger than before and lamps A and B get brighter.

Problem 2: Circuit

The circuit below consists of a battery (with negligible internal resistance), three incandescent light bulbs ($\mathrm{A}, \mathrm{B} \& \mathrm{C}$) each with exactly the same resistance, and three switches $(1,2, \& 3)$. In what follows, you may assume that, regardless of how much current flows through a given light bulb, its resistance remains unchanged. Assume that when current flows through a light bulb that it glows. The higher the current, the brighter the light will be.

In each situation ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) as described below, we want to know which light bulbs are glowing (and which are not) and how bright they are (relative to each other). Always briefly discuss your reasoning.
a. Switch \#1 is closed; the others are open.

No bulbs glowing; no closed circuit anywhere and hence no current anywhere
b. Switches \#1 \& \#2 are closed; \#3 is open

A \& B glow with equal brightness as they are connected in series to the battery and thus the same current passes through each. C is still off.
c. All three switches are closed

A, B \& C all glow. A is brightest, for all current flows through it. B \& C glow with equal but lesser brightness, as the current through A is split equally between $\mathrm{B} \& \mathrm{C}$.
d. Now compare situations $\mathrm{a}, \mathrm{b} \& \mathrm{c}$. Which bulb is brightest of all, and which is faintest of all (bulbs which are off don't count).
Bulb A in case (c) is brightest of all; effective resistance of the bulb combination is decreased from that of part (b) by the addition of light bulb C in parallel with bulb B . By Ohm's law, more current is then drawn from the battery in case (c) as compared to case (b) leading to a brighter bulb A .

Bulbs B \& C in case (c) are faintest of all. Let V be the battery voltage and R be the resistance of each bulb. The effective resistance of the circuit as a whole is $2 R$ in case (b) and 1.5 R in case (c). Thus the current through A is $\mathrm{V} / 2 \mathrm{R}$ in case (b) and $\mathrm{V} / 1 . .5 \mathrm{R}=$ $2 \mathrm{~V} / 3 \mathrm{R}$ in case (c). Therefore in case (b) the current through B is also $\mathrm{V} / 2 \mathrm{R}$, but in case (c) the current through B (and C) is half of $2 V / 3 R$ or $V / 3 R$. This latter current is the smallest.

Now replace bulb A by a wire of negligible resistance. We still have three switches and
now two light bulbs ($\mathrm{B} \& \mathrm{C}$).
e. Answer the questions b through d again for this situation.
(e-b) B glowing, C off
(e-c) B \& C glowing with equal brightness
(e-d) All on-bulb brightnesses are equal, for all bulbs have the full battery voltage across themselves, and therefore the same current goes through each.

Problem 3: Ohm's Law

A straight cylindrical wire lying along the x-axis has a length L and a diameter d. It is made of a material described by Ohm's law with a resistivity ρ. Assume that a potential V is maintained at $x=0$, and that $V=0$ at $x=L$. In terms of L, d, V, ρ, and physical constants, determine expressions for
(a) the electric field in the wire.

This problem is simply the review of the Chapter 6 of the Course Notes. You should read it if you have anything unfamiliar with.

$$
\overrightarrow{\mathbf{E}}=\frac{V}{L} \hat{\mathbf{x}}
$$

(b) the resistance of the wire.

$$
R=\frac{\rho L}{A}=\frac{\rho L}{\pi(d / 2)^{2}}=\frac{4 \rho L}{\pi d^{2}}
$$

(c) the electric current in the wire.

$$
\vec{I}=\frac{V}{R} \hat{x}=V /\left(\frac{4 \rho L}{\pi d^{2}}\right) \hat{x}=\frac{\pi d^{2} V}{4 \rho L} \hat{x}
$$

(d) the current density in the wire. Express vectors in vector notation.

$$
\overrightarrow{\mathbf{J}}=\frac{\overrightarrow{\mathbf{I}}}{A}=\left(\frac{\pi d^{2} V}{4 \rho L} \hat{\mathbf{x}}\right) / \pi(d / 2)^{2}=\frac{V}{\rho L} \hat{\mathbf{x}}
$$

(e) Show that $\overrightarrow{\mathbf{E}}=\rho \overrightarrow{\mathbf{J}}$.

$$
\rho \overrightarrow{\mathbf{J}}=\rho\left(\frac{V}{\rho L} \hat{\mathbf{x}}\right)=\frac{V}{L} \hat{\mathbf{x}}=\overrightarrow{\mathbf{E}}
$$

Problem 4: Resistance of Conductor in Telegraph Cable

The first telegraphic messages crossed the Atlantic Ocean in 1858, by a cable 3000 km long laid between Newfoundland and Ireland. The conductor in this cable consisted of seven copper wires, each of diameter 0.73 mm , bundled together and surrounded by an insulating sheath. Calculate the resistance of the conductor. Use $3 \times 10^{-8} \Omega \cdot \mathrm{~m}$ for the resistivity of copper, which was of somewhat dubious purity.

Solution: When current flows in the cable, the ends of each of the seven copper wires are held at the same voltage difference, so the wires are in parallel. Recall that when resistors are in parallel, the equivalent resistance adds inversely:

$$
\frac{1}{R_{c q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots .
$$

Since resistance is inversely proportional to area, we have that

$$
\frac{1}{R_{c q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots=\frac{A_{1}}{\rho L_{1}}+\frac{A_{2}}{\rho L_{2}}+\cdots .
$$

The wires are all the same length and area so for seven wires

$$
\frac{1}{R_{c q}}=\frac{7 A}{\rho L} .
$$

Thus the equivalent resistance is

$$
R_{e q}=\frac{\rho L}{7 A}=\frac{\left(3 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(3 \times 10^{6} \mathrm{~m}\right)}{(7)(\pi)\left(7.3 \times 10^{-4} \mathrm{~m} / 2\right)^{2}}=3.0 \times 10^{4} \Omega .
$$

Check: Since resistance is inversely proportional to area, the effective area is seven times the area of one wire.

Problem 5: Current, Energy and Power A battery of emf ε has internal resistance R_{i}, and let us suppose that it can provide the emf to a total charge Q before it expires. Suppose that it is connected by wires with negligible resistance to an external (load) with resistance R_{L}.
a) What is the current in the circuit?

Solution:

The Kirchoff loop law (the sum of the voltage differences across each element around a closed loop is zero) yields

$$
\varepsilon-I R_{t}-I R_{L}=0 .
$$

Solving for the current we find that

$$
I=\frac{\varepsilon}{R_{i}+R_{L}} .
$$

b) What value of R_{L} maximizes the current extracted from the battery, and how much chemical energy is generated in the battery before it expires?

Solution: The current is maximized when $R_{L}=0$.
The chemical energy generated in the battery is given by

$$
U_{e m f}=\int_{0}^{\Delta t} \varepsilon I d t=\varepsilon I \Delta t
$$

During this time interval, the battery delivers a charge

$$
Q=\int_{0}^{\Delta t} I d t=I \Delta t .
$$

Therefore the chemical energy generated is

$$
U_{e m f}=\varepsilon I \Delta t=\varepsilon I \frac{Q}{I}=\varepsilon Q
$$

This result is independent of the current and only depends on the charge Q that is transferred across the EMF. So for all the following parts, this quantity is the same.

All of this chemical energy is dissipated into thermal energy due to the internal resistance of the battery to the flow of current. When the battery stops delivering current, the battery will reach thermal equilibrium with the surroundings and this thermal energy will flow into the surroundings.
c) What value of R_{L} maximizes the total power delivered to the load, and how much energy is delivered to the load before it expires? How does this compare to the energy generated in the battery before it expires?

Solution: The power delivered to the load is

$$
P_{L}=I^{2} R_{L}=\left(\frac{\varepsilon}{R_{i}+R_{L}}\right)^{2} R_{L} .
$$

We can maximize this by considered the derivative with respect to R_{L} :

$$
\frac{d P_{L}}{d R_{L .}}=\varepsilon^{2}\left(\left(\frac{1}{R_{i}+R_{L .}}\right)^{2}-2 R_{L}\left(\frac{1}{R_{i}+R_{L}}\right)^{3}\right)=0 .
$$

Solve this equation for R_{l} :

$$
\begin{gathered}
\left(\frac{1}{R_{i}+R_{L}}\right)^{2}=2 R_{L}\left(\frac{1}{R_{i}+R_{L}}\right)^{3}, \\
R_{i}+R_{L L}=2 R_{L} \\
R_{L .}=R_{i}
\end{gathered}
$$

The current is then

$$
I=\frac{\varepsilon}{R_{i}+R_{L}}=\frac{\varepsilon}{2 R_{i}} .
$$

The power delivered to the load is

$$
P_{L, \text { max }}=I^{2} R_{L}=\left(\frac{\varepsilon}{2 R_{i}}\right)^{2} R_{i}=\frac{1}{4} \frac{\varepsilon^{2}}{R_{i}}
$$

The energy delivered to the load is then

$$
U_{L}=I R_{L} Q=\frac{\varepsilon}{2 R_{i}} R_{i} Q=\frac{\varepsilon Q}{2}=\frac{1}{2} U_{\text {chem }} \text {. }
$$

So exactly half the chemical energy is delivered to the load.
d) What value for the resistance in the load R_{L} would you need if you want to deliver 90% of the chemical energy generated in the battery to the load? What current should flow? How does the power delivered to the load now compare to the maximum power output you found in part c)?

Solution: Even though we maximized the power delivered to the load in part cc), we are wasting one half the chemical energy. Suppose you want to waste only 10% of the chemical energy. What current should flow?

$$
U_{L}=0.9 U_{\text {chem }}=0.9 \varepsilon Q=I^{\prime} R_{L} Q .
$$

This implies that

$$
I^{\prime} R_{L .}=\frac{\varepsilon}{R_{i}+R_{L}} R_{L}=0.9 \varepsilon .
$$

This is satisfied when

$$
R_{L}=9 R_{i} .
$$

So the current is

$$
I^{\prime}=\frac{\varepsilon}{10 R_{i}} .
$$

The power output is then

$$
P_{L}=I^{\prime 2} R_{L}=\left(\frac{\varepsilon}{10 R_{i}}\right)^{2} 9 R_{i}=\frac{9}{25}\left(\frac{1}{4} \frac{\varepsilon^{2}}{R_{i}}\right)=\frac{9}{25} P_{L, \text { max }} .
$$

So we waste 10% of the energy and still maintain 36% of the maximum power output.
Problem 6: Battery Life
AAA, AA, ... D batteries have an open circuit voltage (EMF) of 1.5 V . The difference between different sizes is in their lifetime (total energy storage). A AAA battery has a life of about $0.5 \mathrm{~A}-\mathrm{hr}$ while a D battery has a life of about 10 A -hr. Of course these
numbers depend on how quickly you discharge them and on the manufacturer, but these numbers are roughly correct. One important difference between batteries is their internal resistance - alkaline (now the standard) D cells are about 0.1Ω.

Suppose that you have a multi-speed winch that is 50% efficient (50% of energy used does useful work) run off a D cell, and that you are trying to lift a mass of 60 kg (hmmm , I wonder what mass that would be). The winch acts as load with a variable resistance R_{L} that is speed dependent.
a) Suppose the winch is set to super-slow speed. Then the load (winch motor) resistance is much greater than the battery's internal resistance and you can assume that there is no loss of energy to internal resistance. How high can the winch lift the mass before discharging the battery?

This is just a question of energy. The battery has an energy storage of $(1.5 \mathrm{~V})(10 \mathrm{~A}-\mathrm{hr})=$ 15 W -hr or 54 kJ . So it can lift the mass:

$$
U=m g h \Rightarrow \quad h=\frac{U}{m g}=\frac{54 \mathrm{~kJ} \cdot \frac{1}{2}}{(60 \mathrm{~kg})(9.8 \mathrm{~m} / \mathrm{s})}=46 \mathrm{~m}
$$

The factor of a half is there because the winch is only 50% efficient.
b) To what resistance R_{L} should the winch be set in order to have the battery lift the mass at the fastest rate? What is this fastest rate $(\mathrm{m} / \mathrm{sec})$? HINT: You want to maximize the power delivery to the winch (power dissipated by R_{L}).

First we need to determine how to maximize power delivery. If a battery V is connected to two resistances, r_{i} (the internal resistance) and R, the load resistance, the power dissipated in the load is:

$$
P=I^{2} R=\left(\frac{V_{0}}{R+r_{i}}\right)^{2} R=V_{0}^{2} \frac{R}{\left(R+r_{i}\right)^{2}}
$$

We want to maximize this by varying R :
$\frac{d P}{d R}=\frac{d}{d R}\left(V_{0}^{2} R\left(R+r_{i}\right)^{-2}\right)=V_{0}^{2}\left[\left(R+r_{i}\right)^{-2}-2 R\left(R+r_{i}\right)^{-3}\right]=0$
Multiply both sides by $V_{0}^{-2}\left(R+r_{i}\right)^{3}:\left[\left(R+r_{i}\right)-2 R\right]=r_{i}-R=0 \quad \Rightarrow \quad R=r_{i}$
So, to get the fastest rate of lift (most power dissipation in the winch) we need the winch resistance to equal the battery internal resistance, $R_{L}=r_{i}=0.1 \Omega$.

Using this we can get the lift rate from the power:

$$
P=I^{2} R_{L}=\left(\frac{V_{0}}{R_{L}+r_{i}}\right)^{2} R_{L}=\frac{V_{0}^{2}}{4 r_{i}}=\stackrel{50 \% e f f ~}{2}_{d t}^{d t}(\mathrm{mgh}) \Rightarrow v=\frac{d h}{d t}=\frac{V_{0}^{2}}{8 r_{i} m g}
$$

Thus we find a list rate of $v=4.8 \mathrm{~mm} / \mathrm{s}$
c) At this fastest lift rate how high can the winch lift the mass before discharging the battery?

This is just part a over again, except now we waste half the energy in the internal resistor, so the winch will only rise half as high, to 23 m
d) Compare the cost of powering a desk light with D cells as opposed to plugging it into the wall. Does it make sense to use rechargeable batteries? Residential electricity costs about $\$ 0.1 / \mathrm{kwh}$.

A D cell has a battery life of $10 \mathrm{~A}-\mathrm{hr}$, meaning a total energy storage of $(1.5 \mathrm{~V})(10 \mathrm{~A}-\mathrm{hr})$ $=15$ Watt-hrs. We could convert that to about 50 kJ but Watt-hours are a useful unit to use because electricity is typically charged by the kW -hour so this will make comparison easier. A D battery costs about $\$ 1$ (you can pay more, but why?) So D batteries cost about $\$ 1 / 0.015$ kwh or $\$ 70 / \mathrm{kwh}$.
Residential electricity costs about $\$ 0.1 / \mathrm{kwh}$. So the battery is nearly three orders of magnitude more expensive. It definitely makes sense to use rechargeable batteries - even though the upfront cost is slightly more expensive you will get it back in a couple recharges. As for your desk light, or anything that can run on batteries or wall power, plug it in. If it is 60 Watts, for every hour you pay only $0.6 ¢$ with wall power but run through $\$ 4$ in D batteries.

Problem 7: Faraday Cage

Consider two nested, spherical conducting shells. The first has inner radius a and outer radius b. The second has inner radius c and outer radius d.

In the following four situations, determine the total charge on each of the faces of the conducting spheres (inner and outer for each), as well as the electric field and potential everywhere in space (as a function of distance r from the center of the spherical shells). In all cases the shells begin uncharged, and a charge is then instantly introduced somewhere.
(a) Both shells are floating - that is, their net charge will remain fixed. A positive charge +Q is introduced into the center of the inner spherical shell. Take the zero of potential to be at infinity.

There is no electric field inside a conductor. Also, the net charge on an isolated conductor is zero (i.e. $Q_{a}+Q_{b}=Q_{c}+Q_{d}=0$).
$Q_{a}=-Q, Q_{b}=-Q_{a}=Q, Q_{c}=-Q, Q_{d}=-Q_{c}=Q$
Using the Gauss's law,

$$
\vec{E}(r)=\left\{\begin{array}{l}
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, r>d \\
0, c<r<d \\
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, b<r<c \\
0, a<r<b \\
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, r<a
\end{array}\right.
$$

Since $V(r)=-\int_{\infty}^{r} E(r) d r$,

$$
V(r)=\left\{\begin{array}{l}
\frac{Q}{4 \pi \varepsilon_{0} r}, r>d \\
\frac{Q}{4 \pi \varepsilon_{0} d}, c<r<d \\
\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{c}+\frac{1}{d}\right), b<r<c \\
\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{c}+\frac{1}{d}\right), a<r<b \\
\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{a}+\frac{1}{b}-\frac{1}{c}+\frac{1}{d}\right), r<a
\end{array}\right.
$$

(b) The inner shell is floating but the outer shell is grounded - that is, it is fixed at $\mathrm{V}=0$ and has whatever charge is necessary on it to maintain this potential. A negative charge Q is introduced into the center of the inner spherical shell.

Since the outer shell is now grounded, $Q_{d}=0$ to maintain $\vec{E}(r)=0$ outside the outer shell. We have.

$$
Q_{a}=Q, Q_{b}=-Q_{a}=-Q, Q_{c}=Q, Q_{d}=0
$$

$$
\begin{aligned}
& \vec{E}(r)=\left\{\begin{array}{l}
0, r>c \\
-\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, b<r<c \\
0, a<r<b \\
-\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, r<a
\end{array}\right. \\
& V(r)=\left\{\begin{array}{l}
0, r>c \\
-\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{c}\right), b<r<c \\
-\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{c}\right), a<r<b \\
-\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right), r<a
\end{array}\right.
\end{aligned}
$$

(c) The inner shell is grounded but the outer shell is floating. A positive charge +Q is introduced into the center of the inner spherical shell.

Since the inner shell is grounded and $Q_{b}=0$ to maintain $\vec{E}(r)=0$ outside the inner shell. Since there is no electric field on the outer shell, $Q_{c}=Q_{d}=0$.
$Q_{a}=-Q, Q_{b}=Q_{c}=Q_{d}=0$

$$
\begin{aligned}
& \vec{E}(r)=\left\{\begin{array}{l}
0, r>a \\
\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{,}, r<a
\end{array}\right. \\
& V(r)=\left\{\begin{array}{l}
0, r>a \\
\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{a}\right), r<a
\end{array}\right.
\end{aligned}
$$

(d) Finally, the outer shell is grounded and the inner shell is floating. This time the positive charge $+Q$ is introduced into the region in between the two shells. In this case the questions "What is $\mathbf{E}(\mathrm{r}) / \mathrm{V}(\mathrm{r})$?" are not well defined in some regions of space. In the regions where these questions can be answered, answer them. In the regions where they can't be answered, explain why, and give as much information about the potential as possible (is it positive or negative, for example).

The electric field within the cavity is zero. If there is any field line that began and ended on the inner wall, the integral $\left[\int \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}\right.$ over the closed loop that includes the field line would not be zero. This is impossible since the electrostatic field is conservative, and therefore the electric field must be zero inside the cavity. The charge Q between the two conductors pulls minus charges to the near side on the inner conducting shell and repels plus charges to the far side of that shell. However, the net charge on the outer surface of the inner shell $\left(Q_{b}\right)$ must be zero since it was initially uncharged (floating). Since the outer shell is grounded, $Q_{d}=0$ to maintain $\vec{E}(r)=0$ outside the outer shell. Thus,

$$
Q_{a}=Q_{b}=Q_{d}=0, Q_{c}=-Q \text { and } \vec{E}(r)=0, r<b \text { or } r>c
$$

For $b<r<c, \vec{E}(r)$ is in fact well defined but it is very complicated. The filed lines are shown in the figure below.

What can we say about the electric potential? $V(r)=0$ for $r>c$, and $V(r)=$ constant for $r<a$ but the potential is very complicated defined between the two shells.

Problem 8: Capacitance, Work and Energy

Two flat, square metal plates have sides of length L, and thickness $s / 2$, are arranged parallel to each other with a separation of s, where $s \ll L$ so you may ignore fringing fields. A charge Q is moved from the upper plate to the lower plate. Now a force is applied to a third uncharged conducting plate of the same thickness $s / 2$ so that it lies between the other two plates to a depth x, maintaining the same spacing $s / 4$ between its surface and the surfaces of the other two. You may neglect edge effects.

Perspective view
a) Using the fact that the metals are equipotential surfaces, what are the surface charge densities σ_{L} on the lower plate adjacent to the wide gap and σ_{R} on the lower plate adjacent to the narrow gap?
b) What is the electric field in the wide and narrow gaps? Express your answer in terms of L, x, and s.
c) What is the potential difference between the lower plate and the upper plate?
d) What is the capacitance of this system?
e) How much energy is stored in the electric field?

a) $\Delta V_{L}=\Delta V_{R}$ since upper and lower plates are held at same potential difference

$$
\begin{gathered}
\Delta V_{L}=E_{L} s=\frac{\sigma_{L}}{\varepsilon_{0}} s \\
\Delta V_{R}=E_{R} \frac{s}{4}+E_{R} \frac{s}{4}=E_{R} \frac{s}{2}=\frac{\sigma_{R}}{\varepsilon_{0}} \frac{s}{2} \\
\Delta V_{L}=\Delta V_{R} \Rightarrow \frac{\sigma_{L} s}{\varepsilon_{0}}=\frac{\sigma_{R}}{2} \frac{s}{\varepsilon_{R}} \Rightarrow \sigma_{L}=\frac{\sigma_{R}}{2} \\
G^{T}=\sigma_{L}(L-x) L+\sigma_{R} x L=\frac{\sigma_{R}}{2}(L-x) L+\sigma_{R} x L \\
G^{T}=\frac{\sigma_{R} L^{2}}{2}+\sigma_{R} \frac{x L}{2}=\frac{\sigma_{R}}{2} \frac{(L+x)}{2} \\
\sigma_{R}=\frac{G^{T}}{2}(L+x)
\end{gathered}
$$

b) $\quad E_{L}=\frac{\sigma_{L}}{\varepsilon_{0}}=\frac{G^{\top}}{\varepsilon_{c} L(L+x)} \quad E_{R}=\frac{2 G^{7}}{(L)(L+x) \varepsilon_{0}}$
c) $\Delta V=E_{L} S=\frac{Q^{\top}}{\varepsilon_{0} L(L+x)} S$
$d)=\quad C=\frac{Q^{\top}}{\Delta V}=\frac{Q^{\top}}{\frac{G_{0}^{T}}{\varepsilon_{0}(\angle(\angle+x)}}=\frac{\left.\varepsilon_{0}(\angle) / \angle+x\right)}{S}$
e) $U=\frac{\left(G^{T}\right)^{2}}{2 C}=\frac{1}{2} \frac{\left(G^{T}\right)^{2}}{\varepsilon_{0} L(L+x)}$ s

Topic: RC Circuits
Related Reading: Course Notes: Sections $7.5-7.6$
Experiments:
(4) RC Circuits

Topic Introduction

Today we will investigate the behavior of DC circuits containing resistors and capacitors (RC circuits). We will then measure voltage, current and across various RC circuit elements and the time constant for an RC circuit in experiment 4.

RC Circuits

A simple RC circuit is shown at right. When the switch is closed, current will flow in the circuit, but as time goes on this current will decrease. We can write down the differential equation for current flow by writing down Kirchhoff's loop rules, recalling that $|\Delta V|=Q / C$ for a capacitor and that the charge Q on the capacitor is related to current flowing in the circuit by $I= \pm d Q / d t$, where the sign depends on whether the current is flowing into the positively
 charged plate $(+)$ or the negatively charged plate $(-)$. The solution to this differential equation shows that the current decreases exponentially from its initial value while the potential on the capacitor grows exponentially to its final value. The rate at which this change happens is dictated by the "time constant" τ, which for this circuit is given by $\tau=R C$.

Interestingly, in RC circuits any value that you could ask about (current, potential drop across the resistor, across the capacitor, ...) "decays" exponentially (either down or up). You should be able to determine which of the two plots at right will follow just by thinking about it.

Measuring Voltage and Current Circuits

In the first experiment you relied on the battery voltage and an internal current sensor to tell you the voltage and current in the circuit. In this lab we will want to record the voltage not only across the battery but also, separately, across the capacitor. We also will have some parallel branches which we want to measure current through. In order to make these measurements you will need to use a voltmeter and ammeter. Details of the use may be found in the experimental write-up, but more generally, when thinking about current and voltage there is an important difference you should keep in mind. Current is a value associated with the flow of charges THRU some surface (some point in the wire). Voltage measurements, on the other hand, are only meaningful as differences, and hence are measured ACROSS a circuit element or BETWEEN two points in a circuit.

Experiment 4: RC Circuits

Preparation: Read pre-lab and answer pre-lab questions
This extended lab will introduce you to the techniques of measuring current and voltage in a circuit and then allow you to observe the exponential behavior of RC circuits as they are "charged" and "discharged" using a battery which periodically turns on and off. You will measure the time constant of several circuits and investigate how it changes as resistance, or capacitance are modified.

Important Equations

Exponential Decay:

$$
\text { Value }=\text { Value }_{\text {initial }} e^{-t / \tau}
$$

Exponential "Decay" Upwards:
Value $=$ Value $_{\text {final }}\left(1-e^{-t / \tau}\right)$
Simple RC Time Constant:
$\tau=R C ;$

Class 15: Outline

Hour 1:
RC Circuits

Hour 2:
Expt 4: RC Circuits

Exponential Decay

Consider function A where: $\quad \frac{d A}{d t}=-\frac{1}{\tau} A$
A decays exponentiaily:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(Dis)Charging a Capacitor

1. When the direction of current flow is toward the positive plate of a capacitor, then

2. When the direction of current flow is away from the positive plate of a capacitor, then

$$
I=-\frac{d Q}{d t}
$$

Adritary assign dir -if choose wrong q will be Θ -bat relationship is fixed

What happens when we close switch S?

differential

ed

RC Circuit

$$
\frac{d Q}{d t}=-\frac{1}{R C}(Q-C \varepsilon)
$$

Solution to this equation when switch is closed at $t=0$:

-hes da divitre

\qquad
function $\frac{d A}{d t}$

Solve Diferential Equation for Charging RC Circuits

natant

\qquad

PRS: RC Circuit
An uncharged capacitor is connected to a battery, resistor and switch. The switch is initially open but at $t=0$ it is closed. A very long time after the switch is closed, the current in the circuit is

0%

1. Nearly zero
o\% 2. At a maximum and decreasing
o\% 3. Nearly constant but non-zero
o\% 4. I don't know

PRS: RC Circuit

Consider the circuit at right, with an initially uncharged capacitor and two identical resistors. At the instant the switch is closed:

$$
0 \% \quad \text { 1. } I_{R}=I_{C}=0
$$

at instant switch closes C is lime

$$
0 \% \quad \text { 2. } I_{R}=\varepsilon / 2 R ; \quad I_{C}=0
$$

$$
0 \% \text { 3. } I_{R}=0 ; \quad I_{C}=\varepsilon / R
$$

I_{L} estill have resister on top

$$
0 \%-4 . I_{R}=\varepsilon / 2 R ; \quad I_{C}=\varepsilon / R
$$

0\% 5. I don't know
$\frac{\varepsilon=I R}{\bar{R} \bar{R}}=\frac{6}{R}=I$
can not solve spicily lite that

Charging A Capacitor

$$
Q=C \varepsilon\left(1-e^{-\pi R C}\right)
$$

$$
I=\frac{d Q}{d t}=\frac{\varepsilon}{R} e^{-t / R C}
$$

What is current doing?

Discharging A Capacitor

tale out battery

\qquad
\qquad
\qquad
\qquad
What happens when we close switch S?
\qquad

Discharging A Capacitor

\qquad
\qquad

$$
\sum_{i} \Delta V_{i}=\frac{q}{C}-I R=0 \sum_{i} \Delta V_{i}=\frac{q}{C}+\frac{d q}{d t} R=0
$$

$$
{ }^{1} \text { I cucun'tiepresent in terms }
$$

RC Circuit: Discharging

$$
\frac{d Q}{d t}=-\frac{1}{R C} Q
$$

Solution to this equation when switch is closed at $\mathrm{t}=0$:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Group Problem: Circuits

\qquad

\qquad
\qquad
\qquad

For the above circuit sketch the currents
\qquad through the two bottom branches as a function of time (switch closes at $t=0$, opens at $t=T$. State values at $t=0^{+}, T, T^{+}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PRS: Current Thru Capacitor

In the circuit at right the switch is closed at $t=0$. At $t=\infty$ (long after) the current through the capacitor will be:

1. $I_{C}=0$
2. $I_{C}=\varepsilon / R$
3. $I_{C}=\varepsilon / 2 R$
4. I don't know

\qquad
\qquad

PRS: Current Thru Resistor

In the circuit at right the switch is closed at $t=0$. At $t=\infty$ (long after) the current through the lower resistor will be:

1. $I_{R}=0$
2. $I_{R}=\varepsilon / R$
3. $I_{R}=\varepsilon / 2 R$

4. I don't know

PRS: Opening Switch in RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

1. It stays the same

2. Same magnitude, flips direction
3. It is cut in half, same direction
4. It is cut in half, flips direction
5. It doubles, same direction
6. It doubles, flips direction
7. None of the above.

$$
I \text { Before }=\frac{\xi}{2 R}
$$

Experiment 4: RC Circuits

top resistor snipped away
L capicator
*assuring has \wedge (apoctiflaye of ε
lat olways hating) across Resistor

Voltage of capicator always match capicator de resistor

Not the voltage of the battery nessarrily

Measuring Current (THRU)

1. Hook in SERIES: current must go thru to measure
2. "Positive" if runs from Red to Black
3. Note: Not ideal -1Ω resistance. Does it matter?

4. Hook in PARALLEL: reads $V_{\text {Red }}-V_{\text {Black }}$
5. Note: Not ideal - $1 \mathrm{M} \Omega$ resistance. Does it matter?

Expt. 4, Part I: RC Circuits

- Download and run Lab 4
- Build an RC circuit:
- Measure current thru and voltage across capacitor
- As battery 'turns on
 and off,' what happens to the capacitor? WHY?

PRS: Voltage/Current in RC

Starting from a point in time where the voltage across the battery $\left(V_{B}\right)$ \& across the capacitor \qquad $\left(\mathrm{V}_{\mathrm{C}}\right)$ as well as the current (I) are all zero, what happens when the battery is 'turned on'? \qquad
I jumps up then decays as V_{C} rises \qquad
2. V_{C} jumps up then decays as I rises
3. I \& V_{C} both jump up then decay
4. I \& V_{c} both gradually rise
5. I don't know \qquad
\qquad
Current can jump
Class 15

Expt. 4, part II: RC Circuits

- Same RC circuit
- Determine the resistance
- Measure the time constant to determine the capacitance
- You have a $2^{\text {nd }}$ identical
 resistor. Where do you put it to make the TC as SHORT as possible?

RC Circuit

$t=0^{+}$: Capacitor is uncharged so resistor sees full
battery potential and current is largest
$t=\infty$: Capacitor is "full." No current flows

 Value $(t)=$ Value $_{0} e^{-t i t}$

Measuring Time Constant
How do you measure τ ?

1) a) Pick a point
b) Find point with "value" down by e
c) Time difference is τ
2) Plot semi-log and fit curve (make sure you exclude data at both

Read instructions about cursors. Right click to fit

In Class Problem

add resp

$$
\begin{aligned}
& \varepsilon-\frac{Q}{C}-\frac{d Q}{d t} R+\frac{Q}{C}-\frac{d Q}{d t} R=0 \\
& 6-2 \frac{d a}{d t} R=0 \\
& \frac{-6}{-\frac{d}{d R}}=-\frac{2 \frac{d G}{d t} R}{-2 R} \\
& \frac{d Q}{d t}=\frac{6}{2 \bar{A}} \quad t \text { is what I found } \\
& \text { for copicator bottom after } \\
& \uparrow \\
& \text { long time }
\end{aligned}
$$

should be - did not triad of time dopendiace a a and C
protice in $O H$ some time

Slatch

- See webiste -missed
capicator anl fills up \rightarrow curent drop
Why current thragh resisistor
- belc can't go through capicator

Voltage accoss resistor

- Capicator making that

Current flowing

curreat can be discontineors
$\theta=$ opposite dir

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Physics
8.02

Experiment 4: RC Circuits

OBJECTIVES

1. To explore the time dependent behavior of RC Circuits
2. To understand how to measure the time constant of such circuits

PRE-LAB READING

INTRODUCTION

In this lab we will continue our investigation of DC circuits, now including, along with our "battery" and resistors, capacitors (RC circuits). We will measure the relationship between current and voltage in a capacitor, and study the time dependent behavior of RC circuits.

The Details: Capacitors

Capacitors store charge, and develop a voltage drop V across them proportional to the amount of charge Q that they have stored: $V=Q / C$. The constant of proportionality C is the capacitance (in Farads = Coulombs/Volt), and determines how easily the capacitor can store charge. Typical circuit capacitors range from picofarads ($1 \mathrm{pF}=10^{-12} \mathrm{~F}$) to millifarads $\left(1 \mathrm{mF}=10^{-3} \mathrm{~F}\right)$. In this lab we will use microfarad capacitors $\left(1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}\right)$.

RC Circuits

Consider the circuit shown in Figure 1. The capacitor (initially uncharged) is connected to a voltage source of constant emf \mathcal{E}. At $t=0$, the switch S is closed.

Figure 1 (a) $R C$ circuit (b) Circuit diagram for $t>0$
In class we derived expressions for the time-dependent charge on, voltage across, and current through the capacitor, but even without solving differential equations a little
thought should allow us to get a good idea of what happens. Initially the capacitor is uncharged and hence has no voltage drop across it (it acts like a wire or "short circuit"). This means that the full voltage rise of the battery is dropped across the resistor, and hence current must be flowing in the circuit $\left(V_{R}=I R\right)$. As time goes on, this current will "charge up" the capacitor - the charge on it and the voltage drop across it will increase, and hence the voltage drop across the resistor and the current in the circuit will decrease. This idea is captured in the graphs of Fig. 2.

Figure 2 (a) Voltage across and charge on the capacitor increase as a function of time while (b) the voltage across the resistor and hence current in the circuit decrease.

After the capacitor is "fully charged," with its voltage essentially equal to the voltage of the battery, the capacitor acts like a break in the wire or "open circuit," and the current is essentially zero. Now we "shut off" the battery (replace it with a wire). The capacitor will then release its charge, driving current through the circuit. In this case, the voltage across the capacitor and across the resistor are equal, and hence charge, voltage and current all do the same thing, decreasing with time. As you saw in class, this decay is exponential, characterized by a time constant t , as pictured in fig. 3 .

Figure 3 Once (a) the battery is "turned off," the voltages across the capacitor and resistor, and hence the charge on the capacitor and current in the circuit all (b) decay exponentially. The time constant τ is how long it takes for a value to drop by e(~ 2.7).

The Details: Measuring the Time Constant τ

In this lab you will be faced with an exponentially decaying current $I=I_{0} \exp (-t / \tau)$ from which you will want to extract the time constant τ. We will do this in two different ways, using the "two-point method" or the "logarithmic method," depicted in Fig. 7.

Figure 7 The (a) two-point and (b) logarithmic methods for measuring time constants
In the two-point method (Fig. 7a) we choose two points on the curve $\left(\mathrm{t}_{1}, \mathrm{I}_{1}\right)$ and $\left(\mathrm{t}_{2}, \mathrm{I}_{2}\right)$. Because the current obeys an exponential decay, $I=I_{0} \exp (-t / \tau)$, we can extract the time constant τ most easily by picking I_{2} such that $\mathrm{I}_{2}=\mathrm{I}_{1} / \mathrm{e}$. We should, in theory, be able to find this for any t_{1}, as long as we don't switch the battery off (or on) before enough time has passed. In practice the current will eventually get low enough that we won't be able to accurately measure it. Having made this selection, $\tau=t_{2}-t_{1}$.

In the logarithmic method (Fig. 7b) we fit a line to the natural log of the current plotted vs time and obtain the slope m, which will give us the time constant as follows:

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }}=\frac{\ln \left(I\left(t_{2}\right)\right)-\ln \left(I\left(t_{1}\right)\right)}{t_{2}-t_{1}}=\frac{1}{t_{2}-t_{1}} \ln \left(\frac{I\left(t_{2}\right)}{I\left(t_{1}\right)}\right) \\
& =\frac{1}{t_{2}-t_{1}} \ln \left(\frac{I_{0} e^{-t_{2} / \tau}}{I_{0} e^{-t_{1} / \tau}}\right)=\frac{1}{t_{2}-t_{1}} \ln \left(e^{-\left(t_{2}-t_{1}\right) / \tau}\right)=\frac{1}{t_{2}-t_{1}}\left(\frac{-\left(t_{2}-t_{1}\right)}{\tau}\right)=-\frac{1}{\tau}
\end{aligned}
$$

That is, from the slope (which the software can calculate for you) you can obtain the time constant: $\tau=-1 / m$.

In using both of these methods you must take care to use points well into the decay (i.e. not on the flat part before the decay begins) and try to avoid times where the current has fallen close to zero, which are typically dominated by noise.

APPARATUS

1. Science Workshop 750 Interface

In this lab we will again use the 750 interface to create a "variable battery" which we can turn on and off, whose voltage we can change and whose current we can measure.

2. AC/DC Electronics Lab Circuit Board

We will also again use the circuit board of Fig. 8. This time we will use the inductor (E) as well as the connector pads (F) for resistors and capacitors, and the banana plug receptacles in the right-most pads to connect to the output of the 750 .

Figure 8 The AC/DC Electronics Lab Circuit Board, with (A) Battery holders, (B) light bulbs, (C) push button switch, (D) potentiometer, (E) inductor and (F) connector pads

3. Current \& Voltage Sensors

Recall that both current and voltage sensors follow the convention that red is "positive" and black "negative." That is, the current sensor records currents flowing in the red lead and out the black as positive. The voltage sensor measures the potential at the red lead minus that at the black lead.

Figure 9 (a) Current and (b) Voltage Sensors

4. Resistors \& Capacitors

We will work with resistors and capacitors in this lab. While resistors (Fig. 10a) have color bands that indicate their value, capacitors (Fig. 10b) are typically stamped with a numerical value.

Figure 10 Examples of a (a) resistor and (b) capacitor. Aside from their size, most resistors look the same, with 4 or 5 colored bands indicating the resistance. Capacitors on the other hand come in a wide variety of packages and are typically stamped both with their capacitance and with a maximum working voltage.

GENERALIZED PROCEDURE

This lab consists of two main parts. In each you will set up a circuit and measure voltage and current while the battery periodically turns on and off.

Part 1: Measuring Voltage and Current in an $R C$ Circuit
In this part you will create a series RC (resistor/capacitor) circuit with the battery turning on and off so that the capacitor charges then discharges. You will measure the time constant using both methods described above and use this measurement to determine the capacitance of the capacitor.

Part 2: Measuring Voltage and Current in an $R C$ Circuit

In this part you will add a second resistor in parallel with the capacitor to confirm your understanding of the in class problem worked before this part of the lab.

END OF PRE-LAB READING

IN-LAB ACTIVITIES
EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop (right click on the link and choose "Save Target As" to the desktop. Overwrite any file by this name that is already there). Start LabView by double clicking on this file.
2. Connect the Voltage Sensor to Analog Channel A on the 750 Interface. We will obtain the current directly from the "battery" reading.
3. Connect cables from the output of the 750 to the banana plug receptacles on the lower right side of the circuit board (red to the sin wave marked output, black to ground).

MEASUREMENTS

Part 1: Measuring Voltage and Current in an $R C$ Circuit

1. Quickly measure the resistance of the resistors (how can you do that?)
2. Create a circuit with the first resistor and the capacitor in series with the battery
3. Connect the voltage sensor (channel A) across the capacitor
4. Record the voltage across the capacitor V and the current sourced by the battery I (Press the green "Go" button above the graph). During this time the battery will switch between putting out 1 Volt and 0 Volts.

Question 1:

What is the resistance of the resistor? Using the two-point method, what is the time constant of this circuit? Using this time constant and the typical expression for an RC time constant, what is the capacitance of the capacitor?

$$
V=I R \quad R=\frac{V}{I} \quad \frac{197 \mathrm{~V}}{198 \mathrm{~mA}} \quad \frac{197}{198}=4,89 \Omega \mathrm{dhms}
$$

Question 2:
 $I_{2}=I_{1} / e$
$y=t_{2}-t_{1}$

$$
I=\frac{d Q}{d t}=
$$

Using the logarithmic method, what is the time constant of this circuit? Using this time constant, what is the capacitance of the capacitor?

* car use either voltage or current to find the contfond

Part 2: Measuring Voltage and Current in a parallel $R C$ Circuit

1. Add the second resistor in parallel with the capacitor
2. Record the voltage across the capacitor V and the current sourced by the battery I (Press the green "Go" button above the graph). During this time the battery will switch between putting out 1 Volt and 0 Volts.

Question 3:

Using one of the two methods used above, what is the time constant of this new circuit? Is there any difference between this circuit (where the battery "turns off") and the one you solved analytically in class (where a switch opens next to the battery)? If so, what? If not, why not?

18.6 mA

No, tee

Further Questions (for experiment, thought, future exam questions...)

- What happens if we instead put the second resistor in series with the capacitor?
- What if we change the order of the elements in the circuit (e.g. put the capacitor between the two resistors, or switch the leads from the battery)?
- wi capicatior time is involved
- simple is RC
- complex need differenticel capicator
- takes time for charge to build
- current can jump (d'iscontinous)
- Voltage constant

$$
\begin{aligned}
& O=G-\frac{Q}{C}-I_{1 R} \\
& O=\frac{Q}{C}-I_{2} R
\end{aligned}
$$

I_{1}, I_{2}, Q unhnowns

$$
I=\frac{d Q}{d t}
$$

cold to eittel need 3rd eq

$$
\begin{aligned}
& \frac{d Q}{d t}=I_{1}-I_{2} \\
& G-\frac{Q}{C}-I_{1} R=\frac{Q}{C}-I_{2} R \\
& +Q_{C}+I_{2} R+I_{2} R \\
& G-I_{1} R+I_{2} R=2 \frac{Q}{C} \\
& \left(Q-R\left(I_{1}-I_{2}\right)=2 \frac{Q}{C}\right. \\
& \underline{G}-R \frac{d Q}{d t}=2 \frac{Q}{C}
\end{aligned}
$$

Solve $\frac{d \theta^{2}}{d t}$

$$
\begin{aligned}
& \frac{2 \frac{Q}{C}-G}{-R}=\frac{d Q}{d t} \\
& \frac{-2 \frac{Q}{C}+\varepsilon}{R}=\frac{-2 \frac{Q}{C}}{R}+\frac{\varepsilon}{R}=\frac{d Q}{d r} \\
& -2 \frac{Q}{C} \cdot \frac{R 1}{R}+\frac{6}{R} \\
& -\frac{2 Q}{R C}+\frac{\varepsilon}{R}=\frac{d Q}{2 t} \\
& \text { is differential } \\
& \text { eq } \\
& \begin{array}{l}
\frac{R C}{2}=Y=\frac{1}{\text { coefficient of } Q} \longleftarrow\left\{\begin{array}{l}
\text { only thing } \\
\text { that charges } \\
\text { How does } Q \text { change } w / \text { time }
\end{array}\right.
\end{array}
\end{aligned}
$$

Solution

- exponential decay -look up
Looking Q function of time $=Q(t) \quad Q-Q$ final

$$
Q(t)=\underbrace{a_{\text {final }}\left(1-e^{-t / y}\right)}_{\text {voríuble }}+\frac{R C}{2}
$$

$Q_{\text {find il }}=J$

$$
\begin{aligned}
& \begin{array}{l}
\frac{-2}{R C}\left(Q+\frac{\left.\frac{6 C}{-2}\right)}{\frac{\sigma^{T}}{R} C \text { constant }}\right. \\
\frac{6}{R}=\frac{-2}{R C} \cdot \frac{6 C}{-2}
\end{array} \\
& Q_{\text {final }}=\text { Hheffich }_{-\frac{6 c}{-2}=\frac{6 c}{2}}^{2} \\
& Q(t)=\frac{6 c}{2}\left(l-e^{-t / \frac{c c}{2}}\right)
\end{aligned}
$$

-more complex than exam - haw it mars
$T \neq$ always $R C$

- Something like

$$
\begin{aligned}
& \text { Qetimat }=\text { max } \\
& \text { charge on capacitor } \\
& V C=\underline{\text { when it was }}
\end{aligned}
$$

- wald be Quintal if discharging

$$
V=\varepsilon
$$

So

Tween it mas charity 2 Resistors So $Q_{\text {final }}=\frac{k c}{2}=\frac{6 c}{2}$

E field

- guasian surface -inside live

$$
E A=\underbrace{q_{\text {total }}}_{\varepsilon_{0}}
$$

- E field inside conductor O

$$
-q t_{\text {tod }}=0
$$

- have - charges on rimefar smaller sum to $1 q$ - but also et in middle
take away
$\theta \in$ hook u_{p}
don't think discreetly qtetal still O - Jam-smoothy

(t) In eutside is $+q$
+ Qoutsian $-q_{\text {insibe }}=$ still O charge conservation
Guass' law + charge conservation
$7 d$

$E(r)$ and $V(r)$ not divided!
$E(1)$
dexp

nothing on inreer sufface
sheilding $=$ no lines of communicution
(O). $\vec{E}=O$ outside grounded blell
(0) ${ }^{2} E=O$ condector
(O.) -no symmatry ho Guass law Efield a mess, non uniform, can't cale simply
(Q) condutar $E=0$
(0) Sheilding ${ }^{E=}$
$V(0)$
- last teot

$$
V(\infty)=0
$$

(0.) it all o -ns E field $=n a \Delta V$
(0.) if we can't calc E Field con't calc $A V$
Oip 0
can't walk to in a way we know $=$ Vacalcable
(ô) un calcable

OHm's Law Pcoblem 3

a.) $\vec{E}=$? have potentical

$$
\begin{aligned}
V & =-S E d s \\
-\frac{d V}{d s} & =E \quad(1 \text { dimension }) \\
E & =-\overrightarrow{\nabla V} \quad(\text { multi }) \\
\frac{\Delta V}{A s} & =\frac{V}{L} \uparrow=\vec{E}
\end{aligned}
$$

b) Cesistance $=\alpha=$ soomticy und materical ρ (resistivity)

$$
R=\frac{L P}{\pi\left(\frac{d}{2}\right)^{2}}
$$

C) Current $=I=\frac{V}{R}$

$$
\text { current }=\frac{d Q}{d t}=I
$$

$$
p=I V
$$

$$
\frac{V}{\frac{L P}{\pi\left(\frac{\alpha}{2}\right)^{2}}}
$$

$$
\frac{V}{l} \cdot \frac{\pi\left(\frac{d}{2}\right)^{2}}{L p}=\frac{V \pi\left(\frac{d}{2}\right)^{2}}{L p}=I
$$

d)

$$
\begin{aligned}
& \text { Current density }=\vec{J}-\frac{T}{A} \quad \text { current density }= \\
& \vec{J}=\frac{V \pi\left(\frac{d}{2}\right)^{2}}{L \rho} \\
& \frac{L \rho}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{V \Delta\left(\frac{d}{2}\right)^{2}}{L \rho} \cdot \frac{1}{I\left(\frac{d}{2}\right)^{2}}=1 \frac{V}{L \rho} \\
& \vec{J}=\frac{V}{L \rho} \hat{I} \text { don't forget din }
\end{aligned}
$$

e) Shaw $\vec{E}=p \vec{J}$

0

$$
\rho \frac{V}{L \rho} \uparrow=\frac{V}{L} \uparrow=\frac{V}{L} \uparrow
$$

Math Reverwe
Differeatids
Why - Dynamies
what \rightarrow equations that involu derivitives example \rightarrow time voring circuits, capicator

$$
\begin{aligned}
\ln \underline{8: 01} \rightarrow & \sum_{a=m a} F=m=\frac{d v}{d t}=\frac{\partial^{2} x}{d t^{2}} \\
& F(x, v, t \text { constents })
\end{aligned}
$$

Solve for $x(t)$ or $v(t)$
8.02

$$
\sum V=0
$$

l'rooft's 2nd law

$$
V(t), I(t), Q(t)
$$

Materep
-ordinery $=$ only inveles 1 dervitive
-portial $=$ many kinds of decrutives

$$
\begin{aligned}
& m \frac{d v}{d t}=g-b v \quad \text { ordinary } \quad \frac{d v}{d t} \\
& \frac{\partial^{2} y}{\partial t^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial x^{2}} \quad \text { portal } \frac{\partial}{\partial t} \frac{\partial}{\partial x} \text { tnot in } 8.02
\end{aligned}
$$

(2)

Linear - each term has the object of interest to the Ot of lost power
Non-linear - everything else

$$
\begin{array}{ll}
m \frac{d v}{d t}=-b v \quad \text { linear power of } v & \quad-8.02 \\
m \frac{d v}{d t}=-c v^{2} \quad \text { non linear }
\end{array}
$$

Homogenious-each term contains exactly one power of the object (lIst power only)
Non homogenious - everything else

$$
\begin{aligned}
& \frac{m d v}{d t}=-b v \text { homngeraus } \\
& m \frac{d v}{d t}=g^{2}-b v \text { nonhomogeneous }
\end{aligned}
$$

Order -highest power derivilive in the equation

$$
\begin{aligned}
& m \frac{d v}{d t}=-b v \quad \text { ls order } \\
& m \frac{d^{2} x}{d t^{2}}=-h v \quad \text { end order }
\end{aligned}
$$

(3)
$m \frac{d v}{d t}=-m g \cdot-b v$ velocity of an object falling

w/ drag

Signi, Does it drag the charge up or down?
Magnitude'. Does it get bigger or smaller?

* This is not obvias at first glance **

$$
\begin{aligned}
\frac{d V}{d t}= & -g-\frac{b}{m} V \\
V(t)= & \frac{m g}{b}\left(e^{-\frac{b}{m} t}-1\right) \quad \begin{array}{l}
\text { Verify that is } a_{n} \\
\text { answer }
\end{array} \\
& \frac{m g}{b}\left(-\frac{b}{m} e^{-\frac{b}{m} t}\right)=-g-\frac{b}{m} \cdot \frac{m g}{b}\left(e^{-\frac{b}{m} t}-1\right) \\
& -g e^{-b / m t}=-g-g\left(e^{-\frac{b}{m} t}-1\right) \\
& -g e^{-b / m t}=-g e^{-b / m t}
\end{aligned}
$$

(4)

$$
\frac{d Q}{d t}=\frac{Q}{R C}-\frac{6}{R}
$$

Grandma gives you \$500
5% interest compounded daily
deposit \& 5/day
In 30 years, how much do you have

$$
\begin{aligned}
& \text { In } 30 \text { years, how } \\
& \frac{d \$}{d t}=T_{\text {inters rate }} \$+d_{\text {deposit }}=\frac{\text { change in } \$}{\text { perdoy }} \\
& \$(t)=\$_{0}+\frac{d}{r}\left(e^{r t}-1\right) \\
& \text { iso how do you find this? }
\end{aligned}
$$

These are separable solutions

- can seperde the derisive

$$
\begin{aligned}
& \frac{d x}{d t}=\beta x+\gamma \\
& \frac{d x}{d t}=f(x, t) \rightarrow \delta(x) d x=h(t) d t
\end{aligned}
$$

Tarted to seperdte x on one side superable

$$
\frac{d x}{\beta x+\gamma}=d t
$$ t on other solution

how S integrate

$$
\begin{aligned}
& \int \frac{d x}{\beta x+\gamma}=\int d t \\
& \frac{1}{\beta} \int \frac{\beta d x}{\beta x+i \gamma}
\end{aligned}
$$

$0=\xi x+\gamma, j$ substitution to make it eailser

$$
\begin{aligned}
& \frac{1}{\beta} \int \frac{d v}{v}=\int d t \\
& \frac{1}{\beta} \ln u+C_{1}=A+C_{2} \\
& \frac{1}{\beta} \ln v=A+C_{2}-C_{1} \\
& \frac{1}{\beta} \ln _{-\beta=i n}=t_{\alpha \beta}+(\\
& \ln (\beta x+\gamma)=\beta t+\beta C \quad e^{A+B}=e^{A} e^{B} \\
& \beta x+\gamma=e^{\beta t} \cdot e^{\beta C} \\
& x(t)=\frac{1}{\beta}\left(e^{B C} \cdot e^{\beta t}-\gamma\right) \text { set } A_{0}=e^{\beta C} \\
& x(t)=\frac{A_{0}}{\beta} e^{\beta t}-\frac{\gamma}{\beta} \text { geneal ooltion }
\end{aligned}
$$

this all moves very fast - lie switches
this was the seperability solutions each one hos its own trick to solve ere We did not know the instal position in problems besides the $甘$ (inters rate) This is te initial value problem

$$
\begin{gathered}
x(0)=x_{0}=\frac{A_{0}}{\beta} e^{\beta t}-\frac{\gamma}{\beta} \\
\beta x_{0}=A_{0}-\gamma \\
A_{0}=B x_{0}+\gamma
\end{gathered}
$$

(6) $x(t)=\frac{\beta x_{0}+\gamma}{\beta} e^{\beta t}-\frac{\gamma}{\beta}$
β, γ given in equation $x_{0}=$ initial condition given exact answer

$$
Q(t)=\frac{\left(-\frac{6}{R}\right)}{\left(-\frac{1}{R c}\right)} e^{-t / R c}-\frac{\left(-\frac{6}{R}\right)}{\left(-\frac{1}{R C}\right)}
$$

$$
a(t)=6\left(\left(e^{-t / R c}-1\right)\right.
$$

$$
I(t)=\frac{d Q}{d t}=-\frac{6}{R} e^{-t / R c}
$$

$$
\begin{aligned}
& \zeta=\text { Script } E=\operatorname{em} t \\
& 6_{0} \text {-epsilon }=\text { dielectric } \\
& \text { constant }
\end{aligned}
$$

$Q(t)$

T when $t=R C$ its e^{-1} this is where you loom I what they have defined

Fully charged is like 10. ₹
You, find I pt and ten pore time constant the time in between is the time constant
\qquad

$$
\frac{1}{e}=e^{-1} \approx \frac{1}{3}
$$

Topic: RC Circuits
Related Reading: Course Notes: Sections 7.1-7.6, 7.8-7.9
Experiments: (4) RC Circuits

Topic Introduction

In the last couple of classes you had the chance to hear about and then investigate the behavior of RC circuits. In today's problem solving session you will practice solving analytic and answering short conceptual questions about these circuits.

RC Circuits

A simple RC circuit is shown at right. When the switch is closed, current will flow in the circuit, but as time goes on this current will decrease. We can write down the differential equation for current flow by writing down Kirchhoff's loop rules, recalling that $|\Delta V|=Q / C$ for a capacitor and that the charge Q on the capacitor is related to current flowing in the circuit by $I= \pm d Q / d t$, where the sign depends on whether the current is flowing into the positively
 charged plate $(+)$ or the negatively charged plate $(-)$. The solution to this differential equation shows that the current decreases exponentially from its initial value while the potential on the capacitor grows exponentially to its final value. The rate at which this change happens is dictated by the "time constant" τ, which for this circuit is given by $\tau=R C$.

Interestingly, in RC circuits any value that you could ask about (current, potential drop across the resistor, across the capacitor, ...) "decays" exponentially (either down or up). You should be able to determine which of the two plots at right will follow just by thinking about it.

Important Equations

Exponential Decay:
Exponential "Decay" Upwards:

$$
\begin{aligned}
& {\text { Value }=\text { Value }_{\text {initial }} e^{-t / \tau}}^{\text {Value } \text { Value }_{\text {final }}\left(1-e^{-t / \tau}\right)} \begin{array}{l}
\tau=R C
\end{array} .
\end{aligned}
$$

Simple RC Time Constant:
test - week after break
Con ductors
Capritors (ousss' Law)
Circuits
Magnetic Force (in class next week)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Problem Solving 5: RC Circuits

OBJECTIVES

1. To gain intuition for the behavior of DC circuits with both resistors and capacitors or inductors. In this particular problem solving you will be working with an RC circuit. You should carefully consider what would change if the capacitor were replaced with an inductor.
2. To calculate the time dependent currents in such circuits

REFERENCE: Chapter 7, 8.02 Course Notes.
An RC circuit consists of both resistors and capacitors, and typically a battery to get the current flowing. Capacitors, when uncharged, act like pieces of wire ("shorts") as they have no voltage drop across them. However, once charge has flowed on to them for a while, they "charge up," eventually reaching a potential equal and opposite that trying to charge them and effectively preventing the further flow of current.

This problem solving consists of two parts. In the first you will answer a series of short questions developing your intuition for the behavior of these circuits on short and long time scales. In the second part you will work through a quantitative problem.

Figure 1: RC Circuit An RC circuit consists of two resistors, R_{1} and R_{2}, a capacitor C, a battery ε, and a switch. The switch has been open for a very long time before it is closed at time $t=0$.

Write your answer to this and all following questions on the tear-sheet at the end! What is/are...
Question 1: the current I_{C} (through the capacitor) at $t=0^{+}$(just after switch is closed)?

Question 2: the currents I_{1} and I_{2} (through R_{1} and R_{2} respectively) at $t=0^{+}$?

$$
I_{1}=I_{c}=6-\frac{V}{R_{1}}
$$

$$
I_{2}=0
$$

gees through capicator
Question 3: the current I_{C} (through the capacitor) at $\mathrm{t}=\infty$?

$$
\lim _{t \rightarrow \infty} I_{c}=0
$$

Question 4: the currents I_{1} and I_{2} (through R_{1} and R_{2} respectively) at $\mathrm{t}=\infty$?

$$
I_{1}=I_{c}=0
$$

At intermediate time t assume there is a charge q on the capacitor.

$$
\begin{aligned}
& \text { Question 5: Using Kirchhoff's Loop Rules, obtain a differential equation for the charge } q \\
& \text { on the capacitor, assuming } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R} \text { (in other words, the only current in the equation } \\
& \text { should be the current through the capacitor, which can be rewritten in terms of } \mathrm{d} q / \mathrm{dt} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left(-I_{1} R+I_{2} R=2 Q\right. \\
& \left(-C I_{1} I_{2}=\frac{2 Q}{C}\right. \\
& \varepsilon-\frac{V Q}{d \mid} R=2 Q
\end{aligned}
$$

Question 5: Using Kirchhoff's Loop Rules, obtain a differential equation for the charge q

$$
\frac{2 \theta-6}{-h}
$$

$$
-\frac{2 Q}{R L}+\frac{6}{R}=\frac{d \theta}{d r}
$$

Question 6: What is the time constant for charging the capacitor?

$$
Y=\frac{1}{\operatorname{cotfficent}} \text { of } Q=\frac{R C}{2}
$$

Question 7: Write an equation for the time dependence of the charge on the capacitor

Solving 5-2

$$
\begin{aligned}
& \frac{d Q}{d .}=\frac{1}{\omega}\left(Q-Q_{\text {Elvin }}\right)
\end{aligned}
$$

$V=I R$

$R=\frac{I}{J}$
After a long time T the switch is opened.

What is/are...
Question 8: the current I_{C} (through the capacitor) at $\mathrm{t}=\mathrm{T}^{+}$(just after switch is opened)?

$$
\begin{aligned}
& I_{C}=V C=\frac{V}{k_{2}} \\
& I D
\end{aligned}
$$

Question 9: the currents I_{1} and I_{2} (through R_{1} and R_{2} respectively) at $\mathrm{t}=\mathrm{T}^{+}$?

$$
I_{1}=0 \quad I_{2}=F_{c}=\frac{Q}{c}-R_{2}
$$

Question 10: Using Kirchhoff's Loop Rules, obtain a differential equation for the charge q on the capacitor after the switch has been opened, assuming $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$ (in other words, the only current in the equation should be the current through the capacitor, which can be

$$
\begin{gathered}
V C-R_{2}=0 \\
\frac{Q}{C}-\frac{d Q}{d t} A=0 \\
\frac{Q}{C}=\frac{d Q}{d t} A \\
\frac{d Q}{d t}=\frac{Q}{R C}
\end{gathered}
$$

Question 11: What is the time constant for discharging the capacitor?

Question 12: Write an equation for the time dependence of the charge on the capacitor after time T.

$$
\begin{aligned}
& Q(t)=Q_{\text {chiral }}\left(1-e^{-t / R c}\right) \\
& \text { Sale bor final charge } \\
& V C=a^{R E} \\
& Q(t)=\frac{V C}{2}\left(1-e^{-t / R C}\right)
\end{aligned}
$$

$$
T_{2} \text { resistors when it }
$$

Sample Exam Question (If time, try to do it by yourself, closed notes)

(a) From Kirchoff's first rule, what is the relation between i_{l}, i_{2}, and i_{3} ?
(b) What does the loop theorem (Kirchhoff's second rule) yield if we traverse the left loop of the above circuit moving counterclockwise, in terms of the quantities shown, with the directions of the currents as shown?
(c) What does the loop theorem (Kirchhoff's second rule) yield if we traverse the right loop of the above circuit moving counterclockwise, in terms of the quantities shown, with the directions of the currents as shown?
(d) After a very long time, $t \gg R C$, what is the current i_{l} ?
(e) After a very long time, $t \gg R C$, what are the currents i_{2} and i_{3} ?
(f) After a very long time, $t \gg R C$, what is the voltage across the capacitor in terms of the quantities given? (Hint: use your results from part (b)-(e)).
teas thethooblegy

- hep a list of concepts
- conventions

Multiloop

$$
\sum V=0
$$

at any rode I goes in and at

$$
P= \pm V=I^{2} R
$$

How does Voltage change over tine becros points
branches, nodes t loops

current same ventre in bach

3 branks

1. Chose a current + dir in each brach
2. Node = Junction

- current conserved at nodes

$$
I_{1}=I_{2}+I_{3}
$$

Loops
2 independent ϵ always $n-1$
3 total
He vases interior ores For each loop $\Sigma V=0$
Choose a travel direction

- pot nesserdlly the current
- draw an derek

$$
\begin{array}{l|l}
\hline y \mid 2
\end{array}
$$

- multiple currents in loop

$$
\text { - tells us } \Delta V_{i} \rightarrow \text { after - before }
$$

Comention for each element

Capceator =

$$
\begin{aligned}
& \text {-choose } a+q,-q \\
& E_{d} I_{-Q}^{T Q} \text { higher lower } \uparrow \frac{+Q}{C} \downarrow \frac{Q}{C}
\end{aligned}
$$

relation Q
$+Q \mid$ bI I $\rightarrow \in$ chooses flowing
QI I = charge per time

$$
\begin{aligned}
& I=\frac{d Q}{d t} \\
& r_{50}(t)
\end{aligned}
$$

If IT $\frac{1}{T}$ ten discharging

$$
\frac{d Q}{d t}=\theta
$$

If want $I\left(t \rightarrow I=-\frac{d Q}{d t}\right.$
Resistor
${\underset{\text { nigher }}{\text { I } \rightarrow}}_{\text {lamer }}^{\text {lane }}$
resister always \& V

$$
\begin{array}{r}
V=-I R \\
V=I R
\end{array}
$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 6

Due: Tuesday, March 16 at 9 pm .
Hand in your problem set in your section slot in the boxes outside the door of 32082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E \& M MIT 8.02 Course Notes.

Week Six DC Circuits

Class 14 W06D1 M/T Mar 8/9
Reading:
Experiment:
Class 15 W06D2 W/R Mar 10/11
Reading:
Experiment:
Class 16 W06D3 F Mar 12
Reading:
Week Seven Magnetic Fields
Class 17 W07D1 M/T Mar 15/16 Magnetic Fields; Magnetic Forces, Expt. 5: Bar Magnet
Reading:
Experiment:

Class 18 W07D2 W/R Mar 17/18 Creating Fields: Biot-Savart Law, Currents \& Dipoles; Expt. 6: Torque on Dipole
Reading: Course Notes: Sections 8.3-8.4, 9.1-9.2, 9.10.1, 9.11.1-9.11.4

Expt. 6: Torque on Dipole
PS06: Calculating Magnetic Fields and Magnetic
Course Notes: Sections 8.8-8.9, 9.10.1, 9.11.19.11.4

Week Eight Spring Break

Week Nine Magnetic Fields; Exam 2

Class 20 W09D1 M/T Mar 29/30	Creating Fields: Ampere's Law
Reading:	Course Notes: 9.3-9.4, 9.10.2, 9.11.5-9.11.8

Class 21 W09D2 W/R Mar 31/Apr 1 PS07: Ampere's Law; Exam 2 Review Reading:

Course Notes: 9.3-9.4, 9.10.2, 9.11.5-9.11.8

Exam 2 Thursday April $1 \quad 7: 30$ pm -9:30 pm

W09D3 F Apr 2
No class day after exam

Problem 1: Four Resistors

Four resistors are connected to a battery as shown in the figure. The current in the battery is I, the battery emf is ε, and the resistor values are $R_{1}=R, R_{2}=2 R, R_{3}=4 R, R_{4}=3 R$.
(a) Rank the resistors according to the potential difference across them, from largest to smallest. Note any cases of equal potential differences.
(b) Determine the potential difference across each resistor in terms of \mathcal{E}.

(c) Rank the resistors according to the current in them, from largest to smallest. Note any cases of equal currents.
(d) Determine the current in each resistor in terms of I.
(e) If R_{3} is increased, what happens to the current in each of the resistors?
(f) In the limit that $R_{3} \rightarrow \infty$, what are the new values of the current in each resistor in terms of I, the original current in the battery?

Problem 2 Multi-loop Circuit

In the circuit below, you can neglect the internal resistance of all batteries.
(a) Calculate the current through each battery
(b) Calculate the power delivered or used (specify which case) by each battery

PS06-3

Problem 3: RC Circuit

In the circuit shown, the switch S has been closed for a long time. At time $t=0$ the switch is opened. It remains open for "a long time" T , at which point it is closed again. Write an equation for (a) the voltage drop across the $100 \mathrm{k} \Omega$ resistor and (b) the charge stored on the capacitor as a function of time.

Problem 4: Energy stored in a capacitor

You know that the power supplied by a battery is given by $\mathrm{P}=\mathrm{VI}$ (the battery voltage times the current it is supplying). You also know that a resistor dissipates power (turns it into heat) at a rate given by $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$.

Consider a simple RC circuit (battery, resistor R, capacitor C). Determine an expression for the energy stored in the capacitor by integrating the difference between the power supplied by the battery and that consumed by the resistor. Should the energy be related to the current through the capacitor or the potential across it?

Problem 5: Capacitors

In the circuit shown at right $C_{1}=2.0 \mu \mathrm{~F}, C_{2}=6.0 \mu \mathrm{~F}$, $C_{3}=3.0 \mu \mathrm{~F}$ and $\Delta V=10.0 \mathrm{~V}$. Initially all capacitors are uncharged and the switches are open. At time $t=0$ switch S_{2} is closed. At time $t=T$ switch S_{2} is then opened, proceeded nearly immediately by the closing of S_{1}. Finally at $t=2 T$ switch S_{1} is opened, proceeded nearly immediately by the closing of S_{2}.
 Calculate the following:
(a) the charge on C_{2} for $0<t<T$ (after S_{2} is closed)
(b) the charge on C_{1} for $T<t<2 T$
(c) the final charge on each capacitor (for $t>2 T$)

Problem 6: RC Circuit

Consider the $R C$ circuit shown in the figure. Suppose that the switch has been closed for a length of time sufficiently long enough for the capacitor to be fully charged.

(a) Find the steady-state current in each resistor.
(b) The switch is opened at $t=0$. Write an equation for the current I_{2} in R_{2} as a function of time.
(c) Find the time that it takes for the charge on the capacitor to fall to $1 / \mathrm{e}$ of its initial value.

Problem 7: Experiment 5: Magnetic Fields of a Bar Magnet and Helmholtz Coil Pre-Lab Questions

Read Experiment 5 before answering these questions

Consider two bar magnets placed at right angles to each other, as pictured at left.
(a) If a small compass is placed at point P , what direction does the painted end of the compass needle point?
(b) If the compass needle instead pointed 15 degrees clockwise of where you predicted in (a), what could you qualitatively conclude about the relative strengths of the two magnets?

$$
\left.\begin{array}{l}
\text { P-Set } 6 \\
\text { er Lo1 l1C }
\end{array} 100-8-8=84\right)
$$

1. Four Resestors

$$
\begin{aligned}
& \begin{array}{c}
\text { Foridy shor } \\
\text { all fle cricals } \\
\text { which I wat } \\
\text { to pratile }
\end{array} \\
& R_{1}=R \\
& \left.\begin{array}{l}
R_{2}^{\prime}=2 R \\
R_{3}=4 R
\end{array}\right]=6 R \Rightarrow j u \operatorname{sid} a d d \\
& R_{y}=3 h \\
& 6-I_{1} R_{1}-I_{u} R_{y}=0 \\
& \left(-I_{1} R-I_{4} 4 R=0\right. \\
& 6-I_{1} R_{1}-I_{2}\left(R_{2}+R_{3}\right)=0 \\
& E-I_{1} R_{1}-I_{2} 6 R=0 \\
& e=I_{1} R+I_{4} 4 R=I_{1} R+I_{2} 6 R
\end{aligned}
$$

? so te question is whore from hore unkrowns $I_{1} I_{2}, I_{4}$, need a 3rd equallon relating $Z_{\text {of }} I_{2}, I_{2}, I_{4}$ also draw

$$
\begin{aligned}
& \frac{1}{R_{\text {total }}}=\frac{1}{R_{2}}+\frac{1}{R_{4}} \\
& R_{\text {trivil }}=R_{2}+R_{4}
\end{aligned}
$$

anyway that is not the question!
a) Rank V across resistors in toms of ξ

$$
\begin{array}{rlr}
V=\frac{I}{R} & V_{1} & =\frac{I_{1}}{R} \\
V_{2} & =\frac{I_{2}}{2 R} & V_{3}
\end{array}=\frac{I_{2}}{4 R}=\frac{V_{3}}{3 R}
$$

Think bock to that MP problem think of adding

$$
V=\frac{I R+\left(\frac{1}{\frac{I}{2} R}+\frac{1}{\frac{1}{2} \frac{6}{2}}+\frac{\frac{1}{2} \frac{h}{2}}{\frac{1}{2}} \quad \text { if }=\right.\text { Resistance }}{}
$$

Voltage $\frac{1}{2} \varepsilon \quad \frac{1}{2} \cdot \frac{2}{3} 6 \quad \frac{1}{2} \cdot \frac{1}{3} \varepsilon$ in this case i, drop

$$
\text { So } \begin{aligned}
& R_{1} \text { is largest drop } \frac{1}{2} \text { 6 } \\
& R_{2} \text { is } \frac{1}{2} \cdot \frac{2}{9}=\frac{1}{4} 4+h \\
& A_{3} \text { is } \frac{1}{2} \cdot \frac{4}{9}=\frac{2}{9} \text { Ord largest } \\
& R_{y} \text { is } \frac{1}{2} \cdot \frac{3}{9}=\frac{1}{6} \text { Ind }
\end{aligned}
$$

-b) Current $V=I R$
(f) $\frac{1}{2} \varepsilon=I \cdot l$ so $\frac{1}{2}=I \quad I=\frac{1}{2}$ what'i relative unit
$\left.f_{2}\right)=\frac{1}{9}=I \cdot 2$

$$
I=\frac{1}{18}
$$

(3) $\frac{2}{9}=E, 4$
$\left.R_{y}\right) \frac{1}{6}=I \cdot 3$

$$
I=\frac{1}{18}
$$

$$
I=\frac{1}{18}
$$

it So does this make sense

- same current through R_{2} and R_{3} does male since
put does not lave to be same current through 4

Let's con simulation to
but legs current should go through $R_{2}>R_{3}$ since its so much less

So Amps

Volts

$$
\left.\begin{array}{l}
3 \mathrm{~V} \text { drop } A_{1} \\
6 \mathrm{~V} \text { drop } R_{y} \\
2 \mathrm{~V} \text { drop } R_{2}
\end{array}\right) \text { batt }=9 \mathrm{~V}
$$

So my V calc was Wrong

$$
\left.\left.R_{1}=\frac{1}{3} \xi \quad R_{2}=\frac{2}{3} 6 \quad R_{3}=\frac{2}{9}\right\} \quad R_{4}=\frac{4}{9}\right\}
$$

Pry again no loop rule truing
 Find Req

$$
\begin{aligned}
& R_{\text {eq }}= R+\frac{1}{\frac{1}{3 R}+\frac{1}{2+4 / R}} \\
& R+\frac{1}{3 R+6 R} \\
& R_{\text {eq }}= R+\frac{1}{9 R} \\
& R_{\text {to al }}= \frac{10}{9} p
\end{aligned}
$$

(The te first MP problem)
I so then what find.

* So this is like a battery w/ I resistor of value $\frac{18}{9} R$ where R is a constant

$$
\begin{aligned}
& V=I R \\
& C=I \cdot \frac{10}{9} R \\
& I=\frac{6}{\frac{19}{9 R}}
\end{aligned}
$$

Now lets try if to math sim $\frac{9 \mathrm{~V}}{\frac{10}{2} \cdot 10 \Omega}=.81$ which is not the 3 was loading for No did adiliton wrong above \longrightarrow

$$
R+\frac{1}{\frac{1}{3 R}+\frac{1}{6 R}}
$$

neil to get common denom

$$
\begin{aligned}
& \quad \frac{2}{6 R}+\frac{1}{6 R}=\frac{3}{6 R}=\frac{1}{2 R} \\
& R+\frac{1}{1 / 2 R} \\
& R+2 R \\
& V=I \cdot 3 R \\
& I=\frac{6}{3 R}
\end{aligned}
$$

try Gain n / H
$\frac{Q \mathrm{~V}}{3 \cdot 10 \Omega}=3$ amps (1) matches simulation
so where do I stand on the question
Now Just te Ry brach

$$
\begin{aligned}
& V=\frac{x}{e}-I R-I 3 R \\
& 6=I 4 R \\
& I=\frac{6}{4 R}=\frac{1 U}{410 \Omega}=.225 \mathrm{amps} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 6=I_{1} R+I_{2} 6 R \\
& \quad \text { is amps in } \\
& \text { our example } \\
& 9 V=3 \cdot 10 \Omega+I_{2} \cdot 6 \cdot 10 \Omega \\
& 9=3+60 I_{2} \\
& -3=-3 \\
& \quad 6=+60 I_{2} \\
& I_{2}=11 \operatorname{amps} \text { or } \frac{1}{3} I
\end{aligned}
$$

Latches simulat in θ

$$
\begin{aligned}
& 6=I R+I_{4} 3 R \\
& 9=3 \cdot 10+I_{4} \cdot 3 \cdot 10 \\
& 6=30 I_{4}
\end{aligned}
$$

$$
I_{4}=12 \mathrm{amps} \text { or } \frac{2}{3} I
$$

L matres simulation Or
e) If λ_{3} vas λ
current through it would furtor \downarrow current through R_{u} would not charade j see next -instead less current dram n from batt problem as this equation shows
t) If $R_{3} \rightarrow \infty$ what is new current everywhere

So $R \rightarrow \infty$ is like peat in circuit

$$
I_{2}=0
$$

It would be one circuit

$$
\begin{aligned}
& C-I R-I 3 R=0 \\
& 6=I 4 R
\end{aligned}
$$

with simulation

$$
\begin{array}{r}
q V=I \cdot 4 \cdot 10 \Omega \\
I=1225 \text { amps } \\
\text { or } 75 \% I
\end{array}
$$

${ }^{3}$ but I though changing R_{3} would not
-but doesnt it \rightarrow its like closing door to heater

Yes \rightarrow it decreases a very small amt But why it

I think I need to go to Office firs - really confused

I is te same $\left(I_{1}=I_{4}\right)$ in and problem so did not have to figure seperty this was the charye from $R_{3} \rightarrow \infty$ vs before

- mirrored simulation
- but kinda nerd

Me thai Series Portal

Could do series

Method

$$
\begin{gathered}
I_{1}=I_{2}+I_{3} e I_{3} R_{4}=I_{2}\left(R_{2}+R_{3}\right) \\
u \\
I_{3}=\frac{I_{2}\left(R_{2}+R_{3}\right)}{R_{4}} \text { complex t lang } \\
\text { but doable }
\end{gathered}
$$

But could also do who redoing
kirkoff rules

$$
\begin{aligned}
& I_{1}=I_{2}+I_{3} \\
& -I_{1} R_{1}-I_{3} R_{4}=0 \\
& -I_{2} R_{2}-I_{2} R_{3}+I_{3} R_{4}=0 \\
& 3 \text { eq } / 3 \text { unknom4 }\left(I_{1}, I_{2}, I_{3}\right) \\
& \text { Put As in to male it ealser }
\end{aligned}
$$ + solve

* Trying to find current in each lordach * - resistors tats known

If $\because R_{3}$
Ratio bow, 2 branches changes rot resistance

$$
\frac{I_{3}}{I_{2}}=\frac{R_{2}+R_{3}}{R_{4}}
$$

More current through path of less resistance $R_{4} \quad \infty \rightarrow R_{2}$ goes to O

Ten do the 1 loop problem
Current does not automatically change

$$
\begin{aligned}
& \frac{1}{R_{\text {eq }}}=\frac{1}{R_{y}}+\frac{1}{\left(R_{2}+R_{3}\right)} \\
& R_{a}=\frac{\left(R_{2}+R_{3}\right) R_{4}}{R_{2}+R_{3}+R_{4}} \text {-combine deroms tel, } \\
& \text { Ide } \frac{1}{10}+\frac{1}{100} \approx \frac{11}{100} \rightarrow \mathrm{Ceq}_{\text {eq }}=\frac{100}{11}=\frac{200}{22} \\
& \underset{R_{3}}{\operatorname{ircrease}} \frac{1}{10}+\frac{1}{200} \frac{21}{200} \Rightarrow R_{\text {Eq }} \frac{200}{21} G
\end{aligned}
$$

Resistance of everything?
current $+\downarrow$
Don know ratios

- Thy may charge

Need to do equivilancy calculation
Complex (exactly what I found)
as $R_{3} \rightarrow \infty$
Ration changes
solve for I_{2}

$$
\begin{aligned}
& I_{1}=I_{2}\left(1+\frac{R_{2}+R_{3}}{R_{4}}\right) \\
& I_{2}=\frac{I_{1}}{1+\frac{R_{2}+R_{3}}{R_{4}}} \text { sole tor } I_{1}
\end{aligned}
$$

not obvias if it λ or ψ
I1 must \downarrow

$$
\begin{aligned}
& \frac{1}{\infty}=0 \\
& R_{\text {eq }}=R_{4} \text { when } R_{2}+R_{3}=\infty_{\infty} \\
& R_{\text {eq }} \leq R_{4} \text { d ways }
\end{aligned}
$$

have to do more algebra Solve

1. So I had it folly right
but contused b/w ta 2 methods id have to use a combo of both inorder to solve

Also I screwed up adding $\frac{1}{\text { stuff }}$

$$
S_{0} \frac{1}{e q}=\frac{1}{R_{4}}+\frac{1}{\left(R_{2}+R_{3}\right)}
$$

need to got common denom

$$
\begin{aligned}
& \frac{1}{e_{q}}=\frac{R_{2}+R_{3}}{R_{4}\left(R_{2}+R_{3}\right)}+\frac{R_{4}}{\left.R_{2}+R_{3}\right) R_{4}} \\
& \frac{1}{C q}=\frac{R_{2}+R_{3}+R_{4}}{R_{4}\left(R_{2}+R_{3}\right)} \\
& e q=\frac{R_{4}\left(R_{2}+R_{3}\right) \quad \text { vclecks nut }}{R_{2}+R_{3}+R_{4}}
\end{aligned}
$$

Now protice solving system

$$
\begin{aligned}
& I_{1}=I_{2}+I_{3} \\
& 6-I_{1} R_{1}-I_{3} R_{4}=0 \\
& -I_{2} R_{2}-I_{2} R_{3}+I_{3} R_{4}=0
\end{aligned}
$$

Plug \# in

$$
\begin{aligned}
& I_{1}=I_{2}+I_{3} \\
& 6-I_{1} R-I_{3} 3 R=0 \\
& -I_{2} 2 R-I_{2} 9 R+I_{3} 3 R=0
\end{aligned}
$$

So last tine I got that far and gave up and switched to eq resistors the wrong way
Den't nessorrly set tee = to each ether Could solve w) Matrixes line in math - but that gets lang complex
Try solving + replacing
First group forms + get in terms of $I_{1}+I_{2}$

$$
\begin{aligned}
& 6- \pm, R-\left(I_{1}-I_{2}\right) 3 R=0 \\
& 6-R\left(I_{1}+3\left(I_{1}-I_{2}\right)\right)=0 \\
& \begin{aligned}
-T_{2} 6 R+\left(I_{1}-I_{2}\right) 3 R & =0 \\
R^{2}\left(3\left(I_{1}-I_{2}\right)-6 I_{2}\right) & =0
\end{aligned} \\
& \underset{+R}{6-R\left(I_{1}+3\left(I_{1}-I_{2}\right)\right)}=R\left(3\left(I_{1}-I_{2}\right)-6 I_{2}\right) \\
& \varepsilon-R\left(3\left(I_{1}-I_{2}\right)-6 I_{2}+I_{1}+3\left(I_{1}-I_{2}\right)\right. \\
& b=R\left(I_{1}-6 I_{2}+6 I_{3}\right) \\
& 6=I_{1} R-6 I_{2} R+6 I_{3} R \\
& I_{1}=\frac{6+6 I_{2} R+6 I_{3} R}{R} \\
& I_{2}=\frac{6-I_{1} R-6 I_{3} R}{6 R} \\
& I_{3}=\frac{6-I_{1} R-6 I_{2} R}{6 R}
\end{aligned}
$$

But the current is still in terms of something else i is there a way to avoid that?
i Write I_{2} in for I_{1} ir - well tore are no \#s
? Some sort of differential eq
Or should I go w) plan equivilant resistance

$$
\begin{aligned}
& R_{\text {eq }}^{2+3}=R_{2}+R_{3} \\
& R_{\text {eq }}=d^{\prime} d^{2} \text { before }=\frac{R_{4}\left(R_{2}+R_{3}\right)}{R_{2}+R_{3}+R_{4}} \\
& R_{\text {ea }}=R_{1}+\frac{R_{4}\left(R_{2}+R_{3}\right)}{R_{2}+R_{3}+R_{4}} \\
& \frac{T}{1+(2+3))}=\frac{6}{R_{\text {eq }}}=\frac{6}{A_{1}+\frac{R_{4}\left(R_{2}+R_{3}\right)}{R_{2}+R_{3}+R_{4}}}
\end{aligned}
$$

that is really complex us well but does not depend on other Is So I guess I could have subbed in Is and solved simultanpustly
2. Multi-Loop Circuit

No internal resistance
a) Talc current through battery

numbers! males it eaiser, when the webers are right:
-8

$$
\begin{array}{cc}
2-I_{1}-1-2 I_{1}-4=0=4-2 I_{2}-I_{2}+4 \\
-3 I_{1}=2 & -3 I_{2}=8 \\
I_{1}=-\frac{2}{3} \text { amps } & I_{2}=\frac{8}{-3} \text { amps } \\
i_{\text {batt }} \varphi & i \text { batt } 3
\end{array}
$$

batt $2=-\frac{8}{3}--\frac{2}{3}=-\frac{6}{3}=-2$ amps $\leftarrow T_{\text {rights could be }}$
b) Cal power delved by

$$
P=I V
$$

$$
\begin{aligned}
& P_{1}=\frac{2}{3} \cdot 2-\frac{4}{3} \text { wats } x \\
& P_{2}=2 \cdot 4=8 \text { wats } x \\
& P_{3}=\frac{8}{3} \cdot 2=\frac{16}{3}=5,333 \text { watts } e
\end{aligned}
$$

3. RC circuit

Switch closed long tire $t=0$ switch opened.
Remains open for long time Closed
a) Voltage drop arose $100 \mathrm{k} \Omega$ resistor

Instant closed - by passes batt
Starts de-charging

$$
\frac{Q}{C}-I \cdot 100 k \Lambda=0
$$

Theol to find
A ara from wen it was open

$$
\begin{aligned}
& 10-I \cdot 50-I \cdot 100-\frac{Q}{C}=0 \\
& 10=150 \frac{d Q}{d t}+\frac{Q}{C} \\
& \frac{d Q}{d t}=\frac{10-\frac{Q}{C}}{150}
\end{aligned}
$$

$\frac{d Q}{d+}=\frac{1}{15}-\frac{Q}{150 C} \quad$ Ewell that leads to b

Just the voltage drop

$$
\Delta V=\frac{Q}{C}=100 I
$$

$.50 \Delta V=100\left(\frac{1}{15}-\frac{Q}{100 C}\right)$
at t switch closed it is fully need to fire the current but to find $\frac{Q}{C}$ reed to find original $\frac{l}{c}$ of device cant find it again.

$$
Q(t)=Q_{i} \text { frat }\left(1-e^{-t) R_{e n e}} \text { Lucite Rear since } R_{1}+R_{2}\right.
$$ capicator when it was "charging

$$
\begin{gathered}
V=\varepsilon \\
Q \text { final }=V C \quad G c \\
Q(t)=b\left(\quad\left(1-e^{-t / \frac{R q}{\varepsilon}}\right)\right. \\
\text { so that right } \\
\quad-\text { kinda! }
\end{gathered}
$$

$$
\begin{gathered}
\varepsilon-I\left(R_{1}+R_{2}\right)-\frac{Q}{L}=0 \\
\varepsilon-\frac{Q}{C}=0 \\
Q=\varepsilon C \\
\text { Then to find } Q \text { final }
\end{gathered}
$$ pay clos attention

3 reds when 5 is closed for a long time Dormashin

closed
Short all current goes through
opened $t=0$ current flows
r across resistor

$$
\begin{aligned}
& \Delta V_{R}=-I R_{1} \\
& \Delta V_{C}=-\frac{Q}{C}
\end{aligned}
$$

Choose ± 0 placement, direction

$$
\begin{array}{ll}
6-I R_{2}-\frac{Q}{C}-I A_{1}=0 \\
6-I\left(R_{1}+R_{2}\right)-\frac{Q}{C}=0 & \frac{Q}{C} \text { charging } \\
\text { Req } & I=+\frac{d Q}{d t} \\
6-\frac{d Q}{d t}\left(R_{e q}\right)-\frac{Q}{C}=0 \\
\frac{C}{R_{e q}}-\frac{Q}{R_{e q} C}=\frac{d Q}{d t}
\end{array}
$$

$$
\begin{aligned}
& Q(t)=\left(6\left(1-e^{-t / y}\right)\right. \\
& \Delta V=\frac{-Q}{C} \\
& I \longrightarrow Q_{Q} \text { sadi emf does not change instantly }
\end{aligned}
$$

will be instantaneous drop in current
When apt charged \rightarrow just circuit 2 resistors
) 6 how to find

$$
\varepsilon-I\left(R_{1}+R_{2}\right)-\frac{Q}{C}=0
$$

current goes to 0 when filly charged

$$
\begin{aligned}
& 6-\frac{Q}{C}=0 \\
& 6=\frac{Q}{C} \\
& Q=\varepsilon C
\end{aligned}
$$

4. Energy stored in a capacitor

$$
P=I V=I^{2} R
$$

Simple RC circuit
bet expression for energy stored in capicutor

$$
\begin{aligned}
& I=\frac{V}{R} \\
& P=\left(\frac{V}{R}\right)^{2} R \\
& P=\frac{V^{2}}{R^{2}} \cdot R=\frac{V^{2}}{R}
\end{aligned}
$$

But thy said by \int diff of pones supplied and power consumed. Is everyy related to current through capicator or potential accoss

$$
\begin{aligned}
P_{\text {Rat }} & =\varepsilon I \\
P_{\text {Resisita }} & =R I^{2} \in \text { current through it } \\
& =\frac{V^{2}}{R} \in \text { voltage access it }
\end{aligned}
$$

$\begin{aligned} & \text { But doesnit } \\ & \text { resistance } P_{\text {bat }}\end{aligned}=P_{\text {Resistor }} \rightarrow$ if no internal resistance
II So what should I S
well find energy

Remember last Puget
Energy \rightarrow Joules \rightarrow killowatt hours

$$
\text { So } \begin{aligned}
& E=\int_{0}^{t} P \\
& P t-P \cdot 0 \\
& E= P t \\
& E=\left(I t=R I^{2} t=\frac{V^{2} t}{R}\right.
\end{aligned}
$$

But what is difference b/w supplied by bat + consumed b/ resistor - balt internal resistance?

- wire resistance?

5. Capecators

$$
\begin{aligned}
& C_{1}=2 \mu \mathrm{~F} \\
& C_{2}=6 \mu \mathrm{~F} \\
& C_{3}=3 \mu \mathrm{~F} \\
& V=10 \mathrm{~V}=G
\end{aligned}
$$

Start all open tunchargee

$$
\begin{aligned}
& t=O \rightarrow S_{2} \text { closed } \\
& t=T \rightarrow S_{2} \text { opened } S_{1} \text { closed } \\
& t=2 t \rightarrow S_{1} \text { opened } S_{2} \text { closed }
\end{aligned}
$$

a) Charge on C_{2} for $O L T \angle T$

Snot a complete circuit

$$
0=Q_{2}
$$

b) (large on C_{1} for $T<t<2 T$

We now have 2 capicatores in series

$$
\begin{aligned}
D r & =V_{1}+V_{2} \\
& =\frac{Q}{C_{e q}}=\frac{Q_{1}}{C_{1}}+\frac{Q_{2}}{C_{2}} \\
10 V & =\frac{Q_{1}}{2}+\frac{Q_{2}}{6}
\end{aligned}
$$

In order to add need to get same denom

$$
\begin{aligned}
& 10 \mathrm{~V}=\frac{3 Q_{1}}{6}+\frac{Q_{2}}{6} \\
& 10 \mathrm{~V}=\frac{3 Q_{1}+Q_{2}}{6 \omega F} \\
& .0000006 F \cdot 10 \mathrm{~V}=3 Q_{1}+Q_{2} \\
& \text { ? but how to attribute to 1, not the offer } \\
& Q_{1} ? Q_{2} \\
& \text { not }=\text { right } \\
& * \text { no thy ore } *
\end{aligned}
$$

* Capicators in series have same charge at

$$
Q=1,5 \cdot 10^{-6} C
$$

c) Final charge $t>2 t$
please box your answers, there's so mech work it's hard for me to find.

So $C_{11} C_{2}$ charged Switch 2 closed what abet c_{1} ? -5
 see Solus ISo C_{2} discharges half
way
ido we reed to find $Q(t)$ - heed more pratícce w/ tries no. don't think I can do $Q_{2} \neq Q_{3}$ dent think
mont each go to $\frac{1}{2} Q$ but hon't each go to
or $7,5 \cdot 10^{-7} \mathrm{C}$
-3
G

Swich closed long tine
Find current through each resisistar
$R_{3}=0$ amp since capacitor fully charged
R_{1} and R_{2} are in series so same currant

$$
\begin{aligned}
& R_{\text {eq }}=R_{1}+R_{2}=12+15=27 \Omega \\
& V=I R \quad I=\frac{9 \mathrm{~V}}{27 \Omega}=\frac{1}{3} \mathrm{amps}
\end{aligned}
$$

b Switch opened at $t=0$
Find $I_{2}(R)$

$$
\frac{Q}{C}-I_{2} R_{2}-I_{2} R_{3}=0
$$

That what is this initally?

$$
\frac{Q}{C}=I_{2}\left(R_{2}+R_{3}\right)
$$

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{Q}{\left(\left(R_{2}+R_{3}\right)\right.} \\
& \frac{d Q}{d t}=\frac{1}{\lambda}\left(Q-Q_{\text {final }}\right) \\
& L C\left(R_{2}+R_{3}\right)
\end{aligned}
$$

Q final - max charge on capicator when charging

$$
=V C=6 C
$$

2) bit what about the other resistors they do something right

So what voltage was it getting resistors in porallel $=$ same V drop b/w " " series $I R_{1}+I R_{2}$ Truant th's current save

$$
\begin{aligned}
& =I\left(R_{1}+R_{2}\right) C \\
& =\frac{1}{3} \operatorname{amp}(15 \Omega) C
\end{aligned}
$$

$$
\begin{aligned}
I & =\frac{d Q}{d t}=\frac{1}{C\left(R_{2}+A_{3}\right)}\left(Q-I\left(R_{1}+R_{2}\right) C\right) \\
& =\frac{1}{17 C}(Q-5 C) \\
& =\frac{1}{1000017}(Q-, 000001 \\
& =58823(Q-, 000005)
\end{aligned}
$$

c Find the time to fall to $\frac{1}{e}$ of inital value
This is like experiment and differential review

$$
\begin{aligned}
& Q(t)=Q_{\text {final }}\left(1-e^{-t / y}\right) \\
& Q(t)=5 C\left(1-e^{-t / 1 \pi}\right) \\
& Q(1)=\text { lets say, } 29 \\
& \text { iso lenvalve }
\end{aligned}
$$

when \rightarrow what tire does $q=$ that

$$
t=-3665
$$

${ }^{T}$ does not male sense

- can not exist

7. Experiment. 5 Prev Lob

a) If compass placed at p What ir does it point?
well pulled on by equal strenght magnites wants to point to magnetic south

$$
\text { so } \quad \hat{+} \in<\chi \quad 135^{\circ}
$$

b. If needle at 120% instead \uparrow that weans bottom (+2) magnet stronger
that I got
but to
otter state need
to see ans/ office his
to sort out

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics

Problem Set 6 Solutions

Problem 1: Four Resistors

Four resistors are connected to a battery as shown in the
figure. The current in the battery is I, the battery emf is ε, and the resistor values are $R_{1}=R, R_{2}=2 R, R_{3}=4 R, R_{4}=3 R$.
(a) Rank the resistors according to the potential difference across them, from largest to smallest. Note any cases of equal potential differences.

Resistors 2 and 3 can be combined (in series) to give $R_{23}=R_{2}+R_{3}=2 R+4 R=6 R . R_{23}$ is in parallel with R_{4} and the equivalent resistance R_{234} is

$$
R_{234}=\frac{R_{23} R_{4}}{R_{23}+R_{4}}=\frac{(6 R)(3 R)}{6 R+3 R}=2 R
$$

Since R_{234} is in series with R_{1}, the equivalent resistance of the whole circuit is $R_{1234}=R_{1}+R_{234}=R+2 R=3 R$. In series, potential difference is shared in proportion to the resistance, so R_{1} gets $1 / 3$ of the battery voltage $\left(\Delta V_{1}=\varepsilon / 3\right)$ and R_{234} gets $2 / 3$ of the battery voltage ($\Delta V_{234}=2 \varepsilon / 3$). This is the potential difference across $R_{4}\left(\Delta V_{4}=2 \varepsilon / 3\right)$, but R_{2} and R_{3} must share this voltage: $1 / 3$ goes to $R_{2}\left(\Delta V_{2}=(1 / 3)(2 \varepsilon / 3)=2 \varepsilon / 9\right)$ and $2 / 3$ to $R_{3}\left(\Delta V_{3}=(2 / 3)(2 \varepsilon / 3)=4 \varepsilon / 9\right)$. The ranking by potential difference is $\Delta V_{4}>\Delta V_{3}>\Delta V_{1}>\Delta V_{2}$.
(b) Determine the potential difference across each resistor in terms of \mathcal{E}.

As shown from the reasoning above, the potential differences are

$$
\Delta V_{1}=\frac{\varepsilon}{3}, \quad \Delta V_{2}=\frac{2 \varepsilon}{9}, \quad \Delta V_{3}=\frac{4 \varepsilon}{9}, \quad \Delta V_{4}=\frac{2 \varepsilon}{3}
$$

(c) Rank the resistors according to the current in them, from largest to smallest. Note any cases of equal currents.

All the current goes through R_{1}, so it gets the most ($I_{1}=I$). The current then splits at the parallel combination. R_{4} gets more than half, because the resistance in that branch is less than in the other branch. R_{2} and R_{3} have equal currents because they are in series. The ranking by current is $I_{1}>I_{4}>I_{2}=I_{3}$.
(d) Determine the current in each resistor in terms of I.
R_{1} has a current of I. Because the resistance of R_{2} and R_{3} in series
($R_{23}=R_{2}+R_{3}=2 R+4 R=6 R$) is twice that of $R_{4}=3 R$, twice as much current goes through R_{4} as through R_{2} and R_{3}. The current through the resistors are

$$
I_{1}=I, \quad I_{2}=I_{3}=\frac{I}{3}, \quad I_{4}=\frac{2 I}{3}
$$

(e) If R_{3} is increased, what happens to the current in each of the resistors?

Since

$$
R_{1234}=R_{1}+R_{234}=R_{1}+\frac{R_{23} R_{4}}{R_{23}+R_{4}}=R_{1}+\frac{\left(R_{2}+R_{3}\right) R_{4}}{R_{2}+R_{3}+R_{4}}
$$

increasing R_{3} increases the equivalent resistance of the entire circuit. The current in the circuit, which is the current through R_{1}, decreases. This decreases the potential difference across R_{1}, increasing the potential difference across the parallel combination. With a larger potential difference the current through R_{4} is increased. With more current going through R_{4}, and less in the circuit to start with, the current through R_{2} and R_{3} must decrease. Thus,

$$
I_{4} \text { increases and } I_{1}, I_{2}, \text { and } I_{3} \text { decrease }
$$

(f) In the limit that $R_{3} \rightarrow \infty$, what are the new values of the current in each resistor in terms of I, the original current in the battery?

If R_{3} has an infinite resistance, it blocks any current from passing through that branch and the circuit effectively is just R_{1} and R_{4} in series with the battery. The circuit now has an equivalent resistance of $R_{14}=R_{1}+R_{4}=R+3 R=4 R$. The current in the circuit drops to $3 / 4$ of the original current because the resistance has increased by $4 / 3$. All this current passes through R_{1} and R_{4}, and none passes through R_{2} and R_{3}. Therefore,

$$
I_{1}=\frac{3 I}{4}, I_{2}=I_{3}=0, I_{4}=\frac{3 I}{4}
$$

Problem 2 Multiloop Circuit

In the circuit below, you can neglect the internal resistance of all batteries.
(a) Calculate the current through each battery
(b) Calculate the power delivered or used (specify which case) by each battery

Solution:

(a) Calculate the current through each battery.

We begin by choosing currents in every branch and travel directions in the two loops as shown below.

p. 3 of 10

Current conservation is given by the condition that the current into a junction of branches is equal to the current that leaves that junction:

$$
I_{1}=I_{2}+I_{3} .
$$

The two loop laws for the voltage differences are:

$$
\begin{aligned}
& 2 \mathrm{~V}-\left(I_{1}\right)(1 \Omega)-\left(I_{2}\right)(2 \Omega)-4 \mathrm{~V}=0 . \\
& -\left(I_{3}\right)(1 \Omega)+4 \mathrm{~V}+4 \mathrm{~V}+\left(I_{2}\right)(2 \Omega)=0 .
\end{aligned}
$$

Strategy: Solve the first loop law for I_{1} in terms of I_{2}. Solve the second loop law for I_{3} in terms of I_{2}. Then substitute these results into the current conservation and solve for I_{2}. Then determine I_{1} and I_{3}.

The first loop law becomes

$$
I_{1}=-2 \mathrm{~A}-2 I_{2} .
$$

The second loop law becomes

$$
I_{3}=8 \mathrm{~A}+2 I_{2} .
$$

Current conservation becomes

$$
-2 \mathrm{~A}-2 I_{2}=I_{2}+8 \mathrm{~A}+2 I_{2} .
$$

Solve for I_{2} :

$$
I_{2}=-2 \mathrm{~A} .
$$

Note that the negative sign means the I_{2} is flowing in a direction opposite the direction indicated by the arrow. This means that battery 2 is supplying current.

Solve for I_{1} :

$$
I_{1}=-2 \mathrm{~A}-2(-2 \mathrm{~A})=2 \mathrm{~A}
$$

Solve for I_{3} :

$$
I_{3}=8 \mathrm{~A}+2(-2 \mathrm{~A})=4 \mathrm{~A} .
$$

(b) Calculate the power delivered or used (specify which case) by each battery.

The power delivered by battery 1 is $P_{1}=\left(\varepsilon_{1}\right)\left(I_{1}\right)=(2 \mathrm{~V})(2 \mathrm{~A})=4 \mathrm{~W}$.

The power delivered by battery 2 is $P_{2}=\left(\varepsilon_{2}\right)\left(I_{2}\right)=(4 \mathrm{~V})(2 \mathrm{~A})=8 \mathrm{~W}$.

The power delivered by battery 3 is $P_{3}=\left(\varepsilon_{3}\right)\left(I_{3}\right)=(4 \mathrm{~V})(4 \mathrm{~A})=16 \mathrm{~W}$.
The total power delivered by the batteries is 28 W

$$
\text { p. } 4 \text { of } 10
$$

Check: The power delivered to the resistors:
The power delivered to resistor 1 (in left branch) $P_{1}=\left(I_{1}^{2}\right)\left(R_{1}\right)=(2 \mathrm{~A})^{2}(1 \Omega)=4 \mathrm{~W}$.
The power delivered to resistor 2 (in center branch) $P_{2}=\left(I_{2}{ }^{2}\right)\left(R_{2}\right)=(2 \mathrm{~A})^{2}(2 \Omega)=8 \mathrm{~W}$.
The power delivered to resistor 3 (in right branch) $P_{3}=\left(I_{3}^{2}\right)\left(R_{3}\right)=(4 \mathrm{~A})^{2}(1 \Omega)=16 \mathrm{~W}$.
The total power delivered to the resistors is also 28 W .

Problem 3: RC Circuit

In the circuit shown, the switch S has been closed for a long time. At time $t=0$ the switch is opened. It remains open for "a long time" T , at which point it is closed again. Write an equation for (a) the charge stored on the capacitor and (b) the current through the switch as a function of time.

(a) The capacitor begins uncharged. When the switch is opened at $\mathrm{t}=0$ we have an RC circuit with $\mathrm{R}=150 \mathrm{k} \Omega$ and $\mathrm{C}=10.0 \mu \mathrm{~F}$, so $\tau=\mathrm{RC}=1.50 \mathrm{~s}$. The final voltage (after an infinite time) on the capacitor will be the battery voltage (10.0 V) so we can write the equation for voltage on the capacitor during charging as:
$V_{C}=V_{F}\left(1-e^{-t / \tau}\right)=10.0 \mathrm{~V}\left(1-e^{-t / 1.50 \mathrm{~s}}\right)[$ for $t<T]$
During discharge the capacitor starts at its value at $t=T$ (which we can get with the equation above) and then drives through the $100 \mathrm{k} \Omega$ resistor and the switch. The time constant is thus now only 1.00 s . So the voltage goes like:
$V_{C}=V_{0} e^{-(t-T) / \tau}=10.0 \mathrm{~V}\left(1-e^{-T / 1.50 \mathrm{~s}}\right) e^{-(t-T) / 1.00 \mathrm{~s}} \quad[$ for $t \geq T$]
Of course, we were asked for charge, not voltage, for which we use $Q=C V$.
(b) When the switch is open (between $t=0$ and T) there is no current through it. When it is closed, however, current flows both from the battery AND from the capacitor, both in the same direction (from top to bottom). So they add. The battery just drives a current by ohm's law through the $50.0 \mathrm{k} \Omega$ resistor. The capacitor current we can get from the above voltage and the $100 \mathrm{k} \Omega$ resistor. So add them and we have:
$I=\frac{10.0 \mathrm{~V}}{100 \mathrm{k} \Omega}\left(1-e^{-T / 1.50 \mathrm{~s}}\right) e^{-(t-T) / 1.00 \mathrm{~s}}+\frac{10.0 \mathrm{~V}}{50 \mathrm{k} \Omega}[$ for $t \geq T]$
Note that we could replace $\mathrm{V} / \mathrm{k} \Omega$ with mA , but there is no particular need to do so.

Problem 4: Energy stored in a capacitor

You know that the power supplied by a battery is given by $\mathrm{P}=\mathrm{VI}$ (the battery voltage times the current it is supplying). You also know (from the Friday problem solving) that a resistor dissipates power (turns it into heat) at a rate given by $\mathrm{P}=I^{2} \mathrm{R}$.

Consider a simple RC circuit (battery, resistor R, capacitor C). Determine an expression for the energy stored in the capacitor by integrating the difference between the power supplied by the battery and that consumed by the resistor. Should the energy be related to the current through the capacitor or the potential across it?

We know that the current that flows in the circuit decays exponentially:

$$
I=I_{0} e^{-t / \tau}=\frac{\varepsilon}{R} e^{-t / R C} .
$$

We can integrate the power supplied by the battery minus the power consumed by the resistor then to get:

$$
\begin{aligned}
U_{\mathrm{C}} & =\int_{t^{\prime}=0}^{t} P_{\mathrm{B}}\left(t^{\prime}\right)-P_{\mathrm{R}}\left(t^{\prime}\right) d t^{\prime}=\int_{t^{\prime}=0}^{t} \frac{\varepsilon}{R} e^{-t^{\prime} / R C} \cdot \varepsilon-\left(\frac{\varepsilon}{R} e^{-t^{\prime} / R C}\right)^{2} R d t^{\prime} \\
& =\frac{\varepsilon^{2}}{R} \int_{t^{\prime}=0}^{t} e^{-t^{\prime} / \tau}-e^{-2 t^{\prime} / \tau} d t^{\prime}=\frac{\varepsilon^{2}}{R}\left[-\tau e^{-t^{\prime} / \tau}+\frac{\tau}{2} e^{-2 t^{\prime} / \tau}\right]_{0}^{t}=\frac{\varepsilon^{2}}{R} \frac{\tau}{2}\left[e^{-2 t^{\prime} / \tau}-2 e^{-t^{\prime} / \tau}\right]_{0}^{t} . \\
& =\frac{1}{2} C \varepsilon^{2} \cdot\left[e^{-2 t / \tau}-2 e^{-t / \tau}+1\right]=\frac{1}{2} C\left[\varepsilon\left(1-e^{-t / \tau}\right)\right]^{2}=\frac{1}{2} C V_{C}^{2}
\end{aligned}
$$

That is, the energy stored in the capacitor depends on the voltage across the capacitor (which makes sense, as that is a feature of the capacitor, while the current through it depends more on what resistor it happens to be hooked to).

Problem 5: Capacitors

In the circuit shown at right $C_{1}=2.0 \mu \mathrm{~F}, C_{2}=6.0 \mu \mathrm{~F}$, $C_{3}=3.0 \mu \mathrm{~F}$ and $\Delta V=10.0 \mathrm{~V}$. Initially all capacitors are uncharged and the switches are open. At time $t=0$ switch S_{2} is closed. At time $t=T$ switch S_{2} is then opened, proceeded nearly immediately by the closing of S_{1}. Finally at $t=2 T$ switch S_{1} is opened, proceeded nearly immediately by the closing of S_{2}.
 Calculate the following:
(a) the charge on C_{2} for $0<t<T$ (after S_{2} is closed)

As long as S 1 is open the battery is out of the circuit and hence none of the capacitors will have any charge on them.
(b) the charge on C_{1} for $T<t<2 T$

When S_{1} is closed, the battery is in series with C_{1} and C_{2}. The charge on them will thus be equal, and equal to the charge that an equivalent capacitor would have.

$$
\begin{gathered}
C_{\text {eqiv }}=\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1}=\left(\frac{1}{2.0 \mu \mathrm{~F}}+\frac{1}{6.0 \mu \mathrm{~F}}\right)^{-1}=1.5 \mu \mathrm{~F} \\
Q_{2}(T<t<2 T)=Q_{\text {cquiv }}=C_{\text {equivv }} \Delta V_{\text {equiv }}=(1.5 \mu \mathrm{~F})(10.0 \mathrm{~V})=15 \mu \mathrm{C}
\end{gathered}
$$

(c) the final charge on each capacitor (for $t>2 T$)

When S_{1} is opened, the battery and C_{1} are removed from the circuit. This means that the charge on C 1 is fixed at the value it was at, $Q_{1}=15 \mu \mathrm{C}$.
The charge on C_{2} will be shared with C_{3}, so that their potentials will be the same (since they are now in parallel). So:

$$
\begin{gathered}
V_{2}=Q_{2} / C_{2}=V_{3}=Q_{3} / C_{3} ; \quad Q_{2}+Q_{3}=Q_{2}\left(t=2 T^{-}\right) \\
\frac{Q_{2}}{C_{2}}=\frac{Q_{3}}{C_{3}}=\frac{Q_{2}\left(t=2 T^{-}\right)-Q_{2}}{C_{3}} \Rightarrow Q_{2} C_{3}=C_{2}\left(Q_{2}\left(t=2 T^{-}\right)-Q_{2}\right) \Rightarrow \\
Q_{2}=\frac{C_{2} Q_{2}\left(t=2 T^{-}\right)}{C_{2}+C_{3}}=\frac{6.0 \mu \mathrm{~F} \cdot 15 \mu \mathrm{C}}{6.0 \mu \mathrm{~F}+3.0 \mu \mathrm{~F}}=10 \mu \mathrm{C}=Q_{2} \Rightarrow Q_{3}=5 \mu \mathrm{C}
\end{gathered}
$$

Problem 6: RC Circuit

Consider the $R C$ circuit shown in the figure. Suppose that the switch has been closed for a length of time sufficiently long enough for the capacitor to be fully charged.

(a) Find the steady-state current in each resistor.

Since the capacitor represents an open circuit, there is no current through R_{3}. Therefore, all the charges flowing through R_{1} goes through R_{2} : hence $I_{1}=I_{2}$ and $I_{3}=0$. Now, all you need to do is to find a current flowing through the two resistors in series.

$$
I_{1}=I_{2}=\frac{\varepsilon}{R_{12}}=\frac{\varepsilon}{R_{1}+R_{2}}=\frac{9.00 \mathrm{~V}}{12.0 \mathrm{k} \Omega+15.0 \mathrm{k} \Omega}=0.333 \mathrm{~mA}=3.33 \times 10^{-4} \mathrm{~A}
$$

(b) Find the charge Q on the capacitor.

At equilibrium, the capacitor is fully charged and $\Delta V_{\text {cap }}$ is equal to the voltage drop across R_{2} since there is no current through R_{3} (and therefore the voltage drop across it is zero).

$$
\Delta V_{\text {cap }}=I_{2} R_{2}=\frac{R_{2}}{R_{1}+R_{2}} \varepsilon=\frac{15.0 k \Omega}{12.0 k \Omega+15.0 \mathrm{k} \Omega}(9.00 \mathrm{~V})=5.00 \mathrm{~V}
$$

Thus, the charge on the capacitor is given by

$$
Q=C \Delta V_{\text {cap }}=C \varepsilon=(10.0 \mu \mathrm{~F})(5.00 \mathrm{~V})=50.0 \mu \mathrm{C}=5.00 \times 10^{-5} \mathrm{C}
$$

(c) The switch is opened at $t=0$. Write an equation for the current I_{2} in R_{2} as a function of time.

With the switch opened, the capacitor discharges through the resistors, R_{2} and R_{3}. There is no emf in the circuit. You also need to notice R_{1} is no longer a part of the closed circuit and there is no current through it. Now, you should follow the discussion in Section 7.6.2 of the Course Notes with $R=R_{23}=R_{2}+R_{3}$ and $I=I_{2}=-I_{3}$. You'll then obtain

$$
q(t)=Q e^{-t / R_{2} C}
$$

and

$$
I_{2}(t)=-\frac{d q_{2}}{d t}=\left(\frac{Q}{R_{23} C}\right) e^{-t / R_{23} C}=\left(\frac{C \Delta V_{\text {cap }}}{\left(R_{2}+R_{3}\right) C}\right) e^{-t /\left(R_{2}+R_{3}\right) C}=0.278 e^{-t / 180 \mathrm{~ms}} \text { milliamps }
$$

(d) Find the time that it takes for the charge on the capacitor to fall to $1 / \mathrm{e}$ of its initial value.

$$
\frac{I_{2}(t)}{I_{2}(0)}=\frac{0.278 e^{-t / 180 \mathrm{~ms}}}{0.278 e^{-0 / 1 / 10 \mathrm{~ms}}}=e^{-t / 180 \mathrm{~ms}}=e^{-1}
$$

Thus,

$$
\frac{-t}{180 \mathrm{~ms}}=-1 \text { or } t=180 \mathrm{~ms}
$$

which is called "time constant (τ).

Problem 7: Experiment 4: Magnetic Fields of a Bar Magnet and Helmholtz Coil Pre-Lab Questions

Read Experiment 5 before answering these questions

Consider two bar magnets placed at right angles to each other, as pictured at left.
(a) If a small compass is placed at point P , what direction does the painted end of the compass needle point?

It points away from each magnetic North, which means toward the upper left corner (45 degrees if they are the same magnitude).
(b) If the compass needle instead pointed 15 degrees clockwise of where you predicted in (a), what could you qualitatively conclude about the relative strengths of the two magnets?

In order for it to point 15 degrees clockwise the second magnet must be stronger than the first. Since the total field is just a vector sum of the two we can see how much stronger.
$\tan 30^{\circ}=\frac{B_{1}}{B_{2}}=\frac{1}{\sqrt{3}} \Rightarrow B_{2}=\sqrt{3} B_{1}$

[^0]: ${ }^{1}$ We will typically say that "positive charge flows outward" even though in metals it's really electrons moving inward. This is a completely equivalent way of thinking about it for our purposes.

[^1]: ${ }^{2}$ For more details on Gauss's Law, see Chapter 4 of the Course Notes, Section 4.3 for info on conductors.

[^2]: 0% 1. Higher than at 11
 0% 2. Lower than at 11
 0% 3. The same as at 1174%

