Summary of Class 22 8.02

Topics: Faraday’s Law
Related Reading: Course Notes: Sections 10.1-10.3, 10.8-10.9
Experiments: (7) Faraday’s Law of Induction

Topic Introduction

So far in this class magnetic fields and electric fields have been fairly well isolated. Electric
fields are generated by static charges, magnetic fields by moving charges (currents). In each
of these cases the fields have been static — we have had constant charges or currents making
constant electric or magnetic fields. Today we make two major changes to what we have
seen before: we consider the interaction of these two types of fields, and we consider what
happens when they are not static. We will discuss the last of Maxwell’s equations, Faraday’s
law, which explains that electric fields can be generated not only by charges but also by

magnetic fields that vary in time and get a hands-on feeling for it in an expt.

=1

Faraday’s Law
It is not entirely surprising that electricity and magnetism are connected. We have seen, after
all, that if an electric field is used to accelerate charges (make a current) that a magnetic field
can result. Faraday’s law, however, is something completely new. We can now forget about
charges completely. What Faraday discovered is that a changing magnetic flux generates an
no . =2

EMF (electromotive force). Mathematically:

Chorge g . PR
- E= d0; 5 = ’UB‘dA is the magnetic flux, and & =CfE'-ds is the EMF

In the formula above, E'is the electric field measured in the rest frame of the circuit, if the
circuit is moving. The above formula is deceptively simple, so I will discuss several
important points to consider when thinking about Faraday’s law.

WARNING: First, a warning. Many students confuse Faraday’s Law with Ampere’s Law.
Both involve integrating around a loop and comparing that to an integral across the area
bounded by that loop. Aside from this mathematical similarity, however, the two laws are
completely different. In Ampere’s law the field that is “curling around the loop™ is the

magnetic field, created by a “current flux” (I = Hj . d:&) that is penetrating the looping B

field. In Faraday’s law the electric field is curling, created by a changing magnetic flux. In
fact, there need not be any currents at all in the problem, although as we will see below -
typically the EMF is measured by its ability to drive a current around a physical loop—a ¢V (12
circuit. Keeping these differences in mind, let’s continue to some details of Faraday’s law.
5 EMF: How does the EMF become apparent? Typically, when doing
Faraday’s law problems there will be a physical loop, a closed circuit,
R such as the one pictured at left. The EMF is then observed as an
— elgc_:rtggnotlve force that drives a current in the circuit: & =IR. In
this case, the path walked around in calculating the EMF is the circuit, and hence the
associated area across which the magnetic flux is calculated is the rectangular area bordered
by the circuit. Although this is the most typical initial use of Faraday’s law, it is not the only
one — we will see that it can be apphed in “empty space” space as well, to determine the
creation of electric fields.
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Summary of Class 22 _ 8.02

Changing Magnetic Flux: How do we get the magnetic flux @g to change? Looking at the
integral @, = Hﬁ -dA =BA cos(@), hints at three distinct methods: changing the strength

of the field, the area of the loop, or the angle of the loop. These methods are shown below.
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In each of the cases pictured above, the magnetic flux into the page is decreasing with time
(because the (1) B field, (2) loop area or (3) projected area are decreasing with time). This
decreasing flux creates an EMF. In which direction? We can use Lenz’s Law to find out.

Lenz’s Law

Lenz’s Law is a non-mathematical statement of Faraday’s Law. It says that systems will
always act to oppose ichanges in magnetic flux. For example, in each of the above cases the
flux into the page is decreasing with time. The loop doesn’t want a decreased flux, so it will
generate a clockwise EMF, which will drive a clockwise current, creating a B field into the
page (inside the loop) to make up for the lost flux. This, by the way, is the meaning of the
minus sign in Faraday’s law. Irecommend that you use Lenz’s Law to determine the
direction of the EMF and then use Faraday’s Law to calculate the amplitude. By the way,
just as with Faraday’s Law, you don’t need a physical circuit to use Lenz’s Law. Just
pretend that there is a wire in which current could flow and ask what direction it would need
to flow in order to oppose the changing flux. In general, opposing a change in flux means
opposing what is happening to change the flux (e.g. forces or torques oppose the change).

Applications
A number of technologies rely on induction to work — generators, microphones, metal
detectors, and electric guitars to name a few.

Experiment 7: Faraday’s Law of Induction
Preparation: Read pre-lab

In this lab you will have a chance to measure and even feel Faraday’s law in action. The lab
basically consists of moving a loop of wire over a magnetic dipole. You will (we hope)
develop an intuition for how currents flow through the wire loop as it moves in the magnetic
field of the dipole, and for the direction of the resultant force on the loop.

Important Equations

Summary for Class 22 2 p.2/3




Summary of Class 22 8.02

ad
Faraday’s Law: E=——4=~
dt
Magnetic Flux: O, = ”ﬁ-afﬁ
EMF: E= Cf E'-ds where E'is the electric field measured in the rest

frame of the circuit, if the circuit is moving.
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Ways to induce EMF
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 7: Faraday’s Law

OBJECTIVES

1. To become familiar with the concepts of changing magnetic flux and induced
current associated with Faraday’s Law of Induction.

2. To see how and why the direction of the magnetic force on a conductor carrying
an induced current is consistent with Lenz’s Law. Lenz’s Law says that the
system always responds so as to try to keep things the same.

PRE-LAB READING
INTRODUCTION

In this lab you will develop an intuition for Faraday’s and Lenz’s Laws. By moving a
coil of wire over a magnet you will change the magnetic flux through the coil, generating
and EMF and hence current in the loop which you will measure using the 750.

The Details: Faraday’s Law

Faraday’s Law states that a changing magnetic flux generates an EMF (electromotive
force). Mathematically:

do
E=—"-T:
dt

, Where @, = Hﬁ -dA is the magnetic flux, and & = Cfl_*j -ds is the EMF

In the formula above, E is the electric field measured in the rest frame of the circuit, if
the circuit is moving.

Changing Magnetic Flux: How do we get the magnetic flux ®p to change? Looking at
the integral in the case of a uniform magnetic field, ®, = Hﬁ -dA =BAcos(@), hints at

three distinct methods: by changing the strength of the field, the area of the loop, or the
angle of the loop. Pictures of these methods are shown below.
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In each of the cases pictured above, the magnetic flux into the page is decreasing with
time (because the (1) B field, (2) loop area or (3) projected area are decreasing with
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time). This decreasing flux creates an EMF. In which direction? We can use Lenz’s
Law to find out.

Lenz’s Law

Lenz’s Law is a non-mathematical statement of Faraday’s Law. It says that systems will
always act to oppose changes in magnetic flux. For example, in each of the above cases
the flux into the page is decreasing with time. The loop doesn’t want a decreased flux, so
it will generate a clockwise EMF, which will drive a clockwise current, creating a B field
into the page (inside the loop) to make up for the lost flux. This, by the way, is the
meaning of the minus sign in Faraday’s law. I recommend that you use Lenz’s Law to
determine the direction of the EMF and then use Faraday’s Law to calculate the
amplitude. By the way, just as with Faraday’s Law, you don’t need a physical circuit to
use Lenz’s Law. Just pretend that there is a wire in which current could flow and ask in
what direction it would need to flow to oppose the changing flux. In general, opposing a
change in flux means opposing what is happening to change the flux (e.g. forces or
torques oppose the change).

APPARATUS
1. Magnet Stand

The magnetic flux of Faraday’s Law will be generated by a high field permanent magnet,
sitting on a support beam so that you may move a coil from above to below and back.

Figure 1 The Magnet Stand
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2. Wire Loop, Current Sensor and Science Workshop 750 Interface

The magnetic field will penetrate a loop of wire, which you will plug into the current
sensor, which is in turn plugged into channel A of the 750. In this lab we will use the
convention that positive current flows counter-clockwise when observed from above.
The current sensor records current that flows into its red terminal and out its negative
terminal as positive, so make sure that you hook up the wire to the current sensor so that
these two conventions are compatible with each other.

Figure 2 The Current Sensor

GENERALIZED PROCEDURE

This lab consists of two parts. In each you will observe the effects (current & force) of
moving a loop around a dipole.
Part 1: Current and Flux through a Loop Moving Past a Dipole

You will move a wire loop from above to below a magnetic dipole, and observe plots of
the current flowing through the loop (measured) and the flux through the loop
(calculated).

Part 2: Feeling the Force

In this part you will repeat the motion, using a hollow aluminum cylinder instead of the
wire loop. In doing so you will be able to feel the force on the cylinder due to Lenz’s
Law.

END OF PRE-LAB READING
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IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file and start up the program.

2. Connect f channel A of the 750.

3. Connect the wire loop to the current sensor so that, starting at the black terminal, the
wire loops counterclockwise (when viewed from above) and then enters the red
terminal of the current sensor

MEASUREMENTS
Part 1: Current and Flux through a Loop Moving Past a Dipole

1. Press ‘Go’ to start recording current and flux

2. Move the wire loop from well above to well below the magnet and back again.
Try to make the motion as smooth as possible and at a constant velocity.

Question 1:

During the complete motion which of the following graphs (one for motion downwards,
one for motion back upwards) most closely resembled the graph of:

(a) magnetic flux through the loop as a function of time?

(b) current through the loop as a function of time?

(A)

oy ,J h{ :
{lux 0
(Weeat (=
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Question 2:

Does the downward motion yield the same or different results from the upward motion?
7 | s ol
Whys [ — hat  Ldre OTATAT TN
‘/C! ("J—\\F )

Part 2: Feeling the Force

Although we could do this part of the lab with the same coil we just used, in order to
better feel the force we will instead use an aluminum tube.

1. First hold the aluminum tube near the side of the magnet to convince yourself that
Al is non-magnetic.

2. Place the tube over the Plexiglas and then push the tube downwards.
3. When you get to the bottom, pull the tube back up.

Question 3:

For each of the following four situations please indicate the direction of the magnetic
force on the tube that you feel.

As you are moving the loop from well above the magnet to well below the magnet at a
constant speed... _ ;

(a) ... and the loop is above the magnet. /[’ °

(b) ... and the loop is below the magnet Jowavel 3

As you are moving the loop from well below the magnet to well above the magnet at a
constant speed... \

(c) ... and the loop is below the magnet. CO~" "

(d) ... and the loop is above the magnet (o

Further Questions (for experiment, thought, future exam questions...)

o What happens if you move the coil more quickly? Does the magnitude of the current
change? Does the magnitude of the flux change? In part 2, does the force change?

e If the current, flux or force do not change in this situation, is there anything we could
do to make them change? If they do change, what other changes could we make that
would counter-act the change of moving more quickly?

e What happens to the force when the tube is exactly centered on the magnet? Why?

e Do the effects depend on history? In other words, is moving from the middle to the
bottom any different if the motion started at the top than if it started at the bottom and
reversed at the middle?

e What happens if we define the direction of positive current to be clockwise (in other

words, if we flip the coil over)? Does this change have any affect on our definition of
flux?

| = ) L \
Qi Aon oty L pehl
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 8

Due: Tuesday, April 6 at 9 pm.

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.

Week Ten Faraday’s Law

Class 22 W10D1 M/T Apr 5/6 Faraday’s Law; Expt.7: Faraday’s Law

Reading: Course Notes: Sections 10.1-10.3, 10.8-10.9

Experiment: Expt.7: Faraday’s Law

Class 23 W10D2 W/R Apr 7/8 Problem Solving Faraday’s Law; Inductance &
Magnetic Energy, RL Circuits

Reading: Course Notes: 10.1-10.4,10.8-10.9, 11.1-11.4

Class 24 W10D3 F Apr 9 Special Lecture: Applications of Faraday’s Law

Reading: Course Notes: 10.1-10.4, 10.8-10.9, 11.1-11.4

Campus Preview Weekend



Problem 1: In this problem you will work through two examples from Problem

Solving 7: Ampere’s Law. % ‘v l ) 3 -
) i o [.:j".":‘\'-‘-' . & 'J': A A ]
’j(' [’ A ‘J,_/? / % ) / ,

f
OBJECTIVES Ai’ [JO/ [ (04 4

1. To learn how to use Ampere’s Law for calculating magnetic fields from symmetric
current distributions

2. To find an expression for the magnetic field of a cylindrical current-can'ymg shell of
inner radius a and outer radius b using Ampere’s Law. e

3. To find an expression for the magnetic field of a slab of current using Ampere’s Law.

REFERENCE: Section 9-3. 8.02 Course Notes.

Summary: Strategy for Applying Ampere’s Law
(Section 9.10.2, 8.02 Course Notes)

Ampere’s law states that the line integral of B-ds around any closed loop is proportional
to the total steady current passing through any 7'surface that is bounded by the closed loop:

[JB-ds =1,
To apply Ampere’s law to calculate the magnetic field, we use the following procedure:
Step 1: Identify the ‘symmetry” properties of the cunc‘:hrlt) distribution.
Step 2: Determine the direction of the magnetic field Q
Step 3: Decide how many different spatial regions the current distribution determines
Hat oo Calc sepaehy

For each region of space...

Step 4: Choose an Amperian loop along each part of which the magnetic field is
either constant or zero

Step 5: Calculate the current through the Amperian Loop

Step 6: Calculate the line integral [IB ds around the closed loop. [y J h, | OMAA 15

o
e

Step 7: Equate [ﬁﬁdg with 2,1 _and solve for B.

enc
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Example 1: Magnetic Field of a Cylindrical Shell o nto Or Qu

We now apply this strategy to the following ik f v
problem. Consider the cylindrical conductor with
a hollow center and copper walls of thickness b — a
as shown . The radii of the inner and outer walls
are a and b respectively, and the current / is
uniformly spread over the cross section of the
copper (shaded region). We want to calculate the
magnetic field in the region|a < » < b.>

® ¢
{our of page)

Question 1: Is the current density uniform or non
uniform?

Problem Solving Strategy Step
Step 1: Identify Symmetry of Current Distribution
Either Eircular or rectangular

Step 2: Determine Direction of magnetic field

Clockwise orcounterclockwise? j '
oo v

Step 3: How many regions? SO ;/( /T d,

Three: r<a1' a<r<?; r>b

of

(e

T don T Wl el and I
Step 4: Draw Amperian Loop: '

Here we take a loop that is a circle of radius » with a < r < b (see figure).

Step 5: Current enclosed by Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop.

There are typically two ways to do this. One way is to simply calculate it as a fraction of
the total current. The second is to first calculate the current density J (current per unit
area) and then multiply by the area enclosed. You should use both methods and compare.

Question 2 What is the magnitude of the current per unit area JJ in the region a < r < b?
Remember we are assuming that the current / is uniformly spread over the area a < r < b,
and also remember that current density ./ is defined as the current per unit area.

T_ T T 1 TA T 12
J A TR y TR

Question 3 What is the fraction of the total area that is enclosed by the Amperian Loop?
What is the total current it encloses?

]
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Question 4 Your answer above should be zero when » = a and I when r = b (why?).
Does your answer have these propertles?

Yyp T nb*
b BT ey

{\ b\-’ k , [
on I S \ x " I
Step 6: Calculate Line Integral |:ﬂB ds: / ‘h‘ J T Thl.; ( (@hf '

Question 5 What is [jﬁd" $? (That is, evaluate the integral, the left hand side of Ampere’s

"B g ) famg 4, T

_ <) Il
Step 7: Solve for B: A m bﬂ

Question 6 If you equate your answer to Question 5 to your answer to Question 3 times
H, (i.e. use Ampere’s Law), what do you get for the magnetic field in the region a < r <

b?

\

Off)s l.*\.-nﬂ d J“Lﬂfl

B < Mdw e
o)™ B gt

Ca""n}gr Cl.ﬁﬁf&v_l;{

@rndvg‘(;i,@ ) C [ﬁ.“ :

BEN AN n ol lrr down
My Plobke ity boler

- Undestuad by o,



Question 7 Repeat the steps above to find the magnetic field in the region » <a.
Sfarer A T gL
_ ‘ A
. ’ , : ; J
f}ea s o I":Uf;rt’/? ?l "rw?“ +;lrﬂr@fh wi/ ¢
Question 8 Repeat the steps above to find the magnetic field in the region » > b.
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Question 9 (put your answer on the tear-sheet at the end): Plot B on the graph below.
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Example 2: Magnetic Field of a Slab of Current

We want to find the magnetic field B due to an infinite slab of current, using Ampere's
. _——‘_—\—".— ¥ ~ -
Law. The figure shows a slab of current with current density J =2J, |y|/d Z, where units

of J, are amps per square meter. The slab of current is infinite in the x and z directions,
and has thickness d in the y-direction.

Y df2

e y’ %

| P - /Z -—"é L
_ > X J b f——ll/ =
d/2 V*& ~
Question 10 What is the magnetic field at y = 0, where y = 0 is the exact center of the . . } 4 _! l r
slab? 22 N

él/j‘éi :'}}{OL T:OJ d({?/n s
Lb T =LA P=( d aaf

1‘;’\-.‘ j. -

A

0) g O % Ez b {r'ya /
i (9n f L'G
’T\ i ‘ﬂ’?'!{ 44&

Problem Solving Strategy Step - |

(1) Identify Symmetry— 7 s ad | paits
Either circular or rectangular. ) Which is it? F S
ih
(2) Determine Direction 1
Make sure you determine the direction in all regions. Sketch on tear sheet figure of Q9. T/_’]@
[
— 4
(3) How many regions? S T
Two for this problem: in the slab and above it (we won’t do below the slab).
) -
(4) Draw Amperian Loop: 7@/ [d"'d s G(ftle_ § O

2 Lw” bg O

We want to find the magnetic field for y > d/2, and we have from the answer to Question | g
10 for the magnetic field at y = 0. Therefore.. 'L[ LJ !l j ‘JE n ”/L} .
Question 11 What Amperian loop do you take to find the magnetic field for y > d/2‘? J/Fd. 5‘,\ 5(
Draw it on the figure above and also on the tear-sheet at the end, and indicate its .

dimensions. '
O {n u ‘ ES




(5) Current enclosed by Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop. Hint:
the current enclosed is the integral of the current density over the enclosed area.

Lo = JH

Question 12 What is the total current enclosed by your Ampenan loop from Question

11? ok
DusWh = g5Ted

(6): Calculate Line Integral [ﬂﬁ -ds:

Question 13 What i lS B ds?

88+ ds

(7): Solve for B:

Question 14 If you equate your answers in Question 13 to your answer in Question 12
times g, using Ampere’s Law, what do you get for the magnetic field in the region y >
dr2?

7

b(20) = A1 7,010

| — SN0 ) " 4 g N :
H < .\_v__.m_;h_‘ 1__-/{_,:“ i M NP L,;

= 4 /‘A -r | ;
(onsta / rﬂdeG/?d(,‘/i :ﬂ[ d@{'ﬂnw _ﬂw‘ﬂl o] J\ o ' Ll \
h/; Ly N U\ \l'_n ‘h".\fj ({150 [’\ | b “y ¢ ‘!'LCJ el )

Z
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We now want to find the magnetic field in the region 0 <y < d/2.

(4) Draw Amperian Loop:

We want to find the magnetic field for 0 < y < d/2, and we have from the answer to
Question 10 for the magnetic field at y = 0. Therefore...

Question 15 What Amperian loop do you take to find the magnetic field for 0 <y < d/2?
Draw it on the figure above and on the tear-sheet at the end, and indicate its dimensions.

. %S}E } -

(5) Current enclosed by Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop.

Question 16 What is the total current enclosed by your Amperian loop from Question
15?

I{w = )0 edp 2Telyl
J_,)‘/'. - :/ €ny}/€

S

) Myl

0 ' £ " Ly —
D My A 92 L0 7 M j ¢
= = i 5 el



(6) Calculate Line Integral dﬁ -ds:

Question 17 What is [J]ﬁ-dE ?

~ 3 ‘ /
(2 Atns e | f’

OPP { vl /4 ,. /

(7) Solve for B:

Question 18 If you equate you answers in Question 17 to your answer in Question 16
times u, using Ampere’s Law, what do you get for the magnetic field in the region 0 <y
< df2?



Question 19 Plot B, on the graph below. Use symmetry to determine B for y<0. Label
the y-axis

B,




|
Aﬁfjm O¢ (n J;' On f,{" 0 & P ws
|

Problem 2 Co-axial Cable

A coaxial cable consists of a solid inner conductor of radius a, surrounded by a
concentric cylindrical tube of inner radius b and outer radius ¢. The conductors carry
equal and opposite currents Iy distributed uniformly across their cross-sections.
Determine the magnitude and direction of the magnetic field at a distance r from the axis.
Make a graph of the magnitude of the magnetic field as a function of the distance » from
the axis.

Problem 3: Two Current Sheets

Consider two infinitely large sheets lying in the xy-plane separated by a distance d
carrying surface current densities f(l =Ki and Kz =-Ki in the opposite directions, as

shown in the figure below (The extent of the sheets in the y direction is infinite.) Note
that X is the current per unit width perpendicular to the flow.

a) Find the magnetic field everywhere due to K,.

b) Find the magnetic field everywhere due to K, .

¢) Applying superposition principle, find the magnetic field everywhere due to both
current sheets.

d) How would your answer in (c) change if both currents were running in the same
direction, with K, =K, =Ki?



Problem 4 Nested Solenoids: Two long solenoids are nested on the same axis, as in the
figure below. The inner solenoid has radius R and », turns per unit length. The outer

solenoid has radius R, and n, turns per unit length. Each solenoid carries the same
current / flowing in each turn, but in opposite directions, as indicated on the sketch.

Use Ampere’s Law to find the direction and magnitude of the magnetic field in the
following regions. Be sure to show your Amperian loops and all your calculations.

i) O<r<R

ii) R <r<R,

iii) R <r



Problem 5: Read Experiment 7 Faraday’s Law.

http://web.mit.edu/8.02t/www/materials/Experiments/exp03.pdf

(a) Calculating Flux from Current and Faraday’s Law. In part 1 of the lab you
moved a coil from well above to well below a strong permanent magnet. You measured
the current in the loop during this motion using a current sensor. The program also
displayed the flux “measured” through the loop, even though this value is never directly
measured.

(1) Starting from Faraday’s Law and Ohm’s law, write an equation relating the
current in the loop to the time derivative of the flux through the loop.

(i)  Now integrate that expression to get the time dependence of the flux through

the loop @X¥) as a function of current /(f). What assumption must the software
make before it can plot flux vs. time?

(b) Predictions: Coil Moving Past Magnetic Dipole

In moving the coil over the magnet, measurements of current and flux for each of several
motions looked like one of the below plots. For current, counter-clockwise when viewed
from above is positive. For flux, upwards is positive. The north pole of the magnet is
pointing up.

24

(h

2

Suppose you moved the loop from well above the magnet to well below the magnet at a
constant speed. Which graph most closely resembles the graph of:

(1) magnetic flux through the loop as a function of time?
(ii)  current through the loop as a function of time?

Suppose you moved the loop from well below the magnet to well above the magnet at a
constant speed. Which graph most closely resembles the graph of:

(iii)  magnetic flux through the loop as a function of time?

Solving 7-13



(iv)  current through the loop as a function of time?

(¢) Force on Coil Moving Past Magnetic Dipole

In part 2 of this lab you felt the force on a conducting loop as it moves past the magnet.
For the following conditions, in what direction should the magnetic force point?

As you moved the loop from well above the magnet to well below the magnet at a
constant speed...
(1) ... and the loop is above the magnet.

(ii) ... and the loop is below the magnet

As you moved the loop from well below the magnet to well above the magnet at a
constant speed...

(iii) ... and the loop is below the magnet.
(iv) ... and the loop is above the magnet
(d) Feeling the Force

In part 2, rather than using the same coil we used in part 1, we used an aluminum cylinder
to “better feel” the force. To figure out why, answer the following.

(i) If we were to double the number of turns in the coil how would the force
change?

(i) Using the result of (a), how should we think about the Al tube? Why do we
“better feel” the force?

In case you are interested, the wire is copper, and of roughly the same diameter as the
thickness of the aluminum cylinder, although this information won’t necessarily help you
in answering the question.

Solving 7-14
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 | Spring 2010
Problem Set 8

Due: Tuesday, April 6 at 9 pm.

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.

Week Ten Faraday’s Law

Class 22 W10D1 M/T Apr 5/6 Faraday’s Law; Expt.7: Faraday’s Law
Reading: Course Notes: Sections 10.1-10.3, 10.8-10.9
Experiment: Expt.7: Faraday’s Law

Class 23 W10D2 W/R Apr 7/8 Problem Solving Faraday’s Law; Inductance &
Magnetic Energy, RL Circuits

Reading: Course Notes: 10.1-10.4,10.8-10.9, 11.1-11.4
Class 24 W10D3 F Apr 9 Special Lecture: Applications of Faraday’s Law
Reading: Course Notes: 10.1-10.4, 10.8-10.9, 11.1-11.4

Campus Preview Weekend



Problem 1: In this problem you will work through two examples from Problem

Solving 7: Ampere’s Law.

OBJECTIVES

1. To learn how to use Ampere’s Law for calculating magnetic fields from symmetric
current distributions

2. To find an expression for the magnetic field of a cylindrical current-carrying shell of
inner radius a and outer radius b using Ampere’s Law.

3. To find an expression for the magnetic field of a slab of current using Ampere’s Law.

REFERENCE: Section 9-3. 8.02 Course Notes.

Summary: Strategy for Applying Ampere’s Law
(Section 9.10.2, 8.02 Course Notes)

Ampere’s law states that the line integral of B-ds around any closed loop is proportional
to the total steady current passing through any surface that is bounded by the closed loop:

[|B-ds = 1,1,
To apply Ampere’s law to calculate the magnetic field, we use the following procedure:
Step 1: Identify the ‘symmetry’ properties of the current distribution.
Step 2: Determine the direction of the magnetic field
Step 3: Decide how many different spatial regions the current distribution determines
For each region of space...

Step 4: Choose an Amperian loop along each part of which the magnetic field is
either constant or zero

Step 5: Calculate the current through the Amperian Loop

Step 6: Calculate the line integral [_ﬂfi-c@ around the closed loop.

Step 7: Equate [ﬁﬁ-dg with 24,1, and solve for B.



Example 1: Magnetic Field of a Cylindrical Shell

We now apply this strategy to the following
problem. Consider the cylindrical conductor with
a hollow center and copper walls of thickness b — a
as shown . The radii of the inner and outer walls
are a and b respectively, and the current I is
uniformly spread over the cross section of the
copper (shaded region). We want to calculate the
magnetic field in the region a < r < b.

®
(ouz of pege)

Question 1: Is the current density uniform or non
uniform?

Answer: Uniform.
Problem Solving Strategy Step

Step 1: Identify Symmetry of Current Distribution
Either circular or rectangular

Step 2: Determine Direction of magnetic field
Clockwise or counterclockwise?

Step 3: How many regions?
Three: r<a; a<r<b;r>b

Step 4: Draw Amperian Loop:
Here we take a loop that is a circle of radius » with @ < r < b (see figure).

Step 5: Current enclosed by Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop.

There are typically two ways to do this. One way is to simply calculate it as a fraction of
the total current. The second is to first calculate the current density J (current per unit
area) and then multiply by the area enclosed. You should use both methods and compare.



Question 2: What is the magnitude of the current per unit area J in the region a < r < b?
Remember we are assuming that the current / is uniformly spread over the area a < r < b,
and also remember that current density ./ is defined as the current per unit area.

v 74 1
The current density is J =—=————
A #(b"—a’)

Question 3: What is the fraction of the total area that is enclosed by the Amperian Loop?
What is the total current it encloses?

2

The fraction of the area enclosed by the loop is [} L. ] The current enclosed is

2 2

—-da

2 2
I..=JA,. :———,{—2(7:7'2 —zraz) =1 %
z(b”—a) b —a’

Question 4: Your answer above should be zero when » = a and I when » = b (why?).
Does your answer have these properties?

Yes. No current is enclosed when r = a. On the other hand, when » = b, the Amperian loop
encloses all the current, so I, = 1.

Step 6: Calculate Line Integral [ﬂf}-a’E :

Question 5: What is [ﬁﬁ-cﬁ? (That is, evaluate the integral, the left hand side of Ampere’s

law)

Eﬂﬁ-d§= B(27rr).

Step 7: Solve for B:

Question 6: If you equate your answer to Question 5 to your answer to Question 3 times

4, (i.e. use Ampere’s Law), what do you get for the magnetic field in the region a < r <
b?

—da

[ﬂﬁ-c@ =B(Zar)=p1, .= 1l (g:_—a,J = B =}2ui( ;: —a; J counter-clockwise
: ar\ b’ —a’

Question 7: Repeat the steps above to find the magnetic field in the region » <a.

In the region » < a, I__ =0, and therefore B = 0.

enc



Question 8: Repeat the steps above to find the magnetic field in the region » > b.

In the region r > b, I__ = I. Therefore, we have

> “eng

[ﬁﬁ-dé‘ = B(27rr) =l =ul = B= —z‘g‘l]— counter-clockwise.
r

Question 9: Plot B on the graph below.




Example 2: Magnetic Field of a Slab of Current

We want to find the magnetic field B due to an infinite slab of current, using Ampere's
Law. The figure shows a slab of current with current density J =2, |y|/d Z, where units

of .J, are amps per square meter. The slab of current is infinite in the x and z directions,
and has thickness d in the y-direction.

f;y d/2
|
J oz
-d/2

Question 10: What is the magnetic field at y = 0, where y = 0 is the exact center of the
slab?

By symmetry, the magnetic field at y =0 is zero.
Problem Solving Strategy Step

(1) Identify Symmetry
Either circular or rectangular. Which is it?

(2) Determine Direction
Make sure you determine the direction in all regions. Sketch on tear sheet figure of Q9.

(3) How many regions?
Two for this problem: in the slab and above it (we won’t do below the slab).

(4) Draw Amperian Loop:

We want to find the magnetic field for y > /2, and we have from the answer to Question
10 for the magnetic field at y = 0. Therefore....



Question 11: What Amperian loop do you take to find the magnetic field for y > d/2?
Draw it on the figure above and indicate its dimensions.

B to left

IIIII: y d/2

n
|
!

J GZ wipm X

-d/2

B to right

(5) Current enclosed by Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop. Hint:
the current enclosed is the integral of the current density over the enclosed area.

Question 12: What is the total current enclosed by your Amperian loop from Question
11?7

We take the above loop (in blue) in this case. We have to integrate the current density to
get the enclosed current:
7] 5 1d/2
2Ly .. SFE% 2J.0 y* J ld
I =|l——di=— dy=""¢ — e
=17 e L 4

0

(6): Calculate Line Integral [ﬂﬁ -ds :

Question 13: What is [ﬂﬁ-c@?
The loop has four segments. Along two of those (the sides) B is perpendicular to

ds so B-ds=0. Along the center line B=0. On the last side B is parallel. Thus,

[ﬁﬁﬁ:smoww:m



(7): Solve for B:
Question 14: If you equate your answers in Question 13 to your answer in Question 12

times s, using Ampere’s Law, what do you get for the magnetic field in the region y >
dan?

[|B-ds=Bt=p,J 0d/4 = B:% to the left

We now want to find the magnetic field in the region 0 <y < d/2.

(4) Draw Amperian Loop:

We want to find the magnetic field for 0 < y < d/2, and we have from the answer to
Question 10 for the magnetic field at y = 0. Therefore...

Question 15: What Amperian loop do you take to find the magnetic field for 0 < y <
d/2? Draw it on the figure above and on the tear-sheet at the end, and indicate its
dimensions.

?y d/2 e

i _ i =
i- w.,j_vwz.-,,i-.,-,..,.,u:-;, X y I :‘ o 'I

(5) Current enclosed bv Amperian Loop:

The next step is to calculate the current enclosed by this imaginary Amperian loop.

Question 16: What is the total current enclosed by your Amperian loop from Question
157

We take the above loop (in red) in this case. We have to integrate the current density to
get the enclosed current:

3fy . 2™ 272 v Las
I = [[ZLdd=22< [ydy="22 | =Ze2
i H d ! d (!ycy d 2 d

0



(6) Calculate Line Integral Eﬂﬁ -ds:

Question 17: What is [j]—}-a@?

The loop has four segments. Along two of those (the sides) B is perpendicular to
ds so B-ds =0. Along the centerline B=0. Along the top side B is parallel.
[[B-ds=Be+0+0+0=B¢ .

(7) Solve for B:

Question 18: If you equate you answers in Question 17 to your answer in Question 16
times s, using Ampere’s Law, what do you get for the magnetic field in the region 0 <y
< dj2?

B-as=Bt =, J,y*[d = B=p,J*[d

Question 19: Plot B, on the graph below. Use symmetry to determine B for y<0. Label
the y-axis

YuJ di4

|
|
472

= dl4




Problem 2 Co-axial Cable

A coaxial cable consists of a solid inner conductor of radius a, surrounded by a
concentric cylindrical tube of inner radius b and outer radius ¢. The conductors carry
equal and opposite currents Iy distributed uniformly across their cross-sections.
Determine the magnitude and direction of the magnetic field at a distance » from the axis.
Make a graph of the magnitude of the magnetic field as a function of the distance » from
the axis.

Solution:

(@)r<a

L5 2
The enclosed current is [, = ]D(m - ] = Lor . Applying Ampere’s law, we have

7a a’

2

N il g : .
B(Q2nr) = p,—>— or B =2ig~°7r, running counterclockwise when viewed from left
a” ma”

b)a<r<b;

The enclosed current is 7, = ,. Applying Ampere’s law, we obtain

enc

s i : ;
B(2ar) = pyl, or B= ’; 0 | running counterclockwise when viewed from left
ar

(©)b<r<c;

2 2 A
‘[em: - I() _'10 ﬁr') ﬁb? = IO(C; :. )
ac” —mb” ¢ =b"

Applying Ampere’s law,



Lile? =2
B(zm-):#oM

CZ __bZ
2 2
or B= %_;)), running counterclockwise when viewed from left
z(c” b )r
(d) r>c.

B=0since I, =0

enc



Problem 3: Two Current Sheets

Consider two infinitely large sheets lying in the xy-plane separated by a distance &
carrying surface current densities K, = Ki and K, =—Ki in the opposite directions, as

shown in the figure below (The extent of the sheets in the y direction is infinite.) Note
that X is the current per unit width perpendicular to the flow.

o

£

72

k[ @

s

—d/2

a) Find the magnetic field everywhere due to I—(l.

b) Find the magnetic field everywhere due to I—(1 .

c) Applying superposition principle, find the magnetic field everywhere due to both
current sheets.

d) How would your answer in (c) change if both currents were running in the same
direction, with K, =K, =K i ?

Solution:

Consider two infinitely large sheets lying in the xy-plane
separated by a distance d carrying surface current densities

K,=Ki and K,=-Ki in the opposite directions, as
shown in the figure below (The extent of the sheets in they K, ® =
direction is infinite.) Note that K is the current per unit

width perpendicular to the flow. L .
— i\:z ® k
(a) Find the magnetic field everywhere due to K. —d/2
o
e mEE T TR <“---




Consider the Ampere’s loop shown above. The enclosed current is given by

I, =[J-dA=Ki

Applying Ampere’s law, the magnetic field is given by

K
B(2) = p Kl or B= "‘02

Therefore,

Ko
ﬂoz h z>—
Bi=1 4k j
o 1 Ee—
2 2

(b) Find the magnetic field everywhere due to K, .

The result is the same as part (a) except for the direction of the current:

il i z2>——

Ez ~J 2 2
LS i z<—fi

2 2

(c) Applying superposition principle, find the magnetic field everywhere due to both

current sheets.

(d) How would your answer in (c) change if both currents were running in the same

direction, with K, =K, = Ki?

In this case, ﬁl remains the same but



Therefore,




Problem 4 Nested Solenoids: Two long
solenoids are nested on the same axis, as
in the figure below. The inner solenoid

has radius R and n turns per unit
length. The outer solenoid has radius R,

and n, turns per unit length. Each

solenoid carries the same current [
flowing in each turn, but in opposite
directions, as indicated on the sketch.

Use Ampere’s Law to find the direction and magnitude of the magnetic field in the
following regions. Be sure to show your Amperian loops and all your calculations.

1) O<r<R
ii) R <r<R
iii) R <r

Solution: Nested Solenoids: Two long solenoids are nested on the same axis, as in the
figure below. The inner solenoid has radius R, and », turns per unit length. The outer

solenoid has radius R, and n, turns per unit length. Each solenoid carries the same
current / flowing in each turn, but in opposite directions, as indicated on the sketch.

Use Ampere’s Law to find the direction and magnitude of the magnetic field in the
following regions:

(a) 0<r<R;

To solve for the magnetic field in this case, we take the top rectangular loop shown in the
figure. The current through the loop is

L. =—nll+nll =(—n +n)I



QN

The loop has four segments. Along two of those (top and bottom, horizontal), B is
perpendicular to d§, and B-d§ = 0. On the other hand, along the outer vertical segment,

B =0. Thus, using Ampere’s law [ﬂﬁ-cﬁ =p,l

enc ?

we have
[ﬂﬁ-d§=BE+O+O+O=BE =uty (=l +mtl) = B=pl(-n+n)k
(b) R, <r<R,

To solve for the magnetic field in this case, we take the bottom rectangular loop shown in
the figure. The current through the loop is

I_=ntl

The loop has four segments. Along two of those (top and bottom, horizontal), B is
perpendicular to d§, and B-ds=0.On the other hand, along the outer vertical segment,

B =0. Thus, using Ampere’s law [ﬁﬁ-a@:yo[

enc ?

we have
[B-d5=BC+0+0+0=Bt =pn,tl = B=p,nIk

(©) R, <r

Since the net current enclosed by the Amperian loop is zero, the magnetic field is zero in
this region.
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Problem 5: Read Experiment 7 Faraday’s Law.

http://web.mit.edu/8.02t/www/materials/Experiments/exp07.pdf

(a) Calculating Flux from Current and Faraday’s Law. In part | of the lab you
moved a coil from well above to well below a strong permanent magnet. You measured
the current in the loop during this motion using a current sensor. The program also

displayed the flux “measured™ through the loop, even though this value is never directly
measured.

(1) Starting from Faraday’s Law and Ohm’s law, write an equation relating the
current in the loop to the time derivative of the flux through the loop.

do

—=1IR
dt

£ =

(ii)  Now integrate that expression to get the time dependence of the flux through

the loop @) as a function of current /(). What assumption must the software
make before it can plot flux vs. time?

db=—IRd =  @®()=-R [I(')ds’
=0
The software must assume (as I did above) that the flux at time t=0 is zero.

(b) Predictions: Coil Moving Past Magnetic Dipole

In moving the coil over the magnet, measurements of current and flux for each of several
motions looked like one of the below plots. For current, counter-clockwise when viewed
from above is positive. For flux, upwards is positive. The north pole of the magnet is
pointing up.

) —= b4

@ ! - : U@

= 2 c 2 4

t

a

Suppose you moved the loop from well above the magnet to well below the magnet at a
constant speed. Which graph most closely resembles the graph of:
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(1) magnetic flux through the loop as a function of time? 4
(i) current through the loop as a function of time? 2

Suppose you moved the loop from well below the magnet to well above the magnet at a
constant speed. Which graph most closely resembles the graph of:

(i)  magnetic flux through the loop as a function of time? 4
(iv)  current through the loop as a function of time? 2
(c) Force on Coil Moving Past Magnetic Dipole

In part 2 of this lab you felt the force on a conducting loop as it moves past the magnet.
For the following conditions, in what direction should the magnetic force point?

As you moved the loop from well above the magnet to well below the magnet at a
constant speed...

(i) ... and the loop is above the magnet.

(i1) ... and the loop is below the magnet
As you moved the loop from well below the magnet to well above the magnet at a
constant speed...

(iii) ... and the loop is below the magnet.

(iv) ... and the loop is above the magnet

In all of these cases the force opposes the motion. For (a) & (b) it points upwards, for (c)
and (d) downwards.

(d) Feeling the Force

In part 2, rather than using the same coil we used in part 1, we used an aluminum cylinder
to “better feel” the force. To figure out why, answer the following.

(1) If we were to double the number of turns in the coil how would the force
change?

If we were to double the number of turns we would double the total flux and hence EMF,
but would also double the resistance so the current wouldn’t change. But the force would

double because the number of turns doubled.

(i)  Using the result of (a), how should we think about the Al tube? Why do we
“better feel” the force?

PS07-18



Going to the cylinder basically increases many times the number of coils (you can think
about it as a bunch of thin wires stacked on top of each other). It also reduces the
resistance and hence increases the current because the resistance is not through one very
long wire but instead a bunch of short loops all in parallel with each other.

In case you are interested, the wire is copper, and of roughly the same diameter as the
thickness of the aluminum cylinder, although this information won’t necessarily help you
in answering the question.
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Summary of Class 23 8.02

Topics: Faraday’s Law
Related Reading: Course Notes: Sections 10.1-10.4, 10.8-10.9, 11.1-11.4
Experiments: (9) Faraday’s Law of Induction

Topic Introduction

Today you will practice what you have learned about Faraday’s Law and then we will study
self-induction. in a problem solving session.

Faraday’s Law & Lenz’s Law
Recall: Faraday’s Law says that a changing magnetic flux generates an EMF & = —-d®, /dt

Lenz’s Law says that the direction of that EMF is so as to oppose the change in magnetic
flux.

WARNING:

Because it bears repeating (especially with an upcoming exam on this material): many
students confuse Faraday’s Law with Ampere’s Law. Both involve integrating around a loop
and comparing that to an integral across the area bounded by that loop. Aside from this
mathematical similarity, however, the two laws are completely different. In Ampere’s law
the field that is “curling around the loop” is the magnetic field, created by a “current flux”

(I = Hj . dﬂ) that is penetrating the looping B field. In Faraday’s law the electric field is

curling, created by a changing magnetic flux. In fact, there need not be any currents at all in
the problem, although as you will see in today’s problem solving typically the EMF is
measured by its ability to drive a current around a physical loop — a circuit.

Self Inductance
When a circuit has a current in it, it creates a magnetic field, and hence a flux, through itself.
If that current changes, then the flux will change and hence an EMF will be induced in the

circuit. The EMF obeys: & =—L§, where L is a constant called the self~inductance. The
t

action of that EMF will be to oppose the change in current (if the current is decreasing it will
try to make it bigger, if increasing it will try to make it smaller). For this reason, we often
refer to the induced EMF as the “w’ To calculate the self inductance (or inductance,
for short) of an object, imagine that a current / flows through it, and determine how much
magnetic field and hence flux @j that makes through the object. The self inductance is then
L=, /T.

Inductors

When we worked with resistors in circuits, they ‘resist’ the flow of current. That is, you must
supply a voltage drop across them to drive current through them. o
Inductors (symbol L, measured in SI units of Henries), which we study today, instead resist
changes in the current. That is, you must supply a potential drop across them if you want to
change the current which is flowing through them. Another way to say this is that if you try
to change the current the inductor will generate an EMF & =—L4L to oppose the change.

Co ot g s
- U
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Summary of Class 23 8.02

Energy in B Fields

Remember that we defined the self inductance L by the amount of flux that an object
generates through itself when a current I flows through it (@= L) and, from Faraday’s Law,
found that inductors will generate a back EMF: & =—LdI/dt. They also store energy. In

capacitors we found that energy was stored in the electric field between their plates. In
inductors, energy is stored in the magnetic field. Just as with capacitors, where the electric
field was created by a charge on the capacitor, we now have a magnetic field created when
there is a current through the inductor. Thus, just as with the capacitor, we can discuss both

ol

. . 1, : : B
the energy in the inductor, U = EL] “, and the more generic energy density u, = L stored
Hy
in the magnetic field. Again, although we introduce the magnetic field energy density when
talking about energy in inductors, it is a generic concept — whenever a magnetic field is
created it takes energy to do so, and that energy is stored in the field itself.

RL Circuits

A simple RL circuit is shown below. When the switch is closed, if the inductor were not in
the circuit, current would immediately flow in the circuit, with magnitude set by the
resistance. The inductor, however, resists the change in current, letting it only gradually
increase from 7= 0.

€ I

We can quantify this behavior by writing down the differential equation for current flow
using Kirchhoff’s loop rules as well as & =-LdI/dt for an inductor. The solution to this
differential equation shows that the current “decays upwards” towards a final value of the
current in which the inductor is no longer doing anything. That is, at first, when the switch is
closed and the current is trying to increase from 0, the inductor works hard to stop it. After a
while the inductor stops fighting and no longer has an effect (when thinking about how much
current is flowing in the circuit you can mentally remove it).

GGDecay Up!,
Value;
.\c’umen'm SEEEe

valwe Decay Down

Valuc(
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Summary of Class 23 8.02

The rate at which this change happens is dictated by the “time constant” 1, which for this
circuit is given by L/R (the bigger the inductance the slower that changes happen in the
circuit, but the bigger the resistance, the smaller the current and hence changes in the current
that the inductor will see).

We will speak about the solution to these types of differential equations in general, and you
will see that all values either exponentially decay or “decay up,” and hence that, at least at a
conceptual level, you can usually determine what will happen to currents or voltages just by
thinking about the behavior of the various circuit elements.

Important Equations

Faraday’s Law: E=- do,

dt
Magnetic Flux: D, = Hﬁ -dA
EMF: £=qdE" ds
Self Inductance, L: L= %
Energy Stored in Inductor: U= %LJ .

dl
EMF Induced by Inductor: E=-L =

- -ifz
Value =Value,,, e

Value =Value,,, (I —e )

Exponéntial Decay:

Exponential “Decay Upwards™:

Simple RL Time Constant: r=L/R

Summary for Class 23 p.3/3
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Conducting rod pulled along two conducting rails in a

Group Problem: Changing Area
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W11D1-1 Solutions: Faraday’s Law: Changing Area

Problem: A conducting rod is pulled along two conducting
rails at a constant velocity v in a uniform magnetic field B.

Find:

1. Direction of induced current

2. Direction of resultant force

3. Magnitude of EMF

4. Magnitude of current

5. Power externally supplied to move at constant v
Solution:
As always, the first step is to think about the problem a little.

In Faraday’s law problems, the thought should revolve along
Lenz’s law. But before we even get there, how do we
recognize that this is a Faraday’s law problem? There are several clues. We are asked about
“induced current.” Something is moving in a field that we are told about (rather than asked to
calculate). And, as you will see, this is one of the few prototypical problems for this topic.

Back to the physics. Lenz tells us that the induced current will oppose the change. Since the
area of the loop is increasing, the flux into the page is increasing, and the current will act to
oppose it — it will flow (1) counter-clockwise to make a flux out of the page.

The resultant force can also be given by Lenz’s law — it must oppose the change and hence (2) be
to the left. Alternatively you could see this using the right hand rule on an upward current in a
field into the page.

To find the magnitude we need to write down Faraday’s law: & =-N dg)” = —di(BA) = —BZ—A
t i t

We can jump to writing it like this because (1) there is only N=1 winding in the loop, (2) the
field is perpendicular to the loop, and (3) the B field is uniform.
Now we just need an expression for A. If the distance between the rails is / and the distance

from the resistor to the rod is x, then 4 =lx; % =] gf: lv, so (3) & = Blvcounter-clockwise .
!

Note that I have gotten rid of the minus sign since I tell what it means in words — much better!

The current is just determined by the EMF € and the resistance R: (4) [ = -jg- =Bva

Finally, the power supplied by the force is all being dissipated in the resistor, so:

2 272.2
(5) P:FR:(EIEJ g2
R R

/2 (5
In Class Problem Solution Class 79 (W11D1) p.1ofl



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W11D1-2 Solutions: Generator

Problem: Square loop (side L) spins with angular frequency w in field of strength B. It is
hooked to a load R.

1) Write an expression for current I(t)
2) How much work from generator per revolution?
3) To make it twice as hard to turn, what do you do to R?

Solution:
This is a Faraday’s Law problem. The flux is changing which generates and EMF which drives a
current:

2
()= £(t) _1d®, 1d(BAcosor) |BL s
R R dt R dt R

I have dropped the sign because no direction was indicated. I also don’t put in a phase, so the
choice of sine instead of cosine is arbitrary.

The work that the generator done 1s the integral of the power:

2 2 2xfw 2742 2alw
P= FR:[BL ‘”J Rsin* (o) > W = | Pyde =222 T sin? (wr)dr
=0 1=0

Using the fact that the average value of sin’(ot) is ', (to see this, think sin*(wt)+ cos*(wt)=1 and
they both must have the same average value), we find:

B’L'e’ [ 1 2z _|#zBL'w
R R

W =

2 w

Finally, to make it twice as hard to turn that means twice as much work, which means that the
resistance must be half as much. This is called “loading™ the generator — where an increase in
load is actually a decrease in the resistance.

2%
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W11D2 1 Solutions: Inductance of Solenoid

Problem: Calculate the self-inductance of a solenoid of length £,

n = N/{ turns per meter and radius R

Solution:

To find the self inductance of an object, there are two typical methods.
One is through the energy, which we will discuss later. The second
method, shown here, is to push an arbitrary current / through the device
and see what happens (what flux is created by that current).

To find the flux we first have to calculate the magnetic field. To do this for a
solenoid it is easiest to use Ampere’s Law. A solenoid is essentially two
superimposed sheets of current, one going in to the page and the other
coming out. By superposition we see that the field outside must be zero, and
the field inside runs vertically. Hence we use the rectangular Amperian loop
pictured and find:

dB-ds = Bl = 1, =, (n) 1
where (n /) is the number of wires punching through our loop, each one
carrying a current /. Solving we find B = g nl (up, as pictured).

Now we need to find the flux through any wire loop. Since the field is (approximately) uniform
inside the solenoid, our flux integral becomes multiplication: ® ¢, = ”B -dA = BA = uplzR*

Finally, we need to calculate the inductance, that is, how well the current produces a magnetic
flux through the solenoid:

NO
L=

B,Sgl

e NumnnaR* = un’nR*l

0
Fa'
f

In Class Problem Solution Class }f) (W11D2) p. 1 of 1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W12D1_1 Solutions: Coaxial Cable

Problem: For the coaxial cable at left (inner radius a, outer radius b):
1) How much energy is stored per unit length?
2) What is inductance per unit length?

Solution:
There are several ways to find energy. One is to find the inductance and

then use U =%L[ ?. However, since they ask us to find the inductance after

finding the energy, this is unlikely to be the way to approach this problem. Another way is to
consider that the energy is stored in the magnetic field, and hence find the magnetic field then
integrate the energy density to find the total energy. We take this approach.

To find the field use Ampere’s law. Outside of b and inside of a the fields
will be zero (because the contained current will be zero). Using the
Amperian loop pictured (radius r), we find that in between the two current

shells: Cfﬁ -ds =B2nr=pyl, =yl —>B= ;ILI(CCW, as pictured)
Tr

B _ 1 (il T _ 0

2. 2p \2xr 87r?

Now we just need to integrate this energy density over the volume of space where we found
there to be a magnetic field — in between the two shells. This is a volume integral (since up is an
energy per unit volume), which we will do by integrating over cylindrical shells of radius » and
length /. We can do this because the field and hence the energy density will be constant on these
shells. Also, the length is arbitrary, because we are asked to find the energy per unit length. So:

U, = Hjﬂa (dVolume) = f;:—f’: 2xrldr = ‘L:‘;—f f%dr = ﬂ”—mln [EJ

4r a
Up _t6l? In (ib_]
/

enc

The energy density is then given by: u, =

This gives us energy per unit length of: (1) Uy ./ e = i
V2 a

To find the inductance (per unit length) we simply use the equation that relates energy and
; | S i o :
inductance: U = EL[ “, except that in this case it is actually energy per unit length on the left and

inductance per unit length on the right. So

i 2U
U, =%u- O N St . =ﬁ9-1n[3]

rlength — 2
e i 2r a
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In Class W02D2 1 Solutions: LR Circuit

Problem: For the below circuit sketch the current through the two bottom branches as a
function of time (if the switch closes at t = 0 and reopens at t = T, where T is a very long time).
State the values of the currents at times t=0", T, T"

B Y/ N
L
/G
R

AWy

Solution:
The inductor fights change. So it will act as an open circuit (no current) initially when the switch
closes and then after a long time, when the current has reached steady state, it will look like a

short (zero resistance). Thus all the current will go through it, and none through the bottom
resistor.

Current through Inductor

1.0+ = =~ Current through lower Resistor T=0+: IL = 0; IR =g/2R
€ os.
& T=T: IL.=¢/R; Ix=0
s 00f Tvmmea- T e
= 1 L 4 1y 2518 - . =
(3 .05 5 7 T=T": I], = E/R, IR =-g/R
1 i
-1.0 f 1
T Time

Note that the time constant is longer in the “charging” phase than in the “discharging” phase by a
factor of two (from 2L/R to L/R), because in the charging phase the two resistors are essentially

in parallel, cutting the effective resistance in half, but while discharging only the bottom resistor
does anything.

In Class Problem Solution Class 04 (W02D2) B 1981



Summary of Class 24 8.02

Topics: Mutual Inductance & Transformers; Inductors
Related Reading: Course Notes: Sections 10.1-10.4, 10.8-10.9, 11.1-11.4

Topic Introduction

Today we have a special lecture in honor of Campus Preview Weekend.

Faraday’s Law & Lenz’s Law
Recall: Faraday’s Law says that a changing magnetic flux generates an EMF & =—d®, /dt
Lenz’s Law says that the direction of that EMF is so as to oppose the change in magnetic flux

Mutual Inductance

Since magnetic fields are typically generated by currents, Faraday’s law implies that
changing currents also generate EMFs. This is the idea of mutual inductance: given any two
circuits, a changing current in one will induce an EMF in the other, or, mathematically,
&, =—-Mdl, /dt, where M is the mutual inductance of the two circuits. How does this work?

The current in loop 1 produces a magnetic field (and hence flux) through loop 2. If that
current changes in time, the flux through 2 changes in time, creating an EMF in loop 2. The
mutual inductance, M, depends on geometry, both on how well the current in the first loop
can create a magnetic field and on how much magnetic flux through the second loop that
magnetic field will create.

Transformers
A major application of mutual inductance is the transformer, which
allows the easy modification of the voltage of AC (alternating
current) signals. At left is the schematic of a step up transformer.
An input voltage Vp on the primary coil creates an oscillating
magnetic field, which is “steered” through the iron core (recall that
ferromagnets like iron act like wires for magnetic fields) and
through the secondary coils, which induces an EMF in them. In
Laminated the ideal case, the amount of flux generated and received is
i proportional to the number of turns in each coil. Hence the ratio of
the output to input voltage is the same as the ratio of the number of turns in the secondary to
the number of turns in the primary. As pictured we have more turns in the secondary, hence
this is a “step up transformer,” with a larger output voltage than input.

The ease of creating transformers is a strong argument for using AC rather than DC power.
Why? Before sending power across transmission lines, voltage is stepped way up (to
240,000 V), leading to smaller currents and losses in the lines. The voltage is then stepped
down to 240 V before going into your home.

Summary for Class 24 W10D3 p. 1/3



Summary of Class 24 8.02

Self Inductance

Recall that we defined self inductance L by the amount of flux that an object generates
through itself when a current I flows through it (@= LI) and, from Faradays Law, found that
inductors will generate a back EMF: & =—LdI/dt . Self inductance is very similar to mutual
inductance, obeying a similar equation: £ =—LdI/dt, and the same concept: when a circuit
has a current in it, it creates a magnetic field, and hence a flux, through itself. If that current
changes, then the flux will change and hence an EMF will be induced in the circuit. The
action of that EMF will be to oppose the change in current (if the current is decreasing it will

try to make it bigger, if increasing it will try to make it smaller). For this reason, we often
refer to the induced EMF as the “back EMF.”

To calculate the self inductance (or inductance, for short) of an object, imagine that a current
I flows through it, and determine how much magnetic field and hence flux @z that makes
through the object. The self inductance is then L =®, /1.

An inductor is a circuit element whose main characteristic is its inductance, L. It is drawn as
a coil OBB" in circuit diagrams. The strong resemblance to a solenoid is intentional —
solenoids make very good inductors both because of their ability to make a strong field inside
themselves, and also because the field they produce is fairly well contained, and hence
doesn’t produce much flux (and induce EMFs) in other, nearby circuits.

The role of an inductor is to oppose changing currents. At steady state, in a DC circuit, an
inductor is off — it induces no EMF as long as the current through it is constant. As soon as
you try to change the current through an inductor though, it will fight back. In this sense an
inductor is the opposite of a capacitor. If a capacitor is placed in a steady state current it will
eventually fill up and “open” the circuit, whereas an inductor looks like a short in this case.
On the other hand, when starting from its uncharged state, a capacitor looks like a short when
you first try to move current through it, while an inductor looks like an open circuit, as it
prevents the change (from no current to some current).

Applications

A number of technologies rely on induction to work — generators, microphones, metal
detectors, and electric guitars to name a few. Another common application is eddy current
braking. A magnetic field penetrating a metal spinning disk (like a wheel) will induce eddy
currents in the disk, currents which circle inside the disk and exert a torque on the disk,
trying to stop it from rotating. This kind of braking system is commonly used in trains. Its
major benefit (aside from eliminating costly service to maintain brake pads) is that the
braking torque is proportional to angular velocity of the wheel, meaning that the ride
smoothly comes to a halt.

Important Equations

Faraday’s Law: E=- a0,
dt
Magnetic Flux: D, = Hﬁ -dA

Summary for Class 24 W10D3 p. 2/3



Summary of Class 24

EMF:

Mutual Inductance:

Self Inductance, L:

EMF Induced by Inductor:
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Mutual Inductance
Current |, in coil 2, induces
, magnetic flux @, in coil 1.
“Mutual inductance” M,,:
& Qu=Mpl

Mlz_,"-'j:Mn:M o

Change current in coil 22
Induce EMF incoil 1:

Transformer

Step-up transformer
Flux @ through each turn same

B 2 0 s

Laminated
iron core

= TNy > N,: step-up transformer
N, <N step-down transformer

L2 |

a0 . . dD

One Turn Secondary
Nail

~ Many Turn Secondary:
- Jacob’s Ladder
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Suminary of Class 23 8.62 |

Topic: RL Circuits and undriven RLC Circuits
Related Reading: Course Notes: Sections 11.5-11.11
Experiments: (8) RL Circuits and Undriven RLC Circuiis

Topic Introduction

Today we will investigate the behavior of circuits containing resistors and capacitors and
inductors (RL & RLC circuits). We have previously discussed RL (last week) and RC
behavior in the class We now put them together in an undriven RLC circuit and observe that
the current in these circuits oscillates, in a fashion completely analogous to the oscillation of
a mass on a spring. In experiment 8, you will have a|chance to measure their behavior

yourself. f | r‘ T
Op | “—¢ nlriAq

Mass on a Spring: Simple Harmonic Motion

in a simple system consisting of a mass hanging on a spring, when the mass is pulled down

and released it oscillates up and down. We think about this in a couple of ways. One way is

to look at the forces on the mass and write a differential equation for its motion,

F =mi =—kx, where ¥ means two time derivatives of the displacement (acceleration). The

solution to this is simple harmonic motion: x = x, cos(w?) where @ = /k/m .

We can also think about the energy in the system. As the mass moves, energy oscillates
between kinetic energy of the mass and potential energy stored in the spring. If there is no
damping (friction) in the system to dissipate energy, the oscillation will continue forever.

Undriven L(R)C Circuits

R a b
—'W\lfl Consider the LC circuit at left, where the switch is at “a”
et . until the capacitor is fully charged and then thrown to “b.”
T €y This is analogous to pulling down a mass and releasing it.
Here the capacitor will want to discharge and will drive a

current through the inductor. Eventually all the charges will
run off of the capacitor (spring), so it won’t “push” anymore, but now the inductor will want
to keep the current flowing through it that it already has (inductors, like masses, have inertia).
It will keep the current flowing, but that will eventually fill up the capacitor which will stop
the current and send it back the other direction. Our differential equation is thus analogous,

V =-Lg=q/C, and has the same solution: g =g, cos(ar) where w=JI/LC .

Q
QQL We can also think about energy here, where it oscillates

IS between being stored in the electric field in the capacitor
i ;"f_‘mﬁic 2uol and the magnetic field in the inductor. As long as there is

P4 b fY e no dissipation (resistance) is the circuit the oscillations will

5 { ! \ R —— _—

— : ] ¢ continue forever.

! i 3 ! ;‘I""—-’

I UL 4 , . . . . . ;

. /‘//" NQp et If we add a resistor in series with the capacitor and inductor
B b f{g fu reetchs,  We provide a method of energy loss, through joule heating

TR,
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Summary of Class 25 8.02

in the resistor as current flows. The oscillations will thus damp out to zero. The exact path

the charge will take as it oscillates to zero depends on the relative sizes of L, R and C, but

will typically look something like the curve above, where the oscillations are bounded by an
“envelope” which is exponentially decaying to zero as a function of time.

<

Important Equations

Self Inductance, L: L= &

!
EMF Induced by Inductor: E=-L %;—
Exponential Decay: Value =Value,,, e
Exponential “Decay” Upwards: Value = Value,,, (1-e"" )
Simple RC/RL Time Constant: =LR

Natural Frequency of LC Circuit: @, =

i

Experiment 8: RL and Undriven LRC Circuit

Preparation: Read pre-lab and answer pre-lab questions.

This lab has two parts. In the first part you will observe the exponential behavior of RL
circuits as they are “charged” and “discharged” using a battery which periodically turns on
and off. You will measure the time constant of several circuits and investigate how it
changes as resistance and inductance are modified.

In the second part you will study an undriven LRC circuit and determine its natural
frequency.

Summary for Class 25 WI1I1DI p. 2/2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 8: RL Circuits and Undriven RLC Circuits
OBJECTIVES

1. To explore the time dependent behavior of RC and RL Circuits
2. To understand how to measure the time constant of such circuits
3. To explore the time dependent behavior of Undriven RLC Circuits

PRE-LAB READING
INTRODUCTION

In the first two parts of this lab we will continue our investigation of DC circuits, now
including, along with our “battery” and resistors, inductors (RL circuits). We will
measure the very different relationship between current and voltage in an inductor, and
study the time dependent behavior of RL circuits.

In the second two parts of the lab we will study a circuit that includes a “battery”,
resistor, capacitor and inductor (undriven RLC circuits).

As most children know, if you get a push on a swing and just sit still on 1t, you will go
back and forth, gradually slowing down to a stop. If, on the other hand, you move your
body back and forth you can drive the swing, making it swing higher and higher. This
only works if you move at the correct rate though — too fast or too slow and the swing

will do nothing. -

L Lk

This is an example of resonance in a mechanical system. In the second two parts of this
lab we will explore its electrical analog — the RLC (resistor, inductor, capacitor) circuit —
and better understand what happens when it is undriven. In the next lab we will consider
what happens when it is driven above, below and at the resonant frequency.

1, R 1. e - .
K % Thie lat ST ouliag & Ir Sy

The Details: Inductors

W,

'z

Inductors store energy in the form of an internal magnetic field, and find their behavior
& proportional to the time rate of change of current 7 through them: &= L dl/dt. The
constant of proportionality L is the inductance (measured in Henries = Ohm s), and
determines how strongly the inductor reacts to current changes (and how large a self
energy it contains for a given current). Typical circuit inductors range from nanohenries
to hundreds of millihenries. The direction of the induced EMF can be determined by

Lenz’s Law: it will always oppose the change (inductors try to keep the current constant)

{’-f’(’ ':-’_“ / { L I Pr A 1L ¢ £ i‘_ A
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RL Circuits

Consider the circuit shown in figure 1. The inductor is connected to a voltage source of
constant emf £ . At 7= 0, the switch S is closed.

————————
MWy—1
R Figure 1 RL circuit. For t<0 the switch S is open and no
& current flows in the circuit. At t=0 the switch is closed
. L and current / can begin to flow, as indicated by the arrow.

As we saw in class, before the switch is closed there is no current in the circuit. When
the switch is closed the inductor wants to keep the same current as an instant ago — none.
Thus it will set up anlEMF|that opposes the current flow. At first the EMF is identical to
that of the battery (but in the opposite direction) and no current will flow. Then, as time
passes, the inductor will gradually relent and current will begin to flow. After a long time
a constant current (/ = V/R) will flow through the inductor, and it will be content (no
changing current means no changing B field means no changing magnetic flux means no
EMEF). Ther resultlng EMF and current are pictured in Fig. 2.

m TP V7 p)f ,, SCP A o i!. l=¢/R

(a) = te (» | a : A (b) v =
g, =€ LT b ¥ ! { B § 4 l'-!es;is!c:r,f_g

<

E':lndm:tur
Resistor

LV

Time Time

Figure 2 (a) “EMF generated by the inductor” decreases with time (this is what a
voltmeter hooked in parallel with the inductor would show) (b) the current and hence the
voltage across the resistor increase with time, as the inductor ‘relaxes.’

After the inductor is “fully charged,” with the current essentially constant, we can shut off
the battery (replace it with a wire). Without an inductor in the circuit the current would
instantly drop to zero, but the inductor does not want this rapid change, and hence
generates an EMF that will, for a moment, keep the current exactly the same as it was
before the battery was shut off. In this case, the EMF generated by the inductor and
voltage across the resistor are equal, and hence EMF, voltage and current all do the same
thing, decreasing exponentially with time as pictured in fig. 3. i

E08-2



4

i

L—
5 J
i

|t of po-llo couiiog
@) NW _a ®) VR'[}:SL.E':E; l,=¢/R

R T '

>
L g =

3 0
NE 0.368 VD \

S *# =% Time

Figure 3 Once (a) the battery is turned off, the EMF induced by the inductor and hence
the voltage across the resistor and current in the circuit all (b) decay exponentially.

The Details: Non-Ideal Inductors

So far we have always assumed that circuit elements are ideal, for example that inductors
only have inductance and not capacitance or resistance. This is generally a a decent
assumption, but in reality no circuit element is truly ideal, and today we will need to
consider this. In particular, today’s “inductor” has both inductance and resistance (real
inductor = ideal inductor in series with resistor). Although there is no way to physically
separate the inductor from the resistor in this circuit element, with a little thought you
will be able to measure both the resistance and inductance.

The Details: Measuring the Time Constant ©
In this lab you will be faced with an exponentially decaying current / = /I exp(-#/7) from

which you will want to extract the time constant . We will do this in two different ways,
using the “two-point method” or the “logarithmic method,” depicted in Fig. 4.

{’. t)./me ] & }‘.‘7 \!}'— r"' i dL 5
@) (b) - 54 ; QJ h gveés,
] 2] J®
€ G |
O |
© =}
A ;
2

Time Time
Figure 4 The (a) two-point and (b) logarithmic methods for measuring time constants

In the two-point method (Fig. 4a) we choose two points on the curve (t;,1;) and (tz, I5).
Because the current obeys an exponential decay, I = Iy exp(-#/7), we can extract the time
constant T most easily by picking I, such that I, = I;/e. We should, in theory, be able to
find this for any t;, as long as we don’t switch the battery off (or on) before enough time

E08-3



has passed. In practice the current will eventually get low enough that we won’t be able -
to accurately measure it. Having made this selection, 1 =1t — t;.

In the logarithmic method (Fig. 4b) we fit a line to the natural log of the current plotted
vs time and obtain the slope m, which will give us the time constant as follows:

rise In(Z(#))-In(1(1) 1(t,
potie BBt 1)

run 1, —1, t,—

1 I o/t —(t. —1¢ | n
= In De-r /T = : ln(e'('l"')/f) = 1 ( : ‘) =1|_l
Lied, D8 ) =t L-h\ 7 -

That is, from the slope (which the software can calculate for you) you can obtain the time
constant: (7= -Uﬂ m 15[0{9 ¢

—_————

In using both of these methods you must take care to use points well into the decay (i.e.
not on the flat part before the decay begins) and try to avoid times where the current has
fallen close to zero, which are typically dominated by noise.

The Details: Oscillations o,  j((| i 2 G Cage
In this lab you will be investigating current and voltages (EMFs) in RLC circuits. These

oscillate as a function of time, either continuously (Fig. 5a) or in a decaying fashion (Fig.
5b).

(a) g Xt /\ /\ | () o XA |
g
é \ ?—?'. /\ R | i L
=3 [ °a e
I\ VAR VIS §E i
'x_ < i R i | | 1
0 I 'X T T T T
ar 1T 2T ar 4T 5T
Time (in Perlods) Time (in Periods)

Figure 5 Oscillating Functions. (a) A purely oscillating function x = x, sin (@ + @) has

fixed amplitude x4, angular frequency @ (period 7 = 2n/@ and frequency f= @/2x), and

phase ¢ (in this case ¢ = -0.21). (b) The amplitude of a damped oscillating function
decays exponentially (amplitude ebryzelope indicated by dotted lines)

(o {glunca

Undriven Circuits: Thinking about Oscillations

Consider the RLC circuit of Fig. 6 below. The capacitor has an initial charge Qo (it was
charged by a battery no longer in the circuit), but it can’t go anywhere because the switch
is open. When the switch is closed, the positive charge will flow off the top plate of the
capacitor, through the resistor and inductor, and on to the bottom plate of the capacitor.
This is the same behavior that we saw in RC circuits. In those circuits, however, the
current flow stops as soon as all the positive charge has flowed to the negatively charged -
plate, leaving both plates with zero charge. The addition of an inductor, however,
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introduces inertia into the circuit, keeping the current flowing even when the capacitor is
completely discharged, and forcing it to charge in the opposite polarity (Fig 6b).
_ = |
R . R ! Cwecontf- (lows olér
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Figure 6 Undriven RLC circuit. (a) For t<0 the switch S is open and although the
capacitor is charged (Q = Qp) no current flows in the circuit. (b) A half period after

closing the switch the capacitor again comes to a maximum charge, this time with the
positive charge on the lower plate.

i+

This oscillation of positive charge from the upper to lower plate of the capacitor is only
one of the oscillations occurring in the circuit. For the two times pictured above (/=0 and
t=0.5 T) the charge on the capacitor is a maximum and no current flows in the circuit. At
intermediate times current is flowing, and, for example, at ¢t = 0.25 T the current is a

| maximum and the charge on the capacitor is zero. Thus another oscillation in the circuit

is between charge on the capacitor and current in the circuit. This corresponds to yet
another oscillation in the circuit, that of energy between the capacitor and the inductor.
When the capacitor is fully charged and the current is zero, the capacitor stores energy
but the inductor doesn’t (U, =0Q*/2C; U, =1LI*=0). A quarter period later the
current / is a maximum, charge QO = 0, and all the energy is in the inductor:
U.=Q*/2C=0;, U, =LLI’. If there were no resistance in the circuit this swapping of
energy between the capacitor and inductor would be perfect and the current (and voltage
across the capacitor and EMF induced by the inductor) would oscillate as in Fig. 5a. A
resistor, however, damps the circuit, removing energy by dissipating power through Joule
heating (P=F°R), and eventually ringing the current down to zero, as in Fig. 5b. Note that

only the resistor dissipates power. The capacitor and inductor both store energy during
half the cycle and then completely release it during the other half,

APPARATUS diveation Wwosti be
1. Science Workshop 750 Interface

In this lab we will again use the 750 interface to create a “variable battery” which we can
turn on and off, whose voltage we can change and whose current we can measure. In the
first two parts of this lab we will again use the Science Workshop 750 interface as an AC
function generator, whose voltage we can set and current we can measure. We will also
use it to measure the voltage across the capacitor using a voltage probe.

ﬂ( I/ iMCo .li#i;' i:"f- ( -J!/ﬁ
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2. AC/DC Electronics Lab Circuit Board

We will also again use the circuit board of Fig. 7a. This time we will use the inductor (E)
as well as the connector pads (F) for resistors and capacitors, and the banana plug
receptacles in the right-most pads to connect to the output of the 750.

Figure 7 The AC/DC Electronics Lab Circuit Board (a) with (A) Battery holders, (B)
light bulbs, (C) push button switch, (D) potentiometer, (E) inductor and (F) connector
pads (b) Setup of the AC/DC Electronics Lab Circuit Board. In addition, in parallel with
the capacitor you will connect a voltage probe (not pictured).

In the second two parts of this lab we will set up the circuit board with a 100 pF capacitor
in series with the coil (which serves both as the resistor and inductor in the circuit), as
pictured in Figure 7b .

3. Current & Voltage Sensors

Recall that both current and voltage sensors follow the convention that red is “positive”
and black “negative.” That is, the current sensor (Figure 8a) records currents flowing in
the red lead and out the black as positive. The voltage sensor (Figure 8b) measures the
potential at the red lead minus that at the black lead.

Figure 8 (a) Current and (b) Voltage Sensors
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4. Capacitors ‘ .

b"-‘{-’)uﬂfl ¥ ,n_:‘f (q el
We will work with capacitors (and a coil which acts as both an inductor and a resistor.)
Capacitors (Fig. 9) are typically stamped with a numerical value.

Figure 9 Example of a capacitor. Capacitors on the other hand come in a wide variety of
packages and are typically stamped both with their capacitance and with a maximum
working voltage.

GENERALIZED PROCEDURE

This lab consists of four main parts. In each you will set up a circuit and measure voltage
and current while the battery periodically turns on and off. In the first two parts you are
encouraged to develop your own methodology for measuring the resistance and
inductance of the coil on the AC/DC Electronics Lab Circuit Board both with and without
a core inserted. The core is a metal cylinder which is designed to slide into the coil and
affect its properties in some way that you will measure.

Part 1: Measure Resistance and Inductance Without a Core

The battery will alternately turn on and turn off. You will need to hook up this source to
the coil and, by measuring the voltage supplied by and current through the battery,
determine the resistance and inductance of the coil.

Part 2: Measure Resistance and Inductance With a Core

In this section you will insert a core into the coil and repeat your measurements from part
3 (or choose a different way to make the measurements).

In the second two parts you will measure the behavior of an undriven series RLC circuit.
Part 3: Free Oscillations in an Undriven RLC Circuit

The capacitor is charged with a DC battery which is then turned off, allowing the circuit
to ring down.

Part 4: Energy Ringdown in an Undriven RLC Circuit

Part 1 is repeated, except that the energy is reported instead of current and voltage.

END OF PRE-LAB READING
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IN-LAB ACTIVITIES

EXPERIMENTAL SETUP Parts One and Two

1. Download the LabView file from the web and save the file to your desktop (right
click on the link and choose “Save Target As” to the desktop. Overwrite any file by
this name that is already there). Start LabView by double clicking on this file.

2. Connect the Voltage Sensor to Analog Channel A on the 750 Interface. We will
obtain the current directly from the “battery” reading.

3. Connect cables from the output of the 750 to the banana plug receptacles on the lower
right side of the circuit board (red to the sin wave marked output, black to ground).

MEASUREMENTS

Part 1: Measure Resistance and Inductance Without a Core

1. Connect cables from the output of the 750 to either side of the coil (using the clip
attachments over the usual banana plug connectors)

2. Make sure that the core is removed from the coil

3. Record the current through and voltage across the battery for a fraction of a
second. (Press the green “Go” button above the graph).

Question 1:

What is the maximum current during the cycle? What is the EMF generated by the
inductor at the time this current is reached?

ligs [1SmA Q

\

= L/u.".‘!-l' 'I.u”—' - [ [/

Question 2:

What is the time constant 7 of the circuit?
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What are the resistance  and inductance L of the coil? ( [ } A ( 2 0 ~¥/T
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Part 2: Measure Resistance and Inductance With a Core

1. Insert the core into the center of the coil Yel /Q

2. Record the current through and voltage across the battery for a fraction of a Gy 59 4.{
second. (Press the green “Go” button above the graph). 7 e

Question 4: T

Does the maximum current in the circuit change due to the introduction of the core? If it

does, try to explain as clearly as possible why this happens (including why the change to
bigger or smaller makes sense).

) ] e d | 2

e N
Question 5:
Does the time constant 7 of the circuit change due to the introduction of the core? If it
does, try to explain as clearly as possible why this happens (including why the change to
longer or shorter makes sense).
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EXPERIMENTAL SETUP Parts 3 and 4

1. Set up the circuit pictured in Fig. 7b of the pre-lab reading (no core in the

inductor!)
2. Connect a voltage probe to channel A of the 750 and connect it across the
capacitor. . B
et 1k ] ;
MEASUREMENTS I =

LS

Part 3: Free Oscillations in ari Undriven RLC Circuit

In this part we turn on a battery long enough to charge the capacitor and then turn it off
and watch the current oscillate and decay away.

1. Press the green “Go” button above the graph to perform this process.

Before you begin, for the circuit as given (with a 10 pF capacitor and a coil with
resistance ~ 5 Q and inductance ~ 8.5 mH as measured in parts 1 and 2), what is the
frequency at which the circuit should ring down? / g
— s . . N AV
e ! b} {‘l e et gy~

et
T l{ ' C_/‘_\L_,/_W:AJ_»..

What is the period of the oscillations (measure the time between distant zeroes of the
current and divide by the number of periods between those zeroes)? What is the
frequency? o

| 7' .—' i
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¢
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W i
Question 8:

Is this experimentally measured frequency the same as, larger than or smaller than what
you calculated it should be? If it is not the same, why not?

& i . LA
",(J ek DYy

i
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E08-11



Part 4: Energy Ringdown in an Undriven RLC Circuit

1. Insert the core into the inductor for this part.

Z. Repeat the process of part 3, this time recording the energy stored in the capacitor
=1 CIV2 and inductor (U = %LIZ) , and the sum of the two.

Question 9:

el C(Packd ol
o
The circuit is losing energy most rap1d1y at times when the slope of total energy is

steepest. Is the electric (capacitor) or magnetic (inductor) energy a local maximum at
those times? Briefly explain why.
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Further Questions (for experiment, thought future exam gquestions...)

e What happens if we put a resistor R in series with the coil? In parallel with the coil?

e What happens if you make the battery switch on and off with a period shorter than the
time constant of the circuit? Would you still be able to determine the inductance L
and resistance r of the coil using the same method?

e What happens if you only partially insert the core into the coil? Can you
continuously adjust the core’s effects or there an abrupt jump from one behavior to
another? Would another core (like your finger) have the same effects?

e Ifthe coil were made of some superconducting material, what would its resistance
be? Would the EMF you measure be any different? Would the potential difference

from one side of the inductor to the other (AV =— f E.-ds ) be any different?

e What happened when you inserted the core into the coil? Why did we ask you to do
that in part 4?7

e What happens to the resonant frequency of the circuit if a resistor is placed in series
with the capacitor and coil? In parallel? NOTE: You can use the variable resistor,
called a potentiometer or “pot” (just to the left of the coil, connect to the center and
right most contacts, allowing you to adjust the extra resistance from 0Q2 to 3.3Q2 by
simply turning the knob).
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Summary of Class 26 8.02

Topics: LC, and Undriven LRC Circuits
Related Reading: Course Notes: Sections 12.1-12.7

Topic Introduction

Today we investigate LRC circuits. We will see that the current in these circuits oscillates, in
a fashion completely analogous to the oscillation of a mass on a spring

Mass on a Spring: Simple Harmonic Motion

In a simple system consisting of a mass hanging on a spring, when the mass is pulled down
and released it oscillates up and down. We think about this in a couple of ways. One way is
to look at the forces on the mass and write a differential equation for its motion,
F =mXx =—kx, where X means two time derivatives of the displacement (acceleration). The

solution to this is simple harmonic motion: x = x,cos( @t ) where @ =\/k/m .

We can also think about the energy in the system. As the mass moves, energy oscillates
between kinetic energy of the mass and potential energy stored in the spring. If there is no
damping (friction) in the system to dissipate energy, the oscillation will continue forever.

Undriven L(R)C Circuits

R a b
—V\'\"Tl Consider the LC circuit at left, where the switch is at “a”
el . until the capacitor is fully charged and then thrown to “b.”
T S — This is analogous to pulling down a mass and releasing it.
Here the capacitor will want to discharge and will drive a

current through the inductor. Eventually all the charges will
run off of the capacitor (spring), so it won’t “push” anymore, but now the inductor will want
to keep the current flowing through it that it already has (inductors, like masses, have inertia).
It will keep the current flowing, but that will eventually fill up the capacitor which will stop
the current and send it back the other direction. Our differential equation is thus analogous,

V =-L§=q/C, and has the same solution: g =g, cos( @t ) where w=,/I/LC.

®f, We can also think about energy here, where it oscillates
5, between being stored in the electric field in the capacitor
1 Bi"’a;‘\\? B < 20l and the magnetic field in the inductor. As long as there is
3 i ; [y no dissipation (resistance) is the circuit the oscillations will
% f ; 5 T ~————~¢ continue forever.
iV M

i‘ /3;/’&9.: iy If we add a resistor in series with the capacitor and inductor
h o we provide a method of energy loss, through joule heating
4 in the resistor as current flows. The oscillations will thus

damp out to zero. The exact path the charge will take as it
oscillates to zero depends on the relative sizes of L, R and C, but will typically look
something like the curve above, where the oscillations are bounded by an “envelope” which
is exponentially decaying to zero as a function of time.

Summary for Class 26 W11D2 p.1/3



P-bob oviny

t{f_ OF-P (v '/{ l~/ In (Jv,/.(__] -9,‘. £ W/ G akef
o Conservg | Lo

Pofeatlel dufC

ho  Ikir kot
"_50 54?/ L J/,t
M/
f— .
Current

dir curen)

F_, t@, g) e fotally fogot- ghat i b p-sf
%ﬁ

Neod b fiy /I’la Mryﬂz’?

”QQPGME on whih 6)(’1@

C“fﬂ.oflw\ JP
5 l 0 ~oppes g by
. WL@f\ 6 = Fc, w, }Ofm;ml (/eloo‘flL?

O) fv\w‘u\g o}«oroge_ > Magdie £l
@ xf(?//w/l V"‘Qﬂr@’lc {:e d -3 ﬂ\od:"j CLW‘?(’_
JS:mpl (Lca 0

~gots gt & Clole
lw} M’zb bo QMOL!

PN



ngl /;@ln bofid fe qu@!ﬁfa»j



/(%

JL:LW

OE{ILQ h;
D o aHfL

CUf(Erﬁ )ﬂn(ov@}\

€)<1Lef~wl
39, doos  nol ol %Q/i Lo F‘é T?%g)

-“loej not asl ,M o, b Tlre
NQQ}\L o Ui words Pfem'v/

‘(,Lar\aj‘rj (] luy Q O-ro-,md (ooy
€l 5 0 pvery fiig  clapy

- : !
r\f\/“ 60“\&5 ‘oq Foﬂ'w} T OH -
| : 90 5lowls
5{'9? b“‘\l i [Wl\ 'fe,ad oer ™y 94’
Wat fs hapgerey do P whta T am @l O%
A
e e
= A (e(-::’@_

otoed wbaly =
’X— \‘t\ﬂ, &gn\l hawe  MOAY q v

= s feled
ol T oondle chand wow

\f)ﬂﬁw\la\ GIIN
€ —adaly loe  bu, 0!

WU/( Cl

bb %}, T 900(\ " Oo)r ars



He wanks o To el o,
“heid o
- ﬂwf}, ot tal 5 ()l
Q& 9&@;&[ P/olﬂ@m T ha

f W (oally  flon befort
8603 {:/“7 ?/{,F@d ém each C.{as)

Mort pr 51/



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02

Due: Tuesday, April 13 at 9 pm.

Spring 2010

Problem Set 9

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.

Week Ten Faraday’s Law
Class 22 W10D1 M/T Apr 5/6
Reading:

Experiment:

Class 23 W10D2 W/R Apr 7/8
Reading:

Class 24 W10D3 F Apr 9
Reading:

Campus Preview Weekend

Week Eleven AC Circuits
Class 25 W11D1 M/T Apr 12/13

Reading:
Experiment:

Class 26 W11D2 W/R Apr 14/15
Reading:

Class 27 W11D3 F Apr 16
Reading:

Faraday’s Law; Expt.7: Faraday’s Law
Course Notes: 10.1-10.3, 10.8-10.9

Expt.7: Faradav’s Law

Problem Solving Faraday’s Law; Inductance &
Magnetic Energy, RL Circuits
Course Notes: 10.1-10.4, 10.8-10.9, 11.1-11.4

Special Lecture: Applications of Faraday’s Law
Course Notes: 10.1-10.4, 10.8-10.9, 11.1-11.4

Undriven RLC Circuits; Expt. 8: RL Circuits and
Undriven RLC Circuits

Course Notes: 11.5-11.11

Expt. 8: RL Circuits and Undriven RLC Circuits

Driven RLC Circuits
Course Notes: 12.1-12.7

PS08: RLC Circuits
Course Notes: 12.8-12.9
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Problem 1: Short Questions

(a) When a small magnet is moved toward a solenoid, an emf is induced in the coil.
However, if the magnet is moved around inside a toroid, no measurable emf is induced.
Explain.

(b) A piece of aluminum is dropped vertically downward between the poles of an
electromagnet. Does the magnetic field affect the velocity of the aluminum? Explain.

(c) What happens to the generated current when the rotational speed of a generator coil is
increased?

(d) If you pull a loop through a non-uniform magnetic field that is perpendicular to the
plane of the loop which way does the induced force on the loop act?

Problem 2: Moving Loop

A rectangular loop of dimensions / and w moves with a constant velocity v away from an

infinitely long straight wire carrying a current / in the plane of the loop, as shown in the
figure. The total resistance of the loop is R.

(a) Using Ampere’s law, find the magnetic field at a distance s away from the straight
current-carrying wire.

(b) What is the magnetic flux through the rectangular loop at the instant when the
lower side with length / is at a distance r away from the straight current-carrying
wire, as shown in the figure?

(c) At the instant the lower side is a distance r from the wire, find the induced emf

and the corresponding induced current in the rectangular loop. Which direction
does the induced current flow?
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Problem 3: Faraday’s Law

A conducting rod with zero resistance and length w slides without friction on two parallel
perfectly conducting wires. Resistors
R; and R; are connected across the ends
of the wires to form a circuit, as shown.
A constant magnetic field B is directed B © B ©

out of the page. In computing magnetic
flux through any surface, take the
surface normal to be out of the page,

 — W
parallel to B. R1 v

(a) The magnetic flux in the right loop

of the circuit shown is (circle one)

1) decreasing

2) increasing
What is the magnitude of the rate of change of the magnetic flux through the right loop?

(b) What is the current flowing through the resistor R> in the right hand loop of the
circuit shown? Gives its magnitude and indicate its direction on the figure.

(c) The magnetic flux in the left loop of the circuit shown is (circle one)
1) decreasing
2) increasing

What is the magnitude of the rate of change of the magnetic flux through the left loop?

(d) What is the current flowing through the resistor R; in the left hand loop of the circuit
shown? Gives its magnitude and indicate its direction on the figure.

(e) What is the magnitude and direction of the magnetic force exerted on this rod?
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Problem 4: Read £xperiment 8: Induciance and RL Circuits Pre-Lab Questions

1. RL Circuits

! Consider the circuit at left, consisting of a battery (emf
W - - .
W ¢ @ £),aninductor L, resistor R and switch S.
R i For times <0 the switch is open and there is no current
% § in the circuit. At =0 the switch is closed.
s
i i N )] Using Kirchhoff’s loop rules (really Faraday’s
Py i law now), write an equation relating the emf on the
oo ¢ » battery, the current in the circuit and the time

derivative of the current in the circuit.

We know from thinking about it above that the results should look very similar to RC
circuits. In other words:

1= A(X — exp(-t/7))

(b) Plug this expression into the differential equation you obtained in (a) in order to
confirm that it indeed is a solution and to determine what the time constant T and
the constants 4 and X are. What would be a better label for 4?2 (HINT: You will
also need to use the initial condition for current. What is /(+=0)?)

(c) Now that you know the time dependence for the current 7 in the circuit you can
also determine the voltage drop Vy across resistor and the EMF generated by the
inductor. Do so, and confirm that your expressions match the plots in Fig. 2a or
2b.

2. ‘Discharging’ an Inductor

I I\‘i?%’ """"""""""""" ] ¢ After a long time 7" the current will reach an equilibrium

value and inductor will be “fully charged.” At this point we

L § turn off the battery (&=0), allowing the inductor to

: ‘discharge,’ as pictured at left. Repeat each of the steps a-c

in problem 1, noting that instead of exp(-#/7), our
L. e b expression for current will now contain exp(-(z-7)/ 7).

(a) Faraday’s law:
(b) Confirm solution:

(c) Determine V' across resistor and the EMF generated by the inductor.
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3. A Real Inductor

As mentioned above, in this lab you will work with a coil that does not behave as an ideal
inductor, but rather as an ideal inductor in series with a resistor. For this reason you have
no way to independently measure the voltage drop across the resistor or the EMF induced
by the inductor, but instead must measure them together. None-the-less, you want to get

information about both. In this problem you will figure out how.

(a) In the lab you will hook up the circuit of problem 1 (with the ideal inductor L of that
problem now replaced by a coil that is a non-ideal inductor — an inductor L and
resistor 7 in series). The battery will periodically turn on and off, displaying a

voltage as shown here:

1.0

(Volts)

0.5

0.0

Battery

Vv

00 05 1.0 15 20
Time (Periods)

Sketch the current through the battery as well as what a voltmeter hooked across the
coil would show versus time for the two periods shown above. Assume that the
period of the battery turning off and on is comparable to but longer than several time

constants of the circuit.

(b) How can you tell from your plot of the voltmeter across the coil that the coil is not
an ideal inductor? Indicate the relevant feature clearly on the plot. Can you
determine the resistance of the coil, », from this feature?

(c¢) In the lab you will find it easier to make measurements if you do NOT use an
additional resistor R, but instead simply hook the battery directly to the coil. (Why?
Because the time constant is difficult to measure with extra resistance in the circuit).
Plot the current through the battery and the reading on a voltmeter across the coil for
this case. We will only bother to measure the current. Why?

(d) For this case (only a battery & coil) how will you determine the resistance of the
coil, ¥? How will you determine its inductance L?

4. The Coil

The coil you will be measuring has is made of thin copper wire (radius ~ 0.25 mm) and
has about 600 turns of average diameter 25 mm over a length of 25 mm. What
approximately should the resistance and inductance of the coil be? The resistivity of
copper at room temperature is around 20 nQ2-m. Note that your calculations can only be
approximate because this is not at all an ideal solenoid (where length >> diameter).
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Problem 5 Falling Loop

A rectangular loop of wire with mass m, width w, vertical length /, and resistance R falls
out of a magnetic field under the influence of gravity, as shown in the figure below. The

magnetic field is uniform and out of the paper ( B = Bi) within the area shown and zero
outside of that area. At the time shown in the sketch, the loop is exiting the magnetic
field at speed v =—vk .

& ® s &R e® ey e
[ B YR TEE Y Qe
BRED S RLEeE DY B
& y (@B eI EBE TG
s@@@ﬁm@@gsw&a

13

£

B=0 [

—epeerer
o3

(a) What is the direction of the current flowing in the circuit at the time shown, clockwise
or counterclockwise? Why did you pick this direction?

(b) Using Faraday's law, find an expression for the magnitude of the emf in this circuit in

terms of the quantities given. What is the magnitude of the current flowing in the circuit
at the time shown?

(c) Besides gravity, what other force acts on the loop in the +k direction? Give its
magnitude and direction in terms of the quantities given.

(d) Assume that the loop has reached a “terminal velocity” and is no longer accelerating.
What is the magnitude of that terminal velocity in terms of given quantities?

(e) Show that at terminal velocity, the rate at which gravity is doing work on the loop is
equal to the rate at which energy is being dissipated in the loop through Joule heating.
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Problem 6: Generator

A “pie-shaped” circuit is made from a straight vertical
conducting rod of length a welded to a conducting rod
bent into the shape of a semi-circle with radius a (see
sketch). The circuit is completed by a conducting rod of
length a pivoted at the center of the semi-circle, Point P,
and free to rotate about that point. This moving rod
makes electrical contact with the vertical rod at one end
and the semi-circular rod at the other end. The angle & is
the angle between the vertical rod and the moving rod, as
shown. The circuit sits in a constant magnetic field By
pointing out of the page.

(a) If the angle @is increasing with time, what is the direction of the resultant current
flow around the “pie-shaped” circuit? What is the direction of the current flow at the
instant shown on the above diagram? To get credit for the right answer, you must

Jjustify your answer.

For the next two parts, assume that the angle @is increasing at a constant rate,

dé(t)/ dt=w.

(b) What is the magnitude of the rate of change of the magnetic flux through the “pie-
shaped” circuit due to By only (do not include the magnetic field associated with

any induced current in the circuit)?

(c) If the “pie-shaped” circuit has a constant resistance R, what is the magnitude and
direction of the magnetic force due to the external field on the moving rod in terms
of the quantities given. What is the direction of the force at the instant shown on the

above diagram?
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 9 Solutions

Problem 1: Short Questions

(a) When a small magnet is moved toward a solenoid, an emf is induced in the coil.
However, if the magnet is moved around inside a toroid, no measurable emf is induced.
Explain.

Moving a magnet inside the hole of the doughnut-shaped toroid will not change the
magnetic flux through any turn of wire in the toroid, and thus not induce any current.

(b) A piece of aluminum is dropped vertically downward between the poles of an
electromagnet. Does the magnetic field affect the velocity of the aluminum? Explain.
Yes. The induced eddy currents on the surface of the aluminum will slow the descent of
the aluminum. It may fall very slowly.

(c) What happens to the generated current when the rotational speed of a generator coil is

increased?

The maximum induced emf will increase, increasing the terminal voltage of the generator
resulting in a larger amplitude for the current.

(d) If you pull a loop through a non-uniform magnetic field that is perpendicular to the
plane of the loop which way does the induced force on the loop act?

The direction of the induced force is opposite the direction of the pulling force.
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Problem 2: Moving Loop

A rectangular loop of dimensions / and w moves with a constant velocity v away from an

infinitely long straight wire carrying a current 7 in the plane of the loop, as shown in the
figure. The total resistance of the loop is R.

(a) Using Ampere’s law, find the magnetic field at a distance s away from the straight
current-carrying wire.

Consider a circle of radius s centered on the current-carrying wire. Then around this
Amperian loop, [[B-d§ = B(27s) = 1,
which gives

B ﬂ(}

= #l (into the page)
27s

(b) What is the magnetic flux through the rectangular loop at the instant when the lower
side with length / is at a distance r away from the straight current-carrying wire, as
shown in the figure?

5 i +W I i Il r+w) ..
d);;:yB.dA:[ [;‘;élJlds:‘;ﬂ ln( : )(mtothepage)

(c) At the instant the lower side is a distance » from the wire, find the induced emf and
the corresponding induced current in the rectangular loop. Which direction does the
induced current flow? '

The induce emf'is

2

d Il r (—w] dr Il vw
el =
a

E=—— ——
27 (r+w)\ r° )dt 2z r(r+w)

The induced current is
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R 2zRr(r+w)

The flux into the page is decreasing as the loop moves away because the field is growing
weaker. By Lenz’s law, the induced current produces magnetic fields which tend to

oppose the change in magnetic flux. Therefore, the current flows clockwise, which
produces a self-flux that is positive into the page.
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Problem 3: Faraday’s Law

A conducting rod with zero resistance and length w slides without friction on two parallel
perfectly conducting wires. Resistors
R; and R> are connected across the ends
of the wires to form a circuit, as shown.
A constant magnetic field B is directed B © B ©
out of the page. In computing magnetic
flux through any surface, take the

surface normal to be out of the page, : W
parallel to B. R1 é v R 2

(a) The magnetic flux in the right loop
of the circuit shown is (circle one)
1) decreasing
2) increasing.

What is the magnitude of the rate of change of the magnetic flux through the right loop?

O e B s Eap
dt dt dt

(b) What is the current flowing through the resistor R in the right hand loop of the
circuit shown? Gives its magnitude and indicate its direction on the figure.

The flux out of the page is increasing so the current is clockwise to make a flux into the
page. The magnitude we can get from Faraday:

,_ el _ 1 a0 _Bwy
R R R

(c) The magnetic flux in the left loop of the circuit shown is (circle one)
1) decreasing
2) increasing.

What is the magnitude of the rate of change of the magnetic flux through the right loop?
AG) A e p e g iy
dt dt dt
“Magnitude” is ambiguous — either a positive or negative number will do here. I use the

negative sign to indicate that the flux is decreasing.

(d) What is the current flowing through the resistor R; in the left hand loop of the circuit
shown? Gives its magnitude and indicate its direction on the figure.

The flux out of the page is decreasing so the current is counterclockwise to make a flux
out of the page to make up for the loss. The magnitude we can get from Faraday:
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;e 1 a0 _Bwy

R R @ R,

(e) What is the magnitude and direction of the magnetic force exerted on this rod?

The total current through the rod is the sum of the two currents (they both go up through

the rod). Using the right hand rule on F = ILxB we see the force is to the right. You
could also get this directly from Lenz. The magnitude of the force is:

F=|1ix1§\=JLB=(BwV(i+
R

1

-

BZWZV( !

1
_+_

R R

)
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Problem 4: Read Experiment 8: Inductance and RL Circuits Pre-Lab Questions

1. RL Circuits

Consider the circuit at left, consisting of a battery (emf
€), an inductor L, resistor R and switch S.

For times ¢<0 the switch is open and there is no current
in the circuit. At =0 the switch is closed.

(a) Using Kirchhoff’s loop rules (really Faraday’s
law now), write an equation relating the emf on the
battery, the current in the circuit and the time
derivative of the current in the circuit.

Walking in the direction of current, starting at the switch

We know from thinking about it above that the results should look very similar to RC
circuits. In other words:

I=A(X —exp(-t/7))

(b)  Plug this expression into the differential equation you obtained in (a) in order to

confirm that it indeed is a solution and to determine what the time constant T and
the constants 4 and X are. What would be a better label for 4?7 (HINT: You will
also need to use the initial condition for current. What is 1(+=0)?)

Ae—l/l’

T

0=c-A(X-e")R-L =(s—ARX)+(AR—L£Je"/’
T
Both the constant and time dependent part must equal zero, giving us two equations. The
third (because there are three unknowns) we can get from initial conditions:
I(t=0)=4(X-1)=0 =X =]
e—ARX =0 e B
RX R
L
R

T
A better label for 4 would be Iy, the final current.

A
(AR—L—Je""T = =3 A

(¢)  Now that you know the time dependence for the current / in the circuit you can
also determine the voltage drop Vi across.resistor and the EMF generated by the
inductor. Do so, and confirm that your expressions match the plots in Fig. 2a or
2b.

PS09-6



We find:

I(f)= A(X—e"ff)=%(1—e"ff) (Fig. 2a)

Ve(t)=IR=¢g(1-¢™") (Fig. 2a)
dl ~tfr —tfz .

& {r) =—LE=—L%3 /= —ge™ (Fig. 2b)

Looking at the EMF from the inductor you see that it starts the same as the battery (but in
the opposite direction) which explains why no current initially flows. Then as time goes
on it relaxes.

2. ‘Discharging’ an Inductor

a

i After a long time T the current will reach an equilibrium
value and inductor will be “fully charged.” At this point we
L turn off the battery (£=0), allowing the inductor to
‘discharge,’ as pictured at left. Repeat each of the steps a-c
in problem 1, noting that instead of exp(-t/7), our
. * b expression for current will now contain exp(-(¢-1)/7).
(a) Faraday’s law:
Walking in the direction of current, starting at the switch
—-IR-L s =
dt
(b) Confirm solution:
Ae 0

0=—A(X - V)R- L= (-4RX) +[AR -Lf]e‘(""')/'
T T
Both the constant and time dependent part must equal zero, giving us two equations. The
third (because there are three unknowns) we can get from initial conditions:

—ARX =0 =5 X=0
(AR—Lﬁ]e-’”:o e VO
T R

¢ g
HtaT)=almet)=E A=
(=T R AE=l)=ts =hdtSe

A better label for 4 would be I, the initial current.
(c) Determine F across resistor and the EMF generated by the inductor.

PS09-7



Everything is exponentially decaying with time:

I(()=A(X~e")=—e" (Fig. 2)

Ve(t)=IR=ge™" (Fig. 2b)
d] 3 —ifr —ifr 3

gL (I):—L«E:LEQ / =ge / (Flg. 2b)

3. A Real Inductor

As mentioned above, in this lab you will work with a coil that does not behave as an ideal
inductor, but rather as an ideal inductor in series with a resistor. For this reason you have
no way to independently measure the voltage drop across the resistor or the EMF induced
by the inductor, but instead must measure them together. None-the-less, you want to get
information about both. In this problem you will figure out how.

(a) In the lab you will hook up the circuit of problem 1 (with the ideal inductor L of that
problem now replaced by a coil that is a non-ideal inductor — an inductor L and

resistor r in series). The battery will periodically turn on and off, displaying a
voltage as shown here:

1.0

(Volts)

0.5

Battery

0.0

\Y

00 05 10 15 20
Time (Periods)

Sketch the current through the battery as well as what a voltmeter hooked across the
coil would show versus time for the two periods shown above. Assume that the

period of the battery turning off and on is comparable to but longer than several time
constants of the circuit.

=
o
=l

Current
(fraction of V/(r+R))
o
w

0.0

: : .
0.0 0.5 1.0 1.5 2.0
Time (Periods)
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1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00 1+ . T . r -
0.0 0.5 1.0 1.5 2.0
Time (Periods)

Doesn't go
to zero

Ve, (Volts)

(b) How can you tell from your plot of the voltmeter across the coil that the coil is not
an ideal inductor? Indicate the relevant feature clearly on the plot. Can you
determine the resistance of the coil, », from this feature?

The voltage measured across the coil doesn’t go to zero because even when the inductor
is “off” the coil resistance still has a voltage drop across it. You can determine » from
this voltage — » = V/I (in this case | made r ' of the total resistance, that is, 1/3 of R).

(c) Inthe lab you will find it easier to make measurements if you do NOT use an
additional resistor R, but instead simply hook the battery directly to the coil. (Why?
Because the time constant is difficult to measure with extra resistance in the circuit).
Plot the current through the battery and the reading on a voltmeter across the coil for
this case. We will only bother to measure the current. Why?

The current is the same as the current above (although the time constant will be longer
because of the lower resistance). The voltage measured across the coil will be the same
as the voltage measured across the battery because they are the only two things in the
circuit, so there is no need to measure it.

(d) For this case (only a battery & coil) how will you determine the resistance of the
coil, ¥? How will you determine its inductance L?

In this case we can determine the resistance from the final current (» = V/I) and the
inductance from the time constant.

4. The Coil

The coil you will be measuring has is made of thin copper wire (radius ~ 0.25 mm) and
has about 600 turns of average diameter 25 mm over a length of 25 mm. What
approximately should the resistance and inductance of the coil be? The resistivity of
copper at room temperature is around 20 nQ-m. Note that your calculations can only be
approximate because this is not at all an ideal solenoid (where length >> diameter).
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The resistance (NOTE: I screwed up and meant radius was 0.25 mm, not diameter)
R:p_L: p-Nnd _ (20 nQ m)-(600)(25 mm)

~4.8 Q
4 (0.25 mm)’

The inductance of a solenoid we calculated in class to be:
600 Jz (25 mm
T

2

L= unR = (47x107 T m A" )(25 —

J— (25 mm)~9 mH
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Problem 5 Falling Loop

A rectangular loop of wire with mass m, width w, vertical length /, and resistance R falls
out of a magnetic field under the influence of gravity, as shown in the figure below. The
magnetic field is uniform and out of the paper ( B= Bg) within the area shown and zero
outside of that area. At the time shown in the sketch, the loop is exiting the magnetic

A

field at speed v =—vk.

N oo e Be® 66O ® 6
@@ @B 0008666 ©®
R

v ® y ®® 0600606606 5

’ @@@@@@@@T@@@@
B=i |-

=
og

(a) What is the direction of the current flowing in the circuit at the time shown, clockwise
or counterclockwise? Why did you pick this direction?

Solution: As the loop falls down, the magnetic flux is pointing out of the page and
decreasing. Therefore an induced current flows in the counterclockwise direction. The
effect of this induced current is to produce magnetic flux out of page through the surface
enclosed by the loop, and thus opposing the change of the external magnetic flux.

(b) Using Faraday's law, find an expression for the magnitude of the emf in this circuit in

terms of the quantities given. What is the magnitude of the current flowing in the circuit
at the time shown?

Solution: For the loop, we choose out of the page (+i -direction) as the positive direction
for the unit normal to the area of the loop. This means that a current flowing in the
counterclockwise direction (looking at the page) has positive sign.

Choose the plane z =0 at the bottom of the area where the magnetic field is non-zero.

Then at time ¢, the top of the loop is located at z(t). The area of the loop at time 7 is
then

Aty =z(t)w.
where w is the width of the loop. The magnetic flux through the loop is then given by

T H B-ii da = HB‘ i-ida= HBX da=B A(t)= B z(H)w.
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