Problem 5: Inductor

An inductor consists of two very thin conducting cylindrical
shells, one of radius a and one of radius b, both of length A.
Assume that the inner shell carries current / out of the page,
and that the outer shell carries current / into the page,
distributed uniformly around the circumference in both
cases. The z-axis is out of the page along the common axis
of the cylinders and the r-axis is the radial cylindrical axis
perpendicular to the z-axis.

a) Use Ampere’s Law to find the magnetic field between
the cylindrical shells. Indicate the direction of the magnetic
field on the sketch. What is the magnetic energy density as
a function of r for a < r < b7

The enclosed current I, in the Ampere’s loop with radius r is given by

0. S ristg
Foo=d, G€F<h
0, r>b

we obtain

enc ?

Applying Ampere’s law, |jf3 -ds=BQ2xr)=yl

0" r<ia

‘u—“](b, a<r<b (counterclockwise in the figure)
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2
0, r>b
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I

The magnetic energy density fora <r < b is

B el [ pOIT= 11,1

U, = =
s Dty 2N 27 87*r’

It is zero elsewhere.

b). Calculate the inductance of this long inductor recalling that U, =%L1 :

your results for the magnetic energy density in (a).

The volume element in this case is 2zrhdr . The magnetic energy is :

and using



b 2 2
U, = |uzayol= #021 - |2zhrdr =Mln[£J
7 A\ 87°r 4 a
2
Sincell]. = Cuis (2] = %LF, the inductance is

47 a
L= M]n [éj
27 a

c) Calculate the inductance of this long inductor by wusing the formula
O=LI= j B-dA and your results for the magnetic field in (a). To do this you

open surface
must choose an appropriate open surface over which to evaluate the magnetic flux. Does
your result calculated in this way agree with your result in (b)?

The magnetic field is perpendicular to a rectangular

surface shown in the figure. The magnetic flux through a
thin strip of area d4 =ldr is
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Problem 6: Trying to open the switch on an RL Circuit

The LR circuit shown in the figure contains a resistor R, and an inductance L in series
with a battery of emfe¢,. The switch S is initially closed. At 7 = 0, the switch S is opened,
so that an additional very large resistance R, (with R, R,) is now in series with the
other elements.

s L,
o vy
—_— :
+ R, =) L
E) T %!

(a) If the switch has been closed for a long time before 1 = 0, what is the steady current
I, in the circuit?

There is no induced emf before ¢ = 0. Also, no current is flowing on R,.Therefore,

(b) While this current /; is flowing, at time ¢ = 0, the switch S is opened. Write the
differential equation for /(r) that describes the behavior of the circuit at times ¢ > 0.
Solve this equation (by integration) for /(f)under the approximation thateg, =0.

(Assume that the battery emf is negligible compared to the total emf around the circuit
for times just after the switch is opened.) Express your answer in terms of the initial

current /;, and R, R,,and L.

The differential equation is

dl(t
gy —I()(R, +R,) = LJ
dt
Under the approximation that £, =0, the equation is
di(t)

—I(t)(R, +R,) = LT

The solution with the initial condition /(0) = I, is given by



(Rl +R2) ¢

m==0)

I(t) = I, exp(-

(¢) Using your results from (b), find the value of the total emf around the circuit (which
from Faraday's law is —LdI/dt) just after the switch is opened. Is your assumption in (b)
that &, could be ignored for times just after the switch is opened OK?

LPAOE o R )

=0

Since Iy = ;_0

R,
‘5-:;—"'(]?1 +R2):(1+}T)g° Ssigar oSSR

Thus, the assumption that g,could be ignored for times just after the switch is open is
OK.

(d) What is the magnitude of the potential drop across the resistor R, attimes/ > 0, just
after the switch is opened? Express your answers in terms of ¢,, R, and R,. How does
the potential drop across R, just after + = 0 compare to the battery emf g, if
R, =100R,?

The potential drop across R; is given by

R R R R
AV, =—2—¢g= : 1+—= g, =—>¢,
R R R

1 |

If R, =100R,,
AV, =100 g,

This is why you have to open a switch in a circuit with a lot of energy
stored in the magnetic field very carefully, or you end up very dead!!



Problem 7: LC Circuit
An inductor having inductance L and a capacitor having capacitance C are connected in

series. The current in the circuit increase linearly in time as described by / = Kt. The
capacitor initially has no charge. Determine

(a) the voltage across the inductor as a function of time,

The voltage across the inductor is

g i -L-‘i(Kr) =-LK

,E‘L = —_—
dt dt

(b) the voltage across the capacitor as a function of time, and

o

Using [ = e the charge on the capacitor as a function of time may be obtained as

1 !
1
o) = |Idt' = |Kt'dt' =—Kr*
o) OI 5[ 5

Thus, the voltage drop across the capacitor as a function of time is

(c) the time when the energy stored in the capacitor first exceeds that in the inductor.

The energies stored in the capacitor and the inductor are

2
1 5 il ki M.
. ==SCARY == =2 =
C2(0) 2[26‘] 8C

U, =lu2 =lL(Kr)2 =iu«fzt2
= 2 2

The two energies are equal when

KZIM I 2572 ]
C =5LK[ =3 =2‘\}'LC

Therefore, U. >U, when ¢ >1¢'.



Problem 8: LC Circuit
(a) Initially, the capacitor in a series LC circuit is charged. A switch is closed, allowing
the capacitor to discharge, and after time 7 the energy stored in the capacitor is one-

fourth its initial value. Determine L if C and T are known.

The energy stored in the capacitor is given by

017 (Oycoswy)’ O

U.(f) = =0 cos’ wt
() 2€ 2C 0@ 0
Thus,
2 2
U.(T) _ cos 2a)OT _cos" o _ T s ek
U.(0)  cos*(0) 1 4 2
T 1
which implies that @,7 = —rad = 60°. Therefore, withw, = ——, we obtain
S L ATE
2
T M el LZL(EJ
3. 13 (@A

(b) A capacitor in a series LC circuit has an initial charge O, and is being discharged.

The inductor is a solenoid with N turns. Find, in terms of L and C, the flux through each
of the N turns in the coil at time £, when the charge on the capacitor is O(f).

We can do this two ways, either is acceptable. First,we can make the explicit assumption that

Q(1) = O, cosw,t and the total flux through the inductor is L/ = L-%Q =—Lw,0, sin )t
t
MRUE : : L@, .
Therefore the flux through one turn of the inductor at time 7 is @, . = —Tsm N
)
. L . .
orinterms of Land C, ®_ ... =— C %sm @,t. Or second, we can simply leave O(r)

as an unspecified function of time and write (using the same arguments as above) that
_Ldg
one turn N d[ :

(¢) An LC circuit consists of a 20.0-mH inductor and a 0.500-uF capacitor. If the

maximum instantaneous current is 0.100 A, what is the greatest potential difference
across the capacitor?



The greatest potential difference across the capacitor whenU,. .. =U

max Lmax ?

& \/me= Q00mH) 4 1004)=20 v
@ (0.500uF)

or

lCV2 !
2

C max =5

L. = 7V,

Cmax
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Rado PRS: Ampere’s Law PRS Answer: Ampere’s Law
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Integrating B around the loop shown gives us:

Answer: 3. Total penetrating current is zero,
0% 1. a positive number

) o e
o% 2. anegative number EﬂBd§ﬁ ﬂoIenC =0
0% 3 zero {\ 'f:ri‘:z-: i 15 e G ) S e
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PRS: Ampere’s Law PRS Answer: Ampere’s Law

v

Integrating B around the loop shown gives us: AnSWorto m ﬁ - d5 <0
0% 1. a positive number 4
0% (2.} anegative number 1 Net penetrating current is out of the page, so
o% 3. zero _ Q50 field is counter-clockwise (opposite path)
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The magnetic field through AR 12 ljduced ?urrent ,l_ ,!. I l
4 23S is clockwise =
a wire loop is pointed o
upwards and increasing “ This produces an “induced” Ny
with time. The induced B field pointing down over ‘ { IL { ‘
current in the colil is J the area of the loop. T
@ is up and increasing
LI The “induced” B field o, B ¥
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PRS: Loop

The magnetic field through

a wire loop is pointed 2

upwards and decreasing ~ \_ s
with time. The induced [T ———

current in the coil is J [ } } ‘

P is up and decreasing

0= 1. Clockwise as seen from the top
0% OCounterchckwsse

P 7

(d””(‘a, 3 {5 !“-.é_-‘ L/ f\\/

PRS Answer: Loop

Answer: 2. Induced current |

is counterclockwise 1 ‘
This produces an “induced” | | l
B field pointing up over the '
area of the loop. 4B <o

D ia up and decreasing

The “induced” B field D, By £
opposes the decreasing
flux through the loop— )
making up for the loss — @ ‘
Lenz’s Law o

A conducting loop is below a magnet and moving
downwards. This induces a current as pictured. The
I ds x Bforce on the coil is

0% @ Up

0% 2. Down -I (L "',

)
[
0% 3. Zero /

G-t T bot duiwy

Wi f oot g5 Mg }; ]

Answer: 1. Force is Up

Lenz’ Law:

Must oppose moﬁon =
force is up LZ ',’

i

More detail: j e
Induced current is counter-clockwise to oppose
drop in upward flux.

This looks like a dipole faci ward, so it is

attracted to the owle\

* Eri

Io] PRS: Loop in Uniform Field

3.0 [0-0 010 .0:0/0
(0107 0/[07017D/(0.(0
0 0.0 0.0 D06
—_V
Arectangular wire loop is pulled thru a uniform B field
penetrating its top half, as shown. The induced
current and the force and torque on the loop are:
Po 1. Current CW, Force Leit, No Torque
r 2. Current CW, No Force, Torque Rotates CCW
% 3. Current CCW, Force Left, No Torque
e 4. Current CCW, No Force, Torque Rotates CCW
e @ No current, force or torque

i

T e |
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PRS Answer: Loop in Uniform Field

11} +{00)(0.0 O 0 00
OO OLL OO
CIRCHICHCRCI- RN

=t

Answer: 5. No current, force or torque

The motion does not change the magnetic flux, so
Faraday’s Law says there is no induced EMF, or
current, or force, or torque.

Of course, if we were pulling at all up or down there
would be a force to oppose that motion.
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m— PRS: Faraday’s Law: Loop

A coil moves up
froayLde;rwﬁ_ :
magnet with its =
north pole pointing /

upward. The , // \ _

current in the coil : S\

and the force on the

coil:

0% 1. Current clockwise; force up

0% “2.. Current counterclockwise; force up
0% Current clockwise; force down

0% Current counterclockwise; force down
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o] PRS: Circuit

A circuit in the form of a § 1 Formth,
rectangular piece of wireis ;, 7 2|

PUWQ }[ 0| ;
wire carrying current /in Ol —
the direction shown in the  ~ @

sketch. The induced 0

current in the rectangular o]
circuit is

0% g Clockwise
0% (2> Counterclockwise
0% 3. Neither, the current is zero

~ DAl

"F | ) -\ 7
T hoT mviay O UM

( \ ro :
’\/Q- ’ [ v iﬂ 4 {) (4 b 'q'/ { ovifn
hf;i_ Jh’?—w T R

PRS: Generator
A square coil rotates in a o
magnetic field directed to =
the right. At the time il & i
shown, the current in the B y B,
square, when looking ta >
down from the top of the R TS A
square loop, will be Ligarro

0% Clockwise
0% Counterclockwise

0% Neither, the current is zero
0% 4. ldon'tknow '—
I u
Mosmall Fean b
Class 31
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PRS Answer: Faraday’s Law: Loop
Answer: 3. Current is clockwise; force is down

The clockwise current
creates a self-field
downward, trying to offset
the increase of magnetic
flux through the coil as it

N
moves upward into stronger jf\&{\
fields (Lenz’s Law). :

The I dl x B force on the coil is a force which is
trying to keep the flux through the coil from
increasing by slowing it down (Lenz's Law again).

it

PRS Answer: Circuit
Answer: 1. Induced current wmormally )
is clockwise -— Y

B due to I is into page; the flux !l ‘ [ v
through the cfr?‘ﬁ%ﬁfe to that field {eE =

decreases as the circuit moves i |
away., So the induced current is L
clockwise (to make a Binto the

page) ¢ by

Note: I,,, dI x Bforce is left on the left segment and
right on the right, but the force on the left is bigger.
So the net force on the rectangular circuit is to the
left, again trying to keep the flux from decreasing by
slowing the circuit's motion

2l

Sawdiver milid - odvh
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- 1 a oy
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F=1 (/L X "lfJ_) ~d

PRS Answer: Generator
Answer: 1. Induced current i
is counterclockwise

Flux through loop /decreases as "‘-\_‘ 2 B
normal rotates awdy fromB. To - ;,‘
try to keep flux from decreasing, ** . G
induced current will be CCW, i
frying to Keep the magnetic flux
from decreasing (Lenz’'s Law)
Note: I, dl x Bforce on the sides of the square loop
will be such as to produce a torque that tries to stop
it from rotating (Lenz’s Law). i
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PRS: Stopping a Motor

Consider a motor (a loop of wire rotating in a B
field) which is driven at a constant rate by a
battery through a resistor.

Now grab the motor and prevent it from
rotating. What happens to the current in the
circuit?

0% (1) Increases

0% 2. Decreases

0% 3. Remains the Same
0% 4. | don't know

mn

UJ; Ji

O-‘;/ﬂ

PRS: Faraday Circuit
Armagnetic field B penetrates this

circuit outwards, and is increasing
at a rate such that a current of 1 A
is induced in the circuit (which
direction?).

The potential difference VA-VB is:
+10V

-10V

+100 V

-100 V

+110V

-110V

+90V

-0V

Jepuponawpa

None of the above ¥itan
haysl 3

hared thls Qy
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PRS: Voltage Across Inductor
—W—

R

In the circuit at right the e
switch is closed at t= 0. A |
voltmeter hooked across = :.g
the inductor will read: ¥ |

f 3 ‘b

0% ,1) Vngg‘”’ l.:".(‘..‘f_;;«;;-'..f-.j
0% VL = E(J—g"-’r) JHL. ('ff'.‘-‘)"-’j
o V,=0 .
% 4. |don’t know - "m
2 - L I jf
= { Lol /A
Class 31 £ - U e )
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PRS Answer: Stopping a Motor
Answer: 1. Increases

When the motor is rotating in a magnetic field
an EMF is generated which opposes the
motion, that is, it reduces the current. When
the motor is stopped that back EMF disappears
and the full voltage of the battery is now
dropped across the resistor — the current
increases. For some motors this increase is
very significant, and a stalled motor can lead to
huge currents that burn out the windings (e.g.
your blender).

¥l

PRS Answer: Faraday CircAuit
Answer: 9. None of the above

The question is meaningless.
There is no such thing as
potential difference when a
changing magnetic flux is present.

B

By Faraday’s law, a non-conservative E is
induced (that is, its integral around a closed
loop is non-zero). Non-conservative fields
can't have potentials associated with them.

PRS Answer: V Across Inductor

. — gl |
Answer: 1. V, = ge™ 3 |
The inductor “works hard”at .- L
first, preventing current flow, € ]

then “relaxes” as the current
=0 iz
becomes constant in time.

S S—

Although “voltage differences” between two
points isn't completely meaningful now, we
certainly can hook a voltmeter across an
inductor and measure the EMF it generates.
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Consider the LC circuit at
right. Atthe time shown the

current has its maximpum.
value. At this time
e il

PRS: LC Circuit

The magnetic field is zero

The charge on the capactmr is zero
7 Don't have a clue

The electric field has its maximum value ..ex"ﬂ

DA

0%
0%
0%
0%
0%

In the LC circuit at right the C r,J
current is in the direction
shown and the charges on
the capacitor have the signs
shown. At this time,

PRS: LC Circuit

lis increasing and Q is increasing

lis increasing and Q is decreasing
3. lis decreasing and Q is increasing
4. |is decreasing and Q is decreasing
5. Don't have a clue

T A |

PRS Answer: LC Circuit

Answer: 4. The current is
maximum when the charge
on the capacitor is zero

Current and charge are exactly 90 degrees out of
phase in an ideal LC circuit (no resistance), so when
the current is maxnmum the charge must be !
identically zero. :

il
Vel

PRS Answer: LC Circuit

Answer: 2. | is increasing;
Qis decreasing
With current in the direction

shown, the capacitor is
discharging (Q is decreasing).

But since Q on the right plate is positive, I must be
increasing. The positive charge wants to flow, and
the current will increase until the charge on the
capacitor changes sign. That is, we are in the first
quarter period of the discharge of the capacitor,
when Q is decreasing and positive and I is
increasing and positive. ;

(BT

PRS: LC Circuit PRS Answer: LC Circuit
\,. The plot shows the charge =r— === Answer: S e ==
Y~y —y |onacapacitor (blackcurve)  I\\ A |k ST el inora e ol T A N
. J and the current through it \\\ v 5 e e g \ A /-_,}\\.\ /] é
el N J (red curve) after you turn S s - T ] \y 4 & ol U \}(’. ”‘g
off the power supply. Ifyous | \ !/ / \j AR gsa VN on g
Ry W8T put a core into the inductor & 3 L 4
what wi loRen to the T T s o e
time T,, it
i Gjlt will increase Putting in a core increases the inductor’s
o 2 |t will decrease inductance and hence decreases the natural
= '.-It will stay the same frequency of the circuit. Lower frequency means
= 4. | don't know longer period. The phase will remain at 90? (a
0] 0 quarter period) SOIaag will in_crease. s
_— ; 1 i | Aa [ A 1l T 7
Curceat lagging () Ly M T, .0 - 1, _——
Class 31 _ i iAo thys 2 W5
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If you increase the
resistance in the circuit
what will happen to rate
of decay of the pictured
amplitudes?

o% 4. 1don’t know

150,

PRS: LC Circuit

ate,

Mﬂ.:.\

§
)
0,

400,

0% @ It will increase (decay rﬁé’?é‘si';pidly'/)
ox 2. Itwill decrease (decay less rapidly)
o% 3. It will stay the same

Ej(ﬂ .

Class 31

+ Pl

|

N

PRS Answer: LC Circuit

Answer: 1. It will increase
(decay more rapidly)

Resistance is what dissipates power in the circuit
and causes the amplitude of oscillations to
decrease. Increasing the resistance makes the
energy (and hence amplitude) decay more rapidly.

X gno.

5 050,
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Charge on G
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Summary of Class 31 Exam 3 Information

TEST THREE Thursday Evening April 29 from 7:30-9:30 pm.

The Friday class immediately following is canceled because of the evening exam.
Please see announcements for room assignments for Exam 3.

6.

What We Expect From You On The Exam

An understanding of how to calculate magnetic fields in highly symmetric
situations using Ampere’s Law, e.g. as in the Ampere’s Law Problem Solving
Session.

An understanding of how to use Faraday’s Law in problems involving the
generation of induced EMF's. You should be able to formulate quantitative
answers to questions about energy considerations in Faraday’s Law problems, e.g.
the power going into ohmic dissipation comes from the decreasing kinetic energy
of a rolling rod, etc.

The ability to calculate the inductance of specific circuit elements, for example
that of a long solenoid with N turns, radius a, and length L.

An understanding of simple circuits. For example, you should be able to set up the
equations for multi-loop circuits, using Kirchhoff’s Laws that include inductors.
You should be able to understand and graph the solution to the differential
equations for a circuit involving a battery, resistor, and inductor, and a circuit just
involving a resistor and inductor. You should be able to compare and contrast RL
and RC circuits, and should understand the meaning of time constants (t = L/R, T

= RC)s

An understanding of the concept of energies stored in magnetic fields, that is

U =4LI* for the total magnetic energy stored in an inductor, and u, =B’ for
the energy density in magnetic fields. You also should review the concept of

energies stored in electric fields, that is U =1CV? =--0* for the total electric

energy stored in a capacitor, and u, =LgE’ for the energy density in electric
fields.

An understanding of the nature of the firee oscillations of an LC circuit.

To study for this exam we suggest that you review your problem sets, in-class
problems, Friday problem solving sessions, PRS in-class questions, and relevant
parts of the study guide and class notes.

Note: This exam will not include questions regarding undriven and driven
RLC circuits but will include questions about free oscillations of LC
circuits.

Class 31
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PRS: Loop Below Magnet
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Maxwell’s Equations
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Readings on Voltmeter
——Inductor ?a tob

- Resistor

RC Circuit

B " Readings on Voltmeter
AA ——Resistor (c-a)

" 1=RC
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PRS Questions:
Induct_o__rs_ & Cir_cuits

s T

[o] PRS: Clrcmt

A circuit in the form of a ‘ )
rectangular piece of wireis |, .~
pulled away from a long [I L |

wire carrying current / in ‘

the direction shown inthe ] !
sketch. The induced :
current in the rectangular Fr—j—v—
circuitis - B

0% (1) Clockwise
% (2 Counterclockvﬂse .
% 5“3 Neither, the currenliszero-

Watnls ’} 5 (ouwtf

v

'ﬂ“" Y ’- l_f,: ANS [:‘,}

Wit {5 dn
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\)V.\rm, 9| 1
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PRS: Generator

A square coil rotatesina
magnetic field directed to

the right. Atthetime  _—

shown, the currentinthe .

square, when looking 0 >
down from the top of the ) s

square loop, willbe 4 (B-a)20

0% 1. Clockwise £
{? Counterclockwnse =

N ¢ ~a b P {5-’1 ly [ f’ "’:f‘/)
) F o
i S
ands o P B
)| . =
.'.x.f r'['k'.f\(,‘\ A\ (U'/f{j‘l}\
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An uncharged capacltor is
connected fo a battery, resustcr

and swltc_h T_he switc
open but at t'-: :

E PRS RC Clrcmt

Now, after the switch has
been closed for a very long
time, it is opened. What
happens to the current
through the lower resistor?
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PRS: LC 'Ciri;uut

Considerthe Ccircuitat ¢ ey
right. At the'tlme shown the |

Corp T |

ST T1a ;\ b o
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o Q(:) =1, sin(wt — )

r )
S
Vs =V, sin (at)
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Plot 1, V’s vs. Time
YN NI =1, sin(et)
oy

o A
o BTN /N Vp(t)=1,R sin (1)
N NS

_ \ /\ /\ Vi) =14, Sin(&""'%)
\/«—JZ

" :Lg Ve(t)=I,X, sin (@r-%)
" /‘\\ /\ V(1) =V, sin (@t +@)
N TN ,.(1’,-.\;)
Time (Periods) ¢=1tan —_
SR 3 R Fia
Resonance
i h D IVAGIGE R
7 mExowy . 0C
fo  On resonance:
Crike: ) Iy is max; X,=Xg; Z=R;
<0 | \ L-like:

‘\ $>0 . ~ $=0; Power to R is max

o X llags_ .

o

Average Power: Resistor

<P>=< Iz(t)R >
=c 72 smz(car PR >

=R = sm2 (w1 — @) >

Class 31
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@ PRS: Leading or Lagging?

The graph shows - A

current versus voltage

in adriven RLC circuit

at a given driving W VOLTAGE

frequency. In this plbt

0% 1. Current. lags vol tage.by =908
o% 2. Current leads voltage by ~90°

0% 3. Current and voltage are almost in phase

0% 4. Not enough mfo {but they aren't in phase!)
0% 5. | don't know

7iia

PRS: Leading or Lagging
The graph shows the . b
current versus the :
voltage in a driven RLC

circuit at a given driving : VoLAGE
frequency. In this plot

. Current lags voltage by ~80°

. Current leads voltage by ~90°

. Current and voltage are almost in phase
. We don't have enough information (but they aren't in phy

FRER2

e|)

The graph shows cunent&voitage vs. time in a
driven RLC circuit. =::We had'been in resonance a

o 3.1don’t!

gy

Class 31
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PRS Questions
oynting

PRS: Capacitor
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Problem 1 (25 points)

Problem 2 (25 points) :,\)




A d

Problem 1: (25 points) Five Concept Questions. Please circle your
answers.

Question 1 (5 points):
A very long solenoid consisting of N turns has radius R and length d (d>> R).

Suppose the number of turns is halved keeping all the other parameters fixed. The self

inductance } 1 \
210\

a) remains the same.
b) doubles. " -
N
@ is halved. | = —-
d) is four times as large.
e)_is four times as small.

f) None of the above.

)[O”\M.\ ¢y {f\ o bu(T0A o

.



Question 2 (5 points):

The sketch below shows three wires carrying currents /;, /, and /,, with an Ampérian

loop drawn around /, and 7,.

Amperian loop

1®
L,o

2

* "y

® I

3

The wires are all perpendicular to the plane of the paper.

Which currents produce the{magnetic field‘at the pomt P shown in the sketch (circle

one)?

yau W{ &

== a) I, only.
/:/’\ 3 iﬂjf

b) 7, and ,.

oy Il’ 12 and [5.

d) None of them.

N

(\QQ:

4 | pon
095
ol |

p) ' (l’; - /Mo I”'(.-

(0 a

‘@ It depends on the size and shape o@e Amperian Loop.

i n
/T L~

v

A"t

/ _/"
G

P

Vegh

i)

[J,’)[O s /_Aé-ij

' (’if(j;//_

]L”rl}_ {u {



Question 3 (5 points):

A circuit consists of a battery with emf V, an inductor with inductance L, a capacitor with
capacitance C, and three resistors, each with resistance R, as shown in the sketch. The
capacitor is initially uncharged and there is no current flowing anywhere in the circuit.
The switch S has been open for a long time, and is then closed, as shown in the diagram.
If we wait a long time after the switch is closed, the currents in the circuit are given by:

B S —

S
—
i
o 1
1-
L
'J!“" @ I
a) 1':2 =L 1=£ O

v
v 4
iede ol foe-
O" 2R 3 2R
Vo 4
) h=3g 270 A 3
v 4
d ij=— i,=— £=0.
) § R L 2R B

e) None of the above.

o




0\, \adud

Question 4 (5 points): 1 Gayme

At the moment depicted in the LC circuit the current is nen-zero and the capacitor plates
are charged (as shown in the figure below). The energy in the circuit is stored

g (,M"! -
| | i
[

--

a) only in the electric field and is decreasing.
b) only in the electric field and is constant.

c) only in the magnetic field and is decreasing.

S
d) only in the magnetic field and is constant.| —
hﬂl ) \ q 707 %
@ in both the electric and I magnetic field and s constan J W

f) in both the electric and magnetic field and is decreasing.




Question 5 (5 points): (C W @

—

A coil of wire is above a magnet whose north pole is pointing up. For cunent,@up_tgg;)
,@whcn viewed from above jrs“pqgi_ti{f.e\ For flux, upwards is positive.

™ b=

Suppose you moved the loop from well above the magnet to well below the magnet at a
constant speed. Which graph most closely resembles the graph of current through the
loop as a function of time?

N N Y e
L P \ /

r

4 2 0 2 4 2 0 2
(2) (b)
8 2N\
2
; /1N
v ‘ [ 1\
2 , / \
; "/ \.____ ¢
4 4 -2 0 2
(d)
(e) None of the above.
8
{ ( — (£ Ef [
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Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) Clearly show
all Ampérian loops that you use.

s \C{ 9
An infinitely large (in the x— and y-—directions) conducting slab of thickness d is

centered at z=0. The current density J '—Ju in the slab is uniform and points out of
the page in the diagram below. ol % W

8 )
14/1@ =

e 50606
o eC 0O o0P0o

d (C)
i ©

1) above the slab, z>d /2.

_____________.____,._ J{’fﬁpdg :\/{,{0 IQ,C

e e e

2 Bl My Th d e T o T of e
" U LT) g D)y e
[)J M{Ui({_\(‘:_d() : '(l"]'. = /’/[a (EJ‘))'E%’ ™y ”')/ﬂ

! Airect?

! p [ |(_{
drew !& J }Fd r
i) below the slab, z<—-d /2. ot wrikt

10



1)  inside the slab, —-d/2<z<d /2.

ot g
| £ /2 i
4 ©616 e ooco
) GO0 C O o00o0o.

11



b) Make a carefully labeled graph showing your results for the dependence of the
field components upon position. P
g,

h”-q('(t ‘\/w % 3

;_/a’m'r‘-ﬁlf“"‘ > Z

f:Xa(.;f{r j{"‘? r |

P g horp C/’// -
Z ~ dod =t

.l

d) A very long wire is now placed at a height z = h above the slab. The wire carries
a current /, pointing out of the page in the diagram below. What is the direction
and magnitude of the @pﬂ unit length on the wire?

] { m

y A
@ - === | = k
h et
@ A
l d
4 ©6ecoecoe_|_L_,
CO0C B0 00O O
1\
LN
1 qu.':! = j;ﬁ XB v @ X {
./ /( 7 (£ ({u.'.f'i tm W
“pirr G 4 —J \Ll d
G tep! j:! ‘ 0h ¥ b
) LlM J:f/ %
) L

12



Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider a copper ring of radius a and resistance R. The loop is in a constant magnetic

field B of magnitude B, perpendicular to the plane of the ring (pointing into the page, as
shown in the diagram).

(a) What is the magnetic flux @ through the ring? Express your answer in terms of B, ,
a, R,and p, as needed.

G) R B@ é ]a 0" A

~

14



Now, the magnitude of the magnetic field is decreased during a time interval from =0
to =T according to

{ C/ Cl’\ﬂrﬁl”\ﬂ MC{% \-(,f(’(t ([IQ ZG/
B(t)=Bo(l—?), for 0<t<T

(b) What are the magnitude and direction (draw the direction on the figure above) of the
current / 1in the ring? Express your answer in terms of B, T', a, R, ,and p, as
needed.

15



(c) What is the total charge Q that has moved past a fixed point P in the ring during the

time interval that the magnetic field is changing? Express your answer in terms of B, T,
a, R, t,and p, asneeded.

X X X X x x X
X X X X
copper ring ——pm
X X X X
P
X % X x

,/
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Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider the circuit shown in the figure, consisting of a battery (emf £ ), a resistor with

resistance R, a long solenoid of radius a, height A that has N turns and a

switch §.)Coaxial with the solenoid at the center of the solenoid is a circular copper ring
ho + (o‘f wire o1 radlus b with b> a and resistance R,. At ¢ =0 the switch S is closed.

ro’f 1
A" t)i{) I e—
r
R copper |
solenoid Wire -- -,
S
g resistance ‘ l {
'|' R, /'%é\mlenoid
OO !
i = I N turns
Express your answer in terms of R, £, and L, the self-inductance of the solenoid,
as needed.

N\ % i h' "5 A = \ T ) £
l ‘5 AL K I
(a) What is the rate that the current is changing the instant the switch is closed at 1 =07

lov aat a4 {o

e-T0-L ., s P

If ¢ w”’ oo i '
X e \ . , ‘—_‘“"\—\____
._.—_I = x = I\ - L':-_ Llfi '“('(u/ ('J' ‘ {1 h o T (‘ = JtT‘
J : J
L '['\L[:J.t v r “ U{‘G[J T“ ( y { _\.' j- - E—
. "I.'\

&l(ﬁ egb “C‘g(’q/



Cule (f gy on  Fortvor
~ (b) What is the self-inductance L of the solenoid? You may assume that the solenoid is

very long and so can ignore edge effects. Express your answer in terms of 4, a, b,

H, N, R,, R,and & as needed. Answers without any work shown will receive
no credit.

(A Vse L‘_’_V_(P UL_— =
I

BU‘} )“/ {0 _(‘;/‘:(-{ B G 5'}"&/ 'vu'.‘:‘._/
é-g (]g J[a "ﬁﬁ"C

cegers ‘

C 40 matlen Ay«

/%)"27?—1/‘ :/6{0 ja .
‘p /.’ g
a < v, Z .
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P =/ —o
~yd A

-84 (=a /-«’9‘117__}/%,..
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2

1
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(c) What is the induced current in the copper ring at the instant the switch is closed at
t =07 Express your answer in terms of x,, a, b, H, N, R,, R, and & as needed.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010

8.02 Exam Three Spring 2010 Solutions

Problem 1: (25 points) Five Concept Questions. Please circle your
answers.

Question 1 (5 points):
A very long solenoid consisting of N turns has radius R and length d (d >> R).

Suppose the number of turns is halved keeping all the other parameters fixed. The self
inductance

a) remains the same.

b) doubles.

¢) is halved.

d) is four times as large.
e) is four times as small.
f) None of the above.

Solution e. The self-induction of the solenoid is equal to the total flux through the
object which is the product of the number of turns time the flux through each turn.
The flux through each turn is proportional to the magnitude of magnetic field. By
Ampere’s Law the magnitude of the magnetic field is proportional to the number of
turns per unit length or hence proportional to the number of turns. Hence the self-
induction of the solenoid is proportional to the square of the number of turns. If
the number of turns is halved keeping all the other parameters fixed then he self
inductance is four times as small.



Question 2 (5 points):

The sketch below shows three wires carrying currents /,, /, and I, with an Ampérian

loop drawn around 7, and /,. The wires are all perpendicular to the plane of the paper.

Amperian loop

Which currents produce the magnetic field at the point P shown in the sketch (circle
one)?

a) 1, only.
b) 7, and /,.

c) 1,1, and I,.
d) None of them.

e) It depends on the size and shape of the Amperian Loop.

Solution c. All there currents /,, /, and /, contribute to the magnetic field at the

at the point P .



Question 3 (5 points):

A circuit consists of a battery with emf V, an inductor with inductance L, a capacitor with
capacitance C, and three resistors, each with resistance R, as shown in the sketch. The
capacitor is initially uncharged and there is no current flowing anywhere in the circuit.
The switch S has been open for a long time, and is then closed, as shown in the diagram.
If we wait a long time after the switch is closed, the currents in the circuit are given by:

5 R R
. . ﬂﬂﬁl AAAR
Y vy ¥
T ; —_—
p 1 g
i 2 l i
L
C

.2V 14 V
a) 1'1:—‘ L, =—— [3:—
3R * 3R 3R
.V V
b)ll=ﬁ 11=0 13=*27€-.
c) rl:L L=0 1)21.
3R~ 3R
V V
d) #=— "i,==— "% =0.
) h=5R TR B

e) None of the above.

Solution b.: If we wait a long time after the switch is closed, the capacitor is
completely charged and no current flows in that branch, 7, =0. Also the current has

reached steady state and is not changing in time so there is no effect from the self-
inductance. Hence the inductor acts like a resistance-less wire. (Note that real
inductors do have finite resistance as you saw in your lab.) Therefore the same
current flow through resistors 1 and 3 and is given by 7/, =i, =V /2R.

(8



Question 4 (5 points):

At the moment depicted in the LC circuit the current is non-zero and the capacitor plates
are charged (as shown in the figure below). The energy in the circuit is stored

c

-2 +0 £

W0

a) only in the electric field and is decreasing.

b) only in the electric field and is constant.

c) only in the magnetic field and is decreasing.

d) only in the magnetic field and is constant.

e) in both the electric and magnetic field and is constant.

f) in both the electric and magnetic field and is decreasing.
Solution e. Since there is no resistance there is no dissipation of energy so energy is
constant in time. At the moment depicted in the figure, the capacitor is charged so
there is a non-zero electric field associated with the capacitor. There is a non-zero

current in the circuit and so there is a non-zero magnetic field. Therefore the energy
in the circuit is stored in both the electric and magnetic field and is constant.



Question 5 (5 points):

A coil of wire is above a magnet whose north pole is pointing up. For current, counter-

clockwise when viewed from above is positive. For flux, upwards is positive.

Suppose you moved the loop from well above the magnet to well below the magnet at a
constant speed. Which graph most closely resembles the graph of current through the

loop as a function of time?

"= 5
4 \ i \\//
-4 -2 0 -2 0 2
(a) (b)
| UL NTUURU. S (. T———
-4 -2 0 -2 0 2
© (d)

(e) None of the above.



Solution ¢. If you moved the loop from well above the magnet to well below the
magnet at a constant speed, then as the loops approaches the magnet from below the
flux through the loop is upward (positive) and increasing. Therefore an induced
current flows through the loop in a clockwise direction as seen from above
(negative) resulting in induced flux downward through the loop opposing the
change. Once the loop passes the magnet, the flux through the loop is upward
(positive) and decreasing. Therefore an induced current flows through the loop in a
counterclockwise direction as seen from above (positive) resulting in induced flux
upward through the loop opposing the change. Therefore graph (c) closely
resembles the graph of current through the loop as a function of time.



Problem 2 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) Clearly show
all Ampérian loops that you use.

An infinitely large (in the x— and y—directions) conducting slab of thickness d is

centered at z=0. The current density J =— 5 ] in the slab is uniform and points out of
the page in the diagram below.

r>
& J
a->
o>

©
C}

p
O

68 o0 6_| 5
©Cc O0ooo o

l
d
T

a) Calculate the direction and magnitude of the magnetic field of the slab

i) above the slab, z>d /2.

Solution: I choose an Amperian loop circulating counterclockwise as shown in the figure
above.

. Af"\?ﬁ’!’ 1% rocp Tk‘
B
<< ‘LE ‘ —=-7 :"
: &
Y oeéZloc d
t O C MQ & .

—.___j%

By symmetry, the magnitude of the magnetic field is the same on the upper and lower
legs of the loop. Therefore with our choice of circulation direction the left-hand-side of

Ampere’s Law [jE-dE =l ”7 -da becomes [J'E-d&' = 2B/ . The current density is



uniform and with the unit normal pointing out of the page (— j-direction) consistent with
the choice of counterclockwise circulation direction, the right-hand side of Ampere’s
Law becomes _Uj -da = p,J ld . Equate the two sides of Ampere’s Law, we have that

2BI = u,J,ld which we can solve for the magnitude of the magnetic field B = y,J,d /2.
The direction of the magnetic field is the same as the circulation direction on the upper
and lower legs. Thus

i) B=—-p,J,d/2i above theslab, z>d/2.

ii) B=pu,J,d/2i below theslab, z<—-d/2.

Inside the slab, the magnetic field is zero at z =0, so we choose an Amperian loop with
one leg at z=0 as shown in the figure below.

A
e
- : L &
\nﬂG t.‘-B_‘ @(j\
Anger22.2= | ©C f20C. <
\c:“{‘ /C/G\ iﬁ S &

%

Therefore with our choice of circulation direction the left-hand-side of Ampere’s Law
[jé -ds = u, _Uj -da is now [:jﬁ -ds = Bl . The right-hand side of Ampere’s Law

becomes 1, ”.7-61’& = u,J Iz . Equate the two sides of Ampere’s Law, we have that
Bl = p,J Iz which we can solve for the magnitude of the magnetic field B = y,J, |z| :

For positive z such that 0 <z <d/2, the direction of the magnetic field is in the — i -
direction and for negative z such that —d/2 <z <0, the direction of the magnetic field
is in the + j-direction. Thus

iii) B=—pJzi for —d/2<z<d/2.



b) Make a carefully labeled graph showing your results for the dependence of the
field components upon position.

22—3/_‘,__ 4 E:d/z_

._/uuj_,;& -+
>

c) A very long wire is now placed at a height z =& above the slab. The wire carries
a current /; pointing out of the page in the diagram below. What is the direction

and magnitude of the force per unit length on the wire?

x, a
o L.
@A
l 4
d ©6 a8 6000 e _| L.,
GO0 6 OO 6
T\

Solution: The force on a small length ds of the wire is given by

__ (ds)I,p,Jd P
2

cﬁzaﬁx§=4jx—%?df

Therefore the direction and magnitude of the force per unit length on the wire is

di Ll ¢
ds 2 '

The current is the wire and the current in the slab are in the same direction so the
force is attractive.



Problem 3 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider a copper ring of radius a and resistance R. The loop is in a constant magnetic

field B of magnitude B, perpendicular to the plane of the ring (pointing into the page, as
shown in the diagram).

I
X X X X x X X %. s
’o XX
XA Xow % e
. X X X X o V4
COpper ring —pm
X, X e X % X
X % x x Xy x
X X X x x x X i
-:[|“4
KX X o X X X

(a) What is the magnetic flux @ through the ring? Express your answer in terms of B,
a, R,and p, asneeded.

Solution: ® = B za’

Now, the magnitude of the magnetic field is decreased during a time interval from =0
to t =T according to

B(:):Bo(]—%), for0<t<T

(b) What are the magnitude and direction (draw the direction on the figure above) of the
current / in the ring? Express your answer in terms of B,, T', a, R, ¢, and y, as
needed.

Solution: The external flux is into the page and decreasing so the induced current is
in the clockwise direction producing flux into the page through the ring opposing
the change. The magnitude of the induced current is non-zero during the interval

0<t=<T and is equal to
# B, (I—L}mz
dt i

i[BO (l —LJ frazJ
dt T

o
dt

1

1

"R

1

_ Baa’
R

R

yfor O0<t<T
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(c) What is the total charge QO that has moved past a fixed point P in the ring during the

time interval that the magnetic field is changing? Express your answer in terms of B,, T,
a, R, t,and p, asneeded.

X X X X x xX
X X X X
copper ring ———p
X X X X
P
X X X X
X X

Solution: The total charge moving past a fixed point 7 in the ring is the integral

T T 2 2
Q=j]dt=jB°ﬂa dt:B"fm '
0 v TR R

11



Problem 4 (25 points)

NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make
it clear to us that you understand what you are doing (use a few words!) .

Consider the circuit shown in the figure, consisting of a battery (emf £ ), a resistor with
resistance R, a long solenoid of radius a, height A that has N turns and a

switch . Coaxial with the solenoid at the center of the solenoid is a circular copper ring
of wire of radius b with b > a and resistance R,. At t=0 the switch § is closed.

/ e

copper e =3,
= = N b
so!enoidc:’f{ I wire \- —, b &
= M s e~
& resistance ,
T R, V‘olenoid
O
S ! N turns

{

(a) What is the rate that the current is changing the instant the switch is closed at 1 =0?
Express your answer in terms of R, &£, and L, the self-inductance of the solenoid,
as needed.

Solution: At ¢t =0, the current in the circuit is zero so the emf is related to the
changing current by

dl
£=L—(t=0).
7 =0

Thus
dl E
—(=0)=—
dt L
- o S dl
Alternatively, the loop equation is given by E—]R—LT =0. Thus at t =0, the
dt
. L dl . L
current in the circuit is zero and so £ = LT(I =0). The current is the circuit is
at

given by /(1) = %(1 g R ).



So

dt RL

M

e»lR,"L (( - O) =,

b~

(b) What is the self-inductance L of the solenoid? You may assume that the solenoid is
very long and so can ignore edge effects. Express your answer in terms of 4,, a, b,

H, N, R,, R,and & as needed. Answers without any work shown will receive
no credit.

Solution: The direction of the magnetic field upwards (see figure).

Choose an Amperian loop shown in the figure below, then Ampere’s Law becomes
Bl = pnll . Therefore the magnitude of the magnetic field in the solenoid is

M NI
B=punl = [}_j .

The self inductance through the solenoid is

N(Dn'aup . NB?raz . /UDN“??TCT'?
I I H

L=

13



¢) What is the induced current in the copper ring at the instant the switch is closed at
t =07? Express your answer interms of z,, a, b, H, N, R, R,and & as

needed.

Solution: The induced current is noting that the relevant area where the magnetic
field is non-zero is 7a’

- :Liqi:Ld_B”az = Lﬂﬂ‘azi{.({ — 0)
Rdt Rdt Ry H: dt

i) GtV oy | Hg S B

#N’ma® NR,
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Summary of Class 32 8.02

Topics: Maxwell’s Equations, EM Radiation & Energy Flow
Related Reading: Course Notes: Sections 13.3-13.4, 13.6-13.8.1, 13.10

Topic Introduction

Today’s class continues the discussion of electromagnetic waves from last week. We will
also show that the Poynting vector applies to situations other than just EM waves, in
particular to the flow of energy in circuits.

Maxwell’s Equations

B. i <%0
(I)EEJE-dA— =

0
5 .. dO, % gt dd,

(3) [ﬂE ds=-— ) @B A3 = Hol e+ Hofy—

(1) Gauss’s Law states that electric charge creates diverging electric fields.

(2) Magnetic Gauss’s Law states that there are no magnetic charges (monopoles).

(3) Faraday’s Law states that changing magnetic fields induce electric fields (which curl
around the changing flux). '

(4) Ampere-Maxwell’s Law states that magnetic fields are created both by currents and by
changing electric fields, and that in each case the field curls around its creator.

) [Mﬁ-d =0

Electromagnetic Radiation

The fact that changing magnetic fields create electric fields and that changing electric fields
create magnetic fields means that oscillating electric and magnetic fields can propagate
through space (each pushing forward the other). This is electromagnetic (EM) radiation. It
is the single most useful discovery we discuss in this class, not only allowing us to
understand natural phenomena, like light, but also to create EM radiation to carry a variety of
useful information: radio, broadcast television and cell phone signals, to name a few, are all
EM radiation. In order to understand the mathematics of EM radiation you need to
understand how to write an equation for a traveling wave (a wave that propagates through
space as a function of time). Any function that is written f(x-vt) satisfies this property. Ast
increases, a function of this form moves to the right (increasing x) with velocity v. You can
see this as follows: At t=0 f(0) is at x=0. At a later time t=t, f(0) is at x=vt. That is, the
function has moved a distance vt during a time t.

Sinusoidal traveling waves (plane waves) look like waves both as a function of position and
as a function of time. If you sit at one position and watch the wave travel by you say that it
has a period 7, inversely related to its frequency f, and angular frequency,

a)(T =f'= 27ra1") . If instead you freeze time and look at a wave as a function of position,

you say that it has a wavelength A, inversely related to its wavevector k (/?, = 27rk‘1) . Using

this notation, we can rewrite our function f(x-vt) = fysin(kx-wt), where v = w/k.

We typically treat both electric and magnetic fields as plane waves as they propagate through
space (if you have one you must have the other). They travel at the speed of light (v=c).
They also obey two more constraints. First, their magnitudes are fixed relative to each other:

Summary for Class 32 p. 1/2



Summary of Class 32 8.02

Eo = ¢Bo (check the units!) Secondly, E & B always oscillate at right angles to each other
and to their direction of propagation (they are fransverse waves). That is, if the wave is
traveling in the z-direction, and the E field points in the x-direction then the B field must

point along the y-direction. More generally we write ExB =p , where pis the direction of
propagation.

Energy and the Poynting Vector

As EM Waves travel through space they carry energy with them. This is clearly true — light
from the sun warms us up. It also makes sense in light of the fact that energy is stored in
electric and magnetic fields, so if those fields move through space then the energy moves
with them. It turns out that we can describe how much energy passes through a given area

per unit time by the Poynting Vector: S=-LExB. Note that this points in the direction of

propagation of the EM waves (from above) which makes sense — the energy is carried in the
same direction that the waves are traveling. The Poynting Vector is also useful in thinking
about energy in circuit components. For example, consider a cylindrical resistor. The
current flows through it in the direction that the electric field is pointing. The B field curls
around. The Poynting vector thus points radially info the resistor — the resistor consumes
energy. We will repeat this exercise for capacitors and inductors in class.

Generating Plane Electromagnetic Waves: How
do we generate plane electromagnetic waves? We do
this by shaking a sheet of charge up and down,
--Z+ making waves on the electric field lines of the charges
in the sheet. We discuss this process quantitatively in
this lecture, and show that the work that we do to
shake the sheet up and down provides exactly the
amount of energy carried away in electromagnetic
waves.

(I)Eﬁjﬁ-dﬁ=% @ [f[B-dA=0
g

Maxwell’s Equations: = ;(D g e
HME-ds=—"2 4TIB-ds=p,l, + £
S-dR=—" @ [[B-d3 = ol + o=
E(F,t)=E,sin(kp-F-wt)E ot

EM Plane Waves: - . with E, =cB; ExB=p; w=ck
B(F,t)=B,sin(kp-F—wt)B

Poynting Vector: S= if} xB

Summary for Class 32 242
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Traveling E & B Waves
Wavelength: A _:
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Propertles of EM Waves
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speed of light
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Properties of EM Waves

Travel (through vacuum) wﬁh
speed of [19ht

Shake a Sheet of Charge

Class 32




o

Jclg]

(Yot
ot 9t

Py

z
LB | (44

"r;ﬂh‘j i;r‘t‘u Jt

sh et

C"".)(‘(‘!.‘Oﬂf}::
eoeceEROen

4Group Problem. B Fleld Generatlon

Class 32

~ ()N N £
280 = a5y relE=g

1B < 4, 5V
.‘-.r L A\

L
A AL
)
MDD

{u,lﬂ-

B« ,‘i";] - 4"![ J%\y

— Y ?)‘ i

F . //Tr

= Mod o M cog( pr /y/f/j

1 (o~ ‘([fijfj sude
12 721 - 4 /
\‘( e ¥ / ' | C /,[ ’_
A 1 ( f,‘/ 2 f()ﬂj [ el

Zﬂ\{' :/.QU-\ "

S -

i C Ereqg =

‘\

reladion b o ot

f

)

K= " mplea

Away  B#Tm

sleg |-

- - { Ny
'./-’"‘if.‘_;"(".-?" rj v r L/ / &Ti
9 }iz :
! lg s o iy t (l/ ;/,




\J;tj M} ﬁ,ﬁj 4'.-4

VQMC:}_J {o. "
2l l - B
(qutf—' (Q—CLV
3 2
5 cExg
Me
g« 1M V) 2L
r - 2/
1 y
00y 1oud to ful' (- Z R
Compoced ] €rorgy rcraJ: : 3
o = 'y
~ :CTLE; 5l CTAA E
f -1ty =cFv
AL gk
SR Ve
¢ 4
C = speed gt “jhff oith = 5 0% e ftio
V= gpad Fu])i«j Sy} ~all ewrgy iaky ralafin

Naguatic {50 oy di- (J’)

C@DJ/ l\aﬂ{ Q Xam Ctl/

Class 32



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W13D1_4 Solutions: Catchin’ Rays

Problem:
As you lie on a beach in the bright midday sun, approximately what force does the light exert on
you?

The sun:

Total energy output of ~ 4 x 10*® Watts
Distance from Earth 1 AU ~ 150 x 10° km
Speed of light ¢ = 3 x 10* m/s

Solution:
The power per unit area of the sun at the Earth is found by assuming the power goes out
uniformly in all directions:

26
G P 4x10%Wats 4 W 0W

2 2

4nR;rmv}:'aﬂh 4Tf (';' x 1 OI ! m )2 27 m m

That’s actually a good number to know — the average solar constant above the atmosphere. More
accurately, it is 1366 W m™~.

To find the force on a sunbather, we assume a sunbather has an area of about 1 m* (2 m x 0.5 m)
and multiply that by the pressure:

15002 We
F =PressurexArea=—- A ~——M . 1m> ~5.10"—=5-10"°N
£ s m

Of course, if you were really shiny that might as much as double (completely reflecting the light
doubles the force).

So, is that a reasonable force? It corresponds roughly to a 0.5 pg mass sitting on you. You
aren’t going to feel it. But you don’t feel the weight of sunlight either, so that’s reasonable.

In Class Problem Solution Class 34 (WI13D1) p. 1 of 1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Solutions: B Field Generation
ol LEN R ; RSN

Problem: The charged sheet at right has a uniform
charge density o and is being pulled downward at a
velocity v. B=
1) What is the B field that is generated?

2) Ifthe sheet position oscillates as y(1) = y, sin(r),

what are E(x.t) and B(x.t)?

B=

Iy ] e By I )
QOO0
QOO OO
(ONONONOIIONONONC
(ONONONOIIONORONC)
(ONONONOIICNONRONO,

Solution:

1) What is the B field that is generated? .
Its always best to redraw so that the magnetic field lies in v
the plane of the page:

\ So we need to do Ampere’s law around the loop. The current is just the
moving charge density:

[ﬂB ds=2Bl=ul, = uovl =% B=p,ov/2

we]

OV

2) If the sheet position oscillates as () = y, sin (a)r) . what are E(x,t) and B(x.t)?

y(t) =y, sin (aJt) = V= ),0C0S (a)t)

= @ . .
B= #02 Yo cos[-—x a)!) Sheet moves in y, wave travels in X

u,oc
2

E

Y@ COS (—x a)t)

In Class Problem Solution p. 1 of ]



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

Solutions: B Field Generation

Problem: For the wave pictured below, where you calculated that B, = y,ov/2:

1) What is total power per unit area radiated away?
2) Where is that energy coming from?
3) Calculate power generated to see efficiency

—

E 1=Ecos(w (t+x/c))] i E (=Ecos(w (r—x/c))]'

Solution:
1) What is total power per unit area radiated away?

Pmm _ 29 =9 ElBI _ 2(;312 o C(/JOO'V/z)" _ ﬂGCo'3v2
Area ol M, “, H, 2

2) Where is that energy coming from?
It is coming from the moving sheet.
3) Calculate power generated to see efficiency

The electric field exerts a force on the charges, and they are moving, so
_peoty?

P Fv gqEv
—=—=2"_=gkv=0ccBv=ccv(uov/2)=
e (#,0v/2)===

This is the same as the power radiated, so this is 100% efficient!

In Class Problem Solution p.1ofl
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Summary of Class 33 8.02 u/ /

Topics: Dipole Radiation, Polarization and Interference
Related Reading: Course Notes: Sections 13.8, 14.1-14.3, 14.11.1-14.11.3
Experiments: (10) Microwave Generator

Topic Introduction

Today we will talk about polarization and interference of electromagnetic waves. We will
also discuss and do a lab using a spark-gap transmitter.

Antenna: How do we generate electric dipole
radiation? Again, by shaking charge, but this time
not an infinite plane of charge, but a line of charge
on an antenna. At left is an illustration of an
antenna. It is quite simple in principle. An
oscillator drives charges back and forth from one
end of the antenna to the other (at the moment
pictured the top is positive the bottom negative, but
this will change in half a period). This separation of
charge creates an electric field that points from the
positive to the negative side of the antenna. This
field also begins to propagate away from the
= antenna (in the direction of the Poynting vector S).

i When the charge changes sides the field will flip
directions — hence you have an oscillating electric field that is propagating away from the
antenna. This changing E field generates a changing B field, as pictured, and you thus have
an electromagnetic wave. The length of each part of the antenna above (e.g. the top half) is
about equal in length to %4 of the wavelength if the radiation that it produces. Why is that?
The charges move at close to the speed of light in the antenna so that in making one complete
oscillation of the wave (by moving from the top to the bottom and back again) they move
about as far as the wave has itself (one wavelength).

Polarization

As mentioned in the last class, EM waves are transverse waves — the E & B fields are both
perpendicular to the direction of propagation p as well as to each other. Given p, the E & B
fields can thus oscillate along an infinite number of directions (any direction perpendicular to
p). We call the axis that the E field is oscillating along the polarization axis (often a
“polarization direction™ is stated, but since the E field oscillates, sometimes E points along
the polarization direction, sometimes opposite it). When light has a specific polarization
direction we say that it is polarized. Most light (for example, that coming from the sun or
from light bulbs) is unpolarized — the electric fields are oscillating along lots of different
axes. However, in certain cases light can become polarized. A very common example is that
when light scatters off of a surface only the polarization which is parallel to that surface
survives. This is why Polaroid sunglasses are useful. They stop all light which is
horizontally polarized, thus blocking a large fraction of light which reflects off of horizontal
surfaces (glare). If you happen to own a pair of Polaroid sunglasses, you can find other
situations in which light becomes polarized. Rainbows, for example, are polarized. So is the

Summary for Class 32 p.1/3



Summary of Class 33 8.02

sky under the right conditions (can you figure out what the conditions are?) This is because
the blue light that you see in the sky is scattered sun light.

Interference

The picture at left forms the basis of all the
phenomena we will discuss today. Two different
waves (red & blue) arrive at a single position in
space (at the screen). If they are in phase then
they add constructively and you see a bright spot.
If they are out of phase then the add destructively
and you see nothing (dark spot).

Consider two traveling waves, moving through space:

Look here as function of time

Constructive
Interference

Look here as function of time

Destructive . . . .
Interference | The key to creating interference is creating phase

\/ shift between two waves that are then brought
together at a single position. A common way to
do that is to add extra path length to one of the waves relative to the other. We will look at a
variety of systems in which that happens.

Thin Film Interference

The first phenomenon we consider is thin film interference. When light hits a thin film (like
a soap bubble or an oily rain puddle) it does two things. Part of the light reflects off the
surface. Part continues forward, then reflects off the next surface. Interference between
these two different waves is responsible for the vivid colors that appear in many systems.

Two Slit Interference

Light from the laser hits two very narrow slits, which

P then act like in-phase point sources of light. In

Db T traveling from the slits to the screen, however, the light

: v from the two slits travel different distances. In the

+ picture at left the light from the bottom slit travels

0 further than the light from the top slit. This extra path

length introduces a phase shift between the two waves

and leads to a position dependent interference pattern
on the screen.

Summary for Class 32 e
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Summary of Class 33 3.02

¢ .
2r
Realizing that phase shifts that are multiples of 27 give us constructive interference while
odd multiples of m lead to destructive interference leads to the following conditions:
Maxima: & sin (@ )=mA ; Minima: d sin (8)=(m+1) 4

Here the extra path length is § =d sin (&), leading to a phase shift ¢ given by %:

Important Equations

(1)@[@&:% @) [f[B-dA =0
Maxwell’s Equations: $ a?CD ’ d
©) ‘E-d§=—d—8 @) [JB-d5§ = p1,,, + e, e
s I > di

E(F,1)=E,sin(kp -F—r)E

EM Plane Waves: . . with E, =cB,; ExB=p; w=ck
B(r.r)=B,sin(kp-r-wt)B
constructive
Interference Conditions E = i = " o §
A 2z |m+5 destructive
Two Slit Maxima: d sin (9) =ma

Experiment 10: Microwaves
Preparation: Read pre-lab and answer pre-lab questions

In today’s lab you will create microwaves (EM radiation with a wavelength of several
centimeters) using a spark gap transmitter. This is a type of quarter wavelength antenna that
works on the principles described above. You will measure the polarization of the produced
EM waves, and try to understand the intensity distribution created by such an antenna (where
is the signal the strongest? The weakest?)

Summary for Class 32 p. 343
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Class 33: Outline

Hour 1:
Generating Electromagnetic Waves
Electric Dipole EM Waves
Experiment 9: Microwaves

Hour 2 - -
; Interference and thfractlon .

Traveling E & B Waves

Wavelength: 4 | 4= Ao s
Frequency : f E= EE(, sin(k-r — wt)

Wave Number: &k =%’£

Angular Freq.: o=2rf
Period: T = o 2 E;ﬂ,—_v
f_ ) : B. B
Speed _v—@=)‘.f.:'_' Invacum
L i ___3 1082
Dlrectlon +k ExB"‘--’f 1 s §

"’.

3 T
[ nn gy

Generating Electric Dipole
Electromagnetic Waves
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Spark Gap Generator:
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Microwave Interference

Interference — Phase Shift
What can introduce a phase shift?
e W
1. From different, out of phase sources -
2. Sources in phase but travel different

distances

1. Thinfilms :
2. Con‘ung from liff ent Iocatlons TS

- Mewnar

Extra Path Length

-y N Phase Here

‘~s! _Stillin Phase Here
Wire

L (m=0,%1,42..)
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02

Experiment 10: Microwaves

OBJECTIVES

1. To observe the polarization and angular dependence of radiation from a

microwave generator

PRE-LAB READING

INTRODUCTION

Heinrich Hertz first generated electromagnetic waves in 1888, and we replicate Hertz’s
original experiment here. The method he used was to charge and discharge a capacitor
connected to a spark gap and a quarter-wave antenna. When the spark “jumps” across the
gap the antenna is excited by this discharge current, and charges oscillate back and forth
in the antenna at the antenna’s natural resonance frequency. For a brief period around the
breakdown (“spark™), the antenna radiates electromagnetic waves at this high frequency.
We will detect and measure the wavelength A of these bursts of radiation. Using the

relation fA=c=3x10""cm/s, we will then deduce the natural resonance frequency of
the antenna, and show that this frequency is what we expect on the basis of the very

simple considerations given below.

- 3 it — - 3 I mm —

o

=
i

ey

Figure 1 Spark-gap transmitter. The
“33” is a 33 pF capacitor. It is
responsible for storing energy to be
rapidly discharged across a “spark
gap,” formed by two tungsten cylinders
pictured directly above it (one with a
vertical axis, one horizontal). Two MQ
resistors limit current off of the
capacitor and back out the leads,
protecting the user from shocks from
the 800 V to which the capacitor will
be charged. They also limit radiation
at incorrect frequencies.
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The 33-pF capacitor shown in fig. 1 is charged by a high-voltage power supply on the
circuit board provided. This HVPS voltage is typically 800 V, but this is safe because the
current from the supply is limited to a very small value. When the electric field that this
voltage generates in the “spark gap” between the tungsten rods is high enough (when it
exceeds the breakdown field of air of about 1000 V/mm) the capacitor discharges across
the gap (fig. 2a). The voltage on the capacitor then rebuilds, until high enough to cause
another spark, resulting in a continuous series of charges followed by rapid bursts of
discharge (fig. 2b).

(@ 1 (b)

o | ]

107 sec ~—J107 sec— breakdown !
. -7
in 10 sec

-

with the time scale enlarged

Figure 2 Charging and Discharging the Capacitor. The capacitor is slowly charged
(limited by the RC time constant, with R = 4.5 MQ) and then (a) rapidly discharges
across the spark gap, resulting in (b) a series of slow charge/rapid discharge bursts. This
is an example of a “relaxation oscillator.”

The radiation we are seeking is generated in this discharge.
Resonant Frequency of the Antenna

The frequency of the radiation is determined by the time it takes charge to flow along the
antenna. Just before breakdown, the two halves of the antenna are charged positive and
negative (+,—) forming an electric dipole. There is an electric field in the vicinity of this
dipole. During the short time during which the capacitor discharges, the electric field
decays and large currents flow, producing magnetic fields. The currents flow through the
spark gap and charge the antenna with the opposite polarity. This process continues on
and on for many cycles at the resonance frequency of the antenna. The oscillations damp
out as energy is dissipated and some of the energy is radiated away until the antenna is
finally discharged.

How fast do these oscillations take place — that is, what is the resulting frequency
of the radiated energy? An estimate can be made by thinking about the charge flow in
the antenna once a spark in the gap allows charge to flow from one side to the other. If /
is the length of one of the halves of the antenna (about /=31 mm in our case), then the

distance that the charge oscillation travels going from the (+,—) polarity to the (—,+)
polarity and back again to the original (+,—) polarity is 4/ (from one tip of the antenna
to the other tip and back again). The time T it takes for this to happen, assuming that
information flows at the speed of light ¢, is T=4//c, leading to electromagnetic

radiation at a frequency of 1/ T .

E09-2



Detecting (Receiving) the Radiation

In addition to generating EM radiation we will want to detect it. For this purpose we will
use a receiving antenna through which charge will be driven by the incoming EM
radiation. This current is rectified and amplified, and you will read its average value on a
multimeter (although the fields come in bursts, the multimeter will show a roughly
constant amplitude because the time between bursts is very short

APPARATUS

1. Spark Gap Transmitter & Receiver

These have been described in detail above.
The spark gap of the transmitter (pictured left)
can be adjusted by turning the plastic wing nut
(top). It is permanently wired in to the high
voltage power supply on the circuit board. The
receiver (pictured right) must be plugged in to
v the circuit board.

2. Circuit Boar

This board contains a high
voltage power supply for
charging the transmitter, as well
as an amplifier for boosting the
signal from the receiver. It is
powered by a small DC
transformer that must be
plugged in (AC in). When
power is on, the green LED (top
center) will glow.

e e Signal:
geay 10750 (A)

CRpeate  fopd
3. Science Workshop 750 Interface and Voltage Probe

We read the signal strength from the receiver — proportional to the radiation intensity at
the receiver — by connecting the output (lower right of circuit board) to a voltage probe
plugged in to channel A of the 750.

E09-3



GENERALIZED PROCEDURE

In this lab you will turn on the transmitter, and then, using the receiver, measure the
intensity of the radiation at various locations and orientations. It consists of three main
parts.

Part 1: Polarization of the Emitted Radiation
In this part you will measure to see if the produced radiation is polarized, and if so, along
what axis.

Part 2: Angular Dependence of the Emitted Radiation
Next, you will measure the angular dependence of the radiation, determining if your

position relative to the transmitter matters.

END OF PRE-LAB READING

E09-4



IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop. Start
LabView by double clicking on this file.

Plug the power supply into the circuit board
Plug the receiver into the input jack on the circuit board

Turn on the transmitter — a LED will light indicating it is on

L

Adjust the spark gap using the wing nut on the clothespin antenna. Start with a large
gap, and close the gap until a steady spark is observed. You should observe a small,
steady bright blue light and hear the hum of sparking.

6. Use the receiver to measure the intensity of the radiation as described below

MEASUREMENTS

Part 1: Polarization of the Emitted Radiation

In this part we will measure the polarization of
the emitted radiation.

1. Press the green “Go” button above the
graph to perform this process.

2. Rotate the receiver between the two
orientations (a & b) pictured at right

Question 1: U[ Vo[l

Which orientation, if either, results in a larger signal in the receiver?
/e e | 0

Is the electric field polarized? That is, is it oscillating along a certain direction, as
opposed to being unpolarized in which case it points along a wide variety of directions?
If it is polarized, along which axis?

Question 3: TR j". ) > ; )

Question 2:

o

Is the magnetic field polarized? If so, along which axis? How do you know?

Yoo horizattal gk

t-M avt E09-5



Part 2: Angular Dependence of the Emitted Radiation

1. Now measure the angular dependence of the radiation intensity by moving the
receiver along the two paths indicated in the below figures.

Angular dependence - Horizontal Angular dependence - Vertical

Question 4:

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity
over the range of motion? ‘ J oy
iq La B v/ | R "'.“'1‘:*‘*7’-;.';‘.’@_.: ......

r
Further Questions (for experiment, thought, future exam questions...)

e I[s there any radiatior intensity of any polarization off the ends of the antenna?

e An antenna similar to this was used by Marconi for his first transatlantic broadcast.
What issues would you face to receive such a broadcast?

“ | e b g L. AN --_b_}:.—
_;bﬁdlﬁéi~m4i#?f“f' Zae. QU W T

A | " !‘. ;"";'{} \i2n b N
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o i ; i
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 9 Solutions: Microwaves

IN-LAB ACTIVITIES

MEASUREMENTS
Part 1: Polarization of the Emitted Radiation

In this part we will measure the polarization of (a)
the emitted radiation.

1. Press the green “Go” button above the
graph to perform this process.

2. Rotate the receiver between the two
orientations (a & b) pictured at right

Question 1:
Which orientation, if either, results in a larger signal in the receiver?

The reception is largest in orientation (a), where the receiver is parallel to the antenna.

Question 2:

Is the electric field polarized? That is, is it oscillating along a certain direction, as
opposed to being unpolarized in which case it points along a wide variety of directions?
If it is polarized, along which axis?

Yes, the electric field is polarized along the axis of the antenna.

Question 3:
Is the magnetic field polarized? If so, along which axis? How do you know?

Yes, if the electric field is polarized the magnetic field must also be polarized,
perpendicular to both the electric field and the direction of propagation (that is, along the
axis of the receiver pictured in orientation b).

E09 Solutions-1



Part 2: Angular Dependence of the Emitted Radiation

1. Now measure the angular dependence of the radiation intensity by moving the
receiver along the two paths indicated in the below figures.

Angular dependence - Horizontal Angular dependence - Vertical

Question 4:

Which kind of motion, horizontal or vertical, shows a larger change in radiation intensity
over the range of motion?

The horizontal motion shows a large drop in radiation intensity as the receiver moves
towards being perpendicular to the antenna. The vertical motion does not show any
noticeable change in radiation intensity.

E09-2



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics: 8.02

In Class W13D2_2 Solutions: Microwave Lecture Demo

Problem: From our lecture demo, estimate the wavelength & frequency of our microwaves

Solution:
We are able to measure the location of the first minimum, ygesiructive ~ X ¢m, which we have
previously calculated to be at:

y:iuﬂmclh’u a /LL 2d

/1 — 2dy¢.’cumcuvc o 2(024m)(xcm) =~
L (1.16 m)

cm

In Class Problem Solution Class 35 (W13D2) p. 1 of1
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 12

Due: Friday, May 7 af 5 pmi>
Friday, May 7 af'S pn

Hand in your problem set in your section slot in the boxes outside the door of 32-
082. Make sure you clearly write your name and section on your problem set.

Text: Liao, Dourmashkin, Belcher; Introduction to E & M MIT 8.02 Course Notes.
Week Fourteen Maxwell’s Equations

Class 32 W14D1 M/T May 3/4 Generating EM Waves

Reading: Course Notes: Sections 13.3-13.4, 13.6-13.8.1,
13.10

Class 33 W14D2 W/R May 5/6 Dipole Radiation; Expt. 10 MW Polarization;
Interference

Reading: Course Notes: Sections 13.8, 14.1-14.3, 14.11.1-
14.11.3

Experiment: Expt. 10 MW Polarization

Class 34 W14D3 F May 7 PS10 E&M Waves

Reading: Course Notes: Sections 13.11, 14.1-14.3, 14.11.1-
14.11.3

Week Fifteen Interference and Diffraction; Final Review

Class 35 W15D1 M/T May 10/11  Diffraction; Expt. 11: Interference and Diffraction
Experiment: Expt. 11: Interference and Diffraction
Reading: Course Notes: Chapter 14

Class 36 W15D2 W/R May 12/13  Final Exam Review

Final Exam Johnson Athletic Center
Monday Morning May 17 from 9 am-12 noon
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Problem 1: Read Experimenﬂﬂ: Interference and Diffraction.

1. Measuring the Wavelength of Laser Light

In the first part of this experiment you will shine a red laser through a pair of narrow slits
(a =40 pum) separated by a known distance (you will use both d = 250 pm and 500 pm)
and allow the resulting interference pattern to fall on a screen a distance L away (L ~ 40
cm). This set up is as pictured in Fig. 2 (in the “Two Slit Interference™ section above).

(@

(b)

(©)

(d)

(e)

Will the center of the pattern (directly between the two holes) be an interference
minimum or maximum?

You should be able to easily mark and then measure the locations of the
interference maxima. For the sizes given above, will these maxima be roughly
equally spaced, or will they spread out away from the central peak? If you find
that they are equally spaced, note that you can use this to your advantage by
measuring the distance between distance maxima and dividing by the number of
intermediate maxima to get an average spacing. If they spread out, which spacing
should you use in your measurement to get the most accurate results, one close to
the center or one farther away?

Approximately how many interference maxima will you see on one side of the
pattern before their intensity is significantly reduced by diffraction due to the
finite width a of the slit?

Derive an equation for calculating the wavelength A of the laser light from your
measurement of the distance Ay between interference maxima. Make sure that
you keep a copy of this equation in your notes! You will need it for the lab.

]
| turt 2d
s AW hdT

In order. to sfiost accurately measure the distance between maxima Ay, it helps to
have/them ‘as far apart as possible. (Why?) Assuming that the slit parameters and
light wavelength are fixed, what can we do in order to make Ay bigger? What are
some reasons that can we not do this ad infinitum?

2. Single Slit Interference

Now that you have measured the wavelength A of the light you are using, you will want
to measure the width of some slits from their diffraction pattern. When measuring
diffraction patterns (as opposed to the interference patterns of problem 1) it is typically
easiest to measure between diffraction minima.

(a)

Derive an equation for calculating the width @ of a slit from your measurement of
the distance Ay between diffraction minima. Make sure that you keep a copy of
this equation in your notes! You will need it for the lab. Note that this same
equation will be used for measuring the thickness of your hair.



(®

What is the width of the central maximum (the distance on the screen between the

=-1 and m=1 minima)? How does this compare to the distance Ay between
other adjacent minima?

3. Another Way to Measure Hair

In addition to using hair as a thin
object for diffraction, you can
also measure its thickness using
) an interferometer. In fact, you
Thickness  can use this to measure even
g=2 smaller objects. Its use on a
small fiber is pictured at left.
The fiber is placed between two
glass slides, lifting one at an
angle relative to the other. The
slides are illuminated with green
light from above, and when the
set-up is viewed from above, an
interference pattern, pictured in
the “Eye View”, appears.

What is the thickness d of the fiber?

4. CD

In the last part of this lab you will reflect light off of a CD and measure the resulting
interference pattern on a screen a distance L ~ 5 cm away.

(a)

(b)

(©)

(d

A CD has a number of tracks, each of width d (this is what you are going to
measure). Each track contains a number of bits, of length / ~ d/3. Approximately
how many bits are there on a CD? In case you didn’t know, CDs sample two
channels (left and right) at a rate of 44100 samples/second, with a resolution of 16
bits/sample. In addition to the actual data bits, there are error correction and
packing bits that roughly double the number of bits on the CD.

What, approximately, must the track width be in order to accommodate this
number of bits on a CD? In case you don’t have a ruler, a CD has an inner
diameter of 40 mm and an outer diameter of 120 mm.

Derive an equation for calculating the width d of the tracks from your
measurement of the distance Ay between interference maxima. Make sure that

you keep a copy of this equation in your notes! You will need it for the lab.

Using the previous results, what approximately will the distance between
interference maxima Ay be on the screen?

;a i, (LS does  wol seally g Hoor



Problem 2: Coaxial Cable and Power Flow

A coaxial cable consists of two concentric long
hollow cylinders of zero resistance; the inner
has radius a, the outer has radius b, and the
length of both is /, with />>5, as shown in
the figure. The cable transmits DC power from
a battery to a load. The battery provides an
electromotive force & between the two
conductors at one end of the cable, and the load
is a resistance R connected between the two
conductors at the other end of the cable. A current / flows down the inner conductor
and back up the outer one. The battery charges the inner conductor to a charge —Q and
the outer conductor to a charge +0.

(a) Find the direction and magnitude of the electric field E everywhere.
(b) Find the direction and magnitude of the magnetic field B everywhere.
(c) Calculate the Poynting vector S in the cable.

(d) By integrating S over appropriate surface, find the power that flows into the coaxial
cable.

(e) How does your result in (d) compare to the power dissipated in the resistor?



Problem 3: Standing Waves The electric field of an electromagnetic wave is given by
the superposition of two waves

E = E, cos(kz — wt) i + E, cos(kz + 1)1
You may find the following identities and definitions useful

cos(kz + wt) = cos(kz) cos(wt ) — sin(kz)sin(wt)
sin(kz + wt) = sin(kz) cos(wt) + cos(kz)sin(wt)

a) What is the associated magnetic field B(x, y,z,1).

b) What is the energy per unit area per unit time (the Poynting vector S) transported
by this wave?

¢) What is the time average of the Poynting(g) vector? Briefly explain your answer.

Note the time average is given by
T k.
S)=— |Sdt.
§)=1]

Problem 4: Radiation Pressure You have designed a solar space craft of mass m that is
accelerated by the force due to the ‘radiation pressure’ from the sun’s light that fall on a
perfectly reflective circular sail that it is oriented face-on to the sun. The time averaged
radiative power of the sun is P_ . The gravitational constant is G. The mass of the sun is

sun

m,_. The speed of light is ¢. Model the sun’s light as a plane electromagnetic wave,
traveling in the +z direction with the electric field given by

E(z,0) = E,, cos(kz — wt)i .

You may express your answer in terms of the symbols m, (P) ,c,m., G, k,and @ as
necessary.

a) What is the magnetic field B associated with this electric field?

b) What is the Poynting vector S= —LEXE associated with this wave? What is the
Hy

. : o\ 1ts . Ry -
time averaged Poynting vector (S) ZF _[S dt associated with this superposition,
0

where T is the period of oscillation. What is the amplitude of the electric field at
your starting point?

¢) What is the minimum area for the sail in order to exactly balance the gravitational
attraction from the sun?



Problem 5. Electromagnetic Waves

The magnetic field of a plane electromagnetic wave is described as follows:
B = B, sin(kx— 1) j

a) What is the wavelength A of the wave?

b) Write an expression for the electric field E associated to this magnetic field. Be sure
to indicate the direction with a unit vector and an appropriate sign (+ or —).

c¢) What is the direction and magnitude Poynting vector associated with this wave? Give
appropriate units, as well as magnitude.

d) This wave is totally reflected by a thin conducting sheet lying in the y-z plane at
x=0. What is the resulting radiation pressure on the sheet? Give appropriate units, as
well as magnitude.

f) The component of an electric field parallel to the surface of an ideal conductor must be
zero. Using this fact, find expressions for the electric and magnetic fields for the reflected
wave? What are the total electric and magnetic fields at the conducting sheet, x=0.

Check that your answer satisfies the condition on the electric field at the conducting
sheet, x=0.

g) An oscillating surface current K flows in the thin conducting sheet as a result of this
reflection. Along which axis does it oscillates? What is the amplitude of oscillation?

Problem 6: Phase Difference (cf. Section 14.2 of the Course Notes)

In the double-slit interference experiment
shown in the figure, suppose d =0.100mm

p 2

andL=1.20m, and the incident light is q " o
monochromatic with a wavelength =600 nm. i ;'

’ \\ "”__.- - ’-:
(a) What is the phase difference between the ) d B0} 9,
two waves arriving at a point P on the screen ‘ b1 0
when € =0.800°7? e A

S, \/ )

(b) What is the phase difference between the

two waves arriving at a point P on the screen | L
when y=4.00mm ?

(c) If the phase difference between the two waves arriving at point P is ¢=1/3 rad, what is
the value of 87

IN—



(d) If the path difference is 6 = A/4, what is the value of 7

(e) In the double-slit interference experiment, suppose the slits are separated by
d =1.00cm and the viewing screen is located at a distance L =1.20m from the slits. Let

the incident light be monochromatic with a wavelength =500 nm. Calculate the spacing
between the adjacent bright fringes on the viewing screen.

(f) What is the distance between the third-order fringe and the center line on the viewing
screen?

Problem 7: Loop Antenna
An electromagnetic wave propagating in air has a magnetic field given by
B =0 B =0 B. = B, cos(wt — kx) .

It encounters a circular loop antenna of radius a centered at the origin (x,y,z) =(0,0,0)
and lying in the x-y plane. The radius of the antenna a << A where 4 is the wavelength of
the wave. So you can assume that at any time ¢ the magnetic field inside the loop is
approximately equal to its value at the center of the loop.

a) What is the magnetic flux, ®, (1) = JJ B-da, through the plane of the loop of
disk
the antenna?

The loop has a self-inductance L and a resistance R. Faraday’s law for the circuit is
dd,
IR=——"5— 4 .
dt dt

b) Assume a solution for the current of the form /(r) = I, sin(w? — ¢) where @ is the

angular frequency of the electromagnetic wave, I is the amplitude of the current,
and ¢ is a phase shift between the changing magnetic flux and the current.. Find
expressions for the constants ¢ and 1.

c) What is the magnetic field created at the center of the loop by this current () ?



Problem 8: Charging Capacitor (10 points)

A parallel-plate capacitor consists of two circular plates, each with radius R, separated
by a distance d . A steady current / is flowing towards the lower plate and away from
the upper plate, charging the plates.

h)

What is the direction and magnitude of the electric field E between the plates?
You may neglect any fringing fields due to edge effects.

What is the total energy stored in the electric field of the capacitor?

What is the rate of change of the energy stored in the electric field?

What is the magnitude of the magnetic field B at point P located between the
plates at radius » < R (see figure above). As seen from above, is the direction of
the magnetic field clockwise or counterclockwise. Explain your answer.

Make a sketch of the electric and magnetic field inside the capacitor.

What is the direction and magnitude of the Pointing vector S at a distance » = R
from the center of the capacitor.

By integrating S over an appropriate surface, find the power that flows into the
capacitor.

How does your answer in part g) compare to your answer in part c)?



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

8.02 Spring 2010
Problem Set 12 Solutions

Problem 1: Read Experiment 9: Interference and Diffraction.

1. Measuring the Wavelength of Laser Light

In the first part of this experiment you will shine a red laser through a pair of narrow slits
(a = 40 pum) separated by a known distance (you will use both d = 250 pm and 500 um)
and allow the resulting interference pattern to fall on a screen a distance L away (L ~ 40
cm). This set up is as pictured in Fig. 2 (in the “Two Slit Interference™ section above).

() Will the center of the pattern (directly between the two holes) be an interference
minimum or maximum?

The center of the pattern will be a maximum because the waves from both slits travel the

same distance to get to the center and hence are in phase.

(b) You should be able to easily mark and then measure the locations of the
interference maxima. For the sizes given above, will these maxima be roughly
equally spaced, or will they spread out away from the central peak? If you find
that they are equally spaced, note that you can use this to your advantage by
measuring the distance between distance maxima and dividing by the number of
intermediate maxima to get an average spacing. If they spread out, which spacing
should you use in your measurement to get the most accurate results, one close to
the center or one farther away?

Looking at the picture at left, we get a
maximum every time that the extra path length

,—— is an integral number of wavelengths:

i | }

s et dsin@ =mA
“ Ts‘ ' by Y The spacing is the distance between these
(‘) d Bx\e |.r locations, ym+1 — Ym. We can get yn, from &
< 1 o1 :
! A
L_ / | sing, =—2n_ -T2 _q =
S0 5 ' rP+y:  d L+y.
2 PNy o) L amL s
L yﬂl(l—aﬂi)_ah‘fL jyﬂl_ a2 ~aﬂ?L ]—
Ji-a,

We have made the approximation that o, << 1, which is valid for the wavelengths and
slit separations of this lab (it is order 10™). As long as this approximation is valid, we can
also ignore the term that goes like (am)z, and hence we find the maxima are equally

spaced: y by 8L
. m+l~ Ym ™
d

%y
2



(c) Approximately how many interference maxima will you see on one side of the
pattern before their intensity is significantly reduced by diffraction due to the finite width
a of the slit?

The first single slit minimum appears at asin@ = 4. So when we approach:

= %sin 6= -j—i = EJ— we will lose signal due to the diffraction minimum.
a a

(d) Derive an equation for calculating the wavelength A of the laser light from your
measurement of the distance Ay between interference maxima. Make sure that
you keep a copy of this equation in your notes! You will need it for the lab.

Using what we derived for part b,
AL dAy
y ym+l ym d L

(e) In order to most accurately measure the distance between maxima Ay, it helps to
have them as far apart as possible. (Why?) Assuming that the slit parameters and
light wavelength are fixed, what can we do in order to make Ay bigger? What are
some reasons that can we not do this ad infinitum?

We can increase the distance to the screen and measure the distance between distant

interference maxima (e.g. m = 1 and m = 4), which increases distances, making them

easier to measure, and then allows us to divide down any measurement errors.

2. Single Slit Interference

Now that you have measured the wavelength A of the light you are using, you will want
to measure the width of some slits from their diffraction pattern. When measuring
diffraction patterns (as opposed to the interference patterns of problem 1) it is typically
easiest to measure between diffraction minima.

(a) Derive an equation for calculating the width a of a slit from your measurement of
the distance Ay between diffraction minima. Make sure that you keep a copy of
this equation in your notes! You will need it for the lab. Note that this same
equation will be used for measuring the thickness of your hair.

Single slit minima obey the relationship asin@ = mA, which is the same formula as two

slit maxima. So we can calculate the slit width from what we derived in 1b (replacing the

distance between the slits d with the width of the single slit a):

_AL

Ay

a

(b) What is the width of the central maximum (the distance on the screen between the
m=-1 and m=1 minima)? How does this compare to the distance Ay between
other adjacent minima?

The central minimum is twice as wide as the distance between other minima. It is:

AL

Yoentral =2~
central



3. Another Way to Measure Hair

In addition to using hair as a thin
object for diffraction, you can
also measure its thickness using
_ an interferometer. In fact, you
Thickness  can use this to measure even
d=? smaller objects. Its use on a
small fiber is pictured at left.
The fiber is placed between two
glass slides, lifting one at an
angle relative to the other. The
slides are illuminated with green
light from above, and when the
set-up is viewed from above, an
interference pattern, pictured in

the “Eye View”, appears.

What is the thickness d of the fiber?

The interference comes about because there are two paths the light can take. In the first

light goes straight down, reflects off the glass, and goes straight back (we ignore the

slight angle). In the second light goes down, passes through the glass and reflects off the
lower glass, then goes straight back up. Let’s redraw the picture as follows:

The light comes in (black arrow)

and splits into two parts:

immediate reflection (blue) and

Thickness pass through then reflection

d=7? (red). They eventually meet up

to interfere.  The extra path

length taken by the second wave

(red) is twice the height at that

Side
View

location, or & =2xtan(0)

Now consider two adjacent maxima, which apparently are about % inch apart:
Notice that the extra height from
the first to the second max (as

Thickness indicated by the vertical arrow)
d=7? is related to the distance
__ between the successive maxima
o by:
|/4!,

Ah = e linch-tam (9)
2 4

Why A/2? Because the extra path (which is twice Ah) must be A — one extra wavelength
moves from one constructive maximum to the next. So:



d=1 inch-(%/%inch}=2/1=1000nm—Ium

4. CD
In the last part of this lab you will reflect light off of a CD and measure the resulting
interference pattern on a screen a distance L ~ 5 cm away.

(a) A CD has a number of tracks, each of width d (this is what you are going to
measure). Each track contains a number of bits, of length / ~ d/3. Approximately
how many bits are there on a CD? In case you didn’t know, CDs sample two
channels (left and right) at a rate of 44100 samples/second, with a resolution of 16
bits/sample. In addition to the actual data bits, there are error correction and
packing bits that roughly double the number of bits on the CD.

A CD can store about 74 minutes of music, so:

#bits ~ (74 min)(60i_]{441005ampJ(16 datibits ](2 chan)(2 ity )

min sec samp-chan data bits

~12x10° bits

(b) What, approximately, must the track width be in order to accommodate this
number of bits on a CD? In case you don’t have a ruler, a CD has an inner
diameter of 40 mm and an outer diameter of 120 mm.

The track width  controls the number of tracks we end up with. What really matters is

the overall length L of the tracks though. This is going to be a sum over the length of

each track, starting with the inner most one (which has inner diameter /D = 40 mm) and

going to the outer one (with outer diameter OD = 120 mm).

L= Y Lpn =§77Dn:ﬂg(ID+2dn):7{fD-(N—l)+2d(—N—_2MJ

all tracks n=0 n=0
= (N-1)(ID+dN)
The number of tracks N is given by N = (0D - ID)/2d , so:

L=nx QD_:E_I M =7xD,, g—l :Jrmeﬂ
2d 2 d d

which makes sense — it’s just the average diameter times the number of tracks.

No we can solve for the width d in terms of the # of bits that we need to store:
/_\.r Ar Ar

d =D, oy = 2D,
e T = M0 T bits) (length Ibit) ™ (# bits) (d/3)
3AF 3(40 mm)
o i =T = ~1.6
7o T bits) \/ 30 mm)( AT

I should comment that calling this distance the track width is a bit of a misnomer. More
accurately, it is the distance between the tracks, which are only a few hundred
nanometers wide.



(c) Derive an equation for calculating the width d of the tracks from your
measurement of the distance Ay between interference maxima. Make sure that
you keep a copy of this equation in your notes! You will need it for the lab.

The derivation is just what we did in problems 1 and 2, yielding:

=L
Ay

(d) Using the previous results, what approximately will the distance between
interference maxima Ay be on the screen?
I didn’t tell you the wavelength of the light we will be using, but it’s red so it’s around
A =600 nm, so
AL (600 nm)(5 cm)

=i
d (1.6 pm) PR

Problem 2: Coaxial Cable and Power Flow

A coaxial cable consists of two concentric long i
hollow cylinders of zero resistance; the inner
has radius a, the outer has radius &, and the
length of both is /, with />>5, as shown in
the figure. The cable transmits DC power from
a battery to a load. The battery provides an
electromotive force & Dbetween the two
conductors at one end of the cable, and the load
is a resistance R connected between the two
conductors at the other end of the cable. A current / flows down the inner conductor
and back up the outer one. The battery charges the inner conductor to a charge —Q and

the outer conductor to a charge +0.

(a) Find the direction and magnitude of the electric field E everywhere.

Consider a Gaussian surface in the form of a cylinder with radius » and length [, coaxial
with the cylinders. Inside the inner cylinder (#<a) and outside the outer cylinder (+>5b) no
charge is enclosed and hence the field is 0. In between the two cylinders (a<r<b) the
charge enclosed by the Gaussian surface is —Q, the total flux through the Gaussian
cylinder is

®, =[[[E-dA = EQzrl)

Thus, Gauss’s law leads to EQzrl)= Gene. . or
0

E: qcnc & Q

r=-—

r (inward) for a < r < b, 0 elsewhere
2zrl 2meyrl

(b) Find the direction and magnitude of the magnetic field B everywhere.



Just as with the E field, the enclosed current ., in the Ampere’s loop with radius r is
zero inside the inner cylinder (r<a) and outside the outer cylinder (#>4) and hence the
field there is 0. In between the two cylinders (a<r<b) the current enclosed is —/.

Applying Ampere’s law, [[B-d§ = BQzr) = 1,1, . we obtain
- L ad ot :
Be it @ (clockwise viewing from the left side) for @ <r <b, 0 elsewhere
ar

(c) Calculate the Poynting vector S in the cable.

For a < r < b, the Poynting vector is

§=LEX]§:L s I |x —‘u"]@ = L k (from right to left)
Hi M\ 2me,rl 2mr dr g, vl

On the other hand, for » <a and r > b, we have S=0.

(d) By integrating S over appropriate surface, find the power that flows into the coaxial
cable.

With dA = (277 dr) k , the power is

(e) How does your result in (d) compare to the power dissipated in the resistor?

Since

g=jE-d§= LF e el 1n(f1]=m

a Drrie, 2zle, \a

27, lIR
In(b/a)

2
P 2melIR ) I ln[é]:flR
In(b/a) |2zne,l \a

which is equal to the rate of energy dissipation in a resistor with resistance R.

the charge O is related to the resistance R by O = . The above expression for P

becomes




Problem 3: Standing Waves

The electric field of an electromagnetic wave is given by the superposition of two waves
E = E, cos(kz — wt) i + E, cos(kz + 1)1 .

You may find the following identities and definitions useful

cos(kz + wt) = cos(kz)cos(wt) — sin(kz)sin(wt)
sin(kz + wt) = sin(kz) cos(w?) + cos(kz)sin(wt)

a) What is the associated magnetic field ]§(x, V2t )+

b) What is the energy per unit area per unit time (the Poynting vector g) transported
by this wave?

c) What is the time average of the Poynting<§> vector? Briefly explain your answer.

Note the time average is given by
T .
(8)= o Ojsa’: :
Solution
The electric field is given by
E = E, cos(kz — wt) i + E, cos(kz + wt) i

The first term describes an electric field propagating in the +x -direction. The associated
magnetic field is given by

B, = E, cos(kz — wr) i+ E, cos(kz + ot)i
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Problem 4: Radiation Pressure

You have designed a solar space craft of mass m that is accelerated by the force due to
the ‘radiation pressure’ from the sun’s light that fall on a perfectly reflective circular sail
that it is oriented face-on to the sun. The time averaged radiative power of the sun is P

sun *

The gravitational constant is G. The mass of the sun is m . The speed of light is ¢.

Model the sun’s light as a plane electromagnetic wave, traveling in the +z direction with
the electric field given by

E(z,1)= E_,cos(kz— wt)i.

You may express your answer in terms of the symbols m, (P), c,m, G, k,and o as
necessary.

a) What is the magnetic field B associated with this electric field?

b) What is the Poynting vector S =L]—Ex1§ associated with this wave? What is the
Ho

.
time averaged Poynting vector <§> =% J.g dt associated with this superposition,
0

where 7 is the period of oscillation. What is the amplitude of the electric field at
your starting point?

¢) What is the minimum area for the sail in order to exactly balance the gravitational
attraction from the sun?
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Problem 5. Electromagnetic Waves

The magnetic field of a plane electromagnetic wave is described as follows:
B= B, sin(kx - wt)j
a) What is the wavelength A4 of the wave?

b) Write an expression for the electric field E associated to this magnetic field. Be sure
to indicate the direction with a unit vector and an appropriate sign (+ or —).

¢) What is the direction and magnitude Poynting vector associated with this wave? Give
appropriate units, as well as magnitude.

d) This wave is totally reflected by a thin conducting sheet lying in the y-z plane at
x=0. What is the resulting radiation pressure on the sheet? Give appropriate units, as
well as magnitude.

f) The component of an electric field parallel to the surface of an ideal conductor must be
zero. Using this fact, find expressions for the electric and magnetic fields for the reflected
wave? What are the total electric and magnetic fields at the conducting sheet, x=0.
Check that your answer satisfies the condition on the electric field at the conducting
sheet, x=0.

g) An oscillating surface current K flows in the thin conducting sheet as a result of this
reflection. Along which axis does it oscillates? What is the amplitude of oscillation?
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Problem 6: Phase Difference (cf. Section 14.2 of the Course Notes)

In the double-slit interference experiment
shown in the figure, suppose d =0.100mm P
andL=120m, and the incident light is g N ‘l‘
monochromatic with a wavelength 4=600 nm. L Pt A
| \\ = I
(a) What is the phase difference between the ) d el l
two waves arriving at a point P on the screen | < o
when 8 =0.800°? L. 2! X
2 5
5 (
¢=2mr—
4sind L
_ 5, dsin
A
=4 . o
_2(3.14) (1.00x10 m)7sm 0.8
6.00x10™" m
=14.6rad

(b) What is the phase difference between the two waves arriving at a point P on the
screen when y =4.00mm ?

dy : y
=27x—— (.sinf==
¢ Ly ( L)
(1.00x107* m)(4.00x 107 m)

=2(3.14
( ) (6.00107" m)(1.20 1)

=3.49rad

(c) If the phase difference between the two waves arriving at point P is ¢=1/3 rad, what is
the value of 87

¢=% rad=2yrdsj;9 = 9=sin"[%]=3.18x10"’ rad = 0.0182°
J LT

(d) If the path difference is 6 = A/4, what is the value of 87

d=dsin@ = @=sin"" é =sin™ i =1.50%10"" rad = 0.0860°
d 4d



(e) In the double-slit interference experiment, suppose the slits are separated by
d=1.00cm and the viewing screen is located at a distance L =1.20m from the

slits. Let the incident light be monochromatic with a wavelength A=500 nm.
Calculate the spacing between the adjacent bright fringes on the viewing screen.

Since y, = m% , the spacing between adjacent bright fringes is

Ay, =y,(m+1)-y,(m)

=(m+ l)ﬂ—mﬂ
d d
_AL
d

_(5.00x1077 m)(1.20 m)
© (1.00x1072 m)
=6.00x107° m

=60.0 um

(f) What is the distance between the third-order fringe and the center line on the viewing
screen?

Ay, =y,(3)—y,(0)
AL
=(3) r -0

g
d

=3 (5.00 %1077 m)(1.20m)
(1.00x107% m)

=1.80x10"" m
=180 pum




Problem 7: Loop Antenna. An electromagnetic wave propagating in air has a magnetic
field given by

B =0 B =0 B, = B, cos(wt — kx).
x ¥ z
It encounters a circular loop antenna of radius a centered at the origin (x,y,z) =(0,0,0)

and lying in the x-y plane. The radius of the antenna a << 4 where A is the wavelength
of the wave. So you can assume that at any time ¢ the magnetic field inside the loop is
approximately equal to its value at the center of the loop.

a) What is the magnetic flux, ®, . (1) = Hﬁ-dﬁ, through the plane of the loop of
disk
the antenna?

The loop has a self-inductance L and a resistance R. Faraday’s law for the circuit is

R= —% - JLﬂ ‘
dt dt
b) Assume a solution for the current of the form /() = J sin(wf — ¢) where @ is the
angular frequency of the electromagnetic wave, /; is the amplitude of the current,
and ¢ is a phase shift between the changing magnetic flux and the current.. Find
expressions for the constants ¢ and /.

c) What is the magnetic field created at the center of the loop by this current 7(7) ?
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Problem 8: Charging Capacitor (10 points)

A parallel-plate capacitor consists of two circular plates, each with radius R, separated
by a distance d . A steady current / is flowing towards the lower plate and away from
the upper plate, charging the plates.

==,

P astcmses d

a) What is the direction and magnitude of the electric field E between the plates?
You may neglect any fringing fields due to edge effects.

Solution: If we ignore fringing fields then we can calculate the electric field using
Gauss’s Law,

ff Bnet
closed g(l
surface

By superposition, the electric field is non-zero between the plates and zero everywhere
else. Choose a Gaussian cylinder passing through the lower plate with its end faces

parallel to the plates. Let 4,,, denote the area of the endface. The surface charge density

is given by o =Q/7zR*. Let k denote the unit vector pointing from the lower plate to the
upper plate. Then Gauss’ Law becomes

A - O-Acup

cap

E

which we can solve for the electric field

B=Zk=—2_k.
&y zR’g,




b) What is the total energy stored in the electric field of the capacitor?

Solution: The total energy stored in the electric field is given by

U

elec

1 ) I o
=4 J'E“dV:EEOE“yrR d.

volume

Substitute the result for the electric field into{t he energy equation yields

U =lso[ 9 ]ﬁdez

olec
a2 7R,

1 0
2 7R,

¢) What is the rate of change of the energy stored in the electric field?

Solution: The rate of change of the stored electric energy is found by taking the time
derivative of the energy equation

d.. _ 0d dQ

dt " xR, dt

The current flowing to the plate is equal to
1=42
dt

Substitute the expression for the current into the expression for the rate of change of the
stored electric energy yields

d, oId

elec = 2 :
dit °% 7zR’g,

d) What is the magnitude of the magnetic field B at point P located between the
plates at radius r < R (see figure above). As seen from above, is the direction of
the magnetic field clockwise or counterclockwise. Explain your answer.

Solution: We shall calculate the magnetic field by using the generalized Ampere’s Law,

Eﬂ B-ds =y, H j-d5+y050;—i H E-di

closed path open surface apen surface

We choose a circle of radius » < R passing through the point P as the Amperian loop
and the disk defined by the circle as the open surface with the circle as its boundary. We



choose to circulate around the loop in the counterclockwise direction as seen from above.
This means that flux in the positive k -direction is positive.

The left hand side (LHS) of the generalized Ampere’s Law becomes

LHS = [ﬂ ﬁ‘d§=[1§|2ﬁr.

circle

The conduction current is zero passing through the disk, since no charges are moving
between the plates. There is an electric flux passing through the disk. So the right hand
side (RHS) of the generalized Ampere’s Law becomes

, d|E
RHS:yogﬂi HEAdE :,uogo%m‘z.

disk

Take the time derivative of the expression for the electric field and the expression for the
current, and substitute it into the RHS of the generalized Ampere’s Law:

d E 2 I -2
RHS = 1, TL—‘ it = Bl

2

TR*

Equating the two sides of the generalized Ampere’s Law yields

olmr’

|]§| 2mr = R

Finally the magnetic field between the plates is then

|l§|:7fr°];r; 0<r<R.

The sign of the magnetic field is positive therefore the magnetic field points in the
counterclockwise direction (consistent with our sign convention for the integration
direction for the circle) as seen from above. Define the unit vector 8 such that is it
tangent to the circle pointing in the counterclockwise direction, then

e) Make a sketch of the electric and magnetic field inside the capacitor.



-eR-;! ~&.
T111e

t_ 1=t 45

f) What is the direction and magnitude of the Pointing vector S at a distance » = R
from the center of the capacitor.

Solution: The Poynting vector at a distance » = R is given by

S(r=R) =—ExB

#[} r=R ’

Substituting the electric field and the magnetic field (setting »=R) into the above
equation, and noting that k x @ = —F, yields
I A 0 1

S(r:R):L Q2 fex i §- = (-r).
M, TR,  27R 7R°g, 27 R

So the Poynting vector points inward with magnitude

0 I
nR¢, 2R’

|§(r = R)| =

g) By integrating S over an appropriate surface, find the power that flows into the
capacitor.

Solution: The power flowing into the capacitor is the closed surface integral

P= [jf So=R)da.

closed surface



The Poynting vector points radially inward so the only contribution to this integral is
from the cylindrical body of the capacitor. The unit normal associated with the area
vector for a closed surface integral always points outward, so on the cylindrical body

da = dar . Use this definition for the area element and the power is then

0o 1
nR’s, 2nR

P= [ S¢=Rrdi= [

cylindrical cylindrical
body hody

(—F)-dat

The Poynting vector is constant and the area of the cylindrical body is 27 Rd , so

P= Q, L(—l':)'C?rﬂlﬂ':— Q L2;’,,TRC;H':—. Q{d .
cylindrical ER_ED 27R IR.'SO 27 R JTR"EO
bady

The minus sign correspond to power flowing into the region.
h) How does your answer in part g) compare to your answer in part ¢)?

Solution: The two expressions for power are equal so the power flowing in is equal to the
change of energy stored in the electric fields.



Summary of Class 34 8.02

Topics: EM Radiation
Related Reading: Course Notes: Sections 13.11, 14.1-14.3, 14.11.1-14.11.3

Topic Introduction

Today you will work through analytic problems related to EM Waves and the Poynting

vector.
Electromagnetic Radiation
The fact that changing magnetic fields create electric fields and that changing electric fields

create magnetic fields means that oscillating electric and magnetic fields can propagate
through space (each pushing forward the other). This is electromagnetic (EM) radiation. It
is the single most useful discovery we discuss in this class, not only allowing us to
understand natural phenomena, like light, but also to create EM radiation to carry a variety of
useful information: radio, broadcast television and cell phone signals, to name a few, are all
EM radiation. In order to understand the mathematics of EM radiation you need to
understand how to write an equation for a traveling wave (a wave that propagates through
space as a function of time). Any function that is written f(x-vt) satisfies this property. Ast
increases, a function of this form moves to the right (increasing x) with velocity v. You can
see this as follows: At t=0 f(0) is at x=0. At a later time t=t, f(0) is at x=vt. That is, the
function has moved a distance vt during a time 1.

Sinusoidal traveling waves (plane waves) look like waves both as a function of position and
as a function of time. If you sit at one position and watch the wave travel by you say that it
has a period 7, inversely related to its frequency f, and angular frequency,

a)(T =f =270 ) If instead you freeze time and look at a wave as a function of position,

you say that it has a wavelength A, inversely related to its wavevector & (2 = 2frlc") . Using

this notation, we can rewrite our function f(x-vt) = fysin(kx-wt), where v = w/k.

We typically treat both electric and magnetic fields as plane waves as they propagate through
space (if you have one you must have the other). They travel at the speed of light (v=c).
They also obey two more constraints. First, their magnitudes are fixed relative to each other:
Eop = cBg (check the units!) Secondly, E & B always oscillate at right angles to each other
and to their direction of propagation (they are tramnsverse waves). That is, if the wave is
traveling in the z-direction, and the E field points in the x-direction then the B field must

point along the y-direction. More generally we write ExB =p, where pis the direction of
propagation.

Energy and the Poynting Vector
he Poynting Vector S = Y ExB describes how much energy passes through a given area

per unit time, and points in the direction of eriergy flow. Although this is commonly used
when thinking about electromagnetic radiation, it generically tells you about energy flow,
and is particularly useful in thinking about energy in circuit components. For example,
consider a cylindrical resistor. The current flows through it in the direction that the electric
field points. The B field curls around. The Poynting vector thus points radially into the
resistor — the resistor consumes energy. In today’s problem solving session vou will

Summary for ( lass 3 i 12



Summary of Class 34 8.02

calculate the Poynting vector in a capacitor, and will find that if the capacitor is charging
then S points in towards the center of the capacitor (energy flows into the capacitor) whereas
if the capacitor is discharging S points cutwards (it is giving up energy).

Important Equations

(1)@[E-d,&:%’- (2) [ME-dA=o
Maxwell’s Equations: c;(l) s
) [JE-d5=-—21 (@) [JB-dS = sl + ty&s— -
c ! c
E(F,1)=E p-F—cwt)E e
EM Plane Waves: _(r t) P (kp © . with E,=cB,; ExB=p; w=ck
B(F.t)=B,sin(kp-F-wt)B
Poynting Vector: S= = ExB
onace ) .,
D[J{ /D [_))(r N LI I [Q b / Cl ;/ /"‘“j’
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Problem Solving 10: Interference

OBJECTIVES

1. To understand the meaning of constructive and destructive interference
2. To understand how to determine the interference conditions for double slit interference
3. To understand how to determine the intensity of the light associated with double slit

interference

REFERENCE: Sections 14-1 through 14-3 Course Notes.

Introduction

The Huygens Principle states that every unobstructed point on a wavefront will act a source of a
secondary spherical wave. We add to this principle, the Superposition Principle that the
amplitude of the wave at any point beyond the initial wave front is the superposition of the
amplitudes of all the secondary waves.

5
e

Figure 1: Huygens-Fresnel Principle applied to double slit
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When ordinary light is emitted from two different sources and passes through two narrow slits,
the plane waves do not maintain a constant phase relation and so the light will show no
interference patterns in the region beyond the openings. In order for an interference pattern to
develop, the incoming light must satisfy two conditions: _
e The light sources must be coherent. This means that the plane waves from the sources
must maintain a constant phase relation.

e The light must be monochromatic. This means that the light has just one wavelength.
When the coherent monochromatic laser light falls on two slits separated by a distance d, the

emerging light will produce an interference pattern on a viewing screen a distance D away from
the center of the slits. The geometry of the double slit interference is shown in the figure below.

Screen

Slit 1

Bt =~

Slit 2 {‘}\ ‘3’3-{ ' D -

Figure 2: Double slit interference

Consider light that falls on the screen at a point P a distance y from the point O that lies on the
screen a perpendicular distance D from the double slit system. The light from the slit 2 will
travel an extra distance r, —#, = Ar to the point P than the light from slit 1. This extra distance is
called the path length.

Question 1: Draw a picture of two traveling waves that add up to form constructive interference.

Answer:

Question 2: Draw a picture of two traveling waves that add up to form destructive interference.
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Answer:

Question 3: Explain why constructive interference will appear at the point P when the path
length is equal to an integral number of wavelengths of the monochromatic light.

Ar=m\, m=0,+1,+£2,43,... constructive interference

Answer:

Question 4: Based on the geometry of the double slits, show that the condition for constructive
interference becomes

dsin®@=mA, m=0,%1,+2,£3,... constructive interference.

Answer:
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Question 5: Explain why destructive interference will appear at the point P when the path
length is equal to an odd integral number of half wavelengths

dsinf = (m +-;—]l, m=0,+1,+2,+3,... destructive interference.

Answer:

Question 6: Let y be the distance between the point P and the point O on the screen. Find a
relation between the distance y, the wavelength A, the distance between the slits d, and the
distance to the screen D such that a constructive interference pattern will occur at the point P .

Answer:

Question 7: Find a similar relation such that destructive interference fringes will occur at the
point P.

Answer:
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Intensity of Double Slit Interference:

Suppose that the waves are emerging from the slits are sinusoidal plane waves. The slits are
located at the plane x =—D. The light that emerges from slit 1 and slit 2 at time ¢ are in phase.
Let the screen be placed at the plane x =0. Suppose the component of the electric field of the
wave from slit 1 at the point P is given by

E, = Eysin(wt).

Let’s assume that the plane wave from slit 2 has the same amplitude E, as the wave from slit 1.
Since the plane wave from slit 2 has to travel an extra distance to the point P equal to the path
length, this wave will have a phase shift ¢ relative to the wave from slit 1,

E, = E,sin(ot+¢).

Question 8: Why are the phase shift ¢, the wavelength A, the distance between the slits, and the
angle related © by

2T .
=—dsinB.
¢ A

As a hint how are the ratio of the phase shift ¢ to 2n and the ratio of the path length
Ar =dsin 0 to wavelength A, related?

Answer:
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Question 9: Use the trigonometric identity

; -B
sin 4 +sin(B) = ZSln[AJrB)cos(A 5 ] .
To show that the total component of the electric field is
E E +E,=2E, sin[mt + %] cos(%} ‘

total ~

Answer:

The intensity of the light is equal to the time-averaged Poynting vector

1-(8)-L (BxB).

Since the amplitude of the magnetic field is related to the amplitude of the electric field by
B, =E,/c. The intensity of the light is proportional to the time-averaged square of the electric

field,
ol ()
2 2 2

where the time-averaged value of the square of the sine function is

(o5

Let 7, be the amplitude of the intensity. Then the intensity of the light at the point P is

I=1_ cos’ [E)
2
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Question 10: Show that the intensity is maximal when dsin@=mA, m=0,%£1,+2,+3,....

Answer:

Question 11: Graph the intensity pattern on the screen as a function of distance y from the point
O for the case that D >>d and d >>A.

Question 12: Since the energy of the light is proportional to the square of the electric fields, is
energy conserved for the time-averaged superposition of the electric fields i.e. does the following
relation hold,

<(E1 +E, )2> = <E12>+(E22)

Answer:
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

Tear off this page and turn it in at the end of class !!!!

Note:
Writing in the name of a student who is not present is a Committee on Discipline offense.

Problem Solving 10: Interference

Group (e.g. 6A Please Fill Out)

Names

Question 1: Draw a picture of two traveling waves that add up to form constructive interference.

Answer:

Question 2: Draw a picture of two traveling waves that add up to form destructive interference.

Answer:
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Question 3: Explain why constructive interference will appear at the point P when the path
length is equal to an integral number of wavelengths of the monochromatic light.

Ar=mA, m=0,%1,£2,£3,... constructive interference

Answer:

Question 4: Based on the geometry of the double slits, show that the condition for constructive
interference becomes

dsin@=mA, m=0,%1,+2,+3,... constructive interference.

Answer:

Question 5: Explain why destructive interference will appear at the point P when the path
length is equal to an odd integral number of half wavelengths

dsinf= [m + %J A, m=0,+1,+2, 3, ... destructive interference.

Answer:
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Question 6: Let y be the distance between the point P and the point O on the screen. Find a
relation between the distance y, the wavelength A, the distance between the slits d, and the
distance to the screen D such that a constructive interference pattern will occur at the point P .

Answer:

Question 7: Find a similar relation such that destructive interference fringes will occur at the
point P.

Answer:
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Question 8: Why are the phase shift ¢, the wavelength A, the distance between the slits, and the
angle related 6 by

2
=—dsinB.
() k sin

As a hint how are the ratio of the phase shift ¢ to 2m and the ratio of the path length
Ar=dsin 0 to wavelength A, related?

Answer:

Question 9: Use the trigonometric identity

-B
sin 4 +sin(B) = ZSin(A i B]COS[AT] :
To show that the total component of the electric field is

E,.,=E +E,=2E;sin [wt +gJ cos (g] )

total

Answer:
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Question 10: Show that the intensity is maximal when dsin@=mA, m=0,+£1,+£2,£3,....

Answer:

Question 11: Graph the intensity pattern on the screen as a function of distance y from the point
O for the case that D >>d and d >>A.

Question 12: Since the energy of the light is proportional to the square of the electric fields, is
energy conserved for the time-averaged superposition of the electric fields i.e. does the following
relation hold,

((E1 +E2)2> =(E?)+(E?)

Answer:
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Problem Solving 10 Solutions: Interference and Diffraction

OBJECTIVES

1. To understand the meaning of constructive and destructive interference

2. To understand how to determine the interference conditions for double slit interference

W

To understand how to determine the intensity of the light associated with double slit
interference

REFERENCE: Sections 14-1 through 14-3 Course Notes.

Introduction

The Huygens Principle states that every unobstructed point on a wavefront will act a source of a
secondary spherical wave. We add to this principle, the Superposition Principle that the
amplitude of the wave at any point beyond the initial wave front is the superposition of the
amplitudes of all the secondary waves.

L

Figure 1: Huygens-Fresnel Principle applied to double slit
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When ordinary light is emitted from two different sources and passes through two narrow slits,
the plane waves do not maintain a constant phase relation and so the light will show no
interference patterns in the region beyond the openings. In order for an interference pattern to
develop, the incoming light must satisfy two conditions:

e The light sources must be coherent. This means that the plane waves from the sources
must maintain a constant phase relation.

e The light must be monochromatic. This means that the light has just one wavelength.

When the coherent monochromatic laser light falls on two slits separated by a distance d, the
emerging light will produce an interference pattern on a viewing screen a distance D away from
the center of the slits. The geometry of the double slit interference is shown in the figure below.

Screen

l

-
Slit 2 ";,}\ Ard D

Y

Figure 2: Double slit interference

Consider light that falls on the screen at a point P a distance y from the point O that lies on the

screen a perpendicular distance D from the double slit system. The light from the slit 2 will
travel an extra distance r, —r, = Ar to the point P than the light from slit 1. This extra distance is

called the path length.
Question 1: Draw a picture of two traveling waves that add up to form constructive interference.

Answer:
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Question 2: Draw a picture of two traveling waves that add up to form destructive interference.

Answer:

st ol e

yore: vv:siﬂranm#:}?r—

tq‘(‘:u’ 1

Question 3: Explain why constructive interference will appear at the point P when the path
length is equal to an integral number of wavelengths of the monochromatic light.

Ar=mh, m=0,%1,£2,43,... constructive interference

Answer: The wavefront that emerges from slit 2 travels a further distance to reach the point P
than the wavefront from slit 1. The extra distance is the path length Ar. When this extra distance
is an integral number of wavelengths, the two wavefronts line up as in the figure in the answer to
Question] and so constructive interference occurs. The negative values of m correspond to the
case when the slit 2 is closer to the point P then the slit 1.

We place the screen so that the distance to the screen is much greater than the distance between
the slits, D >> d . In addition we assume that the distance between the slits is much greater than
the wavelength of the monochromatic light, d >> A

Question 4: Based on the geometry of the double slits, show that the condition for constructive
interference becomes

dsin@=mk, m=0,+1,+2,+3,... constructive interference.

Answer: From the geometry of the slits, the path length is related to the distance ¢ between the
slits according to Ar =d sin 0. This establishes the condition for constructive interference.

Question 5: Explain why destructive interference will appear at the point P when the path
length is equal to an odd integral number of half wavelengths

dsinf = [m +%) A, m=0,%1,%£2,+3,... destructive interference.

10-4



Answer: When the path length is an odd integral number of half wavelengths, the wavefront is
shifted as in the answer to Question 2, so the maximum and minimum line up producing
destructive interference. (The negative values of m correspond to the case when the slit 2 is
closer to the point P then the slit 1.)

Question 6: Let y be the distance between the point P and the point O on the screen. Find a
relation between the distance y, the wavelength A, the distance between the slits ¢, and the
distance to the screen D such that a constructive interference pattern will occur at the point P .

Answer: Since the distance to the screen is much greater than the distance between the slits,
D >>d , the angle O is very small, so that

sin00 tanO = y/D.

Then the constructive interference fringe patterns will occur at the distances,

D\ vy 7 s
yQ m—i, m=0,+1,£2 +3,... constructive interference
G

Question 7: Find a similar relatiomch that destructive intéerence fringes will oceuat the
point P.

Answer: The destructive interfereoe fringes will occur at
yO (m+1]ﬁ, m=0,%+1,+2,+£3, ...
24 d

Intensity of Double Slit Interference:
Suppose that the waveare emerging from thelits are sinusoidal plansvaves. The slits are
located at the plane=-D. The light that emergesorh slit 1 and slit 2 atetim are in phase.
Let the screen be placed the planex=0. Suppose the componénof the electric field & t
wave from slit 1 at theimpoP is given by

E = E,sin(wr).

Let’s assume that the pla wave from slit 2 hie tsame amplitude£, as the wave from slit 1.
Since the plane wave fi slit 2 has to travel atrae distance to the poinP equal to the path
length, this wave will hava phase shify relative to the wave froshit 1,

E, = E;sin(or+¢).
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Question 8: Why are the phase shift the wavelengthh, the distance between thslits, and the oy
angle related® by

2n
=—dsin®.
¢ A

As a hint how are thatio of the phase shifp to 2m and the ratio of thathp length
Ar=dsinf to wavelengthh, related?

Answer: The ratio of the phasshift ¢ to 2n is the same as the aatof the path length
Ar=dsin0 to wavelengthh,

¢ _4ar
w oL
Therefore the phase shify is given by
2n
=—dsin0.
¢ A

The total electric field at the point P is the superposition of the these two fields

Eu = E, + E, = E, (sin (1) +sin(of +¢)) .
Question 9: Use the trigonometric identity
; : . [A+B A-B
sin 4 +sin(B) = 2sin cos .
2 2
To show that the total component of the electric field is
By = By + Ey = 2By [ ¢] [ij
o = B+ E, =2E,sin| of +— |cos ;
3 2
Answer: So the electric field is given by
; : . [of+ot+¢ ol —ol+¢
E, = E, (sin(or) +sin (o +¢)) = 2E, sin 5 cos :
Thus the total component of the electric field is
E, .,=E+E,=2Esin [o)f +%J cos[%} .

The intensity of the light is equal to the time-averaged Poynting vector
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Since the amplitude of the magnetic field is related to the amplitude of the electric field by
B, = E,/c. The intensity of the light is proportional to the time-averaged square of the electric

field,
10 <Emm:2) =4E,’ cos’ [i) sin® (mt +gj =2E,’ cos’ [E] ,
2 2 )

where the time-averaged value of the square of the sine function is

{5

Let 7, be the amplitude of the intensity. Then the intensity of the light at the point P is

I = ]lll'l‘: COSZ (Q]
a 5

Question 10: Show that the intensity is maximal when dsin®@=mk, m=0,+1,£2,£3,....

Answer: The intensity has a maximum when the argument of the cosine is an integer number of

multiples of 7, ¢/2=+mmn. Since the phase shift is given by ¢=2—ndsin9, we have that

T, . " o G 5
Id sin O = mm . Thus we have the condition for constructive interference,

dsinO=+mA, m=0,+1,+2,+3, ...
Question 11: Graph the intensity pattern on the screen as a function of distance y from the point
O for the case that D >>d and d >>\.

/

| | b ! 4
! ! ‘ f

—Z e 1 2

—d sinB/ A
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Question 12: Since the energy of the light is proportional to the square of the electric fields, is
energy conserved for the time-averaged superposition of the electric fields i.e. does the following
relation hold,

((EI +E2)2> = (E2)+(E?)

Answer: The time-averaged square of the electric field is

((E, + Ez)2> = 4Eﬂ2 cosz(EKSin(W +9_J> - 2E02 ca [Q]
2 2 2

If we now average this over all phases,

1
2mn

E}

2mmn

2B,

(2mm+ sin ¢|§z) =By

[ cos? (2‘21) dg = % [+ cosg)dp =
The time-average (E) = E,’ (sin® (1)) = £’ /2.

The time-average (E,") = E,* (sin® (01 +¢)) = £, /2.
Therefore only when we average over all possible phases is
(£ + E2)2> =(E3)+(E?).

But this is precisely what we must do in order to conserve energy.
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Summary of Class 35 8.02

Topics:  Interference
Related Reading: Course Notes: Chapter 14
Experiments: (11) Interference

Topic Introduction

Today we will continue our investigation of the interference of EM waves with a discussion
about diffraction, and then we will conduct our final experiment.

The General Pictur -

The picture at left forms the basis of all the
Consiiariwo insweling wenes, maving hmoughspace: phenomena we will discuss today. Two different
T Tl waves (red & blue) arrive at a single position in
ﬁ?:;;';crfg’: space (at the screen). If they are in phase then

they add constructively and you see a bright spot.
If they are out of phase then the add destructively
and you see nothing (dark spot).

~ /¢ | Look here as function of time
3’3‘_1 A :
7 W s Destructive

A T 0] ——————interference | The key to creating interference is creating phase
\/ shift between two waves that are then brought
together at a single position. A common way to

do that is to add extra path length to one of the waves relative to the other. We will look at a
variety of systems in which that happens.

Thin Film Interference

The first phenomenon we consider is thin film interference. When light hits a thin film (like
a soap bubble or an oily rain puddle) it does two things. Part of the light reflects off the
surface. Part continues forward, then reflects off the next surface. Interference between
these two different waves is responsible for the vivid colors that appear in many systems.

Two Slit Interference
Light from the laser hits two very narrow slits, which
P then act like in-phase point sources of light. In
. “ . 77T traveling from the slits to the screen, however, the light
B v from the two slits travel different distances. In the
A R ., picture at left the light from the bottom slit travels
_ K ©  further than the light from the top slit. This extra path
pro iy fength introduces a phase shift between the two waves
and leads to a position dependent interference pattern
on the screen.

Summary for Class 35 p. 12



Summary of Class 35 3.02

Here the extra path length is § =d sin (). leading to a phase shift ¢ given by ij—: —¢—
L AT

Realizing that phase shifts that are multiples of 2n give us constructive interference while

odd multiples of n lead to destructive interference leads to the following conditions:

Maxima: d sin (6 )=mA ; Minima: d sin (8)=(m+1) 2

Diffraction

The next kind of interference we consider is light going through
a single slit, interfering with itself. This is called diffraction,
and arises from the finite width of the slit (a in the picture at
left). The resultant effect is not nearly as easy to derive as that
from two-slit interference (which, as you can see from above, is
straight-forward). The result for the anglular locations of the

~~. minimais asin (6)=mA.

L

Important Equations

AL ¢ m constructive

Interference Conditions —S= = . 5
A 2w | m+3 destructive

Two Slit Maxima: d sin (0)=mi
Single Slit (Diffraction) Minima:  a sin (0 )=mA +

Experiment 11: Interference
Preparation: Read pre-lab and answer pre-lab questions

The lab investigates interference of laser light going through slits, diffracting off of hair and
reflecting off of a CD.

Summary for Class 35 p.
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Class 35: Outline

Hour 1 & 2:
Diffraction

- Experiment 11: Interference and
~ Diffraction

How in the world do we
~ measure 1/10,000 of a cm?

. Visible (red) light:
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Two In-Phase Sources: Geometry

| Extra path length
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics
8.02

Experiment 11: Interference and Diffraction

OBJECTIVES

1. To explore the diffraction of light through a variety of apertures

2. To learn how interference can be used to measure small distances very accurately.
By example we will measure the wavelength of the laser, the spacing between
tracks on a CD and the thickness of human hair

WARNING! The beam of laser pointers is so concentrated that it can cause real
damage to your retina if you look into the beam either directly or by reflection from
a shiny object. Do NOT shine them at others or yourself.

PRE-LAB READING
INTRODUCTION

Electromagnetic radiation propagates as a wave, and as such can exhibit interference and
diffraction. This is most strikingly seen with laser light, where light shining on a piece of
paper looks speckled (with light and dark spots) rather than evenly illuminated, and ¢ [
where light shining through a small hole makes a pattern of brlght and dark spots rather ~
than the single spot you might expect from your everyday experiences with light. In this

lab we will use laser light to investigate the phenomena of interference and diffraction
and will see how we can use these phenomena to make accurate measurements of very
small objects like the spacing between tracks on a CD and the thickness of human hair.

The Details: Interference

Consider two traveling waves, moving through space: The picture at left forms the basis of all the
Loal Hars s ikehan GriRs phenomena you will observe in the lab. Two
‘/ .

o constructive | different waves arrive at a single position in
Q Q C Interference | space (at the screen). If they are in phase then

they add constructively and you see a bright
spot. “If th they are out of phase then they add

" /Look here as function of time destructively and you see nothing (dark spot).
The key to creating interference is creating

Destructive | o
Interference
U phase shift between two waves that are then
brought together at a single position. A common way to do that is to add extra path
length to one of the waves relative to the other. In this lab the distance traveled from
source to screen, and hence the relative phase of incoming waves, changes as a function
of lateral position on the screen, creating a visual interference pattern.

E10-1



Two Slit Interference

The first phenomenon we consider is two slit
interference. Light from the laser hits two very
narrow slits, which then act like in-phase point
sources of light. In traveling from the slits to
the screen, however, the light from the two slits
travel different distances. In the picture at left
light hitting point P from the bottom slit travels
further than the light from the top slit. This
extra path length introduces a phase shift
between the two waves and leads to a position
dependent interference pattern on the screen.

Here the extra path length is § = d sin (@), leading to a phase shift ¢ given by % = %
Realizing that phase shifts that are multiples of 2r give us constructive interference while
odd multiples of © lead to destructive interference leads to the following conditions:
Maxima: d sin (6)=mA ; Minima: d sin (6)=(m+1) 4
[On st i o e Al v X

Multiple Slit Interference

If instead of two identical slits separated by a
distance d there are multiple identical slits, each
separated by a distance d, the same effect happens.
For example, at all angles @ satisfying

d sin (6) =mA we find constructive interference,

now from all of the holes. The difference in the
resulting interference pattern lies in those regions
that are neither maxima or minima but rather in between. Here, because more 1ncom1ng
waves are available to interfere, the interference becomes more destructive, making the
minima appear broader and the maxima sharper. This explains the appearance of a
brilliant array of colors that change as a function of angle when looking at a CD. A CD
has a large number of small grooves, each reflecting light and becoming a new source
like a small slit. For a given angle, a distinct set of wavelengths will form constructive
maxima when the reflected light reaches your eyes.

{ @ ]

Diffraction
N The next kind of interference we consider is light going through a
) single slit, @Mﬂ This is called diffraction, and

(| arises from the finite width of the slit (g in the picture at left). The
e %ﬁﬁ resultant effect is not nearly as easy to derive as that from two-slit
. B = interference (which, as you can see from above, is straight-

forward). The result for the anglular locations of the minima is
L ) asin(0)=mi.

E10-2
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Putting it Together
If you have two wide slits, that is, slits that exhibit both diffraction and interference, the
pattern observed on a distant screen is as follows:

Diffraction envelope ; J (raction
\ Interference

"fine" structure

-
L\-’-Determim:d by separation d
between slits

Here the amplitude modulation (the red envelope) is set by the diffraction (the width of
the slits), while the “individual wiggles” are due to the interference between the light
coming from the two different slits. You know that this must be the case because d must
be larger than a, and hence the minima locations, which go like 1/d, are closer together
for the two slit pattern than for the single slit pattern.

/

"“n,;l be ¢

The Opposite of a Slit: Babinet’s Principle

So far we have discussed sending light through very narrow slits or reflecting it off of
small grooves, in each case creating a series of point-like “new sources” of light that can
then go on and interfere. Rather amazingly, light hitting a small solid object, like a piece
of hair, creates the same interference pattern as if the object were replaced with a hole of
the same dimensions. This idea is Babinet’s Principle, and the reason behind it is

summed up by the pictorial equation at right.

If you add an object to a hole of the same size,
you get a filled hole. EM waves hitting those + W =
objects must add in the same fashion, that is,

the electric fields produced when light hits the

hole, when added to the electric fields produced by the small object, must add to the
electric fields produced when light hits the filled hole. Since no light can get through the
filled hole, Enole + Eobject = 0. Thus we find that the electric fields coming out of the hole
are equal and opposite to the electric fields diffracting off of the small object. Since the
observed interference pattern depends on intensity, the square of the electric field, the
hole and the object will generate identical diffraction patterns. By measuring properties
of the diffraction pattern we can thus measure the width of the small object. In this lab
the small object will be a piece of your hair.

E10-3



APPARATUS

1. Optical bench

The optical bench consists of a holder
for a laser pointer, a mount for slides
(which contain the slits you will shine
light through), and a sliding block to
which you will attach pieces of paper
Sliding Block to mark your observed inter.ference
patterns. Note that a small ring can
be slid over the button of the laser
“pointer in order to keep it on while
you make your measurements.

Wooden Slide

Slits D
Laser =
Pointer

Optical Bench

2. Slit Slides

You will be given two slides, each containing four sets of slits labeled a through d. One
slide contains single slits with widths from 20 pm to 160 pum. The other slide contains
double slits with widths of 40 pm or 80 pm, separated by distances of 250 pm or 500 pm.

GENERALIZED PROCEDURE

In this lab you will shine the light through slits, across hairs or off of CDs and make
measurements of the resulting interference pattern.

Part 1: Laser Wavelength
In this part you will measure the wavelength of the laser using the two narrow double
slits.

Part 2: Interference from a CD
Next, you will measure the width of tracks on a CD by reflecting laser light off of it and
measuring the resulting multi-slit interference pattern.

Part 3: Thickness of Human Hair
Finally, you will discover the ability to measure the size of small objects using
diffraction, by measuring the width of a human hair.

Caal },

END OF PRE-LAB READING
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IN-LAB ACTIVITIES

EXPERIMENTAL SETUP

1. Download the LabView file from the web and save the file to your desktop. Start
LabView by double clicking on this file.

MEASUREMENTS

Part 1: Laser Wavelength

In this part you will measure the wavelengt@f the laser light you are using
1. Set up the optical bench as pictured in the apparatus diagram.

a. Clip paper onto the wooden slide, and place some distance away from the
slide holder (is it better to be (@ away or closer?)

b. Place the double slit slide in the slide holder and align so that hght from
the laser goes through slit patterna. (. ¢ [ [ 94

c. Turn the laser on (lock it with the clip that slides around tﬁe on button)

d. Adjust the location of the wooden slide so that the pattern is visible but as
large as possible

2. Mark the locations of the intensity maxima. If they are too close to measure
individually, mark of a set of them and determine the average spacing.

Question 1:

What distance between the slide and the screen did you use? What was the average
distance Ay between maxima?

C=N0-107 =423 = 93Tm
'// g = (J

Question 2:

. dA
Using 4 = Ty , what do you calculate to be the wavelength of the laser light? Does this

make sense? I s g A
[ l /_’(;mr“\ AR "\/ Jﬁ‘x - LOO J (L

Rt e e
A VAR e ‘“QW} HQM,{

M f‘r:i_

' | E10-5
¢ “teast a Cow [0S
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Part 2: Interference from a CD

In this part you will determine the track width on a CD by measuring the distance
between interference maxima generated by light reflected from it.

1. Remove the slide from in front of the laser pointer
2. Clip a card with a hole in it to the back of the wooden slide.

3. Place a CD in the groove in the back of the wooden slider. Light will pass
through the hole in the slider and card, reflect off the CD, and land on the card.

4. Turn on the laser and measure the distance between interference maxima.

laser pointer

wooden slider

Question 3:

Using d = i—L, what is the width of the tracks? Does this make sense? Why are they
Y

~—
E:
-
-~

that size? f\ (,; 04t
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Part 3: Thickness of Human Hair

Now you will measure the thickness of a human hair using diffraction.

1. Remove the CD and card from the wooden slide, and tape some hair across the
hole (the hair should run vertically as pictured below).

2. Clip a card to the block at the end of the apparatus.

3. Shine the laser on the hair, and adjust the distance between the hair and the card
so that you obtain a useable diffraction pattern.

Question 4:

‘What is the thickness of the hair that
you measure? Does this seem
reasonable? Is it the same for all
members of your group?

[\]/ - 6 t ;ﬂ?q I{O-y_ Vr\
6?(”((/0”3
!i\(:) M {( / (),]5

1%

Further Questions (for experiment, thought, future exam questions...)

e Instead of measuring the wavelength of light from the two slit patterns, you could
have instead used single slits. Would that have been more or less accurate? Why?

e  Why did you use two slit pattern a to measure the light wavelength rather than 4?

e Where does most of the measurement error come from? How would you improve
this in future labs?

e [fwe redid these experiments with a blue laser instead of red, what
changes would you have needed to make? Would it have affected the
accuracy of the measurements?

e Does the track width change as a function of location on the CD? If so, is it larger or
smaller near the outside?

e What is the ratio of the track size to the wavelength of the light that you used (which
is very similar to the wavelength of light used in commercial players)?

e What would happen to the diffraction pattern if the track width was smaller?

e Why is Blu-Ray an improvement over older CD/DVD technology?

E10-7



Summary of Class 36 Final Exam Information

Final Exam Date and Room TBA (Most Likely Monday Morning May 17 from 9
am-12 noon) Location: Johnson Track (upstairs).

Material Covered & Exam Format:
1. All material covered in the course through the end of the course (through
interference) will be fair game for the final exam.
2. The exam will be slightlv less than twice the length of your first three exams, with
analytic and conceptual questions.
3. This will be a closed book exam. There will be a formula sheet given on the
exam. You should have plenty of time to finish the exam in the three hours

allotted.

What We Expect From You In Particular On The Final

(1) An understanding of Maxwell’s equations, including Maxwell’s addition to Ampere’s
Law (displacement current). You should be able to produce and identify each of
Maxwell’s equations, as well as give brief explanations of the meaning and use of
each of them (don’t be surprised by a question like “State each of Maxwell’s
equations and briefly explain their meaning and typical use.”) In particular:

(a) The ability to use Gauss’s Law to obtain electric fields from highly symmetric
distributions of charge.

(b) An ability to use Ampere’s Law to obtain magnetic fields in magnetostatics for highly
symmetric distributions of current.

(¢) An ability to do analytic problems related to the displacement current. That is, you
should be able to calculate the magnetic field anywhere inside a charging capacitor,
and so on.

(d) An understanding of how to use Faraday’s Law in problems involving the generation
of induced EMFs. You should be able to formulate quantitative answers to questions
about energy considerations in Faraday’s Law problems, e.g. the power going into
ohmic dissipation comes from the decreasing kinetic energy of a rolling rod, etc.

(2) Anunderstanding of the concept of electric field and electric potential difference, an
ability to calculate those in specific circumstances (e.g. given V(x,y,z) find E(x.y,z),
or given E(x,y,z) find V(x,y,z), and so on). This includes the ability to calculate
capacitance for highly symmetric situations.

(3) An understanding of the concept of an electric dipole and the forces and torques on
such a dipole in an external electric field.

(4) An ability to use the Biot-Savart Law to obtain magnetic fields in magnetostatics for
any distribution of current.

(5) An understanding of how to calculate the forces and torques on a current element in
an external magnetic field or on a charge moving in an external magnetic field,
including the characteristics of cyclotron motion.

(6) An understanding of the concept of a magnetic dipole and the forces and torques on
such a dipole in an external magnetic field.

(7) An understanding of inductance and the ability to calculate it for simple geometries.

(8) An understanding of the behavior of DC and AC circuits involving resistors,
capacitors, inductors and any combination thereof.

Class 36



Summary of Class 36 Final Exam Informatien

(9) Anunderstanding of the concepts of energy in electric and magnetic fields, and of
energy flow in the Poynting vector.

(10) An ability do to analytic and conceptual problems related to plane electromagnetic
waves—e.g. obtain E given B and vice versa, determine the direction of propagation,
and so on.

(11) An understanding of the concepts of interference and diffraction, and the ability to do
simple (conceptual) problems related to these concepts.

(12) An ability to calculate the Poynting flux vector and integrals of that vector over
surfaces to show energy conservation in situations involving, for example, a charging
or discharging capacitor, a resistor, a charging or discharging battery, and an inductor
where the current is increasing or decreasing. This means that you should both be
able to do the analytic calculations and explain their physical signiﬁcanlce. ‘
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- Class 36: Qutline

. Final Exam Review

~ Before Starting...

All of your grades should now be posted (wﬂh
possible exception of last problem set). I this is

ot the case contact your grad TA immediately.
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Undriven LC Circuit

c;ilati s: From charge on
capacitor (Spring) to current in_

| r 'l
NetTra | f-(}cq
17

Lﬂw m (oné'é?/va“w 9 { Er\ﬂfj z

- Max__chame = Corcta?

‘*10-;/ lf)’j 1«/&4:‘ u.ﬂ.';f[w
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PRS: LC Circuit

Im‘ T. Gt ‘U,
- — .

If you increase the
resistance in the circuit 2 /X =
what will happen to rate ’éng \ 4 \ /X\ 74 :

of decay of the pictured

amplitudes? Ay oo
e - 400y - b o,
% 1, |twil increase 'decay m z_‘a-r’éb!ﬂly)

o 2. Itwill decrease (decay less rapldly)

% 3. ltwill stay the same

0% 4. Idon’t know_ T

AC Circuits: Summary

Current vs. Resistance-

Element Vvsl, Voltage & Reactance

5 s S Bg i ('mPBdanca)
Resiclor =l ' InPhase R=R

-: _ Capacitor | ;. 4

Inductor . | |

Drwen RLC Series Circuit
Vo —f— ¥y ——I-—Vc - :

L C
: Q(r)——— I, sin(wt — @)
S  RE

Vo=V sin (@) [ |

Vso Vo' +(V Ve =1a JRH-(X —X Y =1,Z

P,




/\I(f) k; sm(a;;)

Vp(t)=1,R sin (a)t)

NS
/N ) =i,X, sin(@r+%)

G

. LS
ST o : /\
>'0 \ /\

N wal N
>%0 T_ ‘ﬂ ‘ !
>0 /\ /\ /\

\A¢. Time (Periods)

Ve(t)=1,X, sin (a;r_g

Vs(t) =¥, sin (a)t+¢;

)
e

R W%ﬁ

)

-like:
<0
1 leads

L-like:

$>0
Ilags
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PRS: Leading or Lagging

CURRENT

The graph shows the
current versus the
voltage in a driven RLC
circuit at a given driving
frequency. In this plot

1. Current lags voltage by ~90°

2. Cumrent leads voltage by ~90° ,

. Current and voltage are almost in phase

. We don't have enough information (but they aren'tin {
_phase!)ﬂ: e e

. I'don't know

TETEEE
Awma

o

PRS: Leading or Lagging

CURRENT
Answer: 4. Can't Tell m
Without the direction you can't

tell whether the current or S
voltage is leading or lagging.

You can only tell that you aren’t
in phase (in fact, you are outof
phase by ~80°) - .

.

P32

PRS: What'd You Do?

T iime

The graph shows current & voltage vs. time ina
driven RLC circuit. We had been in resonance a
second ago but then either put in or took out the core
from the inductor. Which was it?

o% 1. Putin the core
: 2. Took out the core
: : '|t kn :

e
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Traveling E & B Waves

Wavelength: 4
Frequency : f

E= EE sm(k r—or)

Wave Number: k-——j'-— .
_Angular Freq.: o= 2:rf

Penod T-J-_ 2”
L co_z_'

A
B,

vacuum

=y

.win‘;_

Speed: v=2=Af

N

Ees o1 Liif e
Direction: +k=ExB | ="~ 7~ B

P34-38

EM Waves
Travel (through vacuum) with
speed of light o m" ' : £
v-Cc= —3x10° 2 /, 7

At every point in the wave and any instant of time,
E and B are in phase with one another with

E and B fields perpend:cular to one another, and to
the direction of propagatlon (they are transvarse)

Direction of propagation = Direction of ExB

JhE f"/

'PRS Questions:
EM Waves

Classasao 31 &33
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PRS: Direction of Propagation

The figure shows the
E (yellow) and B (blue)

Ty A 0Dpiaatiog
. ] I v

h Ry

[
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PRS Questions:
Poyntmg Vector

C[ass 33

PRS: Capacitor

_ 1 of 480
—te | &Rl
. +Q - | -b’

: The ﬁgures above show a side and top view of a
capacitcr with charge Q and electric and magnetlc
_ 'lds .. 1h‘

4.1 dqn'i know

PRS: Inductor /

ox 4. |don't know
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PRS Spark Gap

Z.At the hme shown the
charge on the top half of our _
Ve wave antenna is positwe

Class 36
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PRS: Double Slit

Coherent monochromatic

by a distance d. An
approximate formula for
the path length difference
between the two rays
shown is

two apertures separated R Tl e
4

1.'dsin9--_-:
2. Lsin®
3. dcos 6
4. Lcos@

$RF e

plane waves impinge on . r

B Donthaveactue -

Diffraction

Fid.41
Diffraction
Diffraction: The bending of waves as they pass by
jl certain antecles
ij‘ Diff}éeth
~ No spreading aft preading after
passing though slits ng though slits

Class 36
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Single-Slit D:ffract;on

"Denvation (Mohvat:on) by Dwnsmn

--*---»L"'-'“'—‘-“‘,

X

"Iestructwe Interference: asma ml ) ;‘il,‘:if

sinB=20fa
sinf=Aia &
sinf=0

sinB=~A/

sinﬁm‘Z?\.{a;

Viewing screen

Determined by separation d
benween slits
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