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Problem Solving 5: RC Circuits

Group |ID (e.g. 6A Please Fill Out)

Names Jenw 1‘('{-(( { D autr ATV IOk e

Mehagl  Flamnglo,

Question 1: What is the current I (through the capacitor) at t=0" (just after switch is closed)?
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Question 5: Using Kirchhoff’s Loop Rules, obtain a differential equation for the charge g on the capacitor, \MJ\]

assuming R;=R,=R (in other words, the only current in the equation should be the current through the
capacitor, which can be rewritten in terms of dg/dt). T, - +— -T., v
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Question 6: What is the time constant for charging the capacitor?
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Question 7: Write an equation for the time dependence of the charge on the capacitor

< N {/h. /]
@ljh: %C_-_({ - ¢, R )\/

Question 8: What is the current I (through the capacitor) at t=T" (just after switch is opened)? [ Barrivy ofF¢ )
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Question 9: What are the currents I, and I, (through R, and R, respectively) at t=T"?

Question 10: Using Kirchhoff’s Loop Rules, obtain a differential equation for the charge g on the capacitor
after the switch has been opened, assuming R;=R,=R (in other words, the only current in the equation
should be the current through the capacitor, which can be rewritten in terms of dg/dt).
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Question 11: What is the time constant for discharging the capacitor?
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Question 12: Wrilc an equation for the time dependence of the charge on the capacitor after time T.
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Semmary of Class 17 8.02

Topics:  Magnetic Fields: Feeling Magnetic Fields — Charges and Dipoles
Related Reading: Course Notes: Chapter 8.1-8.3, 8.5-8.6, 8.8-8.9, 9.5

Experiments: (5) Magnetic Fields
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Today we begin a major new topic in the course — magnetism. In some ways magnetic fields

are very similar to electric fields: they are generated by and exert forces on electric charged.
particles.- There are a number of differences though. First of all, magnetic fields only

interact with (are created by and exert forces on) charged particles that are moving.

Secondly, the simplest magnetic objects are not rﬁm ke a point charged object) but

are instead dipoles.

This week we begin by defining the magnetic field and studying the forces on moving
charged objects in magnetic fields. In order to gain experience with magnetic fields we study
the fields created by bar magnets and currents in a lab.

Lorenz Force
The magnetic field is defined by measuring the force exerted on a

moving charged object. This force is called the Lorenz Force and

is given by -@B_(where q is the charge of the particle, v its
velocity and B the magnetic field). We then study the motion of
moving charged objects in a magnetic field. The fact that the force
depends on a cross product of the particle velocity and the field
can make forces from magnetic fields very non-intuitive.

The direction of the force ¥ = gV x B can be determined by the

right hand rule pictured at right (thumb in direction of v, fingers in direction of B, palm
shows direction of force). It is perpendicular to both the velocity of the charged particle and
the magnetic field, and thus charged particles will follow curved trajectories while moving in
a magnetic field, and can even move in circles (in a plane perpendicular to the magnetic
field). The ability to make charged particles curve by applying a magnetic field is used in a
wide variety of scientific instruments, from mass spectrometers to particle accelerators, and
we will discuss some of these applications in class including studying the motion of the a

moving charged particle in both an electric and magnetic field, F = g(E+vxB).

Dipole Fields
We will note that the magnetic fields you are most familiar with, those generated by bar

magnets and by the Earth, act like magnetic dipoles. Magnetic dipoles create magnetic fields
identical in shape to the electric fields generated by electric dipoles. We even describe them
in the same way, saying that they consist of a North pole (+) and a South pole (-) some
distance apart, and that magnetic field lines flow from the North pole to the South pole.
Despite these similarities, magnetic dipoles are different from electric dipoles, in that if you
cut an electric dipole in half you will find a positive charge and a negative charge, while if

e )
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Summary of Class 17 8.02

you cut a magnetic dipole in half you will be left with two new magnetic dipoles. There is no
such thing as an isolated *“North magnetic charge™ (a magnetic monopole).

form the current. We will study how moving charged particles create magnetic fields in detail
in the next class. Today we gain some experience by measuring the fields created by bar
magnets and current in Experiment 3.

Experiment 5: Magnetic Fields of a Bar Magnet and Current Loops
Preparation: Read pre-lab

In this lab you will measure the magnetic field generated by a bar magnet and two coils old
currents, thus getting a feeling for magnetic field lines. Recall that as opposed to electric
fields generated by charged particles, where the field lines begin and end at those charged
particles, magnetic fields generated by dipoles have field lines that are closed loops (where
part of the loop must pass through the dipole).

Important Equations
Force on Moving Charges in Magnetic Field: F=¢gVvxB
Force on Moving Charges in an Electric and Magnetic Field: F=g(E+

Summary for Class 17 17 p. 2/2
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Class 17: Outline
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Cross Product: Magnitude

Computing magnitude of cross product A x B:

Kl ’ﬁl sin @

-

C=AxB

C

Cross Product: Direction
Right Hand Rule #1:

¢ = A

 For this method, keep your hand flat!
1) Put Thumb (of right _hand) along A

o fin

Class 15

Week 07 Day 1




PRS Questions:
Right Hand Rule

PRS: Cross Product
What is the direction of Ax B given the foﬂ_owing tw

vectors? .

—

= b o
: 0%1 up . ‘£ .
0% 2. down
% 3. left

THY

I= ~ PRS: Cross Product

What is the direction of A x B given the following two
~ vectors?
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Moving Charges Feel Magnetic Force

Week 07 Day 1
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How Big is a Tesla?
Earth’s Field 5x 10T = 0.5 Gauss
Brain (at scalp) =1 il
RetigerstorMaonet:. . .

- InsideMRI
Good NMR Magne

Class 15 |

{r
T




Gravitational — Electric Fields

‘Mass m Charge g (%)

~ Demonsration:
. TNinField

' How a CRT Works: It could...
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How a CRT Works: More Typical

Fluorescant Screen

PRS: Force Direction
Is this picture (deflection direction) correct?
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Week 07 Day 1

What Kind of Motion in Snfe iwagnolim 01 Cxdm
- Uniform B Field?

Group Problem: Cyclotron
Motion

x X K% A charged particle with charge
~ qis moving with speed v in

- auniform magnetic field B
+, pointinginto the figure.

~ Cyclotron Motion: Solution

x %X [x x x (1)r:fédius of the circle
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@T: period of the motion
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Putting it Together: Lorentz Force

Charges Feel...

Fo=qE  F,=qvxB

Electric Fields _ Magnetic Fields

Velocity Selector

+
; gvxB
i
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PRS Question:
_Hal[ Effect

Week 07 Day 1

A conductin
applied out
the charge

PRS: Hall Effect

g slab has current to the right. A B field is
of the page. Due to magnetic forces on
carriers, the bottom of the slabis ata

higher elecfric potential than the top of the slab.
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Demonstration:
Magnetic Field Lines
~ from Bar Magnet

L]

Demonstration:
Compass (bar magnet) in
Magnetic Field Lines
from Bar Magnet

Magnetic Field of Bar Magnet
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(1)A magnet has two pntes North (N) and South (S)
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(2 Magnelic field lines leave from N, end at S
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Bar Magnets Are Dipoles!

S

-7 .. sCreate Dipole Field

® e (;J « Rotate to orient with Field
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Magnetic Monopoles?
Electric Dipole Magnetic Dipole
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2monopoles (charges)  When cut: 2 dipoles

. PRS.

Field inside a Magnet
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Week 07 Day 1

PRS: Magnetic Field Lines [is
The picture shows the field lines outside a

~ permanent magnet The field lines inside the
magnet point: : R R _

Fields: Grav., Electric, Magnetic
Massm  Charge q (¢)

No
o m e g Magnetic
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- Experiment 5:
Magnetic Fields:
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PRS Question:
Partl B Fleld from Bar Magnet

PRS: Bar Magnet B Field %‘

Imagine one of the small compasses sitting on a
table with the Earth’s geographic North as indicated.
- A bar magnet is slowly slid towards the compass as
indicated. What happens fo the RED end of the

compass needle? : +ii i
e 1-3' .
o ©

Visualization:
- Bar Magnet &
~ Earth’s Magnetic Field
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Week 07 Day 1

'PRS Question:
Part 3: B Field from Helmholtz

PRS: Helmholtz

Identify the three field profiles that you measured as Single (Sgih.. i
Helmholtz (Hh) or Anti-Helmholtz (A-H):
Top Coil

Bottom: Coil

Magnetic Field Amplitude
-} \
(P

Field Pressures and Tensions:
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Tension and Pressures
Transmitted by E and B

E & B Fields:

« Transmit tension along field dlrectlon
~ (Field lines want to pull straight)

_« Exert pressure perpendlcular to ﬁeld
(Field lines repel)

Week 07 Day 1

Example of E PresUre ension

(Animation)

Example of B Pressure/Tension

(Animation)
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16



Example of B Pressure/Tension

('Anlrhaiion)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 5: Magnetic Fields of a Bar Magnet and Helmholtz Coil

OBJECTIVES

1. To learn how to visualize magnetic field lines using compasses and a gauss meter

2. To examine the field lines from bar magnets and see how they add

3. To examine the field lines from a Helmholtz coil and understand the difference
between using it in Helmholtz and anti-Helmholtz configurations.

PRE-LAB READING
INTRODUCTION

In this lab we will measure magnetic field lines using two methods. First, we will use
small compasses that show the direction, but not magnitude, of the local magnetic field.
Next we will use a gauss meter, Wi wfuch ‘measures the magnitude of the magnetic field
along a single, specific axis and thus does not allow as easy a visualization of the

magnetic field direction. We will measure fields both from bar magnets and from a
Helmbholtz coil.

APPARATUS

1. Mini-Compass
You will receive a bag of mini-compasses (Fig. 1a) that indicate the magnetic field
direction by aligning with it, with the painted end of the compass needle pointing away
from magnetic north (i.e. pointing in the direction of the magnetic field). Conveniently,
the magnetic south pole of the Earth is very close to its geographic north pole, so
compasses tend to point North (Fig. 1b). Note that these compasses are cheap (though
not necessarily inexpensive) and sometimes either point in the direction opposite the way
they should, or get completely stuck. Check them out before using them.

(a) (b) South Magnetic pole

of earth

North pole
of compass

Y

Figure 1 (a2) A mini-compass like the ones we will be using in this lab. (b) The painted
end of the compass points north because it points towards magnetic south.

E03-1



2. Science Workshop 750 Interface

As always, we will use the Science Workshop 750 interface, this time for recording the
magnetic field magnitude as measured by the magnetic field sensor (gauss meter).

3. Magnetic Field Sensor

The magnetic field sensor measures the strength of the magnetic field pointing into one of
two white dots painted at its measurement end (far left in Fig. 2). Selecting “radial”
mode records the strength of the field pointing into the dot on the side of the device,
while “axial” records the strength of the field pointing into the dot on the end. There is
also a tare button which sets the current field strength to zero (i.e. measures relative to it).

&3

Figure 2 Magnetic field sensor, showing (from right to left) the range select switch, the
tare button, and the radial/axial switch, which is set to radial.

4. Helmholtz Coil

Consider the Helmholtz Coil Apparatus shown in Fig. 3. It consists of two coaxial coils
separated by a distance equal to their common radii. The coil can be operated in 3
modes. In the first, connections are made only to one set of banana plugs, pushing
current through only one of the coils. In the second, a connection is made between the
black plug from one coil to the red plug from the other. This sends current the same
direction through both coils and is called “Helmholtz Mode.” In the final configuration
“Anti-Helmholtz Mode” a connection is made between the two black plugs, sending
current in the opposite direction through the two coils.

Figure 3 Helmholtz Coil Apparatus
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4. Power Supply

Because the Helmholtz coils require a fairly large current in order to create a measurable
field, we are unable to use the output of the 750 to drive them. For this reason, we will
use an EZ dc power supply (Fig. 4). This supply limits both the voltage and the current,
putting out the largest voltage possible consistent with both settings. That is, if the output
is open (no leads connected, so no current) then the voltage output is completely
determined by the voltage setting. On the other hand, if the output is shorted (a wire is
placed between the two output plugs) then the voltage is completely determined by the
current setting (¥ = IRshor).

Figure 4 Power Supply for Helmholtz Coil

The power supply allows independent control
of current (left knob) and voltage (right knob)
with whichever limits the output the most in
control. The green light next to the “CV” in
this picture means that we are in “constant
voltage” mode — the voltage setting is limiting
the output (which makes sense since the
output at the bottom right is not hooked up so

there is currently no current flow).

GENERALIZED PROCEDURE

This lab consists of three main parts. In each you will measure the magnetic field
generated either by bar magnets or by current carrying coils.

Part 1: Mapping Magnetic Field Lines Using Mini-Compasses

Using a compass you will follow a series of field lines originating near the north pole of a
bar magnet.

Part 2: Constructing a Magnetic Field Diagram
A pair of bar magnets are placed so that either their opposite poles or same poles are
facing each other and you will map out the field lines from these configurations.

Part 3: Helmholtz Coil
In this part you will use the magnetic field sensor to measure the amplitude of the
magnetic field generated from three different geometries of current carrying wire loops.

END OF PRE-LAB READING

E03-3



IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file and start up the program.
2. Connect the Magnetic Field Sensor to Analog Channel A on the 750 Interface

3. Without leads connected to the power supply, turn it on and set the voltage output to
2V. Turn it off.

NOTE: When working with bar magnets, please do NOT force a north pole to touch a
north pole (or force south poles to touch), as this will demagnetize the magnets.

MEASUREMENTS
Part 1: Mapping Magnetic Field Lines Using Mini-Compasses

1. Tape a piece of brown paper (provided) onto your table.

2. Place a bar magnet about 3 inches from the far side of the paper, as shown below.
Trace the outline of the magnet on the paper.

" 1|3 inches, more or less

Paper Table edge

3. Place a compass near one end of the magnet. Make two dots on the paper, one at
the end of the compass needle next to the magnet and the second at the other end
of the compass needle. Now move the compass so that the end of the needle that
was next to the magnet is directly over the second dot, and make a new dot at the
other end of the needle. Continue this process until the compass comes back to
the magnet or leaves the edge of the paper. Draw a line through the dots and
indicate with an arrowhead the direction in which the North end of the needle
pointed, as shown below

N S

4
Y
\

\

R
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4. Repeat the process described above several more times (~4 field lines), starting at
different locations on the magnet. Work fairly quickly — it is more important to
get a feeling for the shape of the field lines than to map them precisely.

Question 1:

e Mostly your field lines come back to the bar magnet, but some of them wander off and
never come back to the bar magnet. Which part of your bar magnet do the ones that
wander off never to return come from? Where are they going?

Part 2: Constructing a Magnetic Field Diagram
2A: Parallel Magnets

1. Arrange two bar magnets and a series of compasses as pictured here:

“%pcar’

K\ 3
O (:) O (:QV (ng O

O O 0O 0 0

2. Sketch the compass needles’ directions in the diagram. Based on these compass
directions, sketch in some field lines/ ‘ —

-

e

Question 2: p : L ———— e e
Is there any place in this region where the magnetic field is zero? If so, where? How can
you tell?
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Question 3:

Where is the magnetic field the strongest in this situation? How can you determine this
from the field lines?

h ‘”.': i f [ 12 ‘
@D'/ wegn Y A L 9’.‘6" 4 }5 — b 1 H 7 are } N Cloiee.

2B: Anti-Parallel Magnets

1. Arrange two bar magnets and a series of compasses as pictured here:

0 £ 0a9°
Y B
Ng@‘o S
/ < 227 ()
o d o ° T\

2. Sketch the compass needles’ directions in the diagram. Based on these compass
directions, sketch in some field lines.

Question 4:

Is there any place in this region where the magnetic field is zero? If so, where? How can
you tell?

Ln 4 miolp ; ('_"‘(.‘ff-{‘ dar (@ i AU{‘&/D d;/f?‘r‘ /_(_'f, _
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Part 3: Helmholtz Coil

In this part we are going to measure the z-component of the field along the z-axis (central
axis of the coils)

3A: Using a Single Coil

1. With the power supply off, connect the red lead from the power supply to the red
plug of the top coil, and the black lead to the black plug of the top coil. Turn the
current knob fully counter-clockwise (i.e. turn off the current) then turn on the
power supply and slowly turn the current up to ~ 0.6 A.

2. Put the magnetic field sensor in axial mode, set its gain to 10x and place it along
the central axis of the Helmholtz coil, pushing into the indentation at the center of
the holder. Tare it to set the reading to zero.

3. Start recording magnetic field (press Go) and raise the magnetic field sensor
smoothly along the z-axis until you are above the top coil. Try raising at different
rates to convince yourself that this only changes the time axis, and not the
measured magnitude of the field.

4. Sketch the results for field strength vs. position

Up 7 Bottom Coil Topl Coil

;

o-j —

B Field

1
i [ e i e i i et e

Down]

@) AxisT_

Up

'Distance Along the Vertica

Question 5:

Where along the axis is the field from the single coil the strongest? What is its
magnitude at this location? How does this compare to your pre-lab prediction?

(U (@ ';!'i . ( { " §[ f (¢ '
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3B: Helmholtz Configuration

1. Move the black lead to the black terminal of the lower coil, and connect a lead
from the black terminal of the upper to the red terminal of the lower, sending
current in the same direction through both coils. Set the current to ~ 0.3 A

2. Follow the procedure in 3A to again measure field strength along the z-axis,
plotting on the below figure.

Up 7 Bottom Coil Top Call
e i ! | S~
v | l \\,\
i | l
i 1
E _. | I
.q_) 1 |
5U’ ’.4] ‘/J Ll— 0 - : :
m ._- | |
- | l
i | h
4 : |
—. ] 1
Down : :

'Distance Along the Vertical (Z) Axis™

Up

Question 6:

Where along the axis is the field from the strongest? What is its magnitude at this
location? How does this compare to your pre-lab prediction. Aside from the location and
strength of the maximum, is there a qualitative difference between the single coil and the
Helmholtz coil field profile? If so, what is the difference?

' J{.‘ . ¥ s )
, } [ ;r / ;"] p W,
v

3C: Anti-Helmholtz Configuration

1. Swap the leads to the lower coil, keeping the current at ~ 0.3 A, although now
running in opposite directions in the top and bottom coil.

2. Follow the procedure in 3A to again measure field strength along the z-axis.
L{ (5 ) ‘ | /"‘
/
P
. = A
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Up 7] Bottom Coil TopI Coil

B Field
,©

DOWn. 1 I !t | 1 U
Distance Along the Vertica

(Z) Axis' '
Up
Question 7:

What are two main differences between the field profile in Anti-Helmholtz configuration
and in Helmholtz configuration? Does the maximum field strength match your prediction
from the pre-lab?

%Qf!i;]n_ nu/ 0

Further Questions (for experiment, thought, future exam questions...)

e What does the field profile look like if we place two bar magnets next to each other
rather than collinear with each other (either parallel or anti-parallel to each other).

e What does the radial field profile (e.g. the x component of the field) look like along
the z-axis of the Helmholtz coil?

e What do the radial and axial field profiles look like moving across the top of the
Helmbholtz coil rather than down its central axis?

e ]t looks as though there is a local maximum of magnetic field strength at some point
on the axis for both the single coil and Helmholtz coil configurations (at least looking
at them along the z-axis only). If we consider them three dimensionally are they still
local maxima? That is, if we move off axis does the magnitude of the field also
decrease as we move away from these maxima points?
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Summary of Class 18 8.02

Topics:  Magnetic Fields: Creating Magnetic Fields — Biot-Savart
Related Reading: Course Notes: Sections 8.3-8.4,9.1-9.2, 9.10.1,9.11.1-9.11.4

Experiments: (6) Torque on Magnetic Dipoless
Topic Introduction

Today we will focus on the creation of magnetic fields. The presentation is analogous to our
discussion of charged particles creating electric fields. We first describe the magnetic field
generated by a single charged particle and then proceed to collections of moving charges
(currents), the fields from which we will calculate using superposition — just like for
continuous charge distributions. We then calculate the forces that current carrying wires and
loops feel in magnetic field. In particular we will perform a simple lab where we observe the
motion of a dipole in the field created by two current carrying coils.

Field from a Single Moving Charge
Next we turn to the creation of magnetic fields. Just as a single electric charge creates an
electric field which is proportional to charge q and falls off as r'>, a single moving electric
charge additionally creates a magnetic field given by

4 r°
Note the similarity to Coulomb’s law for the electric field — the field is proportional to the
charge g, obeys an inverse square law in r, and depends on a constant, the permeability of
free space pp = 41 x 107 T m/A. The difference is that the field no longer points along # but
is instead perpendicular to it (because of the cross product).

If you haven’t worked with cross products in a while, you should read the vector analysis
review module. Rapid calculation of at least the direction of cross-products will dominate
the rest of the course you need to understand what they mean and how to compute them.

Field from a Current: Biot-Savart Law
We can immediately switch over from discrete charges to currents by replacing g v with Ids :

dB = Mo ldsxr
dr  »?
This is the Biot-Savart formula, and, like the differential form of Coulomb’s Law, provides a
generic method for calculating fields — here magnetic fields generated by currents. The ds in
this formula is a small length of the wire carrying the current /, so that / ds plays the same
role that dg did when we calculated electric fields from continuous charge distributions. To
find the total magnetic field at some point in space you integrate over the current distribution

(e.g. along the length of the wire), adding up the field generated by each little part of it ds.

Right Hand Rules

Because of the cross product in the Biot-Savart Law, the direction of the resulting magnetic
field is not as simple as when we were working with electric fields. In order to quickly see
what direction the field will be in, or what direction the force on a moving particle will be in,
we can use a “Right Hand Rule.” At times it seems that everyone has their own, unique,
right hand rule. Certainly there are a number of them out there, and you should feel free to
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Summary of Class 18 8.02

use whichever allow you to get the correct answer. Here I describe the three thatI use
(including one we won’t come to until next week).

The important thing to remember is that cross-products yield a result which is perpendicular
to both of the input vectors. The only open question is in which of the two perpendicular
directions will the result point (e.g. if the vectors are in the floor does their cross product
point up or down?). Using your RIGHT hand:

1) For a generic cross-product (é =AxB): open your hand perfectly flat. Put your thumb
along A and your fingers along B . Your palm points along C .

2) For determining the direction of the magnetic field generated by a current: fields wrap
around currents the same direction that your fingers wrap around your thumb. At any point
the field points tangent to the circle your fingers will make as you twist your hand keeping
your thumb along the current.

3) For determining the direction of the dipole moment of a coil of wire: wrap your fingers in
the direction of current. Your thumb points in the direction of the North pole of the dipole
(in the direction of the dipole moment p of the coil).

X

Lorenz Force on Currents

Summary for Class 18 p. 2/4



Summary of Class 18 8.02

Since a current is nothing more than moving charges, a current carrying wire will also feel a

force when placed in a magnetic field: F = JL x B (where [ is the current, and L is a vector
pointing along the axis of the wire, with magnitude equal to the length of the wire).

Magnetic Dipole Moment

The rest of the class will be spent doing an experiment where you get to observe the motion
of a magnetic dipole in an external field created by a Helmholtz coil (the same one you
measured the field profile of last week). In thinking about the field profile of the Helmholtz
coil, remember that coils are magnetic dipoles with the dipole moment ji = JA , where I is the

current in the loop and the direction of A, the area vector, is determined by a right hand rule:

Right Hand Rule for Direction of Dipole Moment

To determine the direction of the dipole moment of a coil of wire: wrap your fingers in the
direction of current. Your thumb points in the direction of the North pole of the dipole (in
the direction of the dipole moment p of the coil).

Magnetic Dipole Moments in External Fields
You will observe the torque that a dipole can feel in an external field. Recall that the magnet

will only feel a torque if not aligned with the external field — ¥ = ji x B— and that the
direction of the torque tends to align the dipole with the external field.

There will only be a force on the dipole if it is in a non-uniform field. If aligned with the
external field, the dipole will seek higher field (it will climb the gradient) in order to

minimize its energy U =—ji-B.

Magnetic Dipole Moment

Next we turn our attention to loops of current, which act in the same way as magnetic
dipoles, where the dipole moment is written ji = JA , where / is the current in the loop and
the direction of A, the area vector, is determined by a right hand rule:

Experiment 6: Torques on Magnetic Dipoles in a Magnetic Field
Preparation: Read pre-lab and answer pre-lab questions

This lab will be provide experience observing the torquea on magnetic dipoles in uniform
magnetic fields. To investigate this we use the “TeachSpin apparatus,” which consists of a
Helmbholtz coil (two wire coils that can produce either uniform or non-uniform magnetic
fields depending on the direction of current flow in the coils) and a small magnet which is
free both to move and rotate.

Important Equations

Summary for Class 18 p. 3/4




Summary of Class 18

Biot-Savart — Field created by moving charge; current: B = Ho

8.02

Force on Current-Carrying Wire of Length L:
Magnetic Moment of Current Carrying Wire:

Torque on Magnetic Moment:
Energy of Moment in External Field:

Summary for Class 18

_q_V_’x_f'_ . dB= u, 1 a’§2xf'
4 r° 4r r
F=/LxB
fi = JA (direction from RHR above)
F=fixB
U=-ji-B

p. 4/4
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Class 18: Outline

Hour 1 & 2:

~ Magnetic Fields, Creating Fields:
Biot-Savart Law

'Souréés of M_agne{ié Fields

W_hat creates fields?

Magnets — more about this later
- The Earth How's that wo_r_k?_
" Movmg charges'

Class 18

Week 06, Day 1




Week 06, Day 1

“
Electric Field Of Point Charge
An electric charge produces an electric field:
Magnetic Field Of Moving Charge
Moving charge with velocity v produces magnetic field:
“N
_ Animation: 3
Field Generated by a Moving Charge
;\I

Class 18 2



. Moving .
Continuous,charge distributions:

~ Currents & Biot-Savart

From Charges to Currents?

= 5 dB P
dBocdgv ;

-=(char.gé)—IE

The Biot-Savart Law

Current element of length ds carrying current |
produces a magnetic field:

dBrP

Class 18

Week 06, Day 1




The Right-Hand Rule #2

= " e
- Current Nowing ™ wd
I.|I rection e

| inae

- PRS Questions:
_B f:elds Generated by Currents

ohan

PRS: Biot-Savart 3%
The magnetic field at P points towards the fi -

+xdirecon
tydirection =

Class 18

Week 06, Day 1




Week 06, Day 1

;] PRS: Bent Wire
The magnetic field at P is equal to the field of:

0%

1. asemicircle -
0% 2. asemicircle plus the field of a long straight wire
0% 3. asemicircle minus the field of a long straight wire
0% 4. none of the above
: P
Demonstration:

Field Generated by Wire

b B

Demonstration:
Jumping Wire

Pib-is

Class 18 5



Week 06, Day 1

Magnetic Force on
Current-Carrying Wire

Magnetic Force on
Curr_ent-Ca!jrying Wire

' PRS Questlon' .
Paral!el Current_Carrymg W:res

Class 18 | 6



Week 06, Day 1

PRS: Parallel Wires

Consider two parallel current

carrying wires. With the currents

running in the same dxrectlon the / I

wires are . oy - -

0% 1.) attracted (likes attract?) ] — I A ﬂt\

0% :..repe![ed (Ilkes_fepe!?) . - S )
A .)r-'\

- Demonstratlon' - -
Parallel & Anti-Parallel Currents

- Can we understand why?

Whether they attract or repel can be seen in 11, wb  lowad  Erced
the shape of the created B field

Class 18 b j



Week 06, Day 1

PRS: Current Carrying Coils

0% 1. parallel currents that attract
0% 2. parallel currents that repel _
0% 3. opposite currents that attract ﬁ

% ::@oppgsite,_t:pqents that repel @

Fisd

Force on Dipole from Dipole:
Anti-Parallel Alignment

PH-T3

Force on Dipole from Dipole:
Parallel Alignment

L skn

Class 18 8



Applications

P88

Speakers

Basic Speaker diaphragm

basket
o Press here 10 disaet the speaker

dust cap

Speakers

How Speakers Work JGETLIETG]

| suspension

basket

dust cap

s

Class 18

Week 06, Day 1




Example : Coil of Radius R

Consider a coil with radius R and current /

Example : Coil of Radius R
Consider a coil with radius R and current /

1 1) Thinkaboutit:

i

Animation: Magnetic Field
Generated by a Current Loop

Class 18

Week 06, Day 1

V, E.".

-

10



Week 06, Day 1

Example : Coil of Radius R
In the circular part of the coil...

dsLf — |dSxi|=ds

. I Biot-Savart:

Example : Coil of Radius R

Consider a coil with radius R and current /

4z R "

A
J N

r Oul:" of pes4e

Class 18 11



Group Problem:
B Field from Coil of Radius R

Consider a coil made of semi-circles of radii R and 2R
and carrying a current /

What is B at p_oini P?

Group Problem:
B Field from Coil of Radius R

Consider a coil with radius R and carrying a current /

1 Whatis B at point P? WARNING:
o — ~This is much
harder than
the previous
_problem
Wayi

Magnetic Dipole Moment

My B=IAR=TA

Class 18

Week 06, Day 1

12



Torque on a Current Loop ina
~ Uniform Magnetic Field

Group Problem: Current Loop

Place rectangular current loop in uniform B field

— — 1)What is the net force on
i '0) this loop?
e R 2) What is the net torque
on this loop?
® ®4 ¢ 3) Describe the motion the

Torque on Rectangu!ar Loop

E. .
i
@) :% o
B, T A An abn area vcctor
A=+k, ﬁ=B;

Week 06, Day 1

e butthereis atorque

Class 18

13



Week 06, Day 1

Magnetic Dipole Moment
~ Define Magnetic Dipole Moment:

. ji=U4n=IA

Animation:
Another Way To Look At Torque

Class 18 ie



Week 06, Day 1

_ PRS Question:
~ Force on Magnetic Dipole

PRS: Dipole in Field [l
sl #

From rest, the coil above will: L
. o% 1. roateciockwiss,notmove
: rotale counterclockwise, notmove

DC Motor

ot
i

‘R

:E‘?.

Nownual

u

.

Class 18 15



Energy of Magnetic Dipole

_.UD pB_

zpale

':Thss equatlon glves you a general way to ‘E '

Experiment 6:
Magnetic Forces on Dipoles

This is a little tricky. We 'w“ill
' ead:you through_wnth Iots .

First: Set up current supply

= Open circuit (disconnect a lead)
» Turn current knob full CCW (off)
~ Increase Vbltage“ fo~12V.
- —Thiswill actas a protection: V<12V
Recennect leads in Helmholtz mode

Class 18

Week 06, Day 1

16



Field Profiles: B vs. Height

VERY/

UNIFORM!

Single Cail v : Helmholtz

Anti-Helmholtz
__ ZERO
. ~ FIELD!

ris-

Week 06, Day 1

0%
0%
0%
0%

s b b

PRS: Dipole in Helmholtz

A randomly aligned dipole at the center of a
Helmholtz coil will feel:

a force but not a torque
a torque but not a force
both a torque and a force
neither force nor torque

Pis-

Next:

Dipole in Helmholtz (Q1-2)

» Set in Helmholtz Mode (~1 A)
 Turn off current

» Put dipole in center (0 on scale)

* Randomly align using bar magnet
= Turn on current

__ :What__ happens?

Pibe

Class 18

17



Week 06, Day 1

PRS: Moving in Helmholtz

When moving through the above field profile, a
dipolemit: =~ =~ .. _

0% 1. Never rotéte
0% 2. Rotate once
0% 3. Rotate twice

Class 18 18



PRS:_Answer' Bent le

~ Answer: 2. Semicircle + infinite wire










MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Solutions: Current Carrying Coil

Problem: Consider a coil consisting of two semi-circles of radii R and 2R
carrying a current I. Calculate the magnetic field at the center, point P.

IQQI‘{":;’)::.XJ'_'..‘ !’l fumn a

Solution: (oo} toe }
This is very similar to the demonstration we dxd of a single circle, instead now we will integrate
from 0 to = instead of 0 to 2n to get around each semi-circle. Each semi-circle creates a field in
the same direction (out of the page) so we can just superimpose (add) them.

it :
Qe

So, we will use the Biot-Savart formula, immediately getting rid of the vectors:

B = yolds:w = deyOId_f:yﬂfr'aiﬁzpDIdg
4z r* 4z r° 4m r° Adzr
where r is either R or 2R, depending on which side we are integrating and & is the angular

variable that let’s us move around the circle.

The integral is easy since everything is a constant, and for each semi-circle we get:

1
D= J ol do = 4”0 _H
4y r 4r

6=0

Now we just add the fields together from the two semi-circles:

_atL 13! out of the page
4 \R 2R R

In Class Problem Solution Class 17 p. lofl



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Solutions: Magnetic Field along Central Axis of Current Carrying Coil

Problem: Calculate the magnetic field at a point P along the axis
of a loop of current of radius R.

I
Solution:

As always, the first step is to think about the problem a little. Since we have a loop of current
every point on that loop will contribute to the magnetic field at P. We can calculate the direction
and how much using the Biot-Savart formula:
B = Myl ds j< r
dr  r
Now redraw the above picture, labeling everything in this formula — we will pick one 45 on the
loop and see what @B it makes:
Note that this is slightly more
¥ complicated than the case we
looked at before — the field at the

center of the loop. Here the dB is
at an angle to the axis (you can see
this by using the right-hand rule).

Also note that the ds I chose is
arbitrary. We have to do it for
every ds around the loop. If I had
chosen the point at the bottom of the

loop the dB would be flipped
across the x-axis (pointing in the
© negative y direction) but would be

the same magnitude. If I had picked
the point at the left or right of the loop then the field would be in the xz plane instead of the xy
plane.

When we integrate around the loop we will see that all the non-x components will vanish (by
symmetry) and that only the x-component survives. So we will only calculate the x-component:

dB, = dBcost =’u—°]Mcosé = AlR 3 a’s? 5 Since cos@ = i and r = (x> + R*)"?
dr  r dr (x*+R°)"" r

-
Note that there was no sin(#) term from the cross product because s and r are perpendicular.
Finally, we just need to integrate around the loop:

S P
* 4zt +RY)? Ut 4+ RO

In Class Problem Solution Class 17 p.lofl



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Solutions: Force and Torque on a Current Loop in a Uniform Magnetic
Field

Problem: Consider the current carrying loop at right which
sits in a uniform external magnetic field B. What is the force
and torque on the loop? What motion does it make?

Solution:

1) What is the net force? :
The forces on the top and bottom (legs 1 & 3) of the loop are @ i
both zero, as the current is parallel to the magnetic field. The e
forces on legs 2 & 4 are equal and opposite and hence cancel. f b i

So the net magnetic field is zero.

2) What is the net torque?
The force on leg 2 is out of the page and the force on
F; leg 4 is into the page, so there will be a torque up
s B (which means that the loop wants to rotate into the
: page on the right). To calculate its magnitude we need
\ ks to arbitrarily choose an axis of rotation. I’ll pick leg 2.
N\ Loy ;
N : ></,-® Then the torque only comes from leg 4 and we have:

o e o g :
N # = FxF = bix JaB(~k) = IabBj

RN

Y

So what happens to the loop due to this torque? It will rotate until it has rotated 90 degrees. At
this point the forces on legs 2 and 4 will be “outward,” making the loop want to expand rather
than rotate. So at this point the loop won’t want to rotate any more — it is an equilibrium position.
Of course the loop will already have angular momentum from the motion it just underwent
meaning that it will continue past this equilibrium point and then undergo harmonic motion

about it.

In Class Problem Solution Class 17 p.lofl



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 6: Forces and Torques on Magnetic Dipoles

OBJECTIVES

1. To observe and measure the forces and torques acting on a magnetic dipole
placed in an external magnetic field.

REMARK: We will only measure the torque on the dipole, (parts 1-3 below). If you
have the time you may want to try and observe the forces on the dipole in parts 4-5
but it is not required.

PRE-LAB READING
INTRODUCTION

In this lab you will suspend a magnetic dipole (a small but strong bar magnet) in the field
of a Helmholtz coil (the same apparatus you used in Expt. 5). You will observe the force
and torque on the dipole as a function of position, and hence external field.

The Details: Magnetic Dipoles in External Fields

As we have discussed in class, magnetic dipoles are characterized by their dipole moment
4, a vector that points in the direction of the B field generated by the dipole (at the center

of the dipole). When placed in an external magnetic field B, they have a potential energy
UDipale = -ﬁ' ' B

That is, they are at their lowest energy (“happiest”) when aligned with a large external

field

Torque

When in a non-zero external field the dipole will want to rotate to align with it. The
magnitude of the torque which leads to this rotation is easily calculated:
dU d —~
T=——=———uBcos(8)= uBsin(f)=|nixB
20 =" ag"5e(0)=1Bsin(0)=[pxB
Again, the direction of the torque is such that the dipole moment rotates to align with the
field (perpendicular to the plane in which g and B lie, and obeying the right hand rule

that if your thumb points in the direction of the torque, your fingers rotate from u to B.

Force

E04-1



In order to feel a force, the potential energy of the dipole must change with a change in
its position. If the magnetic field B is constant, then this will not happen, and hence the
dipole feels no force in a uniform field. However, if the field is non-uniform, such as is
created by another dipole, then there can be a force. In general, the force is quite
complex, but for a couple of special cases it is simple:

1) If the dipole is aligned with the external field it seeks higher field

2) If the dipole is anti-aligned it seeks lower field

These rules can be easily remembered just by remembering that the dipole always wants
to reduce its potential energy. They can also be remembered by thinking about the way
that the poles of bar magnets interact — opposites attract while likes repel.

In one dimension, when the dipole is aligned with the field, a rather straight forward
mathematical expression may also be derived:

Pt _2 up_ 5

& & &
Here it is important to note that the magnitude of the force depends not on the field but on
the derivative of the field. Aligned dipoles climb uphill. The steeper the hill, the more
force they feel.

APPARATUS

1. Teach Spin Apparatus

(@) ® K %,«

!_;srn‘ns

E04-2



Figure 1 The Teach Spin Apparatus (a) The Helmholtz apparatus has a tower assembly
(b) placed along its central axis. The tower contains a disk magnet which is free to rotate
(on a gimbal) about an axis perpendicular to the tube and constrained to move vertically.
The amount of motion can be converted into a force knowing the spring constant of the
spring.

E04-3



The central piece of equipment used in this lab is the Teach Spin apparatus (Fig. 1). It
consists of the Helmholtz coil that you used in experiment 5, along with a Plexiglas tube
containing a magnet on a spring. The magnet can both rotate and move vertically,
allowing you to visualize both torques and the forces on dipoles.

It will be useful to recall some results from experiment 5 involving the Helmholtz coil.
There are three different modes of operation — you can energize just a single coil, both
coils in parallel (Helmholtz configuration) or both coils anti-parallel (anti-Helmholtz).
The field profiles (as well as the derivatives of those profiles — necessary for thinking
about force) look like the following:

Top Coil

Bottom: Coil |

elmholtz
-

Magnetic Field Amplitude
o
|

-2 -1 0 1 2
Distance along the central axis (z/R)

Top Caoil

Bottom: Coil |

v
i
i
i
'
1]
1l
Il
1
1
'

Helmholtz

N

-+-Single Coll

B L L S A

Derivative of Magnetic Field
o
|

I ! ]
-2 -1 0 1 2
Distance along the central axis (z/R)

Figure 2: The z-component of the magnetic field and its derivative for the three modes
of operation of the Helmholtz coil. See page the last page of this write-up for an “iron-
filings” representation of these three field configurations.
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2. Power Supply

We will also use the same power supply as in experiment 4 in order to create large
enough fields in the Helmholtz apparatus to exert a measurable force on the magnet.

GENERALIZED PROCEDURE

This lab consists of five main parts. In each you will observe the effects (torque & force)
of different magnetic field configurations on the disk magnet (a dipole).

Part 1: Dipole at center of Helmholtz Coil
You will move the disk magnet to the center of the Helmholtz apparatus and randomly
align it and then see what happens when the coil is energized.

Part 2: Reversing the field
You will reverse the direction of the field and see what happens.

Part 3: Moving Through the Helmholtz Apparatus
Here you slowly pull the disk magnet up from the bottom of the Helmholtz apparatus (in
Helmholtz mode) and out through the top, observing any torques or forces on the magnet.

Part 4: Dipole at center of Anti-Helmholtz Coil
Here you repeat part 1 in anti-Helmholtz configuration

Part 5: Moving Through the Anti-Helmholtz Apparatus
Here you slowly pull the disk magnet up from the bottom of the Helmholtz apparatus (in

anti-Helmholtz mode) and out through the top, observing any torques or forces on the
magnet.

END OF PRE-LAB READING

E04-5



IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file and start up the program.

2. Without leads connected to the power supply, turn it on and set the voltage output to
12 V. Turn the current knob fully counter-clockwise (off).

3. Connect the leads to the Helmholtz apparatus, in Helmholtz mode.

4. Increase the current to approximately 1 A, then turn off the power supply (with the
push button — do not change the voltage or current settings).

MEASUREMENTS
Part 1: Dipole in Helmholtz Mode
1. Slide the disk magnet to the center of the Helmholtz apparatus (0 on scale)

2. Randomly align the disk magnet using a bar magnet (try to make off axis)
3. Turn on the power supply, carefully watching the disk magnet

Question 1:
Did the disk magnet rotate? (Was there a torque on the magnet?)

Question 2:
Did the spring stretch or compress? (Was there a force on the magnet?)

Part 2: Reversing the Leads

1. Without touching the apparatus (or even bumping the table — be VERY careful)
disconnect the leads from the power supply and insert them in the opposite
direction (flip the current direction).

2. Carefully watch the dipole as you do this. Repeat the experiment several times.

Question 3:

What happened to the orientation of the disk magnet when you change the current
direction in the coils in the Helmholtz configuration? Is this what you expect? Why?

E04-7



Part 3: Moving a Dipole Along the Axis of the Helmholtz Apparatus
1. Now lower the disk magnet to bottom of the tube

2. Slowly pull the disk magnet up through the apparatus, until it is out the top.
While pulling watch both the orientation of the magnet and the stretch or
compression of the spring.

Question 4:

Starting from the bottom, describe the direction of the force (up or down) and the
orientation of the disk magnet, paying careful attention to locations where they change.

Question 5:

Where does the force appear to be the largest? The smallest? How should you know
this?

OPTIONAL

Part 4: Dipole in Anti-Helmholtz

1. - Switch the apparatus to Anti-Helmholtz mode and increase the current to 2 A.
Then turn off the power supply.

2. Move the disk magnet to the center (0 on scale) and randomly align it (off axis)
3. Turn on the power supply, carefully watching the disk magnet

Question 6:
Did the disk magnet rotate? (Was there a torque on the magnet?)

Question 7:

Did the spring stretch or compress? (Was there a force on the magnet?)

E04-8



Part 5: Moving a Dipole Along the Axis of an Anti-Helmholtz Coil
1. Now lower the disk magnet to bottom of the tube

2. Slowly pull the disk magnet up through the apparatus, until it is out the top.
While pulling watch both the orientation of the magnet and the stretch or
compression of the spring.

Question 8:

Starting from the bottom, describe the direction of the force (up or down) and the
orientation of the disk magnet, paying careful attention to locations where they change.

Question 9:

Where does the force appear to be the largest? The smallest? How should you know
this?

Further Questions (for experiment, thought, future exam questions...)

e What happens as we move through with just a single coil energized? Is it similar to
the Helmholtz or anti-Helmholtz? How is it different?

e Are there places where we can put the disk magnet and then randomly orient it
without either changing the force on it or having a torque rotate it back to alignment
(in any of the 3 field configurations)?

e Ifyou were to align the disk magnet with the x-axis (perpendicular the coil axis) and
then center it in anti-Helmholtz mode, would there be a torque or force on it?

E04-9



Iron Filings Patterns for Fields in the Helmholtz Apparatus

Anti-Helmholtz

E04-10
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Summary of Class 19 8.02

Topics:  Magnetic Fields: Force and Torque on a Current Loop
Related Reading: Reading: Course Notes: Sections 8.8-8.9.9.10.1,9.11.1-9.11.4

Topic Introduction

In today’s class we calculate the force on a charged particles moving in a magnetic field and
the torque on a rectangular loop of wire.

Lorenz Force on Moving Charges Currents
A charged particle moving in a magnetic field feels a force F =gV xB. Similarly, a piece of

current carrying wire placed in a magnetic field will feel a force: dF = Ids xB (where ds is a
small segment of wire carrying a current /). We can integrate this force along the length of
any wire to determine the total force on that wire.

Right Hand Rules
Because of the cross product in the Biot-Savart Law, the direction of

the resulting magnetic field is not as simple as when we were working
with electric fields. In order to quickly see what direction the field
will be in, or what direction the force on a moving particle will be in,
we can use a “Right Hand Rule.” At times it seems that everyone has
their own, unique, right hand rule. Certainly there are a number of
them out there, and you should feel free to use whichever allow you to
get the correct answer. Here I describe the four that I use.

The important thing to remember is that cross-products yield a result which is
perpendicular to both of the input vectors. The only open question is in which of
the two perpendicular directions will the result point (e.g. if the vectors are in the
floor does their cross product point up or down?). Using your RIGHT hand:

(o]

1) For determining the direction of the force of a field on a moving charge: open
your hand perfectly flat. Put your thumb along v and your fingers along B. Your
palm points along the direction of the force.

2) For determining the direction of the magnetic field generated by a current:

fields wrap around currents the same direction that your fingers wrap around your 3 M
thumb. At any point the field points tangent to the circle your fingers will make as you = T A
twist your hand keeping your thumb along the current.

e

\
3) For determining the direction of the dipole moment of a coil of wite: wrap your %ﬁ
fingers in the direction of current. Your thumb points in the direction of the North pole
of the dipole (in the direction of the dipole moment p of the coil).

-

Torque Vector

Summary for Class 19 p. 1/2



Summary of Class 19 8.02

I’1I tack on one more right hand rule for those of you who don’t remember what the direction
of a torque T means. If you put your thumb in the direction of the torque vector, the object
being torque will want to rotate the direction your fingers wrap around your thumb (very
similar to RHR #2 above).

Important Equations

3

Force on Moving Charges in Magnetic Field: F=¢vxB

Force on Current-Carrying Wire Segment: dF = Idsx B

Magnetic Moment of Current Carrying Wire: ji = A (direction for RHR #3 above)
Torque on Magnetic Moment: F=(fixB

Force on Magnetic Moment: FDipm = (;’1 . V)f}

Energy of Moment in External Field: U=-ji-B

Summary for Class 19
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Problem Solving 6: Magnetic Force & Torque

OBJECTIVES

1. To look at the behavior of a charged particle in a uniform magnetic field by studying
the operation of a mass spectrometer

2. To calculate the torque on a rectangular loop of current-carrying wire sitting in an
external magnetic field.

3. To define the magnetic dipole moment of a loop of current-carrying wire and write
the torque on the loop in terms of that vector and the external magnetic field.

REFERENCE: Sections 8.3 — 8.4. 8.02 Course Notes.

Mass Spectrometer

A mass spectrometer consists of an ionizer, which strips (ideally) a single electron
from an atom whose mass you want to measure, an acceleration region, and a deflection
region, as pictured in Fig. 1. o~

- e
/

i/

Deflector Region
(Uniform B)

éf)

@B D Counter

Accelerator Region
lonizer

r ¥

Y

Figure 1: A mass spectrometer.

In Figure 1, the ions exit the ionizer at essentially zero velocity. They are accelerated by
a potential difference through the accelerator region, where they enter the deflector
region through a small orifice (X). The deflector region has a uniform B field which
bends the ions around through another small orifice into the counter, where the ions are
counted. By scanning the accelerating voltage AV a range of masses (or, more
accurately, mass to charge ratios) can be measured, to determine the content of some
unknown gas.

Solving 6-1



Question 1 (Answer this and subsequent questions on the tear-off sheet at the end): .
What should the polarity of the potential difference AV be (should potential be higher at
the top near the deflector or at the bottom near the ionizer)?

@ }“_\q (.p{(‘-',([g/: 5‘7—}19/3’1‘{) Lo }i;}“( {/ A ! ,ij f"nf f") “‘y

Question 2: In what direction should the B field point to guide the ions into the counter?

_ ([
A O oy @

Question 3: Find an expression for the kinetic energy of the ions when they enter the
deflector region (HINT: Why do they have kmetlc energy? Where did it come from‘?)

b{ E‘ l,} Mu A" \{‘,-{).w ',fq‘ ‘j FLEH\ F V"]u _] ?}(‘ 9

- 20I0P2 11T Tﬁ - L 210 67

) ’\ 2 W

)_ -
:=%dvf\ﬁ357 k=% ms® < T2 R2f 5
B A -2n 1o AW

Question 4: What path do the ions follow in the deflector region? Derive an expression

gy,
for the magnetic field that is needed to make sure that ions of mass m end up in the . L'Hj -
counter (a distance D away from where they enter the deflector region). Iherar d
_ yath
a W L& el path )
T d% X7
Um T
( 0l
= L{l;:q _— . y # P ___\. ..-_\
Jl Mo | cﬂ,( /) B u ] w
) L :TT\ e vy = J-\
| L . {
2
Question 5: About what potential AV is needed to get singly ionized carbon-12 ions into
the counter if B=1T and D = 20 cm? You can assume that protons and neutrons have
about the same mass given by mc? ~ 1 GeV. (Do this as a back of the envelope
calculation - NO CALCULATOR!) 5 ‘_‘
/Mas 7Y (o V F:EY _ gV x P 7 n =_'€ﬁV
\ & ) -~ é j _J E’ lf‘.\ t, K
p 2 n(
- \2 m fﬂ.vl _ q V }’Y )
G > [ Telea R
s

Solving 6-2



Magnetic Dipole Moment

In class we determined that a planar loop of area 4 (with unit vector n normal to the
loop) and carrying current /, has a magnetic dipole moment ji given by:

fi=JA = 4R

The normal n points in a direction defined by your thumb when you curl the fingers of
your right hand in the direction of the current in the loop.

We calculated the torque on such a loop in a uniform magnetic field B, to be

T ="_i><]§cxt‘

Tmagnclic

and the force on such a loop in a non-uniform magnetic field B_, to be:

ext

Fmagm'ric = (i‘i‘ ’ 6') Eex:
(note that this evaluates to 0 if B, is uniform — dipoles do not feel forces in uniform
external fields).

Problem: A square loop of wire, of length ¢ on each side, pivots about an axis AA' that
corresponds to a horizontal side of the square, as shown in Figure 4. A magnetic field of
magnitude B is directed vertically downward, and uniformly fills the region in the
vicinity of the loop. A current / flows around the loop. ( [Q\ o {cg

O
/.
() ' (b) B

Solving 6-3
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Question 6: Calculate the magnitude of the torque on this loop of wire in terms of the
quantities given, using our expressions above.

T 1
@: %Vﬂ;.re 6)

Question 7: In what direction does the current need to flow in order “levitate™ the coil
again the force of gravity (clockwise or counterclockwise viewed from above)?

warb B field od ef poge ©

So CountrC l.(?-'\'v.:'t wis@

Question 8: Suppose that the loop (/=1 m) is essentially massless, but that a small child
(m = 20 kg) wants to hang from the bottom rung of the loop and be supported at © = 45°,
If we can push /= 100 A through the loop, about how large a B field will we need to
support the child? ¢ L} /d " torav i )

Question 9: Now suppose the child starts fidgeting, causing the angle to slightly change.

_ If the deviation is initially small, will the forces tend to cause the motion to run to larger

excursions (1.e. to fall to 6 = 0° or to snap up to 0 = 90°) or will they tend to restore to
45°? 1If the former, about how long will it take to fall/rise? If the latter, what is the
frequency of small oscillations of the angle about 8 = 45°? HINT: You can expand the

trigonometric functions about 45° using sin (x + y) =sinxcos y+sin ycosx and

cos(x+ y) =cosxcos y—sinxsiny and then use small angle identities sin(x) ~ x and

cos(x) ~ 1. At 45° the two components of the torque are equal and opposite, so rewrite
the total torque in terms of gravity g and length /. Finally, the moment of inertia of a
point mass a distance / from a pivot is m¢”.

Question 10: If instead of balancing the child at 45° they wanted to ride at 60°, is it
better to keep the field vertical or to switch to horizontal (i.e. which requires smaller B)?

Solving 6-4
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Sample Exam Question (If time, try to do this by yourself, closed notes)

A charge of mass m and charge ¢ > 0 is at the origin at # = 0 and moving upward with
velocity V=V j. Its subsequent trajectory is shown in the sketch. The magnitude of the

velocity V' = |\7I is always the same, although the direction of V changes in time.

R/2

(a) Fory > 0, this positive charge is moving in a constant magnetic field which is either
into the page or out of the page. Is that magnetic field for y > 0 into or out of the

page?

(b) Derive an expression for the magnitude of the magnetic field for y > 0 in terms of
the given quantities, that is in term of ¢, m, R, and V.

(c) For y < 0, the charge is moving in a different constant magnetic field. Is that field
for y < 0 into or out of the page? What is the magnitude of that magnetic field in

terms of in term of ¢, m, R, and V7

(d) How long does it take the charge to move from the origin to point P (see sketch)
along the x-axis? Give your answer in terms of the given quantities.

Solving 6-5



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Tear off this page and turn it in at the end of class !!!!

Note: Writing in the name of a student who is not present is a COD offense.

Problem Solving 6: Magnetic Force & Torque

Group |\ .E‘”/IW@ vho ol¥rtd to  ghow ‘-"f(e.g. L02 6A Please Fill Out)

Names Jentvrbor Biyretana Ma o ZY\UU”WS

I V)] N TP | i1 1 Q | F 4
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Question 1: %V};%t should thejbolarlty of the potential difference AV be?
¢ H‘ "":nf.-i 0:’{’ g \D\/\lh 4

Question 2: In what direction should the magnetic field be pointed?

Questlon 3: Find the kinetic energy of the ions when they enter the deflector region.
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Question 5: About what potential AV is needed to get singly ionized carbon-12 ions into
the counter if B=1T and D =20 cm" You can assume that protons and neutrons have
about the same mass given by me? ~ 1 GeV.
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Question 6: Calculate the magnitude of the torque on this loop of wire in terms of the
quantities given, using our expressions aboye. 2z ls /@/ ®

o 3 Y= 4
. e TAR {
l = :L"lt”({_-.‘ COSQ
T= '1113\0(\1 IsinB 8
Question 7: In what direction does the current need to flow in order “levitate the coil
again the force of gravity (clockwise or counterclockwise viewed from above)?

Cpuaserdickwide U G i"-‘;«; )
e
Question 8: Suppose that the loop (¢= 1 m) is essentially massless, but that a small child L//}
(m =20 kg) wants to hang from the bottom rung of the loop and be supported at 6 =45°. <.
If we can push 7= 100 A through the loop, about how large a B field will we need to ESS
support the child? L o

T
©./L,
v o N

Question 9: Now suppose the child starts fidgeting, causing the angle to slightly change.<; v 2
If the deviation is initially small, will the forces tend to cause the motion to run to larger (\-J‘
excursions (i.e. to fall to © = 0° or to snap up to 0 = 90°) or will they tend to restore to 57
45°7 If the former, about how long will it take to fall/rise? If the latter, what is the c%'
frequency of small oscillations of the angle about 0 = 45°?

D«s‘w"ov >

Question 10: If instead of balancing the child at 45° they wanted to ride at 60°, is it better
to keep the field vertical or to switch it to horizontal (i.e. which requires smaller B)?
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Summary of Class 20 8.02

371

Topies:  Magnetic Fields: Creating Magnetic Fields — Ampere’s Law

Related Reading: Course Notes: 9.3-9.4,9.10.2,9.11.5-9.11.8 (lds > B¢
Experiments: (8) Magnetic Fields Guags = i / e

Topic Introduction

Today we cover two topics. At first, in experiment #8, we will measure the magnetic fields
created by bar magnets. Then we will discuss Ampere’s Law, the magnetic equivalent of

Ampere’s Law

With electric fields we saw that rather than always using Coulomb’s law, which gives a
completely generic method of obtaining the electric field from charge distributions, when the
distributions were highly symmetric it became more convenient to use Gauss’s Law to
calculate electric fields. The same is true of magnetic fields — Biot-Savart does not always
provide the easiest method of calculating the field. In cases where the current source is very
symmetric it turns out that Ampere’s Law, another of Maxwell’s four equations, can be used,
greatly simplifying the task.

Ampere’s law rests on the idea that if you have a curl in a magnetic field (that is, if it wraps
around in a circle) the field must be generated by some current source inside that circle (at
the center of the curl). So, if we walk around a loop and add up the magnetic field heading in
our direction, then if, when we finish walking around, we have seen a net field wrapping in
the direction we walked, there must be some current penetrating the loop we just walked

around. Mathematically this idea is expressed as: C_f B-ds= Lol where on the left we

penetrate ?

are integrating the magnetic ficld as we walk around a closed loop, and on the right we add
up the total amount of current penetrating the loop.
P

In the example pictured here, a single long wire carries current Co e
. . . Lh

out of the page. As we discussed in class, this generates a Horp £
magnetic field looping counter-clockwise around it (blue lines). (s
On the figure we draw two “Amperian Loops.” The first loop 4,4 F—,;J
(ye?gvgj has current / penetrating it. The second loop (red) has 4
no ctirrent penetrating it. Note that as you walk around the ln Cegid
yellow loop the magnetic field always points in roughly the f‘\
same direction as the path: q. B-d’s # 0, whereas around the
red loop sometimes the field points with you, sometimes
against you: (fB-d_s':O. .

. no Corend pclyd
We use Ampere’s law in a very similar way to how we used Gauss’s law. For highly
symmetric current distributions, we know that the produced magnetic field is constant along
certain paths. For example, in the picture above the magnetic field is constant around any

Hen 2 fe 2
(o0 ps
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Summary of Class 20 8.02

blue circle. The integral then becomes simple multiplication along those paths
(Cfﬁ -d's = B-Path Lcngth), allowing you to solve for B.

Solving Problems using Ampere’s law

Ampere’s law provides a powerful tool for calculating the magnetic field of current
distributions that have radial or rectangular symmetry. The following steps are useful when
applying Ampere’s law:

(1) Identify the symmetry associated with the current distribution, and the associated shape
of “Amperian loops” to be used.

(2) Divide space into different regions associated with the current distribution, and determine
the exact Amperian loop to be used for each region. The magnetic field must be constant,
perpendicular to or known (e.g. zero) along each part of the loop.

(3) For ecach region, calculate 7 , the current penetrating the Amperian loop.

penetrate

(4) For each region, calculate the intc'gralcf B-d§ around the Amperian loop.

(5) Equate Cfﬁd’s' with g1

penetrate ?

and solve for the magnetic field in each region.

Important Equations
Ampere’s Law: Cfﬁ -ds = Holenetrate

Experiment 8: Magnetic Fields of a Bar Magnet
Preparation: Read pre-lab

In this lab you will measure the magnetic field generated by a bar magnet, thus getting a
feeling for magnetic field lines generated by magnetic dipoles. Recall that as opposed to
electric fields generated by charges, where the field lines begin and end at those charges,
fields generated by dipoles have field lines that are closed loops (where part of the loop must
pass through the dipole).

s

" m!;;-;fn-.,_-. b condytors (;fm fvacs’ [,mﬂ

; = N
— 1 Oifl.tf‘ij M r/J “.j'}f{‘ {, (f f!’

i 1y | 3
N o/ '] / ) (
Z--U ety MEA g ( L'IJ (\5 (\/J
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e ‘h/mi_,uf%". /!< 05 qd ]""!/f:’/l
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Class 20: Outline

Hour 1 & 2:
~ Ampere’s Law

- Last Time:
~ Creating Magnetic Fields:
Biot-Savart

The Biot-Savart Law

Current element of length ds carrying current / '
produces a magnetic field:
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Today:
- 31 Maxwell Equation: _

log (in use) t

Gauss’s Law — The ldea
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Ampere’s Law: The Idea
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Ampere’s Law: The Equation
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The line integral is
around any closed
contour bounding an
open surface S.
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PRS: Ampere’s Law
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PRS: Ampere’s Law

U' l'f( g (_‘-ui

Biot-Savart vs. Ampere

general

Bioi-

current source
ex: finite wire

- wire loop

- symmetric

Applying Ampere’s Law

1. Identify regions in which to calculate B field

~ Get B direction by right hand rule

Choose Amperian Loops S: Symmetry
is 0 or constant on the loop! L

Class 20



Always True,

~ Occasionally Useful

Like Gauss’s Law,

Ampere’s Law is always true
However, it is only useful for

calculation in certain specific

situations, involving highly
~ symmetric currents.

Her ple

Example: Infinite Wire

A cylindrical conductor

has radius R and a 7 ) [ -
uniform current density Nt
. b 1) I
Clecle. Tabid  [lr0S

Find B everywhere

Two regions: v

(1) outside wire (r = 7

 (2) inside wire (r < .

B . : . K }" S Foou, { t'l.’/,""‘ tn H
/
4%

(Q;/'{]}Of KDCL'-‘M'/C ¢

Ampere’s Law Example:

Infinite Wire

\)K" A/ W f“i‘/_;: [_’7 r{ (i g[) rf':,//{ o ? 'f/.! O .’4_ Or ()
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{ /i
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Example: Infinite Wire

Region 1: Outside wire (r= R)

Cyllndncal symmetry 2>

~ Amperian Circle
B-field counterclockwme

..[jB.d"‘ Bfjds = B(Z:rr)

f ] r-] (_‘; / i
Group Problem: Inside
" We just found B(r>R)
- Now you find B(R<R)
Example: Infinite Wire
Region 2: Inside wire (r < R)
[JB-ds=Blfjds =B(2r)
i . : J i . 1 :
f7 = A\ (J” (5 (/ jid‘ i//‘" / | K"‘[f [ WAt Iﬂ.'[;‘ i
|
..... //
< | \ i /
v[ H{__i deea Thy ks i?"'?’ﬁ [j/ i L
C_.‘;;L(E'SS 20 : : . 0 Cj;
' 2 Vam Would Do [
J Lj i Ay "% ;,-—rT"
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Example: Infinite Wire

/ / v ¥

1 B / i
9\\ / B
.' f' R\ /J’ 7 \‘\‘—
\\ /‘r ‘: \\"” 2
g ‘/ffﬁ : J T

Group Problem: Non-Uniform
Cylindrical Wire

A cylindrical conductor
has radius R and a non-

uniform current density
with total current.

Apblyihg Ampere’s Law

In Choosing Amperian Loop:
» Study & Follow Symmetry
. Determme Field Directions First
. Thmk About Where Fleld is Zero

Class 20

| Y

) n
0wy ﬂﬁf‘”J {'{J f,;JL ,rh"f[{'_ (,gj"'f}

b2 ; EHhe———
Ve K .\pz
b7 =g Tl

~ 2
/ .’l 5\ ‘1 J :
iz b ] | - | F
l'\?;’ff_u a (/ /—if = bt [[i] Wyl vl o f ’-}',q'f,)(’})
. [ Y
\’V l 0/ !’L 'd L/ ' {"1’,”,!' { 1} ,k r’lﬂf ; k’ b 1 & .LF;':(’{DJ!' !

L by - B e ol TR TR
W problew.  nested  Cldes

— e
I =40 N
F
e S ﬁr\q .
S - Y o ' of Jo b
8 5 | 0 —— 7 /ﬂ\(‘( ' i ol oAy
- o . . inlogs
= ) Jo B7 15 tng
./ (
3 73 ) - L)
l\ﬁ) NS VZ{ L Jg I8
g— ~ . \]
He K. 3. B
e —
P ) N | ¢ LY '1&:(




Two Loops

o e
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‘Multiple Wire Loops

o

Multiple Wire Loops —
- Solenoid

S \
Exterior

N | /
L

Interior & &

o

q
U"*{{QJ’:"’" {f loi

Class 20
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~ Long Solenoid
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Squ

Magnetlc Field of Solenmd

Magnetic Field of Ideal Solenoid
B ' Using Ampere’s law: Think!

' B _Ld5 along sides 2 and 4
{B 0 along side 3. TJ <1

[ﬁn di= fn d§+j'n dsé»j'
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Asheet of current (infinite
in the y & z directions, of
thickness 2d in the x

direction) carries a -
uniform current density:
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Ampere’s Law:
Infinite Current Sheet

Solenoid is Two Current Sheets

B Field outside current sheet

¥ + 1 should be half of solenoid,
@ 11111 & with the substitution:
& &
o ® [<nl=2d]
=
{(») ) _ : :
% S:< This is current per unit length
s @3 (equivalent of A, but we don't
= ?—fg have a symboi forit)

Ny | \
lnear cipat Q!fﬂﬁ//jy :

Ampere’s Law: cj‘ B-ds = /”0 .
Long l/ \/ ; _4__—3‘____|
C:muiar /"\ f....t...J_...__
Symmetry / J T m— ._
e (Infinite) Current Sheet.
Solenoid 8B
2 Current ' B E
:Sw__.,Iiae ts g L “
Solomid ot
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Brief Review Thus Far...

Maxwell’s Equations (So Far)

Gauss's Law: [ﬂi‘l-d@z—gﬂ-
G s E(!

. Electric chéi:ges--makc diverging Mﬁé@f .

Class 20
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02

Due: Tuesday, March 30 at 9 pm.

Spring 2010

Problem Set 7

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.

Week Seven Magnetic Fields
Class 17 WO7D1 M/T Mar 15/16
Reading:

Experiment:

Class 18 W07D2 W/R Mar 17/18
Reading:

Experiment:

Class 19 W07D3 F Mar 19

Force
Reading:

Week Eight Spring Break

Magnetic Fields; Magnetic Forces, Expt. 5: Bar
Magnet

Course Notes: Chapter 8.1-8.3, 8.5-8.6, §.8-8.9, 9.5
Expt. 5: Bar Magnet

Creating Fields: Biot-Savart Law, Currents &
Dipoles; Expt. 6: Torque on Dipole

Course Notes: Sections 8.3-8.4, 9.1-9.2, 9.10.1,
9.11.1-9.11.4

Expt. 6: Torque on Dipole

PS06: Calculating Magnetic Fields and Magnetic

Course Notes: Sections 8.8-8.9, 9.10.1, 9.11.1-
9.11.4

Week Nine Magnetic Fields; Exam 2

Class 20 W09D1 M/T Mar 29/30
Reading:

Creating Fields: Ampere’s Law
Course Notes: 9.3-9.4, 9.10.2, 9.11.5-9.11.8

Class 21 W09D2 W/R Mar 31/Apr 1 PS07: Ampere’s Law; Exam 2 Review

Reading:
Exam 2 Thursday April 1

WO09D3 F Apr 2

Course Notes: 9.3-94,9.10.2,9.11.5-9.11.8
7:30 pm —9:30 pm

No class day after exam

PS07-1



Problem 1: Short Questions

(a) Can a constant magnetic field set into motion an electron which is initially at rest?
Explain your answer.

(b) Is it possible for a constant magnetic field to alter the speed of a charged particle?
What is the role of a magnetic field in a cyclotron?

(c) How can a current loop be used to determine the presence of a magnetic field in a
given region of space?

(d) If a charged particle is moving in a straight line through some region of space, can
you conclude that the magnetic field in that region is zero? Why or why not?

(e) List some similarities and differences between electric and magnetic forces.
Problem 2: Helmholtz Coil

The magnitude of the component of a magnetic field along the axis of a coil with N
turns to be given by:

2
_Nu, IR I
avial — 2 (:3 + R3)3/1
where z is measured from the center of the coil.

As pictured at left, a Helmholtz coil is created by placing two
S N such coils (each of radius R and N turns) a distance R apart.

R (a) If the current in the two coils is parallel (Helmholtz
< ———, configuration), what is the magnitude of the magnetic field at
the center of the apparatus (midway between the two coils)?
How does this compare to the field strength at the center of the
single coil configuration (e.g. what is the ratio)?

(b) In the anti-Helmholtz configuration the current in the two coils is anti-parallel. What
is field strength at the center of the apparatus in this situation?

(c) Consider coils that have a radius R =7 cm and N = 168 turns. Suppose /= 0.6 A runs
in the single coil and 0.3 A runs in each in Helmholtz and anti-Helmholtz mode. What,
approximately, are the largest on-axis fields we should expect in these three
configurations? Where (approximately) are the fields the strongest?

PS07-2



Problem 3: Particle Orbits in a Uniform Magnetic Field The entire x-y plane to the
right of the origin O is filled with a uniform magnetic field of magnitude B pointing out
of the page, as shown. Two charged particles travel along the negative x axis in the
positive x direction, each with velocity v, and enter the magnetic field at the origin O.
The two particles have the same mass m . but have different charges, ¢, and g,. When in
the magnetic field, their trajectories both curve in the same direction (see sketch), but

describe semi-circles with different radii. The radius of the semi-circle traced out by
particle 2 is exactly twice as big as the radius of the semi-circle traced out by particle 1.

B out of paper

Two charges y"® D00

each with

speed V O@@@@@

o ci)-@@@
® [ogcXcRoXe
oo RoNORO
0% 000

GIRCRORORO

X

@)t

(a) Are the charges of these particles positive or negative? Explain your
reasoning.

(b) What is the ratio ¢, /q,?

PS07-3



Problem 4 Mass Spectrometer Shown below are the essentials of a commercial mass
spectrometer. This device is used to measure the composition of gas samples, by
measuring the abundance of species of different masses. An ion of mass m and charge
q = +e is produced in source S, a chamber in which a gas discharge is taking place. The

initially stationary ion leaves S, is accelerated by a potential difference AV >0, and then
enters a selector chamber, S, , in which there is an adjustable magnetic field B,, pointing
out of the page and a deflecting electric field E, pointing from positive to negative plate.
Only particles of a uniform velocity v leave the selector. The emerging particles at S,,
enter a second magnetic field ]ﬂ3_, , also pointing out of the page. The particle then moves
in a semicircle, striking an electronic sensor at a distance x from the entry slit. Express
your answers to the questions below in terms of £ = |EI, e, x,m, B,= [ﬁ_, ,and AV .

S5
WY, Y} .. S I -
S __i"f_"_:‘_"""""""'““""'x\
; —ﬁ_— 1 ) \r ~,
— A | N
AV L
o
X l .
15,
L <
/
2 B e
- ,/ -
-""’/

electronic sensor = «

a) What magnetic field f&, in the selector chamber is needed to insure that the
particle travels straight through?

b) Find an expression for the mass of the particle after it has hit the electronic sensor
at a distance x from the entry slit

PS07-4
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Problem 5: Particle Trajectory A particle of charge —e is moving with an initial
velocity v when it enters midway between two plates where there exists a uniform
magnetic field pointing into the page, as shown in the figure below. You may ignore
effects of the gravitational force.

7
3N W
X KKK KK
M X X X X
K KK

X
KAX XXX

(a) Is the trajectory of the particle deflected upward or downward?

(b) What is the magnitude of the velocity of the particle if it just strikes the end of the
plate?

Problem 6: Levitating Wire A copper wire of diameter d carries a current density J at
the earth’s equator where the earth’s magnetic field is horizontal, points north, and has

B
the earth and is oriented in the east-west direction. The density of copper is
Py =8.9x10° kg-m™. The resistivity of copper is p, =1.7x107°Q - m.

magnitude =0.5x10" T. The wire lies in a plane that is parallel to the surface of

carth

a) How large must J be, and which direction must it flow in order to levitate the
wire? Use g=9.8m-s”

b) When the wire is floating how much power will be dissipated per cubic
centimeter?

Problem 7: Torque on Circular Current Loop

A wire ring lying in the xy-plane with its center at
the origin carries a counterclockwise current /. There
is a uniform magnetic field B=5i in the +x-
direction. The magnetic moment vector | is
perpendicular to the plane of the loop and has
magnitude x =174 and the direction is given by
right-hand-rule with respect to the direction of the

current. What is the torque on the loop? ‘\\11;,_:__“

PS07-5



Problem 8: Magnetic Fields Find the magnetic field at point P due to the following
current distributions:

(a) (b)
-1.
i
/

| / \Y

v 1 /! el

1.7 ———— i = -
B o5 5l s » X

PS07-6



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 7 Solutions

Problem 1: Short Questions

(a) Can a constant magnetic field set into motion an electron which is initially at rest?
Explain your answer.

Solution: No. Changing the velocity of a particle requires an accelerating force. The
magnetic force is proportional to the speed of the particle. If the particle is not moving,
there can be no magnetic force on it.

(b) Is it possible for a constant magnetic field to alter the speed of a charged particle?
What is the role of a magnetic field in a cyclotron?

Solution: No, it is not possible. Because F‘,, =q(\7x]§), the acceleration produced by a

magnetic field on a particle of mass m is a, = i(\"(xl_}). For the acceleration to change
m

the speed, a component of the acceleration must be in the direction of the velocity. The
cross product tells us that the acceleration must be perpendicular to the velocity, and thus
can only change the direction of the velocity.

The magnetic field in a cyclotron essentially keeps the charged particle in the electric
field for a longer period of time, and thus experiencing a larger change in speed from the
electric field, by forcing it in a spiral path. Without the magnetic field, the particle would
have to move in a straight line through an electric field over a distance that is very large
compared to the size of the cyclotron.

(c) How can a current loop be used to determine the presence of a magnetic field in a
given region of space?

Solution: If the current loop feels a torque, it must be caused by a magnetic field. If the
current loop feels no torque, try a different orientation—the torque is zero if the field is
along the axis of the loop.

(d) If a charged particle is moving in a straight line through some region of space, can
you conclude that the magnetic field in that region is zero? Why or why not?

PS07-1



Solution: Not necessarily. If the magnetic field is parallel or anti-parallel to the velocity
of the charged particle, then the particle will experience no magnetic force. There may

also be an electric force acting on the particle such that F‘q = q(ﬁ+ Vv, X ﬁ) =0.

(e) List some similarities and differences between electric and magnetic forces.

Solution:

Similarities:

1. Both can accelerate a charged particle moving through the field.

2. Both exert forces directly proportional to the charge of the particle feeling the force.

Differences:

1. The direction of the electric force is parallel or anti-parallel to the direction of the
electric field, but the direction of the magnetic force is perpendicular to the magnetic
field and to the velocity of the charged particle.

2. Electric forces can accelerate a charged particle from rest or stop a moving particle,
but magnetic forces cannot.

Problem 2: Helmholtz Coil

The magnitude of the component of a magnetic field along the axis of a coil with N
turns to be given by:

Ny IR 1
axial 2 (Zl +R2)31‘2
where z is measured from the center of the coil.

— As pictured at left, a Helmholtz coil is created by placing two
such coils (each of radius R and N turns) a distance R apart.

— A
R

R (a) If the current in the two coils is parallel (Helmholtz
o iy ———y configuration), what is the magnitude of the magnetic field at
the center of the apparatus (midway between the two coils)?
How does this compare to the field strength at the center of the
single coil configuration (e.g. what is the ratio)?

Solution: We use superposition principle to determine the magnetic field due to the two
coils. We are the same distance z = R/2 from each coil and since the currents are parallel
they both create a field in the same direction (for example, if both currents are counter-

PS07-2



clockwise they both create an upward magnetic field at the midpoint). The magnitude

then is just twice that of a single coil:

poa NuIR 1 Nyl I 8Ny, 1

2 ((R/2)3 £ R3)3.'3 R ((1/2)2 +1)3/2 52 R
Comparing this to the field strength at the center of a single coil:

Nu, I
B . =i 0
sgl coil 2R

We find that the field of a Helmholtz coil is slightly larger:

B!Ielmhol!z :(SN/JOIJ [N‘UOIJ: 16 214
BSE] Coil 53/2 R 2R 53/2

(b) In the anti-Helmholtz configuration the current in the two coils is anti-parallel. What

is field strength at the center of the apparatus in this situation?

Solution: In this case the fields from the two coils are in opposite directions so they

cancel each other out. That is, B=10.

(c) Consider coils that have a radius R =7 cm and N = 168 turns. Suppose /= 0.6 A runs
in the single coil and 0.3 A runs in each in Helmholtz and anti-Helmholtz mode. What,
approximately, are the largest on-axis fields we should expect in these three

configurations? Where (approximately) are the fields the strongest?

Solution: For a single coil the maximum is at the center of the coil, for a Helmholtz at

the center:

e (168)(4mx107 T-m/A)(0.6 A)
sgleoil — 2(7)(10_2 m)

B omborz = %-4.5 Gauss = 6.5 Gauss

=9.0x10™ T =9.0 Gauss;
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Problem 3: Particle Orbits in a Uniform Magnetic Field The entire x-y plane to the
right of the origin O is filled with a uniform magnetic field of magnitude B pointing out
of the page, as shown. Two charged particles travel along the negative x axis in the
positive x direction, each with velocity v, and enter the magnetic field at the origin O.
The two particles have the same mass m , but have different charges, ¢, and ¢,. When in

the magnetic field, their trajectories both curve in the same direction (see sketch), but
describe semi-circles with different radii. The radius of the semi-circle traced out by
particle 2 is exactly twice as big as the radius of the semi-circle traced out by particle 1.

Y . B out of paper

Two charges *® G0 6 &
each with
speed V NECECECHORO
3 > X
ONONO,
® S Ge B e
(OO RONONO)
OF SHONCRO)
@) ——
e EE

(a) Are the charges of these particles positive or negative? Explain your
reasoning.

Solution: Because F, = gv x B, the charges of these particles are POSITIVE.
(b) What is the ratio ¢, /q,?

Solution: We first find an expression for the radius R of the semi-circle traced out by a
particle with charge ¢ intermsof ¢, v= |1? . B, and m. The magnitude of the force on

the charged particle is gvB and the magnitude of the acceleration for the circular orbit is
v* / R. Therefore applying Newton’s Second Law yields

We can solve this for the radius of the circular orbit

R="
qB

Therefore the charged ratio

L RECBRE
g \RB)/\RB) R
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Problem 4 Mass Spectrometer Shown below are the essentials of a commercial mass
spectrometer. This device is used to measure the composition of gas samples, by
measuring the abundance of species of different masses. An ion of mass m and charge
q = +e is produced in source S, a chamber in which a gas discharge is taking place. The

initially stationary ion leaves S, is accelerated by a potential difference AV >0, and then
enters a selector chamber, S, , in which there is an adjustable magnetic field B,. pointing
out of the page and a deflecting electric field E, pointing from positive to negative plate.
Only particles of a uniform velocity v leave the selector. The emerging particles at S,
enter a second magnetic field B,, also pointing out of the page. The particle then moves
in a semicircle, striking an electronic sensor at a distance x from the entry slit. Express

your answers to the questions below in terms of £ = |E ;and AV .

,e,x, m, B-’EIB-’

S
3 S I . 7
e TR o \'\\
- F*|5 I N
| R Y
Al L %
R
¥ | 1 .|
1B,
. . f “a |
;4 |
W & R E 4
7 J
e I
[« 27 «
b
5,5 &

L Gy dgie

|
— |
electronic sensor i

a) What magnetic field B, in the selector chamber is needed to insure that the
particle travels straight through?

Solution: We first find an expression for the speed of the particle after it is accelerated by
the potential difference AV, in terms of m, e, and AV . The change in kinetic energy is

AK = (1/2)mv*. The change in potential energy is AU =—eAV From conservation of
energy, AK =—-AU , we have that
(1/2)mv* =eAV .

fZeAV
v =
m

Inside the selector the force on the charge is given by

So the speed is

F =e(E+VxB,)).
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If the particle travels straight through the selector then force on the charge is zero,
therefore

E=-vxB

Since the velocity is to the right in the figure above (define this as the +i direction), the
electric field points up (define this as the +j direction) from the positive plate to the

negative plate, and the magnetic field is pointing out of the page (define this as the +k
direction) . Then

Ej = —vix B]ﬁ = vBIj .

k=,——Ek
2eAV

b) Find an expression for the mass of the particle after it has hit the electronic sensor
at a distance x from the entry slit

So

B, =

< |tz

Solution: The force on the charge when it enters the magnetic field 1—3_, is given by
FL, = evix Bzﬁ = —eszj :

This force points downward and forces the charge to start circular motion. You can verify
this because the magnetic field only changes the direction of the velocity of the particle
and not its magnitude which is the condition for circular motion. When in circular motion
the acceleration is towards the center. In particular when the particle just enters the field

}§2 , the acceleration is downward

A=——]
x/2J
Newton’s Second Law becomes
—evB,:i = —mv— i
$ x/2

Thus the particle hits the electronic sensor at a distance

2
B SN i\J"2eAVm

eB, eB,

from the entry slit. The mass of the particle is then
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Problem 5: Particle Trajectory A particle of charge —e is moving with an initial
velocity v when it enters midway between two plates where there exists a uniform
magnetic field pointing into the page, as shown in the figure below. You may ignore
effects of the gravitational force.

X X X X X X X

X X %X X X X X
_— X X X X X X X
S x x ox x ox x x @
V x x x X x X X

RN R E T

(a) Is the trajectory of the particle deflected upward or downward?

(b) What is the magnitude of the velocity of the particle if it just strikes the end of the
plate?

Solution: Choose unit vectors as shown in the figure.

e & ® K | )

;'_QEW
o

1 g

L]

o

R.-

¥las

The force on the particle is given by
F =-—e(v ixB}) =—evBKk .

so the direction of the force is downward. Remember that when a charged particle moves
through a uniform magnetic field, the magnetic force on the charged particle only
changes the direction of the velocity hence leaves the speed unchanged so the particle
undergoes circular motion. Therefore we can use Newton’s second law in the form

\Y
evB =m—.
R
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The speed of the particle is then

eBR
y= .
m

In order to determine the radius of the orbit we note that the particle just hits the end of
the plate. From the figure above, by the Pythagorean theorem, we have that

R*=(R-d/2)+I*.
iixpanding the above equation yields
R*=R*-Rd+d*/4+T*
;JVhich we can solve for the radius of the circular orbit:

R :£+£‘
4 d

We can now substitute the our result for the radius into our expression for the speed and
find the speed necessary for the particle to just hit the end of the plate:

eB(d I
| = |
m[fl d]
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Problem 6: Levitating Wire A copper wire of diameter d carries a current density J at
the earth’s equator where the earth’s magnetic field is horizontal, points north, and has

magnitude llﬁ?.wm‘ =0.5x10" T. The wire lies in a plane that is parallel to the surface of

the earth and is oriented in the east-west direction. The density of copper is
Pe, =8.9x10° kg-m” . The resistivity of copper is p, =1.7x107Q-m.

a) How large must J be, and which direction must it flow in order to levitate the
wire? Use g =9.8m-s”

b) When the wire is floating how much power will be dissipated per cubic
centimeter?

Solutlon At the equator, the magnetic field is pointing north. Choose unit vectors such
that i points east, j points north, and k points up. Let J = J i (with the sign of J_ to

=B

be determined), B T -

earth

B
“““‘J;El"—;
d
:'; o,’rs-l ¢

Then the magnetic force dF, on the a small volume of wire dV,, is

mag

=JdV. xB

mag vol earth

=J.dV,

vol

ixB,,j=JB,,dV., K.

xearth vol

In order to balance the gravitational force this must point upwards hence J, >0; the

current flows from west to east in the wire. The total force on the small element of the
wire is zero so

0=dF,  +dF =p(.”a'l’/|,ﬂ,g(—k)+JB dv,, k.

grav mag x“earth vol

We can solve the above equation for J_:
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J’x £y foﬁrg

carth

_ (8.9x10° kg-m?)(9.8m s?)

; e =1.74x10" A-m”
: (0.5x10™ T)

1

(b) Let A=n(d/2)* denote the cross-sectional area of the wire. The power dissipated per

volume dV,, = Adl where dl is a unit length of wire is given by
P I'R
V., dF,

Let The current that flows in the wire is given by is given by 7 =J 4. The resistance per
unit length dl is given by R = p,dl/ A. So the above equation becomes

P__UAM A _
dv,, Adl :
=(1.7x10® Q-m)(1.74x10° A-m?)*.
=(5.2x10"° W-m?)

=50kW-cm”

The wire will get very hot!
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Problem 7: Torque on Circular Current Loop

A wire ring lying in the xy-plane with its center at
the origin carries a counterclockwise current I. There
is a uniform magnetic field B=Bi in the +x-
direction. The  magnetic moment vector [ is
perpendicular to the plane of the loop and has
magnitude =14 and the direction is given by

right-hand-rule with respect to the direction of the
current. What is the torque on the loop?

Solution: The torque on a current loop in a uniform field is given by
F=[ixB,

where = IA4 and the vector i is perpendicular to the plane of the loop and right-handed
with respect to the direction of current flow. The magnetic dipole moment is given by

fi=IA=I(7Rk) = 7IRK .

Therefore,

F=jixB= (ﬁ]Rzﬁ)x(Bi) =7IR*Bj.

Instead of using the above formula, we can calculate the torque directly as follows.
Choose a small section of the loop of length ds = Rd@ . Then the vector describing the
current-carrying element is given by

1ds = IRAO(~sin 01 +cos 0 )
The force dF that acts on this current element is

dF = IdsxB
= I RdO(~sin Oi+cos @ j)x(Bi)
=—IRBcosOdOk

The force acting on the loop can be found by integrating the above expression.

F=[fdF = [ (-IRBcos0)d0k

=—IRB[sin0]. k=0
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We expect this because the magnetic field is uniform and the force ona current loop in a
uniform magnetic field is zero. Therefore we can choose any point to calculate the torque
about. Let ¥ be the vector from the center of the loop to the element /ds . That is,

F= R(cos 6i +sin 9]) . The torque d% =FxdF acting on the current element is then

dt =t x dF
= R(cos&hsin Bj)x(—IRBdﬁcosﬁﬁ)

=—IR*Bdf cosf (sin 0i- cosé‘i)

Integrate dt over the loop to find the total torque 7.
i=[|di
= f” —IR*BdO cos Q(Sin fi—cos 9])
=—IR*B f” (sinB@cosOi—cos’ 0 §)do
=7IR’B§

This agrees with our result above.
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Problem 8: Magnetic Fields Find the magnetic field at point P due to the following
current distributions:

(a) (b)

|,’ ! ——
P&_________'.._____

\

\,

P *

Solution:
(a) The fields due to the straight wire segments are zero at P because ds and r are

parallel or anti-parallel. For the field due to the arc segment, the magnitude of the
magnetic field due to a differential current carrying element is given in this case by

L] dsxr _&IR(!H(sinHE—cosé’j)x(—cosQi—siné)})

dB =

dr R 4x R
_ My I(sin’ @+ cos’ 9)0’911__&]5{_9‘2
4 R 4r R

Therefore,

B=— L’”lﬂdm} = _ﬂ[ﬁ)ﬁ = —[M]l} (or, into the page).
4R 4rR\ 2 8R

(b)  There is no magnetic field due to the straight segments because point P is along the
lines. Using the general expression for dB obtained in (a), for the outer segment, we have
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Summary of Class 21 Exam 2 Information

TEST TWO Thursday Evening April 1 7:30- 9:30 pm. The Friday class
immediately following is canceled because of the evening exam.

What We Expect From You On The Exam

1. An understanding of capacitors, including the effects of dielectrics on them.

2 An understanding of current flow in a resistive material, e.g. how J is related to /,
how E is related to J, how resistance is related to resistivity, and how to calculate it.

3. An understanding of simple circuits. For example, you should be able to set up the
equations for multi-loop circuits, using Kirchhoff’s Laws. You should be able to derive
and guess the solution to differential equations for RC circuits, and should understand the
meaning of time constants (t = RC).

4, An understanding of how to calculate the magnetic fields of moving charges or
current elements using the Biot-Savart law, e.g.

5.
= VXF - Idsxt
gt 4 - dB = e 145
4r r 4r
6. An understanding of how to calculate the force on a current element in an external

magnetic field or on a charged particle moving in an external magnetic field or in both
magnetic and electric fields, including the characteristics of cyclotron motion. That is, to
understand and be able to apply the equations

gvxB=ma g(E+VxB)=ma dF = IdsxB

7 An understanding of the magnetic moment vector of a current loop. A conceptual
understanding of how the torque exerted on a magnetic dipole in an external field arises,
and how to derive the expression for this torque (7 = ji x B). Also, a conceptual
understanding of how the force exerted on a magnetic dipole in a non-uniform external
magnetic field arises.

8. To be able to answer qualitative conceptual questions that require no calculation.
These will be concept questions similar to those in lecture, where you will be asked to
make a choice out of a multiple set of choices.

To study for this exam we suggest that you review your problem sets, in-class
problems, Friday problem solving sessions, PRS in-class questions, and relevant
parts of the study guide and class notes.

Summary of Class 21
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Class 21: Outline

Hour 1: Ampere’s Law Problem
- Solving

Hour 2: Concept Rewew l
Ovemew -

PRS Questlons poss;ble exam

Exam 2 Topics

Conductors
Capacitance
DG Circuits

Magnetic Fields...
Generating Magneti Fields

General Exam Suggestions

You should be able to complete every problem
= If you are confused, ask
« If it seems too hard, you aren’t thinking enough
« Look for hints in other prohiems
. if you are dolng math you re domg too much

Class 21
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- What You Should Study

Review Friday Problem Solving (& Solutions)
= Review In Class Problems (& Solutions)
Review PRS Questions (& Solutions)

» Review Problem Sets (& Solutions)
_+ Review PowerPoint Presentations

e Rawew Relevant Parts of Siudy Gunde
(& inciuded Examptes)

Conductors in Equilibrium

Conductors are equipotential objects:
1) E = 0 inside

2) E perpendicular to surface

_ _3) Net charge lnSlde is0

PRS Questions:
 Conductors

Class 21
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PRS: Point Charge in Conductor

A point charge +Q is placed
inside a neutral, hollow,
spherical conductor. As the
charge is moved around
inside, the electric field
alide L .

PRS Answer: Q in Conductor

Answer: 2. is non-zero but
does not change

PRS Setup

What happens if we

put Q in the center of

. these nested

| (concentric) spherical

cohd_uc_:t_df&?

Class 21




[[0]] PRS: Hollow Conductors

A point charge +Q is placed
at the center of the .
conductors. The induced
charges are:

PRS Answer: Hollow Conductors

Answer: 1. The inner faces
are negative, the outer faces
are posmve

PRS: Hollow Conductors

A posnt charge +Qis placed
at the center of the
conducto_rs The potentna! at

Class 21 o=
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PRS Answer: Hollow Conductors

Answer: 3. O1 and |1 are at
the same potential

A conductor is an qu:potentlal surface. O1

same pqtentlal.

PRS: Hollow Conductors

‘A point charge +Q is placed
at the center of the :
conductors. The potent:ai at
;02 is: o s

'PRS Answer: Hollow Conductors

Answer: 2. 02 is lower than [1
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PRS: Hollow Conuctors

A point charge +Q is placed
at the center of the
conductors. If a wire is used

to connect the two

(v
J\

PRS Answ’ér: Hollow Conductors

Answer: 1. Current flows outward

@ h/ by | 4

PRS: Hollow Conductors
- You connect the “charge sensor's”
red lead to the inner conductor and
black lead to the outer conductor.
What does it actually measure?
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PR_S'Answ'er: Hollow Conductors

Answer: 7. “Charge Sensor’
measures potential difference
between outer & inner conductor

rge axis?” From the
otential difference it :'c'aé_i'n'

So what is the:“ -h

which is 'c’hat:'ge-o ' O1 and

Capacitors
Capacitance To calculate:
Q 1) Puton arbitrary 2Q

2) Calculate E
3) Calculate AV.

PRS Questions:
- Capacitors
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PRS Changmg Dlmensmns

Aparallel—p]ate capacitor has piates with squal and oppcsx!e e

.--PRS Changmg Dlmensmns -

A parallel-plate capacitor has plates with equal and opposite
0, by d

Class 21




PRS Answer: Changing Dimensions
Answer: 9. V is the same, Q decreases

With a battery connected to the plates the
potential V between them is held constant

In thls situation, smce
V= Ed -
Asdlncreases Emust decrease .

Smce the electric ﬁeid is pmpertlone! to the

charge on the plates Q must decrease as
well. -

PRS: Changing Dimensions

A parallel-plate capacitor, disconnected from a
battery, has plates with equal and opposite
charges, separated by a distance d.

Suppose the plates are puiled apart unt:l separad
by a distance D > d.

How does the final electrostanc energy stored in
the capacltor compare {o the mmal energy?
0% 1. The final stored energy is smailer

7 The final stored energy is larger
0% % Stored energy does not change.

e

PRS Answer: Changing Dimensions
Answer: 2. The stored energy increases

As you pull apart the capacitor plates you
increase the amount of space in which the E
field is non-zero and hence increase the
stored energy. Where does the extra energy
come from? From the work you do pulling
the piates apaft

Class 21
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~ PRS: Current Density

Acurreﬂt! 200 mA flows in the above wire. Whatisthe
magmtude of the current density J?
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Ohm s i.aw

§ign' Céﬁventlons - Batte

y.

Muvmg from the negatwe to posmve 1errmnai of a
_ battery Incmases your potentsal :
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PRS Answer. Bulbs & Batterles

> urrent ﬂows from

@ rrs: Bulbs & Batteries
An ideal battery is hooked to a light
bulb with wu'es A second 1c_£enttcal ' e

PRS Answer' Bulbs & Batter:es
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”'PRS Answer: Biot-Savart
Answer: 3. B(P)is in the +z

S KL :1 | &
direction (out of page) kL‘i E |
The vertical line segment  —
contributes nothing to the field 1
at P (it is parallel to the . yig
displacement). The horizontal i
segment makes a ﬁeid out of

the page.

@ PRS: Bent Wire

The magnetic field at P is equal to the field of:

- PRS Answer Bent Wire

Answer 2 Semtc;rcle + infinite wire

th:s to get. the oomplete field

Class 21
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8.02 Exam Two Spring 2010

—

PLLIA s [m|E |T]FIR

FAMILY (last) NAME

NI CIHIAIE |

GIVEN (first) NAME
972 11 CIM 9]¢
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Your Section: X LO01 MW@ am L02 MW 11 am L03 MW 1 pm
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Your Group (e.g. 10A): { 2 (
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Problem 3 (25 points) / 7 7
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Problem 1: (25 points) Five Concept Questions. Please circle your
answers.

Question 1: (5 points) Circle the correct answer.

Consider a simple parallel-plate capacitor whose plates are given equal and opposite
charges and are separated by a distance d. The capacitor is connected to a battery.
Suppose the plates are pushed together until they are separated by a distance D = d/2.
How does the final electrostatic energy stored in the capacitor compare to the initial

energy?
| == e
— o S — d/2 3D
| wp O |
1 7 L l
5 T |
initial final
Final is half the initial. e
W . Pllol wens sukd F5t#
\I;) Final is one fourth the initial. ¢id wvwqgy j it &

@ Final is twice than initial.
d) Final is four times the initial.

fokl OV ﬁ;) They are the same.
b g

V= - (t! 0 X §o Shlg bL J,[,.-r‘(_'(__
Jf) 4 M & : 1 5
0 ¢p y {6, ;o *
\ bod



Question 2: (5 points) Circle the correct answer.

A conducting wire 1s attached to an initially charged spherical conducting shell of radius
2a. The other end of the wire is attached to the outer surface of a neutral conducting
spherical shell of radius a that is located a very large distance away (at infinity). When

electrostatic equilibrium is reached, the charge on the shell of radius 2a is equal to

comlud-mg Skqus
Cond ua‘f‘tvﬁ wire )

< o L @

fae apact

Q

a) one fourth the charge on the shell of radius a.
b) half the charge/on the shell of radius «.

( c,);) twice the chafge on the shell of radius a.
d) four time the charge on the shell of radius a.

e) None of the above.

\ fe
Wt~



Question 3: (5 points) Circle the correct answer.

What is the correct order for the fofal power dissipated in the following circuits, from
least to greatest? Assume all bulbs and all batteries are identical. Ignore any internal
resistance of the batteries.

_,_/‘_‘ﬁa;uv o
‘f‘l .J oAy . 59
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Question 4: (5 points) Circle the correct answer.

Consider a triangular loop of wire with sidesa and b . The loop carries a current / in the
direction shown, and is placed in a uniform magnetic field that has magnitude B and

points in the same direction as the current in side OM of the loop.

__%\ | ”
AN 3 A
b U

4—
“6‘ r P

At the moment shown in the figure the torque on the current loop

a) points in the — i -direction and has magnitude labB/2.
L pomtxn<h4;+ i -direction and has magnitude /abB/2.
c) points in the —j -direction and has magnitude /abB/2 .

e i < Seqpol morea |-
@ points in the + ] du;'ectlon ané gasli magmtude labB/?2.

) \
) points in the — i i -direction and has magnitude /abB .
points in the + i -direction and has magnitude labB .

g) points in the —j -direction and has magnitude /abB .

) points in the + j-direction and has magnitude JabB . J
i) None of the above. \
1 \ J
i s To fo NI gV ‘[)
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| Y St T

O fo
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Question 5: (5 points) Circle the correct answer.

A particle with charge g and velocity v enters through the hole in screen 1 and passes
through a region with non-zero electric and magnetic fields (see sketch). If lg < 0> and

the magnitude of the electric field E is greater than the product of the magnitude of the
initial velocity v and the magnitude of the magnetic field B, that is £ > vB, then the
force on the particle

g SQ

B wto Page !
o o 2

x« .ex | {7

4 [’:_"_ — F £ J &“{o%ﬂ/

|

7( is zero and the particle will move in a straight line and pass through the hole on
screen 2.

\b{ is constant and the particle will follow a parabolic trajectory hitting the screen 2 —
above the hole.

c¢) is constant and the particle will follow a parabolic trajectory hitting screen 2

below the hole. ’ . ,

(@ pl-"f churging d 1é( '0/,/
v /

d). is constant in magnitude but changes direction and the particle will follow a
- . - - \"-——'_——
circular trajectory hitting the screen 2 above the hole.

e) is constant in magnitude but changes direction and the particle will follow a
circular trajectory hitting the screen 2 below the hole.

changes magnitude and direction and the particle will follow a curved trajectory j ! /

itti = anal
" hitting the screen 2 above the hole. Z]) 005 ?) 1 s Q Ef ‘ “( ¢
’ changes magnitude and direction and the particle will follow a curved trajectory e e
hitting the screen 2 below the hole.
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. ~a)/'What are the magnitude and direction of the electric field everywhere in space a

Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider a spherical vacuum capacitor consisting of inner and outer thin conducting
spherical shells with charge +Q on theinnershell of radius @ and charge —Q on the

outer shell of radius & . You may neglect the thickness of each shell.
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b) What is the capacitance of this capacitor?
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¢) Now consider the case that the dimension of the outer shell is doubled from 5 to

\)b{ﬂ-orﬁ (

2b . Assuming that the charge on the shells is not changed, how does the stored
potential energy change? That is, find an expression for AU =U ,,, —U, . in

i\

terms of a, b, and &,. ﬁ ]
ng
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ks
Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider the following circuit shown in the figure below. All questions can be answered
without solving any differential equations.

R,=R

R3= IR

‘a) Find the current through each of the four resistors, R, R,, R;, and R,, along
/ time after the switch S has been in position (1).
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b) Find the absolute value of the potential difference |VC| across the capacitor a long
& time after the switch S has been in position (1).

Q (/A\/] Wl {lgt Gonacled
R Av= g e~ T30 B
| 7 % ’ ({ -TH =4 P
e D egan g YT
A ~
T o - 134 g-” --r--r;Y"f (5-@4 (9 ?/)

B
O < =@/ ety bd adbae g Tt ——

—

c) Att=0 ‘the switch is moved fo posmon (2) What current will flow out of the
capacitor at the instant the switch is moved to position (2)? Indicate whether the
current will flow up or down in the branch of the circuit containing the capacitor.

Corron vl ¢4, by plle w R Copab
Rrouad 'i/ﬁf, lﬁf’f m
Q |
L _yTp o |
e T
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d) Make a graph of current vs. time for the current that flows out of the capacitor
after the switch is moved to position (2) at # =0. Indicate the value of the current
at time 7 =0 on your graph.

L e
f) ’[;{ [i\\ \‘\‘

e¢) Find an expression for how long it takes the current that flows out of the capacitor
to reach a value equal to e of the value of that current when the switch is
moved to position (2) at  =0. (You can answer this question without solving a
differential equation.) '

gl Currea) Lalve
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f) After a long period in position (2), the switch is thrown to position (1) again.
Immediately after the switch has been thrown to position (1), find the current
through the battery.

,D\‘: 15 TQ ¥ h{ ;fu:JQ} Frab!é’/) )00(7)55!
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Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

The x—y plane for x <0 is filled with a y
uniform magnetic field pointing out of
the page, B =25, k with B,>0,as

< X
shown. The x—y plane for x>0 is ©
filled with a uniform magnetic field X1 X _:_0 x>0
]§=—Bol:1 , pointing into the page, as ONONONON L I
shown. A charged particle with mass m o G .
and charge ¢ is initially at the point § OO OJOJ L e
at x =0, moving in the positive x - DOOLOIRYYR
direction with speed v. It subsequently = = )
moves counterclockwise in a circle of © OO OP® @Y
radius R, returning to x =0 at point P, ODNONONO! QX 0
a distance 2R from its initial position, as _
shown in the sketch. ONONO. ®| @R@ L D
OROR RO ®
(ONONO, g QL D 5
CRORO, QR

B out of page B into page
B =ﬁ ' B :f__ B:}
C.L- LJ, o O ..G { Fi 0‘-!"";

a) Is the charge positive or negative? Briefly explain your reasoning.

e it Jal ol
Jo I gl w ) A il N0

- g

[4 M}'P
{

> : { 2\ ‘;‘
) ) | " i 4 o F ) | i 3
?Q [:, 1'!."-- Pv il UL L.j{j f éj_ j -b"x., 1 I ‘"‘-'.",‘:,"'!“'TT?-?—.,,_
L ‘ b L

18



P b) Find an expression for the radius R of the trajectory shown, in terms of v, m, ¢,

and B, . _
yd
f’{’r’n‘fr-'_t"f % V @ ~ !_n u__
c gt
h ‘f F gat (l
7 1ght "
Lo vB ey
Re myX MV
g, v § 15 l
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c) How long does the particle take to return to the plane x =0 at point P ?
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d) Describe and sketch the subsequent trajectory of the particle on the figure below
after it passes point P . Be sure to define any relevant distances in terms of v, m,

q.,and B,.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
8.02 Exam Two Spring 2010 Solutions

Question 1: (5 points) Circle the correct answer.

Consider a simple parallel-plate capacitor whose plates are given equal and opposite
charges and are separated by a distance d. The capacitor is connected to a battery.
Suppose the plates are pushed together until they are separated by a distance D = d/2.
How does the final electrostatic energy stored in the capacitor compare to the initial
energy?

initial final

a) Final is half the initial.

b) Final is one fourth the initial.
c¢) Final is twice than initial.

d) Final is four times the initial.

e) They are the same.

Answer c¢. Because the capacitor is connected to the battery, the potential difference
across the plates is constant. Therefore the ratio of the final stored energy to the initial
stored energy is proportional ratio of the final capacitance to the initial capacitance,

U, /U, =%CIAVC2 /%C,.AVC2 =C,/C,. For a parallel plate capacitor, the capacitance is

inversely proportional to the distance separating the plates,
Loh @ w4
AV Ed (cle)d d

C,/1C=d/ld, =d/(d/2)=2.S0 U, /U, =2.

Therefore the ratio of the capacitance is



Question 2: (5 points) Circle the correct answer.

A conducting wire is attached to an initially charged spherical conducting shell of radius
2a. The other end of the wire is attached to the outer surface of a neutral conducting
spherical shell of radius @ that is located a very large distance away (at infinity). When

electrostatic equilibrium is reached, the charge on the shell of radius 2a is equal to

concluc:l‘mg shells
{- conduc:f‘mj wire )’

2a / @

far qpar'l'

a) one fourth the charge on the shell of radius a.
b) half the charge on the shell of radius a.

c¢) twice the charge on the shell of radius a.

d) four time the charge on the shell of radius a.

e) None of the above.

Answer ¢. When electrostatic equilibrium is reached, the two shells form one conducting
surface and hence the potential on that surface is constant. Because the two shells are
very far apart, the potential of each shell with respect to infinity can be calculated
separated. Because the electric field outside each charged shell is identical to the electric
field of a point-like object with the same charge located at the center of the shell. The

potential on each shell with respect to infinity is just Q/4me,r . The potential difference

between the two shells is zero, or O

=2a

l4nme,2a—-Q,/dne,a=0, or Q,, =20, . Therefore

the charge on the shell of radius 2a is equal to twice the charge on the shell of radius a.



Question 3: (5 points) Circle the correct answer.

What is the correct order for the roral power dissipated in the following circuits, from
least to greatest? Assume all bulbs and all batteries are identical. Ignore any internal
resistance of the batteries.

a) A<B=C<D<E
b) D<C<B=E<A
¢) D<B<E<A<C
d) A=B<D<C<E
e) B<A<C=D<E

Answer a. The power dissipated in the circuits above is the equal to the power generated
by the batteries. For a battery with a current / and an electromotive force ¥, the power
generated by the battery is P = IV . The current from the battery incase Ais I, =V /3R,
hence the power dissipated is P, =1,/ =¥?/3R . The two resistors in series are shorted
out in B, hence the current from the battery in case Bis /, =V /R, hence the power
dissipated is P, =1,/ =V*/R. In case C, the current through the bulb is /. =V /R.
Because there is only one bulb, we can calculate the power dissipated across the bulb
P.=12R=V*/R.In case D the equivalent resistance is R, = R/3. So the current from
the battery in case D is 7, =3V / R, hence the power dissipated is P, =1,V =3V*/R.
Finally in case E, the electromotive force driving the current is 2V, hence the current
through the bulb is 7, =2V / R. Because there is only one bulb, we can calculate the
power dissipated across the bulb P, =1,°R=4V"*/R . Therefore comparing our results

we have that the correct order for the fotal power dissipated in the following circuits is
Az B=llwDal,



Question 4: (5 points) Circle the correct answer.
Consider a triangular loop of wire with sidesa and b . The loop carries a current / in the

direction shown, and is placed in a uniform magnetic field that has magnitude B and
points in the same direction as the current in side OM of the loop.

®]

e s ———————— ;‘-l.N
I

At the moment shown in the figure the torque on the current loop

a) points in the — i -direction and has magnitude labB/?2 .
b) points in the + i-direction and has magnitude labB/?2 .
¢) points in the —j -direction and has magnitude labB/2.
d) points in the + j-direction and has magnitude /abB/2.
e) pointsin the — i -direction and has magnitude /abB .
f) points in the + i -direction and has magnitude /labB .
g) points in the —j -direction and has magnitude labB .

h) points in the + j-direction and has magnitude labB .

i) None of'the above.

Answer b. The magnetic dipole moment vector is ji = lab/2 . The torque on the
current loop is then 7 = fix B = (lab/2) % Bk = (labB/2)i .



Question 5: (5 points) Circle the correct answer. A particle with charge ¢ and velocity
v enters through the hole in screen 1 and passes through a region with non-zero electric
and magnetic fields (see sketch). If ¢ <0 and the magnitude of the electric field E is
greater than the product of the magnitude of the initial velocity v and the magnitude of
the magnetic field B, that is £ > vB, then the force on the particle
S, Sl
B weto Page

= E O VS & 4
=1 X x i“‘
x % % £

a) is zero and the particle will move in a straight line and pass through the hole on
screen 2.

b) is constant and the particle will follow a parabolic trajectory hitting the screen 2
above the hole.

c) is constant and the particle will follow a parabolic trajectory hitting screen 2
below the hole.

d) is constant in magnitude but changes direction and the particle will follow a
circular trajectory hitting the screen 2 above the hole.

e) is constant in magnitude but changes direction and the particle will follow a
circular trajectory hitting the screen 2 below the hole.

f) changes magnitude and direction and the particle will follow a curved trajectory
hitting the screen 2 above the hole.

g) changes magnitude and direction and the particle will follow a curved trajectory
hitting the screen 2 below the hole.

Answer f. When the particle enters the region where the fields are non-zero, the electric
force is points upwards for a negatively charged particle and is greater in magnitude then
the downward magnetic force. Both electric and magnetic forces are perpendicular to the
particle’s velocity and the particle starts to curve upwards. The electric force is always
upwards but the magnetic force changes direction as the particle moves along a curved
trajectory, so the direction of the force changes. It turns out that the magnitude of the
force while the particle is between the plates is constant but does not point to a central
point so the trajectory of the particle is not circular. Assuming that the time it takes the
particle to cross the plates is smaller than —zm/gB , when the particle leaves the region
between the plates the slope of the trajectory of the particle points upward, and so the
particle will strike screen 2 above the hole. Because the fields in this region outside the
plates are now zero, the force is zero so the magnitude of the force has changed.



Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider a spherical vacuum capacitor consisting of inner and outer thin conducting
spherical shells with charge +Q on the inner shell of radius @ and charge —Q on the

outer shell of radius b . You may neglect the thickness of each shell.

a) What are the magnitude and direction of the electric field everywhere in space as
a function of r, the distance from the center of the spherical conductors?

Answer. There are three regions r <a, a<r<b,and b <r. The electric field is zero for

r<a and b <r because the charge enclosed in a Gaussian sphere of radius r is zero for
both of those regions.

For the region a <r <b, Gauss’s Law implies that E4zr* = O/g,. Hence the magnitude

of the electric field is £=Q/4me,r* and the direction is radially outward.



0 h<r

b) What is the capacitance of this capacitor?

Answer: The capacitance is given by

e @ BT 0 _ dme,  Aneyab
|AVC| _]'Ed; _] o _dr (l_lj (b—a)
L. o3 drme,r- a b

¢) Now consider the case that the dimension of the outer shell is doubled from &4 to
2b . Assuming that the charge on the shells is not changed, how does the stored

potential energy change? That is, find an expression for AU =U ,,, —U,,.,,. in

terms of O a, b, and g, as needed.

Answer: The energy stored in the capacitor is U = Q*/2C . Therefore the change in
stored energy is

AUzQ_Z((zb—a) (b—a)J:Q_E((zb—a)—z(b_a)] 0

2 - 2 dme,a2b )

dre,a2b  4mes,ab 0 167g,b



Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider the following circuit shown in the figure below. All questions can be answered
without solving any differential equations.

. ()
e () R (O
3 : — e
— L
R3= IR

a) Find the current through each of the four resistors, with resistances R, R,, R,

and R,, a long time after the switch S has been in position (1).

Answer: No current flows through resistor R,. A long time after the switch as been

closed no current flows through the branch of the circuit containing the capacitor and
resistor R;. So the circuit looks like the circuit diagram below.

In this single loop circuit with equivalent resistance R, = R, + R, =3R, the current is the

same through both resistors with resistances R,, R,, and is given by =& /(3R).

b) Find the absolute value of the potential difference ]I/;.| across the capacitor a long

time after the switch S has been in position (1).



Answer: The potential across the capacitor is the same as the potential across resistor 2,
(see figure below)

E 2&
V.|=IR, ==2R=22,
=1, 3R 3

c) At ¢=0 the switch is moved to position (2). What current will flow out of the
capacitor at the instant the switch is moved to position (2)? Indicate whether the
current will flow up or down in the branch of the circuit containing the capacitor.

R, =R
<

(1

R=R

L ww

RS: 3({.

Answer: When the switch is moved to position 2 the circuit looks like the circuit diagram
shown below.

= 4 i

= 5 B‘*g«}'c Ves 3
R
3

The current flows counterclockwise (up from the capacitor). Because |V.|=(2/3)& and

the equivalent resistance is R, = R, + R, =4R, the current is




d) Make a graph of current vs. time for the current that flows out of the capacitor

after the switch is moved to position (2) at ¢ = 0. Indicate the value of the current
at time ¢ =0 on your graph.

i

1
)
¢
.
.
.

A>T=4r C t

e) Find an expression for how long it takes the current that flows out of the capacitor

to reach a value equal to e of the value of that current when the switch is

moved to position (2) at  =0. (You can answer this question without solving a
differential equation.)

Answer: Because the equivalence resistance is R,, =4 R, the time constant is
t=R,C=4RC.

f) After a long period in position (2), the switch is thrown to position (1) again.

Immediately after the switch has been thrown to position (1), find the current
through the battery.

Answer: After a long period in position (2) the capacitor is now uncharged. Immediately
after the switch has been thrown to position (1), the capacitor can be replaced by a wire,
and the circuit now looks like




Resistors 2 and 3 are now in parallel with equivalent resistance

&) = TR _QRGR) _6R
“’PT " R,+R, (QR+3R) 5

Because resistor 1 is in series with the parallel pair of resistors 2 and 3, the equivalent
resistance of the resistor network is

. :_Rl.pﬂ:}{.pﬁ_‘qzﬁ_
i R, +R, 5

Therefore the current through the battery is

1=¢/R, =5¢/11R.



Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

The x—y plane for x <0 is filled with a ¥
uniform magnetic field pointing out of
the page, B=2B, k with B, >0, as

z X
shown. The x—y plane for x>0 is ©
filled with a uniform magnetic field r<L0 ¥=0 x>0
B==B, K , pointing into the page, as OND) K D
shown. A charged particle with mass m ~ <
and charge ¢ is initially at the point S © O ® 5‘?
at x =0, moving in the positive x - © © &
direction with speed v. It subsequently @) G A
moves counterclockwise in a circle of O ¥
radius R, returning to x =0 at point P, @ © ® XD
a distance 2R from its initial position, as e
shown in the sketch. OO 2 D
® @ ® ®
® O ® ®
® ® 1 ® D
B out of page B into page

B=2Bk B=-Bk

a) Is the charge positive or negative? Briefly explain your reasoning.

Answer: Because the orbit is counterclockwise the force F = qv x B must point up when
the particle is at point S. The ¥ x B = vi x (-5, IG) =vB, J points up therefore the charge

of the particle must be positive in order for F= qv % B also to point up.

b) Find an expression for the radius R of the trajectory shown, in terms of v, m, ¢,
and B,.

Answer: The orbit is circular, so Newton’s second Law becomes gvB, = mv’ / R. Thus

the radius of the orbit is
my

R=—.,
qB,



¢) How long does the particle take to return to the plane x=0 at point P ?

Answer: The time ¢, it takes the particle to complete a semicircular path from S to P is
7R _7mm
"y gB,

d) Describe and sketch the subsequent trajectory of the particle on the figure below
after it passes point P . Be sure to define any relevant distances in terms of v,

m,q,and B,.

B out of page
B=2Bk

When the particle is at point P, the force is still up because both the velocity and the
magnetic field now point in opposite directions. Hence

F=qvxB :v(—f)x(QB0 IE)= 2vB, 7.
Newton’s Second Law is now 2vB, = mv*/ R, . Hence the radius is now

R,=mv/2B;=R/2.



