The Haybaler Problem

POW \# 8

1. Problem Statement: Not necessary to do.

2. Process: I started this POW with a lot of work which I didn't need to do. I wrote down all the combos in the form of $1+2,2+3$, etc. I then guess some numbers to fill in. I tried lost of combos, only switching 4 and 5. I couldn't get anything to work. I then started over with changing numbers. When ever I would change a number, lots of combos would change, and I was not having fun. Looking back, I was getting close at the end, but I didn't know that. I spent an hour with this strategy. I put the problem aside for a few days.

I then received the hint sheet on Friday. After getting the sheet, I solved the basic solution to the POW in 20 minutes. I used the hints page that you passed out to us. The first 2 hints were my best friends. I first found what the heaviest and lightest bails weighed. Well actually I did that the other way around.;) I found that the lightest must be 1 and 2 . (Note: 1 is always the lightest and 5 is always the heaviest, and the other numbers are in order) This is because when you combine the 2 lightest, they add up to be the lightest. Likewise the heaviest, must be bails 4 and 5. I then made this chart: I also made a chart of what I thought each bail weighed:

80	$1+2$
82	
83	
84	
85	
86	
87	
88	
90	
91	$4+5$

1	$?$
2	$?$
3	$?$
4	$?$
5	$?$

Throughout the problem, I updated this chart when I found more info.
Now I wanted to find 1 and 2. I know that they add up to 80 . I also know that they both can't be 40 because you told us, and when I add $1+3$ and $2+3$, they would but equal the same thing. I decided to make 1 equal 39 , and $2=41$. It could not be the other way around $(1=41,2=39)$ because then Bale 1 would not be lighter. However, it really makes no difference, but they are easier in order.

I then made these charts of possible combos (without repeating): I also "added" the possible solutions to see how "big" they would be. (ex. $1+2=3$) Numbers which are big, in this simple form, would be big when I added the hay bails. I guess this would kind of be like variables. This is what I call a "weight."

$1+2$	$2+3$	$3+4$	$4+5$
$1+3$	$2+4$	$3+5$	
$1+4$	$2+5$		
$1+5$			

To find these "weights," I played around. These weights also go onto the combos chart like this: They must go in order. Here is also an updated answer chart:

80	$1+2(3)$
82	4
83	5
84	5
85	6
86	6
87	7
88	7
90	8
91	$4+5(9)$

1	39
2	41
3	$?$
4	$?$
5	$?$

Because 90 is the only combo with a "weigh" of $8,3+5$ must be that combination, because it also is the only pair with a "weight" of 8 . This can also be done in reverse with 84 , which has the exclusive "weight" of 4 , so it must be $1+3$. I can now find bale 3 . It must be 82-39 (Which is Bale 1) $=43$. Bail 3 weighs 43 kg . Here is a recap so far:

80	$1+2(3)$
82	$1+3(4)$
83	5
84	5
85	6
86	6
87	7
88	7
90	$3+5(8)$
91	$4+5(9)$

1	39
2	41
3	43
4	$?$
5	$?$

I can now find 5. It must be $90(3+5)-43(\# 3)=47$. So, we now have 5 . We can also get combinations now. 83 , with a "weight" of 5 , must be $1+4$ or $2+3$. I will try $2+3$ first. $41+43=88$, which is not 83 . This means that 83 must be $1+4$. However we don't know bale 4, but we do know that it is 83-39(combined \#-1 bale known), which equals 44 . Tada. Bale 4=44.

80	$1+2(3)$
82	$1+3(4)$

83	$1+4(5)$
84	5
85	6
86	6
87	7
88	7
90	$3+5(8)$
91	$4+5(9)$

1	39
2	41
3	43
4	44
5	$?$

Next up is 84 . This must be $2+3$, because our other 5 "weight" is already solved at 83 . It works when I check it. $41+43=84$.

Next up, we do the same finding our 6 and 7 "weights." 85 can be $1+5$ or $2+4$. Lets check, $2+4,41+44=85$ Check. Next up is 86 , which must be $1+5$. Wait we don't know 5 , but we know that it is $86-39+47$. Bada-Bing Bale $5=47$. We now know all the bails. Lets just finish up, by doing 87 and 88 . They are either $2+5$ or $3+4.41+47=88$, so 88 is $2+4$. This leaves 87 to be $3+4$ or $43+44=87$. There we go, POW solved.

3. Solution:

80	$1+2(3)$
82	$1+3(4)$
83	$1+4(5)$
84	$2+3(5)$
85	$2+4(6)$
86	$3+4(6)$
87	$2+5(7)$
88	$2+5(7)$
90	$3+5(8)$
91	$4+5(9)$

1	39
2	41
3	43
4	44
5	47

I then checked all of the weights to make sure they can work. (ex. $1+2$ is $39+41+80$ Check) I know none can repeat because all of the combs are listed here, and all work with none left over.

4. Extension: 1. Are there more weights? 2. Can it be done faster?

Let's start with 2. I think my way is fast to find answers. It just takes a lot of writing. Someone told me that you can do it with averages of all the numbers, but I know no details. It might not be faster.

1. I don't think I can find more answers. This all works with a delicate balance of numbers, where if you change one, you change 5 of them. There also is an acceptable range where nothing else would fit. I don't think there are any more whol numbers that could fit. I also did lots of combos by guess and check where I couldn't find an answer.
2. Evaluation: Not necessary to do.

Posibal Combes row Cher.

$\begin{aligned} & 44-602 \\ & 45\end{aligned}$
44.49
7
34

$$
\begin{aligned}
& \text { POW8 } \mathrm{p} 2
\end{aligned}
$$

$$
\begin{aligned}
& y J 80-m, i+3+2 \\
& \begin{array}{l}
1+3 \\
2.2
\end{array} \\
& 1-39 \\
& \left\lvert\, \begin{array}{cc}
289 & -1+3 \\
-29 & 1.4 \\
-54 & 213 \\
-85 & 2.4
\end{array}\right. \\
& 631+5 \\
& 053+4 \\
& -2+5 \\
& 70-3+5 \\
& 91 \text {-ravot be } 415
\end{aligned}
$$

